1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library. First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression. These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 // Chains of recurrences -- a method to expedite the evaluation
42 // of closed-form functions
43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 // On computational properties of chains of recurrences
46 // Eugene V. Zima
47 //
48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 // Robert A. van Engelen
50 //
51 // Efficient Symbolic Analysis for Optimizing Compilers
52 // Robert A. van Engelen
53 //
54 // Using the chains of recurrences algebra for data dependence testing and
55 // induction variable substitution
56 // MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136
137 using namespace llvm;
138 using namespace PatternMatch;
139
140 #define DEBUG_TYPE "scalar-evolution"
141
142 STATISTIC(NumArrayLenItCounts,
143 "Number of trip counts computed with array length");
144 STATISTIC(NumTripCountsComputed,
145 "Number of loops with predictable loop counts");
146 STATISTIC(NumTripCountsNotComputed,
147 "Number of loops without predictable loop counts");
148 STATISTIC(NumBruteForceTripCountsComputed,
149 "Number of loops with trip counts computed by force");
150
151 static cl::opt<unsigned>
152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
153 cl::ZeroOrMore,
154 cl::desc("Maximum number of iterations SCEV will "
155 "symbolically execute a constant "
156 "derived loop"),
157 cl::init(100));
158
159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
160 static cl::opt<bool> VerifySCEV(
161 "verify-scev", cl::Hidden,
162 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
163 static cl::opt<bool> VerifySCEVStrict(
164 "verify-scev-strict", cl::Hidden,
165 cl::desc("Enable stricter verification with -verify-scev is passed"));
166 static cl::opt<bool>
167 VerifySCEVMap("verify-scev-maps", cl::Hidden,
168 cl::desc("Verify no dangling value in ScalarEvolution's "
169 "ExprValueMap (slow)"));
170
171 static cl::opt<bool> VerifyIR(
172 "scev-verify-ir", cl::Hidden,
173 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
174 cl::init(false));
175
176 static cl::opt<unsigned> MulOpsInlineThreshold(
177 "scev-mulops-inline-threshold", cl::Hidden,
178 cl::desc("Threshold for inlining multiplication operands into a SCEV"),
179 cl::init(32));
180
181 static cl::opt<unsigned> AddOpsInlineThreshold(
182 "scev-addops-inline-threshold", cl::Hidden,
183 cl::desc("Threshold for inlining addition operands into a SCEV"),
184 cl::init(500));
185
186 static cl::opt<unsigned> MaxSCEVCompareDepth(
187 "scalar-evolution-max-scev-compare-depth", cl::Hidden,
188 cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
189 cl::init(32));
190
191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
192 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
193 cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
194 cl::init(2));
195
196 static cl::opt<unsigned> MaxValueCompareDepth(
197 "scalar-evolution-max-value-compare-depth", cl::Hidden,
198 cl::desc("Maximum depth of recursive value complexity comparisons"),
199 cl::init(2));
200
201 static cl::opt<unsigned>
202 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
203 cl::desc("Maximum depth of recursive arithmetics"),
204 cl::init(32));
205
206 static cl::opt<unsigned> MaxConstantEvolvingDepth(
207 "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
208 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
209
210 static cl::opt<unsigned>
211 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
212 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
213 cl::init(8));
214
215 static cl::opt<unsigned>
216 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
217 cl::desc("Max coefficients in AddRec during evolving"),
218 cl::init(8));
219
220 static cl::opt<unsigned>
221 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
222 cl::desc("Size of the expression which is considered huge"),
223 cl::init(4096));
224
225 static cl::opt<bool>
226 ClassifyExpressions("scalar-evolution-classify-expressions",
227 cl::Hidden, cl::init(true),
228 cl::desc("When printing analysis, include information on every instruction"));
229
230 static cl::opt<bool> UseExpensiveRangeSharpening(
231 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
232 cl::init(false),
233 cl::desc("Use more powerful methods of sharpening expression ranges. May "
234 "be costly in terms of compile time"));
235
236 //===----------------------------------------------------------------------===//
237 // SCEV class definitions
238 //===----------------------------------------------------------------------===//
239
240 //===----------------------------------------------------------------------===//
241 // Implementation of the SCEV class.
242 //
243
244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const245 LLVM_DUMP_METHOD void SCEV::dump() const {
246 print(dbgs());
247 dbgs() << '\n';
248 }
249 #endif
250
print(raw_ostream & OS) const251 void SCEV::print(raw_ostream &OS) const {
252 switch (getSCEVType()) {
253 case scConstant:
254 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
255 return;
256 case scPtrToInt: {
257 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
258 const SCEV *Op = PtrToInt->getOperand();
259 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
260 << *PtrToInt->getType() << ")";
261 return;
262 }
263 case scTruncate: {
264 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
265 const SCEV *Op = Trunc->getOperand();
266 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
267 << *Trunc->getType() << ")";
268 return;
269 }
270 case scZeroExtend: {
271 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
272 const SCEV *Op = ZExt->getOperand();
273 OS << "(zext " << *Op->getType() << " " << *Op << " to "
274 << *ZExt->getType() << ")";
275 return;
276 }
277 case scSignExtend: {
278 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
279 const SCEV *Op = SExt->getOperand();
280 OS << "(sext " << *Op->getType() << " " << *Op << " to "
281 << *SExt->getType() << ")";
282 return;
283 }
284 case scAddRecExpr: {
285 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
286 OS << "{" << *AR->getOperand(0);
287 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
288 OS << ",+," << *AR->getOperand(i);
289 OS << "}<";
290 if (AR->hasNoUnsignedWrap())
291 OS << "nuw><";
292 if (AR->hasNoSignedWrap())
293 OS << "nsw><";
294 if (AR->hasNoSelfWrap() &&
295 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
296 OS << "nw><";
297 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
298 OS << ">";
299 return;
300 }
301 case scAddExpr:
302 case scMulExpr:
303 case scUMaxExpr:
304 case scSMaxExpr:
305 case scUMinExpr:
306 case scSMinExpr: {
307 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
308 const char *OpStr = nullptr;
309 switch (NAry->getSCEVType()) {
310 case scAddExpr: OpStr = " + "; break;
311 case scMulExpr: OpStr = " * "; break;
312 case scUMaxExpr: OpStr = " umax "; break;
313 case scSMaxExpr: OpStr = " smax "; break;
314 case scUMinExpr:
315 OpStr = " umin ";
316 break;
317 case scSMinExpr:
318 OpStr = " smin ";
319 break;
320 default:
321 llvm_unreachable("There are no other nary expression types.");
322 }
323 OS << "(";
324 ListSeparator LS(OpStr);
325 for (const SCEV *Op : NAry->operands())
326 OS << LS << *Op;
327 OS << ")";
328 switch (NAry->getSCEVType()) {
329 case scAddExpr:
330 case scMulExpr:
331 if (NAry->hasNoUnsignedWrap())
332 OS << "<nuw>";
333 if (NAry->hasNoSignedWrap())
334 OS << "<nsw>";
335 break;
336 default:
337 // Nothing to print for other nary expressions.
338 break;
339 }
340 return;
341 }
342 case scUDivExpr: {
343 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
344 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
345 return;
346 }
347 case scUnknown: {
348 const SCEVUnknown *U = cast<SCEVUnknown>(this);
349 Type *AllocTy;
350 if (U->isSizeOf(AllocTy)) {
351 OS << "sizeof(" << *AllocTy << ")";
352 return;
353 }
354 if (U->isAlignOf(AllocTy)) {
355 OS << "alignof(" << *AllocTy << ")";
356 return;
357 }
358
359 Type *CTy;
360 Constant *FieldNo;
361 if (U->isOffsetOf(CTy, FieldNo)) {
362 OS << "offsetof(" << *CTy << ", ";
363 FieldNo->printAsOperand(OS, false);
364 OS << ")";
365 return;
366 }
367
368 // Otherwise just print it normally.
369 U->getValue()->printAsOperand(OS, false);
370 return;
371 }
372 case scCouldNotCompute:
373 OS << "***COULDNOTCOMPUTE***";
374 return;
375 }
376 llvm_unreachable("Unknown SCEV kind!");
377 }
378
getType() const379 Type *SCEV::getType() const {
380 switch (getSCEVType()) {
381 case scConstant:
382 return cast<SCEVConstant>(this)->getType();
383 case scPtrToInt:
384 case scTruncate:
385 case scZeroExtend:
386 case scSignExtend:
387 return cast<SCEVCastExpr>(this)->getType();
388 case scAddRecExpr:
389 case scMulExpr:
390 case scUMaxExpr:
391 case scSMaxExpr:
392 case scUMinExpr:
393 case scSMinExpr:
394 return cast<SCEVNAryExpr>(this)->getType();
395 case scAddExpr:
396 return cast<SCEVAddExpr>(this)->getType();
397 case scUDivExpr:
398 return cast<SCEVUDivExpr>(this)->getType();
399 case scUnknown:
400 return cast<SCEVUnknown>(this)->getType();
401 case scCouldNotCompute:
402 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
403 }
404 llvm_unreachable("Unknown SCEV kind!");
405 }
406
isZero() const407 bool SCEV::isZero() const {
408 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
409 return SC->getValue()->isZero();
410 return false;
411 }
412
isOne() const413 bool SCEV::isOne() const {
414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
415 return SC->getValue()->isOne();
416 return false;
417 }
418
isAllOnesValue() const419 bool SCEV::isAllOnesValue() const {
420 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
421 return SC->getValue()->isMinusOne();
422 return false;
423 }
424
isNonConstantNegative() const425 bool SCEV::isNonConstantNegative() const {
426 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
427 if (!Mul) return false;
428
429 // If there is a constant factor, it will be first.
430 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
431 if (!SC) return false;
432
433 // Return true if the value is negative, this matches things like (-42 * V).
434 return SC->getAPInt().isNegative();
435 }
436
SCEVCouldNotCompute()437 SCEVCouldNotCompute::SCEVCouldNotCompute() :
438 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
439
classof(const SCEV * S)440 bool SCEVCouldNotCompute::classof(const SCEV *S) {
441 return S->getSCEVType() == scCouldNotCompute;
442 }
443
getConstant(ConstantInt * V)444 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
445 FoldingSetNodeID ID;
446 ID.AddInteger(scConstant);
447 ID.AddPointer(V);
448 void *IP = nullptr;
449 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
450 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
451 UniqueSCEVs.InsertNode(S, IP);
452 return S;
453 }
454
getConstant(const APInt & Val)455 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
456 return getConstant(ConstantInt::get(getContext(), Val));
457 }
458
459 const SCEV *
getConstant(Type * Ty,uint64_t V,bool isSigned)460 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
461 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
462 return getConstant(ConstantInt::get(ITy, V, isSigned));
463 }
464
SCEVCastExpr(const FoldingSetNodeIDRef ID,SCEVTypes SCEVTy,const SCEV * op,Type * ty)465 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
466 const SCEV *op, Type *ty)
467 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
468 Operands[0] = op;
469 }
470
SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID,const SCEV * Op,Type * ITy)471 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
472 Type *ITy)
473 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
474 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
475 "Must be a non-bit-width-changing pointer-to-integer cast!");
476 }
477
SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,SCEVTypes SCEVTy,const SCEV * op,Type * ty)478 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
479 SCEVTypes SCEVTy, const SCEV *op,
480 Type *ty)
481 : SCEVCastExpr(ID, SCEVTy, op, ty) {}
482
SCEVTruncateExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)483 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
484 Type *ty)
485 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
486 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
487 "Cannot truncate non-integer value!");
488 }
489
SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)490 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
491 const SCEV *op, Type *ty)
492 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
493 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
494 "Cannot zero extend non-integer value!");
495 }
496
SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)497 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
498 const SCEV *op, Type *ty)
499 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
500 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
501 "Cannot sign extend non-integer value!");
502 }
503
deleted()504 void SCEVUnknown::deleted() {
505 // Clear this SCEVUnknown from various maps.
506 SE->forgetMemoizedResults(this);
507
508 // Remove this SCEVUnknown from the uniquing map.
509 SE->UniqueSCEVs.RemoveNode(this);
510
511 // Release the value.
512 setValPtr(nullptr);
513 }
514
allUsesReplacedWith(Value * New)515 void SCEVUnknown::allUsesReplacedWith(Value *New) {
516 // Remove this SCEVUnknown from the uniquing map.
517 SE->UniqueSCEVs.RemoveNode(this);
518
519 // Update this SCEVUnknown to point to the new value. This is needed
520 // because there may still be outstanding SCEVs which still point to
521 // this SCEVUnknown.
522 setValPtr(New);
523 }
524
isSizeOf(Type * & AllocTy) const525 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
526 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
527 if (VCE->getOpcode() == Instruction::PtrToInt)
528 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
529 if (CE->getOpcode() == Instruction::GetElementPtr &&
530 CE->getOperand(0)->isNullValue() &&
531 CE->getNumOperands() == 2)
532 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
533 if (CI->isOne()) {
534 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
535 ->getElementType();
536 return true;
537 }
538
539 return false;
540 }
541
isAlignOf(Type * & AllocTy) const542 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
543 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
544 if (VCE->getOpcode() == Instruction::PtrToInt)
545 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
546 if (CE->getOpcode() == Instruction::GetElementPtr &&
547 CE->getOperand(0)->isNullValue()) {
548 Type *Ty =
549 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
550 if (StructType *STy = dyn_cast<StructType>(Ty))
551 if (!STy->isPacked() &&
552 CE->getNumOperands() == 3 &&
553 CE->getOperand(1)->isNullValue()) {
554 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
555 if (CI->isOne() &&
556 STy->getNumElements() == 2 &&
557 STy->getElementType(0)->isIntegerTy(1)) {
558 AllocTy = STy->getElementType(1);
559 return true;
560 }
561 }
562 }
563
564 return false;
565 }
566
isOffsetOf(Type * & CTy,Constant * & FieldNo) const567 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
568 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
569 if (VCE->getOpcode() == Instruction::PtrToInt)
570 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
571 if (CE->getOpcode() == Instruction::GetElementPtr &&
572 CE->getNumOperands() == 3 &&
573 CE->getOperand(0)->isNullValue() &&
574 CE->getOperand(1)->isNullValue()) {
575 Type *Ty =
576 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
577 // Ignore vector types here so that ScalarEvolutionExpander doesn't
578 // emit getelementptrs that index into vectors.
579 if (Ty->isStructTy() || Ty->isArrayTy()) {
580 CTy = Ty;
581 FieldNo = CE->getOperand(2);
582 return true;
583 }
584 }
585
586 return false;
587 }
588
589 //===----------------------------------------------------------------------===//
590 // SCEV Utilities
591 //===----------------------------------------------------------------------===//
592
593 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
594 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
595 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that
596 /// have been previously deemed to be "equally complex" by this routine. It is
597 /// intended to avoid exponential time complexity in cases like:
598 ///
599 /// %a = f(%x, %y)
600 /// %b = f(%a, %a)
601 /// %c = f(%b, %b)
602 ///
603 /// %d = f(%x, %y)
604 /// %e = f(%d, %d)
605 /// %f = f(%e, %e)
606 ///
607 /// CompareValueComplexity(%f, %c)
608 ///
609 /// Since we do not continue running this routine on expression trees once we
610 /// have seen unequal values, there is no need to track them in the cache.
611 static int
CompareValueComplexity(EquivalenceClasses<const Value * > & EqCacheValue,const LoopInfo * const LI,Value * LV,Value * RV,unsigned Depth)612 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
613 const LoopInfo *const LI, Value *LV, Value *RV,
614 unsigned Depth) {
615 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
616 return 0;
617
618 // Order pointer values after integer values. This helps SCEVExpander form
619 // GEPs.
620 bool LIsPointer = LV->getType()->isPointerTy(),
621 RIsPointer = RV->getType()->isPointerTy();
622 if (LIsPointer != RIsPointer)
623 return (int)LIsPointer - (int)RIsPointer;
624
625 // Compare getValueID values.
626 unsigned LID = LV->getValueID(), RID = RV->getValueID();
627 if (LID != RID)
628 return (int)LID - (int)RID;
629
630 // Sort arguments by their position.
631 if (const auto *LA = dyn_cast<Argument>(LV)) {
632 const auto *RA = cast<Argument>(RV);
633 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
634 return (int)LArgNo - (int)RArgNo;
635 }
636
637 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
638 const auto *RGV = cast<GlobalValue>(RV);
639
640 const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
641 auto LT = GV->getLinkage();
642 return !(GlobalValue::isPrivateLinkage(LT) ||
643 GlobalValue::isInternalLinkage(LT));
644 };
645
646 // Use the names to distinguish the two values, but only if the
647 // names are semantically important.
648 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
649 return LGV->getName().compare(RGV->getName());
650 }
651
652 // For instructions, compare their loop depth, and their operand count. This
653 // is pretty loose.
654 if (const auto *LInst = dyn_cast<Instruction>(LV)) {
655 const auto *RInst = cast<Instruction>(RV);
656
657 // Compare loop depths.
658 const BasicBlock *LParent = LInst->getParent(),
659 *RParent = RInst->getParent();
660 if (LParent != RParent) {
661 unsigned LDepth = LI->getLoopDepth(LParent),
662 RDepth = LI->getLoopDepth(RParent);
663 if (LDepth != RDepth)
664 return (int)LDepth - (int)RDepth;
665 }
666
667 // Compare the number of operands.
668 unsigned LNumOps = LInst->getNumOperands(),
669 RNumOps = RInst->getNumOperands();
670 if (LNumOps != RNumOps)
671 return (int)LNumOps - (int)RNumOps;
672
673 for (unsigned Idx : seq(0u, LNumOps)) {
674 int Result =
675 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
676 RInst->getOperand(Idx), Depth + 1);
677 if (Result != 0)
678 return Result;
679 }
680 }
681
682 EqCacheValue.unionSets(LV, RV);
683 return 0;
684 }
685
686 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
687 // than RHS, respectively. A three-way result allows recursive comparisons to be
688 // more efficient.
689 // If the max analysis depth was reached, return None, assuming we do not know
690 // if they are equivalent for sure.
691 static Optional<int>
CompareSCEVComplexity(EquivalenceClasses<const SCEV * > & EqCacheSCEV,EquivalenceClasses<const Value * > & EqCacheValue,const LoopInfo * const LI,const SCEV * LHS,const SCEV * RHS,DominatorTree & DT,unsigned Depth=0)692 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
693 EquivalenceClasses<const Value *> &EqCacheValue,
694 const LoopInfo *const LI, const SCEV *LHS,
695 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
696 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
697 if (LHS == RHS)
698 return 0;
699
700 // Primarily, sort the SCEVs by their getSCEVType().
701 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
702 if (LType != RType)
703 return (int)LType - (int)RType;
704
705 if (EqCacheSCEV.isEquivalent(LHS, RHS))
706 return 0;
707
708 if (Depth > MaxSCEVCompareDepth)
709 return None;
710
711 // Aside from the getSCEVType() ordering, the particular ordering
712 // isn't very important except that it's beneficial to be consistent,
713 // so that (a + b) and (b + a) don't end up as different expressions.
714 switch (LType) {
715 case scUnknown: {
716 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
717 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
718
719 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
720 RU->getValue(), Depth + 1);
721 if (X == 0)
722 EqCacheSCEV.unionSets(LHS, RHS);
723 return X;
724 }
725
726 case scConstant: {
727 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
728 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
729
730 // Compare constant values.
731 const APInt &LA = LC->getAPInt();
732 const APInt &RA = RC->getAPInt();
733 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
734 if (LBitWidth != RBitWidth)
735 return (int)LBitWidth - (int)RBitWidth;
736 return LA.ult(RA) ? -1 : 1;
737 }
738
739 case scAddRecExpr: {
740 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
741 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
742
743 // There is always a dominance between two recs that are used by one SCEV,
744 // so we can safely sort recs by loop header dominance. We require such
745 // order in getAddExpr.
746 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
747 if (LLoop != RLoop) {
748 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
749 assert(LHead != RHead && "Two loops share the same header?");
750 if (DT.dominates(LHead, RHead))
751 return 1;
752 else
753 assert(DT.dominates(RHead, LHead) &&
754 "No dominance between recurrences used by one SCEV?");
755 return -1;
756 }
757
758 // Addrec complexity grows with operand count.
759 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
760 if (LNumOps != RNumOps)
761 return (int)LNumOps - (int)RNumOps;
762
763 // Lexicographically compare.
764 for (unsigned i = 0; i != LNumOps; ++i) {
765 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
766 LA->getOperand(i), RA->getOperand(i), DT,
767 Depth + 1);
768 if (X != 0)
769 return X;
770 }
771 EqCacheSCEV.unionSets(LHS, RHS);
772 return 0;
773 }
774
775 case scAddExpr:
776 case scMulExpr:
777 case scSMaxExpr:
778 case scUMaxExpr:
779 case scSMinExpr:
780 case scUMinExpr: {
781 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
782 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
783
784 // Lexicographically compare n-ary expressions.
785 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
786 if (LNumOps != RNumOps)
787 return (int)LNumOps - (int)RNumOps;
788
789 for (unsigned i = 0; i != LNumOps; ++i) {
790 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
791 LC->getOperand(i), RC->getOperand(i), DT,
792 Depth + 1);
793 if (X != 0)
794 return X;
795 }
796 EqCacheSCEV.unionSets(LHS, RHS);
797 return 0;
798 }
799
800 case scUDivExpr: {
801 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
802 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
803
804 // Lexicographically compare udiv expressions.
805 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
806 RC->getLHS(), DT, Depth + 1);
807 if (X != 0)
808 return X;
809 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
810 RC->getRHS(), DT, Depth + 1);
811 if (X == 0)
812 EqCacheSCEV.unionSets(LHS, RHS);
813 return X;
814 }
815
816 case scPtrToInt:
817 case scTruncate:
818 case scZeroExtend:
819 case scSignExtend: {
820 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
821 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
822
823 // Compare cast expressions by operand.
824 auto X =
825 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(),
826 RC->getOperand(), DT, Depth + 1);
827 if (X == 0)
828 EqCacheSCEV.unionSets(LHS, RHS);
829 return X;
830 }
831
832 case scCouldNotCompute:
833 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
834 }
835 llvm_unreachable("Unknown SCEV kind!");
836 }
837
838 /// Given a list of SCEV objects, order them by their complexity, and group
839 /// objects of the same complexity together by value. When this routine is
840 /// finished, we know that any duplicates in the vector are consecutive and that
841 /// complexity is monotonically increasing.
842 ///
843 /// Note that we go take special precautions to ensure that we get deterministic
844 /// results from this routine. In other words, we don't want the results of
845 /// this to depend on where the addresses of various SCEV objects happened to
846 /// land in memory.
GroupByComplexity(SmallVectorImpl<const SCEV * > & Ops,LoopInfo * LI,DominatorTree & DT)847 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
848 LoopInfo *LI, DominatorTree &DT) {
849 if (Ops.size() < 2) return; // Noop
850
851 EquivalenceClasses<const SCEV *> EqCacheSCEV;
852 EquivalenceClasses<const Value *> EqCacheValue;
853
854 // Whether LHS has provably less complexity than RHS.
855 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
856 auto Complexity =
857 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
858 return Complexity && *Complexity < 0;
859 };
860 if (Ops.size() == 2) {
861 // This is the common case, which also happens to be trivially simple.
862 // Special case it.
863 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
864 if (IsLessComplex(RHS, LHS))
865 std::swap(LHS, RHS);
866 return;
867 }
868
869 // Do the rough sort by complexity.
870 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
871 return IsLessComplex(LHS, RHS);
872 });
873
874 // Now that we are sorted by complexity, group elements of the same
875 // complexity. Note that this is, at worst, N^2, but the vector is likely to
876 // be extremely short in practice. Note that we take this approach because we
877 // do not want to depend on the addresses of the objects we are grouping.
878 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
879 const SCEV *S = Ops[i];
880 unsigned Complexity = S->getSCEVType();
881
882 // If there are any objects of the same complexity and same value as this
883 // one, group them.
884 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
885 if (Ops[j] == S) { // Found a duplicate.
886 // Move it to immediately after i'th element.
887 std::swap(Ops[i+1], Ops[j]);
888 ++i; // no need to rescan it.
889 if (i == e-2) return; // Done!
890 }
891 }
892 }
893 }
894
895 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
896 /// least HugeExprThreshold nodes).
hasHugeExpression(ArrayRef<const SCEV * > Ops)897 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
898 return any_of(Ops, [](const SCEV *S) {
899 return S->getExpressionSize() >= HugeExprThreshold;
900 });
901 }
902
903 //===----------------------------------------------------------------------===//
904 // Simple SCEV method implementations
905 //===----------------------------------------------------------------------===//
906
907 /// Compute BC(It, K). The result has width W. Assume, K > 0.
BinomialCoefficient(const SCEV * It,unsigned K,ScalarEvolution & SE,Type * ResultTy)908 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
909 ScalarEvolution &SE,
910 Type *ResultTy) {
911 // Handle the simplest case efficiently.
912 if (K == 1)
913 return SE.getTruncateOrZeroExtend(It, ResultTy);
914
915 // We are using the following formula for BC(It, K):
916 //
917 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
918 //
919 // Suppose, W is the bitwidth of the return value. We must be prepared for
920 // overflow. Hence, we must assure that the result of our computation is
921 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
922 // safe in modular arithmetic.
923 //
924 // However, this code doesn't use exactly that formula; the formula it uses
925 // is something like the following, where T is the number of factors of 2 in
926 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
927 // exponentiation:
928 //
929 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
930 //
931 // This formula is trivially equivalent to the previous formula. However,
932 // this formula can be implemented much more efficiently. The trick is that
933 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
934 // arithmetic. To do exact division in modular arithmetic, all we have
935 // to do is multiply by the inverse. Therefore, this step can be done at
936 // width W.
937 //
938 // The next issue is how to safely do the division by 2^T. The way this
939 // is done is by doing the multiplication step at a width of at least W + T
940 // bits. This way, the bottom W+T bits of the product are accurate. Then,
941 // when we perform the division by 2^T (which is equivalent to a right shift
942 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
943 // truncated out after the division by 2^T.
944 //
945 // In comparison to just directly using the first formula, this technique
946 // is much more efficient; using the first formula requires W * K bits,
947 // but this formula less than W + K bits. Also, the first formula requires
948 // a division step, whereas this formula only requires multiplies and shifts.
949 //
950 // It doesn't matter whether the subtraction step is done in the calculation
951 // width or the input iteration count's width; if the subtraction overflows,
952 // the result must be zero anyway. We prefer here to do it in the width of
953 // the induction variable because it helps a lot for certain cases; CodeGen
954 // isn't smart enough to ignore the overflow, which leads to much less
955 // efficient code if the width of the subtraction is wider than the native
956 // register width.
957 //
958 // (It's possible to not widen at all by pulling out factors of 2 before
959 // the multiplication; for example, K=2 can be calculated as
960 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
961 // extra arithmetic, so it's not an obvious win, and it gets
962 // much more complicated for K > 3.)
963
964 // Protection from insane SCEVs; this bound is conservative,
965 // but it probably doesn't matter.
966 if (K > 1000)
967 return SE.getCouldNotCompute();
968
969 unsigned W = SE.getTypeSizeInBits(ResultTy);
970
971 // Calculate K! / 2^T and T; we divide out the factors of two before
972 // multiplying for calculating K! / 2^T to avoid overflow.
973 // Other overflow doesn't matter because we only care about the bottom
974 // W bits of the result.
975 APInt OddFactorial(W, 1);
976 unsigned T = 1;
977 for (unsigned i = 3; i <= K; ++i) {
978 APInt Mult(W, i);
979 unsigned TwoFactors = Mult.countTrailingZeros();
980 T += TwoFactors;
981 Mult.lshrInPlace(TwoFactors);
982 OddFactorial *= Mult;
983 }
984
985 // We need at least W + T bits for the multiplication step
986 unsigned CalculationBits = W + T;
987
988 // Calculate 2^T, at width T+W.
989 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
990
991 // Calculate the multiplicative inverse of K! / 2^T;
992 // this multiplication factor will perform the exact division by
993 // K! / 2^T.
994 APInt Mod = APInt::getSignedMinValue(W+1);
995 APInt MultiplyFactor = OddFactorial.zext(W+1);
996 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
997 MultiplyFactor = MultiplyFactor.trunc(W);
998
999 // Calculate the product, at width T+W
1000 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1001 CalculationBits);
1002 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1003 for (unsigned i = 1; i != K; ++i) {
1004 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1005 Dividend = SE.getMulExpr(Dividend,
1006 SE.getTruncateOrZeroExtend(S, CalculationTy));
1007 }
1008
1009 // Divide by 2^T
1010 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1011
1012 // Truncate the result, and divide by K! / 2^T.
1013
1014 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1015 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1016 }
1017
1018 /// Return the value of this chain of recurrences at the specified iteration
1019 /// number. We can evaluate this recurrence by multiplying each element in the
1020 /// chain by the binomial coefficient corresponding to it. In other words, we
1021 /// can evaluate {A,+,B,+,C,+,D} as:
1022 ///
1023 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1024 ///
1025 /// where BC(It, k) stands for binomial coefficient.
evaluateAtIteration(const SCEV * It,ScalarEvolution & SE) const1026 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1027 ScalarEvolution &SE) const {
1028 const SCEV *Result = getStart();
1029 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1030 // The computation is correct in the face of overflow provided that the
1031 // multiplication is performed _after_ the evaluation of the binomial
1032 // coefficient.
1033 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1034 if (isa<SCEVCouldNotCompute>(Coeff))
1035 return Coeff;
1036
1037 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1038 }
1039 return Result;
1040 }
1041
1042 //===----------------------------------------------------------------------===//
1043 // SCEV Expression folder implementations
1044 //===----------------------------------------------------------------------===//
1045
getLosslessPtrToIntExpr(const SCEV * Op,unsigned Depth)1046 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1047 unsigned Depth) {
1048 assert(Depth <= 1 &&
1049 "getLosslessPtrToIntExpr() should self-recurse at most once.");
1050
1051 // We could be called with an integer-typed operands during SCEV rewrites.
1052 // Since the operand is an integer already, just perform zext/trunc/self cast.
1053 if (!Op->getType()->isPointerTy())
1054 return Op;
1055
1056 assert(!getDataLayout().isNonIntegralPointerType(Op->getType()) &&
1057 "Source pointer type must be integral for ptrtoint!");
1058
1059 // What would be an ID for such a SCEV cast expression?
1060 FoldingSetNodeID ID;
1061 ID.AddInteger(scPtrToInt);
1062 ID.AddPointer(Op);
1063
1064 void *IP = nullptr;
1065
1066 // Is there already an expression for such a cast?
1067 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1068 return S;
1069
1070 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1071
1072 // We can only model ptrtoint if SCEV's effective (integer) type
1073 // is sufficiently wide to represent all possible pointer values.
1074 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1075 getDataLayout().getTypeSizeInBits(IntPtrTy))
1076 return getCouldNotCompute();
1077
1078 // If not, is this expression something we can't reduce any further?
1079 if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1080 // Perform some basic constant folding. If the operand of the ptr2int cast
1081 // is a null pointer, don't create a ptr2int SCEV expression (that will be
1082 // left as-is), but produce a zero constant.
1083 // NOTE: We could handle a more general case, but lack motivational cases.
1084 if (isa<ConstantPointerNull>(U->getValue()))
1085 return getZero(IntPtrTy);
1086
1087 // Create an explicit cast node.
1088 // We can reuse the existing insert position since if we get here,
1089 // we won't have made any changes which would invalidate it.
1090 SCEV *S = new (SCEVAllocator)
1091 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1092 UniqueSCEVs.InsertNode(S, IP);
1093 addToLoopUseLists(S);
1094 return S;
1095 }
1096
1097 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1098 "non-SCEVUnknown's.");
1099
1100 // Otherwise, we've got some expression that is more complex than just a
1101 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1102 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1103 // only, and the expressions must otherwise be integer-typed.
1104 // So sink the cast down to the SCEVUnknown's.
1105
1106 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1107 /// which computes a pointer-typed value, and rewrites the whole expression
1108 /// tree so that *all* the computations are done on integers, and the only
1109 /// pointer-typed operands in the expression are SCEVUnknown.
1110 class SCEVPtrToIntSinkingRewriter
1111 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1112 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1113
1114 public:
1115 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1116
1117 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1118 SCEVPtrToIntSinkingRewriter Rewriter(SE);
1119 return Rewriter.visit(Scev);
1120 }
1121
1122 const SCEV *visit(const SCEV *S) {
1123 Type *STy = S->getType();
1124 // If the expression is not pointer-typed, just keep it as-is.
1125 if (!STy->isPointerTy())
1126 return S;
1127 // Else, recursively sink the cast down into it.
1128 return Base::visit(S);
1129 }
1130
1131 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1132 SmallVector<const SCEV *, 2> Operands;
1133 bool Changed = false;
1134 for (auto *Op : Expr->operands()) {
1135 Operands.push_back(visit(Op));
1136 Changed |= Op != Operands.back();
1137 }
1138 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1139 }
1140
1141 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1142 SmallVector<const SCEV *, 2> Operands;
1143 bool Changed = false;
1144 for (auto *Op : Expr->operands()) {
1145 Operands.push_back(visit(Op));
1146 Changed |= Op != Operands.back();
1147 }
1148 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1149 }
1150
1151 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1152 assert(Expr->getType()->isPointerTy() &&
1153 "Should only reach pointer-typed SCEVUnknown's.");
1154 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1155 }
1156 };
1157
1158 // And actually perform the cast sinking.
1159 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1160 assert(IntOp->getType()->isIntegerTy() &&
1161 "We must have succeeded in sinking the cast, "
1162 "and ending up with an integer-typed expression!");
1163 return IntOp;
1164 }
1165
getPtrToIntExpr(const SCEV * Op,Type * Ty)1166 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1167 assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1168
1169 const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1170 if (isa<SCEVCouldNotCompute>(IntOp))
1171 return IntOp;
1172
1173 return getTruncateOrZeroExtend(IntOp, Ty);
1174 }
1175
getTruncateExpr(const SCEV * Op,Type * Ty,unsigned Depth)1176 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1177 unsigned Depth) {
1178 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1179 "This is not a truncating conversion!");
1180 assert(isSCEVable(Ty) &&
1181 "This is not a conversion to a SCEVable type!");
1182 Ty = getEffectiveSCEVType(Ty);
1183
1184 FoldingSetNodeID ID;
1185 ID.AddInteger(scTruncate);
1186 ID.AddPointer(Op);
1187 ID.AddPointer(Ty);
1188 void *IP = nullptr;
1189 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1190
1191 // Fold if the operand is constant.
1192 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1193 return getConstant(
1194 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1195
1196 // trunc(trunc(x)) --> trunc(x)
1197 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1198 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1199
1200 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1201 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1202 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1203
1204 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1205 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1206 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1207
1208 if (Depth > MaxCastDepth) {
1209 SCEV *S =
1210 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1211 UniqueSCEVs.InsertNode(S, IP);
1212 addToLoopUseLists(S);
1213 return S;
1214 }
1215
1216 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1217 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1218 // if after transforming we have at most one truncate, not counting truncates
1219 // that replace other casts.
1220 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1221 auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1222 SmallVector<const SCEV *, 4> Operands;
1223 unsigned numTruncs = 0;
1224 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1225 ++i) {
1226 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1227 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1228 isa<SCEVTruncateExpr>(S))
1229 numTruncs++;
1230 Operands.push_back(S);
1231 }
1232 if (numTruncs < 2) {
1233 if (isa<SCEVAddExpr>(Op))
1234 return getAddExpr(Operands);
1235 else if (isa<SCEVMulExpr>(Op))
1236 return getMulExpr(Operands);
1237 else
1238 llvm_unreachable("Unexpected SCEV type for Op.");
1239 }
1240 // Although we checked in the beginning that ID is not in the cache, it is
1241 // possible that during recursion and different modification ID was inserted
1242 // into the cache. So if we find it, just return it.
1243 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1244 return S;
1245 }
1246
1247 // If the input value is a chrec scev, truncate the chrec's operands.
1248 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1249 SmallVector<const SCEV *, 4> Operands;
1250 for (const SCEV *Op : AddRec->operands())
1251 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1252 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1253 }
1254
1255 // Return zero if truncating to known zeros.
1256 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
1257 if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1258 return getZero(Ty);
1259
1260 // The cast wasn't folded; create an explicit cast node. We can reuse
1261 // the existing insert position since if we get here, we won't have
1262 // made any changes which would invalidate it.
1263 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1264 Op, Ty);
1265 UniqueSCEVs.InsertNode(S, IP);
1266 addToLoopUseLists(S);
1267 return S;
1268 }
1269
1270 // Get the limit of a recurrence such that incrementing by Step cannot cause
1271 // signed overflow as long as the value of the recurrence within the
1272 // loop does not exceed this limit before incrementing.
getSignedOverflowLimitForStep(const SCEV * Step,ICmpInst::Predicate * Pred,ScalarEvolution * SE)1273 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1274 ICmpInst::Predicate *Pred,
1275 ScalarEvolution *SE) {
1276 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1277 if (SE->isKnownPositive(Step)) {
1278 *Pred = ICmpInst::ICMP_SLT;
1279 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1280 SE->getSignedRangeMax(Step));
1281 }
1282 if (SE->isKnownNegative(Step)) {
1283 *Pred = ICmpInst::ICMP_SGT;
1284 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1285 SE->getSignedRangeMin(Step));
1286 }
1287 return nullptr;
1288 }
1289
1290 // Get the limit of a recurrence such that incrementing by Step cannot cause
1291 // unsigned overflow as long as the value of the recurrence within the loop does
1292 // not exceed this limit before incrementing.
getUnsignedOverflowLimitForStep(const SCEV * Step,ICmpInst::Predicate * Pred,ScalarEvolution * SE)1293 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1294 ICmpInst::Predicate *Pred,
1295 ScalarEvolution *SE) {
1296 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1297 *Pred = ICmpInst::ICMP_ULT;
1298
1299 return SE->getConstant(APInt::getMinValue(BitWidth) -
1300 SE->getUnsignedRangeMax(Step));
1301 }
1302
1303 namespace {
1304
1305 struct ExtendOpTraitsBase {
1306 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1307 unsigned);
1308 };
1309
1310 // Used to make code generic over signed and unsigned overflow.
1311 template <typename ExtendOp> struct ExtendOpTraits {
1312 // Members present:
1313 //
1314 // static const SCEV::NoWrapFlags WrapType;
1315 //
1316 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1317 //
1318 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1319 // ICmpInst::Predicate *Pred,
1320 // ScalarEvolution *SE);
1321 };
1322
1323 template <>
1324 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1325 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1326
1327 static const GetExtendExprTy GetExtendExpr;
1328
getOverflowLimitForStep__anon7bef4a7f0511::ExtendOpTraits1329 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1330 ICmpInst::Predicate *Pred,
1331 ScalarEvolution *SE) {
1332 return getSignedOverflowLimitForStep(Step, Pred, SE);
1333 }
1334 };
1335
1336 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1337 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1338
1339 template <>
1340 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1341 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1342
1343 static const GetExtendExprTy GetExtendExpr;
1344
getOverflowLimitForStep__anon7bef4a7f0511::ExtendOpTraits1345 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1346 ICmpInst::Predicate *Pred,
1347 ScalarEvolution *SE) {
1348 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1349 }
1350 };
1351
1352 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1353 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1354
1355 } // end anonymous namespace
1356
1357 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1358 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1359 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1360 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1361 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1362 // expression "Step + sext/zext(PreIncAR)" is congruent with
1363 // "sext/zext(PostIncAR)"
1364 template <typename ExtendOpTy>
getPreStartForExtend(const SCEVAddRecExpr * AR,Type * Ty,ScalarEvolution * SE,unsigned Depth)1365 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1366 ScalarEvolution *SE, unsigned Depth) {
1367 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1368 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1369
1370 const Loop *L = AR->getLoop();
1371 const SCEV *Start = AR->getStart();
1372 const SCEV *Step = AR->getStepRecurrence(*SE);
1373
1374 // Check for a simple looking step prior to loop entry.
1375 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1376 if (!SA)
1377 return nullptr;
1378
1379 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1380 // subtraction is expensive. For this purpose, perform a quick and dirty
1381 // difference, by checking for Step in the operand list.
1382 SmallVector<const SCEV *, 4> DiffOps;
1383 for (const SCEV *Op : SA->operands())
1384 if (Op != Step)
1385 DiffOps.push_back(Op);
1386
1387 if (DiffOps.size() == SA->getNumOperands())
1388 return nullptr;
1389
1390 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1391 // `Step`:
1392
1393 // 1. NSW/NUW flags on the step increment.
1394 auto PreStartFlags =
1395 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1396 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1397 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1398 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1399
1400 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1401 // "S+X does not sign/unsign-overflow".
1402 //
1403
1404 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1405 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1406 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1407 return PreStart;
1408
1409 // 2. Direct overflow check on the step operation's expression.
1410 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1411 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1412 const SCEV *OperandExtendedStart =
1413 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1414 (SE->*GetExtendExpr)(Step, WideTy, Depth));
1415 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1416 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1417 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1418 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1419 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1420 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1421 }
1422 return PreStart;
1423 }
1424
1425 // 3. Loop precondition.
1426 ICmpInst::Predicate Pred;
1427 const SCEV *OverflowLimit =
1428 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1429
1430 if (OverflowLimit &&
1431 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1432 return PreStart;
1433
1434 return nullptr;
1435 }
1436
1437 // Get the normalized zero or sign extended expression for this AddRec's Start.
1438 template <typename ExtendOpTy>
getExtendAddRecStart(const SCEVAddRecExpr * AR,Type * Ty,ScalarEvolution * SE,unsigned Depth)1439 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1440 ScalarEvolution *SE,
1441 unsigned Depth) {
1442 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1443
1444 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1445 if (!PreStart)
1446 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1447
1448 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1449 Depth),
1450 (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1451 }
1452
1453 // Try to prove away overflow by looking at "nearby" add recurrences. A
1454 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1455 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1456 //
1457 // Formally:
1458 //
1459 // {S,+,X} == {S-T,+,X} + T
1460 // => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1461 //
1462 // If ({S-T,+,X} + T) does not overflow ... (1)
1463 //
1464 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1465 //
1466 // If {S-T,+,X} does not overflow ... (2)
1467 //
1468 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1469 // == {Ext(S-T)+Ext(T),+,Ext(X)}
1470 //
1471 // If (S-T)+T does not overflow ... (3)
1472 //
1473 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1474 // == {Ext(S),+,Ext(X)} == LHS
1475 //
1476 // Thus, if (1), (2) and (3) are true for some T, then
1477 // Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1478 //
1479 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1480 // does not overflow" restricted to the 0th iteration. Therefore we only need
1481 // to check for (1) and (2).
1482 //
1483 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1484 // is `Delta` (defined below).
1485 template <typename ExtendOpTy>
proveNoWrapByVaryingStart(const SCEV * Start,const SCEV * Step,const Loop * L)1486 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1487 const SCEV *Step,
1488 const Loop *L) {
1489 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1490
1491 // We restrict `Start` to a constant to prevent SCEV from spending too much
1492 // time here. It is correct (but more expensive) to continue with a
1493 // non-constant `Start` and do a general SCEV subtraction to compute
1494 // `PreStart` below.
1495 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1496 if (!StartC)
1497 return false;
1498
1499 APInt StartAI = StartC->getAPInt();
1500
1501 for (unsigned Delta : {-2, -1, 1, 2}) {
1502 const SCEV *PreStart = getConstant(StartAI - Delta);
1503
1504 FoldingSetNodeID ID;
1505 ID.AddInteger(scAddRecExpr);
1506 ID.AddPointer(PreStart);
1507 ID.AddPointer(Step);
1508 ID.AddPointer(L);
1509 void *IP = nullptr;
1510 const auto *PreAR =
1511 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1512
1513 // Give up if we don't already have the add recurrence we need because
1514 // actually constructing an add recurrence is relatively expensive.
1515 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1516 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1517 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1518 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1519 DeltaS, &Pred, this);
1520 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1521 return true;
1522 }
1523 }
1524
1525 return false;
1526 }
1527
1528 // Finds an integer D for an expression (C + x + y + ...) such that the top
1529 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1530 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1531 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1532 // the (C + x + y + ...) expression is \p WholeAddExpr.
extractConstantWithoutWrapping(ScalarEvolution & SE,const SCEVConstant * ConstantTerm,const SCEVAddExpr * WholeAddExpr)1533 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1534 const SCEVConstant *ConstantTerm,
1535 const SCEVAddExpr *WholeAddExpr) {
1536 const APInt &C = ConstantTerm->getAPInt();
1537 const unsigned BitWidth = C.getBitWidth();
1538 // Find number of trailing zeros of (x + y + ...) w/o the C first:
1539 uint32_t TZ = BitWidth;
1540 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1541 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1542 if (TZ) {
1543 // Set D to be as many least significant bits of C as possible while still
1544 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1545 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1546 }
1547 return APInt(BitWidth, 0);
1548 }
1549
1550 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1551 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1552 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1553 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
extractConstantWithoutWrapping(ScalarEvolution & SE,const APInt & ConstantStart,const SCEV * Step)1554 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1555 const APInt &ConstantStart,
1556 const SCEV *Step) {
1557 const unsigned BitWidth = ConstantStart.getBitWidth();
1558 const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1559 if (TZ)
1560 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1561 : ConstantStart;
1562 return APInt(BitWidth, 0);
1563 }
1564
1565 const SCEV *
getZeroExtendExpr(const SCEV * Op,Type * Ty,unsigned Depth)1566 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1567 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1568 "This is not an extending conversion!");
1569 assert(isSCEVable(Ty) &&
1570 "This is not a conversion to a SCEVable type!");
1571 Ty = getEffectiveSCEVType(Ty);
1572
1573 // Fold if the operand is constant.
1574 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1575 return getConstant(
1576 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1577
1578 // zext(zext(x)) --> zext(x)
1579 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1580 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1581
1582 // Before doing any expensive analysis, check to see if we've already
1583 // computed a SCEV for this Op and Ty.
1584 FoldingSetNodeID ID;
1585 ID.AddInteger(scZeroExtend);
1586 ID.AddPointer(Op);
1587 ID.AddPointer(Ty);
1588 void *IP = nullptr;
1589 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1590 if (Depth > MaxCastDepth) {
1591 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1592 Op, Ty);
1593 UniqueSCEVs.InsertNode(S, IP);
1594 addToLoopUseLists(S);
1595 return S;
1596 }
1597
1598 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1599 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1600 // It's possible the bits taken off by the truncate were all zero bits. If
1601 // so, we should be able to simplify this further.
1602 const SCEV *X = ST->getOperand();
1603 ConstantRange CR = getUnsignedRange(X);
1604 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1605 unsigned NewBits = getTypeSizeInBits(Ty);
1606 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1607 CR.zextOrTrunc(NewBits)))
1608 return getTruncateOrZeroExtend(X, Ty, Depth);
1609 }
1610
1611 // If the input value is a chrec scev, and we can prove that the value
1612 // did not overflow the old, smaller, value, we can zero extend all of the
1613 // operands (often constants). This allows analysis of something like
1614 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1615 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1616 if (AR->isAffine()) {
1617 const SCEV *Start = AR->getStart();
1618 const SCEV *Step = AR->getStepRecurrence(*this);
1619 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1620 const Loop *L = AR->getLoop();
1621
1622 if (!AR->hasNoUnsignedWrap()) {
1623 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1624 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1625 }
1626
1627 // If we have special knowledge that this addrec won't overflow,
1628 // we don't need to do any further analysis.
1629 if (AR->hasNoUnsignedWrap())
1630 return getAddRecExpr(
1631 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1632 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1633
1634 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1635 // Note that this serves two purposes: It filters out loops that are
1636 // simply not analyzable, and it covers the case where this code is
1637 // being called from within backedge-taken count analysis, such that
1638 // attempting to ask for the backedge-taken count would likely result
1639 // in infinite recursion. In the later case, the analysis code will
1640 // cope with a conservative value, and it will take care to purge
1641 // that value once it has finished.
1642 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1643 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1644 // Manually compute the final value for AR, checking for overflow.
1645
1646 // Check whether the backedge-taken count can be losslessly casted to
1647 // the addrec's type. The count is always unsigned.
1648 const SCEV *CastedMaxBECount =
1649 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1650 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1651 CastedMaxBECount, MaxBECount->getType(), Depth);
1652 if (MaxBECount == RecastedMaxBECount) {
1653 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1654 // Check whether Start+Step*MaxBECount has no unsigned overflow.
1655 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1656 SCEV::FlagAnyWrap, Depth + 1);
1657 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1658 SCEV::FlagAnyWrap,
1659 Depth + 1),
1660 WideTy, Depth + 1);
1661 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1662 const SCEV *WideMaxBECount =
1663 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1664 const SCEV *OperandExtendedAdd =
1665 getAddExpr(WideStart,
1666 getMulExpr(WideMaxBECount,
1667 getZeroExtendExpr(Step, WideTy, Depth + 1),
1668 SCEV::FlagAnyWrap, Depth + 1),
1669 SCEV::FlagAnyWrap, Depth + 1);
1670 if (ZAdd == OperandExtendedAdd) {
1671 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1672 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1673 // Return the expression with the addrec on the outside.
1674 return getAddRecExpr(
1675 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1676 Depth + 1),
1677 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1678 AR->getNoWrapFlags());
1679 }
1680 // Similar to above, only this time treat the step value as signed.
1681 // This covers loops that count down.
1682 OperandExtendedAdd =
1683 getAddExpr(WideStart,
1684 getMulExpr(WideMaxBECount,
1685 getSignExtendExpr(Step, WideTy, Depth + 1),
1686 SCEV::FlagAnyWrap, Depth + 1),
1687 SCEV::FlagAnyWrap, Depth + 1);
1688 if (ZAdd == OperandExtendedAdd) {
1689 // Cache knowledge of AR NW, which is propagated to this AddRec.
1690 // Negative step causes unsigned wrap, but it still can't self-wrap.
1691 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1692 // Return the expression with the addrec on the outside.
1693 return getAddRecExpr(
1694 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1695 Depth + 1),
1696 getSignExtendExpr(Step, Ty, Depth + 1), L,
1697 AR->getNoWrapFlags());
1698 }
1699 }
1700 }
1701
1702 // Normally, in the cases we can prove no-overflow via a
1703 // backedge guarding condition, we can also compute a backedge
1704 // taken count for the loop. The exceptions are assumptions and
1705 // guards present in the loop -- SCEV is not great at exploiting
1706 // these to compute max backedge taken counts, but can still use
1707 // these to prove lack of overflow. Use this fact to avoid
1708 // doing extra work that may not pay off.
1709 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1710 !AC.assumptions().empty()) {
1711
1712 auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1713 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1714 if (AR->hasNoUnsignedWrap()) {
1715 // Same as nuw case above - duplicated here to avoid a compile time
1716 // issue. It's not clear that the order of checks does matter, but
1717 // it's one of two issue possible causes for a change which was
1718 // reverted. Be conservative for the moment.
1719 return getAddRecExpr(
1720 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1721 Depth + 1),
1722 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1723 AR->getNoWrapFlags());
1724 }
1725
1726 // For a negative step, we can extend the operands iff doing so only
1727 // traverses values in the range zext([0,UINT_MAX]).
1728 if (isKnownNegative(Step)) {
1729 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1730 getSignedRangeMin(Step));
1731 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1732 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1733 // Cache knowledge of AR NW, which is propagated to this
1734 // AddRec. Negative step causes unsigned wrap, but it
1735 // still can't self-wrap.
1736 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1737 // Return the expression with the addrec on the outside.
1738 return getAddRecExpr(
1739 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1740 Depth + 1),
1741 getSignExtendExpr(Step, Ty, Depth + 1), L,
1742 AR->getNoWrapFlags());
1743 }
1744 }
1745 }
1746
1747 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1748 // if D + (C - D + Step * n) could be proven to not unsigned wrap
1749 // where D maximizes the number of trailing zeros of (C - D + Step * n)
1750 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1751 const APInt &C = SC->getAPInt();
1752 const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1753 if (D != 0) {
1754 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1755 const SCEV *SResidual =
1756 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1757 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1758 return getAddExpr(SZExtD, SZExtR,
1759 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1760 Depth + 1);
1761 }
1762 }
1763
1764 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1765 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1766 return getAddRecExpr(
1767 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1768 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1769 }
1770 }
1771
1772 // zext(A % B) --> zext(A) % zext(B)
1773 {
1774 const SCEV *LHS;
1775 const SCEV *RHS;
1776 if (matchURem(Op, LHS, RHS))
1777 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1778 getZeroExtendExpr(RHS, Ty, Depth + 1));
1779 }
1780
1781 // zext(A / B) --> zext(A) / zext(B).
1782 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1783 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1784 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1785
1786 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1787 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1788 if (SA->hasNoUnsignedWrap()) {
1789 // If the addition does not unsign overflow then we can, by definition,
1790 // commute the zero extension with the addition operation.
1791 SmallVector<const SCEV *, 4> Ops;
1792 for (const auto *Op : SA->operands())
1793 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1794 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1795 }
1796
1797 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1798 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1799 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1800 //
1801 // Often address arithmetics contain expressions like
1802 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1803 // This transformation is useful while proving that such expressions are
1804 // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1805 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1806 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1807 if (D != 0) {
1808 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1809 const SCEV *SResidual =
1810 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1811 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1812 return getAddExpr(SZExtD, SZExtR,
1813 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1814 Depth + 1);
1815 }
1816 }
1817 }
1818
1819 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1820 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1821 if (SM->hasNoUnsignedWrap()) {
1822 // If the multiply does not unsign overflow then we can, by definition,
1823 // commute the zero extension with the multiply operation.
1824 SmallVector<const SCEV *, 4> Ops;
1825 for (const auto *Op : SM->operands())
1826 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1827 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1828 }
1829
1830 // zext(2^K * (trunc X to iN)) to iM ->
1831 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1832 //
1833 // Proof:
1834 //
1835 // zext(2^K * (trunc X to iN)) to iM
1836 // = zext((trunc X to iN) << K) to iM
1837 // = zext((trunc X to i{N-K}) << K)<nuw> to iM
1838 // (because shl removes the top K bits)
1839 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1840 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1841 //
1842 if (SM->getNumOperands() == 2)
1843 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1844 if (MulLHS->getAPInt().isPowerOf2())
1845 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1846 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1847 MulLHS->getAPInt().logBase2();
1848 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1849 return getMulExpr(
1850 getZeroExtendExpr(MulLHS, Ty),
1851 getZeroExtendExpr(
1852 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1853 SCEV::FlagNUW, Depth + 1);
1854 }
1855 }
1856
1857 // The cast wasn't folded; create an explicit cast node.
1858 // Recompute the insert position, as it may have been invalidated.
1859 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1860 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1861 Op, Ty);
1862 UniqueSCEVs.InsertNode(S, IP);
1863 addToLoopUseLists(S);
1864 return S;
1865 }
1866
1867 const SCEV *
getSignExtendExpr(const SCEV * Op,Type * Ty,unsigned Depth)1868 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1869 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1870 "This is not an extending conversion!");
1871 assert(isSCEVable(Ty) &&
1872 "This is not a conversion to a SCEVable type!");
1873 Ty = getEffectiveSCEVType(Ty);
1874
1875 // Fold if the operand is constant.
1876 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1877 return getConstant(
1878 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1879
1880 // sext(sext(x)) --> sext(x)
1881 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1882 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1883
1884 // sext(zext(x)) --> zext(x)
1885 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1886 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1887
1888 // Before doing any expensive analysis, check to see if we've already
1889 // computed a SCEV for this Op and Ty.
1890 FoldingSetNodeID ID;
1891 ID.AddInteger(scSignExtend);
1892 ID.AddPointer(Op);
1893 ID.AddPointer(Ty);
1894 void *IP = nullptr;
1895 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1896 // Limit recursion depth.
1897 if (Depth > MaxCastDepth) {
1898 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1899 Op, Ty);
1900 UniqueSCEVs.InsertNode(S, IP);
1901 addToLoopUseLists(S);
1902 return S;
1903 }
1904
1905 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1906 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1907 // It's possible the bits taken off by the truncate were all sign bits. If
1908 // so, we should be able to simplify this further.
