1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2014 Intel Corporation
4 */
5
6 #include "gen8_engine_cs.h"
7 #include "intel_engine_regs.h"
8 #include "intel_gpu_commands.h"
9 #include "intel_gt.h"
10 #include "intel_lrc.h"
11 #include "intel_ring.h"
12
gen8_emit_flush_rcs(struct i915_request * rq,u32 mode)13 int gen8_emit_flush_rcs(struct i915_request *rq, u32 mode)
14 {
15 bool vf_flush_wa = false, dc_flush_wa = false;
16 u32 *cs, flags = 0;
17 int len;
18
19 flags |= PIPE_CONTROL_CS_STALL;
20
21 if (mode & EMIT_FLUSH) {
22 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
23 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
24 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
25 flags |= PIPE_CONTROL_FLUSH_ENABLE;
26 }
27
28 if (mode & EMIT_INVALIDATE) {
29 flags |= PIPE_CONTROL_TLB_INVALIDATE;
30 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
31 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
32 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
33 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
34 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
35 flags |= PIPE_CONTROL_QW_WRITE;
36 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
37
38 /*
39 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
40 * pipe control.
41 */
42 if (GRAPHICS_VER(rq->i915) == 9)
43 vf_flush_wa = true;
44
45 /* WaForGAMHang:kbl */
46 if (IS_KABYLAKE(rq->i915) && IS_GRAPHICS_STEP(rq->i915, 0, STEP_C0))
47 dc_flush_wa = true;
48 }
49
50 len = 6;
51
52 if (vf_flush_wa)
53 len += 6;
54
55 if (dc_flush_wa)
56 len += 12;
57
58 cs = intel_ring_begin(rq, len);
59 if (IS_ERR(cs))
60 return PTR_ERR(cs);
61
62 if (vf_flush_wa)
63 cs = gen8_emit_pipe_control(cs, 0, 0);
64
65 if (dc_flush_wa)
66 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
67 0);
68
69 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
70
71 if (dc_flush_wa)
72 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
73
74 intel_ring_advance(rq, cs);
75
76 return 0;
77 }
78
gen8_emit_flush_xcs(struct i915_request * rq,u32 mode)79 int gen8_emit_flush_xcs(struct i915_request *rq, u32 mode)
80 {
81 u32 cmd, *cs;
82
83 cs = intel_ring_begin(rq, 4);
84 if (IS_ERR(cs))
85 return PTR_ERR(cs);
86
87 cmd = MI_FLUSH_DW + 1;
88
89 /*
90 * We always require a command barrier so that subsequent
91 * commands, such as breadcrumb interrupts, are strictly ordered
92 * wrt the contents of the write cache being flushed to memory
93 * (and thus being coherent from the CPU).
94 */
95 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
96
97 if (mode & EMIT_INVALIDATE) {
98 cmd |= MI_INVALIDATE_TLB;
99 if (rq->engine->class == VIDEO_DECODE_CLASS)
100 cmd |= MI_INVALIDATE_BSD;
101 }
102
103 *cs++ = cmd;
104 *cs++ = LRC_PPHWSP_SCRATCH_ADDR;
105 *cs++ = 0; /* upper addr */
106 *cs++ = 0; /* value */
107 intel_ring_advance(rq, cs);
108
109 return 0;
110 }
111
gen11_emit_flush_rcs(struct i915_request * rq,u32 mode)112 int gen11_emit_flush_rcs(struct i915_request *rq, u32 mode)
113 {
114 if (mode & EMIT_FLUSH) {
115 u32 *cs;
116 u32 flags = 0;
117
118 flags |= PIPE_CONTROL_CS_STALL;
119
120 flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
121 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
122 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
123 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
124 flags |= PIPE_CONTROL_FLUSH_ENABLE;
