1 /* Control flow graph manipulation code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This file contains low level functions to manipulate the CFG and
24 analyze it. All other modules should not transform the data structure
25 directly and use abstraction instead. The file is supposed to be
26 ordered bottom-up and should not contain any code dependent on a
27 particular intermediate language (RTL or trees).
28
29 Available functionality:
30 - Initialization/deallocation
31 init_flow, clear_edges
32 - Low level basic block manipulation
33 alloc_block, expunge_block
34 - Edge manipulation
35 make_edge, make_single_succ_edge, cached_make_edge, remove_edge
36 - Low level edge redirection (without updating instruction chain)
37 redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred
38 - Dumping and debugging
39 dump_flow_info, debug_flow_info, dump_edge_info
40 - Allocation of AUX fields for basic blocks
41 alloc_aux_for_blocks, free_aux_for_blocks, alloc_aux_for_block
42 - clear_bb_flags
43 - Consistency checking
44 verify_flow_info
45 - Dumping and debugging
46 print_rtl_with_bb, dump_bb, debug_bb, debug_bb_n
47 */
48
49 #include "config.h"
50 #include "system.h"
51 #include "coretypes.h"
52 #include "tm.h"
53 #include "tree.h"
54 #include "rtl.h"
55 #include "hard-reg-set.h"
56 #include "regs.h"
57 #include "flags.h"
58 #include "output.h"
59 #include "function.h"
60 #include "except.h"
61 #include "toplev.h"
62 #include "tm_p.h"
63 #include "obstack.h"
64 #include "timevar.h"
65 #include "tree-pass.h"
66 #include "ggc.h"
67 #include "hashtab.h"
68 #include "alloc-pool.h"
69
70 /* The obstack on which the flow graph components are allocated. */
71
72 struct bitmap_obstack reg_obstack;
73
74 void debug_flow_info (void);
75 static void free_edge (edge);
76
77 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
78
79 /* Called once at initialization time. */
80
81 void
init_flow(void)82 init_flow (void)
83 {
84 if (!cfun->cfg)
85 cfun->cfg = ggc_alloc_cleared (sizeof (struct control_flow_graph));
86 n_edges = 0;
87 ENTRY_BLOCK_PTR = ggc_alloc_cleared (sizeof (struct basic_block_def));
88 ENTRY_BLOCK_PTR->index = ENTRY_BLOCK;
89 EXIT_BLOCK_PTR = ggc_alloc_cleared (sizeof (struct basic_block_def));
90 EXIT_BLOCK_PTR->index = EXIT_BLOCK;
91 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
92 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
93 }
94
95 /* Helper function for remove_edge and clear_edges. Frees edge structure
96 without actually unlinking it from the pred/succ lists. */
97
98 static void
free_edge(edge e ATTRIBUTE_UNUSED)99 free_edge (edge e ATTRIBUTE_UNUSED)
100 {
101 n_edges--;
102 ggc_free (e);
103 }
104
105 /* Free the memory associated with the edge structures. */
106
107 void
clear_edges(void)108 clear_edges (void)
109 {
110 basic_block bb;
111 edge e;
112 edge_iterator ei;
113
114 FOR_EACH_BB (bb)
115 {
116 FOR_EACH_EDGE (e, ei, bb->succs)
117 free_edge (e);
118 VEC_truncate (edge, bb->succs, 0);
119 VEC_truncate (edge, bb->preds, 0);
120 }
121
122 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
123 free_edge (e);
124 VEC_truncate (edge, EXIT_BLOCK_PTR->preds, 0);
125 VEC_truncate (edge, ENTRY_BLOCK_PTR->succs, 0);
126
127 gcc_assert (!n_edges);
128 }
129
130 /* Allocate memory for basic_block. */
131
132 basic_block
alloc_block(void)133 alloc_block (void)
134 {
135 basic_block bb;
136 bb = ggc_alloc_cleared (sizeof (*bb));
137 return bb;
138 }
139
140 /* Link block B to chain after AFTER. */
141 void
link_block(basic_block b,basic_block after)142 link_block (basic_block b, basic_block after)
143 {
144 b->next_bb = after->next_bb;
145 b->prev_bb = after;
146 after->next_bb = b;
147 b->next_bb->prev_bb = b;
148 }
149
150 /* Unlink block B from chain. */
151 void
unlink_block(basic_block b)152 unlink_block (basic_block b)
153 {
154 b->next_bb->prev_bb = b->prev_bb;
155 b->prev_bb->next_bb = b->next_bb;
156 b->prev_bb = NULL;
157 b->next_bb = NULL;
158 }
159
160 /* Sequentially order blocks and compact the arrays. */
161 void
compact_blocks(void)162 compact_blocks (void)
163 {
164 int i;
165 basic_block bb;
166
167 SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
168 SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
169
170 i = NUM_FIXED_BLOCKS;
171 FOR_EACH_BB (bb)
172 {
173 SET_BASIC_BLOCK (i, bb);
174 bb->index = i;
175 i++;
176 }
177
178 gcc_assert (i == n_basic_blocks);
179
180 for (; i < last_basic_block; i++)
181 SET_BASIC_BLOCK (i, NULL);
182
183 last_basic_block = n_basic_blocks;
184 }
185
186 /* Remove block B from the basic block array. */
187
188 void
expunge_block(basic_block b)189 expunge_block (basic_block b)
190 {
191 unlink_block (b);
192 SET_BASIC_BLOCK (b->index, NULL);
193 n_basic_blocks--;
194 /* We should be able to ggc_free here, but we are not.