1909 const SCEV *X = ST->getOperand();
1910 ConstantRange CR = getSignedRange(X);
1911 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1912 unsigned NewBits = getTypeSizeInBits(Ty);
1913 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1914 CR.sextOrTrunc(NewBits)))
1915 return getTruncateOrSignExtend(X, Ty, Depth);
1916 }
1917
1918 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1919 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1920 if (SA->hasNoSignedWrap()) {
1921 // If the addition does not sign overflow then we can, by definition,
1922 // commute the sign extension with the addition operation.
1923 SmallVector<const SCEV *, 4> Ops;
1924 for (const auto *Op : SA->operands())
1925 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1926 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1927 }
1928
1929 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1930 // if D + (C - D + x + y + ...) could be proven to not signed wrap
1931 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1932 //
1933 // For instance, this will bring two seemingly different expressions:
1934 // 1 + sext(5 + 20 * %x + 24 * %y) and
1935 // sext(6 + 20 * %x + 24 * %y)
1936 // to the same form:
1937 // 2 + sext(4 + 20 * %x + 24 * %y)
1938 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1939 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1940 if (D != 0) {
1941 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1942 const SCEV *SResidual =
1943 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1944 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1945 return getAddExpr(SSExtD, SSExtR,
1946 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1947 Depth + 1);
1948 }
1949 }
1950 }
1951 // If the input value is a chrec scev, and we can prove that the value
1952 // did not overflow the old, smaller, value, we can sign extend all of the
1953 // operands (often constants). This allows analysis of something like
1954 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
1955 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1956 if (AR->isAffine()) {
1957 const SCEV *Start = AR->getStart();
1958 const SCEV *Step = AR->getStepRecurrence(*this);
1959 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1960 const Loop *L = AR->getLoop();
1961
1962 if (!AR->hasNoSignedWrap()) {
1963 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1964 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1965 }
1966
1967 // If we have special knowledge that this addrec won't overflow,
1968 // we don't need to do any further analysis.
1969 if (AR->hasNoSignedWrap())
1970 return getAddRecExpr(
1971 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1972 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1973
1974 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1975 // Note that this serves two purposes: It filters out loops that are
1976 // simply not analyzable, and it covers the case where this code is
1977 // being called from within backedge-taken count analysis, such that
1978 // attempting to ask for the backedge-taken count would likely result
1979 // in infinite recursion. In the later case, the analysis code will
1980 // cope with a conservative value, and it will take care to purge
1981 // that value once it has finished.
1982 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1983 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1984 // Manually compute the final value for AR, checking for
1985 // overflow.
1986
1987 // Check whether the backedge-taken count can be losslessly casted to
1988 // the addrec's type. The count is always unsigned.
1989 const SCEV *CastedMaxBECount =
1990 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1991 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1992 CastedMaxBECount, MaxBECount->getType(), Depth);
1993 if (MaxBECount == RecastedMaxBECount) {
1994 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1995 // Check whether Start+Step*MaxBECount has no signed overflow.
1996 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
1997 SCEV::FlagAnyWrap, Depth + 1);
1998 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
1999 SCEV::FlagAnyWrap,
2000 Depth + 1),
2001 WideTy, Depth + 1);
2002 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2003 const SCEV *WideMaxBECount =
2004 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2005 const SCEV *OperandExtendedAdd =
2006 getAddExpr(WideStart,
2007 getMulExpr(WideMaxBECount,
2008 getSignExtendExpr(Step, WideTy, Depth + 1),
2009 SCEV::FlagAnyWrap, Depth + 1),
2010 SCEV::FlagAnyWrap, Depth + 1);
2011 if (SAdd == OperandExtendedAdd) {
2012 // Cache knowledge of AR NSW, which is propagated to this AddRec.
2013 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2014 // Return the expression with the addrec on the outside.
2015 return getAddRecExpr(
2016 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2017 Depth + 1),
2018 getSignExtendExpr(Step, Ty, Depth + 1), L,
2019 AR->getNoWrapFlags());
2020 }
2021 // Similar to above, only this time treat the step value as unsigned.
2022 // This covers loops that count up with an unsigned step.
2023 OperandExtendedAdd =
2024 getAddExpr(WideStart,
2025 getMulExpr(WideMaxBECount,
2026 getZeroExtendExpr(Step, WideTy, Depth + 1),
2027 SCEV::FlagAnyWrap, Depth + 1),
2028 SCEV::FlagAnyWrap, Depth + 1);
2029 if (SAdd == OperandExtendedAdd) {
2030 // If AR wraps around then
2031 //
2032 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
2033 // => SAdd != OperandExtendedAdd
2034 //
2035 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2036 // (SAdd == OperandExtendedAdd => AR is NW)
2037
2038 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2039
2040 // Return the expression with the addrec on the outside.
2041 return getAddRecExpr(
2042 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2043 Depth + 1),
2044 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2045 AR->getNoWrapFlags());
2046 }
2047 }
2048 }
2049
2050 auto NewFlags = proveNoSignedWrapViaInduction(AR);
2051 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2052 if (AR->hasNoSignedWrap()) {
2053 // Same as nsw case above - duplicated here to avoid a compile time
2054 // issue. It's not clear that the order of checks does matter, but
2055 // it's one of two issue possible causes for a change which was
2056 // reverted. Be conservative for the moment.
2057 return getAddRecExpr(
2058 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2059 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2060 }
2061
2062 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2063 // if D + (C - D + Step * n) could be proven to not signed wrap
2064 // where D maximizes the number of trailing zeros of (C - D + Step * n)
2065 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2066 const APInt &C = SC->getAPInt();
2067 const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2068 if (D != 0) {
2069 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2070 const SCEV *SResidual =
2071 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2072 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2073 return getAddExpr(SSExtD, SSExtR,
2074 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2075 Depth + 1);
2076 }
2077 }
2078
2079 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2080 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2081 return getAddRecExpr(
2082 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2083 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2084 }
2085 }
2086
2087 // If the input value is provably positive and we could not simplify
2088 // away the sext build a zext instead.
2089 if (isKnownNonNegative(Op))
2090 return getZeroExtendExpr(Op, Ty, Depth + 1);
2091
2092 // The cast wasn't folded; create an explicit cast node.
2093 // Recompute the insert position, as it may have been invalidated.
2094 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2095 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2096 Op, Ty);
2097 UniqueSCEVs.InsertNode(S, IP);
2098 addToLoopUseLists(S);
2099 return S;
2100 }
2101
2102 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2103 /// unspecified bits out to the given type.
getAnyExtendExpr(const SCEV * Op,Type * Ty)2104 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2105 Type *Ty) {
2106 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2107 "This is not an extending conversion!");
2108 assert(isSCEVable(Ty) &&
2109 "This is not a conversion to a SCEVable type!");
2110 Ty = getEffectiveSCEVType(Ty);
2111
2112 // Sign-extend negative constants.
2113 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2114 if (SC->getAPInt().isNegative())
2115 return getSignExtendExpr(Op, Ty);
2116
2117 // Peel off a truncate cast.
2118 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2119 const SCEV *NewOp = T->getOperand();
2120 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2121 return getAnyExtendExpr(NewOp, Ty);
2122 return getTruncateOrNoop(NewOp, Ty);
2123 }
2124
2125 // Next try a zext cast. If the cast is folded, use it.
2126 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2127 if (!isa<SCEVZeroExtendExpr>(ZExt))
2128 return ZExt;
2129
2130 // Next try a sext cast. If the cast is folded, use it.
2131 const SCEV *SExt = getSignExtendExpr(Op, Ty);
2132 if (!isa<SCEVSignExtendExpr>(SExt))
2133 return SExt;
2134
2135 // Force the cast to be folded into the operands of an addrec.
2136 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2137 SmallVector<const SCEV *, 4> Ops;
2138 for (const SCEV *Op : AR->operands())
2139 Ops.push_back(getAnyExtendExpr(Op, Ty));
2140 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2141 }
2142
2143 // If the expression is obviously signed, use the sext cast value.
2144 if (isa<SCEVSMaxExpr>(Op))
2145 return SExt;
2146
2147 // Absent any other information, use the zext cast value.
2148 return ZExt;
2149 }
2150
2151 /// Process the given Ops list, which is a list of operands to be added under
2152 /// the given scale, update the given map. This is a helper function for
2153 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2154 /// that would form an add expression like this:
2155 ///
2156 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2157 ///
2158 /// where A and B are constants, update the map with these values:
2159 ///
2160 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2161 ///
2162 /// and add 13 + A*B*29 to AccumulatedConstant.
2163 /// This will allow getAddRecExpr to produce this:
2164 ///
2165 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2166 ///
2167 /// This form often exposes folding opportunities that are hidden in
2168 /// the original operand list.
2169 ///
2170 /// Return true iff it appears that any interesting folding opportunities
2171 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2172 /// the common case where no interesting opportunities are present, and
2173 /// is also used as a check to avoid infinite recursion.
2174 static bool
CollectAddOperandsWithScales(DenseMap<const SCEV *,APInt> & M,SmallVectorImpl<const SCEV * > & NewOps,APInt & AccumulatedConstant,const SCEV * const * Ops,size_t NumOperands,const APInt & Scale,ScalarEvolution & SE)2175 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2176 SmallVectorImpl<const SCEV *> &NewOps,
2177 APInt &AccumulatedConstant,
2178 const SCEV *const *Ops, size_t NumOperands,
2179 const APInt &Scale,
2180 ScalarEvolution &SE) {
2181 bool Interesting = false;
2182
2183 // Iterate over the add operands. They are sorted, with constants first.
2184 unsigned i = 0;
2185 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2186 ++i;
2187 // Pull a buried constant out to the outside.
2188 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2189 Interesting = true;
2190 AccumulatedConstant += Scale * C->getAPInt();
2191 }
2192
2193 // Next comes everything else. We're especially interested in multiplies
2194 // here, but they're in the middle, so just visit the rest with one loop.
2195 for (; i != NumOperands; ++i) {
2196 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2197 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2198 APInt NewScale =
2199 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2200 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2201 // A multiplication of a constant with another add; recurse.
2202 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2203 Interesting |=
2204 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2205 Add->op_begin(), Add->getNumOperands(),
2206 NewScale, SE);
2207 } else {
2208 // A multiplication of a constant with some other value. Update
2209 // the map.
2210 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2211 const SCEV *Key = SE.getMulExpr(MulOps);
2212 auto Pair = M.insert({Key, NewScale});
2213 if (Pair.second) {
2214 NewOps.push_back(Pair.first->first);
2215 } else {
2216 Pair.first->second += NewScale;
2217 // The map already had an entry for this value, which may indicate
2218 // a folding opportunity.
2219 Interesting = true;
2220 }
2221 }
2222 } else {
2223 // An ordinary operand. Update the map.
2224 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2225 M.insert({Ops[i], Scale});
2226 if (Pair.second) {
2227 NewOps.push_back(Pair.first->first);
2228 } else {
2229 Pair.first->second += Scale;
2230 // The map already had an entry for this value, which may indicate
2231 // a folding opportunity.
2232 Interesting = true;
2233 }
2234 }
2235 }
2236
2237 return Interesting;
2238 }
2239
2240 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2241 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
2242 // can't-overflow flags for the operation if possible.
2243 static SCEV::NoWrapFlags
StrengthenNoWrapFlags(ScalarEvolution * SE,SCEVTypes Type,const ArrayRef<const SCEV * > Ops,SCEV::NoWrapFlags Flags)2244 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2245 const ArrayRef<const SCEV *> Ops,
2246 SCEV::NoWrapFlags Flags) {
2247 using namespace std::placeholders;
2248
2249 using OBO = OverflowingBinaryOperator;
2250
2251 bool CanAnalyze =
2252 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2253 (void)CanAnalyze;
2254 assert(CanAnalyze && "don't call from other places!");
2255
2256 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2257 SCEV::NoWrapFlags SignOrUnsignWrap =
2258 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2259
2260 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2261 auto IsKnownNonNegative = [&](const SCEV *S) {
2262 return SE->isKnownNonNegative(S);
2263 };
2264
2265 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2266 Flags =
2267 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2268
2269 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2270
2271 if (SignOrUnsignWrap != SignOrUnsignMask &&
2272 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2273 isa<SCEVConstant>(Ops[0])) {
2274
2275 auto Opcode = [&] {
2276 switch (Type) {
2277 case scAddExpr:
2278 return Instruction::Add;
2279 case scMulExpr:
2280 return Instruction::Mul;
2281 default:
2282 llvm_unreachable("Unexpected SCEV op.");
2283 }
2284 }();
2285
2286 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2287
2288 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2289 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2290 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2291 Opcode, C, OBO::NoSignedWrap);
2292 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2293 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2294 }
2295
2296 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2297 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2298 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2299 Opcode, C, OBO::NoUnsignedWrap);
2300 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2301 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2302 }
2303 }
2304
2305 return Flags;
2306 }
2307
isAvailableAtLoopEntry(const SCEV * S,const Loop * L)2308 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2309 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2310 }
2311
2312 /// Get a canonical add expression, or something simpler if possible.
getAddExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags OrigFlags,unsigned Depth)2313 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2314 SCEV::NoWrapFlags OrigFlags,
2315 unsigned Depth) {
2316 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2317 "only nuw or nsw allowed");
2318 assert(!Ops.empty() && "Cannot get empty add!");
2319 if (Ops.size() == 1) return Ops[0];
2320 #ifndef NDEBUG
2321 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2322 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2323 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2324 "SCEVAddExpr operand types don't match!");
2325 #endif
2326
2327 // Sort by complexity, this groups all similar expression types together.
2328 GroupByComplexity(Ops, &LI, DT);
2329
2330 // If there are any constants, fold them together.
2331 unsigned Idx = 0;
2332 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2333 ++Idx;
2334 assert(Idx < Ops.size());
2335 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2336 // We found two constants, fold them together!
2337 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2338 if (Ops.size() == 2) return Ops[0];
2339 Ops.erase(Ops.begin()+1); // Erase the folded element
2340 LHSC = cast<SCEVConstant>(Ops[0]);
2341 }
2342
2343 // If we are left with a constant zero being added, strip it off.
2344 if (LHSC->getValue()->isZero()) {
2345 Ops.erase(Ops.begin());
2346 --Idx;
2347 }
2348
2349 if (Ops.size() == 1) return Ops[0];
2350 }
2351
2352 // Delay expensive flag strengthening until necessary.
2353 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2354 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2355 };
2356
2357 // Limit recursion calls depth.
2358 if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2359 return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2360
2361 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) {
2362 // Don't strengthen flags if we have no new information.
2363 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2364 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2365 Add->setNoWrapFlags(ComputeFlags(Ops));
2366 return S;
2367 }
2368
2369 // Okay, check to see if the same value occurs in the operand list more than
2370 // once. If so, merge them together into an multiply expression. Since we
2371 // sorted the list, these values are required to be adjacent.
2372 Type *Ty = Ops[0]->getType();
2373 bool FoundMatch = false;
2374 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2375 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
2376 // Scan ahead to count how many equal operands there are.
2377 unsigned Count = 2;
2378 while (i+Count != e && Ops[i+Count] == Ops[i])
2379 ++Count;
2380 // Merge the values into a multiply.
2381 const SCEV *Scale = getConstant(Ty, Count);
2382 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2383 if (Ops.size() == Count)
2384 return Mul;
2385 Ops[i] = Mul;
2386 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2387 --i; e -= Count - 1;
2388 FoundMatch = true;
2389 }
2390 if (FoundMatch)
2391 return getAddExpr(Ops, OrigFlags, Depth + 1);
2392
2393 // Check for truncates. If all the operands are truncated from the same
2394 // type, see if factoring out the truncate would permit the result to be
2395 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2396 // if the contents of the resulting outer trunc fold to something simple.
2397 auto FindTruncSrcType = [&]() -> Type * {
2398 // We're ultimately looking to fold an addrec of truncs and muls of only
2399 // constants and truncs, so if we find any other types of SCEV
2400 // as operands of the addrec then we bail and return nullptr here.
2401 // Otherwise, we return the type of the operand of a trunc that we find.
2402 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2403 return T->getOperand()->getType();
2404 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2405 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2406 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2407 return T->getOperand()->getType();
2408 }
2409 return nullptr;
2410 };
2411 if (auto *SrcType = FindTruncSrcType()) {
2412 SmallVector<const SCEV *, 8> LargeOps;
2413 bool Ok = true;
2414 // Check all the operands to see if they can be represented in the
2415 // source type of the truncate.
2416 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2417 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2418 if (T->getOperand()->getType() != SrcType) {
2419 Ok = false;
2420 break;
2421 }
2422 LargeOps.push_back(T->getOperand());
2423 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2424 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2425 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2426 SmallVector<const SCEV *, 8> LargeMulOps;
2427 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2428 if (const SCEVTruncateExpr *T =
2429 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2430 if (T->getOperand()->getType() != SrcType) {
2431 Ok = false;
2432 break;
2433 }
2434 LargeMulOps.push_back(T->getOperand());
2435 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2436 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2437 } else {
2438 Ok = false;
2439 break;
2440 }
2441 }
2442 if (Ok)
2443 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2444 } else {
2445 Ok = false;
2446 break;
2447 }
2448 }
2449 if (Ok) {
2450 // Evaluate the expression in the larger type.
2451 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2452 // If it folds to something simple, use it. Otherwise, don't.
2453 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2454 return getTruncateExpr(Fold, Ty);
2455 }
2456 }
2457
2458 // Skip past any other cast SCEVs.
2459 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2460 ++Idx;
2461
2462 // If there are add operands they would be next.
2463 if (Idx < Ops.size()) {
2464 bool DeletedAdd = false;
2465 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2466 if (Ops.size() > AddOpsInlineThreshold ||
2467 Add->getNumOperands() > AddOpsInlineThreshold)
2468 break;
2469 // If we have an add, expand the add operands onto the end of the operands
2470 // list.
2471 Ops.erase(Ops.begin()+Idx);
2472 Ops.append(Add->op_begin(), Add->op_end());
2473 DeletedAdd = true;
2474 }
2475
2476 // If we deleted at least one add, we added operands to the end of the list,
2477 // and they are not necessarily sorted. Recurse to resort and resimplify
2478 // any operands we just acquired.
2479 if (DeletedAdd)
2480 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2481 }
2482
2483 // Skip over the add expression until we get to a multiply.
2484 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2485 ++Idx;
2486
2487 // Check to see if there are any folding opportunities present with
2488 // operands multiplied by constant values.
2489 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2490 uint64_t BitWidth = getTypeSizeInBits(Ty);
2491 DenseMap<const SCEV *, APInt> M;
2492 SmallVector<const SCEV *, 8> NewOps;
2493 APInt AccumulatedConstant(BitWidth, 0);
2494 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2495 Ops.data(), Ops.size(),
2496 APInt(BitWidth, 1), *this)) {
2497 struct APIntCompare {
2498 bool operator()(const APInt &LHS, const APInt &RHS) const {
2499 return LHS.ult(RHS);
2500 }
2501 };
2502
2503 // Some interesting folding opportunity is present, so its worthwhile to
2504 // re-generate the operands list. Group the operands by constant scale,
2505 // to avoid multiplying by the same constant scale multiple times.
2506 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2507 for (const SCEV *NewOp : NewOps)
2508 MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2509 // Re-generate the operands list.
2510 Ops.clear();
2511 if (AccumulatedConstant != 0)
2512 Ops.push_back(getConstant(AccumulatedConstant));
2513 for (auto &MulOp : MulOpLists)
2514 if (MulOp.first != 0)
2515 Ops.push_back(getMulExpr(
2516 getConstant(MulOp.first),
2517 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2518 SCEV::FlagAnyWrap, Depth + 1));
2519 if (Ops.empty())
2520 return getZero(Ty);
2521 if (Ops.size() == 1)
2522 return Ops[0];
2523 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2524 }
2525 }
2526
2527 // If we are adding something to a multiply expression, make sure the
2528 // something is not already an operand of the multiply. If so, merge it into
2529 // the multiply.
2530 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2531 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2532 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2533 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2534 if (isa<SCEVConstant>(MulOpSCEV))
2535 continue;
2536 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2537 if (MulOpSCEV == Ops[AddOp]) {
2538 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
2539 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2540 if (Mul->getNumOperands() != 2) {
2541 // If the multiply has more than two operands, we must get the
2542 // Y*Z term.
2543 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2544 Mul->op_begin()+MulOp);
2545 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2546 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2547 }
2548 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2549 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2550 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2551 SCEV::FlagAnyWrap, Depth + 1);
2552 if (Ops.size() == 2) return OuterMul;
2553 if (AddOp < Idx) {
2554 Ops.erase(Ops.begin()+AddOp);
2555 Ops.erase(Ops.begin()+Idx-1);
2556 } else {
2557 Ops.erase(Ops.begin()+Idx);
2558 Ops.erase(Ops.begin()+AddOp-1);
2559 }
2560 Ops.push_back(OuterMul);
2561 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2562 }
2563
2564 // Check this multiply against other multiplies being added together.
2565 for (unsigned OtherMulIdx = Idx+1;
2566 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2567 ++OtherMulIdx) {
2568 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2569 // If MulOp occurs in OtherMul, we can fold the two multiplies
2570 // together.
2571 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2572 OMulOp != e; ++OMulOp)
2573 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2574 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2575 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2576 if (Mul->getNumOperands() != 2) {
2577 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2578 Mul->op_begin()+MulOp);
2579 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2580 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2581 }
2582 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2583 if (OtherMul->getNumOperands() != 2) {
2584 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2585 OtherMul->op_begin()+OMulOp);
2586 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2587 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2588 }
2589 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2590 const SCEV *InnerMulSum =
2591 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2592 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2593 SCEV::FlagAnyWrap, Depth + 1);
2594 if (Ops.size() == 2) return OuterMul;
2595 Ops.erase(Ops.begin()+Idx);
2596 Ops.erase(Ops.begin()+OtherMulIdx-1);
2597 Ops.push_back(OuterMul);
2598 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2599 }
2600 }
2601 }
2602 }
2603
2604 // If there are any add recurrences in the operands list, see if any other
2605 // added values are loop invariant. If so, we can fold them into the
2606 // recurrence.
2607 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2608 ++Idx;
2609
2610 // Scan over all recurrences, trying to fold loop invariants into them.
2611 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2612 // Scan all of the other operands to this add and add them to the vector if
2613 // they are loop invariant w.r.t. the recurrence.
2614 SmallVector<const SCEV *, 8> LIOps;
2615 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2616 const Loop *AddRecLoop = AddRec->getLoop();
2617 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2618 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2619 LIOps.push_back(Ops[i]);
2620 Ops.erase(Ops.begin()+i);
2621 --i; --e;
2622 }
2623
2624 // If we found some loop invariants, fold them into the recurrence.
2625 if (!LIOps.empty()) {
2626 // Compute nowrap flags for the addition of the loop-invariant ops and
2627 // the addrec. Temporarily push it as an operand for that purpose.
2628 LIOps.push_back(AddRec);
2629 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2630 LIOps.pop_back();
2631
2632 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
2633 LIOps.push_back(AddRec->getStart());
2634
2635 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2636 // This follows from the fact that the no-wrap flags on the outer add
2637 // expression are applicable on the 0th iteration, when the add recurrence
2638 // will be equal to its start value.
2639 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2640
2641 // Build the new addrec. Propagate the NUW and NSW flags if both the
2642 // outer add and the inner addrec are guaranteed to have no overflow.
2643 // Always propagate NW.
2644 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2645 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2646
2647 // If all of the other operands were loop invariant, we are done.
2648 if (Ops.size() == 1) return NewRec;
2649
2650 // Otherwise, add the folded AddRec by the non-invariant parts.
2651 for (unsigned i = 0;; ++i)
2652 if (Ops[i] == AddRec) {
2653 Ops[i] = NewRec;
2654 break;
2655 }
2656 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2657 }
2658
2659 // Okay, if there weren't any loop invariants to be folded, check to see if
2660 // there are multiple AddRec's with the same loop induction variable being
2661 // added together. If so, we can fold them.
2662 for (unsigned OtherIdx = Idx+1;
2663 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2664 ++OtherIdx) {
2665 // We expect the AddRecExpr's to be sorted in reverse dominance order,
2666 // so that the 1st found AddRecExpr is dominated by all others.
2667 assert(DT.dominates(
2668 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2669 AddRec->getLoop()->getHeader()) &&
2670 "AddRecExprs are not sorted in reverse dominance order?");
2671 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2672 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2673 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2674 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2675 ++OtherIdx) {
2676 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2677 if (OtherAddRec->getLoop() == AddRecLoop) {
2678 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2679 i != e; ++i) {
2680 if (i >= AddRecOps.size()) {
2681 AddRecOps.append(OtherAddRec->op_begin()+i,
2682 OtherAddRec->op_end());
2683 break;
2684 }
2685 SmallVector<const SCEV *, 2> TwoOps = {
2686 AddRecOps[i], OtherAddRec->getOperand(i)};
2687 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2688 }
2689 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2690 }
2691 }
2692 // Step size has changed, so we cannot guarantee no self-wraparound.
2693 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2694 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2695 }
2696 }
2697
2698 // Otherwise couldn't fold anything into this recurrence. Move onto the
2699 // next one.
2700 }
2701
2702 // Okay, it looks like we really DO need an add expr. Check to see if we
2703 // already have one, otherwise create a new one.
2704 return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2705 }
2706
2707 const SCEV *
getOrCreateAddExpr(ArrayRef<const SCEV * > Ops,SCEV::NoWrapFlags Flags)2708 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2709 SCEV::NoWrapFlags Flags) {
2710 FoldingSetNodeID ID;
2711 ID.AddInteger(scAddExpr);
2712 for (const SCEV *Op : Ops)
2713 ID.AddPointer(Op);
2714 void *IP = nullptr;
2715 SCEVAddExpr *S =
2716 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2717 if (!S) {
2718 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2719 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2720 S = new (SCEVAllocator)
2721 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2722 UniqueSCEVs.InsertNode(S, IP);
2723 addToLoopUseLists(S);
2724 }
2725 S->setNoWrapFlags(Flags);
2726 return S;
2727 }
2728
2729 const SCEV *
getOrCreateAddRecExpr(ArrayRef<const SCEV * > Ops,const Loop * L,SCEV::NoWrapFlags Flags)2730 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2731 const Loop *L, SCEV::NoWrapFlags Flags) {
2732 FoldingSetNodeID ID;
2733 ID.AddInteger(scAddRecExpr);
2734 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2735 ID.AddPointer(Ops[i]);
2736 ID.AddPointer(L);
2737 void *IP = nullptr;
2738 SCEVAddRecExpr *S =
2739 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2740 if (!S) {
2741 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2742 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2743 S = new (SCEVAllocator)
2744 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2745 UniqueSCEVs.InsertNode(S, IP);
2746 addToLoopUseLists(S);
2747 }
2748 setNoWrapFlags(S, Flags);
2749 return S;
2750 }
2751
2752 const SCEV *
getOrCreateMulExpr(ArrayRef<const SCEV * > Ops,SCEV::NoWrapFlags Flags)2753 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2754 SCEV::NoWrapFlags Flags) {
2755 FoldingSetNodeID ID;
2756 ID.AddInteger(scMulExpr);
2757 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2758 ID.AddPointer(Ops[i]);
2759 void *IP = nullptr;
2760 SCEVMulExpr *S =
2761 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2762 if (!S) {
2763 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2764 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2765 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2766 O, Ops.size());
2767 UniqueSCEVs.InsertNode(S, IP);
2768 addToLoopUseLists(S);
2769 }
2770 S->setNoWrapFlags(Flags);
2771 return S;
2772 }
2773
umul_ov(uint64_t i,uint64_t j,bool & Overflow)2774 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2775 uint64_t k = i*j;
2776 if (j > 1 && k / j != i) Overflow = true;
2777 return k;
2778 }
2779
2780 /// Compute the result of "n choose k", the binomial coefficient. If an
2781 /// intermediate computation overflows, Overflow will be set and the return will
2782 /// be garbage. Overflow is not cleared on absence of overflow.
Choose(uint64_t n,uint64_t k,bool & Overflow)2783 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2784 // We use the multiplicative formula:
2785 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2786 // At each iteration, we take the n-th term of the numeral and divide by the
2787 // (k-n)th term of the denominator. This division will always produce an
2788 // integral result, and helps reduce the chance of overflow in the
2789 // intermediate computations. However, we can still overflow even when the
2790 // final result would fit.
2791
2792 if (n == 0 || n == k) return 1;
2793 if (k > n) return 0;
2794
2795 if (k > n/2)
2796 k = n-k;
2797
2798 uint64_t r = 1;
2799 for (uint64_t i = 1; i <= k; ++i) {
2800 r = umul_ov(r, n-(i-1), Overflow);
2801 r /= i;
2802 }
2803 return r;
2804 }
2805
2806 /// Determine if any of the operands in this SCEV are a constant or if
2807 /// any of the add or multiply expressions in this SCEV contain a constant.
containsConstantInAddMulChain(const SCEV * StartExpr)2808 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2809 struct FindConstantInAddMulChain {
2810 bool FoundConstant = false;
2811
2812 bool follow(const SCEV *S) {
2813 FoundConstant |= isa<SCEVConstant>(S);
2814 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2815 }
2816
2817 bool isDone() const {
2818 return FoundConstant;
2819 }
2820 };
2821
2822 FindConstantInAddMulChain F;
2823 SCEVTraversal<FindConstantInAddMulChain> ST(F);
2824 ST.visitAll(StartExpr);
2825 return F.FoundConstant;
2826 }
2827
2828 /// Get a canonical multiply expression, or something simpler if possible.
getMulExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags OrigFlags,unsigned Depth)2829 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2830 SCEV::NoWrapFlags OrigFlags,
2831 unsigned Depth) {
2832 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2833 "only nuw or nsw allowed");
2834 assert(!Ops.empty() && "Cannot get empty mul!");
2835 if (Ops.size() == 1) return Ops[0];
2836 #ifndef NDEBUG
2837 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2838 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2839 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2840 "SCEVMulExpr operand types don't match!");
2841 #endif
2842
2843 // Sort by complexity, this groups all similar expression types together.
2844 GroupByComplexity(Ops, &LI, DT);
2845
2846 // If there are any constants, fold them together.
2847 unsigned Idx = 0;
2848 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2849 ++Idx;
2850 assert(Idx < Ops.size());
2851 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2852 // We found two constants, fold them together!
2853 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
2854 if (Ops.size() == 2) return Ops[0];
2855 Ops.erase(Ops.begin()+1); // Erase the folded element
2856 LHSC = cast<SCEVConstant>(Ops[0]);
2857 }
2858
2859 // If we have a multiply of zero, it will always be zero.
2860 if (LHSC->getValue()->isZero())
2861 return LHSC;
2862
2863 // If we are left with a constant one being multiplied, strip it off.
2864 if (LHSC->getValue()->isOne()) {
2865 Ops.erase(Ops.begin());
2866 --Idx;
2867 }
2868
2869 if (Ops.size() == 1)
2870 return Ops[0];
2871 }
2872
2873 // Delay expensive flag strengthening until necessary.
2874 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2875 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
2876 };
2877
2878 // Limit recursion calls depth.
2879 if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2880 return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
2881
2882 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) {
2883 // Don't strengthen flags if we have no new information.
2884 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
2885 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
2886 Mul->setNoWrapFlags(ComputeFlags(Ops));
2887 return S;
2888 }
2889
2890 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2891 if (Ops.size() == 2) {
2892 // C1*(C2+V) -> C1*C2 + C1*V
2893 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2894 // If any of Add's ops are Adds or Muls with a constant, apply this
2895 // transformation as well.
2896 //
2897 // TODO: There are some cases where this transformation is not
2898 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of
2899 // this transformation should be narrowed down.
2900 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2901 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2902 SCEV::FlagAnyWrap, Depth + 1),
2903 getMulExpr(LHSC, Add->getOperand(1),
2904 SCEV::FlagAnyWrap, Depth + 1),
2905 SCEV::FlagAnyWrap, Depth + 1);
2906
2907 if (Ops[0]->isAllOnesValue()) {
2908 // If we have a mul by -1 of an add, try distributing the -1 among the
2909 // add operands.
2910 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2911 SmallVector<const SCEV *, 4> NewOps;
2912 bool AnyFolded = false;
2913 for (const SCEV *AddOp : Add->operands()) {
2914 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2915 Depth + 1);
2916 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2917 NewOps.push_back(Mul);
2918 }
2919 if (AnyFolded)
2920 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2921 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2922 // Negation preserves a recurrence's no self-wrap property.
2923 SmallVector<const SCEV *, 4> Operands;
2924 for (const SCEV *AddRecOp : AddRec->operands())
2925 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2926 Depth + 1));
2927
2928 return getAddRecExpr(Operands, AddRec->getLoop(),
2929 AddRec->getNoWrapFlags(SCEV::FlagNW));
2930 }
2931 }
2932 }
2933 }
2934
2935 // Skip over the add expression until we get to a multiply.
2936 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2937 ++Idx;
2938
2939 // If there are mul operands inline them all into this expression.
2940 if (Idx < Ops.size()) {
2941 bool DeletedMul = false;
2942 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2943 if (Ops.size() > MulOpsInlineThreshold)
2944 break;
2945 // If we have an mul, expand the mul operands onto the end of the
2946 // operands list.
2947 Ops.erase(Ops.begin()+Idx);
2948 Ops.append(Mul->op_begin(), Mul->op_end());
2949 DeletedMul = true;
2950 }
2951
2952 // If we deleted at least one mul, we added operands to the end of the
2953 // list, and they are not necessarily sorted. Recurse to resort and
2954 // resimplify any operands we just acquired.
2955 if (DeletedMul)
2956 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2957 }
2958
2959 // If there are any add recurrences in the operands list, see if any other
2960 // added values are loop invariant. If so, we can fold them into the
2961 // recurrence.
2962 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2963 ++Idx;
2964
2965 // Scan over all recurrences, trying to fold loop invariants into them.
2966 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2967 // Scan all of the other operands to this mul and add them to the vector
2968 // if they are loop invariant w.r.t. the recurrence.
2969 SmallVector<const SCEV *, 8> LIOps;
2970 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2971 const Loop *AddRecLoop = AddRec->getLoop();
2972 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2973 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2974 LIOps.push_back(Ops[i]);
2975 Ops.erase(Ops.begin()+i);
2976 --i; --e;
2977 }
2978
2979 // If we found some loop invariants, fold them into the recurrence.
2980 if (!LIOps.empty()) {
2981 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
2982 SmallVector<const SCEV *, 4> NewOps;
2983 NewOps.reserve(AddRec->getNumOperands());
2984 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
2985 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2986 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
2987 SCEV::FlagAnyWrap, Depth + 1));
2988
2989 // Build the new addrec. Propagate the NUW and NSW flags if both the
2990 // outer mul and the inner addrec are guaranteed to have no overflow.
2991 //
2992 // No self-wrap cannot be guaranteed after changing the step size, but
2993 // will be inferred if either NUW or NSW is true.
2994 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
2995 const SCEV *NewRec = getAddRecExpr(
2996 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
2997
2998 // If all of the other operands were loop invariant, we are done.
2999 if (Ops.size() == 1) return NewRec;
3000
3001 // Otherwise, multiply the folded AddRec by the non-invariant parts.
3002 for (unsigned i = 0;; ++i)
3003 if (Ops[i] == AddRec) {
3004 Ops[i] = NewRec;
3005 break;
3006 }
3007 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3008 }
3009
3010 // Okay, if there weren't any loop invariants to be folded, check to see
3011 // if there are multiple AddRec's with the same loop induction variable
3012 // being multiplied together. If so, we can fold them.
3013
3014 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3015 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3016 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3017 // ]]],+,...up to x=2n}.
3018 // Note that the arguments to choose() are always integers with values
3019 // known at compile time, never SCEV objects.
3020 //
3021 // The implementation avoids pointless extra computations when the two
3022 // addrec's are of different length (mathematically, it's equivalent to
3023 // an infinite stream of zeros on the right).
3024 bool OpsModified = false;
3025 for (unsigned OtherIdx = Idx+1;
3026 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3027 ++OtherIdx) {
3028 const SCEVAddRecExpr *OtherAddRec =
3029 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3030 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3031 continue;
3032
3033 // Limit max number of arguments to avoid creation of unreasonably big
3034 // SCEVAddRecs with very complex operands.
3035 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3036 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3037 continue;
3038
3039 bool Overflow = false;
3040 Type *Ty = AddRec->getType();
3041 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3042 SmallVector<const SCEV*, 7> AddRecOps;
3043 for (int x = 0, xe = AddRec->getNumOperands() +
3044 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3045 SmallVector <const SCEV *, 7> SumOps;
3046 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3047 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3048 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3049 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3050 z < ze && !Overflow; ++z) {
3051 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3052 uint64_t Coeff;
3053 if (LargerThan64Bits)
3054 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3055 else
3056 Coeff = Coeff1*Coeff2;
3057 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3058 const SCEV *Term1 = AddRec->getOperand(y-z);
3059 const SCEV *Term2 = OtherAddRec->getOperand(z);
3060 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3061 SCEV::FlagAnyWrap, Depth + 1));
3062 }
3063 }
3064 if (SumOps.empty())
3065 SumOps.push_back(getZero(Ty));
3066 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3067 }
3068 if (!Overflow) {
3069 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3070 SCEV::FlagAnyWrap);
3071 if (Ops.size() == 2) return NewAddRec;
3072 Ops[Idx] = NewAddRec;
3073 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3074 OpsModified = true;
3075 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3076 if (!AddRec)
3077 break;
3078 }
3079 }
3080 if (OpsModified)
3081 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3082
3083 // Otherwise couldn't fold anything into this recurrence. Move onto the
3084 // next one.
3085 }
3086
3087 // Okay, it looks like we really DO need an mul expr. Check to see if we
3088 // already have one, otherwise create a new one.
3089 return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3090 }
3091
3092 /// Represents an unsigned remainder expression based on unsigned division.
getURemExpr(const SCEV * LHS,const SCEV * RHS)3093 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3094 const SCEV *RHS) {
3095 assert(getEffectiveSCEVType(LHS->getType()) ==
3096 getEffectiveSCEVType(RHS->getType()) &&
3097 "SCEVURemExpr operand types don't match!");
3098
3099 // Short-circuit easy cases
3100 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3101 // If constant is one, the result is trivial
3102 if (RHSC->getValue()->isOne())
3103 return getZero(LHS->getType()); // X urem 1 --> 0
3104
3105 // If constant is a power of two, fold into a zext(trunc(LHS)).
3106 if (RHSC->getAPInt().isPowerOf2()) {
3107 Type *FullTy = LHS->getType();
3108 Type *TruncTy =
3109 IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3110 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3111 }
3112 }
3113
3114 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3115 const SCEV *UDiv = getUDivExpr(LHS, RHS);
3116 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3117 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3118 }
3119
3120 /// Get a canonical unsigned division expression, or something simpler if
3121 /// possible.
getUDivExpr(const SCEV * LHS,const SCEV * RHS)3122 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3123 const SCEV *RHS) {
3124 assert(getEffectiveSCEVType(LHS->getType()) ==
3125 getEffectiveSCEVType(RHS->getType()) &&
3126 "SCEVUDivExpr operand types don't match!");
3127
3128 FoldingSetNodeID ID;
3129 ID.AddInteger(scUDivExpr);
3130 ID.AddPointer(LHS);
3131 ID.AddPointer(RHS);
3132 void *IP = nullptr;
3133 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3134 return S;
3135
3136 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3137 if (RHSC->getValue()->isOne())
3138 return LHS; // X udiv 1 --> x
3139 // If the denominator is zero, the result of the udiv is undefined. Don't
3140 // try to analyze it, because the resolution chosen here may differ from
3141 // the resolution chosen in other parts of the compiler.
3142 if (!RHSC->getValue()->isZero()) {
3143 // Determine if the division can be folded into the operands of
3144 // its operands.
3145 // TODO: Generalize this to non-constants by using known-bits information.
3146 Type *Ty = LHS->getType();
3147 unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3148 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3149 // For non-power-of-two values, effectively round the value up to the
3150 // nearest power of two.
3151 if (!RHSC->getAPInt().isPowerOf2())
3152 ++MaxShiftAmt;
3153 IntegerType *ExtTy =
3154 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3155 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3156 if (const SCEVConstant *Step =
3157 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3158 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3159 const APInt &StepInt = Step->getAPInt();
3160 const APInt &DivInt = RHSC->getAPInt();
3161 if (!StepInt.urem(DivInt) &&
3162 getZeroExtendExpr(AR, ExtTy) ==
3163 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3164 getZeroExtendExpr(Step, ExtTy),
3165 AR->getLoop(), SCEV::FlagAnyWrap)) {
3166 SmallVector<const SCEV *, 4> Operands;
3167 for (const SCEV *Op : AR->operands())
3168 Operands.push_back(getUDivExpr(Op, RHS));
3169 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3170 }
3171 /// Get a canonical UDivExpr for a recurrence.
3172 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3173 // We can currently only fold X%N if X is constant.
3174 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3175 if (StartC && !DivInt.urem(StepInt) &&
3176 getZeroExtendExpr(AR, ExtTy) ==
3177 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3178 getZeroExtendExpr(Step, ExtTy),
3179 AR->getLoop(), SCEV::FlagAnyWrap)) {
3180 const APInt &StartInt = StartC->getAPInt();
3181 const APInt &StartRem = StartInt.urem(StepInt);
3182 if (StartRem != 0) {
3183 const SCEV *NewLHS =
3184 getAddRecExpr(getConstant(StartInt - StartRem), Step,
3185 AR->getLoop(), SCEV::FlagNW);
3186 if (LHS != NewLHS) {
3187 LHS = NewLHS;
3188
3189 // Reset the ID to include the new LHS, and check if it is
3190 // already cached.
3191 ID.clear();
3192 ID.AddInteger(scUDivExpr);
3193 ID.AddPointer(LHS);
3194 ID.AddPointer(RHS);
3195 IP = nullptr;
3196 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3197 return S;
3198 }
3199 }
3200 }
3201 }
3202 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3203 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3204 SmallVector<const SCEV *, 4> Operands;
3205 for (const SCEV *Op : M->operands())
3206 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3207 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3208 // Find an operand that's safely divisible.
3209 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3210 const SCEV *Op = M->getOperand(i);
3211 const SCEV *Div = getUDivExpr(Op, RHSC);
3212 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3213 Operands = SmallVector<const SCEV *, 4>(M->operands());
3214 Operands[i] = Div;
3215 return getMulExpr(Operands);
3216 }
3217 }
3218 }
3219
3220 // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3221 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3222 if (auto *DivisorConstant =
3223 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3224 bool Overflow = false;
3225 APInt NewRHS =
3226 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3227 if (Overflow) {
3228 return getConstant(RHSC->getType(), 0, false);
3229 }
3230 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3231 }
3232 }
3233
3234 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3235 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3236 SmallVector<const SCEV *, 4> Operands;
3237 for (const SCEV *Op : A->operands())
3238 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3239 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3240 Operands.clear();
3241 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3242 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3243 if (isa<SCEVUDivExpr>(Op) ||
3244 getMulExpr(Op, RHS) != A->getOperand(i))
3245 break;
3246 Operands.push_back(Op);
3247 }
3248 if (Operands.size() == A->getNumOperands())
3249 return getAddExpr(Operands);
3250 }
3251 }
3252
3253 // Fold if both operands are constant.
3254 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3255 Constant *LHSCV = LHSC->getValue();
3256 Constant *RHSCV = RHSC->getValue();
3257 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3258 RHSCV)));
3259 }
3260 }
3261 }
3262
3263 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3264 // changes). Make sure we get a new one.
3265 IP = nullptr;
3266 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3267 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3268 LHS, RHS);
3269 UniqueSCEVs.InsertNode(S, IP);
3270 addToLoopUseLists(S);
3271 return S;
3272 }
3273
gcd(const SCEVConstant * C1,const SCEVConstant * C2)3274 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3275 APInt A = C1->getAPInt().abs();
3276 APInt B = C2->getAPInt().abs();
3277 uint32_t ABW = A.getBitWidth();
3278 uint32_t BBW = B.getBitWidth();
3279
3280 if (ABW > BBW)
3281 B = B.zext(ABW);
3282 else if (ABW < BBW)
3283 A = A.zext(BBW);
3284
3285 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3286 }
3287
3288 /// Get a canonical unsigned division expression, or something simpler if
3289 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3290 /// can attempt to remove factors from the LHS and RHS. We can't do this when
3291 /// it's not exact because the udiv may be clearing bits.
getUDivExactExpr(const SCEV * LHS,const SCEV * RHS)3292 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3293 const SCEV *RHS) {
3294 // TODO: we could try to find factors in all sorts of things, but for now we
3295 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3296 // end of this file for inspiration.
3297
3298 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3299 if (!Mul || !Mul->hasNoUnsignedWrap())
3300 return getUDivExpr(LHS, RHS);
3301
3302 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3303 // If the mulexpr multiplies by a constant, then that constant must be the
3304 // first element of the mulexpr.
3305 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3306 if (LHSCst == RHSCst) {
3307 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3308 return getMulExpr(Operands);
3309 }
3310
3311 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3312 // that there's a factor provided by one of the other terms. We need to
3313 // check.
3314 APInt Factor = gcd(LHSCst, RHSCst);
3315 if (!Factor.isIntN(1)) {
3316 LHSCst =
3317 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3318 RHSCst =
3319 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3320 SmallVector<const SCEV *, 2> Operands;
3321 Operands.push_back(LHSCst);
3322 Operands.append(Mul->op_begin() + 1, Mul->op_end());
3323 LHS = getMulExpr(Operands);
3324 RHS = RHSCst;
3325 Mul = dyn_cast<SCEVMulExpr>(LHS);
3326 if (!Mul)
3327 return getUDivExactExpr(LHS, RHS);
3328 }
3329 }
3330 }
3331
3332 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3333 if (Mul->getOperand(i) == RHS) {
3334 SmallVector<const SCEV *, 2> Operands;
3335 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3336 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3337 return getMulExpr(Operands);
3338 }
3339 }
3340
3341 return getUDivExpr(LHS, RHS);
3342 }
3343
3344 /// Get an add recurrence expression for the specified loop. Simplify the
3345 /// expression as much as possible.
getAddRecExpr(const SCEV * Start,const SCEV * Step,const Loop * L,SCEV::NoWrapFlags Flags)3346 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3347 const Loop *L,
3348 SCEV::NoWrapFlags Flags) {
3349 SmallVector<const SCEV *, 4> Operands;
3350 Operands.push_back(Start);
3351 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3352 if (StepChrec->getLoop() == L) {
3353 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3354 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3355 }
3356
3357 Operands.push_back(Step);
3358 return getAddRecExpr(Operands, L, Flags);
3359 }
3360
3361 /// Get an add recurrence expression for the specified loop. Simplify the
3362 /// expression as much as possible.
3363 const SCEV *
getAddRecExpr(SmallVectorImpl<const SCEV * > & Operands,const Loop * L,SCEV::NoWrapFlags Flags)3364 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3365 const Loop *L, SCEV::NoWrapFlags Flags) {
3366 if (Operands.size() == 1) return Operands[0];
3367 #ifndef NDEBUG
3368 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3369 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3370 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3371 "SCEVAddRecExpr operand types don't match!");
3372 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3373 assert(isLoopInvariant(Operands[i], L) &&
3374 "SCEVAddRecExpr operand is not loop-invariant!");
3375 #endif
3376
3377 if (Operands.back()->isZero()) {
3378 Operands.pop_back();
3379 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
3380 }
3381
3382 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3383 // use that information to infer NUW and NSW flags. However, computing a
3384 // BE count requires calling getAddRecExpr, so we may not yet have a
3385 // meaningful BE count at this point (and if we don't, we'd be stuck
3386 // with a SCEVCouldNotCompute as the cached BE count).
3387
3388 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3389
3390 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3391 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3392 const Loop *NestedLoop = NestedAR->getLoop();
3393 if (L->contains(NestedLoop)
3394 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3395 : (!NestedLoop->contains(L) &&
3396 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3397 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3398 Operands[0] = NestedAR->getStart();
3399 // AddRecs require their operands be loop-invariant with respect to their
3400 // loops. Don't perform this transformation if it would break this
3401 // requirement.
3402 bool AllInvariant = all_of(
3403 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3404
3405 if (AllInvariant) {
3406 // Create a recurrence for the outer loop with the same step size.
3407 //
3408 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3409 // inner recurrence has the same property.
3410 SCEV::NoWrapFlags OuterFlags =
3411 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3412
3413 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3414 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3415 return isLoopInvariant(Op, NestedLoop);
3416 });
3417
3418 if (AllInvariant) {
3419 // Ok, both add recurrences are valid after the transformation.
3420 //
3421 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3422 // the outer recurrence has the same property.
3423 SCEV::NoWrapFlags InnerFlags =
3424 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3425 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3426 }
3427 }
3428 // Reset Operands to its original state.
3429 Operands[0] = NestedAR;
3430 }
3431 }
3432
3433 // Okay, it looks like we really DO need an addrec expr. Check to see if we
3434 // already have one, otherwise create a new one.
3435 return getOrCreateAddRecExpr(Operands, L, Flags);
3436 }
3437
3438 const SCEV *
getGEPExpr(GEPOperator * GEP,const SmallVectorImpl<const SCEV * > & IndexExprs)3439 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3440 const SmallVectorImpl<const SCEV *> &IndexExprs) {
3441 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3442 // getSCEV(Base)->getType() has the same address space as Base->getType()
3443 // because SCEV::getType() preserves the address space.
3444 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3445 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3446 // instruction to its SCEV, because the Instruction may be guarded by control
3447 // flow and the no-overflow bits may not be valid for the expression in any
3448 // context. This can be fixed similarly to how these flags are handled for
3449 // adds.
3450 SCEV::NoWrapFlags OffsetWrap =
3451 GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3452
3453 Type *CurTy = GEP->getType();
3454 bool FirstIter = true;
3455 SmallVector<const SCEV *, 4> Offsets;
3456 for (const SCEV *IndexExpr : IndexExprs) {
3457 // Compute the (potentially symbolic) offset in bytes for this index.
3458 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3459 // For a struct, add the member offset.
3460 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3461 unsigned FieldNo = Index->getZExtValue();
3462 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3463 Offsets.push_back(FieldOffset);
3464
3465 // Update CurTy to the type of the field at Index.
3466 CurTy = STy->getTypeAtIndex(Index);
3467 } else {
3468 // Update CurTy to its element type.
3469 if (FirstIter) {
3470 assert(isa<PointerType>(CurTy) &&
3471 "The first index of a GEP indexes a pointer");
3472 CurTy = GEP->getSourceElementType();
3473 FirstIter = false;
3474 } else {
3475 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3476 }
3477 // For an array, add the element offset, explicitly scaled.
3478 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3479 // Getelementptr indices are signed.
3480 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3481
3482 // Multiply the index by the element size to compute the element offset.
3483 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3484 Offsets.push_back(LocalOffset);
3485 }
3486 }
3487
3488 // Handle degenerate case of GEP without offsets.
3489 if (Offsets.empty())
3490 return BaseExpr;
3491
3492 // Add the offsets together, assuming nsw if inbounds.
3493 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3494 // Add the base address and the offset. We cannot use the nsw flag, as the
3495 // base address is unsigned. However, if we know that the offset is
3496 // non-negative, we can use nuw.
3497 SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset)
3498 ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3499 return getAddExpr(BaseExpr, Offset, BaseWrap);
3500 }
3501
3502 std::tuple<SCEV *, FoldingSetNodeID, void *>
findExistingSCEVInCache(SCEVTypes SCEVType,ArrayRef<const SCEV * > Ops)3503 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3504 ArrayRef<const SCEV *> Ops) {
3505 FoldingSetNodeID ID;
3506 void *IP = nullptr;
3507 ID.AddInteger(SCEVType);
3508 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3509 ID.AddPointer(Ops[i]);
3510 return std::tuple<SCEV *, FoldingSetNodeID, void *>(
3511 UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3512 }
3513
getAbsExpr(const SCEV * Op,bool IsNSW)3514 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3515 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3516 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3517 }
3518
getMinMaxExpr(SCEVTypes Kind,SmallVectorImpl<const SCEV * > & Ops)3519 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3520 SmallVectorImpl<const SCEV *> &Ops) {
3521 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3522 if (Ops.size() == 1) return Ops[0];
3523 #ifndef NDEBUG
3524 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3525 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3526 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3527 "Operand types don't match!");
3528 #endif
3529
3530 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3531 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3532
3533 // Sort by complexity, this groups all similar expression types together.
3534 GroupByComplexity(Ops, &LI, DT);
3535
3536 // Check if we have created the same expression before.
3537 if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3538 return S;
3539 }
3540
3541 // If there are any constants, fold them together.
3542 unsigned Idx = 0;
3543 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3544 ++Idx;
3545 assert(Idx < Ops.size());
3546 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3547 if (Kind == scSMaxExpr)
3548 return APIntOps::smax(LHS, RHS);
3549 else if (Kind == scSMinExpr)
3550 return APIntOps::smin(LHS, RHS);
3551 else if (Kind == scUMaxExpr)
3552 return APIntOps::umax(LHS, RHS);
3553 else if (Kind == scUMinExpr)
3554 return APIntOps::umin(LHS, RHS);
3555 llvm_unreachable("Unknown SCEV min/max opcode");
3556 };
3557
3558 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3559 // We found two constants, fold them together!
3560 ConstantInt *Fold = ConstantInt::get(
3561 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3562 Ops[0] = getConstant(Fold);
3563 Ops.erase(Ops.begin()+1); // Erase the folded element
3564 if (Ops.size() == 1) return Ops[0];
3565 LHSC = cast<SCEVConstant>(Ops[0]);
3566 }
3567
3568 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3569 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3570
3571 if (IsMax ? IsMinV : IsMaxV) {
3572 // If we are left with a constant minimum(/maximum)-int, strip it off.
3573 Ops.erase(Ops.begin());
3574 --Idx;
3575 } else if (IsMax ? IsMaxV : IsMinV) {
3576 // If we have a max(/min) with a constant maximum(/minimum)-int,
3577 // it will always be the extremum.
3578 return LHSC;
3579 }
3580
3581 if (Ops.size() == 1) return Ops[0];
3582 }
3583
3584 // Find the first operation of the same kind
3585 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3586 ++Idx;
3587
3588 // Check to see if one of the operands is of the same kind. If so, expand its
3589 // operands onto our operand list, and recurse to simplify.
3590 if (Idx < Ops.size()) {
3591 bool DeletedAny = false;
3592 while (Ops[Idx]->getSCEVType() == Kind) {
3593 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3594 Ops.erase(Ops.begin()+Idx);
3595 Ops.append(SMME->op_begin(), SMME->op_end());
3596 DeletedAny = true;
3597 }
3598
3599 if (DeletedAny)
3600 return getMinMaxExpr(Kind, Ops);
3601 }
3602
3603 // Okay, check to see if the same value occurs in the operand list twice. If
3604 // so, delete one. Since we sorted the list, these values are required to
3605 // be adjacent.
3606 llvm::CmpInst::Predicate GEPred =
3607 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3608 llvm::CmpInst::Predicate LEPred =
3609 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3610 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3611 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3612 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3613 if (Ops[i] == Ops[i + 1] ||
3614 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3615 // X op Y op Y --> X op Y
3616 // X op Y --> X, if we know X, Y are ordered appropriately
3617 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3618 --i;
3619 --e;
3620 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3621 Ops[i + 1])) {
3622 // X op Y --> Y, if we know X, Y are ordered appropriately
3623 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3624 --i;
3625 --e;
3626 }
3627 }
3628
3629 if (Ops.size() == 1) return Ops[0];
3630
3631 assert(!Ops.empty() && "Reduced smax down to nothing!");
3632
3633 // Okay, it looks like we really DO need an expr. Check to see if we
3634 // already have one, otherwise create a new one.