125 flags |= PIPE_CONTROL_QW_WRITE;
126 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
127
128 cs = intel_ring_begin(rq, 6);
129 if (IS_ERR(cs))
130 return PTR_ERR(cs);
131
132 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
133 intel_ring_advance(rq, cs);
134 }
135
136 if (mode & EMIT_INVALIDATE) {
137 u32 *cs;
138 u32 flags = 0;
139
140 flags |= PIPE_CONTROL_CS_STALL;
141
142 flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
143 flags |= PIPE_CONTROL_TLB_INVALIDATE;
144 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
145 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
146 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
147 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
148 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
149 flags |= PIPE_CONTROL_QW_WRITE;
150 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
151
152 cs = intel_ring_begin(rq, 6);
153 if (IS_ERR(cs))
154 return PTR_ERR(cs);
155
156 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
157 intel_ring_advance(rq, cs);
158 }
159
160 return 0;
161 }
162
preparser_disable(bool state)163 static u32 preparser_disable(bool state)
164 {
165 return MI_ARB_CHECK | 1 << 8 | state;
166 }
167
gen12_get_aux_inv_reg(struct intel_engine_cs * engine)168 static i915_reg_t gen12_get_aux_inv_reg(struct intel_engine_cs *engine)
169 {
170 switch (engine->id) {
171 case RCS0:
172 return GEN12_CCS_AUX_INV;
173 case BCS0:
174 return GEN12_BCS0_AUX_INV;
175 case VCS0:
176 return GEN12_VD0_AUX_INV;
177 case VCS2:
178 return GEN12_VD2_AUX_INV;
179 case VECS0:
180 return GEN12_VE0_AUX_INV;
181 case CCS0:
182 return GEN12_CCS0_AUX_INV;
183 default:
184 return INVALID_MMIO_REG;
185 }
186 }
187
gen12_needs_ccs_aux_inv(struct intel_engine_cs * engine)188 static bool gen12_needs_ccs_aux_inv(struct intel_engine_cs *engine)
189 {
190 i915_reg_t reg = gen12_get_aux_inv_reg(engine);
191
192 if (IS_PONTEVECCHIO(engine->i915))
193 return false;
194
195 /*
196 * So far platforms supported by i915 having flat ccs do not require
197 * AUX invalidation. Check also whether the engine requires it.
198 */
199 return i915_mmio_reg_valid(reg) && !HAS_FLAT_CCS(engine->i915);
200 }
201
gen12_emit_aux_table_inv(struct intel_engine_cs * engine,u32 * cs)202 u32 *gen12_emit_aux_table_inv(struct intel_engine_cs *engine, u32 *cs)
203 {
204 i915_reg_t inv_reg = gen12_get_aux_inv_reg(engine);
205 u32 gsi_offset = engine->gt->uncore->gsi_offset;
206
207 if (!gen12_needs_ccs_aux_inv(engine))
208 return cs;
209
210 *cs++ = MI_LOAD_REGISTER_IMM(1) | MI_LRI_MMIO_REMAP_EN;
211 *cs++ = i915_mmio_reg_offset(inv_reg) + gsi_offset;
212 *cs++ = AUX_INV;
213
214 *cs++ = MI_SEMAPHORE_WAIT_TOKEN |
215 MI_SEMAPHORE_REGISTER_POLL |
216 MI_SEMAPHORE_POLL |
217 MI_SEMAPHORE_SAD_EQ_SDD;
218 *cs++ = 0;
219 *cs++ = i915_mmio_reg_offset(inv_reg) + gsi_offset;
220 *cs++ = 0;
221 *cs++ = 0;
222
223 return cs;
224 }
225
mtl_dummy_pipe_control(struct i915_request * rq)226 static int mtl_dummy_pipe_control(struct i915_request *rq)
227 {
228 /* Wa_14016712196 */
229 if (IS_GFX_GT_IP_RANGE(rq->engine->gt, IP_VER(12, 70), IP_VER(12, 74)) ||
230 IS_DG2(rq->i915)) {
231 u32 *cs;
232
233 /* dummy PIPE_CONTROL + depth flush */
234 cs = intel_ring_begin(rq, 6);
235 if (IS_ERR(cs))
236 return PTR_ERR(cs);
237 cs = gen12_emit_pipe_control(cs,
238 0,
239 PIPE_CONTROL_DEPTH_CACHE_FLUSH,
240 LRC_PPHWSP_SCRATCH_ADDR);