195 The dead SSA_NAMES are left pointing to dead statements that are pointing
196 to dead basic blocks making garbage collector to die.
197 We should be able to release all dead SSA_NAMES and at the same time we should
198 clear out BB pointer of dead statements consistently. */
199 }
200
201 /* Connect E to E->src. */
202
203 static inline void
connect_src(edge e)204 connect_src (edge e)
205 {
206 VEC_safe_push (edge, gc, e->src->succs, e);
207 }
208
209 /* Connect E to E->dest. */
210
211 static inline void
connect_dest(edge e)212 connect_dest (edge e)
213 {
214 basic_block dest = e->dest;
215 VEC_safe_push (edge, gc, dest->preds, e);
216 e->dest_idx = EDGE_COUNT (dest->preds) - 1;
217 }
218
219 /* Disconnect edge E from E->src. */
220
221 static inline void
disconnect_src(edge e)222 disconnect_src (edge e)
223 {
224 basic_block src = e->src;
225 edge_iterator ei;
226 edge tmp;
227
228 for (ei = ei_start (src->succs); (tmp = ei_safe_edge (ei)); )
229 {
230 if (tmp == e)
231 {
232 VEC_unordered_remove (edge, src->succs, ei.index);
233 return;
234 }
235 else
236 ei_next (&ei);
237 }
238
239 gcc_unreachable ();
240 }
241
242 /* Disconnect edge E from E->dest. */
243
244 static inline void
disconnect_dest(edge e)245 disconnect_dest (edge e)
246 {
247 basic_block dest = e->dest;
248 unsigned int dest_idx = e->dest_idx;
249
250 VEC_unordered_remove (edge, dest->preds, dest_idx);
251
252 /* If we removed an edge in the middle of the edge vector, we need
253 to update dest_idx of the edge that moved into the "hole". */
254 if (dest_idx < EDGE_COUNT (dest->preds))
255 EDGE_PRED (dest, dest_idx)->dest_idx = dest_idx;
256 }
257
258 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
259 created edge. Use this only if you are sure that this edge can't
260 possibly already exist. */
261
262 edge
unchecked_make_edge(basic_block src,basic_block dst,int flags)263 unchecked_make_edge (basic_block src, basic_block dst, int flags)
264 {
265 edge e;
266 e = ggc_alloc_cleared (sizeof (*e));
267 n_edges++;
268
269 e->src = src;
270 e->dest = dst;
271 e->flags = flags;
272
273 connect_src (e);
274 connect_dest (e);
275
276 execute_on_growing_pred (e);
277
278 return e;
279 }
280
281 /* Create an edge connecting SRC and DST with FLAGS optionally using
282 edge cache CACHE. Return the new edge, NULL if already exist. */
283
284 edge
cached_make_edge(sbitmap edge_cache,basic_block src,basic_block dst,int flags)285 cached_make_edge (sbitmap edge_cache, basic_block src, basic_block dst, int flags)
286 {
287 if (edge_cache == NULL
288 || src == ENTRY_BLOCK_PTR
289 || dst == EXIT_BLOCK_PTR)
290 return make_edge (src, dst, flags);
291
292 /* Does the requested edge already exist? */
293 if (! TEST_BIT (edge_cache, dst->index))
294 {
295 /* The edge does not exist. Create one and update the
296 cache. */
297 SET_BIT (edge_cache, dst->index);
298 return unchecked_make_edge (src, dst, flags);
299 }
300
301 /* At this point, we know that the requested edge exists. Adjust
302 flags if necessary. */
303 if (flags)
304 {
305 edge e = find_edge (src, dst);
306 e->flags |= flags;
307 }
308
309 return NULL;
310 }
311
312 /* Create an edge connecting SRC and DEST with flags FLAGS. Return newly
313 created edge or NULL if already exist. */
314
315 edge
make_edge(basic_block src,basic_block dest,int flags)316 make_edge (basic_block src, basic_block dest, int flags)
317 {
318 edge e = find_edge (src, dest);
319
320 /* Make sure we don't add duplicate edges. */
321 if (e)
322 {
323 e->flags |= flags;
324 return NULL;
325 }
326
327 return unchecked_make_edge (src, dest, flags);
328 }
329
330 /* Create an edge connecting SRC to DEST and set probability by knowing
331 that it is the single edge leaving SRC. */
332
333 edge
make_single_succ_edge(basic_block src,basic_block dest,int flags)334 make_single_succ_edge (basic_block src, basic_block dest, int flags)
