xref: /netbsd/external/bsd/libpcap/dist/gencode.c (revision d5dfe396)
1 /*	$NetBSD: gencode.c,v 1.12 2019/10/01 16:02:11 christos Exp $	*/
2 
3 /*#define CHASE_CHAIN*/
4 /*
5  * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that: (1) source code distributions
10  * retain the above copyright notice and this paragraph in its entirety, (2)
11  * distributions including binary code include the above copyright notice and
12  * this paragraph in its entirety in the documentation or other materials
13  * provided with the distribution, and (3) all advertising materials mentioning
14  * features or use of this software display the following acknowledgement:
15  * ``This product includes software developed by the University of California,
16  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
17  * the University nor the names of its contributors may be used to endorse
18  * or promote products derived from this software without specific prior
19  * written permission.
20  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
21  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
22  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
23  */
24 
25 #include <sys/cdefs.h>
26 __RCSID("$NetBSD: gencode.c,v 1.12 2019/10/01 16:02:11 christos Exp $");
27 
28 #ifdef HAVE_CONFIG_H
29 #include <config.h>
30 #endif
31 
32 #include <pcap-types.h>
33 #ifdef _WIN32
34   #include <ws2tcpip.h>
35 #else
36   #include <sys/socket.h>
37 
38   #ifdef __NetBSD__
39     #include <sys/param.h>
40   #endif
41 
42   #include <netinet/in.h>
43   #include <arpa/inet.h>
44 #endif /* _WIN32 */
45 
46 #include <stdlib.h>
47 #include <string.h>
48 #include <memory.h>
49 #include <setjmp.h>
50 #include <stdarg.h>
51 
52 #ifdef MSDOS
53 #include "pcap-dos.h"
54 #endif
55 
56 #include "pcap-int.h"
57 
58 #include "extract.h"
59 
60 #include "ethertype.h"
61 #include "nlpid.h"
62 #include "llc.h"
63 #include "gencode.h"
64 #include "ieee80211.h"
65 #include "atmuni31.h"
66 #include "sunatmpos.h"
67 #include "ppp.h"
68 #include "pcap/sll.h"
69 #include "pcap/ipnet.h"
70 #include "arcnet.h"
71 
72 #include "grammar.h"
73 #include "scanner.h"
74 
75 #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
76 #include <linux/types.h>
77 #include <linux/if_packet.h>
78 #include <linux/filter.h>
79 #endif
80 
81 #ifdef HAVE_NET_PFVAR_H
82 #include <sys/socket.h>
83 #include <net/if.h>
84 #include <net/pfvar.h>
85 #include <net/if_pflog.h>
86 #endif
87 
88 #ifndef offsetof
89 #define offsetof(s, e) ((size_t)&((s *)0)->e)
90 #endif
91 
92 #ifdef _WIN32
93   #ifdef INET6
94     #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
95 /* IPv6 address */
96 struct in6_addr
97   {
98     union
99       {
100 	uint8_t		u6_addr8[16];
101 	uint16_t	u6_addr16[8];
102 	uint32_t	u6_addr32[4];
103       } in6_u;
104 #define s6_addr			in6_u.u6_addr8
105 #define s6_addr16		in6_u.u6_addr16
106 #define s6_addr32		in6_u.u6_addr32
107 #define s6_addr64		in6_u.u6_addr64
108   };
109 
110 typedef unsigned short	sa_family_t;
111 
112 #define	__SOCKADDR_COMMON(sa_prefix) \
113   sa_family_t sa_prefix##family
114 
115 /* Ditto, for IPv6.  */
116 struct sockaddr_in6
117   {
118     __SOCKADDR_COMMON (sin6_);
119     uint16_t sin6_port;		/* Transport layer port # */
120     uint32_t sin6_flowinfo;	/* IPv6 flow information */
121     struct in6_addr sin6_addr;	/* IPv6 address */
122   };
123 
124       #ifndef EAI_ADDRFAMILY