241 intel_ring_advance(rq, cs);
242 }
243
244 return 0;
245 }
246
gen12_emit_flush_rcs(struct i915_request * rq,u32 mode)247 int gen12_emit_flush_rcs(struct i915_request *rq, u32 mode)
248 {
249 struct intel_engine_cs *engine = rq->engine;
250
251 /*
252 * On Aux CCS platforms the invalidation of the Aux
253 * table requires quiescing memory traffic beforehand
254 */
255 if (mode & EMIT_FLUSH || gen12_needs_ccs_aux_inv(engine)) {
256 u32 bit_group_0 = 0;
257 u32 bit_group_1 = 0;
258 int err;
259 u32 *cs;
260
261 err = mtl_dummy_pipe_control(rq);
262 if (err)
263 return err;
264
265 bit_group_0 |= PIPE_CONTROL0_HDC_PIPELINE_FLUSH;
266
267 /*
268 * When required, in MTL and beyond platforms we
269 * need to set the CCS_FLUSH bit in the pipe control
270 */
271 if (GRAPHICS_VER_FULL(rq->i915) >= IP_VER(12, 70))
272 bit_group_0 |= PIPE_CONTROL_CCS_FLUSH;
273
274 /*
275 * L3 fabric flush is needed for AUX CCS invalidation
276 * which happens as part of pipe-control so we can
277 * ignore PIPE_CONTROL_FLUSH_L3. Also PIPE_CONTROL_FLUSH_L3
278 * deals with Protected Memory which is not needed for
279 * AUX CCS invalidation and lead to unwanted side effects.
280 */
281 if ((mode & EMIT_FLUSH) &&
282 GRAPHICS_VER_FULL(rq->i915) < IP_VER(12, 70))
283 bit_group_1 |= PIPE_CONTROL_FLUSH_L3;
284
285 bit_group_1 |= PIPE_CONTROL_TILE_CACHE_FLUSH;
286 bit_group_1 |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
287 bit_group_1 |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
288 /* Wa_1409600907:tgl,adl-p */
289 bit_group_1 |= PIPE_CONTROL_DEPTH_STALL;
290 bit_group_1 |= PIPE_CONTROL_DC_FLUSH_ENABLE;
291 bit_group_1 |= PIPE_CONTROL_FLUSH_ENABLE;
292
293 bit_group_1 |= PIPE_CONTROL_STORE_DATA_INDEX;
294 bit_group_1 |= PIPE_CONTROL_QW_WRITE;
295
296 bit_group_1 |= PIPE_CONTROL_CS_STALL;
297
298 if (!HAS_3D_PIPELINE(engine->i915))
299 bit_group_1 &= ~PIPE_CONTROL_3D_ARCH_FLAGS;
300 else if (engine->class == COMPUTE_CLASS)
301 bit_group_1 &= ~PIPE_CONTROL_3D_ENGINE_FLAGS;
302
303 cs = intel_ring_begin(rq, 6);
304 if (IS_ERR(cs))
305 return PTR_ERR(cs);
306
307 cs = gen12_emit_pipe_control(cs, bit_group_0, bit_group_1,
308 LRC_PPHWSP_SCRATCH_ADDR);
309 intel_ring_advance(rq, cs);
310 }
311
312 if (mode & EMIT_INVALIDATE) {
313 u32 flags = 0;
314 u32 *cs, count;
315 int err;
316
317 err = mtl_dummy_pipe_control(rq);
318 if (err)
319 return err;
320
321 flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
322 flags |= PIPE_CONTROL_TLB_INVALIDATE;
323 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
324 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
325 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
326 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
327 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
328
329 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
330 flags |= PIPE_CONTROL_QW_WRITE;
331
332 flags |= PIPE_CONTROL_CS_STALL;
333
334 if (!HAS_3D_PIPELINE(engine->i915))
335 flags &= ~PIPE_CONTROL_3D_ARCH_FLAGS;
336 else if (engine->class == COMPUTE_CLASS)
337 flags &= ~PIPE_CONTROL_3D_ENGINE_FLAGS;
338
339 count = 8;
340 if (gen12_needs_ccs_aux_inv(rq->engine))
341 count += 8;
342
343 cs = intel_ring_begin(rq, count);
344 if (IS_ERR(cs))
345 return PTR_ERR(cs);
346
347 /*
348 * Prevent the pre-parser from skipping past the TLB
349 * invalidate and loading a stale page for the batch
350 * buffer / request payload.