335 {
336 edge e = make_edge (src, dest, flags);
337
338 e->probability = REG_BR_PROB_BASE;
339 e->count = src->count;
340 return e;
341 }
342
343 /* This function will remove an edge from the flow graph. */
344
345 void
remove_edge(edge e)346 remove_edge (edge e)
347 {
348 remove_predictions_associated_with_edge (e);
349 execute_on_shrinking_pred (e);
350
351 disconnect_src (e);
352 disconnect_dest (e);
353
354 free_edge (e);
355 }
356
357 /* Redirect an edge's successor from one block to another. */
358
359 void
redirect_edge_succ(edge e,basic_block new_succ)360 redirect_edge_succ (edge e, basic_block new_succ)
361 {
362 execute_on_shrinking_pred (e);
363
364 disconnect_dest (e);
365
366 e->dest = new_succ;
367
368 /* Reconnect the edge to the new successor block. */
369 connect_dest (e);
370
371 execute_on_growing_pred (e);
372 }
373
374 /* Like previous but avoid possible duplicate edge. */
375
376 edge
redirect_edge_succ_nodup(edge e,basic_block new_succ)377 redirect_edge_succ_nodup (edge e, basic_block new_succ)
378 {
379 edge s;
380
381 s = find_edge (e->src, new_succ);
382 if (s && s != e)
383 {
384 s->flags |= e->flags;
385 s->probability += e->probability;
386 if (s->probability > REG_BR_PROB_BASE)
387 s->probability = REG_BR_PROB_BASE;
388 s->count += e->count;
389 remove_edge (e);
390 e = s;
391 }
392 else
393 redirect_edge_succ (e, new_succ);
394
395 return e;
396 }
397
398 /* Redirect an edge's predecessor from one block to another. */
399
400 void
redirect_edge_pred(edge e,basic_block new_pred)401 redirect_edge_pred (edge e, basic_block new_pred)
402 {
403 disconnect_src (e);
404
405 e->src = new_pred;
406
407 /* Reconnect the edge to the new predecessor block. */
408 connect_src (e);
409 }
410
411 /* Clear all basic block flags, with the exception of partitioning. */
412 void
clear_bb_flags(void)413 clear_bb_flags (void)
414 {
415 basic_block bb;
416
417 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
418 bb->flags = (BB_PARTITION (bb) | (bb->flags & BB_DISABLE_SCHEDULE)
419 | (bb->flags & BB_RTL));
420 }
421
422 /* Check the consistency of profile information. We can't do that
423 in verify_flow_info, as the counts may get invalid for incompletely
424 solved graphs, later eliminating of conditionals or roundoff errors.
425 It is still practical to have them reported for debugging of simple
426 testcases. */
427 void
check_bb_profile(basic_block bb,FILE * file)428 check_bb_profile (basic_block bb, FILE * file)
429 {
430 edge e;
431 int sum = 0;
432 gcov_type lsum;
433 edge_iterator ei;
434
435 if (profile_status == PROFILE_ABSENT)
436 return;
437
438 if (bb != EXIT_BLOCK_PTR)
439 {
440 FOR_EACH_EDGE (e, ei, bb->succs)
441 sum += e->probability;
442 if (EDGE_COUNT (bb->succs) && abs (sum - REG_BR_PROB_BASE) > 100)
443 fprintf (file, "Invalid sum of outgoing probabilities %.1f%%\n",
444 sum * 100.0 / REG_BR_PROB_BASE);
445 lsum = 0;
446 FOR_EACH_EDGE (e, ei, bb->succs)
447 lsum += e->count;
448 if (EDGE_COUNT (bb->succs)
449 && (lsum - bb->count > 100 || lsum - bb->count < -100))
450 fprintf (file, "Invalid sum of outgoing counts %i, should be %i\n",
451 (int) lsum, (int) bb->count);
452 }
453 if (bb != ENTRY_BLOCK_PTR)
454 {
455 sum = 0;
456 FOR_EACH_EDGE (e, ei, bb->preds)
457 sum += EDGE_FREQUENCY (e);
458 if (abs (sum - bb->frequency) > 100)
459 fprintf (file,
460 "Invalid sum of incoming frequencies %i, should be %i\n",
461 sum, bb->frequency);
462 lsum = 0;
463 FOR_EACH_EDGE (e, ei, bb->preds)
464 lsum += e->count;
465 if (lsum - bb->count > 100 || lsum - bb->count < -100)
466 fprintf (file, "Invalid sum of incoming counts %i, should be %i\n",
467 (int) lsum, (int) bb->count);
468 }
469 }
470
471 /* Emit basic block information for BB. HEADER is true if the user wants