3635 const SCEV *ExistingSCEV;
3636 FoldingSetNodeID ID;
3637 void *IP;
3638 std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3639 if (ExistingSCEV)
3640 return ExistingSCEV;
3641 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3642 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3643 SCEV *S = new (SCEVAllocator)
3644 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3645
3646 UniqueSCEVs.InsertNode(S, IP);
3647 addToLoopUseLists(S);
3648 return S;
3649 }
3650
getSMaxExpr(const SCEV * LHS,const SCEV * RHS)3651 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3652 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3653 return getSMaxExpr(Ops);
3654 }
3655
getSMaxExpr(SmallVectorImpl<const SCEV * > & Ops)3656 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3657 return getMinMaxExpr(scSMaxExpr, Ops);
3658 }
3659
getUMaxExpr(const SCEV * LHS,const SCEV * RHS)3660 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3661 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3662 return getUMaxExpr(Ops);
3663 }
3664
getUMaxExpr(SmallVectorImpl<const SCEV * > & Ops)3665 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3666 return getMinMaxExpr(scUMaxExpr, Ops);
3667 }
3668
getSMinExpr(const SCEV * LHS,const SCEV * RHS)3669 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3670 const SCEV *RHS) {
3671 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3672 return getSMinExpr(Ops);
3673 }
3674
getSMinExpr(SmallVectorImpl<const SCEV * > & Ops)3675 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3676 return getMinMaxExpr(scSMinExpr, Ops);
3677 }
3678
getUMinExpr(const SCEV * LHS,const SCEV * RHS)3679 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3680 const SCEV *RHS) {
3681 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3682 return getUMinExpr(Ops);
3683 }
3684
getUMinExpr(SmallVectorImpl<const SCEV * > & Ops)3685 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3686 return getMinMaxExpr(scUMinExpr, Ops);
3687 }
3688
3689 const SCEV *
getSizeOfScalableVectorExpr(Type * IntTy,ScalableVectorType * ScalableTy)3690 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
3691 ScalableVectorType *ScalableTy) {
3692 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
3693 Constant *One = ConstantInt::get(IntTy, 1);
3694 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
3695 // Note that the expression we created is the final expression, we don't
3696 // want to simplify it any further Also, if we call a normal getSCEV(),
3697 // we'll end up in an endless recursion. So just create an SCEVUnknown.
3698 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
3699 }
3700
getSizeOfExpr(Type * IntTy,Type * AllocTy)3701 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3702 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
3703 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
3704 // We can bypass creating a target-independent constant expression and then
3705 // folding it back into a ConstantInt. This is just a compile-time
3706 // optimization.
3707 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3708 }
3709
getStoreSizeOfExpr(Type * IntTy,Type * StoreTy)3710 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
3711 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
3712 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
3713 // We can bypass creating a target-independent constant expression and then
3714 // folding it back into a ConstantInt. This is just a compile-time
3715 // optimization.
3716 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
3717 }
3718
getOffsetOfExpr(Type * IntTy,StructType * STy,unsigned FieldNo)3719 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3720 StructType *STy,
3721 unsigned FieldNo) {
3722 // We can bypass creating a target-independent constant expression and then
3723 // folding it back into a ConstantInt. This is just a compile-time
3724 // optimization.
3725 return getConstant(
3726 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3727 }
3728
getUnknown(Value * V)3729 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3730 // Don't attempt to do anything other than create a SCEVUnknown object
3731 // here. createSCEV only calls getUnknown after checking for all other
3732 // interesting possibilities, and any other code that calls getUnknown
3733 // is doing so in order to hide a value from SCEV canonicalization.
3734
3735 FoldingSetNodeID ID;
3736 ID.AddInteger(scUnknown);
3737 ID.AddPointer(V);
3738 void *IP = nullptr;
3739 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3740 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3741 "Stale SCEVUnknown in uniquing map!");
3742 return S;
3743 }
3744 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3745 FirstUnknown);
3746 FirstUnknown = cast<SCEVUnknown>(S);
3747 UniqueSCEVs.InsertNode(S, IP);
3748 return S;
3749 }
3750
3751 //===----------------------------------------------------------------------===//
3752 // Basic SCEV Analysis and PHI Idiom Recognition Code
3753 //
3754
3755 /// Test if values of the given type are analyzable within the SCEV
3756 /// framework. This primarily includes integer types, and it can optionally
3757 /// include pointer types if the ScalarEvolution class has access to
3758 /// target-specific information.
isSCEVable(Type * Ty) const3759 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3760 // Integers and pointers are always SCEVable.
3761 return Ty->isIntOrPtrTy();
3762 }
3763
3764 /// Return the size in bits of the specified type, for which isSCEVable must
3765 /// return true.
getTypeSizeInBits(Type * Ty) const3766 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3767 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3768 if (Ty->isPointerTy())
3769 return getDataLayout().getIndexTypeSizeInBits(Ty);
3770 return getDataLayout().getTypeSizeInBits(Ty);
3771 }
3772
3773 /// Return a type with the same bitwidth as the given type and which represents
3774 /// how SCEV will treat the given type, for which isSCEVable must return
3775 /// true. For pointer types, this is the pointer index sized integer type.
getEffectiveSCEVType(Type * Ty) const3776 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3777 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3778
3779 if (Ty->isIntegerTy())
3780 return Ty;
3781
3782 // The only other support type is pointer.
3783 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3784 return getDataLayout().getIndexType(Ty);
3785 }
3786
getWiderType(Type * T1,Type * T2) const3787 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3788 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3789 }
3790
getCouldNotCompute()3791 const SCEV *ScalarEvolution::getCouldNotCompute() {
3792 return CouldNotCompute.get();
3793 }
3794
checkValidity(const SCEV * S) const3795 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3796 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3797 auto *SU = dyn_cast<SCEVUnknown>(S);
3798 return SU && SU->getValue() == nullptr;
3799 });
3800
3801 return !ContainsNulls;
3802 }
3803
containsAddRecurrence(const SCEV * S)3804 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3805 HasRecMapType::iterator I = HasRecMap.find(S);
3806 if (I != HasRecMap.end())
3807 return I->second;
3808
3809 bool FoundAddRec =
3810 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
3811 HasRecMap.insert({S, FoundAddRec});
3812 return FoundAddRec;
3813 }
3814
3815 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3816 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3817 /// offset I, then return {S', I}, else return {\p S, nullptr}.
splitAddExpr(const SCEV * S)3818 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3819 const auto *Add = dyn_cast<SCEVAddExpr>(S);
3820 if (!Add)
3821 return {S, nullptr};
3822
3823 if (Add->getNumOperands() != 2)
3824 return {S, nullptr};
3825
3826 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3827 if (!ConstOp)
3828 return {S, nullptr};
3829
3830 return {Add->getOperand(1), ConstOp->getValue()};
3831 }
3832
3833 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3834 /// by the value and offset from any ValueOffsetPair in the set.
3835 SetVector<ScalarEvolution::ValueOffsetPair> *
getSCEVValues(const SCEV * S)3836 ScalarEvolution::getSCEVValues(const SCEV *S) {
3837 ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3838 if (SI == ExprValueMap.end())
3839 return nullptr;
3840 #ifndef NDEBUG
3841 if (VerifySCEVMap) {
3842 // Check there is no dangling Value in the set returned.
3843 for (const auto &VE : SI->second)
3844 assert(ValueExprMap.count(VE.first));
3845 }
3846 #endif
3847 return &SI->second;
3848 }
3849
3850 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3851 /// cannot be used separately. eraseValueFromMap should be used to remove
3852 /// V from ValueExprMap and ExprValueMap at the same time.
eraseValueFromMap(Value * V)3853 void ScalarEvolution::eraseValueFromMap(Value *V) {
3854 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3855 if (I != ValueExprMap.end()) {
3856 const SCEV *S = I->second;
3857 // Remove {V, 0} from the set of ExprValueMap[S]
3858 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3859 SV->remove({V, nullptr});
3860
3861 // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3862 const SCEV *Stripped;
3863 ConstantInt *Offset;
3864 std::tie(Stripped, Offset) = splitAddExpr(S);
3865 if (Offset != nullptr) {
3866 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3867 SV->remove({V, Offset});
3868 }
3869 ValueExprMap.erase(V);
3870 }
3871 }
3872
3873 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3874 /// TODO: In reality it is better to check the poison recursively
3875 /// but this is better than nothing.
SCEVLostPoisonFlags(const SCEV * S,const Value * V)3876 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3877 if (auto *I = dyn_cast<Instruction>(V)) {
3878 if (isa<OverflowingBinaryOperator>(I)) {
3879 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3880 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3881 return true;
3882 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3883 return true;
3884 }
3885 } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3886 return true;
3887 }
3888 return false;
3889 }
3890
3891 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3892 /// create a new one.
getSCEV(Value * V)3893 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3894 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3895
3896 const SCEV *S = getExistingSCEV(V);
3897 if (S == nullptr) {
3898 S = createSCEV(V);
3899 // During PHI resolution, it is possible to create two SCEVs for the same
3900 // V, so it is needed to double check whether V->S is inserted into
3901 // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3902 std::pair<ValueExprMapType::iterator, bool> Pair =
3903 ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3904 if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3905 ExprValueMap[S].insert({V, nullptr});
3906
3907 // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3908 // ExprValueMap.
3909 const SCEV *Stripped = S;
3910 ConstantInt *Offset = nullptr;
3911 std::tie(Stripped, Offset) = splitAddExpr(S);
3912 // If stripped is SCEVUnknown, don't bother to save
3913 // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3914 // increase the complexity of the expansion code.
3915 // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3916 // because it may generate add/sub instead of GEP in SCEV expansion.
3917 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3918 !isa<GetElementPtrInst>(V))
3919 ExprValueMap[Stripped].insert({V, Offset});
3920 }
3921 }
3922 return S;
3923 }
3924
getExistingSCEV(Value * V)3925 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3926 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3927
3928 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3929 if (I != ValueExprMap.end()) {
3930 const SCEV *S = I->second;
3931 if (checkValidity(S))
3932 return S;
3933 eraseValueFromMap(V);
3934 forgetMemoizedResults(S);
3935 }
3936 return nullptr;
3937 }
3938
3939 /// Return a SCEV corresponding to -V = -1*V
getNegativeSCEV(const SCEV * V,SCEV::NoWrapFlags Flags)3940 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3941 SCEV::NoWrapFlags Flags) {
3942 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3943 return getConstant(
3944 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3945
3946 Type *Ty = V->getType();
3947 Ty = getEffectiveSCEVType(Ty);
3948 return getMulExpr(V, getMinusOne(Ty), Flags);
3949 }
3950
3951 /// If Expr computes ~A, return A else return nullptr
MatchNotExpr(const SCEV * Expr)3952 static const SCEV *MatchNotExpr(const SCEV *Expr) {
3953 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
3954 if (!Add || Add->getNumOperands() != 2 ||
3955 !Add->getOperand(0)->isAllOnesValue())
3956 return nullptr;
3957
3958 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
3959 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
3960 !AddRHS->getOperand(0)->isAllOnesValue())
3961 return nullptr;
3962
3963 return AddRHS->getOperand(1);
3964 }
3965
3966 /// Return a SCEV corresponding to ~V = -1-V
getNotSCEV(const SCEV * V)3967 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3968 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3969 return getConstant(
3970 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3971
3972 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
3973 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
3974 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
3975 SmallVector<const SCEV *, 2> MatchedOperands;
3976 for (const SCEV *Operand : MME->operands()) {
3977 const SCEV *Matched = MatchNotExpr(Operand);
3978 if (!Matched)
3979 return (const SCEV *)nullptr;
3980 MatchedOperands.push_back(Matched);
3981 }
3982 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
3983 MatchedOperands);
3984 };
3985 if (const SCEV *Replaced = MatchMinMaxNegation(MME))
3986 return Replaced;
3987 }
3988
3989 Type *Ty = V->getType();
3990 Ty = getEffectiveSCEVType(Ty);
3991 return getMinusSCEV(getMinusOne(Ty), V);
3992 }
3993
getMinusSCEV(const SCEV * LHS,const SCEV * RHS,SCEV::NoWrapFlags Flags,unsigned Depth)3994 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3995 SCEV::NoWrapFlags Flags,
3996 unsigned Depth) {
3997 // Fast path: X - X --> 0.
3998 if (LHS == RHS)
3999 return getZero(LHS->getType());
4000
4001 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4002 // makes it so that we cannot make much use of NUW.
4003 auto AddFlags = SCEV::FlagAnyWrap;
4004 const bool RHSIsNotMinSigned =
4005 !getSignedRangeMin(RHS).isMinSignedValue();
4006 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
4007 // Let M be the minimum representable signed value. Then (-1)*RHS
4008 // signed-wraps if and only if RHS is M. That can happen even for
4009 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4010 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4011 // (-1)*RHS, we need to prove that RHS != M.
4012 //
4013 // If LHS is non-negative and we know that LHS - RHS does not
4014 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4015 // either by proving that RHS > M or that LHS >= 0.
4016 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4017 AddFlags = SCEV::FlagNSW;
4018 }
4019 }
4020
4021 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4022 // RHS is NSW and LHS >= 0.
4023 //
4024 // The difficulty here is that the NSW flag may have been proven
4025 // relative to a loop that is to be found in a recurrence in LHS and
4026 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4027 // larger scope than intended.
4028 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4029
4030 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4031 }
4032
getTruncateOrZeroExtend(const SCEV * V,Type * Ty,unsigned Depth)4033 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4034 unsigned Depth) {
4035 Type *SrcTy = V->getType();
4036 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4037 "Cannot truncate or zero extend with non-integer arguments!");
4038 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4039 return V; // No conversion
4040 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4041 return getTruncateExpr(V, Ty, Depth);
4042 return getZeroExtendExpr(V, Ty, Depth);
4043 }
4044
getTruncateOrSignExtend(const SCEV * V,Type * Ty,unsigned Depth)4045 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4046 unsigned Depth) {
4047 Type *SrcTy = V->getType();
4048 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4049 "Cannot truncate or zero extend with non-integer arguments!");
4050 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4051 return V; // No conversion
4052 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4053 return getTruncateExpr(V, Ty, Depth);
4054 return getSignExtendExpr(V, Ty, Depth);
4055 }
4056
4057 const SCEV *
getNoopOrZeroExtend(const SCEV * V,Type * Ty)4058 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4059 Type *SrcTy = V->getType();
4060 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4061 "Cannot noop or zero extend with non-integer arguments!");
4062 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4063 "getNoopOrZeroExtend cannot truncate!");
4064 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4065 return V; // No conversion
4066 return getZeroExtendExpr(V, Ty);
4067 }
4068
4069 const SCEV *
getNoopOrSignExtend(const SCEV * V,Type * Ty)4070 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4071 Type *SrcTy = V->getType();
4072 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4073 "Cannot noop or sign extend with non-integer arguments!");
4074 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4075 "getNoopOrSignExtend cannot truncate!");
4076 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4077 return V; // No conversion
4078 return getSignExtendExpr(V, Ty);
4079 }
4080
4081 const SCEV *
getNoopOrAnyExtend(const SCEV * V,Type * Ty)4082 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4083 Type *SrcTy = V->getType();
4084 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4085 "Cannot noop or any extend with non-integer arguments!");
4086 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4087 "getNoopOrAnyExtend cannot truncate!");
4088 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4089 return V; // No conversion
4090 return getAnyExtendExpr(V, Ty);
4091 }
4092
4093 const SCEV *
getTruncateOrNoop(const SCEV * V,Type * Ty)4094 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4095 Type *SrcTy = V->getType();
4096 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4097 "Cannot truncate or noop with non-integer arguments!");
4098 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4099 "getTruncateOrNoop cannot extend!");
4100 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4101 return V; // No conversion
4102 return getTruncateExpr(V, Ty);
4103 }
4104
getUMaxFromMismatchedTypes(const SCEV * LHS,const SCEV * RHS)4105 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4106 const SCEV *RHS) {
4107 const SCEV *PromotedLHS = LHS;
4108 const SCEV *PromotedRHS = RHS;
4109
4110 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4111 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4112 else
4113 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4114
4115 return getUMaxExpr(PromotedLHS, PromotedRHS);
4116 }
4117
getUMinFromMismatchedTypes(const SCEV * LHS,const SCEV * RHS)4118 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4119 const SCEV *RHS) {
4120 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4121 return getUMinFromMismatchedTypes(Ops);
4122 }
4123
getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV * > & Ops)4124 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4125 SmallVectorImpl<const SCEV *> &Ops) {
4126 assert(!Ops.empty() && "At least one operand must be!");
4127 // Trivial case.
4128 if (Ops.size() == 1)
4129 return Ops[0];
4130
4131 // Find the max type first.
4132 Type *MaxType = nullptr;
4133 for (auto *S : Ops)
4134 if (MaxType)
4135 MaxType = getWiderType(MaxType, S->getType());
4136 else
4137 MaxType = S->getType();
4138 assert(MaxType && "Failed to find maximum type!");
4139
4140 // Extend all ops to max type.
4141 SmallVector<const SCEV *, 2> PromotedOps;
4142 for (auto *S : Ops)
4143 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4144
4145 // Generate umin.
4146 return getUMinExpr(PromotedOps);
4147 }
4148
getPointerBase(const SCEV * V)4149 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4150 // A pointer operand may evaluate to a nonpointer expression, such as null.
4151 if (!V->getType()->isPointerTy())
4152 return V;
4153
4154 while (true) {
4155 if (const SCEVIntegralCastExpr *Cast = dyn_cast<SCEVIntegralCastExpr>(V)) {
4156 V = Cast->getOperand();
4157 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
4158 const SCEV *PtrOp = nullptr;
4159 for (const SCEV *NAryOp : NAry->operands()) {
4160 if (NAryOp->getType()->isPointerTy()) {
4161 // Cannot find the base of an expression with multiple pointer ops.
4162 if (PtrOp)
4163 return V;
4164 PtrOp = NAryOp;
4165 }
4166 }
4167 if (!PtrOp) // All operands were non-pointer.
4168 return V;
4169 V = PtrOp;
4170 } else // Not something we can look further into.
4171 return V;
4172 }
4173 }
4174
4175 /// Push users of the given Instruction onto the given Worklist.
4176 static void
PushDefUseChildren(Instruction * I,SmallVectorImpl<Instruction * > & Worklist)4177 PushDefUseChildren(Instruction *I,
4178 SmallVectorImpl<Instruction *> &Worklist) {
4179 // Push the def-use children onto the Worklist stack.
4180 for (User *U : I->users())
4181 Worklist.push_back(cast<Instruction>(U));
4182 }
4183
forgetSymbolicName(Instruction * PN,const SCEV * SymName)4184 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4185 SmallVector<Instruction *, 16> Worklist;
4186 PushDefUseChildren(PN, Worklist);
4187
4188 SmallPtrSet<Instruction *, 8> Visited;
4189 Visited.insert(PN);
4190 while (!Worklist.empty()) {
4191 Instruction *I = Worklist.pop_back_val();
4192 if (!Visited.insert(I).second)
4193 continue;
4194
4195 auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4196 if (It != ValueExprMap.end()) {
4197 const SCEV *Old = It->second;
4198
4199 // Short-circuit the def-use traversal if the symbolic name
4200 // ceases to appear in expressions.
4201 if (Old != SymName && !hasOperand(Old, SymName))
4202 continue;
4203
4204 // SCEVUnknown for a PHI either means that it has an unrecognized
4205 // structure, it's a PHI that's in the progress of being computed
4206 // by createNodeForPHI, or it's a single-value PHI. In the first case,
4207 // additional loop trip count information isn't going to change anything.
4208 // In the second case, createNodeForPHI will perform the necessary
4209 // updates on its own when it gets to that point. In the third, we do
4210 // want to forget the SCEVUnknown.
4211 if (!isa<PHINode>(I) ||
4212 !isa<SCEVUnknown>(Old) ||
4213 (I != PN && Old == SymName)) {
4214 eraseValueFromMap(It->first);
4215 forgetMemoizedResults(Old);
4216 }
4217 }
4218
4219 PushDefUseChildren(I, Worklist);
4220 }
4221 }
4222
4223 namespace {
4224
4225 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4226 /// expression in case its Loop is L. If it is not L then
4227 /// if IgnoreOtherLoops is true then use AddRec itself
4228 /// otherwise rewrite cannot be done.
4229 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4230 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4231 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE,bool IgnoreOtherLoops=true)4232 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4233 bool IgnoreOtherLoops = true) {
4234 SCEVInitRewriter Rewriter(L, SE);
4235 const SCEV *Result = Rewriter.visit(S);
4236 if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4237 return SE.getCouldNotCompute();
4238 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4239 ? SE.getCouldNotCompute()
4240 : Result;
4241 }
4242
visitUnknown(const SCEVUnknown * Expr)4243 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4244 if (!SE.isLoopInvariant(Expr, L))
4245 SeenLoopVariantSCEVUnknown = true;
4246 return Expr;
4247 }
4248
visitAddRecExpr(const SCEVAddRecExpr * Expr)4249 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4250 // Only re-write AddRecExprs for this loop.
4251 if (Expr->getLoop() == L)
4252 return Expr->getStart();
4253 SeenOtherLoops = true;
4254 return Expr;
4255 }
4256
hasSeenLoopVariantSCEVUnknown()4257 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4258
hasSeenOtherLoops()4259 bool hasSeenOtherLoops() { return SeenOtherLoops; }
4260
4261 private:
SCEVInitRewriter(const Loop * L,ScalarEvolution & SE)4262 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4263 : SCEVRewriteVisitor(SE), L(L) {}
4264
4265 const Loop *L;
4266 bool SeenLoopVariantSCEVUnknown = false;
4267 bool SeenOtherLoops = false;
4268 };
4269
4270 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4271 /// increment expression in case its Loop is L. If it is not L then
4272 /// use AddRec itself.
4273 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4274 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4275 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4276 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4277 SCEVPostIncRewriter Rewriter(L, SE);
4278 const SCEV *Result = Rewriter.visit(S);
4279 return Rewriter.hasSeenLoopVariantSCEVUnknown()
4280 ? SE.getCouldNotCompute()
4281 : Result;
4282 }
4283
visitUnknown(const SCEVUnknown * Expr)4284 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4285 if (!SE.isLoopInvariant(Expr, L))
4286 SeenLoopVariantSCEVUnknown = true;
4287 return Expr;
4288 }
4289
visitAddRecExpr(const SCEVAddRecExpr * Expr)4290 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4291 // Only re-write AddRecExprs for this loop.
4292 if (Expr->getLoop() == L)
4293 return Expr->getPostIncExpr(SE);
4294 SeenOtherLoops = true;
4295 return Expr;
4296 }
4297
hasSeenLoopVariantSCEVUnknown()4298 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4299
hasSeenOtherLoops()4300 bool hasSeenOtherLoops() { return SeenOtherLoops; }
4301
4302 private:
SCEVPostIncRewriter(const Loop * L,ScalarEvolution & SE)4303 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4304 : SCEVRewriteVisitor(SE), L(L) {}
4305
4306 const Loop *L;
4307 bool SeenLoopVariantSCEVUnknown = false;
4308 bool SeenOtherLoops = false;
4309 };
4310
4311 /// This class evaluates the compare condition by matching it against the
4312 /// condition of loop latch. If there is a match we assume a true value
4313 /// for the condition while building SCEV nodes.
4314 class SCEVBackedgeConditionFolder
4315 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4316 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4317 static const SCEV *rewrite(const SCEV *S, const Loop *L,
4318 ScalarEvolution &SE) {
4319 bool IsPosBECond = false;
4320 Value *BECond = nullptr;
4321 if (BasicBlock *Latch = L->getLoopLatch()) {
4322 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4323 if (BI && BI->isConditional()) {
4324 assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4325 "Both outgoing branches should not target same header!");
4326 BECond = BI->getCondition();
4327 IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4328 } else {
4329 return S;
4330 }
4331 }
4332 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4333 return Rewriter.visit(S);
4334 }
4335
visitUnknown(const SCEVUnknown * Expr)4336 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4337 const SCEV *Result = Expr;
4338 bool InvariantF = SE.isLoopInvariant(Expr, L);
4339
4340 if (!InvariantF) {
4341 Instruction *I = cast<Instruction>(Expr->getValue());
4342 switch (I->getOpcode()) {
4343 case Instruction::Select: {
4344 SelectInst *SI = cast<SelectInst>(I);
4345 Optional<const SCEV *> Res =
4346 compareWithBackedgeCondition(SI->getCondition());
4347 if (Res.hasValue()) {
4348 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4349 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4350 }
4351 break;
4352 }
4353 default: {
4354 Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4355 if (Res.hasValue())
4356 Result = Res.getValue();
4357 break;
4358 }
4359 }
4360 }
4361 return Result;
4362 }
4363
4364 private:
SCEVBackedgeConditionFolder(const Loop * L,Value * BECond,bool IsPosBECond,ScalarEvolution & SE)4365 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4366 bool IsPosBECond, ScalarEvolution &SE)
4367 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4368 IsPositiveBECond(IsPosBECond) {}
4369
4370 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4371
4372 const Loop *L;
4373 /// Loop back condition.
4374 Value *BackedgeCond = nullptr;
4375 /// Set to true if loop back is on positive branch condition.
4376 bool IsPositiveBECond;
4377 };
4378
4379 Optional<const SCEV *>
compareWithBackedgeCondition(Value * IC)4380 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4381
4382 // If value matches the backedge condition for loop latch,
4383 // then return a constant evolution node based on loopback
4384 // branch taken.
4385 if (BackedgeCond == IC)
4386 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4387 : SE.getZero(Type::getInt1Ty(SE.getContext()));
4388 return None;
4389 }
4390
4391 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4392 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4393 static const SCEV *rewrite(const SCEV *S, const Loop *L,
4394 ScalarEvolution &SE) {
4395 SCEVShiftRewriter Rewriter(L, SE);
4396 const SCEV *Result = Rewriter.visit(S);
4397 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4398 }
4399
visitUnknown(const SCEVUnknown * Expr)4400 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4401 // Only allow AddRecExprs for this loop.
4402 if (!SE.isLoopInvariant(Expr, L))
4403 Valid = false;
4404 return Expr;
4405 }
4406
visitAddRecExpr(const SCEVAddRecExpr * Expr)4407 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4408 if (Expr->getLoop() == L && Expr->isAffine())
4409 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4410 Valid = false;
4411 return Expr;
4412 }
4413
isValid()4414 bool isValid() { return Valid; }
4415
4416 private:
SCEVShiftRewriter(const Loop * L,ScalarEvolution & SE)4417 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4418 : SCEVRewriteVisitor(SE), L(L) {}
4419
4420 const Loop *L;
4421 bool Valid = true;
4422 };
4423
4424 } // end anonymous namespace
4425
4426 SCEV::NoWrapFlags
proveNoWrapViaConstantRanges(const SCEVAddRecExpr * AR)4427 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4428 if (!AR->isAffine())
4429 return SCEV::FlagAnyWrap;
4430
4431 using OBO = OverflowingBinaryOperator;
4432
4433 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4434
4435 if (!AR->hasNoSignedWrap()) {
4436 ConstantRange AddRecRange = getSignedRange(AR);
4437 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4438
4439 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4440 Instruction::Add, IncRange, OBO::NoSignedWrap);
4441 if (NSWRegion.contains(AddRecRange))
4442 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4443 }
4444
4445 if (!AR->hasNoUnsignedWrap()) {
4446 ConstantRange AddRecRange = getUnsignedRange(AR);
4447 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4448
4449 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4450 Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4451 if (NUWRegion.contains(AddRecRange))
4452 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4453 }
4454
4455 return Result;
4456 }
4457
4458 SCEV::NoWrapFlags
proveNoSignedWrapViaInduction(const SCEVAddRecExpr * AR)4459 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4460 SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4461
4462 if (AR->hasNoSignedWrap())
4463 return Result;
4464
4465 if (!AR->isAffine())
4466 return Result;
4467
4468 const SCEV *Step = AR->getStepRecurrence(*this);
4469 const Loop *L = AR->getLoop();
4470
4471 // Check whether the backedge-taken count is SCEVCouldNotCompute.
4472 // Note that this serves two purposes: It filters out loops that are
4473 // simply not analyzable, and it covers the case where this code is
4474 // being called from within backedge-taken count analysis, such that
4475 // attempting to ask for the backedge-taken count would likely result
4476 // in infinite recursion. In the later case, the analysis code will
4477 // cope with a conservative value, and it will take care to purge
4478 // that value once it has finished.
4479 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4480
4481 // Normally, in the cases we can prove no-overflow via a
4482 // backedge guarding condition, we can also compute a backedge
4483 // taken count for the loop. The exceptions are assumptions and
4484 // guards present in the loop -- SCEV is not great at exploiting
4485 // these to compute max backedge taken counts, but can still use
4486 // these to prove lack of overflow. Use this fact to avoid
4487 // doing extra work that may not pay off.
4488
4489 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4490 AC.assumptions().empty())
4491 return Result;
4492
4493 // If the backedge is guarded by a comparison with the pre-inc value the
4494 // addrec is safe. Also, if the entry is guarded by a comparison with the
4495 // start value and the backedge is guarded by a comparison with the post-inc
4496 // value, the addrec is safe.
4497 ICmpInst::Predicate Pred;
4498 const SCEV *OverflowLimit =
4499 getSignedOverflowLimitForStep(Step, &Pred, this);
4500 if (OverflowLimit &&
4501 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
4502 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
4503 Result = setFlags(Result, SCEV::FlagNSW);
4504 }
4505 return Result;
4506 }
4507 SCEV::NoWrapFlags
proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr * AR)4508 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4509 SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4510
4511 if (AR->hasNoUnsignedWrap())
4512 return Result;
4513
4514 if (!AR->isAffine())
4515 return Result;
4516
4517 const SCEV *Step = AR->getStepRecurrence(*this);
4518 unsigned BitWidth = getTypeSizeInBits(AR->getType());
4519 const Loop *L = AR->getLoop();
4520
4521 // Check whether the backedge-taken count is SCEVCouldNotCompute.
4522 // Note that this serves two purposes: It filters out loops that are
4523 // simply not analyzable, and it covers the case where this code is
4524 // being called from within backedge-taken count analysis, such that
4525 // attempting to ask for the backedge-taken count would likely result
4526 // in infinite recursion. In the later case, the analysis code will
4527 // cope with a conservative value, and it will take care to purge
4528 // that value once it has finished.
4529 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4530
4531 // Normally, in the cases we can prove no-overflow via a
4532 // backedge guarding condition, we can also compute a backedge
4533 // taken count for the loop. The exceptions are assumptions and
4534 // guards present in the loop -- SCEV is not great at exploiting
4535 // these to compute max backedge taken counts, but can still use
4536 // these to prove lack of overflow. Use this fact to avoid
4537 // doing extra work that may not pay off.
4538
4539 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4540 AC.assumptions().empty())
4541 return Result;
4542
4543 // If the backedge is guarded by a comparison with the pre-inc value the
4544 // addrec is safe. Also, if the entry is guarded by a comparison with the
4545 // start value and the backedge is guarded by a comparison with the post-inc
4546 // value, the addrec is safe.
4547 if (isKnownPositive(Step)) {
4548 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
4549 getUnsignedRangeMax(Step));
4550 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
4551 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
4552 Result = setFlags(Result, SCEV::FlagNUW);
4553 }
4554 }
4555
4556 return Result;
4557 }
4558
4559 namespace {
4560
4561 /// Represents an abstract binary operation. This may exist as a
4562 /// normal instruction or constant expression, or may have been
4563 /// derived from an expression tree.
4564 struct BinaryOp {
4565 unsigned Opcode;
4566 Value *LHS;
4567 Value *RHS;
4568 bool IsNSW = false;
4569 bool IsNUW = false;
4570
4571 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4572 /// constant expression.
4573 Operator *Op = nullptr;
4574
BinaryOp__anon7bef4a7f1211::BinaryOp4575 explicit BinaryOp(Operator *Op)
4576 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4577 Op(Op) {
4578 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4579 IsNSW = OBO->hasNoSignedWrap();
4580 IsNUW = OBO->hasNoUnsignedWrap();
4581 }
4582 }
4583
BinaryOp__anon7bef4a7f1211::BinaryOp4584 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4585 bool IsNUW = false)
4586 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4587 };
4588
4589 } // end anonymous namespace
4590
4591 /// Try to map \p V into a BinaryOp, and return \c None on failure.
MatchBinaryOp(Value * V,DominatorTree & DT)4592 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4593 auto *Op = dyn_cast<Operator>(V);
4594 if (!Op)
4595 return None;
4596
4597 // Implementation detail: all the cleverness here should happen without
4598 // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4599 // SCEV expressions when possible, and we should not break that.
4600
4601 switch (Op->getOpcode()) {
4602 case Instruction::Add:
4603 case Instruction::Sub:
4604 case Instruction::Mul:
4605 case Instruction::UDiv:
4606 case Instruction::URem:
4607 case Instruction::And:
4608 case Instruction::Or:
4609 case Instruction::AShr:
4610 case Instruction::Shl:
4611 return BinaryOp(Op);
4612
4613 case Instruction::Xor:
4614 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4615 // If the RHS of the xor is a signmask, then this is just an add.
4616 // Instcombine turns add of signmask into xor as a strength reduction step.
4617 if (RHSC->getValue().isSignMask())
4618 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4619 return BinaryOp(Op);
4620
4621 case Instruction::LShr:
4622 // Turn logical shift right of a constant into a unsigned divide.
4623 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4624 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4625
4626 // If the shift count is not less than the bitwidth, the result of
4627 // the shift is undefined. Don't try to analyze it, because the
4628 // resolution chosen here may differ from the resolution chosen in
4629 // other parts of the compiler.
4630 if (SA->getValue().ult(BitWidth)) {
4631 Constant *X =
4632 ConstantInt::get(SA->getContext(),
4633 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4634 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4635 }
4636 }
4637 return BinaryOp(Op);
4638
4639 case Instruction::ExtractValue: {
4640 auto *EVI = cast<ExtractValueInst>(Op);
4641 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4642 break;
4643
4644 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4645 if (!WO)
4646 break;
4647
4648 Instruction::BinaryOps BinOp = WO->getBinaryOp();
4649 bool Signed = WO->isSigned();
4650 // TODO: Should add nuw/nsw flags for mul as well.
4651 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4652 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4653
4654 // Now that we know that all uses of the arithmetic-result component of
4655 // CI are guarded by the overflow check, we can go ahead and pretend
4656 // that the arithmetic is non-overflowing.
4657 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4658 /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4659 }
4660
4661 default:
4662 break;
4663 }
4664
4665 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4666 // semantics as a Sub, return a binary sub expression.
4667 if (auto *II = dyn_cast<IntrinsicInst>(V))
4668 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4669 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4670
4671 return None;
4672 }
4673
4674 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4675 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4676 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4677 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4678 /// follows one of the following patterns:
4679 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4680 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4681 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4682 /// we return the type of the truncation operation, and indicate whether the
4683 /// truncated type should be treated as signed/unsigned by setting
4684 /// \p Signed to true/false, respectively.
isSimpleCastedPHI(const SCEV * Op,const SCEVUnknown * SymbolicPHI,bool & Signed,ScalarEvolution & SE)4685 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4686 bool &Signed, ScalarEvolution &SE) {
4687 // The case where Op == SymbolicPHI (that is, with no type conversions on
4688 // the way) is handled by the regular add recurrence creating logic and
4689 // would have already been triggered in createAddRecForPHI. Reaching it here
4690 // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4691 // because one of the other operands of the SCEVAddExpr updating this PHI is
4692 // not invariant).
4693 //
4694 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4695 // this case predicates that allow us to prove that Op == SymbolicPHI will
4696 // be added.
4697 if (Op == SymbolicPHI)
4698 return nullptr;
4699
4700 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4701 unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4702 if (SourceBits != NewBits)
4703 return nullptr;
4704
4705 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4706 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4707 if (!SExt && !ZExt)
4708 return nullptr;
4709 const SCEVTruncateExpr *Trunc =
4710 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4711 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4712 if (!Trunc)
4713 return nullptr;
4714 const SCEV *X = Trunc->getOperand();
4715 if (X != SymbolicPHI)
4716 return nullptr;
4717 Signed = SExt != nullptr;
4718 return Trunc->getType();
4719 }
4720
isIntegerLoopHeaderPHI(const PHINode * PN,LoopInfo & LI)4721 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4722 if (!PN->getType()->isIntegerTy())
4723 return nullptr;
4724 const Loop *L = LI.getLoopFor(PN->getParent());
4725 if (!L || L->getHeader() != PN->getParent())
4726 return nullptr;
4727 return L;
4728 }
4729
4730 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4731 // computation that updates the phi follows the following pattern:
4732 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4733 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4734 // If so, try to see if it can be rewritten as an AddRecExpr under some
4735 // Predicates. If successful, return them as a pair. Also cache the results
4736 // of the analysis.
4737 //
4738 // Example usage scenario:
4739 // Say the Rewriter is called for the following SCEV:
4740 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4741 // where:
4742 // %X = phi i64 (%Start, %BEValue)
4743 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4744 // and call this function with %SymbolicPHI = %X.
4745 //
4746 // The analysis will find that the value coming around the backedge has
4747 // the following SCEV:
4748 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4749 // Upon concluding that this matches the desired pattern, the function
4750 // will return the pair {NewAddRec, SmallPredsVec} where:
4751 // NewAddRec = {%Start,+,%Step}
4752 // SmallPredsVec = {P1, P2, P3} as follows:
4753 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4754 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4755 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4756 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4757 // under the predicates {P1,P2,P3}.
4758 // This predicated rewrite will be cached in PredicatedSCEVRewrites:
4759 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4760 //
4761 // TODO's:
4762 //
4763 // 1) Extend the Induction descriptor to also support inductions that involve
4764 // casts: When needed (namely, when we are called in the context of the
4765 // vectorizer induction analysis), a Set of cast instructions will be
4766 // populated by this method, and provided back to isInductionPHI. This is
4767 // needed to allow the vectorizer to properly record them to be ignored by
4768 // the cost model and to avoid vectorizing them (otherwise these casts,
4769 // which are redundant under the runtime overflow checks, will be
4770 // vectorized, which can be costly).
4771 //
4772 // 2) Support additional induction/PHISCEV patterns: We also want to support
4773 // inductions where the sext-trunc / zext-trunc operations (partly) occur
4774 // after the induction update operation (the induction increment):
4775 //
4776 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4777 // which correspond to a phi->add->trunc->sext/zext->phi update chain.
4778 //
4779 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4780 // which correspond to a phi->trunc->add->sext/zext->phi update chain.
4781 //
4782 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4783 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
createAddRecFromPHIWithCastsImpl(const SCEVUnknown * SymbolicPHI)4784 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4785 SmallVector<const SCEVPredicate *, 3> Predicates;
4786
4787 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4788 // return an AddRec expression under some predicate.
4789
4790 auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4791 const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4792 assert(L && "Expecting an integer loop header phi");
4793
4794 // The loop may have multiple entrances or multiple exits; we can analyze
4795 // this phi as an addrec if it has a unique entry value and a unique
4796 // backedge value.
4797 Value *BEValueV = nullptr, *StartValueV = nullptr;
4798 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4799 Value *V = PN->getIncomingValue(i);
4800 if (L->contains(PN->getIncomingBlock(i))) {
4801 if (!BEValueV) {
4802 BEValueV = V;
4803 } else if (BEValueV != V) {
4804 BEValueV = nullptr;
4805 break;
4806 }
4807 } else if (!StartValueV) {
4808 StartValueV = V;
4809 } else if (StartValueV != V) {
4810 StartValueV = nullptr;
4811 break;
4812 }
4813 }
4814 if (!BEValueV || !StartValueV)
4815 return None;
4816
4817 const SCEV *BEValue = getSCEV(BEValueV);
4818
4819 // If the value coming around the backedge is an add with the symbolic
4820 // value we just inserted, possibly with casts that we can ignore under
4821 // an appropriate runtime guard, then we found a simple induction variable!
4822 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4823 if (!Add)
4824 return None;
4825
4826 // If there is a single occurrence of the symbolic value, possibly
4827 // casted, replace it with a recurrence.
4828 unsigned FoundIndex = Add->getNumOperands();
4829 Type *TruncTy = nullptr;
4830 bool Signed;
4831 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4832 if ((TruncTy =
4833 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4834 if (FoundIndex == e) {
4835 FoundIndex = i;
4836 break;
4837 }
4838
4839 if (FoundIndex == Add->getNumOperands())
4840 return None;
4841
4842 // Create an add with everything but the specified operand.
4843 SmallVector<const SCEV *, 8> Ops;
4844 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4845 if (i != FoundIndex)
4846 Ops.push_back(Add->getOperand(i));
4847 const SCEV *Accum = getAddExpr(Ops);
4848
4849 // The runtime checks will not be valid if the step amount is
4850 // varying inside the loop.
4851 if (!isLoopInvariant(Accum, L))
4852 return None;
4853
4854 // *** Part2: Create the predicates
4855
4856 // Analysis was successful: we have a phi-with-cast pattern for which we
4857 // can return an AddRec expression under the following predicates:
4858 //
4859 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4860 // fits within the truncated type (does not overflow) for i = 0 to n-1.
4861 // P2: An Equal predicate that guarantees that
4862 // Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4863 // P3: An Equal predicate that guarantees that
4864 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4865 //
4866 // As we next prove, the above predicates guarantee that:
4867 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4868 //
4869 //
4870 // More formally, we want to prove that:
4871 // Expr(i+1) = Start + (i+1) * Accum
4872 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4873 //
4874 // Given that:
4875 // 1) Expr(0) = Start
4876 // 2) Expr(1) = Start + Accum
4877 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4878 // 3) Induction hypothesis (step i):
4879 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4880 //
4881 // Proof:
4882 // Expr(i+1) =
4883 // = Start + (i+1)*Accum
4884 // = (Start + i*Accum) + Accum
4885 // = Expr(i) + Accum
4886 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4887 // :: from step i
4888 //
4889 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4890 //
4891 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4892 // + (Ext ix (Trunc iy (Accum) to ix) to iy)
4893 // + Accum :: from P3
4894 //
4895 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4896 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4897 //
4898 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4899 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4900 //
4901 // By induction, the same applies to all iterations 1<=i<n:
4902 //
4903
4904 // Create a truncated addrec for which we will add a no overflow check (P1).
4905 const SCEV *StartVal = getSCEV(StartValueV);
4906 const SCEV *PHISCEV =
4907 getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4908 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4909
4910 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4911 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4912 // will be constant.
4913 //
4914 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4915 // add P1.
4916 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4917 SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4918 Signed ? SCEVWrapPredicate::IncrementNSSW
4919 : SCEVWrapPredicate::IncrementNUSW;
4920 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4921 Predicates.push_back(AddRecPred);
4922 }
4923
4924 // Create the Equal Predicates P2,P3:
4925
4926 // It is possible that the predicates P2 and/or P3 are computable at
4927 // compile time due to StartVal and/or Accum being constants.
4928 // If either one is, then we can check that now and escape if either P2
4929 // or P3 is false.
4930
4931 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4932 // for each of StartVal and Accum
4933 auto getExtendedExpr = [&](const SCEV *Expr,
4934 bool CreateSignExtend) -> const SCEV * {
4935 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4936 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4937 const SCEV *ExtendedExpr =
4938 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4939 : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4940 return ExtendedExpr;
4941 };
4942
4943 // Given:
4944 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4945 // = getExtendedExpr(Expr)
4946 // Determine whether the predicate P: Expr == ExtendedExpr
4947 // is known to be false at compile time
4948 auto PredIsKnownFalse = [&](const SCEV *Expr,
4949 const SCEV *ExtendedExpr) -> bool {
4950 return Expr != ExtendedExpr &&
4951 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4952 };
4953
4954 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4955 if (PredIsKnownFalse(StartVal, StartExtended)) {
4956 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4957 return None;
4958 }
4959
4960 // The Step is always Signed (because the overflow checks are either
4961 // NSSW or NUSW)
4962 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4963 if (PredIsKnownFalse(Accum, AccumExtended)) {
4964 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4965 return None;
4966 }
4967
4968 auto AppendPredicate = [&](const SCEV *Expr,
4969 const SCEV *ExtendedExpr) -> void {
4970 if (Expr != ExtendedExpr &&
4971 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4972 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4973 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4974 Predicates.push_back(Pred);
4975 }
4976 };
4977
4978 AppendPredicate(StartVal, StartExtended);
4979 AppendPredicate(Accum, AccumExtended);
4980
4981 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4982 // which the casts had been folded away. The caller can rewrite SymbolicPHI
4983 // into NewAR if it will also add the runtime overflow checks specified in
4984 // Predicates.
4985 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4986
4987 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4988 std::make_pair(NewAR, Predicates);
4989 // Remember the result of the analysis for this SCEV at this locayyytion.
4990 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4991 return PredRewrite;
4992 }
4993
4994 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
createAddRecFromPHIWithCasts(const SCEVUnknown * SymbolicPHI)4995 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4996 auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4997 const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4998 if (!L)
4999 return None;
5000
5001 // Check to see if we already analyzed this PHI.
5002 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5003 if (I != PredicatedSCEVRewrites.end()) {
5004 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5005 I->second;
5006 // Analysis was done before and failed to create an AddRec:
5007 if (Rewrite.first == SymbolicPHI)
5008 return None;
5009 // Analysis was done before and succeeded to create an AddRec under
5010 // a predicate:
5011 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5012 assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5013 return Rewrite;
5014 }
5015
5016 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5017 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5018
5019 // Record in the cache that the analysis failed
5020 if (!Rewrite) {
5021 SmallVector<const SCEVPredicate *, 3> Predicates;
5022 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5023 return None;
5024 }
5025
5026 return Rewrite;
5027 }
5028
5029 // FIXME: This utility is currently required because the Rewriter currently
5030 // does not rewrite this expression:
5031 // {0, +, (sext ix (trunc iy to ix) to iy)}
5032 // into {0, +, %step},
5033 // even when the following Equal predicate exists:
5034 // "%step == (sext ix (trunc iy to ix) to iy)".
areAddRecsEqualWithPreds(const SCEVAddRecExpr * AR1,const SCEVAddRecExpr * AR2) const5035 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5036 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5037 if (AR1 == AR2)
5038 return true;
5039
5040 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5041 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5042 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
5043 return false;
5044 return true;
5045 };
5046
5047 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5048 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5049 return false;
5050 return true;
5051 }
5052
5053 /// A helper function for createAddRecFromPHI to handle simple cases.
5054 ///
5055 /// This function tries to find an AddRec expression for the simplest (yet most
5056 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5057 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5058 /// technique for finding the AddRec expression.
createSimpleAffineAddRec(PHINode * PN,Value * BEValueV,Value * StartValueV)5059 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5060 Value *BEValueV,
5061 Value *StartValueV) {
5062 const Loop *L = LI.getLoopFor(PN->getParent());
5063 assert(L && L->getHeader() == PN->getParent());
5064 assert(BEValueV && StartValueV);
5065
5066 auto BO = MatchBinaryOp(BEValueV, DT);
5067 if (!BO)
5068 return nullptr;
5069
5070 if (BO->Opcode != Instruction::Add)
5071 return nullptr;
5072
5073 const SCEV *Accum = nullptr;
5074 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5075 Accum = getSCEV(BO->RHS);
5076 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5077 Accum = getSCEV(BO->LHS);
5078
5079 if (!Accum)
5080 return nullptr;
5081
5082 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5083 if (BO->IsNUW)
5084 Flags = setFlags(Flags, SCEV::FlagNUW);
5085 if (BO->IsNSW)
5086 Flags = setFlags(Flags, SCEV::FlagNSW);
5087
5088 const SCEV *StartVal = getSCEV(StartValueV);
5089 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5090
5091 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5092
5093 // We can add Flags to the post-inc expression only if we
5094 // know that it is *undefined behavior* for BEValueV to
5095 // overflow.
5096 if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5097 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5098 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5099
5100 return PHISCEV;
5101 }
5102
createAddRecFromPHI(PHINode * PN)5103 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5104 const Loop *L = LI.getLoopFor(PN->getParent());
5105 if (!L || L->getHeader() != PN->getParent())
5106 return nullptr;
5107
5108 // The loop may have multiple entrances or multiple exits; we can analyze
5109 // this phi as an addrec if it has a unique entry value and a unique
5110 // backedge value.
5111 Value *BEValueV = nullptr, *StartValueV = nullptr;
5112 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5113 Value *V = PN->getIncomingValue(i);
5114 if (L->contains(PN->getIncomingBlock(i))) {
5115 if (!BEValueV) {
5116 BEValueV = V;
5117 } else if (BEValueV != V) {
5118 BEValueV = nullptr;
5119 break;
5120 }
5121 } else if (!StartValueV) {
5122 StartValueV = V;
5123 } else if (StartValueV != V) {
5124 StartValueV = nullptr;
5125 break;
5126 }
5127 }
5128 if (!BEValueV || !StartValueV)
5129 return nullptr;
5130
5131 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5132 "PHI node already processed?");
5133
5134 // First, try to find AddRec expression without creating a fictituos symbolic
5135 // value for PN.
5136 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5137 return S;
5138
5139 // Handle PHI node value symbolically.
5140 const SCEV *SymbolicName = getUnknown(PN);
5141 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5142
5143 // Using this symbolic name for the PHI, analyze the value coming around
5144 // the back-edge.
5145 const SCEV *BEValue = getSCEV(BEValueV);
5146
5147 // NOTE: If BEValue is loop invariant, we know that the PHI node just
5148 // has a special value for the first iteration of the loop.
5149
5150 // If the value coming around the backedge is an add with the symbolic
5151 // value we just inserted, then we found a simple induction variable!
5152 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5153 // If there is a single occurrence of the symbolic value, replace it
5154 // with a recurrence.
5155 unsigned FoundIndex = Add->getNumOperands();
5156 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5157 if (Add->getOperand(i) == SymbolicName)
5158 if (FoundIndex == e) {
5159 FoundIndex = i;
5160 break;
5161 }
5162
5163 if (FoundIndex != Add->getNumOperands()) {
5164 // Create an add with everything but the specified operand.
5165 SmallVector<const SCEV *, 8> Ops;
5166 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5167 if (i != FoundIndex)
5168 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5169 L, *this));
5170 const SCEV *Accum = getAddExpr(Ops);
5171
5172 // This is not a valid addrec if the step amount is varying each
5173 // loop iteration, but is not itself an addrec in this loop.
5174 if (isLoopInvariant(Accum, L) ||
5175 (isa<SCEVAddRecExpr>(Accum) &&
5176 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5177 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5178
5179 if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5180 if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5181 if (BO->IsNUW)
5182 Flags = setFlags(Flags, SCEV::FlagNUW);
5183 if (BO->IsNSW)
5184 Flags = setFlags(Flags, SCEV::FlagNSW);
5185 }
5186 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5187 // If the increment is an inbounds GEP, then we know the address
5188 // space cannot be wrapped around. We cannot make any guarantee
5189 // about signed or unsigned overflow because pointers are
5190 // unsigned but we may have a negative index from the base
5191 // pointer. We can guarantee that no unsigned wrap occurs if the
5192 // indices form a positive value.
5193 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5194 Flags = setFlags(Flags, SCEV::FlagNW);
5195
5196 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5197 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5198 Flags = setFlags(Flags, SCEV::FlagNUW);
5199 }
5200
5201 // We cannot transfer nuw and nsw flags from subtraction
5202 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5203 // for instance.
5204 }
5205
5206 const SCEV *StartVal = getSCEV(StartValueV);
5207 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5208
5209 // Okay, for the entire analysis of this edge we assumed the PHI
5210 // to be symbolic. We now need to go back and purge all of the
5211 // entries for the scalars that use the symbolic expression.
5212 forgetSymbolicName(PN, SymbolicName);
5213 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5214
5215 // We can add Flags to the post-inc expression only if we
5216 // know that it is *undefined behavior* for BEValueV to
5217 // overflow.
5218 if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5219 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5220 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5221
5222 return PHISCEV;
5223 }
5224 }
5225 } else {
5226 // Otherwise, this could be a loop like this:
5227 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
5228 // In this case, j = {1,+,1} and BEValue is j.
5229 // Because the other in-value of i (0) fits the evolution of BEValue
5230 // i really is an addrec evolution.
5231 //
5232 // We can generalize this saying that i is the shifted value of BEValue
5233 // by one iteration:
5234 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
5235 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5236 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5237 if (Shifted != getCouldNotCompute() &&
5238 Start != getCouldNotCompute()) {
5239 const SCEV *StartVal = getSCEV(StartValueV);
5240 if (Start == StartVal) {
5241 // Okay, for the entire analysis of this edge we assumed the PHI
5242 // to be symbolic. We now need to go back and purge all of the
5243 // entries for the scalars that use the symbolic expression.
5244 forgetSymbolicName(PN, SymbolicName);
5245 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5246 return Shifted;
5247 }
5248 }
5249 }
5250
5251 // Remove the temporary PHI node SCEV that has been inserted while intending
5252 // to create an AddRecExpr for this PHI node. We can not keep this temporary
5253 // as it will prevent later (possibly simpler) SCEV expressions to be added
5254 // to the ValueExprMap.
5255 eraseValueFromMap(PN);
5256
5257 return nullptr;
5258 }
5259
5260 // Checks if the SCEV S is available at BB. S is considered available at BB
5261 // if S can be materialized at BB without introducing a fault.
IsAvailableOnEntry(const Loop * L,DominatorTree & DT,const SCEV * S,BasicBlock * BB)5262 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5263 BasicBlock *BB) {
5264 struct CheckAvailable {
5265 bool TraversalDone = false;
5266 bool Available = true;
5267
5268 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
5269 BasicBlock *BB = nullptr;
5270 DominatorTree &DT;
5271
5272 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5273 : L(L), BB(BB), DT(DT) {}
5274
5275 bool setUnavailable() {
5276 TraversalDone = true;
5277 Available = false;
5278 return false;
5279 }
5280
5281 bool follow(const SCEV *S) {
5282 switch (S->getSCEVType()) {
5283 case scConstant:
5284 case scPtrToInt:
5285 case scTruncate:
5286 case scZeroExtend:
5287 case scSignExtend:
5288 case scAddExpr:
5289 case scMulExpr:
5290 case scUMaxExpr:
5291 case scSMaxExpr:
5292 case scUMinExpr:
5293 case scSMinExpr:
5294 // These expressions are available if their operand(s) is/are.
5295 return true;
5296
5297 case scAddRecExpr: {
5298 // We allow add recurrences that are on the loop BB is in, or some
5299 // outer loop. This guarantees availability because the value of the
5300 // add recurrence at BB is simply the "current" value of the induction
5301 // variable. We can relax this in the future; for instance an add
5302 // recurrence on a sibling dominating loop is also available at BB.
5303 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5304 if (L && (ARLoop == L || ARLoop->contains(L)))
5305 return true;
5306
5307 return setUnavailable();
5308 }
5309
5310 case scUnknown: {
5311 // For SCEVUnknown, we check for simple dominance.
5312 const auto *SU = cast<SCEVUnknown>(S);
5313 Value *V = SU->getValue();
5314
5315 if (isa<Argument>(V))
5316 return false;
5317
5318 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5319 return false;
5320
5321 return setUnavailable();
5322 }
5323
5324 case scUDivExpr:
5325 case scCouldNotCompute:
5326 // We do not try to smart about these at all.
5327 return setUnavailable();
5328 }
5329 llvm_unreachable("Unknown SCEV kind!");
5330 }
5331
5332 bool isDone() { return TraversalDone; }
5333 };
5334
5335 CheckAvailable CA(L, BB, DT);
5336 SCEVTraversal<CheckAvailable> ST(CA);
5337
5338 ST.visitAll(S);
5339 return CA.Available;
5340 }
5341
5342 // Try to match a control flow sequence that branches out at BI and merges back
5343 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
5344 // match.