351 */
352 *cs++ = preparser_disable(true);
353
354 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
355
356 cs = gen12_emit_aux_table_inv(engine, cs);
357
358 *cs++ = preparser_disable(false);
359 intel_ring_advance(rq, cs);
360 }
361
362 return 0;
363 }
364
gen12_emit_flush_xcs(struct i915_request * rq,u32 mode)365 int gen12_emit_flush_xcs(struct i915_request *rq, u32 mode)
366 {
367 u32 cmd = 4;
368 u32 *cs;
369
370 if (mode & EMIT_INVALIDATE) {
371 cmd += 2;
372
373 if (gen12_needs_ccs_aux_inv(rq->engine))
374 cmd += 8;
375 }
376
377 cs = intel_ring_begin(rq, cmd);
378 if (IS_ERR(cs))
379 return PTR_ERR(cs);
380
381 if (mode & EMIT_INVALIDATE)
382 *cs++ = preparser_disable(true);
383
384 cmd = MI_FLUSH_DW + 1;
385
386 /*
387 * We always require a command barrier so that subsequent
388 * commands, such as breadcrumb interrupts, are strictly ordered
389 * wrt the contents of the write cache being flushed to memory
390 * (and thus being coherent from the CPU).
391 */
392 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
393
394 if (mode & EMIT_INVALIDATE) {
395 cmd |= MI_INVALIDATE_TLB;
396 if (rq->engine->class == VIDEO_DECODE_CLASS)
397 cmd |= MI_INVALIDATE_BSD;
398
399 if (gen12_needs_ccs_aux_inv(rq->engine) &&
400 rq->engine->class == COPY_ENGINE_CLASS)
401 cmd |= MI_FLUSH_DW_CCS;
402 }
403
404 *cs++ = cmd;
405 *cs++ = LRC_PPHWSP_SCRATCH_ADDR;
406 *cs++ = 0; /* upper addr */
407 *cs++ = 0; /* value */
408
409 cs = gen12_emit_aux_table_inv(rq->engine, cs);
410
411 if (mode & EMIT_INVALIDATE)
412 *cs++ = preparser_disable(false);
413
414 intel_ring_advance(rq, cs);
415
416 return 0;
417 }
418
preempt_address(struct intel_engine_cs * engine)419 static u32 preempt_address(struct intel_engine_cs *engine)
420 {
421 return (i915_ggtt_offset(engine->status_page.vma) +
422 I915_GEM_HWS_PREEMPT_ADDR);
423 }
424
hwsp_offset(const struct i915_request * rq)425 static u32 hwsp_offset(const struct i915_request *rq)
426 {
427 const struct intel_timeline *tl;
428
429 /* Before the request is executed, the timeline is fixed */
430 tl = rcu_dereference_protected(rq->timeline,
431 !i915_request_signaled(rq));
432
433 /* See the comment in i915_request_active_seqno(). */
434 return page_mask_bits(tl->hwsp_offset) + offset_in_page(rq->hwsp_seqno);
435 }
436
gen8_emit_init_breadcrumb(struct i915_request * rq)437 int gen8_emit_init_breadcrumb(struct i915_request *rq)
438 {
439 u32 *cs;
440
441 GEM_BUG_ON(i915_request_has_initial_breadcrumb(rq));
442 if (!i915_request_timeline(rq)->has_initial_breadcrumb)
443 return 0;
444
445 cs = intel_ring_begin(rq, 6);
446 if (IS_ERR(cs))
447 return PTR_ERR(cs);
448
449 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
450 *cs++ = hwsp_offset(rq);
451 *cs++ = 0;
452 *cs++ = rq->fence.seqno - 1;
453
454 /*
455 * Check if we have been preempted before we even get started.
456 *
457 * After this point i915_request_started() reports true, even if
458 * we get preempted and so are no longer running.