472 the generic information and the predecessors, FOOTER is true if they want
473 the successors. FLAGS is the dump flags of interest; TDF_DETAILS emit
474 global register liveness information. PREFIX is put in front of every
475 line. The output is emitted to FILE. */
476 void
dump_bb_info(basic_block bb,bool header,bool footer,int flags,const char * prefix,FILE * file)477 dump_bb_info (basic_block bb, bool header, bool footer, int flags,
478 const char *prefix, FILE *file)
479 {
480 edge e;
481 edge_iterator ei;
482
483 if (header)
484 {
485 fprintf (file, "\n%sBasic block %d ", prefix, bb->index);
486 if (bb->prev_bb)
487 fprintf (file, ", prev %d", bb->prev_bb->index);
488 if (bb->next_bb)
489 fprintf (file, ", next %d", bb->next_bb->index);
490 fprintf (file, ", loop_depth %d, count ", bb->loop_depth);
491 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
492 fprintf (file, ", freq %i", bb->frequency);
493 if (maybe_hot_bb_p (bb))
494 fprintf (file, ", maybe hot");
495 if (probably_never_executed_bb_p (bb))
496 fprintf (file, ", probably never executed");
497 fprintf (file, ".\n");
498
499 fprintf (file, "%sPredecessors: ", prefix);
500 FOR_EACH_EDGE (e, ei, bb->preds)
501 dump_edge_info (file, e, 0);
502 }
503
504 if (footer)
505 {
506 fprintf (file, "\n%sSuccessors: ", prefix);
507 FOR_EACH_EDGE (e, ei, bb->succs)
508 dump_edge_info (file, e, 1);
509 }
510
511 if ((flags & TDF_DETAILS)
512 && (bb->flags & BB_RTL))
513 {
514 if (bb->il.rtl->global_live_at_start && header)
515 {
516 fprintf (file, "\n%sRegisters live at start:", prefix);
517 dump_regset (bb->il.rtl->global_live_at_start, file);
518 }
519
520 if (bb->il.rtl->global_live_at_end && footer)
521 {
522 fprintf (file, "\n%sRegisters live at end:", prefix);
523 dump_regset (bb->il.rtl->global_live_at_end, file);
524 }
525 }
526
527 putc ('\n', file);
528 }
529
530 void
dump_flow_info(FILE * file,int flags)531 dump_flow_info (FILE *file, int flags)
532 {
533 basic_block bb;
534
535 /* There are no pseudo registers after reload. Don't dump them. */
536 if (reg_n_info && !reload_completed
537 && (flags & TDF_DETAILS) != 0)
538 {
539 unsigned int i, max = max_reg_num ();
540 fprintf (file, "%d registers.\n", max);
541 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
542 if (REG_N_REFS (i))
543 {
544 enum reg_class class, altclass;
545
546 fprintf (file, "\nRegister %d used %d times across %d insns",
547 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
548 if (REG_BASIC_BLOCK (i) >= 0)
549 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
550 if (REG_N_SETS (i))
551 fprintf (file, "; set %d time%s", REG_N_SETS (i),
552 (REG_N_SETS (i) == 1) ? "" : "s");
553 if (regno_reg_rtx[i] != NULL && REG_USERVAR_P (regno_reg_rtx[i]))
554 fprintf (file, "; user var");
555 if (REG_N_DEATHS (i) != 1)
556 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
557 if (REG_N_CALLS_CROSSED (i) == 1)
558 fprintf (file, "; crosses 1 call");
559 else if (REG_N_CALLS_CROSSED (i))
560 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
561 if (regno_reg_rtx[i] != NULL
562 && PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
563 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
564
565 class = reg_preferred_class (i);
566 altclass = reg_alternate_class (i);
567 if (class != GENERAL_REGS || altclass != ALL_REGS)
568 {
569 if (altclass == ALL_REGS || class == ALL_REGS)
570 fprintf (file, "; pref %s", reg_class_names[(int) class]);
571 else if (altclass == NO_REGS)
572 fprintf (file, "; %s or none", reg_class_names[(int) class]);
573 else
574 fprintf (file, "; pref %s, else %s",
575 reg_class_names[(int) class],
576 reg_class_names[(int) altclass]);
577 }
578
579 if (regno_reg_rtx[i] != NULL && REG_POINTER (regno_reg_rtx[i]))
580 fprintf (file, "; pointer");
581 fprintf (file, ".\n");
582 }
583 }
584