BrPHIToSelect(DominatorTree & DT,BranchInst * BI,PHINode * Merge,Value * & C,Value * & LHS,Value * & RHS)5345 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5346 Value *&C, Value *&LHS, Value *&RHS) {
5347 C = BI->getCondition();
5348
5349 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5350 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5351
5352 if (!LeftEdge.isSingleEdge())
5353 return false;
5354
5355 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5356
5357 Use &LeftUse = Merge->getOperandUse(0);
5358 Use &RightUse = Merge->getOperandUse(1);
5359
5360 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5361 LHS = LeftUse;
5362 RHS = RightUse;
5363 return true;
5364 }
5365
5366 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5367 LHS = RightUse;
5368 RHS = LeftUse;
5369 return true;
5370 }
5371
5372 return false;
5373 }
5374
createNodeFromSelectLikePHI(PHINode * PN)5375 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5376 auto IsReachable =
5377 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5378 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5379 const Loop *L = LI.getLoopFor(PN->getParent());
5380
5381 // We don't want to break LCSSA, even in a SCEV expression tree.
5382 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5383 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5384 return nullptr;
5385
5386 // Try to match
5387 //
5388 // br %cond, label %left, label %right
5389 // left:
5390 // br label %merge
5391 // right:
5392 // br label %merge
5393 // merge:
5394 // V = phi [ %x, %left ], [ %y, %right ]
5395 //
5396 // as "select %cond, %x, %y"
5397
5398 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5399 assert(IDom && "At least the entry block should dominate PN");
5400
5401 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5402 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5403
5404 if (BI && BI->isConditional() &&
5405 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5406 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5407 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5408 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5409 }
5410
5411 return nullptr;
5412 }
5413
createNodeForPHI(PHINode * PN)5414 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5415 if (const SCEV *S = createAddRecFromPHI(PN))
5416 return S;
5417
5418 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5419 return S;
5420
5421 // If the PHI has a single incoming value, follow that value, unless the
5422 // PHI's incoming blocks are in a different loop, in which case doing so
5423 // risks breaking LCSSA form. Instcombine would normally zap these, but
5424 // it doesn't have DominatorTree information, so it may miss cases.
5425 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5426 if (LI.replacementPreservesLCSSAForm(PN, V))
5427 return getSCEV(V);
5428
5429 // If it's not a loop phi, we can't handle it yet.
5430 return getUnknown(PN);
5431 }
5432
createNodeForSelectOrPHI(Instruction * I,Value * Cond,Value * TrueVal,Value * FalseVal)5433 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5434 Value *Cond,
5435 Value *TrueVal,
5436 Value *FalseVal) {
5437 // Handle "constant" branch or select. This can occur for instance when a
5438 // loop pass transforms an inner loop and moves on to process the outer loop.
5439 if (auto *CI = dyn_cast<ConstantInt>(Cond))
5440 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5441
5442 // Try to match some simple smax or umax patterns.
5443 auto *ICI = dyn_cast<ICmpInst>(Cond);
5444 if (!ICI)
5445 return getUnknown(I);
5446
5447 Value *LHS = ICI->getOperand(0);
5448 Value *RHS = ICI->getOperand(1);
5449
5450 switch (ICI->getPredicate()) {
5451 case ICmpInst::ICMP_SLT:
5452 case ICmpInst::ICMP_SLE:
5453 std::swap(LHS, RHS);
5454 LLVM_FALLTHROUGH;
5455 case ICmpInst::ICMP_SGT:
5456 case ICmpInst::ICMP_SGE:
5457 // a >s b ? a+x : b+x -> smax(a, b)+x
5458 // a >s b ? b+x : a+x -> smin(a, b)+x
5459 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5460 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5461 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5462 const SCEV *LA = getSCEV(TrueVal);
5463 const SCEV *RA = getSCEV(FalseVal);
5464 const SCEV *LDiff = getMinusSCEV(LA, LS);
5465 const SCEV *RDiff = getMinusSCEV(RA, RS);
5466 if (LDiff == RDiff)
5467 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5468 LDiff = getMinusSCEV(LA, RS);
5469 RDiff = getMinusSCEV(RA, LS);
5470 if (LDiff == RDiff)
5471 return getAddExpr(getSMinExpr(LS, RS), LDiff);
5472 }
5473 break;
5474 case ICmpInst::ICMP_ULT:
5475 case ICmpInst::ICMP_ULE:
5476 std::swap(LHS, RHS);
5477 LLVM_FALLTHROUGH;
5478 case ICmpInst::ICMP_UGT:
5479 case ICmpInst::ICMP_UGE:
5480 // a >u b ? a+x : b+x -> umax(a, b)+x
5481 // a >u b ? b+x : a+x -> umin(a, b)+x
5482 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5483 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5484 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5485 const SCEV *LA = getSCEV(TrueVal);
5486 const SCEV *RA = getSCEV(FalseVal);
5487 const SCEV *LDiff = getMinusSCEV(LA, LS);
5488 const SCEV *RDiff = getMinusSCEV(RA, RS);
5489 if (LDiff == RDiff)
5490 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5491 LDiff = getMinusSCEV(LA, RS);
5492 RDiff = getMinusSCEV(RA, LS);
5493 if (LDiff == RDiff)
5494 return getAddExpr(getUMinExpr(LS, RS), LDiff);
5495 }
5496 break;
5497 case ICmpInst::ICMP_NE:
5498 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
5499 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5500 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5501 const SCEV *One = getOne(I->getType());
5502 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5503 const SCEV *LA = getSCEV(TrueVal);
5504 const SCEV *RA = getSCEV(FalseVal);
5505 const SCEV *LDiff = getMinusSCEV(LA, LS);
5506 const SCEV *RDiff = getMinusSCEV(RA, One);
5507 if (LDiff == RDiff)
5508 return getAddExpr(getUMaxExpr(One, LS), LDiff);
5509 }
5510 break;
5511 case ICmpInst::ICMP_EQ:
5512 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
5513 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5514 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5515 const SCEV *One = getOne(I->getType());
5516 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5517 const SCEV *LA = getSCEV(TrueVal);
5518 const SCEV *RA = getSCEV(FalseVal);
5519 const SCEV *LDiff = getMinusSCEV(LA, One);
5520 const SCEV *RDiff = getMinusSCEV(RA, LS);
5521 if (LDiff == RDiff)
5522 return getAddExpr(getUMaxExpr(One, LS), LDiff);
5523 }
5524 break;
5525 default:
5526 break;
5527 }
5528
5529 return getUnknown(I);
5530 }
5531
5532 /// Expand GEP instructions into add and multiply operations. This allows them
5533 /// to be analyzed by regular SCEV code.
createNodeForGEP(GEPOperator * GEP)5534 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5535 // Don't attempt to analyze GEPs over unsized objects.
5536 if (!GEP->getSourceElementType()->isSized())
5537 return getUnknown(GEP);
5538
5539 SmallVector<const SCEV *, 4> IndexExprs;
5540 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5541 IndexExprs.push_back(getSCEV(*Index));
5542 return getGEPExpr(GEP, IndexExprs);
5543 }
5544
GetMinTrailingZerosImpl(const SCEV * S)5545 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5546 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5547 return C->getAPInt().countTrailingZeros();
5548
5549 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
5550 return GetMinTrailingZeros(I->getOperand());
5551
5552 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5553 return std::min(GetMinTrailingZeros(T->getOperand()),
5554 (uint32_t)getTypeSizeInBits(T->getType()));
5555
5556 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5557 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5558 return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5559 ? getTypeSizeInBits(E->getType())
5560 : OpRes;
5561 }
5562
5563 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5564 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5565 return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5566 ? getTypeSizeInBits(E->getType())
5567 : OpRes;
5568 }
5569
5570 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5571 // The result is the min of all operands results.
5572 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5573 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5574 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5575 return MinOpRes;
5576 }
5577
5578 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5579 // The result is the sum of all operands results.
5580 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5581 uint32_t BitWidth = getTypeSizeInBits(M->getType());
5582 for (unsigned i = 1, e = M->getNumOperands();
5583 SumOpRes != BitWidth && i != e; ++i)
5584 SumOpRes =
5585 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5586 return SumOpRes;
5587 }
5588
5589 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5590 // The result is the min of all operands results.
5591 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5592 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5593 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5594 return MinOpRes;
5595 }
5596
5597 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5598 // The result is the min of all operands results.
5599 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5600 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5601 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5602 return MinOpRes;
5603 }
5604
5605 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5606 // The result is the min of all operands results.
5607 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5608 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5609 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5610 return MinOpRes;
5611 }
5612
5613 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5614 // For a SCEVUnknown, ask ValueTracking.
5615 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5616 return Known.countMinTrailingZeros();
5617 }
5618
5619 // SCEVUDivExpr
5620 return 0;
5621 }
5622
GetMinTrailingZeros(const SCEV * S)5623 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5624 auto I = MinTrailingZerosCache.find(S);
5625 if (I != MinTrailingZerosCache.end())
5626 return I->second;
5627
5628 uint32_t Result = GetMinTrailingZerosImpl(S);
5629 auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5630 assert(InsertPair.second && "Should insert a new key");
5631 return InsertPair.first->second;
5632 }
5633
5634 /// Helper method to assign a range to V from metadata present in the IR.
GetRangeFromMetadata(Value * V)5635 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5636 if (Instruction *I = dyn_cast<Instruction>(V))
5637 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5638 return getConstantRangeFromMetadata(*MD);
5639
5640 return None;
5641 }
5642
setNoWrapFlags(SCEVAddRecExpr * AddRec,SCEV::NoWrapFlags Flags)5643 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
5644 SCEV::NoWrapFlags Flags) {
5645 if (AddRec->getNoWrapFlags(Flags) != Flags) {
5646 AddRec->setNoWrapFlags(Flags);
5647 UnsignedRanges.erase(AddRec);
5648 SignedRanges.erase(AddRec);
5649 }
5650 }
5651
5652 ConstantRange ScalarEvolution::
getRangeForUnknownRecurrence(const SCEVUnknown * U)5653 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
5654 const DataLayout &DL = getDataLayout();
5655
5656 unsigned BitWidth = getTypeSizeInBits(U->getType());
5657 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
5658
5659 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
5660 // use information about the trip count to improve our available range. Note
5661 // that the trip count independent cases are already handled by known bits.
5662 // WARNING: The definition of recurrence used here is subtly different than
5663 // the one used by AddRec (and thus most of this file). Step is allowed to
5664 // be arbitrarily loop varying here, where AddRec allows only loop invariant
5665 // and other addrecs in the same loop (for non-affine addrecs). The code
5666 // below intentionally handles the case where step is not loop invariant.
5667 auto *P = dyn_cast<PHINode>(U->getValue());
5668 if (!P)
5669 return FullSet;
5670
5671 // Make sure that no Phi input comes from an unreachable block. Otherwise,
5672 // even the values that are not available in these blocks may come from them,
5673 // and this leads to false-positive recurrence test.
5674 for (auto *Pred : predecessors(P->getParent()))
5675 if (!DT.isReachableFromEntry(Pred))
5676 return FullSet;
5677
5678 BinaryOperator *BO;
5679 Value *Start, *Step;
5680 if (!matchSimpleRecurrence(P, BO, Start, Step))
5681 return FullSet;
5682
5683 // If we found a recurrence in reachable code, we must be in a loop. Note
5684 // that BO might be in some subloop of L, and that's completely okay.
5685 auto *L = LI.getLoopFor(P->getParent());
5686 assert(L && L->getHeader() == P->getParent());
5687 if (!L->contains(BO->getParent()))
5688 // NOTE: This bailout should be an assert instead. However, asserting
5689 // the condition here exposes a case where LoopFusion is querying SCEV
5690 // with malformed loop information during the midst of the transform.
5691 // There doesn't appear to be an obvious fix, so for the moment bailout
5692 // until the caller issue can be fixed. PR49566 tracks the bug.
5693 return FullSet;
5694
5695 // TODO: Extend to other opcodes such as mul, and div
5696 switch (BO->getOpcode()) {
5697 default:
5698 return FullSet;
5699 case Instruction::AShr:
5700 case Instruction::LShr:
5701 case Instruction::Shl:
5702 break;
5703 };
5704
5705 if (BO->getOperand(0) != P)
5706 // TODO: Handle the power function forms some day.
5707 return FullSet;
5708
5709 unsigned TC = getSmallConstantMaxTripCount(L);
5710 if (!TC || TC >= BitWidth)
5711 return FullSet;
5712
5713 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
5714 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
5715 assert(KnownStart.getBitWidth() == BitWidth &&
5716 KnownStep.getBitWidth() == BitWidth);
5717
5718 // Compute total shift amount, being careful of overflow and bitwidths.
5719 auto MaxShiftAmt = KnownStep.getMaxValue();
5720 APInt TCAP(BitWidth, TC-1);
5721 bool Overflow = false;
5722 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
5723 if (Overflow)
5724 return FullSet;
5725
5726 switch (BO->getOpcode()) {
5727 default:
5728 llvm_unreachable("filtered out above");
5729 case Instruction::AShr: {
5730 // For each ashr, three cases:
5731 // shift = 0 => unchanged value
5732 // saturation => 0 or -1
5733 // other => a value closer to zero (of the same sign)
5734 // Thus, the end value is closer to zero than the start.
5735 auto KnownEnd = KnownBits::ashr(KnownStart,
5736 KnownBits::makeConstant(TotalShift));
5737 if (KnownStart.isNonNegative())
5738 // Analogous to lshr (simply not yet canonicalized)
5739 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5740 KnownStart.getMaxValue() + 1);
5741 if (KnownStart.isNegative())
5742 // End >=u Start && End <=s Start
5743 return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
5744 KnownEnd.getMaxValue() + 1);
5745 break;
5746 }
5747 case Instruction::LShr: {
5748 // For each lshr, three cases:
5749 // shift = 0 => unchanged value
5750 // saturation => 0
5751 // other => a smaller positive number
5752 // Thus, the low end of the unsigned range is the last value produced.
5753 auto KnownEnd = KnownBits::lshr(KnownStart,
5754 KnownBits::makeConstant(TotalShift));
5755 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5756 KnownStart.getMaxValue() + 1);
5757 }
5758 case Instruction::Shl: {
5759 // Iff no bits are shifted out, value increases on every shift.
5760 auto KnownEnd = KnownBits::shl(KnownStart,
5761 KnownBits::makeConstant(TotalShift));
5762 if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
5763 return ConstantRange(KnownStart.getMinValue(),
5764 KnownEnd.getMaxValue() + 1);
5765 break;
5766 }
5767 };
5768 return FullSet;
5769 }
5770
5771 /// Determine the range for a particular SCEV. If SignHint is
5772 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5773 /// with a "cleaner" unsigned (resp. signed) representation.
5774 const ConstantRange &
getRangeRef(const SCEV * S,ScalarEvolution::RangeSignHint SignHint)5775 ScalarEvolution::getRangeRef(const SCEV *S,
5776 ScalarEvolution::RangeSignHint SignHint) {
5777 DenseMap<const SCEV *, ConstantRange> &Cache =
5778 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5779 : SignedRanges;
5780 ConstantRange::PreferredRangeType RangeType =
5781 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5782 ? ConstantRange::Unsigned : ConstantRange::Signed;
5783
5784 // See if we've computed this range already.
5785 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5786 if (I != Cache.end())
5787 return I->second;
5788
5789 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5790 return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5791
5792 unsigned BitWidth = getTypeSizeInBits(S->getType());
5793 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5794 using OBO = OverflowingBinaryOperator;
5795
5796 // If the value has known zeros, the maximum value will have those known zeros
5797 // as well.
5798 uint32_t TZ = GetMinTrailingZeros(S);
5799 if (TZ != 0) {
5800 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5801 ConservativeResult =
5802 ConstantRange(APInt::getMinValue(BitWidth),
5803 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5804 else
5805 ConservativeResult = ConstantRange(
5806 APInt::getSignedMinValue(BitWidth),
5807 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5808 }
5809
5810 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5811 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5812 unsigned WrapType = OBO::AnyWrap;
5813 if (Add->hasNoSignedWrap())
5814 WrapType |= OBO::NoSignedWrap;
5815 if (Add->hasNoUnsignedWrap())
5816 WrapType |= OBO::NoUnsignedWrap;
5817 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5818 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
5819 WrapType, RangeType);
5820 return setRange(Add, SignHint,
5821 ConservativeResult.intersectWith(X, RangeType));
5822 }
5823
5824 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5825 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5826 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5827 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5828 return setRange(Mul, SignHint,
5829 ConservativeResult.intersectWith(X, RangeType));
5830 }
5831
5832 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5833 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5834 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5835 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5836 return setRange(SMax, SignHint,
5837 ConservativeResult.intersectWith(X, RangeType));
5838 }
5839
5840 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5841 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5842 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5843 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5844 return setRange(UMax, SignHint,
5845 ConservativeResult.intersectWith(X, RangeType));
5846 }
5847
5848 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
5849 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
5850 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
5851 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
5852 return setRange(SMin, SignHint,
5853 ConservativeResult.intersectWith(X, RangeType));
5854 }
5855
5856 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
5857 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
5858 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
5859 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
5860 return setRange(UMin, SignHint,
5861 ConservativeResult.intersectWith(X, RangeType));
5862 }
5863
5864 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5865 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5866 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5867 return setRange(UDiv, SignHint,
5868 ConservativeResult.intersectWith(X.udiv(Y), RangeType));
5869 }
5870
5871 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5872 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5873 return setRange(ZExt, SignHint,
5874 ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
5875 RangeType));
5876 }
5877
5878 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5879 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5880 return setRange(SExt, SignHint,
5881 ConservativeResult.intersectWith(X.signExtend(BitWidth),
5882 RangeType));
5883 }
5884
5885 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
5886 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
5887 return setRange(PtrToInt, SignHint, X);
5888 }
5889
5890 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5891 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5892 return setRange(Trunc, SignHint,
5893 ConservativeResult.intersectWith(X.truncate(BitWidth),
5894 RangeType));
5895 }
5896
5897 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5898 // If there's no unsigned wrap, the value will never be less than its
5899 // initial value.
5900 if (AddRec->hasNoUnsignedWrap()) {
5901 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
5902 if (!UnsignedMinValue.isNullValue())
5903 ConservativeResult = ConservativeResult.intersectWith(
5904 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
5905 }
5906
5907 // If there's no signed wrap, and all the operands except initial value have
5908 // the same sign or zero, the value won't ever be:
5909 // 1: smaller than initial value if operands are non negative,
5910 // 2: bigger than initial value if operands are non positive.
5911 // For both cases, value can not cross signed min/max boundary.
5912 if (AddRec->hasNoSignedWrap()) {
5913 bool AllNonNeg = true;
5914 bool AllNonPos = true;
5915 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
5916 if (!isKnownNonNegative(AddRec->getOperand(i)))
5917 AllNonNeg = false;
5918 if (!isKnownNonPositive(AddRec->getOperand(i)))
5919 AllNonPos = false;
5920 }
5921 if (AllNonNeg)
5922 ConservativeResult = ConservativeResult.intersectWith(
5923 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
5924 APInt::getSignedMinValue(BitWidth)),
5925 RangeType);
5926 else if (AllNonPos)
5927 ConservativeResult = ConservativeResult.intersectWith(
5928 ConstantRange::getNonEmpty(
5929 APInt::getSignedMinValue(BitWidth),
5930 getSignedRangeMax(AddRec->getStart()) + 1),
5931 RangeType);
5932 }
5933
5934 // TODO: non-affine addrec
5935 if (AddRec->isAffine()) {
5936 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
5937 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5938 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5939 auto RangeFromAffine = getRangeForAffineAR(
5940 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5941 BitWidth);
5942 ConservativeResult =
5943 ConservativeResult.intersectWith(RangeFromAffine, RangeType);
5944
5945 auto RangeFromFactoring = getRangeViaFactoring(
5946 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5947 BitWidth);
5948 ConservativeResult =
5949 ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
5950 }
5951
5952 // Now try symbolic BE count and more powerful methods.
5953 if (UseExpensiveRangeSharpening) {
5954 const SCEV *SymbolicMaxBECount =
5955 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
5956 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
5957 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5958 AddRec->hasNoSelfWrap()) {
5959 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
5960 AddRec, SymbolicMaxBECount, BitWidth, SignHint);
5961 ConservativeResult =
5962 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
5963 }
5964 }
5965 }
5966
5967 return setRange(AddRec, SignHint, std::move(ConservativeResult));
5968 }
5969
5970 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5971
5972 // Check if the IR explicitly contains !range metadata.
5973 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5974 if (MDRange.hasValue())
5975 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
5976 RangeType);
5977
5978 // Use facts about recurrences in the underlying IR. Note that add
5979 // recurrences are AddRecExprs and thus don't hit this path. This
5980 // primarily handles shift recurrences.
5981 auto CR = getRangeForUnknownRecurrence(U);
5982 ConservativeResult = ConservativeResult.intersectWith(CR);
5983
5984 // See if ValueTracking can give us a useful range.
5985 const DataLayout &DL = getDataLayout();
5986 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5987 if (Known.getBitWidth() != BitWidth)
5988 Known = Known.zextOrTrunc(BitWidth);
5989
5990 // ValueTracking may be able to compute a tighter result for the number of
5991 // sign bits than for the value of those sign bits.
5992 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5993 if (U->getType()->isPointerTy()) {
5994 // If the pointer size is larger than the index size type, this can cause
5995 // NS to be larger than BitWidth. So compensate for this.
5996 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
5997 int ptrIdxDiff = ptrSize - BitWidth;
5998 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
5999 NS -= ptrIdxDiff;
6000 }
6001
6002 if (NS > 1) {
6003 // If we know any of the sign bits, we know all of the sign bits.
6004 if (!Known.Zero.getHiBits(NS).isNullValue())
6005 Known.Zero.setHighBits(NS);
6006 if (!Known.One.getHiBits(NS).isNullValue())
6007 Known.One.setHighBits(NS);
6008 }
6009
6010 if (Known.getMinValue() != Known.getMaxValue() + 1)
6011 ConservativeResult = ConservativeResult.intersectWith(
6012 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6013 RangeType);
6014 if (NS > 1)
6015 ConservativeResult = ConservativeResult.intersectWith(
6016 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6017 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6018 RangeType);
6019
6020 // A range of Phi is a subset of union of all ranges of its input.
6021 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
6022 // Make sure that we do not run over cycled Phis.
6023 if (PendingPhiRanges.insert(Phi).second) {
6024 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6025 for (auto &Op : Phi->operands()) {
6026 auto OpRange = getRangeRef(getSCEV(Op), SignHint);
6027 RangeFromOps = RangeFromOps.unionWith(OpRange);
6028 // No point to continue if we already have a full set.
6029 if (RangeFromOps.isFullSet())
6030 break;
6031 }
6032 ConservativeResult =
6033 ConservativeResult.intersectWith(RangeFromOps, RangeType);
6034 bool Erased = PendingPhiRanges.erase(Phi);
6035 assert(Erased && "Failed to erase Phi properly?");
6036 (void) Erased;
6037 }
6038 }
6039
6040 return setRange(U, SignHint, std::move(ConservativeResult));
6041 }
6042
6043 return setRange(S, SignHint, std::move(ConservativeResult));
6044 }
6045
6046 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6047 // values that the expression can take. Initially, the expression has a value
6048 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6049 // argument defines if we treat Step as signed or unsigned.
getRangeForAffineARHelper(APInt Step,const ConstantRange & StartRange,const APInt & MaxBECount,unsigned BitWidth,bool Signed)6050 static ConstantRange getRangeForAffineARHelper(APInt Step,
6051 const ConstantRange &StartRange,
6052 const APInt &MaxBECount,
6053 unsigned BitWidth, bool Signed) {
6054 // If either Step or MaxBECount is 0, then the expression won't change, and we
6055 // just need to return the initial range.
6056 if (Step == 0 || MaxBECount == 0)
6057 return StartRange;
6058
6059 // If we don't know anything about the initial value (i.e. StartRange is
6060 // FullRange), then we don't know anything about the final range either.
6061 // Return FullRange.
6062 if (StartRange.isFullSet())
6063 return ConstantRange::getFull(BitWidth);
6064
6065 // If Step is signed and negative, then we use its absolute value, but we also
6066 // note that we're moving in the opposite direction.
6067 bool Descending = Signed && Step.isNegative();
6068
6069 if (Signed)
6070 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6071 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6072 // This equations hold true due to the well-defined wrap-around behavior of
6073 // APInt.
6074 Step = Step.abs();
6075
6076 // Check if Offset is more than full span of BitWidth. If it is, the
6077 // expression is guaranteed to overflow.
6078 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6079 return ConstantRange::getFull(BitWidth);
6080
6081 // Offset is by how much the expression can change. Checks above guarantee no
6082 // overflow here.
6083 APInt Offset = Step * MaxBECount;
6084
6085 // Minimum value of the final range will match the minimal value of StartRange
6086 // if the expression is increasing and will be decreased by Offset otherwise.
6087 // Maximum value of the final range will match the maximal value of StartRange
6088 // if the expression is decreasing and will be increased by Offset otherwise.
6089 APInt StartLower = StartRange.getLower();
6090 APInt StartUpper = StartRange.getUpper() - 1;
6091 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
6092 : (StartUpper + std::move(Offset));
6093
6094 // It's possible that the new minimum/maximum value will fall into the initial
6095 // range (due to wrap around). This means that the expression can take any
6096 // value in this bitwidth, and we have to return full range.
6097 if (StartRange.contains(MovedBoundary))
6098 return ConstantRange::getFull(BitWidth);
6099
6100 APInt NewLower =
6101 Descending ? std::move(MovedBoundary) : std::move(StartLower);
6102 APInt NewUpper =
6103 Descending ? std::move(StartUpper) : std::move(MovedBoundary);
6104 NewUpper += 1;
6105
6106 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
6107 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
6108 }
6109
getRangeForAffineAR(const SCEV * Start,const SCEV * Step,const SCEV * MaxBECount,unsigned BitWidth)6110 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
6111 const SCEV *Step,
6112 const SCEV *MaxBECount,
6113 unsigned BitWidth) {
6114 assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
6115 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6116 "Precondition!");
6117
6118 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
6119 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
6120
6121 // First, consider step signed.
6122 ConstantRange StartSRange = getSignedRange(Start);
6123 ConstantRange StepSRange = getSignedRange(Step);
6124
6125 // If Step can be both positive and negative, we need to find ranges for the
6126 // maximum absolute step values in both directions and union them.
6127 ConstantRange SR =
6128 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
6129 MaxBECountValue, BitWidth, /* Signed = */ true);
6130 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
6131 StartSRange, MaxBECountValue,
6132 BitWidth, /* Signed = */ true));
6133
6134 // Next, consider step unsigned.
6135 ConstantRange UR = getRangeForAffineARHelper(
6136 getUnsignedRangeMax(Step), getUnsignedRange(Start),
6137 MaxBECountValue, BitWidth, /* Signed = */ false);
6138
6139 // Finally, intersect signed and unsigned ranges.
6140 return SR.intersectWith(UR, ConstantRange::Smallest);
6141 }
6142
getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr * AddRec,const SCEV * MaxBECount,unsigned BitWidth,ScalarEvolution::RangeSignHint SignHint)6143 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6144 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
6145 ScalarEvolution::RangeSignHint SignHint) {
6146 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
6147 assert(AddRec->hasNoSelfWrap() &&
6148 "This only works for non-self-wrapping AddRecs!");
6149 const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6150 const SCEV *Step = AddRec->getStepRecurrence(*this);
6151 // Only deal with constant step to save compile time.
6152 if (!isa<SCEVConstant>(Step))
6153 return ConstantRange::getFull(BitWidth);
6154 // Let's make sure that we can prove that we do not self-wrap during
6155 // MaxBECount iterations. We need this because MaxBECount is a maximum
6156 // iteration count estimate, and we might infer nw from some exit for which we
6157 // do not know max exit count (or any other side reasoning).
6158 // TODO: Turn into assert at some point.
6159 if (getTypeSizeInBits(MaxBECount->getType()) >
6160 getTypeSizeInBits(AddRec->getType()))
6161 return ConstantRange::getFull(BitWidth);
6162 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6163 const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6164 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6165 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6166 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6167 MaxItersWithoutWrap))
6168 return ConstantRange::getFull(BitWidth);
6169
6170 ICmpInst::Predicate LEPred =
6171 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
6172 ICmpInst::Predicate GEPred =
6173 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
6174 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
6175
6176 // We know that there is no self-wrap. Let's take Start and End values and
6177 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
6178 // the iteration. They either lie inside the range [Min(Start, End),
6179 // Max(Start, End)] or outside it:
6180 //
6181 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax;
6182 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax;
6183 //
6184 // No self wrap flag guarantees that the intermediate values cannot be BOTH
6185 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
6186 // knowledge, let's try to prove that we are dealing with Case 1. It is so if
6187 // Start <= End and step is positive, or Start >= End and step is negative.
6188 const SCEV *Start = AddRec->getStart();
6189 ConstantRange StartRange = getRangeRef(Start, SignHint);
6190 ConstantRange EndRange = getRangeRef(End, SignHint);
6191 ConstantRange RangeBetween = StartRange.unionWith(EndRange);
6192 // If they already cover full iteration space, we will know nothing useful
6193 // even if we prove what we want to prove.
6194 if (RangeBetween.isFullSet())
6195 return RangeBetween;
6196 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
6197 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
6198 : RangeBetween.isWrappedSet();
6199 if (IsWrappedSet)
6200 return ConstantRange::getFull(BitWidth);
6201
6202 if (isKnownPositive(Step) &&
6203 isKnownPredicateViaConstantRanges(LEPred, Start, End))
6204 return RangeBetween;
6205 else if (isKnownNegative(Step) &&
6206 isKnownPredicateViaConstantRanges(GEPred, Start, End))
6207 return RangeBetween;
6208 return ConstantRange::getFull(BitWidth);
6209 }
6210
getRangeViaFactoring(const SCEV * Start,const SCEV * Step,const SCEV * MaxBECount,unsigned BitWidth)6211 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
6212 const SCEV *Step,
6213 const SCEV *MaxBECount,
6214 unsigned BitWidth) {
6215 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6216 // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6217
6218 struct SelectPattern {
6219 Value *Condition = nullptr;
6220 APInt TrueValue;
6221 APInt FalseValue;
6222
6223 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
6224 const SCEV *S) {
6225 Optional<unsigned> CastOp;
6226 APInt Offset(BitWidth, 0);
6227
6228 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
6229 "Should be!");
6230
6231 // Peel off a constant offset:
6232 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
6233 // In the future we could consider being smarter here and handle
6234 // {Start+Step,+,Step} too.
6235 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
6236 return;
6237
6238 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
6239 S = SA->getOperand(1);
6240 }
6241
6242 // Peel off a cast operation
6243 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
6244 CastOp = SCast->getSCEVType();
6245 S = SCast->getOperand();
6246 }
6247
6248 using namespace llvm::PatternMatch;
6249
6250 auto *SU = dyn_cast<SCEVUnknown>(S);
6251 const APInt *TrueVal, *FalseVal;
6252 if (!SU ||
6253 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
6254 m_APInt(FalseVal)))) {
6255 Condition = nullptr;
6256 return;
6257 }
6258
6259 TrueValue = *TrueVal;
6260 FalseValue = *FalseVal;
6261
6262 // Re-apply the cast we peeled off earlier
6263 if (CastOp.hasValue())
6264 switch (*CastOp) {
6265 default:
6266 llvm_unreachable("Unknown SCEV cast type!");
6267
6268 case scTruncate:
6269 TrueValue = TrueValue.trunc(BitWidth);
6270 FalseValue = FalseValue.trunc(BitWidth);
6271 break;
6272 case scZeroExtend:
6273 TrueValue = TrueValue.zext(BitWidth);
6274 FalseValue = FalseValue.zext(BitWidth);
6275 break;
6276 case scSignExtend:
6277 TrueValue = TrueValue.sext(BitWidth);
6278 FalseValue = FalseValue.sext(BitWidth);
6279 break;
6280 }
6281
6282 // Re-apply the constant offset we peeled off earlier
6283 TrueValue += Offset;
6284 FalseValue += Offset;
6285 }
6286
6287 bool isRecognized() { return Condition != nullptr; }
6288 };
6289
6290 SelectPattern StartPattern(*this, BitWidth, Start);
6291 if (!StartPattern.isRecognized())
6292 return ConstantRange::getFull(BitWidth);
6293
6294 SelectPattern StepPattern(*this, BitWidth, Step);
6295 if (!StepPattern.isRecognized())
6296 return ConstantRange::getFull(BitWidth);
6297
6298 if (StartPattern.Condition != StepPattern.Condition) {
6299 // We don't handle this case today; but we could, by considering four
6300 // possibilities below instead of two. I'm not sure if there are cases where
6301 // that will help over what getRange already does, though.
6302 return ConstantRange::getFull(BitWidth);
6303 }
6304
6305 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6306 // construct arbitrary general SCEV expressions here. This function is called
6307 // from deep in the call stack, and calling getSCEV (on a sext instruction,
6308 // say) can end up caching a suboptimal value.
6309
6310 // FIXME: without the explicit `this` receiver below, MSVC errors out with
6311 // C2352 and C2512 (otherwise it isn't needed).
6312
6313 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6314 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6315 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6316 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6317
6318 ConstantRange TrueRange =
6319 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6320 ConstantRange FalseRange =
6321 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6322
6323 return TrueRange.unionWith(FalseRange);
6324 }
6325
getNoWrapFlagsFromUB(const Value * V)6326 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6327 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6328 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6329
6330 // Return early if there are no flags to propagate to the SCEV.
6331 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6332 if (BinOp->hasNoUnsignedWrap())
6333 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6334 if (BinOp->hasNoSignedWrap())
6335 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6336 if (Flags == SCEV::FlagAnyWrap)
6337 return SCEV::FlagAnyWrap;
6338
6339 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6340 }
6341
isSCEVExprNeverPoison(const Instruction * I)6342 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6343 // Here we check that I is in the header of the innermost loop containing I,
6344 // since we only deal with instructions in the loop header. The actual loop we
6345 // need to check later will come from an add recurrence, but getting that
6346 // requires computing the SCEV of the operands, which can be expensive. This
6347 // check we can do cheaply to rule out some cases early.
6348 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
6349 if (InnermostContainingLoop == nullptr ||
6350 InnermostContainingLoop->getHeader() != I->getParent())
6351 return false;
6352
6353 // Only proceed if we can prove that I does not yield poison.
6354 if (!programUndefinedIfPoison(I))
6355 return false;
6356
6357 // At this point we know that if I is executed, then it does not wrap
6358 // according to at least one of NSW or NUW. If I is not executed, then we do
6359 // not know if the calculation that I represents would wrap. Multiple
6360 // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6361 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6362 // derived from other instructions that map to the same SCEV. We cannot make
6363 // that guarantee for cases where I is not executed. So we need to find the
6364 // loop that I is considered in relation to and prove that I is executed for
6365 // every iteration of that loop. That implies that the value that I
6366 // calculates does not wrap anywhere in the loop, so then we can apply the
6367 // flags to the SCEV.
6368 //
6369 // We check isLoopInvariant to disambiguate in case we are adding recurrences
6370 // from different loops, so that we know which loop to prove that I is
6371 // executed in.
6372 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
6373 // I could be an extractvalue from a call to an overflow intrinsic.
6374 // TODO: We can do better here in some cases.
6375 if (!isSCEVable(I->getOperand(OpIndex)->getType()))
6376 return false;
6377 const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6378 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6379 bool AllOtherOpsLoopInvariant = true;
6380 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6381 ++OtherOpIndex) {
6382 if (OtherOpIndex != OpIndex) {
6383 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6384 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6385 AllOtherOpsLoopInvariant = false;
6386 break;
6387 }
6388 }
6389 }
6390 if (AllOtherOpsLoopInvariant &&
6391 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6392 return true;
6393 }
6394 }
6395 return false;
6396 }
6397
isAddRecNeverPoison(const Instruction * I,const Loop * L)6398 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6399 // If we know that \c I can never be poison period, then that's enough.
6400 if (isSCEVExprNeverPoison(I))
6401 return true;
6402
6403 // For an add recurrence specifically, we assume that infinite loops without
6404 // side effects are undefined behavior, and then reason as follows:
6405 //
6406 // If the add recurrence is poison in any iteration, it is poison on all
6407 // future iterations (since incrementing poison yields poison). If the result
6408 // of the add recurrence is fed into the loop latch condition and the loop
6409 // does not contain any throws or exiting blocks other than the latch, we now
6410 // have the ability to "choose" whether the backedge is taken or not (by
6411 // choosing a sufficiently evil value for the poison feeding into the branch)
6412 // for every iteration including and after the one in which \p I first became
6413 // poison. There are two possibilities (let's call the iteration in which \p
6414 // I first became poison as K):
6415 //
6416 // 1. In the set of iterations including and after K, the loop body executes
6417 // no side effects. In this case executing the backege an infinte number
6418 // of times will yield undefined behavior.
6419 //
6420 // 2. In the set of iterations including and after K, the loop body executes
6421 // at least one side effect. In this case, that specific instance of side
6422 // effect is control dependent on poison, which also yields undefined
6423 // behavior.
6424
6425 auto *ExitingBB = L->getExitingBlock();
6426 auto *LatchBB = L->getLoopLatch();
6427 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6428 return false;
6429
6430 SmallPtrSet<const Instruction *, 16> Pushed;
6431 SmallVector<const Instruction *, 8> PoisonStack;
6432
6433 // We start by assuming \c I, the post-inc add recurrence, is poison. Only
6434 // things that are known to be poison under that assumption go on the
6435 // PoisonStack.
6436 Pushed.insert(I);
6437 PoisonStack.push_back(I);
6438
6439 bool LatchControlDependentOnPoison = false;
6440 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6441 const Instruction *Poison = PoisonStack.pop_back_val();
6442
6443 for (auto *PoisonUser : Poison->users()) {
6444 if (propagatesPoison(cast<Operator>(PoisonUser))) {
6445 if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6446 PoisonStack.push_back(cast<Instruction>(PoisonUser));
6447 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6448 assert(BI->isConditional() && "Only possibility!");
6449 if (BI->getParent() == LatchBB) {
6450 LatchControlDependentOnPoison = true;
6451 break;
6452 }
6453 }
6454 }
6455 }
6456
6457 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6458 }
6459
6460 ScalarEvolution::LoopProperties
getLoopProperties(const Loop * L)6461 ScalarEvolution::getLoopProperties(const Loop *L) {
6462 using LoopProperties = ScalarEvolution::LoopProperties;
6463
6464 auto Itr = LoopPropertiesCache.find(L);
6465 if (Itr == LoopPropertiesCache.end()) {
6466 auto HasSideEffects = [](Instruction *I) {
6467 if (auto *SI = dyn_cast<StoreInst>(I))
6468 return !SI->isSimple();
6469
6470 return I->mayHaveSideEffects();
6471 };
6472
6473 LoopProperties LP = {/* HasNoAbnormalExits */ true,
6474 /*HasNoSideEffects*/ true};
6475
6476 for (auto *BB : L->getBlocks())
6477 for (auto &I : *BB) {
6478 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6479 LP.HasNoAbnormalExits = false;
6480 if (HasSideEffects(&I))
6481 LP.HasNoSideEffects = false;
6482 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6483 break; // We're already as pessimistic as we can get.
6484 }
6485
6486 auto InsertPair = LoopPropertiesCache.insert({L, LP});
6487 assert(InsertPair.second && "We just checked!");
6488 Itr = InsertPair.first;
6489 }
6490
6491 return Itr->second;
6492 }
6493
createSCEV(Value * V)6494 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6495 if (!isSCEVable(V->getType()))
6496 return getUnknown(V);
6497
6498 if (Instruction *I = dyn_cast<Instruction>(V)) {
6499 // Don't attempt to analyze instructions in blocks that aren't
6500 // reachable. Such instructions don't matter, and they aren't required
6501 // to obey basic rules for definitions dominating uses which this
6502 // analysis depends on.
6503 if (!DT.isReachableFromEntry(I->getParent()))
6504 return getUnknown(UndefValue::get(V->getType()));
6505 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6506 return getConstant(CI);
6507 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6508 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6509 else if (!isa<ConstantExpr>(V))
6510 return getUnknown(V);
6511
6512 Operator *U = cast<Operator>(V);
6513 if (auto BO = MatchBinaryOp(U, DT)) {
6514 switch (BO->Opcode) {
6515 case Instruction::Add: {
6516 // The simple thing to do would be to just call getSCEV on both operands
6517 // and call getAddExpr with the result. However if we're looking at a
6518 // bunch of things all added together, this can be quite inefficient,
6519 // because it leads to N-1 getAddExpr calls for N ultimate operands.
6520 // Instead, gather up all the operands and make a single getAddExpr call.
6521 // LLVM IR canonical form means we need only traverse the left operands.
6522 SmallVector<const SCEV *, 4> AddOps;
6523 do {
6524 if (BO->Op) {
6525 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6526 AddOps.push_back(OpSCEV);
6527 break;
6528 }
6529
6530 // If a NUW or NSW flag can be applied to the SCEV for this
6531 // addition, then compute the SCEV for this addition by itself
6532 // with a separate call to getAddExpr. We need to do that
6533 // instead of pushing the operands of the addition onto AddOps,
6534 // since the flags are only known to apply to this particular
6535 // addition - they may not apply to other additions that can be
6536 // formed with operands from AddOps.
6537 const SCEV *RHS = getSCEV(BO->RHS);
6538 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6539 if (Flags != SCEV::FlagAnyWrap) {
6540 const SCEV *LHS = getSCEV(BO->LHS);
6541 if (BO->Opcode == Instruction::Sub)
6542 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6543 else
6544 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6545 break;
6546 }
6547 }
6548
6549 if (BO->Opcode == Instruction::Sub)
6550 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6551 else
6552 AddOps.push_back(getSCEV(BO->RHS));
6553
6554 auto NewBO = MatchBinaryOp(BO->LHS, DT);
6555 if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6556 NewBO->Opcode != Instruction::Sub)) {
6557 AddOps.push_back(getSCEV(BO->LHS));
6558 break;
6559 }
6560 BO = NewBO;
6561 } while (true);
6562
6563 return getAddExpr(AddOps);
6564 }
6565
6566 case Instruction::Mul: {
6567 SmallVector<const SCEV *, 4> MulOps;
6568 do {
6569 if (BO->Op) {
6570 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6571 MulOps.push_back(OpSCEV);
6572 break;
6573 }
6574
6575 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6576 if (Flags != SCEV::FlagAnyWrap) {
6577 MulOps.push_back(
6578 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6579 break;
6580 }
6581 }
6582
6583 MulOps.push_back(getSCEV(BO->RHS));
6584 auto NewBO = MatchBinaryOp(BO->LHS, DT);
6585 if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6586 MulOps.push_back(getSCEV(BO->LHS));
6587 break;
6588 }
6589 BO = NewBO;
6590 } while (true);
6591
6592 return getMulExpr(MulOps);
6593 }
6594 case Instruction::UDiv:
6595 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6596 case Instruction::URem:
6597 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6598 case Instruction::Sub: {
6599 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6600 if (BO->Op)
6601 Flags = getNoWrapFlagsFromUB(BO->Op);
6602 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6603 }
6604 case Instruction::And:
6605 // For an expression like x&255 that merely masks off the high bits,
6606 // use zext(trunc(x)) as the SCEV expression.
6607 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6608 if (CI->isZero())
6609 return getSCEV(BO->RHS);
6610 if (CI->isMinusOne())
6611 return getSCEV(BO->LHS);
6612 const APInt &A = CI->getValue();
6613
6614 // Instcombine's ShrinkDemandedConstant may strip bits out of
6615 // constants, obscuring what would otherwise be a low-bits mask.
6616 // Use computeKnownBits to compute what ShrinkDemandedConstant
6617 // knew about to reconstruct a low-bits mask value.
6618 unsigned LZ = A.countLeadingZeros();
6619 unsigned TZ = A.countTrailingZeros();
6620 unsigned BitWidth = A.getBitWidth();
6621 KnownBits Known(BitWidth);
6622 computeKnownBits(BO->LHS, Known, getDataLayout(),
6623 0, &AC, nullptr, &DT);
6624
6625 APInt EffectiveMask =
6626 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6627 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6628 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6629 const SCEV *LHS = getSCEV(BO->LHS);
6630 const SCEV *ShiftedLHS = nullptr;
6631 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6632 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6633 // For an expression like (x * 8) & 8, simplify the multiply.
6634 unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6635 unsigned GCD = std::min(MulZeros, TZ);
6636 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6637 SmallVector<const SCEV*, 4> MulOps;
6638 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6639 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6640 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6641 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6642 }
6643 }
6644 if (!ShiftedLHS)
6645 ShiftedLHS = getUDivExpr(LHS, MulCount);
6646 return getMulExpr(
6647 getZeroExtendExpr(
6648 getTruncateExpr(ShiftedLHS,
6649 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6650 BO->LHS->getType()),
6651 MulCount);
6652 }
6653 }
6654 break;
6655
6656 case Instruction::Or:
6657 // If the RHS of the Or is a constant, we may have something like:
6658 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
6659 // optimizations will transparently handle this case.
6660 //
6661 // In order for this transformation to be safe, the LHS must be of the
6662 // form X*(2^n) and the Or constant must be less than 2^n.
6663 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6664 const SCEV *LHS = getSCEV(BO->LHS);
6665 const APInt &CIVal = CI->getValue();
6666 if (GetMinTrailingZeros(LHS) >=
6667 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6668 // Build a plain add SCEV.
6669 return getAddExpr(LHS, getSCEV(CI),
6670 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6671 }
6672 }
6673 break;
6674
6675 case Instruction::Xor:
6676 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6677 // If the RHS of xor is -1, then this is a not operation.
6678 if (CI->isMinusOne())
6679 return getNotSCEV(getSCEV(BO->LHS));
6680
6681 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6682 // This is a variant of the check for xor with -1, and it handles
6683 // the case where instcombine has trimmed non-demanded bits out
6684 // of an xor with -1.
6685 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6686 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6687 if (LBO->getOpcode() == Instruction::And &&
6688 LCI->getValue() == CI->getValue())
6689 if (const SCEVZeroExtendExpr *Z =
6690 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6691 Type *UTy = BO->LHS->getType();
6692 const SCEV *Z0 = Z->getOperand();
6693 Type *Z0Ty = Z0->getType();
6694 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6695
6696 // If C is a low-bits mask, the zero extend is serving to
6697 // mask off the high bits. Complement the operand and
6698 // re-apply the zext.
6699 if (CI->getValue().isMask(Z0TySize))
6700 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6701
6702 // If C is a single bit, it may be in the sign-bit position
6703 // before the zero-extend. In this case, represent the xor
6704 // using an add, which is equivalent, and re-apply the zext.
6705 APInt Trunc = CI->getValue().trunc(Z0TySize);
6706 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6707 Trunc.isSignMask())
6708 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6709 UTy);
6710 }
6711 }
6712 break;
6713
6714 case Instruction::Shl:
6715 // Turn shift left of a constant amount into a multiply.
6716 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6717 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6718
6719 // If the shift count is not less than the bitwidth, the result of
6720 // the shift is undefined. Don't try to analyze it, because the
6721 // resolution chosen here may differ from the resolution chosen in
6722 // other parts of the compiler.
6723 if (SA->getValue().uge(BitWidth))
6724 break;
6725
6726 // We can safely preserve the nuw flag in all cases. It's also safe to
6727 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
6728 // requires special handling. It can be preserved as long as we're not
6729 // left shifting by bitwidth - 1.
6730 auto Flags = SCEV::FlagAnyWrap;
6731 if (BO->Op) {
6732 auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
6733 if ((MulFlags & SCEV::FlagNSW) &&
6734 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
6735 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
6736 if (MulFlags & SCEV::FlagNUW)
6737 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
6738 }
6739
6740 Constant *X = ConstantInt::get(
6741 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6742 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6743 }
6744 break;
6745
6746 case Instruction::AShr: {
6747 // AShr X, C, where C is a constant.
6748 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6749 if (!CI)
6750 break;
6751
6752 Type *OuterTy = BO->LHS->getType();
6753 uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6754 // If the shift count is not less than the bitwidth, the result of
6755 // the shift is undefined. Don't try to analyze it, because the
6756 // resolution chosen here may differ from the resolution chosen in
6757 // other parts of the compiler.
6758 if (CI->getValue().uge(BitWidth))
6759 break;
6760
6761 if (CI->isZero())
6762 return getSCEV(BO->LHS); // shift by zero --> noop
6763
6764 uint64_t AShrAmt = CI->getZExtValue();
6765 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6766
6767 Operator *L = dyn_cast<Operator>(BO->LHS);
6768 if (L && L->getOpcode() == Instruction::Shl) {
6769 // X = Shl A, n
6770 // Y = AShr X, m
6771 // Both n and m are constant.
6772
6773 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6774 if (L->getOperand(1) == BO->RHS)
6775 // For a two-shift sext-inreg, i.e. n = m,
6776 // use sext(trunc(x)) as the SCEV expression.
6777 return getSignExtendExpr(
6778 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6779
6780 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6781 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6782 uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6783 if (ShlAmt > AShrAmt) {
6784 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6785 // expression. We already checked that ShlAmt < BitWidth, so
6786 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6787 // ShlAmt - AShrAmt < Amt.
6788 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6789 ShlAmt - AShrAmt);
6790 return getSignExtendExpr(
6791 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6792 getConstant(Mul)), OuterTy);
6793 }
6794 }
6795 }
6796 break;
6797 }
6798 }
6799 }
6800
6801 switch (U->getOpcode()) {
6802 case Instruction::Trunc:
6803 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6804
6805 case Instruction::ZExt:
6806 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6807
6808 case Instruction::SExt:
6809 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6810 // The NSW flag of a subtract does not always survive the conversion to
6811 // A + (-1)*B. By pushing sign extension onto its operands we are much
6812 // more likely to preserve NSW and allow later AddRec optimisations.
6813 //
6814 // NOTE: This is effectively duplicating this logic from getSignExtend:
6815 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6816 // but by that point the NSW information has potentially been lost.
6817 if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6818 Type *Ty = U->getType();
6819 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6820 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6821 return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6822 }
6823 }
6824 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6825
6826 case Instruction::BitCast:
6827 // BitCasts are no-op casts so we just eliminate the cast.
6828 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6829 return getSCEV(U->getOperand(0));
6830 break;
6831
6832 case Instruction::PtrToInt: {
6833 // Pointer to integer cast is straight-forward, so do model it.
6834 const SCEV *Op = getSCEV(U->getOperand(0));
6835 Type *DstIntTy = U->getType();
6836 // But only if effective SCEV (integer) type is wide enough to represent
6837 // all possible pointer values.
6838 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
6839 if (isa<SCEVCouldNotCompute>(IntOp))
6840 return getUnknown(V);
6841 return IntOp;
6842 }
6843 case Instruction::IntToPtr:
6844 // Just don't deal with inttoptr casts.
6845 return getUnknown(V);
6846
6847 case Instruction::SDiv:
6848 // If both operands are non-negative, this is just an udiv.
6849 if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6850 isKnownNonNegative(getSCEV(U->getOperand(1))))
6851 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6852 break;
6853
6854 case Instruction::SRem:
6855 // If both operands are non-negative, this is just an urem.
6856 if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
6857 isKnownNonNegative(getSCEV(U->getOperand(1))))
6858 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
6859 break;
6860
6861 case Instruction::GetElementPtr:
6862 return createNodeForGEP(cast<GEPOperator>(U));
6863
6864 case Instruction::PHI:
6865 return createNodeForPHI(cast<PHINode>(U));
6866
6867 case Instruction::Select:
6868 // U can also be a select constant expr, which let fall through. Since
6869 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6870 // constant expressions cannot have instructions as operands, we'd have
6871 // returned getUnknown for a select constant expressions anyway.
6872 if (isa<Instruction>(U))
6873 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6874 U->getOperand(1), U->getOperand(2));
6875 break;
6876
6877 case Instruction::Call:
6878 case Instruction::Invoke:
6879 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
6880 return getSCEV(RV);
6881
6882 if (auto *II = dyn_cast<IntrinsicInst>(U)) {
6883 switch (II->getIntrinsicID()) {
6884 case Intrinsic::abs:
6885 return getAbsExpr(
6886 getSCEV(II->getArgOperand(0)),
6887 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
6888 case Intrinsic::umax:
6889 return getUMaxExpr(getSCEV(II->getArgOperand(0)),
6890 getSCEV(II->getArgOperand(1)));
6891 case Intrinsic::umin:
6892 return getUMinExpr(getSCEV(II->getArgOperand(0)),
6893 getSCEV(II->getArgOperand(1)));
6894 case Intrinsic::smax:
6895 return getSMaxExpr(getSCEV(II->getArgOperand(0)),
6896 getSCEV(II->getArgOperand(1)));
6897 case Intrinsic::smin:
6898 return getSMinExpr(getSCEV(II->getArgOperand(0)),
6899 getSCEV(II->getArgOperand(1)));
6900 case Intrinsic::usub_sat: {
6901 const SCEV *X = getSCEV(II->getArgOperand(0));
6902 const SCEV *Y = getSCEV(II->getArgOperand(1));
6903 const SCEV *ClampedY = getUMinExpr(X, Y);
6904 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
6905 }
6906 case Intrinsic::uadd_sat: {
6907 const SCEV *X = getSCEV(II->getArgOperand(0));
6908 const SCEV *Y = getSCEV(II->getArgOperand(1));
6909 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
6910 return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
6911 }
6912 case Intrinsic::start_loop_iterations:
6913 // A start_loop_iterations is just equivalent to the first operand for
6914 // SCEV purposes.
6915 return getSCEV(II->getArgOperand(0));
6916 default:
6917 break;
6918 }
6919 }
6920 break;
6921 }
6922
6923 return getUnknown(V);
6924 }
6925
6926 //===----------------------------------------------------------------------===//
6927 // Iteration Count Computation Code
6928 //
6929
getConstantTripCount(const SCEVConstant * ExitCount)6930 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6931 if (!ExitCount)
6932 return 0;
6933
6934 ConstantInt *ExitConst = ExitCount->getValue();
6935
6936 // Guard against huge trip counts.
6937 if (ExitConst->getValue().getActiveBits() > 32)
6938 return 0;
6939
6940 // In case of integer overflow, this returns 0, which is correct.
6941 return ((unsigned)ExitConst->getZExtValue()) + 1;
6942 }
6943
getSmallConstantTripCount(const Loop * L)6944 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6945 if (BasicBlock *ExitingBB = L->getExitingBlock())
6946 return getSmallConstantTripCount(L, ExitingBB);
6947
6948 // No trip count information for multiple exits.
6949 return 0;
6950 }
6951
6952 unsigned
getSmallConstantTripCount(const Loop * L,const BasicBlock * ExitingBlock)6953 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6954 const BasicBlock *ExitingBlock) {
6955 assert(ExitingBlock && "Must pass a non-null exiting block!");
6956 assert(L->isLoopExiting(ExitingBlock) &&
6957 "Exiting block must actually branch out of the loop!");
6958 const SCEVConstant *ExitCount =
6959 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6960 return getConstantTripCount(ExitCount);
6961 }
6962
getSmallConstantMaxTripCount(const Loop * L)6963 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6964 const auto *MaxExitCount =
6965 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
6966 return getConstantTripCount(MaxExitCount);
6967 }
6968
getSmallConstantTripMultiple(const Loop * L)6969 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6970 if (BasicBlock *ExitingBB = L->getExitingBlock())
6971 return getSmallConstantTripMultiple(L, ExitingBB);
6972
6973 // No trip multiple information for multiple exits.
6974 return 0;
6975 }
6976
6977 /// Returns the largest constant divisor of the trip count of this loop as a
6978 /// normal unsigned value, if possible. This means that the actual trip count is
6979 /// always a multiple of the returned value (don't forget the trip count could
6980 /// very well be zero as well!).
6981 ///
6982 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6983 /// multiple of a constant (which is also the case if the trip count is simply
6984 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6985 /// if the trip count is very large (>= 2^32).
6986 ///
6987 /// As explained in the comments for getSmallConstantTripCount, this assumes
6988 /// that control exits the loop via ExitingBlock.
6989 unsigned
getSmallConstantTripMultiple(const Loop * L,const BasicBlock * ExitingBlock)6990 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6991 const BasicBlock *ExitingBlock) {
6992 assert(ExitingBlock && "Must pass a non-null exiting block!");
6993 assert(L->isLoopExiting(ExitingBlock) &&
6994 "Exiting block must actually branch out of the loop!");
6995 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6996 if (ExitCount == getCouldNotCompute())
6997 return 1;
6998
6999 // Get the trip count from the BE count by adding 1.