459 *
460 * i915_request_started() is used during preemption processing
461 * to decide if the request is currently inside the user payload
462 * or spinning on a kernel semaphore (or earlier). For no-preemption
463 * requests, we do allow preemption on the semaphore before the user
464 * payload, but do not allow preemption once the request is started.
465 *
466 * i915_request_started() is similarly used during GPU hangs to
467 * determine if the user's payload was guilty, and if so, the
468 * request is banned. Before the request is started, it is assumed
469 * to be unharmed and an innocent victim of another's hang.
470 */
471 *cs++ = MI_NOOP;
472 *cs++ = MI_ARB_CHECK;
473
474 intel_ring_advance(rq, cs);
475
476 /* Record the updated position of the request's payload */
477 rq->infix = intel_ring_offset(rq, cs);
478
479 __set_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
480
481 return 0;
482 }
483
__xehp_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags,u32 arb)484 static int __xehp_emit_bb_start(struct i915_request *rq,
485 u64 offset, u32 len,
486 const unsigned int flags,
487 u32 arb)
488 {
489 struct intel_context *ce = rq->context;
490 u32 wa_offset = lrc_indirect_bb(ce);
491 u32 *cs;
492
493 GEM_BUG_ON(!ce->wa_bb_page);
494
495 cs = intel_ring_begin(rq, 12);
496 if (IS_ERR(cs))
497 return PTR_ERR(cs);
498
499 *cs++ = MI_ARB_ON_OFF | arb;
500
501 *cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
502 MI_SRM_LRM_GLOBAL_GTT |
503 MI_LRI_LRM_CS_MMIO;
504 *cs++ = i915_mmio_reg_offset(RING_PREDICATE_RESULT(0));
505 *cs++ = wa_offset + DG2_PREDICATE_RESULT_WA;
506 *cs++ = 0;
507
508 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
509 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
510 *cs++ = lower_32_bits(offset);
511 *cs++ = upper_32_bits(offset);
512
513 /* Fixup stray MI_SET_PREDICATE as it prevents us executing the ring */
514 *cs++ = MI_BATCH_BUFFER_START_GEN8;
515 *cs++ = wa_offset + DG2_PREDICATE_RESULT_BB;
516 *cs++ = 0;
517
518 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
519
520 intel_ring_advance(rq, cs);
521
522 return 0;
523 }
524
xehp_emit_bb_start_noarb(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)525 int xehp_emit_bb_start_noarb(struct i915_request *rq,
526 u64 offset, u32 len,
527 const unsigned int flags)
528 {
529 return __xehp_emit_bb_start(rq, offset, len, flags, MI_ARB_DISABLE);
530 }
531
xehp_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)532 int xehp_emit_bb_start(struct i915_request *rq,
533 u64 offset, u32 len,
534 const unsigned int flags)
535 {
536 return __xehp_emit_bb_start(rq, offset, len, flags, MI_ARB_ENABLE);
537 }
538
gen8_emit_bb_start_noarb(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)539 int gen8_emit_bb_start_noarb(struct i915_request *rq,
540 u64 offset, u32 len,
541 const unsigned int flags)
542 {
543 u32 *cs;
544
545 cs = intel_ring_begin(rq, 4);
546 if (IS_ERR(cs))
547 return PTR_ERR(cs);
548
549 /*
550 * WaDisableCtxRestoreArbitration:bdw,chv
551 *
552 * We don't need to perform MI_ARB_ENABLE as often as we do (in
553 * particular all the gen that do not need the w/a at all!), if we
554 * took care to make sure that on every switch into this context
555 * (both ordinary and for preemption) that arbitrartion was enabled
556 * we would be fine. However, for gen8 there is another w/a that
557 * requires us to not preempt inside GPGPU execution, so we keep
558 * arbitration disabled for gen8 batches. Arbitration will be
559 * re-enabled before we close the request
560 * (engine->emit_fini_breadcrumb).