585 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
586 FOR_EACH_BB (bb)
587 {
588 dump_bb_info (bb, true, true, flags, "", file);
589 check_bb_profile (bb, file);
590 }
591
592 putc ('\n', file);
593 }
594
595 void
debug_flow_info(void)596 debug_flow_info (void)
597 {
598 dump_flow_info (stderr, TDF_DETAILS);
599 }
600
601 void
dump_edge_info(FILE * file,edge e,int do_succ)602 dump_edge_info (FILE *file, edge e, int do_succ)
603 {
604 basic_block side = (do_succ ? e->dest : e->src);
605
606 if (side == ENTRY_BLOCK_PTR)
607 fputs (" ENTRY", file);
608 else if (side == EXIT_BLOCK_PTR)
609 fputs (" EXIT", file);
610 else
611 fprintf (file, " %d", side->index);
612
613 if (e->probability)
614 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
615
616 if (e->count)
617 {
618 fprintf (file, " count:");
619 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
620 }
621
622 if (e->flags)
623 {
624 static const char * const bitnames[] = {
625 "fallthru", "ab", "abcall", "eh", "fake", "dfs_back",
626 "can_fallthru", "irreducible", "sibcall", "loop_exit",
627 "true", "false", "exec"
628 };
629 int comma = 0;
630 int i, flags = e->flags;
631
632 fputs (" (", file);
633 for (i = 0; flags; i++)
634 if (flags & (1 << i))
635 {
636 flags &= ~(1 << i);
637
638 if (comma)
639 fputc (',', file);
640 if (i < (int) ARRAY_SIZE (bitnames))
641 fputs (bitnames[i], file);
642 else
643 fprintf (file, "%d", i);
644 comma = 1;
645 }
646
647 fputc (')', file);
648 }
649 }
650
651 /* Simple routines to easily allocate AUX fields of basic blocks. */
652
653 static struct obstack block_aux_obstack;
654 static void *first_block_aux_obj = 0;
655 static struct obstack edge_aux_obstack;
656 static void *first_edge_aux_obj = 0;
657
658 /* Allocate a memory block of SIZE as BB->aux. The obstack must
659 be first initialized by alloc_aux_for_blocks. */
660
661 inline void
alloc_aux_for_block(basic_block bb,int size)662 alloc_aux_for_block (basic_block bb, int size)
663 {
664 /* Verify that aux field is clear. */
665 gcc_assert (!bb->aux && first_block_aux_obj);
666 bb->aux = obstack_alloc (&block_aux_obstack, size);
667 memset (bb->aux, 0, size);
668 }
669
670 /* Initialize the block_aux_obstack and if SIZE is nonzero, call
671 alloc_aux_for_block for each basic block. */
672
673 void
alloc_aux_for_blocks(int size)674 alloc_aux_for_blocks (int size)
675 {
676 static int initialized;
677
678 if (!initialized)
679 {
680 gcc_obstack_init (&block_aux_obstack);
681 initialized = 1;
682 }
683 else
684 /* Check whether AUX data are still allocated. */
685 gcc_assert (!first_block_aux_obj);
686
687 first_block_aux_obj = obstack_alloc (&block_aux_obstack, 0);
688 if (size)
689 {
690 basic_block bb;
691
692 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
693 alloc_aux_for_block (bb, size);
694 }
695 }
696
697 /* Clear AUX pointers of all blocks. */
698
699 void
clear_aux_for_blocks(void)700 clear_aux_for_blocks (void)
701 {
702 basic_block bb;
703
704 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
705 bb->aux = NULL;
706 }
707
708 /* Free data allocated in block_aux_obstack and clear AUX pointers
709 of all blocks. */
710
711 void
free_aux_for_blocks(void)712 free_aux_for_blocks (void)
713 {
714 gcc_assert (first_block_aux_obj);
715 obstack_free (&block_aux_obstack, first_block_aux_obj);
716 first_block_aux_obj = NULL;
717
718 clear_aux_for_blocks ();
719 }
720
721 /* Allocate a memory edge of SIZE as BB->aux. The obstack must
722 be first initialized by alloc_aux_for_edges. */
723
724 inline void
alloc_aux_for_edge(edge e,int size)725 alloc_aux_for_edge (edge e, int size)
726 {
727 /* Verify that aux field is clear. */
728 gcc_assert (!e->aux && first_edge_aux_obj);
729 e->aux = obstack_alloc (&edge_aux_obstack, size);
730 memset (e->aux, 0, size);
731 }
732