7000 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
7001
7002 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
7003 if (!TC)
7004 // Attempt to factor more general cases. Returns the greatest power of
7005 // two divisor. If overflow happens, the trip count expression is still
7006 // divisible by the greatest power of 2 divisor returned.
7007 return 1U << std::min((uint32_t)31,
7008 GetMinTrailingZeros(applyLoopGuards(TCExpr, L)));
7009
7010 ConstantInt *Result = TC->getValue();
7011
7012 // Guard against huge trip counts (this requires checking
7013 // for zero to handle the case where the trip count == -1 and the
7014 // addition wraps).
7015 if (!Result || Result->getValue().getActiveBits() > 32 ||
7016 Result->getValue().getActiveBits() == 0)
7017 return 1;
7018
7019 return (unsigned)Result->getZExtValue();
7020 }
7021
getExitCount(const Loop * L,const BasicBlock * ExitingBlock,ExitCountKind Kind)7022 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
7023 const BasicBlock *ExitingBlock,
7024 ExitCountKind Kind) {
7025 switch (Kind) {
7026 case Exact:
7027 case SymbolicMaximum:
7028 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
7029 case ConstantMaximum:
7030 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
7031 };
7032 llvm_unreachable("Invalid ExitCountKind!");
7033 }
7034
7035 const SCEV *
getPredicatedBackedgeTakenCount(const Loop * L,SCEVUnionPredicate & Preds)7036 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
7037 SCEVUnionPredicate &Preds) {
7038 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
7039 }
7040
getBackedgeTakenCount(const Loop * L,ExitCountKind Kind)7041 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
7042 ExitCountKind Kind) {
7043 switch (Kind) {
7044 case Exact:
7045 return getBackedgeTakenInfo(L).getExact(L, this);
7046 case ConstantMaximum:
7047 return getBackedgeTakenInfo(L).getConstantMax(this);
7048 case SymbolicMaximum:
7049 return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
7050 };
7051 llvm_unreachable("Invalid ExitCountKind!");
7052 }
7053
isBackedgeTakenCountMaxOrZero(const Loop * L)7054 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
7055 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
7056 }
7057
7058 /// Push PHI nodes in the header of the given loop onto the given Worklist.
7059 static void
PushLoopPHIs(const Loop * L,SmallVectorImpl<Instruction * > & Worklist)7060 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
7061 BasicBlock *Header = L->getHeader();
7062
7063 // Push all Loop-header PHIs onto the Worklist stack.
7064 for (PHINode &PN : Header->phis())
7065 Worklist.push_back(&PN);
7066 }
7067
7068 const ScalarEvolution::BackedgeTakenInfo &
getPredicatedBackedgeTakenInfo(const Loop * L)7069 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
7070 auto &BTI = getBackedgeTakenInfo(L);
7071 if (BTI.hasFullInfo())
7072 return BTI;
7073
7074 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7075
7076 if (!Pair.second)
7077 return Pair.first->second;
7078
7079 BackedgeTakenInfo Result =
7080 computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
7081
7082 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
7083 }
7084
7085 ScalarEvolution::BackedgeTakenInfo &
getBackedgeTakenInfo(const Loop * L)7086 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
7087 // Initially insert an invalid entry for this loop. If the insertion
7088 // succeeds, proceed to actually compute a backedge-taken count and
7089 // update the value. The temporary CouldNotCompute value tells SCEV
7090 // code elsewhere that it shouldn't attempt to request a new
7091 // backedge-taken count, which could result in infinite recursion.
7092 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
7093 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7094 if (!Pair.second)
7095 return Pair.first->second;
7096
7097 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
7098 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
7099 // must be cleared in this scope.
7100 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
7101
7102 // In product build, there are no usage of statistic.
7103 (void)NumTripCountsComputed;
7104 (void)NumTripCountsNotComputed;
7105 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
7106 const SCEV *BEExact = Result.getExact(L, this);
7107 if (BEExact != getCouldNotCompute()) {
7108 assert(isLoopInvariant(BEExact, L) &&
7109 isLoopInvariant(Result.getConstantMax(this), L) &&
7110 "Computed backedge-taken count isn't loop invariant for loop!");
7111 ++NumTripCountsComputed;
7112 } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
7113 isa<PHINode>(L->getHeader()->begin())) {
7114 // Only count loops that have phi nodes as not being computable.
7115 ++NumTripCountsNotComputed;
7116 }
7117 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
7118
7119 // Now that we know more about the trip count for this loop, forget any
7120 // existing SCEV values for PHI nodes in this loop since they are only
7121 // conservative estimates made without the benefit of trip count
7122 // information. This is similar to the code in forgetLoop, except that
7123 // it handles SCEVUnknown PHI nodes specially.
7124 if (Result.hasAnyInfo()) {
7125 SmallVector<Instruction *, 16> Worklist;
7126 PushLoopPHIs(L, Worklist);
7127
7128 SmallPtrSet<Instruction *, 8> Discovered;
7129 while (!Worklist.empty()) {
7130 Instruction *I = Worklist.pop_back_val();
7131
7132 ValueExprMapType::iterator It =
7133 ValueExprMap.find_as(static_cast<Value *>(I));
7134 if (It != ValueExprMap.end()) {
7135 const SCEV *Old = It->second;
7136
7137 // SCEVUnknown for a PHI either means that it has an unrecognized
7138 // structure, or it's a PHI that's in the progress of being computed
7139 // by createNodeForPHI. In the former case, additional loop trip
7140 // count information isn't going to change anything. In the later
7141 // case, createNodeForPHI will perform the necessary updates on its
7142 // own when it gets to that point.
7143 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
7144 eraseValueFromMap(It->first);
7145 forgetMemoizedResults(Old);
7146 }
7147 if (PHINode *PN = dyn_cast<PHINode>(I))
7148 ConstantEvolutionLoopExitValue.erase(PN);
7149 }
7150
7151 // Since we don't need to invalidate anything for correctness and we're
7152 // only invalidating to make SCEV's results more precise, we get to stop
7153 // early to avoid invalidating too much. This is especially important in
7154 // cases like:
7155 //
7156 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
7157 // loop0:
7158 // %pn0 = phi
7159 // ...
7160 // loop1:
7161 // %pn1 = phi
7162 // ...
7163 //
7164 // where both loop0 and loop1's backedge taken count uses the SCEV
7165 // expression for %v. If we don't have the early stop below then in cases
7166 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
7167 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
7168 // count for loop1, effectively nullifying SCEV's trip count cache.
7169 for (auto *U : I->users())
7170 if (auto *I = dyn_cast<Instruction>(U)) {
7171 auto *LoopForUser = LI.getLoopFor(I->getParent());
7172 if (LoopForUser && L->contains(LoopForUser) &&
7173 Discovered.insert(I).second)
7174 Worklist.push_back(I);
7175 }
7176 }
7177 }
7178
7179 // Re-lookup the insert position, since the call to
7180 // computeBackedgeTakenCount above could result in a
7181 // recusive call to getBackedgeTakenInfo (on a different
7182 // loop), which would invalidate the iterator computed
7183 // earlier.
7184 return BackedgeTakenCounts.find(L)->second = std::move(Result);
7185 }
7186
forgetAllLoops()7187 void ScalarEvolution::forgetAllLoops() {
7188 // This method is intended to forget all info about loops. It should
7189 // invalidate caches as if the following happened:
7190 // - The trip counts of all loops have changed arbitrarily
7191 // - Every llvm::Value has been updated in place to produce a different
7192 // result.
7193 BackedgeTakenCounts.clear();
7194 PredicatedBackedgeTakenCounts.clear();
7195 LoopPropertiesCache.clear();
7196 ConstantEvolutionLoopExitValue.clear();
7197 ValueExprMap.clear();
7198 ValuesAtScopes.clear();
7199 LoopDispositions.clear();
7200 BlockDispositions.clear();
7201 UnsignedRanges.clear();
7202 SignedRanges.clear();
7203 ExprValueMap.clear();
7204 HasRecMap.clear();
7205 MinTrailingZerosCache.clear();
7206 PredicatedSCEVRewrites.clear();
7207 }
7208
forgetLoop(const Loop * L)7209 void ScalarEvolution::forgetLoop(const Loop *L) {
7210 SmallVector<const Loop *, 16> LoopWorklist(1, L);
7211 SmallVector<Instruction *, 32> Worklist;
7212 SmallPtrSet<Instruction *, 16> Visited;
7213
7214 // Iterate over all the loops and sub-loops to drop SCEV information.
7215 while (!LoopWorklist.empty()) {
7216 auto *CurrL = LoopWorklist.pop_back_val();
7217
7218 // Drop any stored trip count value.
7219 BackedgeTakenCounts.erase(CurrL);
7220 PredicatedBackedgeTakenCounts.erase(CurrL);
7221
7222 // Drop information about predicated SCEV rewrites for this loop.
7223 for (auto I = PredicatedSCEVRewrites.begin();
7224 I != PredicatedSCEVRewrites.end();) {
7225 std::pair<const SCEV *, const Loop *> Entry = I->first;
7226 if (Entry.second == CurrL)
7227 PredicatedSCEVRewrites.erase(I++);
7228 else
7229 ++I;
7230 }
7231
7232 auto LoopUsersItr = LoopUsers.find(CurrL);
7233 if (LoopUsersItr != LoopUsers.end()) {
7234 for (auto *S : LoopUsersItr->second)
7235 forgetMemoizedResults(S);
7236 LoopUsers.erase(LoopUsersItr);
7237 }
7238
7239 // Drop information about expressions based on loop-header PHIs.
7240 PushLoopPHIs(CurrL, Worklist);
7241
7242 while (!Worklist.empty()) {
7243 Instruction *I = Worklist.pop_back_val();
7244 if (!Visited.insert(I).second)
7245 continue;
7246
7247 ValueExprMapType::iterator It =
7248 ValueExprMap.find_as(static_cast<Value *>(I));
7249 if (It != ValueExprMap.end()) {
7250 eraseValueFromMap(It->first);
7251 forgetMemoizedResults(It->second);
7252 if (PHINode *PN = dyn_cast<PHINode>(I))
7253 ConstantEvolutionLoopExitValue.erase(PN);
7254 }
7255
7256 PushDefUseChildren(I, Worklist);
7257 }
7258
7259 LoopPropertiesCache.erase(CurrL);
7260 // Forget all contained loops too, to avoid dangling entries in the
7261 // ValuesAtScopes map.
7262 LoopWorklist.append(CurrL->begin(), CurrL->end());
7263 }
7264 }
7265
forgetTopmostLoop(const Loop * L)7266 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
7267 while (Loop *Parent = L->getParentLoop())
7268 L = Parent;
7269 forgetLoop(L);
7270 }
7271
forgetValue(Value * V)7272 void ScalarEvolution::forgetValue(Value *V) {
7273 Instruction *I = dyn_cast<Instruction>(V);
7274 if (!I) return;
7275
7276 // Drop information about expressions based on loop-header PHIs.
7277 SmallVector<Instruction *, 16> Worklist;
7278 Worklist.push_back(I);
7279
7280 SmallPtrSet<Instruction *, 8> Visited;
7281 while (!Worklist.empty()) {
7282 I = Worklist.pop_back_val();
7283 if (!Visited.insert(I).second)
7284 continue;
7285
7286 ValueExprMapType::iterator It =
7287 ValueExprMap.find_as(static_cast<Value *>(I));
7288 if (It != ValueExprMap.end()) {
7289 eraseValueFromMap(It->first);
7290 forgetMemoizedResults(It->second);
7291 if (PHINode *PN = dyn_cast<PHINode>(I))
7292 ConstantEvolutionLoopExitValue.erase(PN);
7293 }
7294
7295 PushDefUseChildren(I, Worklist);
7296 }
7297 }
7298
forgetLoopDispositions(const Loop * L)7299 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
7300 LoopDispositions.clear();
7301 }
7302
7303 /// Get the exact loop backedge taken count considering all loop exits. A
7304 /// computable result can only be returned for loops with all exiting blocks
7305 /// dominating the latch. howFarToZero assumes that the limit of each loop test
7306 /// is never skipped. This is a valid assumption as long as the loop exits via
7307 /// that test. For precise results, it is the caller's responsibility to specify
7308 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
7309 const SCEV *
getExact(const Loop * L,ScalarEvolution * SE,SCEVUnionPredicate * Preds) const7310 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
7311 SCEVUnionPredicate *Preds) const {
7312 // If any exits were not computable, the loop is not computable.
7313 if (!isComplete() || ExitNotTaken.empty())
7314 return SE->getCouldNotCompute();
7315
7316 const BasicBlock *Latch = L->getLoopLatch();
7317 // All exiting blocks we have collected must dominate the only backedge.
7318 if (!Latch)
7319 return SE->getCouldNotCompute();
7320
7321 // All exiting blocks we have gathered dominate loop's latch, so exact trip
7322 // count is simply a minimum out of all these calculated exit counts.
7323 SmallVector<const SCEV *, 2> Ops;
7324 for (auto &ENT : ExitNotTaken) {
7325 const SCEV *BECount = ENT.ExactNotTaken;
7326 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
7327 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
7328 "We should only have known counts for exiting blocks that dominate "
7329 "latch!");
7330
7331 Ops.push_back(BECount);
7332
7333 if (Preds && !ENT.hasAlwaysTruePredicate())
7334 Preds->add(ENT.Predicate.get());
7335
7336 assert((Preds || ENT.hasAlwaysTruePredicate()) &&
7337 "Predicate should be always true!");
7338 }
7339
7340 return SE->getUMinFromMismatchedTypes(Ops);
7341 }
7342
7343 /// Get the exact not taken count for this loop exit.
7344 const SCEV *
getExact(const BasicBlock * ExitingBlock,ScalarEvolution * SE) const7345 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
7346 ScalarEvolution *SE) const {
7347 for (auto &ENT : ExitNotTaken)
7348 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7349 return ENT.ExactNotTaken;
7350
7351 return SE->getCouldNotCompute();
7352 }
7353
getConstantMax(const BasicBlock * ExitingBlock,ScalarEvolution * SE) const7354 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
7355 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
7356 for (auto &ENT : ExitNotTaken)
7357 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7358 return ENT.MaxNotTaken;
7359
7360 return SE->getCouldNotCompute();
7361 }
7362
7363 /// getConstantMax - Get the constant max backedge taken count for the loop.
7364 const SCEV *
getConstantMax(ScalarEvolution * SE) const7365 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
7366 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7367 return !ENT.hasAlwaysTruePredicate();
7368 };
7369
7370 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax())
7371 return SE->getCouldNotCompute();
7372
7373 assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
7374 isa<SCEVConstant>(getConstantMax())) &&
7375 "No point in having a non-constant max backedge taken count!");
7376 return getConstantMax();
7377 }
7378
7379 const SCEV *
getSymbolicMax(const Loop * L,ScalarEvolution * SE)7380 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
7381 ScalarEvolution *SE) {
7382 if (!SymbolicMax)
7383 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
7384 return SymbolicMax;
7385 }
7386
isConstantMaxOrZero(ScalarEvolution * SE) const7387 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
7388 ScalarEvolution *SE) const {
7389 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7390 return !ENT.hasAlwaysTruePredicate();
7391 };
7392 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
7393 }
7394
hasOperand(const SCEV * S,ScalarEvolution * SE) const7395 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
7396 ScalarEvolution *SE) const {
7397 if (getConstantMax() && getConstantMax() != SE->getCouldNotCompute() &&
7398 SE->hasOperand(getConstantMax(), S))
7399 return true;
7400
7401 for (auto &ENT : ExitNotTaken)
7402 if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
7403 SE->hasOperand(ENT.ExactNotTaken, S))
7404 return true;
7405
7406 return false;
7407 }
7408
ExitLimit(const SCEV * E)7409 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
7410 : ExactNotTaken(E), MaxNotTaken(E) {
7411 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7412 isa<SCEVConstant>(MaxNotTaken)) &&
7413 "No point in having a non-constant max backedge taken count!");
7414 }
7415
ExitLimit(const SCEV * E,const SCEV * M,bool MaxOrZero,ArrayRef<const SmallPtrSetImpl<const SCEVPredicate * > * > PredSetList)7416 ScalarEvolution::ExitLimit::ExitLimit(
7417 const SCEV *E, const SCEV *M, bool MaxOrZero,
7418 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
7419 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
7420 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
7421 !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
7422 "Exact is not allowed to be less precise than Max");
7423 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7424 isa<SCEVConstant>(MaxNotTaken)) &&
7425 "No point in having a non-constant max backedge taken count!");
7426 for (auto *PredSet : PredSetList)
7427 for (auto *P : *PredSet)
7428 addPredicate(P);
7429 }
7430
ExitLimit(const SCEV * E,const SCEV * M,bool MaxOrZero,const SmallPtrSetImpl<const SCEVPredicate * > & PredSet)7431 ScalarEvolution::ExitLimit::ExitLimit(
7432 const SCEV *E, const SCEV *M, bool MaxOrZero,
7433 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7434 : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7435 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7436 isa<SCEVConstant>(MaxNotTaken)) &&
7437 "No point in having a non-constant max backedge taken count!");
7438 }
7439
ExitLimit(const SCEV * E,const SCEV * M,bool MaxOrZero)7440 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7441 bool MaxOrZero)
7442 : ExitLimit(E, M, MaxOrZero, None) {
7443 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7444 isa<SCEVConstant>(MaxNotTaken)) &&
7445 "No point in having a non-constant max backedge taken count!");
7446 }
7447
7448 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7449 /// computable exit into a persistent ExitNotTakenInfo array.
BackedgeTakenInfo(ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,bool IsComplete,const SCEV * ConstantMax,bool MaxOrZero)7450 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7451 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
7452 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
7453 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
7454 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7455
7456 ExitNotTaken.reserve(ExitCounts.size());
7457 std::transform(
7458 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7459 [&](const EdgeExitInfo &EEI) {
7460 BasicBlock *ExitBB = EEI.first;
7461 const ExitLimit &EL = EEI.second;
7462 if (EL.Predicates.empty())
7463 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7464 nullptr);
7465
7466 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7467 for (auto *Pred : EL.Predicates)
7468 Predicate->add(Pred);
7469
7470 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7471 std::move(Predicate));
7472 });
7473 assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
7474 isa<SCEVConstant>(ConstantMax)) &&
7475 "No point in having a non-constant max backedge taken count!");
7476 }
7477
7478 /// Compute the number of times the backedge of the specified loop will execute.
7479 ScalarEvolution::BackedgeTakenInfo
computeBackedgeTakenCount(const Loop * L,bool AllowPredicates)7480 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7481 bool AllowPredicates) {
7482 SmallVector<BasicBlock *, 8> ExitingBlocks;
7483 L->getExitingBlocks(ExitingBlocks);
7484
7485 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7486
7487 SmallVector<EdgeExitInfo, 4> ExitCounts;
7488 bool CouldComputeBECount = true;
7489 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7490 const SCEV *MustExitMaxBECount = nullptr;
7491 const SCEV *MayExitMaxBECount = nullptr;
7492 bool MustExitMaxOrZero = false;
7493
7494 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7495 // and compute maxBECount.
7496 // Do a union of all the predicates here.
7497 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7498 BasicBlock *ExitBB = ExitingBlocks[i];
7499
7500 // We canonicalize untaken exits to br (constant), ignore them so that
7501 // proving an exit untaken doesn't negatively impact our ability to reason
7502 // about the loop as whole.
7503 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
7504 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
7505 bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7506 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
7507 continue;
7508 }
7509
7510 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7511
7512 assert((AllowPredicates || EL.Predicates.empty()) &&
7513 "Predicated exit limit when predicates are not allowed!");
7514
7515 // 1. For each exit that can be computed, add an entry to ExitCounts.
7516 // CouldComputeBECount is true only if all exits can be computed.
7517 if (EL.ExactNotTaken == getCouldNotCompute())
7518 // We couldn't compute an exact value for this exit, so
7519 // we won't be able to compute an exact value for the loop.
7520 CouldComputeBECount = false;
7521 else
7522 ExitCounts.emplace_back(ExitBB, EL);
7523
7524 // 2. Derive the loop's MaxBECount from each exit's max number of
7525 // non-exiting iterations. Partition the loop exits into two kinds:
7526 // LoopMustExits and LoopMayExits.
7527 //
7528 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7529 // is a LoopMayExit. If any computable LoopMustExit is found, then
7530 // MaxBECount is the minimum EL.MaxNotTaken of computable
7531 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7532 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7533 // computable EL.MaxNotTaken.
7534 if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7535 DT.dominates(ExitBB, Latch)) {
7536 if (!MustExitMaxBECount) {
7537 MustExitMaxBECount = EL.MaxNotTaken;
7538 MustExitMaxOrZero = EL.MaxOrZero;
7539 } else {
7540 MustExitMaxBECount =
7541 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7542 }
7543 } else if (MayExitMaxBECount != getCouldNotCompute()) {
7544 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7545 MayExitMaxBECount = EL.MaxNotTaken;
7546 else {
7547 MayExitMaxBECount =
7548 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7549 }
7550 }
7551 }
7552 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7553 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7554 // The loop backedge will be taken the maximum or zero times if there's
7555 // a single exit that must be taken the maximum or zero times.
7556 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7557 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7558 MaxBECount, MaxOrZero);
7559 }
7560
7561 ScalarEvolution::ExitLimit
computeExitLimit(const Loop * L,BasicBlock * ExitingBlock,bool AllowPredicates)7562 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7563 bool AllowPredicates) {
7564 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7565 // If our exiting block does not dominate the latch, then its connection with
7566 // loop's exit limit may be far from trivial.
7567 const BasicBlock *Latch = L->getLoopLatch();
7568 if (!Latch || !DT.dominates(ExitingBlock, Latch))
7569 return getCouldNotCompute();
7570
7571 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7572 Instruction *Term = ExitingBlock->getTerminator();
7573 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7574 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7575 bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7576 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7577 "It should have one successor in loop and one exit block!");
7578 // Proceed to the next level to examine the exit condition expression.
7579 return computeExitLimitFromCond(
7580 L, BI->getCondition(), ExitIfTrue,
7581 /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7582 }
7583
7584 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7585 // For switch, make sure that there is a single exit from the loop.
7586 BasicBlock *Exit = nullptr;
7587 for (auto *SBB : successors(ExitingBlock))
7588 if (!L->contains(SBB)) {
7589 if (Exit) // Multiple exit successors.
7590 return getCouldNotCompute();
7591 Exit = SBB;
7592 }
7593 assert(Exit && "Exiting block must have at least one exit");
7594 return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7595 /*ControlsExit=*/IsOnlyExit);
7596 }
7597
7598 return getCouldNotCompute();
7599 }
7600
computeExitLimitFromCond(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7601 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7602 const Loop *L, Value *ExitCond, bool ExitIfTrue,
7603 bool ControlsExit, bool AllowPredicates) {
7604 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7605 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7606 ControlsExit, AllowPredicates);
7607 }
7608
7609 Optional<ScalarEvolution::ExitLimit>
find(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7610 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7611 bool ExitIfTrue, bool ControlsExit,
7612 bool AllowPredicates) {
7613 (void)this->L;
7614 (void)this->ExitIfTrue;
7615 (void)this->AllowPredicates;
7616
7617 assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7618 this->AllowPredicates == AllowPredicates &&
7619 "Variance in assumed invariant key components!");
7620 auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7621 if (Itr == TripCountMap.end())
7622 return None;
7623 return Itr->second;
7624 }
7625
insert(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates,const ExitLimit & EL)7626 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7627 bool ExitIfTrue,
7628 bool ControlsExit,
7629 bool AllowPredicates,
7630 const ExitLimit &EL) {
7631 assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7632 this->AllowPredicates == AllowPredicates &&
7633 "Variance in assumed invariant key components!");
7634
7635 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7636 assert(InsertResult.second && "Expected successful insertion!");
7637 (void)InsertResult;
7638 (void)ExitIfTrue;
7639 }
7640
computeExitLimitFromCondCached(ExitLimitCacheTy & Cache,const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7641 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7642 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7643 bool ControlsExit, bool AllowPredicates) {
7644
7645 if (auto MaybeEL =
7646 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7647 return *MaybeEL;
7648
7649 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7650 ControlsExit, AllowPredicates);
7651 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7652 return EL;
7653 }
7654
computeExitLimitFromCondImpl(ExitLimitCacheTy & Cache,const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7655 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7656 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7657 bool ControlsExit, bool AllowPredicates) {
7658 // Handle BinOp conditions (And, Or).
7659 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
7660 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7661 return *LimitFromBinOp;
7662
7663 // With an icmp, it may be feasible to compute an exact backedge-taken count.
7664 // Proceed to the next level to examine the icmp.
7665 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7666 ExitLimit EL =
7667 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7668 if (EL.hasFullInfo() || !AllowPredicates)
7669 return EL;
7670
7671 // Try again, but use SCEV predicates this time.
7672 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7673 /*AllowPredicates=*/true);
7674 }
7675
7676 // Check for a constant condition. These are normally stripped out by
7677 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7678 // preserve the CFG and is temporarily leaving constant conditions
7679 // in place.
7680 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7681 if (ExitIfTrue == !CI->getZExtValue())
7682 // The backedge is always taken.
7683 return getCouldNotCompute();
7684 else
7685 // The backedge is never taken.
7686 return getZero(CI->getType());
7687 }
7688
7689 // If it's not an integer or pointer comparison then compute it the hard way.
7690 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7691 }
7692
7693 Optional<ScalarEvolution::ExitLimit>
computeExitLimitFromCondFromBinOp(ExitLimitCacheTy & Cache,const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7694 ScalarEvolution::computeExitLimitFromCondFromBinOp(
7695 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7696 bool ControlsExit, bool AllowPredicates) {
7697 // Check if the controlling expression for this loop is an And or Or.
7698 Value *Op0, *Op1;
7699 bool IsAnd = false;
7700 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
7701 IsAnd = true;
7702 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
7703 IsAnd = false;
7704 else
7705 return None;
7706
7707 // EitherMayExit is true in these two cases:
7708 // br (and Op0 Op1), loop, exit
7709 // br (or Op0 Op1), exit, loop
7710 bool EitherMayExit = IsAnd ^ ExitIfTrue;
7711 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
7712 ControlsExit && !EitherMayExit,
7713 AllowPredicates);
7714 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
7715 ControlsExit && !EitherMayExit,
7716 AllowPredicates);
7717
7718 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
7719 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
7720 if (isa<ConstantInt>(Op1))
7721 return Op1 == NeutralElement ? EL0 : EL1;
7722 if (isa<ConstantInt>(Op0))
7723 return Op0 == NeutralElement ? EL1 : EL0;
7724
7725 const SCEV *BECount = getCouldNotCompute();
7726 const SCEV *MaxBECount = getCouldNotCompute();
7727 if (EitherMayExit) {
7728 // Both conditions must be same for the loop to continue executing.
7729 // Choose the less conservative count.
7730 // If ExitCond is a short-circuit form (select), using
7731 // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general.
7732 // To see the detailed examples, please see
7733 // test/Analysis/ScalarEvolution/exit-count-select.ll
7734 bool PoisonSafe = isa<BinaryOperator>(ExitCond);
7735 if (!PoisonSafe)
7736 // Even if ExitCond is select, we can safely derive BECount using both
7737 // EL0 and EL1 in these cases:
7738 // (1) EL0.ExactNotTaken is non-zero
7739 // (2) EL1.ExactNotTaken is non-poison
7740 // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and
7741 // it cannot be umin(0, ..))
7742 // The PoisonSafe assignment below is simplified and the assertion after
7743 // BECount calculation fully guarantees the condition (3).
7744 PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) ||
7745 isa<SCEVConstant>(EL1.ExactNotTaken);
7746 if (EL0.ExactNotTaken != getCouldNotCompute() &&
7747 EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) {
7748 BECount =
7749 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7750
7751 // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form,
7752 // it should have been simplified to zero (see the condition (3) above)
7753 assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() ||
7754 BECount->isZero());
7755 }
7756 if (EL0.MaxNotTaken == getCouldNotCompute())
7757 MaxBECount = EL1.MaxNotTaken;
7758 else if (EL1.MaxNotTaken == getCouldNotCompute())
7759 MaxBECount = EL0.MaxNotTaken;
7760 else
7761 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7762 } else {
7763 // Both conditions must be same at the same time for the loop to exit.
7764 // For now, be conservative.
7765 if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7766 BECount = EL0.ExactNotTaken;
7767 }
7768
7769 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7770 // to be more aggressive when computing BECount than when computing
7771 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and
7772 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7773 // to not.
7774 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7775 !isa<SCEVCouldNotCompute>(BECount))
7776 MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7777
7778 return ExitLimit(BECount, MaxBECount, false,
7779 { &EL0.Predicates, &EL1.Predicates });
7780 }
7781
7782 ScalarEvolution::ExitLimit
computeExitLimitFromICmp(const Loop * L,ICmpInst * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7783 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7784 ICmpInst *ExitCond,
7785 bool ExitIfTrue,
7786 bool ControlsExit,
7787 bool AllowPredicates) {
7788 // If the condition was exit on true, convert the condition to exit on false
7789 ICmpInst::Predicate Pred;
7790 if (!ExitIfTrue)
7791 Pred = ExitCond->getPredicate();
7792 else
7793 Pred = ExitCond->getInversePredicate();
7794 const ICmpInst::Predicate OriginalPred = Pred;
7795
7796 // Handle common loops like: for (X = "string"; *X; ++X)
7797 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7798 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7799 ExitLimit ItCnt =
7800 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7801 if (ItCnt.hasAnyInfo())
7802 return ItCnt;
7803 }
7804
7805 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7806 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7807
7808 // Try to evaluate any dependencies out of the loop.
7809 LHS = getSCEVAtScope(LHS, L);
7810 RHS = getSCEVAtScope(RHS, L);
7811
7812 // At this point, we would like to compute how many iterations of the
7813 // loop the predicate will return true for these inputs.
7814 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7815 // If there is a loop-invariant, force it into the RHS.
7816 std::swap(LHS, RHS);
7817 Pred = ICmpInst::getSwappedPredicate(Pred);
7818 }
7819
7820 // Simplify the operands before analyzing them.
7821 (void)SimplifyICmpOperands(Pred, LHS, RHS);
7822
7823 // If we have a comparison of a chrec against a constant, try to use value
7824 // ranges to answer this query.
7825 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7826 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7827 if (AddRec->getLoop() == L) {
7828 // Form the constant range.
7829 ConstantRange CompRange =
7830 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7831
7832 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7833 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7834 }
7835
7836 switch (Pred) {
7837 case ICmpInst::ICMP_NE: { // while (X != Y)
7838 // Convert to: while (X-Y != 0)
7839 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7840 AllowPredicates);
7841 if (EL.hasAnyInfo()) return EL;
7842 break;
7843 }
7844 case ICmpInst::ICMP_EQ: { // while (X == Y)
7845 // Convert to: while (X-Y == 0)
7846 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7847 if (EL.hasAnyInfo()) return EL;
7848 break;
7849 }
7850 case ICmpInst::ICMP_SLT:
7851 case ICmpInst::ICMP_ULT: { // while (X < Y)
7852 bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7853 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7854 AllowPredicates);
7855 if (EL.hasAnyInfo()) return EL;
7856 break;
7857 }
7858 case ICmpInst::ICMP_SGT:
7859 case ICmpInst::ICMP_UGT: { // while (X > Y)
7860 bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7861 ExitLimit EL =
7862 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7863 AllowPredicates);
7864 if (EL.hasAnyInfo()) return EL;
7865 break;
7866 }
7867 default:
7868 break;
7869 }
7870
7871 auto *ExhaustiveCount =
7872 computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7873
7874 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7875 return ExhaustiveCount;
7876
7877 return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7878 ExitCond->getOperand(1), L, OriginalPred);
7879 }
7880
7881 ScalarEvolution::ExitLimit
computeExitLimitFromSingleExitSwitch(const Loop * L,SwitchInst * Switch,BasicBlock * ExitingBlock,bool ControlsExit)7882 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7883 SwitchInst *Switch,
7884 BasicBlock *ExitingBlock,
7885 bool ControlsExit) {
7886 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7887
7888 // Give up if the exit is the default dest of a switch.
7889 if (Switch->getDefaultDest() == ExitingBlock)
7890 return getCouldNotCompute();
7891
7892 assert(L->contains(Switch->getDefaultDest()) &&
7893 "Default case must not exit the loop!");
7894 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7895 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7896
7897 // while (X != Y) --> while (X-Y != 0)
7898 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7899 if (EL.hasAnyInfo())
7900 return EL;
7901
7902 return getCouldNotCompute();
7903 }
7904
7905 static ConstantInt *
EvaluateConstantChrecAtConstant(const SCEVAddRecExpr * AddRec,ConstantInt * C,ScalarEvolution & SE)7906 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7907 ScalarEvolution &SE) {
7908 const SCEV *InVal = SE.getConstant(C);
7909 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7910 assert(isa<SCEVConstant>(Val) &&
7911 "Evaluation of SCEV at constant didn't fold correctly?");
7912 return cast<SCEVConstant>(Val)->getValue();
7913 }
7914
7915 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7916 /// compute the backedge execution count.
7917 ScalarEvolution::ExitLimit
computeLoadConstantCompareExitLimit(LoadInst * LI,Constant * RHS,const Loop * L,ICmpInst::Predicate predicate)7918 ScalarEvolution::computeLoadConstantCompareExitLimit(
7919 LoadInst *LI,
7920 Constant *RHS,
7921 const Loop *L,
7922 ICmpInst::Predicate predicate) {
7923 if (LI->isVolatile()) return getCouldNotCompute();
7924
7925 // Check to see if the loaded pointer is a getelementptr of a global.
7926 // TODO: Use SCEV instead of manually grubbing with GEPs.
7927 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7928 if (!GEP) return getCouldNotCompute();
7929
7930 // Make sure that it is really a constant global we are gepping, with an
7931 // initializer, and make sure the first IDX is really 0.
7932 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7933 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7934 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7935 !cast<Constant>(GEP->getOperand(1))->isNullValue())
7936 return getCouldNotCompute();
7937
7938 // Okay, we allow one non-constant index into the GEP instruction.
7939 Value *VarIdx = nullptr;
7940 std::vector<Constant*> Indexes;
7941 unsigned VarIdxNum = 0;
7942 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7943 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7944 Indexes.push_back(CI);
7945 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7946 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
7947 VarIdx = GEP->getOperand(i);
7948 VarIdxNum = i-2;
7949 Indexes.push_back(nullptr);
7950 }
7951
7952 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7953 if (!VarIdx)
7954 return getCouldNotCompute();
7955
7956 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7957 // Check to see if X is a loop variant variable value now.
7958 const SCEV *Idx = getSCEV(VarIdx);
7959 Idx = getSCEVAtScope(Idx, L);
7960
7961 // We can only recognize very limited forms of loop index expressions, in
7962 // particular, only affine AddRec's like {C1,+,C2}<L>.
7963 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7964 if (!IdxExpr || IdxExpr->getLoop() != L || !IdxExpr->isAffine() ||
7965 isLoopInvariant(IdxExpr, L) ||
7966 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7967 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7968 return getCouldNotCompute();
7969
7970 unsigned MaxSteps = MaxBruteForceIterations;
7971 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7972 ConstantInt *ItCst = ConstantInt::get(
7973 cast<IntegerType>(IdxExpr->getType()), IterationNum);
7974 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7975
7976 // Form the GEP offset.
7977 Indexes[VarIdxNum] = Val;
7978
7979 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7980 Indexes);
7981 if (!Result) break; // Cannot compute!
7982
7983 // Evaluate the condition for this iteration.
7984 Result = ConstantExpr::getICmp(predicate, Result, RHS);
7985 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
7986 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7987 ++NumArrayLenItCounts;
7988 return getConstant(ItCst); // Found terminating iteration!
7989 }
7990 }
7991 return getCouldNotCompute();
7992 }
7993
computeShiftCompareExitLimit(Value * LHS,Value * RHSV,const Loop * L,ICmpInst::Predicate Pred)7994 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7995 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7996 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7997 if (!RHS)
7998 return getCouldNotCompute();
7999
8000 const BasicBlock *Latch = L->getLoopLatch();
8001 if (!Latch)
8002 return getCouldNotCompute();
8003
8004 const BasicBlock *Predecessor = L->getLoopPredecessor();
8005 if (!Predecessor)
8006 return getCouldNotCompute();
8007
8008 // Return true if V is of the form "LHS `shift_op` <positive constant>".
8009 // Return LHS in OutLHS and shift_opt in OutOpCode.
8010 auto MatchPositiveShift =
8011 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
8012
8013 using namespace PatternMatch;
8014
8015 ConstantInt *ShiftAmt;
8016 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8017 OutOpCode = Instruction::LShr;
8018 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8019 OutOpCode = Instruction::AShr;
8020 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8021 OutOpCode = Instruction::Shl;
8022 else
8023 return false;
8024
8025 return ShiftAmt->getValue().isStrictlyPositive();
8026 };
8027
8028 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
8029 //
8030 // loop:
8031 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
8032 // %iv.shifted = lshr i32 %iv, <positive constant>
8033 //
8034 // Return true on a successful match. Return the corresponding PHI node (%iv
8035 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
8036 auto MatchShiftRecurrence =
8037 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
8038 Optional<Instruction::BinaryOps> PostShiftOpCode;
8039
8040 {
8041 Instruction::BinaryOps OpC;
8042 Value *V;
8043
8044 // If we encounter a shift instruction, "peel off" the shift operation,
8045 // and remember that we did so. Later when we inspect %iv's backedge
8046 // value, we will make sure that the backedge value uses the same
8047 // operation.
8048 //
8049 // Note: the peeled shift operation does not have to be the same
8050 // instruction as the one feeding into the PHI's backedge value. We only
8051 // really care about it being the same *kind* of shift instruction --
8052 // that's all that is required for our later inferences to hold.
8053 if (MatchPositiveShift(LHS, V, OpC)) {
8054 PostShiftOpCode = OpC;
8055 LHS = V;
8056 }
8057 }
8058
8059 PNOut = dyn_cast<PHINode>(LHS);
8060 if (!PNOut || PNOut->getParent() != L->getHeader())
8061 return false;
8062
8063 Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
8064 Value *OpLHS;
8065
8066 return
8067 // The backedge value for the PHI node must be a shift by a positive
8068 // amount
8069 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
8070
8071 // of the PHI node itself
8072 OpLHS == PNOut &&
8073
8074 // and the kind of shift should be match the kind of shift we peeled
8075 // off, if any.
8076 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
8077 };
8078
8079 PHINode *PN;
8080 Instruction::BinaryOps OpCode;
8081 if (!MatchShiftRecurrence(LHS, PN, OpCode))
8082 return getCouldNotCompute();
8083
8084 const DataLayout &DL = getDataLayout();
8085
8086 // The key rationale for this optimization is that for some kinds of shift
8087 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
8088 // within a finite number of iterations. If the condition guarding the
8089 // backedge (in the sense that the backedge is taken if the condition is true)
8090 // is false for the value the shift recurrence stabilizes to, then we know
8091 // that the backedge is taken only a finite number of times.
8092
8093 ConstantInt *StableValue = nullptr;
8094 switch (OpCode) {
8095 default:
8096 llvm_unreachable("Impossible case!");
8097
8098 case Instruction::AShr: {
8099 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
8100 // bitwidth(K) iterations.
8101 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
8102 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
8103 Predecessor->getTerminator(), &DT);
8104 auto *Ty = cast<IntegerType>(RHS->getType());
8105 if (Known.isNonNegative())
8106 StableValue = ConstantInt::get(Ty, 0);
8107 else if (Known.isNegative())
8108 StableValue = ConstantInt::get(Ty, -1, true);
8109 else
8110 return getCouldNotCompute();
8111
8112 break;
8113 }
8114 case Instruction::LShr:
8115 case Instruction::Shl:
8116 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
8117 // stabilize to 0 in at most bitwidth(K) iterations.
8118 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
8119 break;
8120 }
8121
8122 auto *Result =
8123 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
8124 assert(Result->getType()->isIntegerTy(1) &&
8125 "Otherwise cannot be an operand to a branch instruction");
8126
8127 if (Result->isZeroValue()) {
8128 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8129 const SCEV *UpperBound =
8130 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
8131 return ExitLimit(getCouldNotCompute(), UpperBound, false);
8132 }
8133
8134 return getCouldNotCompute();
8135 }
8136
8137 /// Return true if we can constant fold an instruction of the specified type,
8138 /// assuming that all operands were constants.
CanConstantFold(const Instruction * I)8139 static bool CanConstantFold(const Instruction *I) {
8140 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
8141 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8142 isa<LoadInst>(I) || isa<ExtractValueInst>(I))
8143 return true;
8144
8145 if (const CallInst *CI = dyn_cast<CallInst>(I))
8146 if (const Function *F = CI->getCalledFunction())
8147 return canConstantFoldCallTo(CI, F);
8148 return false;
8149 }
8150
8151 /// Determine whether this instruction can constant evolve within this loop
8152 /// assuming its operands can all constant evolve.
canConstantEvolve(Instruction * I,const Loop * L)8153 static bool canConstantEvolve(Instruction *I, const Loop *L) {
8154 // An instruction outside of the loop can't be derived from a loop PHI.
8155 if (!L->contains(I)) return false;
8156
8157 if (isa<PHINode>(I)) {
8158 // We don't currently keep track of the control flow needed to evaluate
8159 // PHIs, so we cannot handle PHIs inside of loops.
8160 return L->getHeader() == I->getParent();
8161 }
8162
8163 // If we won't be able to constant fold this expression even if the operands
8164 // are constants, bail early.
8165 return CanConstantFold(I);
8166 }
8167
8168 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
8169 /// recursing through each instruction operand until reaching a loop header phi.
8170 static PHINode *
getConstantEvolvingPHIOperands(Instruction * UseInst,const Loop * L,DenseMap<Instruction *,PHINode * > & PHIMap,unsigned Depth)8171 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
8172 DenseMap<Instruction *, PHINode *> &PHIMap,
8173 unsigned Depth) {
8174 if (Depth > MaxConstantEvolvingDepth)
8175 return nullptr;
8176
8177 // Otherwise, we can evaluate this instruction if all of its operands are
8178 // constant or derived from a PHI node themselves.
8179 PHINode *PHI = nullptr;
8180 for (Value *Op : UseInst->operands()) {
8181 if (isa<Constant>(Op)) continue;
8182
8183 Instruction *OpInst = dyn_cast<Instruction>(Op);
8184 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
8185
8186 PHINode *P = dyn_cast<PHINode>(OpInst);
8187 if (!P)
8188 // If this operand is already visited, reuse the prior result.
8189 // We may have P != PHI if this is the deepest point at which the
8190 // inconsistent paths meet.
8191 P = PHIMap.lookup(OpInst);
8192 if (!P) {
8193 // Recurse and memoize the results, whether a phi is found or not.
8194 // This recursive call invalidates pointers into PHIMap.
8195 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
8196 PHIMap[OpInst] = P;
8197 }
8198 if (!P)
8199 return nullptr; // Not evolving from PHI
8200 if (PHI && PHI != P)
8201 return nullptr; // Evolving from multiple different PHIs.
8202 PHI = P;
8203 }
8204 // This is a expression evolving from a constant PHI!
8205 return PHI;
8206 }
8207
8208 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
8209 /// in the loop that V is derived from. We allow arbitrary operations along the
8210 /// way, but the operands of an operation must either be constants or a value
8211 /// derived from a constant PHI. If this expression does not fit with these
8212 /// constraints, return null.
getConstantEvolvingPHI(Value * V,const Loop * L)8213 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
8214 Instruction *I = dyn_cast<Instruction>(V);
8215 if (!I || !canConstantEvolve(I, L)) return nullptr;
8216
8217 if (PHINode *PN = dyn_cast<PHINode>(I))
8218 return PN;
8219
8220 // Record non-constant instructions contained by the loop.
8221 DenseMap<Instruction *, PHINode *> PHIMap;
8222 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
8223 }
8224
8225 /// EvaluateExpression - Given an expression that passes the
8226 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
8227 /// in the loop has the value PHIVal. If we can't fold this expression for some
8228 /// reason, return null.
EvaluateExpression(Value * V,const Loop * L,DenseMap<Instruction *,Constant * > & Vals,const DataLayout & DL,const TargetLibraryInfo * TLI)8229 static Constant *EvaluateExpression(Value *V, const Loop *L,
8230 DenseMap<Instruction *, Constant *> &Vals,
8231 const DataLayout &DL,
8232 const TargetLibraryInfo *TLI) {
8233 // Convenient constant check, but redundant for recursive calls.
8234 if (Constant *C = dyn_cast<Constant>(V)) return C;
8235 Instruction *I = dyn_cast<Instruction>(V);
8236 if (!I) return nullptr;
8237
8238 if (Constant *C = Vals.lookup(I)) return C;
8239
8240 // An instruction inside the loop depends on a value outside the loop that we
8241 // weren't given a mapping for, or a value such as a call inside the loop.
8242 if (!canConstantEvolve(I, L)) return nullptr;
8243
8244 // An unmapped PHI can be due to a branch or another loop inside this loop,
8245 // or due to this not being the initial iteration through a loop where we
8246 // couldn't compute the evolution of this particular PHI last time.
8247 if (isa<PHINode>(I)) return nullptr;
8248
8249 std::vector<Constant*> Operands(I->getNumOperands());
8250
8251 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
8252 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
8253 if (!Operand) {
8254 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
8255 if (!Operands[i]) return nullptr;
8256 continue;
8257 }
8258 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
8259 Vals[Operand] = C;
8260 if (!C) return nullptr;
8261 Operands[i] = C;
8262 }
8263
8264 if (CmpInst *CI = dyn_cast<CmpInst>(I))
8265 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8266 Operands[1], DL, TLI);
8267 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8268 if (!LI->isVolatile())
8269 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8270 }
8271 return ConstantFoldInstOperands(I, Operands, DL, TLI);
8272 }
8273
8274
8275 // If every incoming value to PN except the one for BB is a specific Constant,
8276 // return that, else return nullptr.
getOtherIncomingValue(PHINode * PN,BasicBlock * BB)8277 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
8278 Constant *IncomingVal = nullptr;
8279
8280 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
8281 if (PN->getIncomingBlock(i) == BB)
8282 continue;
8283
8284 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
8285 if (!CurrentVal)
8286 return nullptr;
8287
8288 if (IncomingVal != CurrentVal) {
8289 if (IncomingVal)
8290 return nullptr;
8291 IncomingVal = CurrentVal;
8292 }
8293 }
8294
8295 return IncomingVal;
8296 }
8297
8298 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
8299 /// in the header of its containing loop, we know the loop executes a
8300 /// constant number of times, and the PHI node is just a recurrence
8301 /// involving constants, fold it.
8302 Constant *
getConstantEvolutionLoopExitValue(PHINode * PN,const APInt & BEs,const Loop * L)8303 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
8304 const APInt &BEs,
8305 const Loop *L) {
8306 auto I = ConstantEvolutionLoopExitValue.find(PN);
8307 if (I != ConstantEvolutionLoopExitValue.end())
8308 return I->second;
8309
8310 if (BEs.ugt(MaxBruteForceIterations))
8311 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
8312
8313 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
8314
8315 DenseMap<Instruction *, Constant *> CurrentIterVals;
8316 BasicBlock *Header = L->getHeader();
8317 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8318
8319 BasicBlock *Latch = L->getLoopLatch();
8320 if (!Latch)
8321 return nullptr;
8322
8323 for (PHINode &PHI : Header->phis()) {
8324 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8325 CurrentIterVals[&PHI] = StartCST;
8326 }
8327 if (!CurrentIterVals.count(PN))
8328 return RetVal = nullptr;
8329
8330 Value *BEValue = PN->getIncomingValueForBlock(Latch);
8331
8332 // Execute the loop symbolically to determine the exit value.
8333 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
8334 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
8335
8336 unsigned NumIterations = BEs.getZExtValue(); // must be in range
8337 unsigned IterationNum = 0;
8338 const DataLayout &DL = getDataLayout();
8339 for (; ; ++IterationNum) {
8340 if (IterationNum == NumIterations)
8341 return RetVal = CurrentIterVals[PN]; // Got exit value!
8342
8343 // Compute the value of the PHIs for the next iteration.
8344 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8345 DenseMap<Instruction *, Constant *> NextIterVals;
8346 Constant *NextPHI =
8347 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8348 if (!NextPHI)
8349 return nullptr; // Couldn't evaluate!
8350 NextIterVals[PN] = NextPHI;
8351
8352 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
8353
8354 // Also evaluate the other PHI nodes. However, we don't get to stop if we
8355 // cease to be able to evaluate one of them or if they stop evolving,
8356 // because that doesn't necessarily prevent us from computing PN.
8357 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
8358 for (const auto &I : CurrentIterVals) {
8359 PHINode *PHI = dyn_cast<PHINode>(I.first);
8360 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
8361 PHIsToCompute.emplace_back(PHI, I.second);
8362 }
8363 // We use two distinct loops because EvaluateExpression may invalidate any
8364 // iterators into CurrentIterVals.
8365 for (const auto &I : PHIsToCompute) {
8366 PHINode *PHI = I.first;
8367 Constant *&NextPHI = NextIterVals[PHI];
8368 if (!NextPHI) { // Not already computed.
8369 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8370 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8371 }
8372 if (NextPHI != I.second)
8373 StoppedEvolving = false;
8374 }
8375
8376 // If all entries in CurrentIterVals == NextIterVals then we can stop
8377 // iterating, the loop can't continue to change.
8378 if (StoppedEvolving)
8379 return RetVal = CurrentIterVals[PN];
8380
8381 CurrentIterVals.swap(NextIterVals);
8382 }
8383 }
8384
computeExitCountExhaustively(const Loop * L,Value * Cond,bool ExitWhen)8385 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
8386 Value *Cond,
8387 bool ExitWhen) {
8388 PHINode *PN = getConstantEvolvingPHI(Cond, L);
8389 if (!PN) return getCouldNotCompute();
8390
8391 // If the loop is canonicalized, the PHI will have exactly two entries.
8392 // That's the only form we support here.
8393 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
8394
8395 DenseMap<Instruction *, Constant *> CurrentIterVals;
8396 BasicBlock *Header = L->getHeader();
8397 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8398
8399 BasicBlock *Latch = L->getLoopLatch();
8400 assert(Latch && "Should follow from NumIncomingValues == 2!");
8401
8402 for (PHINode &PHI : Header->phis()) {
8403 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8404 CurrentIterVals[&PHI] = StartCST;
8405 }
8406 if (!CurrentIterVals.count(PN))
8407 return getCouldNotCompute();
8408
8409 // Okay, we find a PHI node that defines the trip count of this loop. Execute
8410 // the loop symbolically to determine when the condition gets a value of
8411 // "ExitWhen".
8412 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
8413 const DataLayout &DL = getDataLayout();
8414 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
8415 auto *CondVal = dyn_cast_or_null<ConstantInt>(
8416 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
8417
8418 // Couldn't symbolically evaluate.
8419 if (!CondVal) return getCouldNotCompute();
8420
8421 if (CondVal->getValue() == uint64_t(ExitWhen)) {
8422 ++NumBruteForceTripCountsComputed;
8423 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
8424 }
8425
8426 // Update all the PHI nodes for the next iteration.
8427 DenseMap<Instruction *, Constant *> NextIterVals;
8428
8429 // Create a list of which PHIs we need to compute. We want to do this before
8430 // calling EvaluateExpression on them because that may invalidate iterators
8431 // into CurrentIterVals.
8432 SmallVector<PHINode *, 8> PHIsToCompute;
8433 for (const auto &I : CurrentIterVals) {
8434 PHINode *PHI = dyn_cast<PHINode>(I.first);
8435 if (!PHI || PHI->getParent() != Header) continue;
8436 PHIsToCompute.push_back(PHI);
8437 }
8438 for (PHINode *PHI : PHIsToCompute) {
8439 Constant *&NextPHI = NextIterVals[PHI];
8440 if (NextPHI) continue; // Already computed!
8441
8442 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8443 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8444 }
8445 CurrentIterVals.swap(NextIterVals);
8446 }
8447
8448 // Too many iterations were needed to evaluate.
8449 return getCouldNotCompute();
8450 }
8451
getSCEVAtScope(const SCEV * V,const Loop * L)8452 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8453 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8454 ValuesAtScopes[V];
8455 // Check to see if we've folded this expression at this loop before.
8456 for (auto &LS : Values)
8457 if (LS.first == L)
8458 return LS.second ? LS.second : V;
8459
8460 Values.emplace_back(L, nullptr);
8461
8462 // Otherwise compute it.
8463 const SCEV *C = computeSCEVAtScope(V, L);
8464 for (auto &LS : reverse(ValuesAtScopes[V]))
8465 if (LS.first == L) {
8466 LS.second = C;
8467 break;
8468 }
8469 return C;
8470 }
8471
8472 /// This builds up a Constant using the ConstantExpr interface. That way, we
8473 /// will return Constants for objects which aren't represented by a
8474 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8475 /// Returns NULL if the SCEV isn't representable as a Constant.
BuildConstantFromSCEV(const SCEV * V)8476 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8477 switch (V->getSCEVType()) {
8478 case scCouldNotCompute:
8479 case scAddRecExpr:
8480 return nullptr;
8481 case scConstant:
8482 return cast<SCEVConstant>(V)->getValue();
8483 case scUnknown:
8484 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8485 case scSignExtend: {
8486 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8487 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8488 return ConstantExpr::getSExt(CastOp, SS->getType());
8489 return nullptr;
8490 }
8491 case scZeroExtend: {
8492 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8493 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8494 return ConstantExpr::getZExt(CastOp, SZ->getType());
8495 return nullptr;
8496 }
8497 case scPtrToInt: {
8498 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
8499 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
8500 return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
8501
8502 return nullptr;
8503 }
8504 case scTruncate: {
8505 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8506 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8507 return ConstantExpr::getTrunc(CastOp, ST->getType());
8508 return nullptr;
8509 }
8510 case scAddExpr: {
8511 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8512 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8513 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8514 unsigned AS = PTy->getAddressSpace();
8515 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8516 C = ConstantExpr::getBitCast(C, DestPtrTy);
8517 }
8518 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8519 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8520 if (!C2)
8521 return nullptr;
8522
8523 // First pointer!
8524 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8525 unsigned AS = C2->getType()->getPointerAddressSpace();
8526 std::swap(C, C2);
8527 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8528 // The offsets have been converted to bytes. We can add bytes to an
8529 // i8* by GEP with the byte count in the first index.
8530 C = ConstantExpr::getBitCast(C, DestPtrTy);
8531 }
8532
8533 // Don't bother trying to sum two pointers. We probably can't
8534 // statically compute a load that results from it anyway.
8535 if (C2->getType()->isPointerTy())
8536 return nullptr;
8537
8538 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8539 if (PTy->getElementType()->isStructTy())
8540 C2 = ConstantExpr::getIntegerCast(
8541 C2, Type::getInt32Ty(C->getContext()), true);
8542 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8543 } else
8544 C = ConstantExpr::getAdd(C, C2);
8545 }
8546 return C;
8547 }
8548 return nullptr;
8549 }
8550 case scMulExpr: {
8551 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8552 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8553 // Don't bother with pointers at all.
8554 if (C->getType()->isPointerTy())
8555 return nullptr;
8556 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8557 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8558 if (!C2 || C2->getType()->isPointerTy())
8559 return nullptr;
8560 C = ConstantExpr::getMul(C, C2);
8561 }
8562 return C;
8563 }
8564 return nullptr;
8565 }
8566 case scUDivExpr: {
8567 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8568 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8569 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8570 if (LHS->getType() == RHS->getType())
8571 return ConstantExpr::getUDiv(LHS, RHS);
8572 return nullptr;
8573 }
8574 case scSMaxExpr:
8575 case scUMaxExpr:
8576 case scSMinExpr:
8577 case scUMinExpr:
8578 return nullptr; // TODO: smax, umax, smin, umax.