561 */
562 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
563
564 /* FIXME(BDW+): Address space and security selectors. */
565 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
566 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
567 *cs++ = lower_32_bits(offset);
568 *cs++ = upper_32_bits(offset);
569
570 intel_ring_advance(rq, cs);
571
572 return 0;
573 }
574
gen8_emit_bb_start(struct i915_request * rq,u64 offset,u32 len,const unsigned int flags)575 int gen8_emit_bb_start(struct i915_request *rq,
576 u64 offset, u32 len,
577 const unsigned int flags)
578 {
579 u32 *cs;
580
581 if (unlikely(i915_request_has_nopreempt(rq)))
582 return gen8_emit_bb_start_noarb(rq, offset, len, flags);
583
584 cs = intel_ring_begin(rq, 6);
585 if (IS_ERR(cs))
586 return PTR_ERR(cs);
587
588 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
589
590 *cs++ = MI_BATCH_BUFFER_START_GEN8 |
591 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
592 *cs++ = lower_32_bits(offset);
593 *cs++ = upper_32_bits(offset);
594
595 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
596 *cs++ = MI_NOOP;
597
598 intel_ring_advance(rq, cs);
599
600 return 0;
601 }
602
assert_request_valid(struct i915_request * rq)603 static void assert_request_valid(struct i915_request *rq)
604 {
605 struct intel_ring *ring __maybe_unused = rq->ring;
606
607 /* Can we unwind this request without appearing to go forwards? */
608 GEM_BUG_ON(intel_ring_direction(ring, rq->wa_tail, rq->head) <= 0);
609 }
610
611 /*
612 * Reserve space for 2 NOOPs at the end of each request to be
613 * used as a workaround for not being allowed to do lite
614 * restore with HEAD==TAIL (WaIdleLiteRestore).
615 */
gen8_emit_wa_tail(struct i915_request * rq,u32 * cs)616 static u32 *gen8_emit_wa_tail(struct i915_request *rq, u32 *cs)
617 {
618 /* Ensure there's always at least one preemption point per-request. */
619 *cs++ = MI_ARB_CHECK;
620 *cs++ = MI_NOOP;
621 rq->wa_tail = intel_ring_offset(rq, cs);
622
623 /* Check that entire request is less than half the ring */
624 assert_request_valid(rq);
625
626 return cs;
627 }
628
emit_preempt_busywait(struct i915_request * rq,u32 * cs)629 static u32 *emit_preempt_busywait(struct i915_request *rq, u32 *cs)
630 {
631 *cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */
632 *cs++ = MI_SEMAPHORE_WAIT |
633 MI_SEMAPHORE_GLOBAL_GTT |
634 MI_SEMAPHORE_POLL |
635 MI_SEMAPHORE_SAD_EQ_SDD;
636 *cs++ = 0;
637 *cs++ = preempt_address(rq->engine);
638 *cs++ = 0;
639 *cs++ = MI_NOOP;
640
641 return cs;
642 }
643
644 static __always_inline u32*
gen8_emit_fini_breadcrumb_tail(struct i915_request * rq,u32 * cs)645 gen8_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs)
646 {
647 *cs++ = MI_USER_INTERRUPT;
648
649 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
650 if (intel_engine_has_semaphores(rq->engine) &&
651 !intel_uc_uses_guc_submission(&rq->engine->gt->uc))
652 cs = emit_preempt_busywait(rq, cs);
653
654 rq->tail = intel_ring_offset(rq, cs);
655 assert_ring_tail_valid(rq->ring, rq->tail);
656
657 return gen8_emit_wa_tail(rq, cs);
658 }
659
emit_xcs_breadcrumb(struct i915_request * rq,u32 * cs)660 static u32 *emit_xcs_breadcrumb(struct i915_request *rq, u32 *cs)
661 {
662 return gen8_emit_ggtt_write(cs, rq->fence.seqno, hwsp_offset(rq), 0);
663 }
664
gen8_emit_fini_breadcrumb_xcs(struct i915_request * rq,u32 * cs)665 u32 *gen8_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
666 {
667 return gen8_emit_fini_breadcrumb_tail(rq, emit_xcs_breadcrumb(rq, cs));
668 }
669
gen8_emit_fini_breadcrumb_rcs(struct i915_request * rq,u32 * cs)670 u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