733 /* Initialize the edge_aux_obstack and if SIZE is nonzero, call
734 alloc_aux_for_edge for each basic edge. */
735
736 void
alloc_aux_for_edges(int size)737 alloc_aux_for_edges (int size)
738 {
739 static int initialized;
740
741 if (!initialized)
742 {
743 gcc_obstack_init (&edge_aux_obstack);
744 initialized = 1;
745 }
746 else
747 /* Check whether AUX data are still allocated. */
748 gcc_assert (!first_edge_aux_obj);
749
750 first_edge_aux_obj = obstack_alloc (&edge_aux_obstack, 0);
751 if (size)
752 {
753 basic_block bb;
754
755 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
756 {
757 edge e;
758 edge_iterator ei;
759
760 FOR_EACH_EDGE (e, ei, bb->succs)
761 alloc_aux_for_edge (e, size);
762 }
763 }
764 }
765
766 /* Clear AUX pointers of all edges. */
767
768 void
clear_aux_for_edges(void)769 clear_aux_for_edges (void)
770 {
771 basic_block bb;
772 edge e;
773
774 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
775 {
776 edge_iterator ei;
777 FOR_EACH_EDGE (e, ei, bb->succs)
778 e->aux = NULL;
779 }
780 }
781
782 /* Free data allocated in edge_aux_obstack and clear AUX pointers
783 of all edges. */
784
785 void
free_aux_for_edges(void)786 free_aux_for_edges (void)
787 {
788 gcc_assert (first_edge_aux_obj);
789 obstack_free (&edge_aux_obstack, first_edge_aux_obj);
790 first_edge_aux_obj = NULL;
791
792 clear_aux_for_edges ();
793 }
794
795 void
debug_bb(basic_block bb)796 debug_bb (basic_block bb)
797 {
798 dump_bb (bb, stderr, 0);
799 }
800
801 basic_block
debug_bb_n(int n)802 debug_bb_n (int n)
803 {
804 basic_block bb = BASIC_BLOCK (n);
805 dump_bb (bb, stderr, 0);
806 return bb;
807 }
808
809 /* Dumps cfg related information about basic block BB to FILE. */
810
811 static void
dump_cfg_bb_info(FILE * file,basic_block bb)812 dump_cfg_bb_info (FILE *file, basic_block bb)
813 {
814 unsigned i;
815 edge_iterator ei;
816 bool first = true;
817 static const char * const bb_bitnames[] =
818 {
819 "dirty", "new", "reachable", "visited", "irreducible_loop", "superblock"
820 };
821 const unsigned n_bitnames = sizeof (bb_bitnames) / sizeof (char *);
822 edge e;
823
824 fprintf (file, "Basic block %d", bb->index);
825 for (i = 0; i < n_bitnames; i++)
826 if (bb->flags & (1 << i))
827 {
828 if (first)
829 fprintf (file, " (");
830 else
831 fprintf (file, ", ");
832 first = false;
833 fprintf (file, bb_bitnames[i]);
834 }
835 if (!first)
836 fprintf (file, ")");
837 fprintf (file, "\n");
838
839 fprintf (file, "Predecessors: ");
840 FOR_EACH_EDGE (e, ei, bb->preds)
841 dump_edge_info (file, e, 0);
842
843 fprintf (file, "\nSuccessors: ");
844 FOR_EACH_EDGE (e, ei, bb->succs)
845 dump_edge_info (file, e, 1);
846 fprintf (file, "\n\n");
847 }
848
849 /* Dumps a brief description of cfg to FILE. */
850
851 void
brief_dump_cfg(FILE * file)852 brief_dump_cfg (FILE *file)
853 {
854 basic_block bb;
855
856 FOR_EACH_BB (bb)
857 {
858 dump_cfg_bb_info (file, bb);
859 }
860 }
861
862 /* An edge originally destinating BB of FREQUENCY and COUNT has been proved to
863 leave the block by TAKEN_EDGE. Update profile of BB such that edge E can be
864 redirected to destination of TAKEN_EDGE.
865
866 This function may leave the profile inconsistent in the case TAKEN_EDGE
867 frequency or count is believed to be lower than FREQUENCY or COUNT
868 respectively. */
869 void
update_bb_profile_for_threading(basic_block bb,int edge_frequency,gcov_type count,edge taken_edge)870 update_bb_profile_for_threading (basic_block bb, int edge_frequency,
871 gcov_type count, edge taken_edge)
872 {
873 edge c;
874 int prob;
875 edge_iterator ei;
876
877 bb->count -= count;
878 if (bb->count < 0)
879 {
880 if (dump_file)
881 fprintf (dump_file, "bb %i count became negative after threading",
882 bb->index);
883 bb->count = 0;
884 }
885
886 /* Compute the probability of TAKEN_EDGE being reached via threaded edge.