8579 }
8580 llvm_unreachable("Unknown SCEV kind!");
8581 }
8582
computeSCEVAtScope(const SCEV * V,const Loop * L)8583 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8584 if (isa<SCEVConstant>(V)) return V;
8585
8586 // If this instruction is evolved from a constant-evolving PHI, compute the
8587 // exit value from the loop without using SCEVs.
8588 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8589 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8590 if (PHINode *PN = dyn_cast<PHINode>(I)) {
8591 const Loop *CurrLoop = this->LI[I->getParent()];
8592 // Looking for loop exit value.
8593 if (CurrLoop && CurrLoop->getParentLoop() == L &&
8594 PN->getParent() == CurrLoop->getHeader()) {
8595 // Okay, there is no closed form solution for the PHI node. Check
8596 // to see if the loop that contains it has a known backedge-taken
8597 // count. If so, we may be able to force computation of the exit
8598 // value.
8599 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
8600 // This trivial case can show up in some degenerate cases where
8601 // the incoming IR has not yet been fully simplified.
8602 if (BackedgeTakenCount->isZero()) {
8603 Value *InitValue = nullptr;
8604 bool MultipleInitValues = false;
8605 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8606 if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
8607 if (!InitValue)
8608 InitValue = PN->getIncomingValue(i);
8609 else if (InitValue != PN->getIncomingValue(i)) {
8610 MultipleInitValues = true;
8611 break;
8612 }
8613 }
8614 }
8615 if (!MultipleInitValues && InitValue)
8616 return getSCEV(InitValue);
8617 }
8618 // Do we have a loop invariant value flowing around the backedge
8619 // for a loop which must execute the backedge?
8620 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8621 isKnownPositive(BackedgeTakenCount) &&
8622 PN->getNumIncomingValues() == 2) {
8623
8624 unsigned InLoopPred =
8625 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8626 Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8627 if (CurrLoop->isLoopInvariant(BackedgeVal))
8628 return getSCEV(BackedgeVal);
8629 }
8630 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8631 // Okay, we know how many times the containing loop executes. If
8632 // this is a constant evolving PHI node, get the final value at
8633 // the specified iteration number.
8634 Constant *RV = getConstantEvolutionLoopExitValue(
8635 PN, BTCC->getAPInt(), CurrLoop);
8636 if (RV) return getSCEV(RV);
8637 }
8638 }
8639
8640 // If there is a single-input Phi, evaluate it at our scope. If we can
8641 // prove that this replacement does not break LCSSA form, use new value.
8642 if (PN->getNumOperands() == 1) {
8643 const SCEV *Input = getSCEV(PN->getOperand(0));
8644 const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8645 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8646 // for the simplest case just support constants.
8647 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8648 }
8649 }
8650
8651 // Okay, this is an expression that we cannot symbolically evaluate
8652 // into a SCEV. Check to see if it's possible to symbolically evaluate
8653 // the arguments into constants, and if so, try to constant propagate the
8654 // result. This is particularly useful for computing loop exit values.
8655 if (CanConstantFold(I)) {
8656 SmallVector<Constant *, 4> Operands;
8657 bool MadeImprovement = false;
8658 for (Value *Op : I->operands()) {
8659 if (Constant *C = dyn_cast<Constant>(Op)) {
8660 Operands.push_back(C);
8661 continue;
8662 }
8663
8664 // If any of the operands is non-constant and if they are
8665 // non-integer and non-pointer, don't even try to analyze them
8666 // with scev techniques.
8667 if (!isSCEVable(Op->getType()))
8668 return V;
8669
8670 const SCEV *OrigV = getSCEV(Op);
8671 const SCEV *OpV = getSCEVAtScope(OrigV, L);
8672 MadeImprovement |= OrigV != OpV;
8673
8674 Constant *C = BuildConstantFromSCEV(OpV);
8675 if (!C) return V;
8676 if (C->getType() != Op->getType())
8677 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8678 Op->getType(),
8679 false),
8680 C, Op->getType());
8681 Operands.push_back(C);
8682 }
8683
8684 // Check to see if getSCEVAtScope actually made an improvement.
8685 if (MadeImprovement) {
8686 Constant *C = nullptr;
8687 const DataLayout &DL = getDataLayout();
8688 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8689 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8690 Operands[1], DL, &TLI);
8691 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
8692 if (!Load->isVolatile())
8693 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
8694 DL);
8695 } else
8696 C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8697 if (!C) return V;
8698 return getSCEV(C);
8699 }
8700 }
8701 }
8702
8703 // This is some other type of SCEVUnknown, just return it.
8704 return V;
8705 }
8706
8707 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8708 // Avoid performing the look-up in the common case where the specified
8709 // expression has no loop-variant portions.
8710 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8711 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8712 if (OpAtScope != Comm->getOperand(i)) {
8713 // Okay, at least one of these operands is loop variant but might be
8714 // foldable. Build a new instance of the folded commutative expression.
8715 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8716 Comm->op_begin()+i);
8717 NewOps.push_back(OpAtScope);
8718
8719 for (++i; i != e; ++i) {
8720 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8721 NewOps.push_back(OpAtScope);
8722 }
8723 if (isa<SCEVAddExpr>(Comm))
8724 return getAddExpr(NewOps, Comm->getNoWrapFlags());
8725 if (isa<SCEVMulExpr>(Comm))
8726 return getMulExpr(NewOps, Comm->getNoWrapFlags());
8727 if (isa<SCEVMinMaxExpr>(Comm))
8728 return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8729 llvm_unreachable("Unknown commutative SCEV type!");
8730 }
8731 }
8732 // If we got here, all operands are loop invariant.
8733 return Comm;
8734 }
8735
8736 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8737 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8738 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8739 if (LHS == Div->getLHS() && RHS == Div->getRHS())
8740 return Div; // must be loop invariant
8741 return getUDivExpr(LHS, RHS);
8742 }
8743
8744 // If this is a loop recurrence for a loop that does not contain L, then we
8745 // are dealing with the final value computed by the loop.
8746 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8747 // First, attempt to evaluate each operand.
8748 // Avoid performing the look-up in the common case where the specified
8749 // expression has no loop-variant portions.
8750 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8751 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8752 if (OpAtScope == AddRec->getOperand(i))
8753 continue;
8754
8755 // Okay, at least one of these operands is loop variant but might be
8756 // foldable. Build a new instance of the folded commutative expression.
8757 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8758 AddRec->op_begin()+i);
8759 NewOps.push_back(OpAtScope);
8760 for (++i; i != e; ++i)
8761 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8762
8763 const SCEV *FoldedRec =
8764 getAddRecExpr(NewOps, AddRec->getLoop(),
8765 AddRec->getNoWrapFlags(SCEV::FlagNW));
8766 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8767 // The addrec may be folded to a nonrecurrence, for example, if the
8768 // induction variable is multiplied by zero after constant folding. Go
8769 // ahead and return the folded value.
8770 if (!AddRec)
8771 return FoldedRec;
8772 break;
8773 }
8774
8775 // If the scope is outside the addrec's loop, evaluate it by using the
8776 // loop exit value of the addrec.
8777 if (!AddRec->getLoop()->contains(L)) {
8778 // To evaluate this recurrence, we need to know how many times the AddRec
8779 // loop iterates. Compute this now.
8780 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8781 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8782
8783 // Then, evaluate the AddRec.
8784 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8785 }
8786
8787 return AddRec;
8788 }
8789
8790 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8791 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8792 if (Op == Cast->getOperand())
8793 return Cast; // must be loop invariant
8794 return getZeroExtendExpr(Op, Cast->getType());
8795 }
8796
8797 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8798 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8799 if (Op == Cast->getOperand())
8800 return Cast; // must be loop invariant
8801 return getSignExtendExpr(Op, Cast->getType());
8802 }
8803
8804 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8805 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8806 if (Op == Cast->getOperand())
8807 return Cast; // must be loop invariant
8808 return getTruncateExpr(Op, Cast->getType());
8809 }
8810
8811 if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) {
8812 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8813 if (Op == Cast->getOperand())
8814 return Cast; // must be loop invariant
8815 return getPtrToIntExpr(Op, Cast->getType());
8816 }
8817
8818 llvm_unreachable("Unknown SCEV type!");
8819 }
8820
getSCEVAtScope(Value * V,const Loop * L)8821 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8822 return getSCEVAtScope(getSCEV(V), L);
8823 }
8824
stripInjectiveFunctions(const SCEV * S) const8825 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8826 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8827 return stripInjectiveFunctions(ZExt->getOperand());
8828 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8829 return stripInjectiveFunctions(SExt->getOperand());
8830 return S;
8831 }
8832
8833 /// Finds the minimum unsigned root of the following equation:
8834 ///
8835 /// A * X = B (mod N)
8836 ///
8837 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8838 /// A and B isn't important.
8839 ///
8840 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
SolveLinEquationWithOverflow(const APInt & A,const SCEV * B,ScalarEvolution & SE)8841 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8842 ScalarEvolution &SE) {
8843 uint32_t BW = A.getBitWidth();
8844 assert(BW == SE.getTypeSizeInBits(B->getType()));
8845 assert(A != 0 && "A must be non-zero.");
8846
8847 // 1. D = gcd(A, N)
8848 //
8849 // The gcd of A and N may have only one prime factor: 2. The number of
8850 // trailing zeros in A is its multiplicity
8851 uint32_t Mult2 = A.countTrailingZeros();
8852 // D = 2^Mult2
8853
8854 // 2. Check if B is divisible by D.
8855 //
8856 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8857 // is not less than multiplicity of this prime factor for D.
8858 if (SE.GetMinTrailingZeros(B) < Mult2)
8859 return SE.getCouldNotCompute();
8860
8861 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8862 // modulo (N / D).
8863 //
8864 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8865 // (N / D) in general. The inverse itself always fits into BW bits, though,
8866 // so we immediately truncate it.
8867 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
8868 APInt Mod(BW + 1, 0);
8869 Mod.setBit(BW - Mult2); // Mod = N / D
8870 APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8871
8872 // 4. Compute the minimum unsigned root of the equation:
8873 // I * (B / D) mod (N / D)
8874 // To simplify the computation, we factor out the divide by D:
8875 // (I * B mod N) / D
8876 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8877 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8878 }
8879
8880 /// For a given quadratic addrec, generate coefficients of the corresponding
8881 /// quadratic equation, multiplied by a common value to ensure that they are
8882 /// integers.
8883 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8884 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8885 /// were multiplied by, and BitWidth is the bit width of the original addrec
8886 /// coefficients.
8887 /// This function returns None if the addrec coefficients are not compile-
8888 /// time constants.
8889 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
GetQuadraticEquation(const SCEVAddRecExpr * AddRec)8890 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8891 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8892 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8893 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8894 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8895 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8896 << *AddRec << '\n');
8897
8898 // We currently can only solve this if the coefficients are constants.
8899 if (!LC || !MC || !NC) {
8900 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8901 return None;
8902 }
8903
8904 APInt L = LC->getAPInt();
8905 APInt M = MC->getAPInt();
8906 APInt N = NC->getAPInt();
8907 assert(!N.isNullValue() && "This is not a quadratic addrec");
8908
8909 unsigned BitWidth = LC->getAPInt().getBitWidth();
8910 unsigned NewWidth = BitWidth + 1;
8911 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8912 << BitWidth << '\n');
8913 // The sign-extension (as opposed to a zero-extension) here matches the
8914 // extension used in SolveQuadraticEquationWrap (with the same motivation).
8915 N = N.sext(NewWidth);
8916 M = M.sext(NewWidth);
8917 L = L.sext(NewWidth);
8918
8919 // The increments are M, M+N, M+2N, ..., so the accumulated values are
8920 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8921 // L+M, L+2M+N, L+3M+3N, ...
8922 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8923 //
8924 // The equation Acc = 0 is then
8925 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0.
8926 // In a quadratic form it becomes:
8927 // N n^2 + (2M-N) n + 2L = 0.
8928
8929 APInt A = N;
8930 APInt B = 2 * M - A;
8931 APInt C = 2 * L;
8932 APInt T = APInt(NewWidth, 2);
8933 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8934 << "x + " << C << ", coeff bw: " << NewWidth
8935 << ", multiplied by " << T << '\n');
8936 return std::make_tuple(A, B, C, T, BitWidth);
8937 }
8938
8939 /// Helper function to compare optional APInts:
8940 /// (a) if X and Y both exist, return min(X, Y),
8941 /// (b) if neither X nor Y exist, return None,
8942 /// (c) if exactly one of X and Y exists, return that value.
MinOptional(Optional<APInt> X,Optional<APInt> Y)8943 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8944 if (X.hasValue() && Y.hasValue()) {
8945 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8946 APInt XW = X->sextOrSelf(W);
8947 APInt YW = Y->sextOrSelf(W);
8948 return XW.slt(YW) ? *X : *Y;
8949 }
8950 if (!X.hasValue() && !Y.hasValue())
8951 return None;
8952 return X.hasValue() ? *X : *Y;
8953 }
8954
8955 /// Helper function to truncate an optional APInt to a given BitWidth.
8956 /// When solving addrec-related equations, it is preferable to return a value
8957 /// that has the same bit width as the original addrec's coefficients. If the
8958 /// solution fits in the original bit width, truncate it (except for i1).
8959 /// Returning a value of a different bit width may inhibit some optimizations.
8960 ///
8961 /// In general, a solution to a quadratic equation generated from an addrec
8962 /// may require BW+1 bits, where BW is the bit width of the addrec's
8963 /// coefficients. The reason is that the coefficients of the quadratic
8964 /// equation are BW+1 bits wide (to avoid truncation when converting from
8965 /// the addrec to the equation).
TruncIfPossible(Optional<APInt> X,unsigned BitWidth)8966 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8967 if (!X.hasValue())
8968 return None;
8969 unsigned W = X->getBitWidth();
8970 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8971 return X->trunc(BitWidth);
8972 return X;
8973 }
8974
8975 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8976 /// iterations. The values L, M, N are assumed to be signed, and they
8977 /// should all have the same bit widths.
8978 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8979 /// where BW is the bit width of the addrec's coefficients.
8980 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8981 /// returned as such, otherwise the bit width of the returned value may
8982 /// be greater than BW.
8983 ///
8984 /// This function returns None if
8985 /// (a) the addrec coefficients are not constant, or
8986 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8987 /// like x^2 = 5, no integer solutions exist, in other cases an integer
8988 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8989 static Optional<APInt>
SolveQuadraticAddRecExact(const SCEVAddRecExpr * AddRec,ScalarEvolution & SE)8990 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8991 APInt A, B, C, M;
8992 unsigned BitWidth;
8993 auto T = GetQuadraticEquation(AddRec);
8994 if (!T.hasValue())
8995 return None;
8996
8997 std::tie(A, B, C, M, BitWidth) = *T;
8998 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8999 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
9000 if (!X.hasValue())
9001 return None;
9002
9003 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
9004 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
9005 if (!V->isZero())
9006 return None;
9007
9008 return TruncIfPossible(X, BitWidth);
9009 }
9010
9011 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
9012 /// iterations. The values M, N are assumed to be signed, and they
9013 /// should all have the same bit widths.
9014 /// Find the least n such that c(n) does not belong to the given range,
9015 /// while c(n-1) does.
9016 ///
9017 /// This function returns None if
9018 /// (a) the addrec coefficients are not constant, or
9019 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
9020 /// bounds of the range.
9021 static Optional<APInt>
SolveQuadraticAddRecRange(const SCEVAddRecExpr * AddRec,const ConstantRange & Range,ScalarEvolution & SE)9022 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
9023 const ConstantRange &Range, ScalarEvolution &SE) {
9024 assert(AddRec->getOperand(0)->isZero() &&
9025 "Starting value of addrec should be 0");
9026 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
9027 << Range << ", addrec " << *AddRec << '\n');
9028 // This case is handled in getNumIterationsInRange. Here we can assume that
9029 // we start in the range.
9030 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
9031 "Addrec's initial value should be in range");
9032
9033 APInt A, B, C, M;
9034 unsigned BitWidth;
9035 auto T = GetQuadraticEquation(AddRec);
9036 if (!T.hasValue())
9037 return None;
9038
9039 // Be careful about the return value: there can be two reasons for not
9040 // returning an actual number. First, if no solutions to the equations
9041 // were found, and second, if the solutions don't leave the given range.
9042 // The first case means that the actual solution is "unknown", the second
9043 // means that it's known, but not valid. If the solution is unknown, we
9044 // cannot make any conclusions.
9045 // Return a pair: the optional solution and a flag indicating if the
9046 // solution was found.
9047 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
9048 // Solve for signed overflow and unsigned overflow, pick the lower
9049 // solution.
9050 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
9051 << Bound << " (before multiplying by " << M << ")\n");
9052 Bound *= M; // The quadratic equation multiplier.
9053
9054 Optional<APInt> SO = None;
9055 if (BitWidth > 1) {
9056 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9057 "signed overflow\n");
9058 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
9059 }
9060 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9061 "unsigned overflow\n");
9062 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
9063 BitWidth+1);
9064
9065 auto LeavesRange = [&] (const APInt &X) {
9066 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
9067 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
9068 if (Range.contains(V0->getValue()))
9069 return false;
9070 // X should be at least 1, so X-1 is non-negative.
9071 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
9072 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
9073 if (Range.contains(V1->getValue()))
9074 return true;
9075 return false;
9076 };
9077
9078 // If SolveQuadraticEquationWrap returns None, it means that there can
9079 // be a solution, but the function failed to find it. We cannot treat it
9080 // as "no solution".
9081 if (!SO.hasValue() || !UO.hasValue())
9082 return { None, false };
9083
9084 // Check the smaller value first to see if it leaves the range.
9085 // At this point, both SO and UO must have values.
9086 Optional<APInt> Min = MinOptional(SO, UO);
9087 if (LeavesRange(*Min))
9088 return { Min, true };
9089 Optional<APInt> Max = Min == SO ? UO : SO;
9090 if (LeavesRange(*Max))
9091 return { Max, true };
9092
9093 // Solutions were found, but were eliminated, hence the "true".
9094 return { None, true };
9095 };
9096
9097 std::tie(A, B, C, M, BitWidth) = *T;
9098 // Lower bound is inclusive, subtract 1 to represent the exiting value.
9099 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
9100 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
9101 auto SL = SolveForBoundary(Lower);
9102 auto SU = SolveForBoundary(Upper);
9103 // If any of the solutions was unknown, no meaninigful conclusions can
9104 // be made.
9105 if (!SL.second || !SU.second)
9106 return None;
9107
9108 // Claim: The correct solution is not some value between Min and Max.
9109 //
9110 // Justification: Assuming that Min and Max are different values, one of
9111 // them is when the first signed overflow happens, the other is when the
9112 // first unsigned overflow happens. Crossing the range boundary is only
9113 // possible via an overflow (treating 0 as a special case of it, modeling
9114 // an overflow as crossing k*2^W for some k).
9115 //
9116 // The interesting case here is when Min was eliminated as an invalid
9117 // solution, but Max was not. The argument is that if there was another
9118 // overflow between Min and Max, it would also have been eliminated if
9119 // it was considered.
9120 //
9121 // For a given boundary, it is possible to have two overflows of the same
9122 // type (signed/unsigned) without having the other type in between: this
9123 // can happen when the vertex of the parabola is between the iterations
9124 // corresponding to the overflows. This is only possible when the two
9125 // overflows cross k*2^W for the same k. In such case, if the second one
9126 // left the range (and was the first one to do so), the first overflow
9127 // would have to enter the range, which would mean that either we had left
9128 // the range before or that we started outside of it. Both of these cases
9129 // are contradictions.
9130 //
9131 // Claim: In the case where SolveForBoundary returns None, the correct
9132 // solution is not some value between the Max for this boundary and the
9133 // Min of the other boundary.
9134 //
9135 // Justification: Assume that we had such Max_A and Min_B corresponding
9136 // to range boundaries A and B and such that Max_A < Min_B. If there was
9137 // a solution between Max_A and Min_B, it would have to be caused by an
9138 // overflow corresponding to either A or B. It cannot correspond to B,
9139 // since Min_B is the first occurrence of such an overflow. If it
9140 // corresponded to A, it would have to be either a signed or an unsigned
9141 // overflow that is larger than both eliminated overflows for A. But
9142 // between the eliminated overflows and this overflow, the values would
9143 // cover the entire value space, thus crossing the other boundary, which
9144 // is a contradiction.
9145
9146 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
9147 }
9148
9149 ScalarEvolution::ExitLimit
howFarToZero(const SCEV * V,const Loop * L,bool ControlsExit,bool AllowPredicates)9150 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
9151 bool AllowPredicates) {
9152
9153 // This is only used for loops with a "x != y" exit test. The exit condition
9154 // is now expressed as a single expression, V = x-y. So the exit test is
9155 // effectively V != 0. We know and take advantage of the fact that this
9156 // expression only being used in a comparison by zero context.
9157
9158 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9159 // If the value is a constant
9160 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9161 // If the value is already zero, the branch will execute zero times.
9162 if (C->getValue()->isZero()) return C;
9163 return getCouldNotCompute(); // Otherwise it will loop infinitely.
9164 }
9165
9166 const SCEVAddRecExpr *AddRec =
9167 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
9168
9169 if (!AddRec && AllowPredicates)
9170 // Try to make this an AddRec using runtime tests, in the first X
9171 // iterations of this loop, where X is the SCEV expression found by the
9172 // algorithm below.
9173 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
9174
9175 if (!AddRec || AddRec->getLoop() != L)
9176 return getCouldNotCompute();
9177
9178 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
9179 // the quadratic equation to solve it.
9180 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
9181 // We can only use this value if the chrec ends up with an exact zero
9182 // value at this index. When solving for "X*X != 5", for example, we
9183 // should not accept a root of 2.
9184 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
9185 const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
9186 return ExitLimit(R, R, false, Predicates);
9187 }
9188 return getCouldNotCompute();
9189 }
9190
9191 // Otherwise we can only handle this if it is affine.
9192 if (!AddRec->isAffine())
9193 return getCouldNotCompute();
9194
9195 // If this is an affine expression, the execution count of this branch is
9196 // the minimum unsigned root of the following equation:
9197 //
9198 // Start + Step*N = 0 (mod 2^BW)
9199 //
9200 // equivalent to:
9201 //
9202 // Step*N = -Start (mod 2^BW)
9203 //
9204 // where BW is the common bit width of Start and Step.
9205
9206 // Get the initial value for the loop.
9207 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
9208 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
9209
9210 // For now we handle only constant steps.
9211 //
9212 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9213 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9214 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
9215 // We have not yet seen any such cases.
9216 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
9217 if (!StepC || StepC->getValue()->isZero())
9218 return getCouldNotCompute();
9219
9220 // For positive steps (counting up until unsigned overflow):
9221 // N = -Start/Step (as unsigned)
9222 // For negative steps (counting down to zero):
9223 // N = Start/-Step
9224 // First compute the unsigned distance from zero in the direction of Step.
9225 bool CountDown = StepC->getAPInt().isNegative();
9226 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
9227
9228 // Handle unitary steps, which cannot wraparound.
9229 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
9230 // N = Distance (as unsigned)
9231 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
9232 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
9233 APInt MaxBECountBase = getUnsignedRangeMax(Distance);
9234 if (MaxBECountBase.ult(MaxBECount))
9235 MaxBECount = MaxBECountBase;
9236
9237 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
9238 // we end up with a loop whose backedge-taken count is n - 1. Detect this
9239 // case, and see if we can improve the bound.
9240 //
9241 // Explicitly handling this here is necessary because getUnsignedRange
9242 // isn't context-sensitive; it doesn't know that we only care about the
9243 // range inside the loop.
9244 const SCEV *Zero = getZero(Distance->getType());
9245 const SCEV *One = getOne(Distance->getType());
9246 const SCEV *DistancePlusOne = getAddExpr(Distance, One);
9247 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
9248 // If Distance + 1 doesn't overflow, we can compute the maximum distance
9249 // as "unsigned_max(Distance + 1) - 1".
9250 ConstantRange CR = getUnsignedRange(DistancePlusOne);
9251 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
9252 }
9253 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
9254 }
9255
9256 // If the condition controls loop exit (the loop exits only if the expression
9257 // is true) and the addition is no-wrap we can use unsigned divide to
9258 // compute the backedge count. In this case, the step may not divide the
9259 // distance, but we don't care because if the condition is "missed" the loop
9260 // will have undefined behavior due to wrapping.
9261 if (ControlsExit && AddRec->hasNoSelfWrap() &&
9262 loopHasNoAbnormalExits(AddRec->getLoop())) {
9263 const SCEV *Exact =
9264 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
9265 const SCEV *Max = getCouldNotCompute();
9266 if (Exact != getCouldNotCompute()) {
9267 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L));
9268 APInt BaseMaxInt = getUnsignedRangeMax(Exact);
9269 if (BaseMaxInt.ult(MaxInt))
9270 Max = getConstant(BaseMaxInt);
9271 else
9272 Max = getConstant(MaxInt);
9273 }
9274 return ExitLimit(Exact, Max, false, Predicates);
9275 }
9276
9277 // Solve the general equation.
9278 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
9279 getNegativeSCEV(Start), *this);
9280 const SCEV *M = E == getCouldNotCompute()
9281 ? E
9282 : getConstant(getUnsignedRangeMax(E));
9283 return ExitLimit(E, M, false, Predicates);
9284 }
9285
9286 ScalarEvolution::ExitLimit
howFarToNonZero(const SCEV * V,const Loop * L)9287 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
9288 // Loops that look like: while (X == 0) are very strange indeed. We don't
9289 // handle them yet except for the trivial case. This could be expanded in the
9290 // future as needed.
9291
9292 // If the value is a constant, check to see if it is known to be non-zero
9293 // already. If so, the backedge will execute zero times.
9294 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9295 if (!C->getValue()->isZero())
9296 return getZero(C->getType());
9297 return getCouldNotCompute(); // Otherwise it will loop infinitely.
9298 }
9299
9300 // We could implement others, but I really doubt anyone writes loops like
9301 // this, and if they did, they would already be constant folded.
9302 return getCouldNotCompute();
9303 }
9304
9305 std::pair<const BasicBlock *, const BasicBlock *>
getPredecessorWithUniqueSuccessorForBB(const BasicBlock * BB) const9306 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
9307 const {
9308 // If the block has a unique predecessor, then there is no path from the
9309 // predecessor to the block that does not go through the direct edge
9310 // from the predecessor to the block.
9311 if (const BasicBlock *Pred = BB->getSinglePredecessor())
9312 return {Pred, BB};
9313
9314 // A loop's header is defined to be a block that dominates the loop.
9315 // If the header has a unique predecessor outside the loop, it must be
9316 // a block that has exactly one successor that can reach the loop.
9317 if (const Loop *L = LI.getLoopFor(BB))
9318 return {L->getLoopPredecessor(), L->getHeader()};
9319
9320 return {nullptr, nullptr};
9321 }
9322
9323 /// SCEV structural equivalence is usually sufficient for testing whether two
9324 /// expressions are equal, however for the purposes of looking for a condition
9325 /// guarding a loop, it can be useful to be a little more general, since a
9326 /// front-end may have replicated the controlling expression.
HasSameValue(const SCEV * A,const SCEV * B)9327 static bool HasSameValue(const SCEV *A, const SCEV *B) {
9328 // Quick check to see if they are the same SCEV.
9329 if (A == B) return true;
9330
9331 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
9332 // Not all instructions that are "identical" compute the same value. For
9333 // instance, two distinct alloca instructions allocating the same type are
9334 // identical and do not read memory; but compute distinct values.
9335 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
9336 };
9337
9338 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
9339 // two different instructions with the same value. Check for this case.
9340 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
9341 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
9342 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
9343 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
9344 if (ComputesEqualValues(AI, BI))
9345 return true;
9346
9347 // Otherwise assume they may have a different value.
9348 return false;
9349 }
9350
SimplifyICmpOperands(ICmpInst::Predicate & Pred,const SCEV * & LHS,const SCEV * & RHS,unsigned Depth)9351 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
9352 const SCEV *&LHS, const SCEV *&RHS,
9353 unsigned Depth) {
9354 bool Changed = false;
9355 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
9356 // '0 != 0'.
9357 auto TrivialCase = [&](bool TriviallyTrue) {
9358 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9359 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
9360 return true;
9361 };
9362 // If we hit the max recursion limit bail out.
9363 if (Depth >= 3)
9364 return false;
9365
9366 // Canonicalize a constant to the right side.
9367 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
9368 // Check for both operands constant.
9369 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
9370 if (ConstantExpr::getICmp(Pred,
9371 LHSC->getValue(),
9372 RHSC->getValue())->isNullValue())
9373 return TrivialCase(false);
9374 else
9375 return TrivialCase(true);
9376 }
9377 // Otherwise swap the operands to put the constant on the right.
9378 std::swap(LHS, RHS);
9379 Pred = ICmpInst::getSwappedPredicate(Pred);
9380 Changed = true;
9381 }
9382
9383 // If we're comparing an addrec with a value which is loop-invariant in the
9384 // addrec's loop, put the addrec on the left. Also make a dominance check,
9385 // as both operands could be addrecs loop-invariant in each other's loop.
9386 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
9387 const Loop *L = AR->getLoop();
9388 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
9389 std::swap(LHS, RHS);
9390 Pred = ICmpInst::getSwappedPredicate(Pred);
9391 Changed = true;
9392 }
9393 }
9394
9395 // If there's a constant operand, canonicalize comparisons with boundary
9396 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9397 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
9398 const APInt &RA = RC->getAPInt();
9399
9400 bool SimplifiedByConstantRange = false;
9401
9402 if (!ICmpInst::isEquality(Pred)) {
9403 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
9404 if (ExactCR.isFullSet())
9405 return TrivialCase(true);
9406 else if (ExactCR.isEmptySet())
9407 return TrivialCase(false);
9408
9409 APInt NewRHS;
9410 CmpInst::Predicate NewPred;
9411 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
9412 ICmpInst::isEquality(NewPred)) {
9413 // We were able to convert an inequality to an equality.
9414 Pred = NewPred;
9415 RHS = getConstant(NewRHS);
9416 Changed = SimplifiedByConstantRange = true;
9417 }
9418 }
9419
9420 if (!SimplifiedByConstantRange) {
9421 switch (Pred) {
9422 default:
9423 break;
9424 case ICmpInst::ICMP_EQ:
9425 case ICmpInst::ICMP_NE:
9426 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
9427 if (!RA)
9428 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
9429 if (const SCEVMulExpr *ME =
9430 dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
9431 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
9432 ME->getOperand(0)->isAllOnesValue()) {
9433 RHS = AE->getOperand(1);
9434 LHS = ME->getOperand(1);
9435 Changed = true;
9436 }
9437 break;
9438
9439
9440 // The "Should have been caught earlier!" messages refer to the fact
9441 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9442 // should have fired on the corresponding cases, and canonicalized the
9443 // check to trivial case.
9444
9445 case ICmpInst::ICMP_UGE:
9446 assert(!RA.isMinValue() && "Should have been caught earlier!");
9447 Pred = ICmpInst::ICMP_UGT;
9448 RHS = getConstant(RA - 1);
9449 Changed = true;
9450 break;
9451 case ICmpInst::ICMP_ULE:
9452 assert(!RA.isMaxValue() && "Should have been caught earlier!");
9453 Pred = ICmpInst::ICMP_ULT;
9454 RHS = getConstant(RA + 1);
9455 Changed = true;
9456 break;
9457 case ICmpInst::ICMP_SGE:
9458 assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
9459 Pred = ICmpInst::ICMP_SGT;
9460 RHS = getConstant(RA - 1);
9461 Changed = true;
9462 break;
9463 case ICmpInst::ICMP_SLE:
9464 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
9465 Pred = ICmpInst::ICMP_SLT;
9466 RHS = getConstant(RA + 1);
9467 Changed = true;
9468 break;
9469 }
9470 }
9471 }
9472
9473 // Check for obvious equality.
9474 if (HasSameValue(LHS, RHS)) {
9475 if (ICmpInst::isTrueWhenEqual(Pred))
9476 return TrivialCase(true);
9477 if (ICmpInst::isFalseWhenEqual(Pred))
9478 return TrivialCase(false);
9479 }
9480
9481 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9482 // adding or subtracting 1 from one of the operands.
9483 switch (Pred) {
9484 case ICmpInst::ICMP_SLE:
9485 if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9486 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9487 SCEV::FlagNSW);
9488 Pred = ICmpInst::ICMP_SLT;
9489 Changed = true;
9490 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9491 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9492 SCEV::FlagNSW);
9493 Pred = ICmpInst::ICMP_SLT;
9494 Changed = true;
9495 }
9496 break;
9497 case ICmpInst::ICMP_SGE:
9498 if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9499 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9500 SCEV::FlagNSW);
9501 Pred = ICmpInst::ICMP_SGT;
9502 Changed = true;
9503 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9504 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9505 SCEV::FlagNSW);
9506 Pred = ICmpInst::ICMP_SGT;
9507 Changed = true;
9508 }
9509 break;
9510 case ICmpInst::ICMP_ULE:
9511 if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9512 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9513 SCEV::FlagNUW);
9514 Pred = ICmpInst::ICMP_ULT;
9515 Changed = true;
9516 } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9517 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9518 Pred = ICmpInst::ICMP_ULT;
9519 Changed = true;
9520 }
9521 break;
9522 case ICmpInst::ICMP_UGE:
9523 if (!getUnsignedRangeMin(RHS).isMinValue()) {
9524 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9525 Pred = ICmpInst::ICMP_UGT;
9526 Changed = true;
9527 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9528 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9529 SCEV::FlagNUW);
9530 Pred = ICmpInst::ICMP_UGT;
9531 Changed = true;
9532 }
9533 break;
9534 default:
9535 break;
9536 }
9537
9538 // TODO: More simplifications are possible here.
9539
9540 // Recursively simplify until we either hit a recursion limit or nothing
9541 // changes.
9542 if (Changed)
9543 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9544
9545 return Changed;
9546 }
9547
isKnownNegative(const SCEV * S)9548 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9549 return getSignedRangeMax(S).isNegative();
9550 }
9551
isKnownPositive(const SCEV * S)9552 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9553 return getSignedRangeMin(S).isStrictlyPositive();
9554 }
9555
isKnownNonNegative(const SCEV * S)9556 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9557 return !getSignedRangeMin(S).isNegative();
9558 }
9559
isKnownNonPositive(const SCEV * S)9560 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9561 return !getSignedRangeMax(S).isStrictlyPositive();
9562 }
9563
isKnownNonZero(const SCEV * S)9564 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9565 return isKnownNegative(S) || isKnownPositive(S);
9566 }
9567
9568 std::pair<const SCEV *, const SCEV *>
SplitIntoInitAndPostInc(const Loop * L,const SCEV * S)9569 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9570 // Compute SCEV on entry of loop L.
9571 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9572 if (Start == getCouldNotCompute())
9573 return { Start, Start };
9574 // Compute post increment SCEV for loop L.
9575 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9576 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9577 return { Start, PostInc };
9578 }
9579
isKnownViaInduction(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9580 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9581 const SCEV *LHS, const SCEV *RHS) {
9582 // First collect all loops.
9583 SmallPtrSet<const Loop *, 8> LoopsUsed;
9584 getUsedLoops(LHS, LoopsUsed);
9585 getUsedLoops(RHS, LoopsUsed);
9586
9587 if (LoopsUsed.empty())
9588 return false;
9589
9590 // Domination relationship must be a linear order on collected loops.
9591 #ifndef NDEBUG
9592 for (auto *L1 : LoopsUsed)
9593 for (auto *L2 : LoopsUsed)
9594 assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9595 DT.dominates(L2->getHeader(), L1->getHeader())) &&
9596 "Domination relationship is not a linear order");
9597 #endif
9598
9599 const Loop *MDL =
9600 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9601 [&](const Loop *L1, const Loop *L2) {
9602 return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9603 });
9604
9605 // Get init and post increment value for LHS.
9606 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9607 // if LHS contains unknown non-invariant SCEV then bail out.
9608 if (SplitLHS.first == getCouldNotCompute())
9609 return false;
9610 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9611 // Get init and post increment value for RHS.
9612 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9613 // if RHS contains unknown non-invariant SCEV then bail out.
9614 if (SplitRHS.first == getCouldNotCompute())
9615 return false;
9616 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9617 // It is possible that init SCEV contains an invariant load but it does
9618 // not dominate MDL and is not available at MDL loop entry, so we should
9619 // check it here.
9620 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9621 !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9622 return false;
9623
9624 // It seems backedge guard check is faster than entry one so in some cases
9625 // it can speed up whole estimation by short circuit
9626 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9627 SplitRHS.second) &&
9628 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9629 }
9630
isKnownPredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9631 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9632 const SCEV *LHS, const SCEV *RHS) {
9633 // Canonicalize the inputs first.
9634 (void)SimplifyICmpOperands(Pred, LHS, RHS);
9635
9636 if (isKnownViaInduction(Pred, LHS, RHS))
9637 return true;
9638
9639 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9640 return true;
9641
9642 // Otherwise see what can be done with some simple reasoning.
9643 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9644 }
9645
evaluatePredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9646 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
9647 const SCEV *LHS,
9648 const SCEV *RHS) {
9649 if (isKnownPredicate(Pred, LHS, RHS))
9650 return true;
9651 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
9652 return false;
9653 return None;
9654 }
9655
isKnownPredicateAt(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Instruction * Context)9656 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
9657 const SCEV *LHS, const SCEV *RHS,
9658 const Instruction *Context) {
9659 // TODO: Analyze guards and assumes from Context's block.
9660 return isKnownPredicate(Pred, LHS, RHS) ||
9661 isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS);
9662 }
9663
9664 Optional<bool>
evaluatePredicateAt(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Instruction * Context)9665 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
9666 const SCEV *RHS,
9667 const Instruction *Context) {
9668 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
9669 if (KnownWithoutContext)
9670 return KnownWithoutContext;
9671
9672 if (isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS))
9673 return true;
9674 else if (isBasicBlockEntryGuardedByCond(Context->getParent(),
9675 ICmpInst::getInversePredicate(Pred),
9676 LHS, RHS))
9677 return false;
9678 return None;
9679 }
9680
isKnownOnEveryIteration(ICmpInst::Predicate Pred,const SCEVAddRecExpr * LHS,const SCEV * RHS)9681 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9682 const SCEVAddRecExpr *LHS,
9683 const SCEV *RHS) {
9684 const Loop *L = LHS->getLoop();
9685 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9686 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9687 }
9688
9689 Optional<ScalarEvolution::MonotonicPredicateType>
getMonotonicPredicateType(const SCEVAddRecExpr * LHS,ICmpInst::Predicate Pred)9690 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
9691 ICmpInst::Predicate Pred) {
9692 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
9693
9694 #ifndef NDEBUG
9695 // Verify an invariant: inverting the predicate should turn a monotonically
9696 // increasing change to a monotonically decreasing one, and vice versa.
9697 if (Result) {
9698 auto ResultSwapped =
9699 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
9700
9701 assert(ResultSwapped.hasValue() && "should be able to analyze both!");
9702 assert(ResultSwapped.getValue() != Result.getValue() &&
9703 "monotonicity should flip as we flip the predicate");
9704 }
9705 #endif
9706
9707 return Result;
9708 }
9709
9710 Optional<ScalarEvolution::MonotonicPredicateType>
getMonotonicPredicateTypeImpl(const SCEVAddRecExpr * LHS,ICmpInst::Predicate Pred)9711 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
9712 ICmpInst::Predicate Pred) {
9713 // A zero step value for LHS means the induction variable is essentially a
9714 // loop invariant value. We don't really depend on the predicate actually
9715 // flipping from false to true (for increasing predicates, and the other way
9716 // around for decreasing predicates), all we care about is that *if* the
9717 // predicate changes then it only changes from false to true.
9718 //
9719 // A zero step value in itself is not very useful, but there may be places
9720 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9721 // as general as possible.
9722
9723 // Only handle LE/LT/GE/GT predicates.
9724 if (!ICmpInst::isRelational(Pred))
9725 return None;
9726
9727 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
9728 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
9729 "Should be greater or less!");
9730
9731 // Check that AR does not wrap.
9732 if (ICmpInst::isUnsigned(Pred)) {
9733 if (!LHS->hasNoUnsignedWrap())
9734 return None;
9735 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9736 } else {
9737 assert(ICmpInst::isSigned(Pred) &&
9738 "Relational predicate is either signed or unsigned!");
9739 if (!LHS->hasNoSignedWrap())
9740 return None;
9741
9742 const SCEV *Step = LHS->getStepRecurrence(*this);
9743
9744 if (isKnownNonNegative(Step))
9745 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9746
9747 if (isKnownNonPositive(Step))
9748 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
9749
9750 return None;
9751 }
9752 }
9753
9754 Optional<ScalarEvolution::LoopInvariantPredicate>
getLoopInvariantPredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Loop * L)9755 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
9756 const SCEV *LHS, const SCEV *RHS,
9757 const Loop *L) {
9758
9759 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9760 if (!isLoopInvariant(RHS, L)) {
9761 if (!isLoopInvariant(LHS, L))
9762 return None;
9763
9764 std::swap(LHS, RHS);
9765 Pred = ICmpInst::getSwappedPredicate(Pred);
9766 }
9767
9768 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9769 if (!ArLHS || ArLHS->getLoop() != L)
9770 return None;
9771
9772 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
9773 if (!MonotonicType)
9774 return None;
9775 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9776 // true as the loop iterates, and the backedge is control dependent on
9777 // "ArLHS `Pred` RHS" == true then we can reason as follows:
9778 //
9779 // * if the predicate was false in the first iteration then the predicate
9780 // is never evaluated again, since the loop exits without taking the
9781 // backedge.
9782 // * if the predicate was true in the first iteration then it will
9783 // continue to be true for all future iterations since it is
9784 // monotonically increasing.
9785 //
9786 // For both the above possibilities, we can replace the loop varying
9787 // predicate with its value on the first iteration of the loop (which is
9788 // loop invariant).
9789 //
9790 // A similar reasoning applies for a monotonically decreasing predicate, by
9791 // replacing true with false and false with true in the above two bullets.
9792 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
9793 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9794
9795 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9796 return None;
9797
9798 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
9799 }
9800
9801 Optional<ScalarEvolution::LoopInvariantPredicate>
getLoopInvariantExitCondDuringFirstIterations(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Loop * L,const Instruction * Context,const SCEV * MaxIter)9802 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
9803 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9804 const Instruction *Context, const SCEV *MaxIter) {
9805 // Try to prove the following set of facts:
9806 // - The predicate is monotonic in the iteration space.
9807 // - If the check does not fail on the 1st iteration:
9808 // - No overflow will happen during first MaxIter iterations;
9809 // - It will not fail on the MaxIter'th iteration.
9810 // If the check does fail on the 1st iteration, we leave the loop and no
9811 // other checks matter.
9812
9813 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9814 if (!isLoopInvariant(RHS, L)) {
9815 if (!isLoopInvariant(LHS, L))
9816 return None;
9817
9818 std::swap(LHS, RHS);
9819 Pred = ICmpInst::getSwappedPredicate(Pred);
9820 }
9821
9822 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
9823 if (!AR || AR->getLoop() != L)
9824 return None;
9825
9826 // The predicate must be relational (i.e. <, <=, >=, >).
9827 if (!ICmpInst::isRelational(Pred))
9828 return None;
9829
9830 // TODO: Support steps other than +/- 1.
9831 const SCEV *Step = AR->getStepRecurrence(*this);
9832 auto *One = getOne(Step->getType());
9833 auto *MinusOne = getNegativeSCEV(One);
9834 if (Step != One && Step != MinusOne)
9835 return None;
9836
9837 // Type mismatch here means that MaxIter is potentially larger than max
9838 // unsigned value in start type, which mean we cannot prove no wrap for the
9839 // indvar.
9840 if (AR->getType() != MaxIter->getType())
9841 return None;
9842
9843 // Value of IV on suggested last iteration.
9844 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
9845 // Does it still meet the requirement?
9846 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
9847 return None;
9848 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
9849 // not exceed max unsigned value of this type), this effectively proves
9850 // that there is no wrap during the iteration. To prove that there is no
9851 // signed/unsigned wrap, we need to check that
9852 // Start <= Last for step = 1 or Start >= Last for step = -1.
9853 ICmpInst::Predicate NoOverflowPred =
9854 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
9855 if (Step == MinusOne)
9856 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
9857 const SCEV *Start = AR->getStart();
9858 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context))
9859 return None;
9860
9861 // Everything is fine.
9862 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
9863 }
9864
isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9865 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9866 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9867 if (HasSameValue(LHS, RHS))
9868 return ICmpInst::isTrueWhenEqual(Pred);
9869
9870 // This code is split out from isKnownPredicate because it is called from
9871 // within isLoopEntryGuardedByCond.
9872
9873 auto CheckRanges = [&](const ConstantRange &RangeLHS,
9874 const ConstantRange &RangeRHS) {
9875 return RangeLHS.icmp(Pred, RangeRHS);
9876 };
9877
9878 // The check at the top of the function catches the case where the values are
9879 // known to be equal.
9880 if (Pred == CmpInst::ICMP_EQ)
9881 return false;
9882
9883 if (Pred == CmpInst::ICMP_NE)
9884 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9885 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9886 isKnownNonZero(getMinusSCEV(LHS, RHS));
9887
9888 if (CmpInst::isSigned(Pred))
9889 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9890
9891 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9892 }
9893
isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9894 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9895 const SCEV *LHS,
9896 const SCEV *RHS) {
9897 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9898 // Return Y via OutY.
9899 auto MatchBinaryAddToConst =
9900 [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9901 SCEV::NoWrapFlags ExpectedFlags) {
9902 const SCEV *NonConstOp, *ConstOp;
9903 SCEV::NoWrapFlags FlagsPresent;
9904
9905 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9906 !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9907 return false;
9908
9909 OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9910 return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9911 };
9912
9913 APInt C;
9914
9915 switch (Pred) {
9916 default:
9917 break;
9918
9919 case ICmpInst::ICMP_SGE:
9920 std::swap(LHS, RHS);
9921 LLVM_FALLTHROUGH;
9922 case ICmpInst::ICMP_SLE:
9923 // X s<= (X + C)<nsw> if C >= 0
9924 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9925 return true;
9926
9927 // (X + C)<nsw> s<= X if C <= 0
9928 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9929 !C.isStrictlyPositive())
9930 return true;
9931 break;
9932
9933 case ICmpInst::ICMP_SGT:
9934 std::swap(LHS, RHS);
9935 LLVM_FALLTHROUGH;
9936 case ICmpInst::ICMP_SLT:
9937 // X s< (X + C)<nsw> if C > 0
9938 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9939 C.isStrictlyPositive())
9940 return true;
9941
9942 // (X + C)<nsw> s< X if C < 0
9943 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9944 return true;
9945 break;
9946
9947 case ICmpInst::ICMP_UGE:
9948 std::swap(LHS, RHS);
9949 LLVM_FALLTHROUGH;
9950 case ICmpInst::ICMP_ULE:
9951 // X u<= (X + C)<nuw> for any C
9952 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW))
9953 return true;
9954 break;
9955
9956 case ICmpInst::ICMP_UGT:
9957 std::swap(LHS, RHS);
9958 LLVM_FALLTHROUGH;
9959 case ICmpInst::ICMP_ULT:
9960 // X u< (X + C)<nuw> if C != 0
9961 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW) && !C.isNullValue())
9962 return true;
9963 break;
9964 }
9965
9966 return false;
9967 }
9968
isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9969 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9970 const SCEV *LHS,
9971 const SCEV *RHS) {
9972 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9973 return false;
9974
9975 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9976 // the stack can result in exponential time complexity.
9977 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9978
9979 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9980 //
9981 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9982 // isKnownPredicate. isKnownPredicate is more powerful, but also more
9983 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9984 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
9985 // use isKnownPredicate later if needed.
9986 return isKnownNonNegative(RHS) &&
9987 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9988 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9989 }
9990
isImpliedViaGuard(const BasicBlock * BB,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9991 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
9992 ICmpInst::Predicate Pred,
9993 const SCEV *LHS, const SCEV *RHS) {
9994 // No need to even try if we know the module has no guards.
9995 if (!HasGuards)
9996 return false;
9997
9998 return any_of(*BB, [&](const Instruction &I) {
9999 using namespace llvm::PatternMatch;
10000
10001 Value *Condition;
10002 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
10003 m_Value(Condition))) &&
10004 isImpliedCond(Pred, LHS, RHS, Condition, false);
10005 });
10006 }
10007
10008 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
10009 /// protected by a conditional between LHS and RHS. This is used to
10010 /// to eliminate casts.
10011 bool
isLoopBackedgeGuardedByCond(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10012 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
10013 ICmpInst::Predicate Pred,
10014 const SCEV *LHS, const SCEV *RHS) {
10015 // Interpret a null as meaning no loop, where there is obviously no guard
10016 // (interprocedural conditions notwithstanding).
10017 if (!L) return true;
10018
10019 if (VerifyIR)
10020 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
10021 "This cannot be done on broken IR!");
10022
10023
10024 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10025 return true;
10026
10027 BasicBlock *Latch = L->getLoopLatch();
10028 if (!Latch)
10029 return false;
10030
10031 BranchInst *LoopContinuePredicate =
10032 dyn_cast<BranchInst>(Latch->getTerminator());
10033 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
10034 isImpliedCond(Pred, LHS, RHS,
10035 LoopContinuePredicate->getCondition(),
10036 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
10037 return true;
10038
10039 // We don't want more than one activation of the following loops on the stack
10040 // -- that can lead to O(n!) time complexity.
10041 if (WalkingBEDominatingConds)
10042 return false;
10043
10044 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
10045
10046 // See if we can exploit a trip count to prove the predicate.
10047 const auto &BETakenInfo = getBackedgeTakenInfo(L);
10048 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
10049 if (LatchBECount != getCouldNotCompute()) {
10050 // We know that Latch branches back to the loop header exactly
10051 // LatchBECount times. This means the backdege condition at Latch is
10052 // equivalent to "{0,+,1} u< LatchBECount".
10053 Type *Ty = LatchBECount->getType();
10054 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
10055 const SCEV *LoopCounter =
10056 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
10057 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
10058 LatchBECount))
10059 return true;
10060 }
10061
10062 // Check conditions due to any @llvm.assume intrinsics.
10063 for (auto &AssumeVH : AC.assumptions()) {
10064 if (!AssumeVH)
10065 continue;
10066 auto *CI = cast<CallInst>(AssumeVH);
10067 if (!DT.dominates(CI, Latch->getTerminator()))
10068 continue;
10069
10070 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
10071 return true;
10072 }
10073
10074 // If the loop is not reachable from the entry block, we risk running into an
10075 // infinite loop as we walk up into the dom tree. These loops do not matter
10076 // anyway, so we just return a conservative answer when we see them.
10077 if (!DT.isReachableFromEntry(L->getHeader()))
10078 return false;
10079
10080 if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
10081 return true;
10082
10083 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
10084 DTN != HeaderDTN; DTN = DTN->getIDom()) {
10085 assert(DTN && "should reach the loop header before reaching the root!");
10086
10087 BasicBlock *BB = DTN->getBlock();
10088 if (isImpliedViaGuard(BB, Pred, LHS, RHS))
10089 return true;
10090
10091 BasicBlock *PBB = BB->getSinglePredecessor();
10092 if (!PBB)
10093 continue;
10094
10095 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
10096 if (!ContinuePredicate || !ContinuePredicate->isConditional())
10097 continue;
10098
10099 Value *Condition = ContinuePredicate->getCondition();
10100
10101 // If we have an edge `E` within the loop body that dominates the only
10102 // latch, the condition guarding `E` also guards the backedge. This
10103 // reasoning works only for loops with a single latch.
10104
10105 BasicBlockEdge DominatingEdge(PBB, BB);
10106 if (DominatingEdge.isSingleEdge()) {
10107 // We're constructively (and conservatively) enumerating edges within the
10108 // loop body that dominate the latch. The dominator tree better agree
10109 // with us on this:
10110 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
10111
10112 if (isImpliedCond(Pred, LHS, RHS, Condition,
10113 BB != ContinuePredicate->getSuccessor(0)))
10114 return true;
10115 }
10116 }
10117
10118 return false;
10119 }
10120
isBasicBlockEntryGuardedByCond(const BasicBlock * BB,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10121 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
10122 ICmpInst::Predicate Pred,
10123 const SCEV *LHS,
10124 const SCEV *RHS) {
10125 if (VerifyIR)
10126 assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
10127 "This cannot be done on broken IR!");
10128
10129 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
10130 // the facts (a >= b && a != b) separately. A typical situation is when the
10131 // non-strict comparison is known from ranges and non-equality is known from
10132 // dominating predicates. If we are proving strict comparison, we always try
10133 // to prove non-equality and non-strict comparison separately.
10134 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
10135 const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
10136 bool ProvedNonStrictComparison = false;
10137 bool ProvedNonEquality = false;
10138
10139 auto SplitAndProve =
10140 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
10141 if (!ProvedNonStrictComparison)
10142 ProvedNonStrictComparison = Fn(NonStrictPredicate);
10143 if (!ProvedNonEquality)
10144 ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
10145 if (ProvedNonStrictComparison && ProvedNonEquality)
10146 return true;
10147 return false;
10148 };
10149
10150 if (ProvingStrictComparison) {
10151 auto ProofFn = [&](ICmpInst::Predicate P) {
10152 return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
10153 };
10154 if (SplitAndProve(ProofFn))
10155 return true;
10156 }
10157
10158 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
10159 auto ProveViaGuard = [&](const BasicBlock *Block) {
10160 if (isImpliedViaGuard(Block, Pred, LHS, RHS))
10161 return true;
10162 if (ProvingStrictComparison) {
10163 auto ProofFn = [&](ICmpInst::Predicate P) {
10164 return isImpliedViaGuard(Block, P, LHS, RHS);
10165 };
10166 if (SplitAndProve(ProofFn))
10167 return true;
10168 }
10169 return false;
10170 };
10171
10172 // Try to prove (Pred, LHS, RHS) using isImpliedCond.
10173 auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
10174 const Instruction *Context = &BB->front();
10175 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context))
10176 return true;
10177 if (ProvingStrictComparison) {
10178 auto ProofFn = [&](ICmpInst::Predicate P) {
10179 return isImpliedCond(P, LHS, RHS, Condition, Inverse, Context);
10180 };
10181 if (SplitAndProve(ProofFn))
10182 return true;
10183 }
10184 return false;
10185 };
10186
10187 // Starting at the block's predecessor, climb up the predecessor chain, as long
10188 // as there are predecessors that can be found that have unique successors
10189 // leading to the original block.
10190 const Loop *ContainingLoop = LI.getLoopFor(BB);
10191 const BasicBlock *PredBB;
10192 if (ContainingLoop && ContainingLoop->getHeader() == BB)
10193 PredBB = ContainingLoop->getLoopPredecessor();
10194 else
10195 PredBB = BB->getSinglePredecessor();
10196 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
10197 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
10198 if (ProveViaGuard(Pair.first))
10199 return true;
10200
10201 const BranchInst *LoopEntryPredicate =
10202 dyn_cast<BranchInst>(Pair.first->getTerminator());
10203 if (!LoopEntryPredicate ||
10204 LoopEntryPredicate->isUnconditional())
10205 continue;
10206
10207 if (ProveViaCond(LoopEntryPredicate->getCondition(),
10208 LoopEntryPredicate->getSuccessor(0) != Pair.second))
10209 return true;
10210 }
10211
10212 // Check conditions due to any @llvm.assume intrinsics.
10213 for (auto &AssumeVH : AC.assumptions()) {
10214 if (!AssumeVH)
10215 continue;
10216 auto *CI = cast<CallInst>(AssumeVH);
10217 if (!DT.dominates(CI, BB))
10218 continue;
10219
10220 if (ProveViaCond(CI->getArgOperand(0), false))
10221 return true;
10222 }
10223
10224 return false;
10225 }
10226
isLoopEntryGuardedByCond(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10227 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
10228 ICmpInst::Predicate Pred,
10229 const SCEV *LHS,
10230 const SCEV *RHS) {
10231 // Interpret a null as meaning no loop, where there is obviously no guard
10232 // (interprocedural conditions notwithstanding).