671 {
672 cs = gen8_emit_pipe_control(cs,
673 PIPE_CONTROL_CS_STALL |
674 PIPE_CONTROL_TLB_INVALIDATE |
675 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
676 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
677 PIPE_CONTROL_DC_FLUSH_ENABLE,
678 0);
679
680 /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
681 cs = gen8_emit_ggtt_write_rcs(cs,
682 rq->fence.seqno,
683 hwsp_offset(rq),
684 PIPE_CONTROL_FLUSH_ENABLE |
685 PIPE_CONTROL_CS_STALL);
686
687 return gen8_emit_fini_breadcrumb_tail(rq, cs);
688 }
689
gen11_emit_fini_breadcrumb_rcs(struct i915_request * rq,u32 * cs)690 u32 *gen11_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
691 {
692 cs = gen8_emit_pipe_control(cs,
693 PIPE_CONTROL_CS_STALL |
694 PIPE_CONTROL_TLB_INVALIDATE |
695 PIPE_CONTROL_TILE_CACHE_FLUSH |
696 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
697 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
698 PIPE_CONTROL_DC_FLUSH_ENABLE,
699 0);
700
701 /*XXX: Look at gen8_emit_fini_breadcrumb_rcs */
702 cs = gen8_emit_ggtt_write_rcs(cs,
703 rq->fence.seqno,
704 hwsp_offset(rq),
705 PIPE_CONTROL_FLUSH_ENABLE |
706 PIPE_CONTROL_CS_STALL);
707
708 return gen8_emit_fini_breadcrumb_tail(rq, cs);
709 }
710
711 /*
712 * Note that the CS instruction pre-parser will not stall on the breadcrumb
713 * flush and will continue pre-fetching the instructions after it before the
714 * memory sync is completed. On pre-gen12 HW, the pre-parser will stop at
715 * BB_START/END instructions, so, even though we might pre-fetch the pre-amble
716 * of the next request before the memory has been flushed, we're guaranteed that
717 * we won't access the batch itself too early.
718 * However, on gen12+ the parser can pre-fetch across the BB_START/END commands,
719 * so, if the current request is modifying an instruction in the next request on
720 * the same intel_context, we might pre-fetch and then execute the pre-update
721 * instruction. To avoid this, the users of self-modifying code should either
722 * disable the parser around the code emitting the memory writes, via a new flag
723 * added to MI_ARB_CHECK, or emit the writes from a different intel_context. For
724 * the in-kernel use-cases we've opted to use a separate context, see
725 * reloc_gpu() as an example.
726 * All the above applies only to the instructions themselves. Non-inline data
727 * used by the instructions is not pre-fetched.
728 */
729
gen12_emit_preempt_busywait(struct i915_request * rq,u32 * cs)730 static u32 *gen12_emit_preempt_busywait(struct i915_request *rq, u32 *cs)
731 {
732 *cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */
733 *cs++ = MI_SEMAPHORE_WAIT_TOKEN |
734 MI_SEMAPHORE_GLOBAL_GTT |
735 MI_SEMAPHORE_POLL |
736 MI_SEMAPHORE_SAD_EQ_SDD;
737 *cs++ = 0;
738 *cs++ = preempt_address(rq->engine);
739 *cs++ = 0;
740 *cs++ = 0;
741
742 return cs;
743 }
744
745 /* Wa_14014475959:dg2 */
746 #define CCS_SEMAPHORE_PPHWSP_OFFSET 0x540
ccs_semaphore_offset(struct i915_request * rq)747 static u32 ccs_semaphore_offset(struct i915_request *rq)
748 {
749 return i915_ggtt_offset(rq->context->state) +
750 (LRC_PPHWSP_PN * PAGE_SIZE) + CCS_SEMAPHORE_PPHWSP_OFFSET;
751 }
752
753 /* Wa_14014475959:dg2 */
ccs_emit_wa_busywait(struct i915_request * rq,u32 * cs)754 static u32 *ccs_emit_wa_busywait(struct i915_request *rq, u32 *cs)
755 {
756 int i;
757
758 *cs++ = MI_ATOMIC_INLINE | MI_ATOMIC_GLOBAL_GTT | MI_ATOMIC_CS_STALL |
759 MI_ATOMIC_MOVE;
760 *cs++ = ccs_semaphore_offset(rq);
761 *cs++ = 0;
762 *cs++ = 1;
763
764 /*
765 * When MI_ATOMIC_INLINE_DATA set this command must be 11 DW + (1 NOP)
766 * to align. 4 DWs above + 8 filler DWs here.