887 Watch for overflows. */
888 if (bb->frequency)
889 prob = edge_frequency * REG_BR_PROB_BASE / bb->frequency;
890 else
891 prob = 0;
892 if (prob > taken_edge->probability)
893 {
894 if (dump_file)
895 fprintf (dump_file, "Jump threading proved probability of edge "
896 "%i->%i too small (it is %i, should be %i).\n",
897 taken_edge->src->index, taken_edge->dest->index,
898 taken_edge->probability, prob);
899 prob = taken_edge->probability;
900 }
901
902 /* Now rescale the probabilities. */
903 taken_edge->probability -= prob;
904 prob = REG_BR_PROB_BASE - prob;
905 bb->frequency -= edge_frequency;
906 if (bb->frequency < 0)
907 bb->frequency = 0;
908 if (prob <= 0)
909 {
910 if (dump_file)
911 fprintf (dump_file, "Edge frequencies of bb %i has been reset, "
912 "frequency of block should end up being 0, it is %i\n",
913 bb->index, bb->frequency);
914 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
915 ei = ei_start (bb->succs);
916 ei_next (&ei);
917 for (; (c = ei_safe_edge (ei)); ei_next (&ei))
918 c->probability = 0;
919 }
920 else if (prob != REG_BR_PROB_BASE)
921 {
922 int scale = RDIV (65536 * REG_BR_PROB_BASE, prob);
923
924 FOR_EACH_EDGE (c, ei, bb->succs)
925 {
926 c->probability = RDIV (c->probability * scale, 65536);
927 if (c->probability > REG_BR_PROB_BASE)
928 c->probability = REG_BR_PROB_BASE;
929 }
930 }
931
932 gcc_assert (bb == taken_edge->src);
933 taken_edge->count -= count;
934 if (taken_edge->count < 0)
935 {
936 if (dump_file)
937 fprintf (dump_file, "edge %i->%i count became negative after threading",
938 taken_edge->src->index, taken_edge->dest->index);
939 taken_edge->count = 0;
940 }
941 }
942
943 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
944 by NUM/DEN, in int arithmetic. May lose some accuracy. */
945 void
scale_bbs_frequencies_int(basic_block * bbs,int nbbs,int num,int den)946 scale_bbs_frequencies_int (basic_block *bbs, int nbbs, int num, int den)
947 {
948 int i;
949 edge e;
950 if (num < 0)
951 num = 0;
952 if (num > den)
953 return;
954 /* Assume that the users are producing the fraction from frequencies
955 that never grow far enough to risk arithmetic overflow. */
956 gcc_assert (num < 65536);
957 for (i = 0; i < nbbs; i++)
958 {
959 edge_iterator ei;
960 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
961 bbs[i]->count = RDIV (bbs[i]->count * num, den);
962 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
963 e->count = RDIV (e->count * num, den);
964 }
965 }
966
967 /* numbers smaller than this value are safe to multiply without getting
968 64bit overflow. */
969 #define MAX_SAFE_MULTIPLIER (1 << (sizeof (HOST_WIDEST_INT) * 4 - 1))
970
971 /* Multiply all frequencies of basic blocks in array BBS of length NBBS
972 by NUM/DEN, in gcov_type arithmetic. More accurate than previous
973 function but considerably slower. */
974 void
scale_bbs_frequencies_gcov_type(basic_block * bbs,int nbbs,gcov_type num,gcov_type den)975 scale_bbs_frequencies_gcov_type (basic_block *bbs, int nbbs, gcov_type num,
976 gcov_type den)
977 {
978 int i;
979 edge e;
980 gcov_type fraction = RDIV (num * 65536, den);
981
982 gcc_assert (fraction >= 0);
983
984 if (num < MAX_SAFE_MULTIPLIER)
985 for (i = 0; i < nbbs; i++)
986 {
987 edge_iterator ei;
988 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
989 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
990 bbs[i]->count = RDIV (bbs[i]->count * num, den);
991 else
992 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
993 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
994 if (bbs[i]->count <= MAX_SAFE_MULTIPLIER)
995 e->count = RDIV (e->count * num, den);
996 else
997 e->count = RDIV (e->count * fraction, 65536);
998 }
999 else
1000 for (i = 0; i < nbbs; i++)
1001 {
1002 edge_iterator ei;
1003 if (sizeof (gcov_type) > sizeof (int))
1004 bbs[i]->frequency = RDIV (bbs[i]->frequency * num, den);
1005 else
1006 bbs[i]->frequency = RDIV (bbs[i]->frequency * fraction, 65536);
1007 bbs[i]->count = RDIV (bbs[i]->count * fraction, 65536);
1008 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
1009 e->count = RDIV (e->count * fraction, 65536);
1010 }
1011 }
1012
1013 /* Data structures used to maintain mapping between basic blocks and
1014 copies. */
1015 static htab_t bb_original;
1016 static htab_t bb_copy;