10233 if (!L)
10234 return false;
10235
10236 // Both LHS and RHS must be available at loop entry.
10237 assert(isAvailableAtLoopEntry(LHS, L) &&
10238 "LHS is not available at Loop Entry");
10239 assert(isAvailableAtLoopEntry(RHS, L) &&
10240 "RHS is not available at Loop Entry");
10241
10242 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10243 return true;
10244
10245 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
10246 }
10247
isImpliedCond(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Value * FoundCondValue,bool Inverse,const Instruction * Context)10248 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10249 const SCEV *RHS,
10250 const Value *FoundCondValue, bool Inverse,
10251 const Instruction *Context) {
10252 // False conditions implies anything. Do not bother analyzing it further.
10253 if (FoundCondValue ==
10254 ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
10255 return true;
10256
10257 if (!PendingLoopPredicates.insert(FoundCondValue).second)
10258 return false;
10259
10260 auto ClearOnExit =
10261 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
10262
10263 // Recursively handle And and Or conditions.
10264 const Value *Op0, *Op1;
10265 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
10266 if (!Inverse)
10267 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) ||
10268 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context);
10269 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
10270 if (Inverse)
10271 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) ||
10272 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context);
10273 }
10274
10275 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
10276 if (!ICI) return false;
10277
10278 // Now that we found a conditional branch that dominates the loop or controls
10279 // the loop latch. Check to see if it is the comparison we are looking for.
10280 ICmpInst::Predicate FoundPred;
10281 if (Inverse)
10282 FoundPred = ICI->getInversePredicate();
10283 else
10284 FoundPred = ICI->getPredicate();
10285
10286 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
10287 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
10288
10289 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context);
10290 }
10291
isImpliedCond(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,ICmpInst::Predicate FoundPred,const SCEV * FoundLHS,const SCEV * FoundRHS,const Instruction * Context)10292 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10293 const SCEV *RHS,
10294 ICmpInst::Predicate FoundPred,
10295 const SCEV *FoundLHS, const SCEV *FoundRHS,
10296 const Instruction *Context) {
10297 // Balance the types.
10298 if (getTypeSizeInBits(LHS->getType()) <
10299 getTypeSizeInBits(FoundLHS->getType())) {
10300 // For unsigned and equality predicates, try to prove that both found
10301 // operands fit into narrow unsigned range. If so, try to prove facts in
10302 // narrow types.
10303 if (!CmpInst::isSigned(FoundPred)) {
10304 auto *NarrowType = LHS->getType();
10305 auto *WideType = FoundLHS->getType();
10306 auto BitWidth = getTypeSizeInBits(NarrowType);
10307 const SCEV *MaxValue = getZeroExtendExpr(
10308 getConstant(APInt::getMaxValue(BitWidth)), WideType);
10309 if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) &&
10310 isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) {
10311 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
10312 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
10313 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
10314 TruncFoundRHS, Context))
10315 return true;
10316 }
10317 }
10318
10319 if (CmpInst::isSigned(Pred)) {
10320 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
10321 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
10322 } else {
10323 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
10324 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
10325 }
10326 } else if (getTypeSizeInBits(LHS->getType()) >
10327 getTypeSizeInBits(FoundLHS->getType())) {
10328 if (CmpInst::isSigned(FoundPred)) {
10329 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
10330 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
10331 } else {
10332 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
10333 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
10334 }
10335 }
10336 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
10337 FoundRHS, Context);
10338 }
10339
isImpliedCondBalancedTypes(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,ICmpInst::Predicate FoundPred,const SCEV * FoundLHS,const SCEV * FoundRHS,const Instruction * Context)10340 bool ScalarEvolution::isImpliedCondBalancedTypes(
10341 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10342 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
10343 const Instruction *Context) {
10344 assert(getTypeSizeInBits(LHS->getType()) ==
10345 getTypeSizeInBits(FoundLHS->getType()) &&
10346 "Types should be balanced!");
10347 // Canonicalize the query to match the way instcombine will have
10348 // canonicalized the comparison.
10349 if (SimplifyICmpOperands(Pred, LHS, RHS))
10350 if (LHS == RHS)
10351 return CmpInst::isTrueWhenEqual(Pred);
10352 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
10353 if (FoundLHS == FoundRHS)
10354 return CmpInst::isFalseWhenEqual(FoundPred);
10355
10356 // Check to see if we can make the LHS or RHS match.
10357 if (LHS == FoundRHS || RHS == FoundLHS) {
10358 if (isa<SCEVConstant>(RHS)) {
10359 std::swap(FoundLHS, FoundRHS);
10360 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
10361 } else {
10362 std::swap(LHS, RHS);
10363 Pred = ICmpInst::getSwappedPredicate(Pred);
10364 }
10365 }
10366
10367 // Check whether the found predicate is the same as the desired predicate.
10368 if (FoundPred == Pred)
10369 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10370
10371 // Check whether swapping the found predicate makes it the same as the
10372 // desired predicate.
10373 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
10374 // We can write the implication
10375 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS
10376 // using one of the following ways:
10377 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS
10378 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS
10379 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS
10380 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS
10381 // Forms 1. and 2. require swapping the operands of one condition. Don't
10382 // do this if it would break canonical constant/addrec ordering.
10383 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
10384 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
10385 Context);
10386 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
10387 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context);
10388
10389 // There's no clear preference between forms 3. and 4., try both.
10390 return isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
10391 FoundLHS, FoundRHS, Context) ||
10392 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
10393 getNotSCEV(FoundRHS), Context);
10394 }
10395
10396 // Unsigned comparison is the same as signed comparison when both the operands
10397 // are non-negative.
10398 if (CmpInst::isUnsigned(FoundPred) &&
10399 CmpInst::getSignedPredicate(FoundPred) == Pred &&
10400 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
10401 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10402
10403 // Check if we can make progress by sharpening ranges.
10404 if (FoundPred == ICmpInst::ICMP_NE &&
10405 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
10406
10407 const SCEVConstant *C = nullptr;
10408 const SCEV *V = nullptr;
10409
10410 if (isa<SCEVConstant>(FoundLHS)) {
10411 C = cast<SCEVConstant>(FoundLHS);
10412 V = FoundRHS;
10413 } else {
10414 C = cast<SCEVConstant>(FoundRHS);
10415 V = FoundLHS;
10416 }
10417
10418 // The guarding predicate tells us that C != V. If the known range
10419 // of V is [C, t), we can sharpen the range to [C + 1, t). The
10420 // range we consider has to correspond to same signedness as the
10421 // predicate we're interested in folding.
10422
10423 APInt Min = ICmpInst::isSigned(Pred) ?
10424 getSignedRangeMin(V) : getUnsignedRangeMin(V);
10425
10426 if (Min == C->getAPInt()) {
10427 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
10428 // This is true even if (Min + 1) wraps around -- in case of
10429 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
10430
10431 APInt SharperMin = Min + 1;
10432
10433 switch (Pred) {
10434 case ICmpInst::ICMP_SGE:
10435 case ICmpInst::ICMP_UGE:
10436 // We know V `Pred` SharperMin. If this implies LHS `Pred`
10437 // RHS, we're done.
10438 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
10439 Context))
10440 return true;
10441 LLVM_FALLTHROUGH;
10442
10443 case ICmpInst::ICMP_SGT:
10444 case ICmpInst::ICMP_UGT:
10445 // We know from the range information that (V `Pred` Min ||
10446 // V == Min). We know from the guarding condition that !(V
10447 // == Min). This gives us
10448 //
10449 // V `Pred` Min || V == Min && !(V == Min)
10450 // => V `Pred` Min
10451 //
10452 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
10453
10454 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min),
10455 Context))
10456 return true;
10457 break;
10458
10459 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
10460 case ICmpInst::ICMP_SLE:
10461 case ICmpInst::ICMP_ULE:
10462 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10463 LHS, V, getConstant(SharperMin), Context))
10464 return true;
10465 LLVM_FALLTHROUGH;
10466
10467 case ICmpInst::ICMP_SLT:
10468 case ICmpInst::ICMP_ULT:
10469 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10470 LHS, V, getConstant(Min), Context))
10471 return true;
10472 break;
10473
10474 default:
10475 // No change
10476 break;
10477 }
10478 }
10479 }
10480
10481 // Check whether the actual condition is beyond sufficient.
10482 if (FoundPred == ICmpInst::ICMP_EQ)
10483 if (ICmpInst::isTrueWhenEqual(Pred))
10484 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context))
10485 return true;
10486 if (Pred == ICmpInst::ICMP_NE)
10487 if (!ICmpInst::isTrueWhenEqual(FoundPred))
10488 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS,
10489 Context))
10490 return true;
10491
10492 // Otherwise assume the worst.
10493 return false;
10494 }
10495
splitBinaryAdd(const SCEV * Expr,const SCEV * & L,const SCEV * & R,SCEV::NoWrapFlags & Flags)10496 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
10497 const SCEV *&L, const SCEV *&R,
10498 SCEV::NoWrapFlags &Flags) {
10499 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
10500 if (!AE || AE->getNumOperands() != 2)
10501 return false;
10502
10503 L = AE->getOperand(0);
10504 R = AE->getOperand(1);
10505 Flags = AE->getNoWrapFlags();
10506 return true;
10507 }
10508
computeConstantDifference(const SCEV * More,const SCEV * Less)10509 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
10510 const SCEV *Less) {
10511 // We avoid subtracting expressions here because this function is usually
10512 // fairly deep in the call stack (i.e. is called many times).
10513
10514 // X - X = 0.
10515 if (More == Less)
10516 return APInt(getTypeSizeInBits(More->getType()), 0);
10517
10518 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
10519 const auto *LAR = cast<SCEVAddRecExpr>(Less);
10520 const auto *MAR = cast<SCEVAddRecExpr>(More);
10521
10522 if (LAR->getLoop() != MAR->getLoop())
10523 return None;
10524
10525 // We look at affine expressions only; not for correctness but to keep
10526 // getStepRecurrence cheap.
10527 if (!LAR->isAffine() || !MAR->isAffine())
10528 return None;
10529
10530 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
10531 return None;
10532
10533 Less = LAR->getStart();
10534 More = MAR->getStart();
10535
10536 // fall through
10537 }
10538
10539 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
10540 const auto &M = cast<SCEVConstant>(More)->getAPInt();
10541 const auto &L = cast<SCEVConstant>(Less)->getAPInt();
10542 return M - L;
10543 }
10544
10545 SCEV::NoWrapFlags Flags;
10546 const SCEV *LLess = nullptr, *RLess = nullptr;
10547 const SCEV *LMore = nullptr, *RMore = nullptr;
10548 const SCEVConstant *C1 = nullptr, *C2 = nullptr;
10549 // Compare (X + C1) vs X.
10550 if (splitBinaryAdd(Less, LLess, RLess, Flags))
10551 if ((C1 = dyn_cast<SCEVConstant>(LLess)))
10552 if (RLess == More)
10553 return -(C1->getAPInt());
10554
10555 // Compare X vs (X + C2).
10556 if (splitBinaryAdd(More, LMore, RMore, Flags))
10557 if ((C2 = dyn_cast<SCEVConstant>(LMore)))
10558 if (RMore == Less)
10559 return C2->getAPInt();
10560
10561 // Compare (X + C1) vs (X + C2).
10562 if (C1 && C2 && RLess == RMore)
10563 return C2->getAPInt() - C1->getAPInt();
10564
10565 return None;
10566 }
10567
isImpliedCondOperandsViaAddRecStart(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,const Instruction * Context)10568 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
10569 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10570 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) {
10571 // Try to recognize the following pattern:
10572 //
10573 // FoundRHS = ...
10574 // ...
10575 // loop:
10576 // FoundLHS = {Start,+,W}
10577 // context_bb: // Basic block from the same loop
10578 // known(Pred, FoundLHS, FoundRHS)
10579 //
10580 // If some predicate is known in the context of a loop, it is also known on
10581 // each iteration of this loop, including the first iteration. Therefore, in
10582 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
10583 // prove the original pred using this fact.
10584 if (!Context)
10585 return false;
10586 const BasicBlock *ContextBB = Context->getParent();
10587 // Make sure AR varies in the context block.
10588 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
10589 const Loop *L = AR->getLoop();
10590 // Make sure that context belongs to the loop and executes on 1st iteration
10591 // (if it ever executes at all).
10592 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10593 return false;
10594 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
10595 return false;
10596 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
10597 }
10598
10599 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
10600 const Loop *L = AR->getLoop();
10601 // Make sure that context belongs to the loop and executes on 1st iteration
10602 // (if it ever executes at all).
10603 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10604 return false;
10605 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
10606 return false;
10607 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
10608 }
10609
10610 return false;
10611 }
10612
isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)10613 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
10614 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10615 const SCEV *FoundLHS, const SCEV *FoundRHS) {
10616 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
10617 return false;
10618
10619 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10620 if (!AddRecLHS)
10621 return false;
10622
10623 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
10624 if (!AddRecFoundLHS)
10625 return false;
10626
10627 // We'd like to let SCEV reason about control dependencies, so we constrain
10628 // both the inequalities to be about add recurrences on the same loop. This
10629 // way we can use isLoopEntryGuardedByCond later.
10630
10631 const Loop *L = AddRecFoundLHS->getLoop();
10632 if (L != AddRecLHS->getLoop())
10633 return false;
10634
10635 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
10636 //
10637 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
10638 // ... (2)
10639 //
10640 // Informal proof for (2), assuming (1) [*]:
10641 //
10642 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
10643 //
10644 // Then
10645 //
10646 // FoundLHS s< FoundRHS s< INT_MIN - C
10647 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
10648 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
10649 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
10650 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
10651 // <=> FoundLHS + C s< FoundRHS + C
10652 //
10653 // [*]: (1) can be proved by ruling out overflow.
10654 //
10655 // [**]: This can be proved by analyzing all the four possibilities:
10656 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
10657 // (A s>= 0, B s>= 0).
10658 //
10659 // Note:
10660 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
10661 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
10662 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
10663 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
10664 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
10665 // C)".
10666
10667 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
10668 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
10669 if (!LDiff || !RDiff || *LDiff != *RDiff)
10670 return false;
10671
10672 if (LDiff->isMinValue())
10673 return true;
10674
10675 APInt FoundRHSLimit;
10676
10677 if (Pred == CmpInst::ICMP_ULT) {
10678 FoundRHSLimit = -(*RDiff);
10679 } else {
10680 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
10681 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
10682 }
10683
10684 // Try to prove (1) or (2), as needed.
10685 return isAvailableAtLoopEntry(FoundRHS, L) &&
10686 isLoopEntryGuardedByCond(L, Pred, FoundRHS,
10687 getConstant(FoundRHSLimit));
10688 }
10689
isImpliedViaMerge(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,unsigned Depth)10690 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
10691 const SCEV *LHS, const SCEV *RHS,
10692 const SCEV *FoundLHS,
10693 const SCEV *FoundRHS, unsigned Depth) {
10694 const PHINode *LPhi = nullptr, *RPhi = nullptr;
10695
10696 auto ClearOnExit = make_scope_exit([&]() {
10697 if (LPhi) {
10698 bool Erased = PendingMerges.erase(LPhi);
10699 assert(Erased && "Failed to erase LPhi!");
10700 (void)Erased;
10701 }
10702 if (RPhi) {
10703 bool Erased = PendingMerges.erase(RPhi);
10704 assert(Erased && "Failed to erase RPhi!");
10705 (void)Erased;
10706 }
10707 });
10708
10709 // Find respective Phis and check that they are not being pending.
10710 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
10711 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
10712 if (!PendingMerges.insert(Phi).second)
10713 return false;
10714 LPhi = Phi;
10715 }
10716 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
10717 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
10718 // If we detect a loop of Phi nodes being processed by this method, for
10719 // example:
10720 //
10721 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
10722 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
10723 //
10724 // we don't want to deal with a case that complex, so return conservative
10725 // answer false.
10726 if (!PendingMerges.insert(Phi).second)
10727 return false;
10728 RPhi = Phi;
10729 }
10730
10731 // If none of LHS, RHS is a Phi, nothing to do here.
10732 if (!LPhi && !RPhi)
10733 return false;
10734
10735 // If there is a SCEVUnknown Phi we are interested in, make it left.
10736 if (!LPhi) {
10737 std::swap(LHS, RHS);
10738 std::swap(FoundLHS, FoundRHS);
10739 std::swap(LPhi, RPhi);
10740 Pred = ICmpInst::getSwappedPredicate(Pred);
10741 }
10742
10743 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
10744 const BasicBlock *LBB = LPhi->getParent();
10745 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10746
10747 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
10748 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
10749 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
10750 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
10751 };
10752
10753 if (RPhi && RPhi->getParent() == LBB) {
10754 // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
10755 // If we compare two Phis from the same block, and for each entry block
10756 // the predicate is true for incoming values from this block, then the
10757 // predicate is also true for the Phis.
10758 for (const BasicBlock *IncBB : predecessors(LBB)) {
10759 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10760 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
10761 if (!ProvedEasily(L, R))
10762 return false;
10763 }
10764 } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
10765 // Case two: RHS is also a Phi from the same basic block, and it is an
10766 // AddRec. It means that there is a loop which has both AddRec and Unknown
10767 // PHIs, for it we can compare incoming values of AddRec from above the loop
10768 // and latch with their respective incoming values of LPhi.
10769 // TODO: Generalize to handle loops with many inputs in a header.
10770 if (LPhi->getNumIncomingValues() != 2) return false;
10771
10772 auto *RLoop = RAR->getLoop();
10773 auto *Predecessor = RLoop->getLoopPredecessor();
10774 assert(Predecessor && "Loop with AddRec with no predecessor?");
10775 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
10776 if (!ProvedEasily(L1, RAR->getStart()))
10777 return false;
10778 auto *Latch = RLoop->getLoopLatch();
10779 assert(Latch && "Loop with AddRec with no latch?");
10780 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
10781 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
10782 return false;
10783 } else {
10784 // In all other cases go over inputs of LHS and compare each of them to RHS,
10785 // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10786 // At this point RHS is either a non-Phi, or it is a Phi from some block
10787 // different from LBB.
10788 for (const BasicBlock *IncBB : predecessors(LBB)) {
10789 // Check that RHS is available in this block.
10790 if (!dominates(RHS, IncBB))
10791 return false;
10792 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10793 // Make sure L does not refer to a value from a potentially previous
10794 // iteration of a loop.
10795 if (!properlyDominates(L, IncBB))
10796 return false;
10797 if (!ProvedEasily(L, RHS))
10798 return false;
10799 }
10800 }
10801 return true;
10802 }
10803
isImpliedCondOperands(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,const Instruction * Context)10804 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
10805 const SCEV *LHS, const SCEV *RHS,
10806 const SCEV *FoundLHS,
10807 const SCEV *FoundRHS,
10808 const Instruction *Context) {
10809 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
10810 return true;
10811
10812 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
10813 return true;
10814
10815 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
10816 Context))
10817 return true;
10818
10819 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10820 FoundLHS, FoundRHS);
10821 }
10822
10823 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
10824 template <typename MinMaxExprType>
IsMinMaxConsistingOf(const SCEV * MaybeMinMaxExpr,const SCEV * Candidate)10825 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
10826 const SCEV *Candidate) {
10827 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
10828 if (!MinMaxExpr)
10829 return false;
10830
10831 return is_contained(MinMaxExpr->operands(), Candidate);
10832 }
10833
IsKnownPredicateViaAddRecStart(ScalarEvolution & SE,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10834 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10835 ICmpInst::Predicate Pred,
10836 const SCEV *LHS, const SCEV *RHS) {
10837 // If both sides are affine addrecs for the same loop, with equal
10838 // steps, and we know the recurrences don't wrap, then we only
10839 // need to check the predicate on the starting values.
10840
10841 if (!ICmpInst::isRelational(Pred))
10842 return false;
10843
10844 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10845 if (!LAR)
10846 return false;
10847 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10848 if (!RAR)
10849 return false;
10850 if (LAR->getLoop() != RAR->getLoop())
10851 return false;
10852 if (!LAR->isAffine() || !RAR->isAffine())
10853 return false;
10854
10855 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10856 return false;
10857
10858 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10859 SCEV::FlagNSW : SCEV::FlagNUW;
10860 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10861 return false;
10862
10863 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10864 }
10865
10866 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10867 /// expression?
IsKnownPredicateViaMinOrMax(ScalarEvolution & SE,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10868 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10869 ICmpInst::Predicate Pred,
10870 const SCEV *LHS, const SCEV *RHS) {
10871 switch (Pred) {
10872 default:
10873 return false;
10874
10875 case ICmpInst::ICMP_SGE:
10876 std::swap(LHS, RHS);
10877 LLVM_FALLTHROUGH;
10878 case ICmpInst::ICMP_SLE:
10879 return
10880 // min(A, ...) <= A
10881 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
10882 // A <= max(A, ...)
10883 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10884
10885 case ICmpInst::ICMP_UGE:
10886 std::swap(LHS, RHS);
10887 LLVM_FALLTHROUGH;
10888 case ICmpInst::ICMP_ULE:
10889 return
10890 // min(A, ...) <= A
10891 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
10892 // A <= max(A, ...)
10893 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10894 }
10895
10896 llvm_unreachable("covered switch fell through?!");
10897 }
10898
isImpliedViaOperations(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,unsigned Depth)10899 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10900 const SCEV *LHS, const SCEV *RHS,
10901 const SCEV *FoundLHS,
10902 const SCEV *FoundRHS,
10903 unsigned Depth) {
10904 assert(getTypeSizeInBits(LHS->getType()) ==
10905 getTypeSizeInBits(RHS->getType()) &&
10906 "LHS and RHS have different sizes?");
10907 assert(getTypeSizeInBits(FoundLHS->getType()) ==
10908 getTypeSizeInBits(FoundRHS->getType()) &&
10909 "FoundLHS and FoundRHS have different sizes?");
10910 // We want to avoid hurting the compile time with analysis of too big trees.
10911 if (Depth > MaxSCEVOperationsImplicationDepth)
10912 return false;
10913
10914 // We only want to work with GT comparison so far.
10915 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
10916 Pred = CmpInst::getSwappedPredicate(Pred);
10917 std::swap(LHS, RHS);
10918 std::swap(FoundLHS, FoundRHS);
10919 }
10920
10921 // For unsigned, try to reduce it to corresponding signed comparison.
10922 if (Pred == ICmpInst::ICMP_UGT)
10923 // We can replace unsigned predicate with its signed counterpart if all
10924 // involved values are non-negative.
10925 // TODO: We could have better support for unsigned.
10926 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
10927 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
10928 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
10929 // use this fact to prove that LHS and RHS are non-negative.
10930 const SCEV *MinusOne = getMinusOne(LHS->getType());
10931 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
10932 FoundRHS) &&
10933 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
10934 FoundRHS))
10935 Pred = ICmpInst::ICMP_SGT;
10936 }
10937
10938 if (Pred != ICmpInst::ICMP_SGT)
10939 return false;
10940
10941 auto GetOpFromSExt = [&](const SCEV *S) {
10942 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10943 return Ext->getOperand();
10944 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10945 // the constant in some cases.
10946 return S;
10947 };
10948
10949 // Acquire values from extensions.
10950 auto *OrigLHS = LHS;
10951 auto *OrigFoundLHS = FoundLHS;
10952 LHS = GetOpFromSExt(LHS);
10953 FoundLHS = GetOpFromSExt(FoundLHS);
10954
10955 // Is the SGT predicate can be proved trivially or using the found context.
10956 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10957 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10958 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10959 FoundRHS, Depth + 1);
10960 };
10961
10962 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10963 // We want to avoid creation of any new non-constant SCEV. Since we are
10964 // going to compare the operands to RHS, we should be certain that we don't
10965 // need any size extensions for this. So let's decline all cases when the
10966 // sizes of types of LHS and RHS do not match.
10967 // TODO: Maybe try to get RHS from sext to catch more cases?
10968 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10969 return false;
10970
10971 // Should not overflow.
10972 if (!LHSAddExpr->hasNoSignedWrap())
10973 return false;
10974
10975 auto *LL = LHSAddExpr->getOperand(0);
10976 auto *LR = LHSAddExpr->getOperand(1);
10977 auto *MinusOne = getMinusOne(RHS->getType());
10978
10979 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10980 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10981 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10982 };
10983 // Try to prove the following rule:
10984 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10985 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10986 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10987 return true;
10988 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10989 Value *LL, *LR;
10990 // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10991
10992 using namespace llvm::PatternMatch;
10993
10994 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10995 // Rules for division.
10996 // We are going to perform some comparisons with Denominator and its
10997 // derivative expressions. In general case, creating a SCEV for it may
10998 // lead to a complex analysis of the entire graph, and in particular it
10999 // can request trip count recalculation for the same loop. This would
11000 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
11001 // this, we only want to create SCEVs that are constants in this section.
11002 // So we bail if Denominator is not a constant.
11003 if (!isa<ConstantInt>(LR))
11004 return false;
11005
11006 auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
11007
11008 // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
11009 // then a SCEV for the numerator already exists and matches with FoundLHS.
11010 auto *Numerator = getExistingSCEV(LL);
11011 if (!Numerator || Numerator->getType() != FoundLHS->getType())
11012 return false;
11013
11014 // Make sure that the numerator matches with FoundLHS and the denominator
11015 // is positive.
11016 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
11017 return false;
11018
11019 auto *DTy = Denominator->getType();
11020 auto *FRHSTy = FoundRHS->getType();
11021 if (DTy->isPointerTy() != FRHSTy->isPointerTy())
11022 // One of types is a pointer and another one is not. We cannot extend
11023 // them properly to a wider type, so let us just reject this case.
11024 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
11025 // to avoid this check.
11026 return false;
11027
11028 // Given that:
11029 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
11030 auto *WTy = getWiderType(DTy, FRHSTy);
11031 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
11032 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
11033
11034 // Try to prove the following rule:
11035 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
11036 // For example, given that FoundLHS > 2. It means that FoundLHS is at
11037 // least 3. If we divide it by Denominator < 4, we will have at least 1.
11038 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
11039 if (isKnownNonPositive(RHS) &&
11040 IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
11041 return true;
11042
11043 // Try to prove the following rule:
11044 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
11045 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
11046 // If we divide it by Denominator > 2, then:
11047 // 1. If FoundLHS is negative, then the result is 0.
11048 // 2. If FoundLHS is non-negative, then the result is non-negative.
11049 // Anyways, the result is non-negative.
11050 auto *MinusOne = getMinusOne(WTy);
11051 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
11052 if (isKnownNegative(RHS) &&
11053 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
11054 return true;
11055 }
11056 }
11057
11058 // If our expression contained SCEVUnknown Phis, and we split it down and now
11059 // need to prove something for them, try to prove the predicate for every
11060 // possible incoming values of those Phis.
11061 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
11062 return true;
11063
11064 return false;
11065 }
11066
isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)11067 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
11068 const SCEV *LHS, const SCEV *RHS) {
11069 // zext x u<= sext x, sext x s<= zext x
11070 switch (Pred) {
11071 case ICmpInst::ICMP_SGE:
11072 std::swap(LHS, RHS);
11073 LLVM_FALLTHROUGH;
11074 case ICmpInst::ICMP_SLE: {
11075 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt.
11076 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
11077 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
11078 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11079 return true;
11080 break;
11081 }
11082 case ICmpInst::ICMP_UGE:
11083 std::swap(LHS, RHS);
11084 LLVM_FALLTHROUGH;
11085 case ICmpInst::ICMP_ULE: {
11086 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt.
11087 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
11088 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
11089 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11090 return true;
11091 break;
11092 }
11093 default:
11094 break;
11095 };
11096 return false;
11097 }
11098
11099 bool
isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)11100 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
11101 const SCEV *LHS, const SCEV *RHS) {
11102 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
11103 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
11104 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
11105 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
11106 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
11107 }
11108
11109 bool
isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)11110 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
11111 const SCEV *LHS, const SCEV *RHS,
11112 const SCEV *FoundLHS,
11113 const SCEV *FoundRHS) {
11114 switch (Pred) {
11115 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
11116 case ICmpInst::ICMP_EQ:
11117 case ICmpInst::ICMP_NE:
11118 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
11119 return true;
11120 break;
11121 case ICmpInst::ICMP_SLT:
11122 case ICmpInst::ICMP_SLE:
11123 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
11124 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
11125 return true;
11126 break;
11127 case ICmpInst::ICMP_SGT:
11128 case ICmpInst::ICMP_SGE:
11129 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
11130 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
11131 return true;
11132 break;
11133 case ICmpInst::ICMP_ULT:
11134 case ICmpInst::ICMP_ULE:
11135 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
11136 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
11137 return true;
11138 break;
11139 case ICmpInst::ICMP_UGT:
11140 case ICmpInst::ICMP_UGE:
11141 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
11142 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
11143 return true;
11144 break;
11145 }
11146
11147 // Maybe it can be proved via operations?
11148 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
11149 return true;
11150
11151 return false;
11152 }
11153
isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)11154 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
11155 const SCEV *LHS,
11156 const SCEV *RHS,
11157 const SCEV *FoundLHS,
11158 const SCEV *FoundRHS) {
11159 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
11160 // The restriction on `FoundRHS` be lifted easily -- it exists only to
11161 // reduce the compile time impact of this optimization.
11162 return false;
11163
11164 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
11165 if (!Addend)
11166 return false;
11167
11168 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
11169
11170 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
11171 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
11172 ConstantRange FoundLHSRange =
11173 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
11174
11175 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
11176 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
11177
11178 // We can also compute the range of values for `LHS` that satisfy the
11179 // consequent, "`LHS` `Pred` `RHS`":
11180 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
11181 // The antecedent implies the consequent if every value of `LHS` that
11182 // satisfies the antecedent also satisfies the consequent.
11183 return LHSRange.icmp(Pred, ConstRHS);
11184 }
11185
doesIVOverflowOnLT(const SCEV * RHS,const SCEV * Stride,bool IsSigned,bool NoWrap)11186 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
11187 bool IsSigned, bool NoWrap) {
11188 assert(isKnownPositive(Stride) && "Positive stride expected!");
11189
11190 if (NoWrap) return false;
11191
11192 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11193 const SCEV *One = getOne(Stride->getType());
11194
11195 if (IsSigned) {
11196 APInt MaxRHS = getSignedRangeMax(RHS);
11197 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
11198 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11199
11200 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
11201 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
11202 }
11203
11204 APInt MaxRHS = getUnsignedRangeMax(RHS);
11205 APInt MaxValue = APInt::getMaxValue(BitWidth);
11206 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11207
11208 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
11209 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
11210 }
11211
doesIVOverflowOnGT(const SCEV * RHS,const SCEV * Stride,bool IsSigned,bool NoWrap)11212 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
11213 bool IsSigned, bool NoWrap) {
11214 if (NoWrap) return false;
11215
11216 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11217 const SCEV *One = getOne(Stride->getType());
11218
11219 if (IsSigned) {
11220 APInt MinRHS = getSignedRangeMin(RHS);
11221 APInt MinValue = APInt::getSignedMinValue(BitWidth);
11222 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11223
11224 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
11225 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
11226 }
11227
11228 APInt MinRHS = getUnsignedRangeMin(RHS);
11229 APInt MinValue = APInt::getMinValue(BitWidth);
11230 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11231
11232 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
11233 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
11234 }
11235
computeBECount(const SCEV * Delta,const SCEV * Step,bool Equality)11236 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
11237 bool Equality) {
11238 const SCEV *One = getOne(Step->getType());
11239 Delta = Equality ? getAddExpr(Delta, Step)
11240 : getAddExpr(Delta, getMinusSCEV(Step, One));
11241 return getUDivExpr(Delta, Step);
11242 }
11243
computeMaxBECountForLT(const SCEV * Start,const SCEV * Stride,const SCEV * End,unsigned BitWidth,bool IsSigned)11244 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
11245 const SCEV *Stride,
11246 const SCEV *End,
11247 unsigned BitWidth,
11248 bool IsSigned) {
11249
11250 assert(!isKnownNonPositive(Stride) &&
11251 "Stride is expected strictly positive!");
11252 // Calculate the maximum backedge count based on the range of values
11253 // permitted by Start, End, and Stride.
11254 const SCEV *MaxBECount;
11255 APInt MinStart =
11256 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
11257
11258 APInt StrideForMaxBECount =
11259 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
11260
11261 // We already know that the stride is positive, so we paper over conservatism
11262 // in our range computation by forcing StrideForMaxBECount to be at least one.
11263 // In theory this is unnecessary, but we expect MaxBECount to be a
11264 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
11265 // is nothing to constant fold it to).
11266 APInt One(BitWidth, 1, IsSigned);
11267 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
11268
11269 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
11270 : APInt::getMaxValue(BitWidth);
11271 APInt Limit = MaxValue - (StrideForMaxBECount - 1);
11272
11273 // Although End can be a MAX expression we estimate MaxEnd considering only
11274 // the case End = RHS of the loop termination condition. This is safe because
11275 // in the other case (End - Start) is zero, leading to a zero maximum backedge
11276 // taken count.
11277 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
11278 : APIntOps::umin(getUnsignedRangeMax(End), Limit);
11279
11280 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
11281 getConstant(StrideForMaxBECount) /* Step */,
11282 false /* Equality */);
11283
11284 return MaxBECount;
11285 }
11286
11287 ScalarEvolution::ExitLimit
howManyLessThans(const SCEV * LHS,const SCEV * RHS,const Loop * L,bool IsSigned,bool ControlsExit,bool AllowPredicates)11288 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
11289 const Loop *L, bool IsSigned,
11290 bool ControlsExit, bool AllowPredicates) {
11291 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11292
11293 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11294 bool PredicatedIV = false;
11295
11296 if (!IV && AllowPredicates) {
11297 // Try to make this an AddRec using runtime tests, in the first X
11298 // iterations of this loop, where X is the SCEV expression found by the
11299 // algorithm below.
11300 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11301 PredicatedIV = true;
11302 }
11303
11304 // Avoid weird loops
11305 if (!IV || IV->getLoop() != L || !IV->isAffine())
11306 return getCouldNotCompute();
11307
11308 bool NoWrap = ControlsExit &&
11309 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
11310
11311 const SCEV *Stride = IV->getStepRecurrence(*this);
11312
11313 bool PositiveStride = isKnownPositive(Stride);
11314
11315 // Avoid negative or zero stride values.
11316 if (!PositiveStride) {
11317 // We can compute the correct backedge taken count for loops with unknown
11318 // strides if we can prove that the loop is not an infinite loop with side
11319 // effects. Here's the loop structure we are trying to handle -
11320 //
11321 // i = start
11322 // do {
11323 // A[i] = i;
11324 // i += s;
11325 // } while (i < end);
11326 //
11327 // The backedge taken count for such loops is evaluated as -
11328 // (max(end, start + stride) - start - 1) /u stride
11329 //
11330 // The additional preconditions that we need to check to prove correctness
11331 // of the above formula is as follows -
11332 //
11333 // a) IV is either nuw or nsw depending upon signedness (indicated by the
11334 // NoWrap flag).
11335 // b) loop is single exit with no side effects.
11336 //
11337 //
11338 // Precondition a) implies that if the stride is negative, this is a single
11339 // trip loop. The backedge taken count formula reduces to zero in this case.
11340 //
11341 // Precondition b) implies that the unknown stride cannot be zero otherwise
11342 // we have UB.
11343 //
11344 // The positive stride case is the same as isKnownPositive(Stride) returning
11345 // true (original behavior of the function).
11346 //
11347 // We want to make sure that the stride is truly unknown as there are edge
11348 // cases where ScalarEvolution propagates no wrap flags to the
11349 // post-increment/decrement IV even though the increment/decrement operation
11350 // itself is wrapping. The computed backedge taken count may be wrong in
11351 // such cases. This is prevented by checking that the stride is not known to
11352 // be either positive or non-positive. For example, no wrap flags are
11353 // propagated to the post-increment IV of this loop with a trip count of 2 -
11354 //
11355 // unsigned char i;
11356 // for(i=127; i<128; i+=129)
11357 // A[i] = i;
11358 //
11359 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
11360 !loopHasNoSideEffects(L))
11361 return getCouldNotCompute();
11362 } else if (!Stride->isOne() &&
11363 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
11364 // Avoid proven overflow cases: this will ensure that the backedge taken
11365 // count will not generate any unsigned overflow. Relaxed no-overflow
11366 // conditions exploit NoWrapFlags, allowing to optimize in presence of
11367 // undefined behaviors like the case of C language.
11368 return getCouldNotCompute();
11369
11370 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
11371 : ICmpInst::ICMP_ULT;
11372 const SCEV *Start = IV->getStart();
11373 const SCEV *End = RHS;
11374 // When the RHS is not invariant, we do not know the end bound of the loop and
11375 // cannot calculate the ExactBECount needed by ExitLimit. However, we can
11376 // calculate the MaxBECount, given the start, stride and max value for the end
11377 // bound of the loop (RHS), and the fact that IV does not overflow (which is
11378 // checked above).
11379 if (!isLoopInvariant(RHS, L)) {
11380 const SCEV *MaxBECount = computeMaxBECountForLT(
11381 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11382 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
11383 false /*MaxOrZero*/, Predicates);
11384 }
11385 // If the backedge is taken at least once, then it will be taken
11386 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
11387 // is the LHS value of the less-than comparison the first time it is evaluated
11388 // and End is the RHS.
11389 const SCEV *BECountIfBackedgeTaken =
11390 computeBECount(getMinusSCEV(End, Start), Stride, false);
11391 // If the loop entry is guarded by the result of the backedge test of the
11392 // first loop iteration, then we know the backedge will be taken at least
11393 // once and so the backedge taken count is as above. If not then we use the
11394 // expression (max(End,Start)-Start)/Stride to describe the backedge count,
11395 // as if the backedge is taken at least once max(End,Start) is End and so the
11396 // result is as above, and if not max(End,Start) is Start so we get a backedge
11397 // count of zero.
11398 const SCEV *BECount;
11399 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
11400 BECount = BECountIfBackedgeTaken;
11401 else {
11402 // If we know that RHS >= Start in the context of loop, then we know that
11403 // max(RHS, Start) = RHS at this point.
11404 if (isLoopEntryGuardedByCond(
11405 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, RHS, Start))
11406 End = RHS;
11407 else
11408 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
11409 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
11410 }
11411
11412 const SCEV *MaxBECount;
11413 bool MaxOrZero = false;
11414 if (isa<SCEVConstant>(BECount))
11415 MaxBECount = BECount;
11416 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
11417 // If we know exactly how many times the backedge will be taken if it's
11418 // taken at least once, then the backedge count will either be that or
11419 // zero.
11420 MaxBECount = BECountIfBackedgeTaken;
11421 MaxOrZero = true;
11422 } else {
11423 MaxBECount = computeMaxBECountForLT(
11424 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11425 }
11426
11427 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
11428 !isa<SCEVCouldNotCompute>(BECount))
11429 MaxBECount = getConstant(getUnsignedRangeMax(BECount));
11430
11431 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
11432 }
11433
11434 ScalarEvolution::ExitLimit
howManyGreaterThans(const SCEV * LHS,const SCEV * RHS,const Loop * L,bool IsSigned,bool ControlsExit,bool AllowPredicates)11435 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
11436 const Loop *L, bool IsSigned,
11437 bool ControlsExit, bool AllowPredicates) {
11438 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11439 // We handle only IV > Invariant
11440 if (!isLoopInvariant(RHS, L))
11441 return getCouldNotCompute();
11442
11443 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11444 if (!IV && AllowPredicates)
11445 // Try to make this an AddRec using runtime tests, in the first X
11446 // iterations of this loop, where X is the SCEV expression found by the
11447 // algorithm below.
11448 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11449
11450 // Avoid weird loops
11451 if (!IV || IV->getLoop() != L || !IV->isAffine())
11452 return getCouldNotCompute();
11453
11454 bool NoWrap = ControlsExit &&
11455 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
11456
11457 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
11458
11459 // Avoid negative or zero stride values
11460 if (!isKnownPositive(Stride))
11461 return getCouldNotCompute();
11462
11463 // Avoid proven overflow cases: this will ensure that the backedge taken count
11464 // will not generate any unsigned overflow. Relaxed no-overflow conditions
11465 // exploit NoWrapFlags, allowing to optimize in presence of undefined
11466 // behaviors like the case of C language.
11467 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
11468 return getCouldNotCompute();
11469
11470 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
11471 : ICmpInst::ICMP_UGT;
11472
11473 const SCEV *Start = IV->getStart();
11474 const SCEV *End = RHS;
11475 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
11476 // If we know that Start >= RHS in the context of loop, then we know that
11477 // min(RHS, Start) = RHS at this point.
11478 if (isLoopEntryGuardedByCond(
11479 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
11480 End = RHS;
11481 else
11482 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
11483 }
11484
11485 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
11486
11487 APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
11488 : getUnsignedRangeMax(Start);
11489
11490 APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
11491 : getUnsignedRangeMin(Stride);
11492
11493 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
11494 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
11495 : APInt::getMinValue(BitWidth) + (MinStride - 1);
11496
11497 // Although End can be a MIN expression we estimate MinEnd considering only
11498 // the case End = RHS. This is safe because in the other case (Start - End)
11499 // is zero, leading to a zero maximum backedge taken count.
11500 APInt MinEnd =
11501 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
11502 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
11503
11504 const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
11505 ? BECount
11506 : computeBECount(getConstant(MaxStart - MinEnd),
11507 getConstant(MinStride), false);
11508
11509 if (isa<SCEVCouldNotCompute>(MaxBECount))
11510 MaxBECount = BECount;
11511
11512 return ExitLimit(BECount, MaxBECount, false, Predicates);
11513 }
11514
getNumIterationsInRange(const ConstantRange & Range,ScalarEvolution & SE) const11515 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
11516 ScalarEvolution &SE) const {
11517 if (Range.isFullSet()) // Infinite loop.
11518 return SE.getCouldNotCompute();
11519
11520 // If the start is a non-zero constant, shift the range to simplify things.
11521 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
11522 if (!SC->getValue()->isZero()) {
11523 SmallVector<const SCEV *, 4> Operands(operands());
11524 Operands[0] = SE.getZero(SC->getType());
11525 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
11526 getNoWrapFlags(FlagNW));
11527 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
11528 return ShiftedAddRec->getNumIterationsInRange(
11529 Range.subtract(SC->getAPInt()), SE);
11530 // This is strange and shouldn't happen.
11531 return SE.getCouldNotCompute();
11532 }
11533
11534 // The only time we can solve this is when we have all constant indices.
11535 // Otherwise, we cannot determine the overflow conditions.
11536 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
11537 return SE.getCouldNotCompute();
11538
11539 // Okay at this point we know that all elements of the chrec are constants and
11540 // that the start element is zero.
11541
11542 // First check to see if the range contains zero. If not, the first
11543 // iteration exits.
11544 unsigned BitWidth = SE.getTypeSizeInBits(getType());
11545 if (!Range.contains(APInt(BitWidth, 0)))
11546 return SE.getZero(getType());
11547
11548 if (isAffine()) {
11549 // If this is an affine expression then we have this situation:
11550 // Solve {0,+,A} in Range === Ax in Range
11551
11552 // We know that zero is in the range. If A is positive then we know that
11553 // the upper value of the range must be the first possible exit value.
11554 // If A is negative then the lower of the range is the last possible loop
11555 // value. Also note that we already checked for a full range.
11556 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
11557 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
11558
11559 // The exit value should be (End+A)/A.
11560 APInt ExitVal = (End + A).udiv(A);
11561 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
11562
11563 // Evaluate at the exit value. If we really did fall out of the valid
11564 // range, then we computed our trip count, otherwise wrap around or other
11565 // things must have happened.
11566 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
11567 if (Range.contains(Val->getValue()))
11568 return SE.getCouldNotCompute(); // Something strange happened
11569
11570 // Ensure that the previous value is in the range. This is a sanity check.
11571 assert(Range.contains(
11572 EvaluateConstantChrecAtConstant(this,
11573 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
11574 "Linear scev computation is off in a bad way!");
11575 return SE.getConstant(ExitValue);
11576 }
11577
11578 if (isQuadratic()) {
11579 if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
11580 return SE.getConstant(S.getValue());
11581 }
11582
11583 return SE.getCouldNotCompute();
11584 }
11585
11586 const SCEVAddRecExpr *
getPostIncExpr(ScalarEvolution & SE) const11587 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
11588 assert(getNumOperands() > 1 && "AddRec with zero step?");
11589 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
11590 // but in this case we cannot guarantee that the value returned will be an
11591 // AddRec because SCEV does not have a fixed point where it stops
11592 // simplification: it is legal to return ({rec1} + {rec2}). For example, it
11593 // may happen if we reach arithmetic depth limit while simplifying. So we
11594 // construct the returned value explicitly.
11595 SmallVector<const SCEV *, 3> Ops;
11596 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
11597 // (this + Step) is {A+B,+,B+C,+...,+,N}.
11598 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
11599 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
11600 // We know that the last operand is not a constant zero (otherwise it would
11601 // have been popped out earlier). This guarantees us that if the result has
11602 // the same last operand, then it will also not be popped out, meaning that
11603 // the returned value will be an AddRec.
11604 const SCEV *Last = getOperand(getNumOperands() - 1);
11605 assert(!Last->isZero() && "Recurrency with zero step?");
11606 Ops.push_back(Last);
11607 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
11608 SCEV::FlagAnyWrap));
11609 }
11610
11611 // Return true when S contains at least an undef value.
containsUndefs(const SCEV * S)11612 static inline bool containsUndefs(const SCEV *S) {
11613 return SCEVExprContains(S, [](const SCEV *S) {
11614 if (const auto *SU = dyn_cast<SCEVUnknown>(S))
11615 return isa<UndefValue>(SU->getValue());
11616 return false;
11617 });
11618 }
11619
11620 namespace {
11621
11622 // Collect all steps of SCEV expressions.
11623 struct SCEVCollectStrides {
11624 ScalarEvolution &SE;
11625 SmallVectorImpl<const SCEV *> &Strides;
11626
SCEVCollectStrides__anon7bef4a7f3411::SCEVCollectStrides11627 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
11628 : SE(SE), Strides(S) {}
11629
follow__anon7bef4a7f3411::SCEVCollectStrides11630 bool follow(const SCEV *S) {
11631 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
11632 Strides.push_back(AR->getStepRecurrence(SE));
11633 return true;
11634 }
11635
isDone__anon7bef4a7f3411::SCEVCollectStrides11636 bool isDone() const { return false; }
11637 };
11638
11639 // Collect all SCEVUnknown and SCEVMulExpr expressions.
11640 struct SCEVCollectTerms {
11641 SmallVectorImpl<const SCEV *> &Terms;
11642
SCEVCollectTerms__anon7bef4a7f3411::SCEVCollectTerms11643 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
11644
follow__anon7bef4a7f3411::SCEVCollectTerms11645 bool follow(const SCEV *S) {
11646 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
11647 isa<SCEVSignExtendExpr>(S)) {
11648 if (!containsUndefs(S))
11649 Terms.push_back(S);
11650
11651 // Stop recursion: once we collected a term, do not walk its operands.
11652 return false;
11653 }
11654
11655 // Keep looking.
11656 return true;
11657 }
11658
isDone__anon7bef4a7f3411::SCEVCollectTerms11659 bool isDone() const { return false; }
11660 };
11661
11662 // Check if a SCEV contains an AddRecExpr.
11663 struct SCEVHasAddRec {
11664 bool &ContainsAddRec;
11665
SCEVHasAddRec__anon7bef4a7f3411::SCEVHasAddRec11666 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
11667 ContainsAddRec = false;
11668 }
11669
follow__anon7bef4a7f3411::SCEVHasAddRec11670 bool follow(const SCEV *S) {
11671 if (isa<SCEVAddRecExpr>(S)) {
11672 ContainsAddRec = true;
11673
11674 // Stop recursion: once we collected a term, do not walk its operands.
11675 return false;
11676 }
11677
11678 // Keep looking.
11679 return true;
11680 }
11681
isDone__anon7bef4a7f3411::SCEVHasAddRec11682 bool isDone() const { return false; }
11683 };
11684
11685 // Find factors that are multiplied with an expression that (possibly as a
11686 // subexpression) contains an AddRecExpr. In the expression:
11687 //
11688 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
11689 //
11690 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
11691 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
11692 // parameters as they form a product with an induction variable.
11693 //
11694 // This collector expects all array size parameters to be in the same MulExpr.
11695 // It might be necessary to later add support for collecting parameters that are
11696 // spread over different nested MulExpr.
11697 struct SCEVCollectAddRecMultiplies {
11698 SmallVectorImpl<const SCEV *> &Terms;
11699 ScalarEvolution &SE;
11700
SCEVCollectAddRecMultiplies__anon7bef4a7f3411::SCEVCollectAddRecMultiplies11701 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
11702 : Terms(T), SE(SE) {}
11703
follow__anon7bef4a7f3411::SCEVCollectAddRecMultiplies11704 bool follow(const SCEV *S) {
11705 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
11706 bool HasAddRec = false;
11707 SmallVector<const SCEV *, 0> Operands;
11708 for (auto Op : Mul->operands()) {
11709 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
11710 if (Unknown && !isa<CallInst>(Unknown->getValue())) {
11711 Operands.push_back(Op);
11712 } else if (Unknown) {
11713 HasAddRec = true;
11714 } else {
11715 bool ContainsAddRec = false;
11716 SCEVHasAddRec ContiansAddRec(ContainsAddRec);
11717 visitAll(Op, ContiansAddRec);
11718 HasAddRec |= ContainsAddRec;
11719 }
11720 }
11721 if (Operands.size() == 0)
11722 return true;
11723
11724 if (!HasAddRec)
11725 return false;
11726
11727 Terms.push_back(SE.getMulExpr(Operands));
11728 // Stop recursion: once we collected a term, do not walk its operands.
11729 return false;
11730 }
11731
11732 // Keep looking.
11733 return true;
11734 }
11735
isDone__anon7bef4a7f3411::SCEVCollectAddRecMultiplies11736 bool isDone() const { return false; }
11737 };
11738
11739 } // end anonymous namespace
11740
11741 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
11742 /// two places:
11743 /// 1) The strides of AddRec expressions.
11744 /// 2) Unknowns that are multiplied with AddRec expressions.
collectParametricTerms(const SCEV * Expr,SmallVectorImpl<const SCEV * > & Terms)11745 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
11746 SmallVectorImpl<const SCEV *> &Terms) {
11747 SmallVector<const SCEV *, 4> Strides;
11748 SCEVCollectStrides StrideCollector(*this, Strides);
11749 visitAll(Expr, StrideCollector);
11750
11751 LLVM_DEBUG({
11752 dbgs() << "Strides:\n";
11753 for (const SCEV *S : Strides)
11754 dbgs() << *S << "\n";
11755 });
11756
11757 for (const SCEV *S : Strides) {
11758 SCEVCollectTerms TermCollector(Terms);
11759 visitAll(S, TermCollector);
11760 }
11761
11762 LLVM_DEBUG({
11763 dbgs() << "Terms:\n";
11764 for (const SCEV *T : Terms)
11765 dbgs() << *T << "\n";
11766 });
11767
11768 SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
11769 visitAll(Expr, MulCollector);
11770 }
11771
findArrayDimensionsRec(ScalarEvolution & SE,SmallVectorImpl<const SCEV * > & Terms,SmallVectorImpl<const SCEV * > & Sizes)11772 static bool findArrayDimensionsRec(ScalarEvolution &SE,
11773 SmallVectorImpl<const SCEV *> &Terms,
11774 SmallVectorImpl<const SCEV *> &Sizes) {
11775 int Last = Terms.size() - 1;
11776 const SCEV *Step = Terms[Last];
11777
11778 // End of recursion.
11779 if (Last == 0) {
11780 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
11781 SmallVector<const SCEV *, 2> Qs;
11782 for (const SCEV *Op : M->operands())
11783 if (!isa<SCEVConstant>(Op))
11784 Qs.push_back(Op);
11785
11786 Step = SE.getMulExpr(Qs);
11787 }
11788
11789 Sizes.push_back(Step);
11790 return true;
11791 }
11792
11793 for (const SCEV *&Term : Terms) {
11794 // Normalize the terms before the next call to findArrayDimensionsRec.
11795 const SCEV *Q, *R;
11796 SCEVDivision::divide(SE, Term, Step, &Q, &R);
11797
11798 // Bail out when GCD does not evenly divide one of the terms.
11799 if (!R->isZero())
11800 return false;
11801
11802 Term = Q;
11803 }
11804
11805 // Remove all SCEVConstants.
11806 erase_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); });
11807
11808 if (Terms.size() > 0)
11809 if (!findArrayDimensionsRec(SE, Terms, Sizes))
11810 return false;
11811
11812 Sizes.push_back(Step);
11813 return true;
11814 }
11815
11816 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
containsParameters(SmallVectorImpl<const SCEV * > & Terms)11817 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
11818 for (const SCEV *T : Terms)
11819 if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); }))
11820 return true;
11821
11822 return false;
11823 }
11824
11825 // Return the number of product terms in S.
numberOfTerms(const SCEV * S)11826 static inline int numberOfTerms(const SCEV *S) {
11827 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
11828 return Expr->getNumOperands();
11829 return 1;
11830 }
11831
removeConstantFactors(ScalarEvolution & SE,const SCEV * T)11832 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
11833 if (isa<SCEVConstant>(T))
11834 return nullptr;
11835
11836 if (isa<SCEVUnknown>(T))
11837 return T;
11838
11839 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
11840 SmallVector<const SCEV *, 2> Factors;
11841 for (const SCEV *Op : M->operands())
11842 if (!isa<SCEVConstant>(Op))
11843 Factors.push_back(Op);
11844
11845 return SE.getMulExpr(Factors);
11846 }
11847
11848 return T;
11849 }
11850
11851 /// Return the size of an element read or written by Inst.
getElementSize(Instruction * Inst)11852 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11853 Type *Ty;
11854 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11855 Ty = Store->getValueOperand()->getType();
11856 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11857 Ty = Load->getType();
11858 else
11859 return nullptr;
11860
11861 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11862 return getSizeOfExpr(ETy, Ty);
11863 }
11864
findArrayDimensions(SmallVectorImpl<const SCEV * > & Terms,SmallVectorImpl<const SCEV * > & Sizes,const SCEV * ElementSize)11865 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11866 SmallVectorImpl<const SCEV *> &Sizes,
11867 const SCEV *ElementSize) {
11868 if (Terms.size() < 1 || !ElementSize)
11869 return;
11870
11871 // Early return when Terms do not contain parameters: we do not delinearize
11872 // non parametric SCEVs.
11873 if (!containsParameters(Terms))
11874 return;
11875
11876 LLVM_DEBUG({
11877 dbgs() << "Terms:\n";
11878 for (const SCEV *T : Terms)
11879 dbgs() << *T << "\n";
11880 });
11881
11882 // Remove duplicates.
11883 array_pod_sort(Terms.begin(), Terms.end());
11884 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11885
11886 // Put larger terms first.
11887 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11888 return numberOfTerms(LHS) > numberOfTerms(RHS);
11889 });
11890
11891 // Try to divide all terms by the element size. If term is not divisible by
11892 // element size, proceed with the original term.
11893 for (const SCEV *&Term : Terms) {
11894 const SCEV *Q, *R;
11895 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11896 if (!Q->isZero())
11897 Term = Q;
11898 }
11899
11900 SmallVector<const SCEV *, 4> NewTerms;
11901
11902 // Remove constant factors.
11903 for (const SCEV *T : Terms)
11904 if (const SCEV *NewT = removeConstantFactors(*this, T))
11905 NewTerms.push_back(NewT);
11906
11907 LLVM_DEBUG({
11908 dbgs() << "Terms after sorting:\n";
11909 for (const SCEV *T : NewTerms)
11910 dbgs() << *T << "\n";
11911 });
11912
11913 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11914 Sizes.clear();
11915 return;
11916 }
11917
11918 // The last element to be pushed into Sizes is the size of an element.