767 */
768 for (i = 0; i < 8; ++i)
769 *cs++ = 0;
770
771 *cs++ = MI_SEMAPHORE_WAIT |
772 MI_SEMAPHORE_GLOBAL_GTT |
773 MI_SEMAPHORE_POLL |
774 MI_SEMAPHORE_SAD_EQ_SDD;
775 *cs++ = 0;
776 *cs++ = ccs_semaphore_offset(rq);
777 *cs++ = 0;
778
779 return cs;
780 }
781
782 static __always_inline u32*
gen12_emit_fini_breadcrumb_tail(struct i915_request * rq,u32 * cs)783 gen12_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs)
784 {
785 *cs++ = MI_USER_INTERRUPT;
786
787 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
788 if (intel_engine_has_semaphores(rq->engine) &&
789 !intel_uc_uses_guc_submission(&rq->engine->gt->uc))
790 cs = gen12_emit_preempt_busywait(rq, cs);
791
792 /* Wa_14014475959:dg2 */
793 if (intel_engine_uses_wa_hold_ccs_switchout(rq->engine))
794 cs = ccs_emit_wa_busywait(rq, cs);
795
796 rq->tail = intel_ring_offset(rq, cs);
797 assert_ring_tail_valid(rq->ring, rq->tail);
798
799 return gen8_emit_wa_tail(rq, cs);
800 }
801
gen12_emit_fini_breadcrumb_xcs(struct i915_request * rq,u32 * cs)802 u32 *gen12_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
803 {
804 /* XXX Stalling flush before seqno write; post-sync not */
805 cs = emit_xcs_breadcrumb(rq, __gen8_emit_flush_dw(cs, 0, 0, 0));
806 return gen12_emit_fini_breadcrumb_tail(rq, cs);
807 }
808
gen12_emit_fini_breadcrumb_rcs(struct i915_request * rq,u32 * cs)809 u32 *gen12_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
810 {
811 struct drm_i915_private *i915 = rq->i915;
812 struct intel_gt *gt = rq->engine->gt;
813 u32 flags = (PIPE_CONTROL_CS_STALL |
814 PIPE_CONTROL_TLB_INVALIDATE |
815 PIPE_CONTROL_TILE_CACHE_FLUSH |
816 PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
817 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
818 PIPE_CONTROL_DC_FLUSH_ENABLE |
819 PIPE_CONTROL_FLUSH_ENABLE);
820
821 if (GRAPHICS_VER_FULL(rq->i915) < IP_VER(12, 70))
822 flags |= PIPE_CONTROL_FLUSH_L3;
823
824 /* Wa_14016712196 */
825 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)) || IS_DG2(i915))
826 /* dummy PIPE_CONTROL + depth flush */
827 cs = gen12_emit_pipe_control(cs, 0,
828 PIPE_CONTROL_DEPTH_CACHE_FLUSH, 0);
829
830 if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
831 /* Wa_1409600907 */
832 flags |= PIPE_CONTROL_DEPTH_STALL;
833
834 if (!HAS_3D_PIPELINE(rq->i915))
835 flags &= ~PIPE_CONTROL_3D_ARCH_FLAGS;
836 else if (rq->engine->class == COMPUTE_CLASS)
837 flags &= ~PIPE_CONTROL_3D_ENGINE_FLAGS;
838
839 cs = gen12_emit_pipe_control(cs, PIPE_CONTROL0_HDC_PIPELINE_FLUSH, flags, 0);
840
841 /*XXX: Look at gen8_emit_fini_breadcrumb_rcs */
842 cs = gen12_emit_ggtt_write_rcs(cs,
843 rq->fence.seqno,
844 hwsp_offset(rq),
845 0,
846 PIPE_CONTROL_FLUSH_ENABLE |
847 PIPE_CONTROL_CS_STALL);
848
849 return gen12_emit_fini_breadcrumb_tail(rq, cs);
850 }
851