1017 static alloc_pool original_copy_bb_pool;
1018
1019 struct htab_bb_copy_original_entry
1020 {
1021 /* Block we are attaching info to. */
1022 int index1;
1023 /* Index of original or copy (depending on the hashtable) */
1024 int index2;
1025 };
1026
1027 static hashval_t
bb_copy_original_hash(const void * p)1028 bb_copy_original_hash (const void *p)
1029 {
1030 struct htab_bb_copy_original_entry *data
1031 = ((struct htab_bb_copy_original_entry *)p);
1032
1033 return data->index1;
1034 }
1035 static int
bb_copy_original_eq(const void * p,const void * q)1036 bb_copy_original_eq (const void *p, const void *q)
1037 {
1038 struct htab_bb_copy_original_entry *data
1039 = ((struct htab_bb_copy_original_entry *)p);
1040 struct htab_bb_copy_original_entry *data2
1041 = ((struct htab_bb_copy_original_entry *)q);
1042
1043 return data->index1 == data2->index1;
1044 }
1045
1046 /* Initialize the data structures to maintain mapping between blocks
1047 and its copies. */
1048 void
initialize_original_copy_tables(void)1049 initialize_original_copy_tables (void)
1050 {
1051 gcc_assert (!original_copy_bb_pool);
1052 original_copy_bb_pool
1053 = create_alloc_pool ("original_copy",
1054 sizeof (struct htab_bb_copy_original_entry), 10);
1055 bb_original = htab_create (10, bb_copy_original_hash,
1056 bb_copy_original_eq, NULL);
1057 bb_copy = htab_create (10, bb_copy_original_hash, bb_copy_original_eq, NULL);
1058 }
1059
1060 /* Free the data structures to maintain mapping between blocks and
1061 its copies. */
1062 void
free_original_copy_tables(void)1063 free_original_copy_tables (void)
1064 {
1065 gcc_assert (original_copy_bb_pool);
1066 htab_delete (bb_copy);
1067 htab_delete (bb_original);
1068 free_alloc_pool (original_copy_bb_pool);
1069 bb_copy = NULL;
1070 bb_original = NULL;
1071 original_copy_bb_pool = NULL;
1072 }
1073
1074 /* Set original for basic block. Do nothing when data structures are not
1075 initialized so passes not needing this don't need to care. */
1076 void
set_bb_original(basic_block bb,basic_block original)1077 set_bb_original (basic_block bb, basic_block original)
1078 {
1079 if (original_copy_bb_pool)
1080 {
1081 struct htab_bb_copy_original_entry **slot;
1082 struct htab_bb_copy_original_entry key;
1083
1084 key.index1 = bb->index;
1085 slot =
1086 (struct htab_bb_copy_original_entry **) htab_find_slot (bb_original,
1087 &key, INSERT);
1088 if (*slot)
1089 (*slot)->index2 = original->index;
1090 else
1091 {
1092 *slot = pool_alloc (original_copy_bb_pool);
1093 (*slot)->index1 = bb->index;
1094 (*slot)->index2 = original->index;
1095 }
1096 }
1097 }
1098
1099 /* Get the original basic block. */
1100 basic_block
get_bb_original(basic_block bb)1101 get_bb_original (basic_block bb)
1102 {
1103 struct htab_bb_copy_original_entry *entry;
1104 struct htab_bb_copy_original_entry key;
1105
1106 gcc_assert (original_copy_bb_pool);
1107
1108 key.index1 = bb->index;
1109 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_original, &key);
1110 if (entry)
1111 return BASIC_BLOCK (entry->index2);
1112 else
1113 return NULL;
1114 }
1115
1116 /* Set copy for basic block. Do nothing when data structures are not
1117 initialized so passes not needing this don't need to care. */
1118 void
set_bb_copy(basic_block bb,basic_block copy)1119 set_bb_copy (basic_block bb, basic_block copy)
1120 {
1121 if (original_copy_bb_pool)
1122 {
1123 struct htab_bb_copy_original_entry **slot;
1124 struct htab_bb_copy_original_entry key;
1125
1126 key.index1 = bb->index;
1127 slot =
1128 (struct htab_bb_copy_original_entry **) htab_find_slot (bb_copy,
1129 &key, INSERT);
1130 if (*slot)
1131 (*slot)->index2 = copy->index;
1132 else
1133 {
1134 *slot = pool_alloc (original_copy_bb_pool);
1135 (*slot)->index1 = bb->index;
1136 (*slot)->index2 = copy->index;
1137 }
1138 }
1139 }
1140
1141 /* Get the copy of basic block. */
1142 basic_block
get_bb_copy(basic_block bb)1143 get_bb_copy (basic_block bb)
1144 {
1145 struct htab_bb_copy_original_entry *entry;
1146 struct htab_bb_copy_original_entry key;
1147
1148 gcc_assert (original_copy_bb_pool);
1149
1150 key.index1 = bb->index;
1151 entry = (struct htab_bb_copy_original_entry *) htab_find (bb_copy, &key);
1152 if (entry)
1153 return BASIC_BLOCK (entry->index2);
1154 else
1155 return NULL;
1156 }
1157