11919 Sizes.push_back(ElementSize);
11920
11921 LLVM_DEBUG({
11922 dbgs() << "Sizes:\n";
11923 for (const SCEV *S : Sizes)
11924 dbgs() << *S << "\n";
11925 });
11926 }
11927
computeAccessFunctions(const SCEV * Expr,SmallVectorImpl<const SCEV * > & Subscripts,SmallVectorImpl<const SCEV * > & Sizes)11928 void ScalarEvolution::computeAccessFunctions(
11929 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11930 SmallVectorImpl<const SCEV *> &Sizes) {
11931 // Early exit in case this SCEV is not an affine multivariate function.
11932 if (Sizes.empty())
11933 return;
11934
11935 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11936 if (!AR->isAffine())
11937 return;
11938
11939 const SCEV *Res = Expr;
11940 int Last = Sizes.size() - 1;
11941 for (int i = Last; i >= 0; i--) {
11942 const SCEV *Q, *R;
11943 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11944
11945 LLVM_DEBUG({
11946 dbgs() << "Res: " << *Res << "\n";
11947 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11948 dbgs() << "Res divided by Sizes[i]:\n";
11949 dbgs() << "Quotient: " << *Q << "\n";
11950 dbgs() << "Remainder: " << *R << "\n";
11951 });
11952
11953 Res = Q;
11954
11955 // Do not record the last subscript corresponding to the size of elements in
11956 // the array.
11957 if (i == Last) {
11958
11959 // Bail out if the remainder is too complex.
11960 if (isa<SCEVAddRecExpr>(R)) {
11961 Subscripts.clear();
11962 Sizes.clear();
11963 return;
11964 }
11965
11966 continue;
11967 }
11968
11969 // Record the access function for the current subscript.
11970 Subscripts.push_back(R);
11971 }
11972
11973 // Also push in last position the remainder of the last division: it will be
11974 // the access function of the innermost dimension.
11975 Subscripts.push_back(Res);
11976
11977 std::reverse(Subscripts.begin(), Subscripts.end());
11978
11979 LLVM_DEBUG({
11980 dbgs() << "Subscripts:\n";
11981 for (const SCEV *S : Subscripts)
11982 dbgs() << *S << "\n";
11983 });
11984 }
11985
11986 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11987 /// sizes of an array access. Returns the remainder of the delinearization that
11988 /// is the offset start of the array. The SCEV->delinearize algorithm computes
11989 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11990 /// expressions in the stride and base of a SCEV corresponding to the
11991 /// computation of a GCD (greatest common divisor) of base and stride. When
11992 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11993 ///
11994 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11995 ///
11996 /// void foo(long n, long m, long o, double A[n][m][o]) {
11997 ///
11998 /// for (long i = 0; i < n; i++)
11999 /// for (long j = 0; j < m; j++)
12000 /// for (long k = 0; k < o; k++)
12001 /// A[i][j][k] = 1.0;
12002 /// }
12003 ///
12004 /// the delinearization input is the following AddRec SCEV:
12005 ///
12006 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
12007 ///
12008 /// From this SCEV, we are able to say that the base offset of the access is %A
12009 /// because it appears as an offset that does not divide any of the strides in
12010 /// the loops:
12011 ///
12012 /// CHECK: Base offset: %A
12013 ///
12014 /// and then SCEV->delinearize determines the size of some of the dimensions of
12015 /// the array as these are the multiples by which the strides are happening:
12016 ///
12017 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
12018 ///
12019 /// Note that the outermost dimension remains of UnknownSize because there are
12020 /// no strides that would help identifying the size of the last dimension: when
12021 /// the array has been statically allocated, one could compute the size of that
12022 /// dimension by dividing the overall size of the array by the size of the known
12023 /// dimensions: %m * %o * 8.
12024 ///
12025 /// Finally delinearize provides the access functions for the array reference
12026 /// that does correspond to A[i][j][k] of the above C testcase:
12027 ///
12028 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
12029 ///
12030 /// The testcases are checking the output of a function pass:
12031 /// DelinearizationPass that walks through all loads and stores of a function
12032 /// asking for the SCEV of the memory access with respect to all enclosing
12033 /// loops, calling SCEV->delinearize on that and printing the results.
delinearize(const SCEV * Expr,SmallVectorImpl<const SCEV * > & Subscripts,SmallVectorImpl<const SCEV * > & Sizes,const SCEV * ElementSize)12034 void ScalarEvolution::delinearize(const SCEV *Expr,
12035 SmallVectorImpl<const SCEV *> &Subscripts,
12036 SmallVectorImpl<const SCEV *> &Sizes,
12037 const SCEV *ElementSize) {
12038 // First step: collect parametric terms.
12039 SmallVector<const SCEV *, 4> Terms;
12040 collectParametricTerms(Expr, Terms);
12041
12042 if (Terms.empty())
12043 return;
12044
12045 // Second step: find subscript sizes.
12046 findArrayDimensions(Terms, Sizes, ElementSize);
12047
12048 if (Sizes.empty())
12049 return;
12050
12051 // Third step: compute the access functions for each subscript.
12052 computeAccessFunctions(Expr, Subscripts, Sizes);
12053
12054 if (Subscripts.empty())
12055 return;
12056
12057 LLVM_DEBUG({
12058 dbgs() << "succeeded to delinearize " << *Expr << "\n";
12059 dbgs() << "ArrayDecl[UnknownSize]";
12060 for (const SCEV *S : Sizes)
12061 dbgs() << "[" << *S << "]";
12062
12063 dbgs() << "\nArrayRef";
12064 for (const SCEV *S : Subscripts)
12065 dbgs() << "[" << *S << "]";
12066 dbgs() << "\n";
12067 });
12068 }
12069
getIndexExpressionsFromGEP(const GetElementPtrInst * GEP,SmallVectorImpl<const SCEV * > & Subscripts,SmallVectorImpl<int> & Sizes)12070 bool ScalarEvolution::getIndexExpressionsFromGEP(
12071 const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts,
12072 SmallVectorImpl<int> &Sizes) {
12073 assert(Subscripts.empty() && Sizes.empty() &&
12074 "Expected output lists to be empty on entry to this function.");
12075 assert(GEP && "getIndexExpressionsFromGEP called with a null GEP");
12076 Type *Ty = GEP->getPointerOperandType();
12077 bool DroppedFirstDim = false;
12078 for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
12079 const SCEV *Expr = getSCEV(GEP->getOperand(i));
12080 if (i == 1) {
12081 if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
12082 Ty = PtrTy->getElementType();
12083 } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) {
12084 Ty = ArrayTy->getElementType();
12085 } else {
12086 Subscripts.clear();
12087 Sizes.clear();
12088 return false;
12089 }
12090 if (auto *Const = dyn_cast<SCEVConstant>(Expr))
12091 if (Const->getValue()->isZero()) {
12092 DroppedFirstDim = true;
12093 continue;
12094 }
12095 Subscripts.push_back(Expr);
12096 continue;
12097 }
12098
12099 auto *ArrayTy = dyn_cast<ArrayType>(Ty);
12100 if (!ArrayTy) {
12101 Subscripts.clear();
12102 Sizes.clear();
12103 return false;
12104 }
12105
12106 Subscripts.push_back(Expr);
12107 if (!(DroppedFirstDim && i == 2))
12108 Sizes.push_back(ArrayTy->getNumElements());
12109
12110 Ty = ArrayTy->getElementType();
12111 }
12112 return !Subscripts.empty();
12113 }
12114
12115 //===----------------------------------------------------------------------===//
12116 // SCEVCallbackVH Class Implementation
12117 //===----------------------------------------------------------------------===//
12118
deleted()12119 void ScalarEvolution::SCEVCallbackVH::deleted() {
12120 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12121 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
12122 SE->ConstantEvolutionLoopExitValue.erase(PN);
12123 SE->eraseValueFromMap(getValPtr());
12124 // this now dangles!
12125 }
12126
allUsesReplacedWith(Value * V)12127 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
12128 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12129
12130 // Forget all the expressions associated with users of the old value,
12131 // so that future queries will recompute the expressions using the new
12132 // value.
12133 Value *Old = getValPtr();
12134 SmallVector<User *, 16> Worklist(Old->users());
12135 SmallPtrSet<User *, 8> Visited;
12136 while (!Worklist.empty()) {
12137 User *U = Worklist.pop_back_val();
12138 // Deleting the Old value will cause this to dangle. Postpone
12139 // that until everything else is done.
12140 if (U == Old)
12141 continue;
12142 if (!Visited.insert(U).second)
12143 continue;
12144 if (PHINode *PN = dyn_cast<PHINode>(U))
12145 SE->ConstantEvolutionLoopExitValue.erase(PN);
12146 SE->eraseValueFromMap(U);
12147 llvm::append_range(Worklist, U->users());
12148 }
12149 // Delete the Old value.
12150 if (PHINode *PN = dyn_cast<PHINode>(Old))
12151 SE->ConstantEvolutionLoopExitValue.erase(PN);
12152 SE->eraseValueFromMap(Old);
12153 // this now dangles!
12154 }
12155
SCEVCallbackVH(Value * V,ScalarEvolution * se)12156 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
12157 : CallbackVH(V), SE(se) {}
12158
12159 //===----------------------------------------------------------------------===//
12160 // ScalarEvolution Class Implementation
12161 //===----------------------------------------------------------------------===//
12162
ScalarEvolution(Function & F,TargetLibraryInfo & TLI,AssumptionCache & AC,DominatorTree & DT,LoopInfo & LI)12163 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
12164 AssumptionCache &AC, DominatorTree &DT,
12165 LoopInfo &LI)
12166 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
12167 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
12168 LoopDispositions(64), BlockDispositions(64) {
12169 // To use guards for proving predicates, we need to scan every instruction in
12170 // relevant basic blocks, and not just terminators. Doing this is a waste of
12171 // time if the IR does not actually contain any calls to
12172 // @llvm.experimental.guard, so do a quick check and remember this beforehand.
12173 //
12174 // This pessimizes the case where a pass that preserves ScalarEvolution wants
12175 // to _add_ guards to the module when there weren't any before, and wants
12176 // ScalarEvolution to optimize based on those guards. For now we prefer to be
12177 // efficient in lieu of being smart in that rather obscure case.
12178
12179 auto *GuardDecl = F.getParent()->getFunction(
12180 Intrinsic::getName(Intrinsic::experimental_guard));
12181 HasGuards = GuardDecl && !GuardDecl->use_empty();
12182 }
12183
ScalarEvolution(ScalarEvolution && Arg)12184 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
12185 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
12186 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
12187 ValueExprMap(std::move(Arg.ValueExprMap)),
12188 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
12189 PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
12190 PendingMerges(std::move(Arg.PendingMerges)),
12191 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
12192 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
12193 PredicatedBackedgeTakenCounts(
12194 std::move(Arg.PredicatedBackedgeTakenCounts)),
12195 ConstantEvolutionLoopExitValue(
12196 std::move(Arg.ConstantEvolutionLoopExitValue)),
12197 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
12198 LoopDispositions(std::move(Arg.LoopDispositions)),
12199 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
12200 BlockDispositions(std::move(Arg.BlockDispositions)),
12201 UnsignedRanges(std::move(Arg.UnsignedRanges)),
12202 SignedRanges(std::move(Arg.SignedRanges)),
12203 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
12204 UniquePreds(std::move(Arg.UniquePreds)),
12205 SCEVAllocator(std::move(Arg.SCEVAllocator)),
12206 LoopUsers(std::move(Arg.LoopUsers)),
12207 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
12208 FirstUnknown(Arg.FirstUnknown) {
12209 Arg.FirstUnknown = nullptr;
12210 }
12211
~ScalarEvolution()12212 ScalarEvolution::~ScalarEvolution() {
12213 // Iterate through all the SCEVUnknown instances and call their
12214 // destructors, so that they release their references to their values.
12215 for (SCEVUnknown *U = FirstUnknown; U;) {
12216 SCEVUnknown *Tmp = U;
12217 U = U->Next;
12218 Tmp->~SCEVUnknown();
12219 }
12220 FirstUnknown = nullptr;
12221
12222 ExprValueMap.clear();
12223 ValueExprMap.clear();
12224 HasRecMap.clear();
12225 BackedgeTakenCounts.clear();
12226 PredicatedBackedgeTakenCounts.clear();
12227
12228 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
12229 assert(PendingPhiRanges.empty() && "getRangeRef garbage");
12230 assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
12231 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
12232 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
12233 }
12234
hasLoopInvariantBackedgeTakenCount(const Loop * L)12235 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
12236 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
12237 }
12238
PrintLoopInfo(raw_ostream & OS,ScalarEvolution * SE,const Loop * L)12239 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
12240 const Loop *L) {
12241 // Print all inner loops first
12242 for (Loop *I : *L)
12243 PrintLoopInfo(OS, SE, I);
12244
12245 OS << "Loop ";
12246 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12247 OS << ": ";
12248
12249 SmallVector<BasicBlock *, 8> ExitingBlocks;
12250 L->getExitingBlocks(ExitingBlocks);
12251 if (ExitingBlocks.size() != 1)
12252 OS << "<multiple exits> ";
12253
12254 if (SE->hasLoopInvariantBackedgeTakenCount(L))
12255 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
12256 else
12257 OS << "Unpredictable backedge-taken count.\n";
12258
12259 if (ExitingBlocks.size() > 1)
12260 for (BasicBlock *ExitingBlock : ExitingBlocks) {
12261 OS << " exit count for " << ExitingBlock->getName() << ": "
12262 << *SE->getExitCount(L, ExitingBlock) << "\n";
12263 }
12264
12265 OS << "Loop ";
12266 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12267 OS << ": ";
12268
12269 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
12270 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
12271 if (SE->isBackedgeTakenCountMaxOrZero(L))
12272 OS << ", actual taken count either this or zero.";
12273 } else {
12274 OS << "Unpredictable max backedge-taken count. ";
12275 }
12276
12277 OS << "\n"
12278 "Loop ";
12279 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12280 OS << ": ";
12281
12282 SCEVUnionPredicate Pred;
12283 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
12284 if (!isa<SCEVCouldNotCompute>(PBT)) {
12285 OS << "Predicated backedge-taken count is " << *PBT << "\n";
12286 OS << " Predicates:\n";
12287 Pred.print(OS, 4);
12288 } else {
12289 OS << "Unpredictable predicated backedge-taken count. ";
12290 }
12291 OS << "\n";
12292
12293 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
12294 OS << "Loop ";
12295 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12296 OS << ": ";
12297 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
12298 }
12299 }
12300
loopDispositionToStr(ScalarEvolution::LoopDisposition LD)12301 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
12302 switch (LD) {
12303 case ScalarEvolution::LoopVariant:
12304 return "Variant";
12305 case ScalarEvolution::LoopInvariant:
12306 return "Invariant";
12307 case ScalarEvolution::LoopComputable:
12308 return "Computable";
12309 }
12310 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
12311 }
12312
print(raw_ostream & OS) const12313 void ScalarEvolution::print(raw_ostream &OS) const {
12314 // ScalarEvolution's implementation of the print method is to print
12315 // out SCEV values of all instructions that are interesting. Doing
12316 // this potentially causes it to create new SCEV objects though,
12317 // which technically conflicts with the const qualifier. This isn't
12318 // observable from outside the class though, so casting away the
12319 // const isn't dangerous.
12320 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12321
12322 if (ClassifyExpressions) {
12323 OS << "Classifying expressions for: ";
12324 F.printAsOperand(OS, /*PrintType=*/false);
12325 OS << "\n";
12326 for (Instruction &I : instructions(F))
12327 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
12328 OS << I << '\n';
12329 OS << " --> ";
12330 const SCEV *SV = SE.getSCEV(&I);
12331 SV->print(OS);
12332 if (!isa<SCEVCouldNotCompute>(SV)) {
12333 OS << " U: ";
12334 SE.getUnsignedRange(SV).print(OS);
12335 OS << " S: ";
12336 SE.getSignedRange(SV).print(OS);
12337 }
12338
12339 const Loop *L = LI.getLoopFor(I.getParent());
12340
12341 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
12342 if (AtUse != SV) {
12343 OS << " --> ";
12344 AtUse->print(OS);
12345 if (!isa<SCEVCouldNotCompute>(AtUse)) {
12346 OS << " U: ";
12347 SE.getUnsignedRange(AtUse).print(OS);
12348 OS << " S: ";
12349 SE.getSignedRange(AtUse).print(OS);
12350 }
12351 }
12352
12353 if (L) {
12354 OS << "\t\t" "Exits: ";
12355 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
12356 if (!SE.isLoopInvariant(ExitValue, L)) {
12357 OS << "<<Unknown>>";
12358 } else {
12359 OS << *ExitValue;
12360 }
12361
12362 bool First = true;
12363 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
12364 if (First) {
12365 OS << "\t\t" "LoopDispositions: { ";
12366 First = false;
12367 } else {
12368 OS << ", ";
12369 }
12370
12371 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12372 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
12373 }
12374
12375 for (auto *InnerL : depth_first(L)) {
12376 if (InnerL == L)
12377 continue;
12378 if (First) {
12379 OS << "\t\t" "LoopDispositions: { ";
12380 First = false;
12381 } else {
12382 OS << ", ";
12383 }
12384
12385 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12386 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
12387 }
12388
12389 OS << " }";
12390 }
12391
12392 OS << "\n";
12393 }
12394 }
12395
12396 OS << "Determining loop execution counts for: ";
12397 F.printAsOperand(OS, /*PrintType=*/false);
12398 OS << "\n";
12399 for (Loop *I : LI)
12400 PrintLoopInfo(OS, &SE, I);
12401 }
12402
12403 ScalarEvolution::LoopDisposition
getLoopDisposition(const SCEV * S,const Loop * L)12404 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
12405 auto &Values = LoopDispositions[S];
12406 for (auto &V : Values) {
12407 if (V.getPointer() == L)
12408 return V.getInt();
12409 }
12410 Values.emplace_back(L, LoopVariant);
12411 LoopDisposition D = computeLoopDisposition(S, L);
12412 auto &Values2 = LoopDispositions[S];
12413 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12414 if (V.getPointer() == L) {
12415 V.setInt(D);
12416 break;
12417 }
12418 }
12419 return D;
12420 }
12421
12422 ScalarEvolution::LoopDisposition
computeLoopDisposition(const SCEV * S,const Loop * L)12423 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
12424 switch (S->getSCEVType()) {
12425 case scConstant:
12426 return LoopInvariant;
12427 case scPtrToInt:
12428 case scTruncate:
12429 case scZeroExtend:
12430 case scSignExtend:
12431 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
12432 case scAddRecExpr: {
12433 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12434
12435 // If L is the addrec's loop, it's computable.
12436 if (AR->getLoop() == L)
12437 return LoopComputable;
12438
12439 // Add recurrences are never invariant in the function-body (null loop).
12440 if (!L)
12441 return LoopVariant;
12442
12443 // Everything that is not defined at loop entry is variant.
12444 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
12445 return LoopVariant;
12446 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
12447 " dominate the contained loop's header?");
12448
12449 // This recurrence is invariant w.r.t. L if AR's loop contains L.
12450 if (AR->getLoop()->contains(L))
12451 return LoopInvariant;
12452
12453 // This recurrence is variant w.r.t. L if any of its operands
12454 // are variant.
12455 for (auto *Op : AR->operands())
12456 if (!isLoopInvariant(Op, L))
12457 return LoopVariant;
12458
12459 // Otherwise it's loop-invariant.
12460 return LoopInvariant;
12461 }
12462 case scAddExpr:
12463 case scMulExpr:
12464 case scUMaxExpr:
12465 case scSMaxExpr:
12466 case scUMinExpr:
12467 case scSMinExpr: {
12468 bool HasVarying = false;
12469 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
12470 LoopDisposition D = getLoopDisposition(Op, L);
12471 if (D == LoopVariant)
12472 return LoopVariant;
12473 if (D == LoopComputable)
12474 HasVarying = true;
12475 }
12476 return HasVarying ? LoopComputable : LoopInvariant;
12477 }
12478 case scUDivExpr: {
12479 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12480 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
12481 if (LD == LoopVariant)
12482 return LoopVariant;
12483 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
12484 if (RD == LoopVariant)
12485 return LoopVariant;
12486 return (LD == LoopInvariant && RD == LoopInvariant) ?
12487 LoopInvariant : LoopComputable;
12488 }
12489 case scUnknown:
12490 // All non-instruction values are loop invariant. All instructions are loop
12491 // invariant if they are not contained in the specified loop.
12492 // Instructions are never considered invariant in the function body
12493 // (null loop) because they are defined within the "loop".
12494 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
12495 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
12496 return LoopInvariant;
12497 case scCouldNotCompute:
12498 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12499 }
12500 llvm_unreachable("Unknown SCEV kind!");
12501 }
12502
isLoopInvariant(const SCEV * S,const Loop * L)12503 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
12504 return getLoopDisposition(S, L) == LoopInvariant;
12505 }
12506
hasComputableLoopEvolution(const SCEV * S,const Loop * L)12507 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
12508 return getLoopDisposition(S, L) == LoopComputable;
12509 }
12510
12511 ScalarEvolution::BlockDisposition
getBlockDisposition(const SCEV * S,const BasicBlock * BB)12512 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12513 auto &Values = BlockDispositions[S];
12514 for (auto &V : Values) {
12515 if (V.getPointer() == BB)
12516 return V.getInt();
12517 }
12518 Values.emplace_back(BB, DoesNotDominateBlock);
12519 BlockDisposition D = computeBlockDisposition(S, BB);
12520 auto &Values2 = BlockDispositions[S];
12521 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12522 if (V.getPointer() == BB) {
12523 V.setInt(D);
12524 break;
12525 }
12526 }
12527 return D;
12528 }
12529
12530 ScalarEvolution::BlockDisposition
computeBlockDisposition(const SCEV * S,const BasicBlock * BB)12531 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12532 switch (S->getSCEVType()) {
12533 case scConstant:
12534 return ProperlyDominatesBlock;
12535 case scPtrToInt:
12536 case scTruncate:
12537 case scZeroExtend:
12538 case scSignExtend:
12539 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
12540 case scAddRecExpr: {
12541 // This uses a "dominates" query instead of "properly dominates" query
12542 // to test for proper dominance too, because the instruction which
12543 // produces the addrec's value is a PHI, and a PHI effectively properly
12544 // dominates its entire containing block.
12545 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12546 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
12547 return DoesNotDominateBlock;
12548
12549 // Fall through into SCEVNAryExpr handling.
12550 LLVM_FALLTHROUGH;
12551 }
12552 case scAddExpr:
12553 case scMulExpr:
12554 case scUMaxExpr:
12555 case scSMaxExpr:
12556 case scUMinExpr:
12557 case scSMinExpr: {
12558 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
12559 bool Proper = true;
12560 for (const SCEV *NAryOp : NAry->operands()) {
12561 BlockDisposition D = getBlockDisposition(NAryOp, BB);
12562 if (D == DoesNotDominateBlock)
12563 return DoesNotDominateBlock;
12564 if (D == DominatesBlock)
12565 Proper = false;
12566 }
12567 return Proper ? ProperlyDominatesBlock : DominatesBlock;
12568 }
12569 case scUDivExpr: {
12570 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12571 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
12572 BlockDisposition LD = getBlockDisposition(LHS, BB);
12573 if (LD == DoesNotDominateBlock)
12574 return DoesNotDominateBlock;
12575 BlockDisposition RD = getBlockDisposition(RHS, BB);
12576 if (RD == DoesNotDominateBlock)
12577 return DoesNotDominateBlock;
12578 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
12579 ProperlyDominatesBlock : DominatesBlock;
12580 }
12581 case scUnknown:
12582 if (Instruction *I =
12583 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
12584 if (I->getParent() == BB)
12585 return DominatesBlock;
12586 if (DT.properlyDominates(I->getParent(), BB))
12587 return ProperlyDominatesBlock;
12588 return DoesNotDominateBlock;
12589 }
12590 return ProperlyDominatesBlock;
12591 case scCouldNotCompute:
12592 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12593 }
12594 llvm_unreachable("Unknown SCEV kind!");
12595 }
12596
dominates(const SCEV * S,const BasicBlock * BB)12597 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
12598 return getBlockDisposition(S, BB) >= DominatesBlock;
12599 }
12600
properlyDominates(const SCEV * S,const BasicBlock * BB)12601 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
12602 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
12603 }
12604
hasOperand(const SCEV * S,const SCEV * Op) const12605 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
12606 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
12607 }
12608
12609 void
forgetMemoizedResults(const SCEV * S)12610 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
12611 ValuesAtScopes.erase(S);
12612 LoopDispositions.erase(S);
12613 BlockDispositions.erase(S);
12614 UnsignedRanges.erase(S);
12615 SignedRanges.erase(S);
12616 ExprValueMap.erase(S);
12617 HasRecMap.erase(S);
12618 MinTrailingZerosCache.erase(S);
12619
12620 for (auto I = PredicatedSCEVRewrites.begin();
12621 I != PredicatedSCEVRewrites.end();) {
12622 std::pair<const SCEV *, const Loop *> Entry = I->first;
12623 if (Entry.first == S)
12624 PredicatedSCEVRewrites.erase(I++);
12625 else
12626 ++I;
12627 }
12628
12629 auto RemoveSCEVFromBackedgeMap =
12630 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
12631 for (auto I = Map.begin(), E = Map.end(); I != E;) {
12632 BackedgeTakenInfo &BEInfo = I->second;
12633 if (BEInfo.hasOperand(S, this))
12634 Map.erase(I++);
12635 else
12636 ++I;
12637 }
12638 };
12639
12640 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
12641 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
12642 }
12643
12644 void
getUsedLoops(const SCEV * S,SmallPtrSetImpl<const Loop * > & LoopsUsed)12645 ScalarEvolution::getUsedLoops(const SCEV *S,
12646 SmallPtrSetImpl<const Loop *> &LoopsUsed) {
12647 struct FindUsedLoops {
12648 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
12649 : LoopsUsed(LoopsUsed) {}
12650 SmallPtrSetImpl<const Loop *> &LoopsUsed;
12651 bool follow(const SCEV *S) {
12652 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
12653 LoopsUsed.insert(AR->getLoop());
12654 return true;
12655 }
12656
12657 bool isDone() const { return false; }
12658 };
12659
12660 FindUsedLoops F(LoopsUsed);
12661 SCEVTraversal<FindUsedLoops>(F).visitAll(S);
12662 }
12663
addToLoopUseLists(const SCEV * S)12664 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
12665 SmallPtrSet<const Loop *, 8> LoopsUsed;
12666 getUsedLoops(S, LoopsUsed);
12667 for (auto *L : LoopsUsed)
12668 LoopUsers[L].push_back(S);
12669 }
12670
verify() const12671 void ScalarEvolution::verify() const {
12672 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12673 ScalarEvolution SE2(F, TLI, AC, DT, LI);
12674
12675 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
12676
12677 // Map's SCEV expressions from one ScalarEvolution "universe" to another.
12678 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
12679 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
12680
12681 const SCEV *visitConstant(const SCEVConstant *Constant) {
12682 return SE.getConstant(Constant->getAPInt());
12683 }
12684
12685 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12686 return SE.getUnknown(Expr->getValue());
12687 }
12688
12689 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
12690 return SE.getCouldNotCompute();
12691 }
12692 };
12693
12694 SCEVMapper SCM(SE2);
12695
12696 while (!LoopStack.empty()) {
12697 auto *L = LoopStack.pop_back_val();
12698 llvm::append_range(LoopStack, *L);
12699
12700 auto *CurBECount = SCM.visit(
12701 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
12702 auto *NewBECount = SE2.getBackedgeTakenCount(L);
12703
12704 if (CurBECount == SE2.getCouldNotCompute() ||
12705 NewBECount == SE2.getCouldNotCompute()) {
12706 // NB! This situation is legal, but is very suspicious -- whatever pass
12707 // change the loop to make a trip count go from could not compute to
12708 // computable or vice-versa *should have* invalidated SCEV. However, we
12709 // choose not to assert here (for now) since we don't want false
12710 // positives.
12711 continue;
12712 }
12713
12714 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
12715 // SCEV treats "undef" as an unknown but consistent value (i.e. it does
12716 // not propagate undef aggressively). This means we can (and do) fail
12717 // verification in cases where a transform makes the trip count of a loop
12718 // go from "undef" to "undef+1" (say). The transform is fine, since in
12719 // both cases the loop iterates "undef" times, but SCEV thinks we
12720 // increased the trip count of the loop by 1 incorrectly.
12721 continue;
12722 }
12723
12724 if (SE.getTypeSizeInBits(CurBECount->getType()) >
12725 SE.getTypeSizeInBits(NewBECount->getType()))
12726 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
12727 else if (SE.getTypeSizeInBits(CurBECount->getType()) <
12728 SE.getTypeSizeInBits(NewBECount->getType()))
12729 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
12730
12731 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
12732
12733 // Unless VerifySCEVStrict is set, we only compare constant deltas.
12734 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
12735 dbgs() << "Trip Count for " << *L << " Changed!\n";
12736 dbgs() << "Old: " << *CurBECount << "\n";
12737 dbgs() << "New: " << *NewBECount << "\n";
12738 dbgs() << "Delta: " << *Delta << "\n";
12739 std::abort();
12740 }
12741 }
12742
12743 // Collect all valid loops currently in LoopInfo.
12744 SmallPtrSet<Loop *, 32> ValidLoops;
12745 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
12746 while (!Worklist.empty()) {
12747 Loop *L = Worklist.pop_back_val();
12748 if (ValidLoops.contains(L))
12749 continue;
12750 ValidLoops.insert(L);
12751 Worklist.append(L->begin(), L->end());
12752 }
12753 // Check for SCEV expressions referencing invalid/deleted loops.
12754 for (auto &KV : ValueExprMap) {
12755 auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second);
12756 if (!AR)
12757 continue;
12758 assert(ValidLoops.contains(AR->getLoop()) &&
12759 "AddRec references invalid loop");
12760 }
12761 }
12762
invalidate(Function & F,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator & Inv)12763 bool ScalarEvolution::invalidate(
12764 Function &F, const PreservedAnalyses &PA,
12765 FunctionAnalysisManager::Invalidator &Inv) {
12766 // Invalidate the ScalarEvolution object whenever it isn't preserved or one
12767 // of its dependencies is invalidated.
12768 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
12769 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
12770 Inv.invalidate<AssumptionAnalysis>(F, PA) ||
12771 Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
12772 Inv.invalidate<LoopAnalysis>(F, PA);
12773 }
12774
12775 AnalysisKey ScalarEvolutionAnalysis::Key;
12776
run(Function & F,FunctionAnalysisManager & AM)12777 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
12778 FunctionAnalysisManager &AM) {
12779 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
12780 AM.getResult<AssumptionAnalysis>(F),
12781 AM.getResult<DominatorTreeAnalysis>(F),
12782 AM.getResult<LoopAnalysis>(F));
12783 }
12784
12785 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)12786 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
12787 AM.getResult<ScalarEvolutionAnalysis>(F).verify();
12788 return PreservedAnalyses::all();
12789 }
12790
12791 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)12792 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
12793 // For compatibility with opt's -analyze feature under legacy pass manager
12794 // which was not ported to NPM. This keeps tests using
12795 // update_analyze_test_checks.py working.
12796 OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
12797 << F.getName() << "':\n";
12798 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
12799 return PreservedAnalyses::all();
12800 }
12801
12802 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
12803 "Scalar Evolution Analysis", false, true)
12804 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12805 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
12806 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
12807 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
12808 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
12809 "Scalar Evolution Analysis", false, true)
12810
12811 char ScalarEvolutionWrapperPass::ID = 0;
12812
ScalarEvolutionWrapperPass()12813 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
12814 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
12815 }
12816
runOnFunction(Function & F)12817 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
12818 SE.reset(new ScalarEvolution(
12819 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
12820 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
12821 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
12822 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
12823 return false;
12824 }
12825
releaseMemory()12826 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
12827
print(raw_ostream & OS,const Module *) const12828 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
12829 SE->print(OS);
12830 }
12831
verifyAnalysis() const12832 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12833 if (!VerifySCEV)
12834 return;
12835
12836 SE->verify();
12837 }
12838
getAnalysisUsage(AnalysisUsage & AU) const12839 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
12840 AU.setPreservesAll();
12841 AU.addRequiredTransitive<AssumptionCacheTracker>();
12842 AU.addRequiredTransitive<LoopInfoWrapperPass>();
12843 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
12844 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12845 }
12846
getEqualPredicate(const SCEV * LHS,const SCEV * RHS)12847 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12848 const SCEV *RHS) {
12849 FoldingSetNodeID ID;
12850 assert(LHS->getType() == RHS->getType() &&
12851 "Type mismatch between LHS and RHS");
12852 // Unique this node based on the arguments
12853 ID.AddInteger(SCEVPredicate::P_Equal);
12854 ID.AddPointer(LHS);
12855 ID.AddPointer(RHS);
12856 void *IP = nullptr;
12857 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12858 return S;
12859 SCEVEqualPredicate *Eq = new (SCEVAllocator)
12860 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12861 UniquePreds.InsertNode(Eq, IP);
12862 return Eq;
12863 }
12864
getWrapPredicate(const SCEVAddRecExpr * AR,SCEVWrapPredicate::IncrementWrapFlags AddedFlags)12865 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12866 const SCEVAddRecExpr *AR,
12867 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12868 FoldingSetNodeID ID;
12869 // Unique this node based on the arguments
12870 ID.AddInteger(SCEVPredicate::P_Wrap);
12871 ID.AddPointer(AR);
12872 ID.AddInteger(AddedFlags);
12873 void *IP = nullptr;
12874 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12875 return S;
12876 auto *OF = new (SCEVAllocator)
12877 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12878 UniquePreds.InsertNode(OF, IP);
12879 return OF;
12880 }
12881
12882 namespace {
12883
12884 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12885 public:
12886
12887 /// Rewrites \p S in the context of a loop L and the SCEV predication
12888 /// infrastructure.
12889 ///
12890 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12891 /// equivalences present in \p Pred.
12892 ///
12893 /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12894 /// \p NewPreds such that the result will be an AddRecExpr.
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE,SmallPtrSetImpl<const SCEVPredicate * > * NewPreds,SCEVUnionPredicate * Pred)12895 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12896 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12897 SCEVUnionPredicate *Pred) {
12898 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12899 return Rewriter.visit(S);
12900 }
12901
visitUnknown(const SCEVUnknown * Expr)12902 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12903 if (Pred) {
12904 auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12905 for (auto *Pred : ExprPreds)
12906 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12907 if (IPred->getLHS() == Expr)
12908 return IPred->getRHS();
12909 }
12910 return convertToAddRecWithPreds(Expr);
12911 }
12912
visitZeroExtendExpr(const SCEVZeroExtendExpr * Expr)12913 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12914 const SCEV *Operand = visit(Expr->getOperand());
12915 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12916 if (AR && AR->getLoop() == L && AR->isAffine()) {
12917 // This couldn't be folded because the operand didn't have the nuw
12918 // flag. Add the nusw flag as an assumption that we could make.
12919 const SCEV *Step = AR->getStepRecurrence(SE);
12920 Type *Ty = Expr->getType();
12921 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12922 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12923 SE.getSignExtendExpr(Step, Ty), L,
12924 AR->getNoWrapFlags());
12925 }
12926 return SE.getZeroExtendExpr(Operand, Expr->getType());
12927 }
12928
visitSignExtendExpr(const SCEVSignExtendExpr * Expr)12929 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12930 const SCEV *Operand = visit(Expr->getOperand());
12931 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12932 if (AR && AR->getLoop() == L && AR->isAffine()) {
12933 // This couldn't be folded because the operand didn't have the nsw
12934 // flag. Add the nssw flag as an assumption that we could make.
12935 const SCEV *Step = AR->getStepRecurrence(SE);
12936 Type *Ty = Expr->getType();
12937 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12938 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12939 SE.getSignExtendExpr(Step, Ty), L,
12940 AR->getNoWrapFlags());
12941 }
12942 return SE.getSignExtendExpr(Operand, Expr->getType());
12943 }
12944
12945 private:
SCEVPredicateRewriter(const Loop * L,ScalarEvolution & SE,SmallPtrSetImpl<const SCEVPredicate * > * NewPreds,SCEVUnionPredicate * Pred)12946 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12947 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12948 SCEVUnionPredicate *Pred)
12949 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12950
addOverflowAssumption(const SCEVPredicate * P)12951 bool addOverflowAssumption(const SCEVPredicate *P) {
12952 if (!NewPreds) {
12953 // Check if we've already made this assumption.
12954 return Pred && Pred->implies(P);
12955 }
12956 NewPreds->insert(P);
12957 return true;
12958 }
12959
addOverflowAssumption(const SCEVAddRecExpr * AR,SCEVWrapPredicate::IncrementWrapFlags AddedFlags)12960 bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12961 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12962 auto *A = SE.getWrapPredicate(AR, AddedFlags);
12963 return addOverflowAssumption(A);
12964 }
12965
12966 // If \p Expr represents a PHINode, we try to see if it can be represented
12967 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12968 // to add this predicate as a runtime overflow check, we return the AddRec.
12969 // If \p Expr does not meet these conditions (is not a PHI node, or we
12970 // couldn't create an AddRec for it, or couldn't add the predicate), we just
12971 // return \p Expr.
convertToAddRecWithPreds(const SCEVUnknown * Expr)12972 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12973 if (!isa<PHINode>(Expr->getValue()))
12974 return Expr;
12975 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12976 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12977 if (!PredicatedRewrite)
12978 return Expr;
12979 for (auto *P : PredicatedRewrite->second){
12980 // Wrap predicates from outer loops are not supported.
12981 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12982 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12983 if (L != AR->getLoop())
12984 return Expr;
12985 }
12986 if (!addOverflowAssumption(P))
12987 return Expr;
12988 }
12989 return PredicatedRewrite->first;
12990 }
12991
12992 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12993 SCEVUnionPredicate *Pred;
12994 const Loop *L;
12995 };
12996
12997 } // end anonymous namespace
12998
rewriteUsingPredicate(const SCEV * S,const Loop * L,SCEVUnionPredicate & Preds)12999 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
13000 SCEVUnionPredicate &Preds) {
13001 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
13002 }
13003
convertSCEVToAddRecWithPredicates(const SCEV * S,const Loop * L,SmallPtrSetImpl<const SCEVPredicate * > & Preds)13004 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
13005 const SCEV *S, const Loop *L,
13006 SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
13007 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
13008 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
13009 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
13010
13011 if (!AddRec)
13012 return nullptr;
13013
13014 // Since the transformation was successful, we can now transfer the SCEV
13015 // predicates.
13016 for (auto *P : TransformPreds)
13017 Preds.insert(P);
13018
13019 return AddRec;
13020 }
13021
13022 /// SCEV predicates
SCEVPredicate(const FoldingSetNodeIDRef ID,SCEVPredicateKind Kind)13023 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
13024 SCEVPredicateKind Kind)
13025 : FastID(ID), Kind(Kind) {}
13026
SCEVEqualPredicate(const FoldingSetNodeIDRef ID,const SCEV * LHS,const SCEV * RHS)13027 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
13028 const SCEV *LHS, const SCEV *RHS)
13029 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
13030 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
13031 assert(LHS != RHS && "LHS and RHS are the same SCEV");
13032 }
13033
implies(const SCEVPredicate * N) const13034 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
13035 const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
13036
13037 if (!Op)
13038 return false;
13039
13040 return Op->LHS == LHS && Op->RHS == RHS;
13041 }
13042
isAlwaysTrue() const13043 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
13044
getExpr() const13045 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
13046
print(raw_ostream & OS,unsigned Depth) const13047 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
13048 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
13049 }
13050
SCEVWrapPredicate(const FoldingSetNodeIDRef ID,const SCEVAddRecExpr * AR,IncrementWrapFlags Flags)13051 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
13052 const SCEVAddRecExpr *AR,
13053 IncrementWrapFlags Flags)
13054 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
13055
getExpr() const13056 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
13057
implies(const SCEVPredicate * N) const13058 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
13059 const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
13060
13061 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
13062 }
13063
isAlwaysTrue() const13064 bool SCEVWrapPredicate::isAlwaysTrue() const {
13065 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
13066 IncrementWrapFlags IFlags = Flags;
13067
13068 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
13069 IFlags = clearFlags(IFlags, IncrementNSSW);
13070
13071 return IFlags == IncrementAnyWrap;
13072 }
13073
print(raw_ostream & OS,unsigned Depth) const13074 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
13075 OS.indent(Depth) << *getExpr() << " Added Flags: ";
13076 if (SCEVWrapPredicate::IncrementNUSW & getFlags())
13077 OS << "<nusw>";
13078 if (SCEVWrapPredicate::IncrementNSSW & getFlags())
13079 OS << "<nssw>";
13080 OS << "\n";
13081 }
13082
13083 SCEVWrapPredicate::IncrementWrapFlags
getImpliedFlags(const SCEVAddRecExpr * AR,ScalarEvolution & SE)13084 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
13085 ScalarEvolution &SE) {
13086 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
13087 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
13088
13089 // We can safely transfer the NSW flag as NSSW.
13090 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
13091 ImpliedFlags = IncrementNSSW;
13092
13093 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
13094 // If the increment is positive, the SCEV NUW flag will also imply the
13095 // WrapPredicate NUSW flag.
13096 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
13097 if (Step->getValue()->getValue().isNonNegative())
13098 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
13099 }
13100
13101 return ImpliedFlags;
13102 }
13103
13104 /// Union predicates don't get cached so create a dummy set ID for it.
SCEVUnionPredicate()13105 SCEVUnionPredicate::SCEVUnionPredicate()
13106 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
13107
isAlwaysTrue() const13108 bool SCEVUnionPredicate::isAlwaysTrue() const {
13109 return all_of(Preds,
13110 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
13111 }
13112
13113 ArrayRef<const SCEVPredicate *>
getPredicatesForExpr(const SCEV * Expr)13114 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
13115 auto I = SCEVToPreds.find(Expr);
13116 if (I == SCEVToPreds.end())
13117 return ArrayRef<const SCEVPredicate *>();
13118 return I->second;
13119 }
13120
implies(const SCEVPredicate * N) const13121 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
13122 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
13123 return all_of(Set->Preds,
13124 [this](const SCEVPredicate *I) { return this->implies(I); });
13125
13126 auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
13127 if (ScevPredsIt == SCEVToPreds.end())
13128 return false;
13129 auto &SCEVPreds = ScevPredsIt->second;
13130
13131 return any_of(SCEVPreds,
13132 [N](const SCEVPredicate *I) { return I->implies(N); });
13133 }
13134
getExpr() const13135 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
13136
print(raw_ostream & OS,unsigned Depth) const13137 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
13138 for (auto Pred : Preds)
13139 Pred->print(OS, Depth);
13140 }
13141
add(const SCEVPredicate * N)13142 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
13143 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
13144 for (auto Pred : Set->Preds)
13145 add(Pred);
13146 return;
13147 }
13148
13149 if (implies(N))
13150 return;
13151
13152 const SCEV *Key = N->getExpr();
13153 assert(Key && "Only SCEVUnionPredicate doesn't have an "
13154 " associated expression!");
13155
13156 SCEVToPreds[Key].push_back(N);
13157 Preds.push_back(N);
13158 }
13159
PredicatedScalarEvolution(ScalarEvolution & SE,Loop & L)13160 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
13161 Loop &L)
13162 : SE(SE), L(L) {}
13163
getSCEV(Value * V)13164 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
13165 const SCEV *Expr = SE.getSCEV(V);
13166 RewriteEntry &Entry = RewriteMap[Expr];
13167
13168 // If we already have an entry and the version matches, return it.
13169 if (Entry.second && Generation == Entry.first)
13170 return Entry.second;
13171
13172 // We found an entry but it's stale. Rewrite the stale entry
13173 // according to the current predicate.
13174 if (Entry.second)
13175 Expr = Entry.second;
13176
13177 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
13178 Entry = {Generation, NewSCEV};
13179
13180 return NewSCEV;
13181 }
13182
getBackedgeTakenCount()13183 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
13184 if (!BackedgeCount) {
13185 SCEVUnionPredicate BackedgePred;
13186 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
13187 addPredicate(BackedgePred);
13188 }
13189 return BackedgeCount;
13190 }
13191
addPredicate(const SCEVPredicate & Pred)13192 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
13193 if (Preds.implies(&Pred))
13194 return;
13195 Preds.add(&Pred);
13196 updateGeneration();
13197 }
13198
getUnionPredicate() const13199 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
13200 return Preds;
13201 }
13202
updateGeneration()13203 void PredicatedScalarEvolution::updateGeneration() {
13204 // If the generation number wrapped recompute everything.
13205 if (++Generation == 0) {
13206 for (auto &II : RewriteMap) {
13207 const SCEV *Rewritten = II.second.second;
13208 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
13209 }
13210 }
13211 }
13212
setNoOverflow(Value * V,SCEVWrapPredicate::IncrementWrapFlags Flags)13213 void PredicatedScalarEvolution::setNoOverflow(
13214 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13215 const SCEV *Expr = getSCEV(V);
13216 const auto *AR = cast<SCEVAddRecExpr>(Expr);
13217
13218 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
13219
13220 // Clear the statically implied flags.
13221 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
13222 addPredicate(*SE.getWrapPredicate(AR, Flags));
13223
13224 auto II = FlagsMap.insert({V, Flags});
13225 if (!II.second)
13226 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
13227 }
13228
hasNoOverflow(Value * V,SCEVWrapPredicate::IncrementWrapFlags Flags)13229 bool PredicatedScalarEvolution::hasNoOverflow(
13230 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13231 const SCEV *Expr = getSCEV(V);
13232 const auto *AR = cast<SCEVAddRecExpr>(Expr);
13233
13234 Flags = SCEVWrapPredicate::clearFlags(
13235 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
13236
13237 auto II = FlagsMap.find(V);
13238
13239 if (II != FlagsMap.end())
13240 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
13241
13242 return Flags == SCEVWrapPredicate::IncrementAnyWrap;
13243 }
13244
getAsAddRec(Value * V)13245 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
13246 const SCEV *Expr = this->getSCEV(V);
13247 SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
13248 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
13249
13250 if (!New)
13251 return nullptr;
13252
13253 for (auto *P : NewPreds)
13254 Preds.add(P);
13255
13256 updateGeneration();
13257 RewriteMap[SE.getSCEV(V)] = {Generation, New};
13258 return New;
13259 }
13260
PredicatedScalarEvolution(const PredicatedScalarEvolution & Init)13261 PredicatedScalarEvolution::PredicatedScalarEvolution(
13262 const PredicatedScalarEvolution &Init)
13263 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
13264 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
13265 for (auto I : Init.FlagsMap)
13266 FlagsMap.insert(I);
13267 }
13268
print(raw_ostream & OS,unsigned Depth) const13269 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
13270 // For each block.
13271 for (auto *BB : L.getBlocks())
13272 for (auto &I : *BB) {
13273 if (!SE.isSCEVable(I.getType()))
13274 continue;
13275
13276 auto *Expr = SE.getSCEV(&I);
13277 auto II = RewriteMap.find(Expr);
13278
13279 if (II == RewriteMap.end())
13280 continue;
13281
13282 // Don't print things that are not interesting.
13283 if (II->second.second == Expr)
13284 continue;
13285
13286 OS.indent(Depth) << "[PSE]" << I << ":\n";
13287 OS.indent(Depth + 2) << *Expr << "\n";
13288 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
13289 }
13290 }
13291
13292 // Match the mathematical pattern A - (A / B) * B, where A and B can be
13293 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
13294 // for URem with constant power-of-2 second operands.
13295 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
13296 // 4, A / B becomes X / 8).
matchURem(const SCEV * Expr,const SCEV * & LHS,const SCEV * & RHS)13297 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
13298 const SCEV *&RHS) {
13299 // Try to match 'zext (trunc A to iB) to iY', which is used
13300 // for URem with constant power-of-2 second operands. Make sure the size of
13301 // the operand A matches the size of the whole expressions.
13302 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
13303 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
13304 LHS = Trunc->getOperand();
13305 // Bail out if the type of the LHS is larger than the type of the
13306 // expression for now.
13307 if (getTypeSizeInBits(LHS->getType()) >
13308 getTypeSizeInBits(Expr->getType()))
13309 return false;
13310 if (LHS->getType() != Expr->getType())
13311 LHS = getZeroExtendExpr(LHS, Expr->getType());
13312 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
13313 << getTypeSizeInBits(Trunc->getType()));
13314 return true;
13315 }
13316 const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
13317 if (Add == nullptr || Add->getNumOperands() != 2)
13318 return false;
13319
13320 const SCEV *A = Add->getOperand(1);
13321 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
13322
13323 if (Mul == nullptr)
13324 return false;
13325
13326 const auto MatchURemWithDivisor = [&](const SCEV *B) {
13327 // (SomeExpr + (-(SomeExpr / B) * B)).
13328 if (Expr == getURemExpr(A, B)) {
13329 LHS = A;
13330 RHS = B;
13331 return true;
13332 }
13333 return false;
13334 };
13335
13336 // (SomeExpr + (-1 * (SomeExpr / B) * B)).
13337 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
13338 return MatchURemWithDivisor(Mul->getOperand(1)) ||
13339 MatchURemWithDivisor(Mul->getOperand(2));
13340
13341 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
13342 if (Mul->getNumOperands() == 2)
13343 return MatchURemWithDivisor(Mul->getOperand(1)) ||
13344 MatchURemWithDivisor(Mul->getOperand(0)) ||
13345 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
13346 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
13347 return false;
13348 }
13349
13350 const SCEV *
computeSymbolicMaxBackedgeTakenCount(const Loop * L)13351 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
13352 SmallVector<BasicBlock*, 16> ExitingBlocks;
13353 L->getExitingBlocks(ExitingBlocks);
13354
13355 // Form an expression for the maximum exit count possible for this loop. We
13356 // merge the max and exact information to approximate a version of
13357 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
13358 SmallVector<const SCEV*, 4> ExitCounts;
13359 for (BasicBlock *ExitingBB : ExitingBlocks) {
13360 const SCEV *ExitCount = getExitCount(L, ExitingBB);
13361 if (isa<SCEVCouldNotCompute>(ExitCount))
13362 ExitCount = getExitCount(L, ExitingBB,
13363 ScalarEvolution::ConstantMaximum);
13364 if (!isa<SCEVCouldNotCompute>(ExitCount)) {
13365 assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
13366 "We should only have known counts for exiting blocks that "
13367 "dominate latch!");
13368 ExitCounts.push_back(ExitCount);
13369 }
13370 }
13371 if (ExitCounts.empty())
13372 return getCouldNotCompute();
13373 return getUMinFromMismatchedTypes(ExitCounts);
13374 }
13375
13376 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown
13377 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because
13378 /// we cannot guarantee that the replacement is loop invariant in the loop of
13379 /// the AddRec.
13380 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
13381 ValueToSCEVMapTy ⤅
13382
13383 public:
SCEVLoopGuardRewriter(ScalarEvolution & SE,ValueToSCEVMapTy & M)13384 SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M)
13385 : SCEVRewriteVisitor(SE), Map(M) {}
13386
visitAddRecExpr(const SCEVAddRecExpr * Expr)13387 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
13388
visitUnknown(const SCEVUnknown * Expr)13389 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13390 auto I = Map.find(Expr->getValue());
13391 if (I == Map.end())
13392 return Expr;
13393 return I->second;
13394 }
13395 };
13396
applyLoopGuards(const SCEV * Expr,const Loop * L)13397 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
13398 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
13399 const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) {
13400 // If we have LHS == 0, check if LHS is computing a property of some unknown
13401 // SCEV %v which we can rewrite %v to express explicitly.
13402 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
13403 if (Predicate == CmpInst::ICMP_EQ && RHSC &&
13404 RHSC->getValue()->isNullValue()) {
13405 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
13406 // explicitly express that.
13407 const SCEV *URemLHS = nullptr;
13408 const SCEV *URemRHS = nullptr;
13409 if (matchURem(LHS, URemLHS, URemRHS)) {
13410 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
13411 Value *V = LHSUnknown->getValue();
13412 auto Multiple =
13413 getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS,
13414 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
13415 RewriteMap[V] = Multiple;
13416 return;
13417 }
13418 }
13419 }
13420
13421 if (!isa<SCEVUnknown>(LHS)) {
13422 std::swap(LHS, RHS);
13423 Predicate = CmpInst::getSwappedPredicate(Predicate);
13424 }
13425
13426 // For now, limit to conditions that provide information about unknown
13427 // expressions.
13428 auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS);
13429 if (!LHSUnknown)
13430 return;
13431
13432 // Check whether LHS has already been rewritten. In that case we want to
13433 // chain further rewrites onto the already rewritten value.
13434 auto I = RewriteMap.find(LHSUnknown->getValue());
13435 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS;
13436
13437 // TODO: use information from more predicates.
13438 switch (Predicate) {
13439 case CmpInst::ICMP_ULT:
13440 if (!containsAddRecurrence(RHS))
13441 RewriteMap[LHSUnknown->getValue()] = getUMinExpr(
13442 RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
13443 break;
13444 case CmpInst::ICMP_ULE:
13445 if (!containsAddRecurrence(RHS))
13446 RewriteMap[LHSUnknown->getValue()] = getUMinExpr(RewrittenLHS, RHS);
13447 break;
13448 case CmpInst::ICMP_UGT:
13449 if (!containsAddRecurrence(RHS))
13450 RewriteMap[LHSUnknown->getValue()] =
13451 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
13452 break;
13453 case CmpInst::ICMP_UGE:
13454 if (!containsAddRecurrence(RHS))
13455 RewriteMap[LHSUnknown->getValue()] = getUMaxExpr(RewrittenLHS, RHS);
13456 break;
13457 case CmpInst::ICMP_EQ:
13458 if (isa<SCEVConstant>(RHS))
13459 RewriteMap[LHSUnknown->getValue()] = RHS;
13460 break;
13461 case CmpInst::ICMP_NE:
13462 if (isa<SCEVConstant>(RHS) &&
13463 cast<SCEVConstant>(RHS)->getValue()->isNullValue())
13464 RewriteMap[LHSUnknown->getValue()] =
13465 getUMaxExpr(RewrittenLHS, getOne(RHS->getType()));
13466 break;
13467 default:
13468 break;
13469 }
13470 };
13471 // Starting at the loop predecessor, climb up the predecessor chain, as long
13472 // as there are predecessors that can be found that have unique successors
13473 // leading to the original header.
13474 // TODO: share this logic with isLoopEntryGuardedByCond.
13475 ValueToSCEVMapTy RewriteMap;
13476 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
13477 L->getLoopPredecessor(), L->getHeader());
13478 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
13479
13480 const BranchInst *LoopEntryPredicate =
13481 dyn_cast<BranchInst>(Pair.first->getTerminator());
13482 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
13483 continue;
13484
13485 bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second;
13486 SmallVector<Value *, 8> Worklist;
13487 SmallPtrSet<Value *, 8> Visited;
13488 Worklist.push_back(LoopEntryPredicate->getCondition());
13489 while (!Worklist.empty()) {
13490 Value *Cond = Worklist.pop_back_val();
13491 if (!Visited.insert(Cond).second)
13492 continue;
13493
13494 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
13495 auto Predicate =
13496 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
13497 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
13498 getSCEV(Cmp->getOperand(1)), RewriteMap);
13499 continue;
13500 }
13501
13502 Value *L, *R;
13503 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
13504 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
13505 Worklist.push_back(L);
13506 Worklist.push_back(R);
13507 }
13508 }
13509 }
13510
13511 // Also collect information from assumptions dominating the loop.
13512 for (auto &AssumeVH : AC.assumptions()) {
13513 if (!AssumeVH)
13514 continue;
13515 auto *AssumeI = cast<CallInst>(AssumeVH);
13516 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
13517 if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
13518 continue;
13519 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
13520 getSCEV(Cmp->getOperand(1)), RewriteMap);
13521 }
13522
13523 if (RewriteMap.empty())
13524 return Expr;
13525 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
13526 return Rewriter.visit(Expr);
13527 }
13528