125 struct addrinfo {
126 	int	ai_flags;	/* AI_PASSIVE, AI_CANONNAME */
127 	int	ai_family;	/* PF_xxx */
128 	int	ai_socktype;	/* SOCK_xxx */
129 	int	ai_protocol;	/* 0 or IPPROTO_xxx for IPv4 and IPv6 */
130 	size_t	ai_addrlen;	/* length of ai_addr */
131 	char	*ai_canonname;	/* canonical name for hostname */
132 	struct sockaddr *ai_addr;	/* binary address */
133 	struct addrinfo *ai_next;	/* next structure in linked list */
134 };
135       #endif /* EAI_ADDRFAMILY */
136     #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
137   #endif /* INET6 */
138 #else /* _WIN32 */
139   #include <netdb.h>	/* for "struct addrinfo" */
140 #endif /* _WIN32 */
141 #include <pcap/namedb.h>
142 
143 #include "nametoaddr.h"
144 
145 #define ETHERMTU	1500
146 
147 #ifndef ETHERTYPE_TEB
148 #define ETHERTYPE_TEB 0x6558
149 #endif
150 
151 #ifndef IPPROTO_HOPOPTS
152 #define IPPROTO_HOPOPTS 0
153 #endif
154 #ifndef IPPROTO_ROUTING
155 #define IPPROTO_ROUTING 43
156 #endif
157 #ifndef IPPROTO_FRAGMENT
158 #define IPPROTO_FRAGMENT 44
159 #endif
160 #ifndef IPPROTO_DSTOPTS
161 #define IPPROTO_DSTOPTS 60
162 #endif
163 #ifndef IPPROTO_SCTP
164 #define IPPROTO_SCTP 132
165 #endif
166 
167 #define GENEVE_PORT 6081
168 
169 #ifdef HAVE_OS_PROTO_H
170 #include "os-proto.h"
171 #endif
172 
173 #define JMP(c) ((c)|BPF_JMP|BPF_K)
174 
175 /*
176  * "Push" the current value of the link-layer header type and link-layer
177  * header offset onto a "stack", and set a new value.  (It's not a
178  * full-blown stack; we keep only the top two items.)
179  */
180 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
181 { \
182 	(cs)->prevlinktype = (cs)->linktype; \
183 	(cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
184 	(cs)->linktype = (new_linktype); \
185 	(cs)->off_linkhdr.is_variable = (new_is_variable); \
186 	(cs)->off_linkhdr.constant_part = (new_constant_part); \
187 	(cs)->off_linkhdr.reg = (new_reg); \
188 	(cs)->is_geneve = 0; \
189 }
190 
191 /*
192  * Offset "not set" value.
193  */
194 #define OFFSET_NOT_SET	0xffffffffU
195 
196 /*
197  * Absolute offsets, which are offsets from the beginning of the raw
198  * packet data, are, in the general case, the sum of a variable value
199  * and a constant value; the variable value may be absent, in which
200  * case the offset is only the constant value, and the constant value
201  * may be zero, in which case the offset is only the variable value.
202  *
203  * bpf_abs_offset is a structure containing all that information:
204  *
205  *   is_variable is 1 if there's a variable part.
206  *
207  *   constant_part is the constant part of the value, possibly zero;
208  *
209  *   if is_variable is 1, reg is the register number for a register
210  *   containing the variable value if the register has been assigned,
211  *   and -1 otherwise.
212  */
213 typedef struct {
214 	int	is_variable;
215 	u_int	constant_part;
216 	int	reg;
217 } bpf_abs_offset;
218 
219 /*
220  * Value passed to gen_load_a() to indicate what the offset argument
221  * is relative to the beginning of.
222  */
223 enum e_offrel {
224 	OR_PACKET,		/* full packet data */
225 	OR_LINKHDR,		/* link-layer header */
226 	OR_PREVLINKHDR,		/* previous link-layer header */
227 	OR_LLC,			/* 802.2 LLC header */
228 	OR_PREVMPLSHDR,		/* previous MPLS header */
229 	OR_LINKTYPE,		/* link-layer type */
230 	OR_LINKPL,		/* link-layer payload */
231 	OR_LINKPL_NOSNAP,	/* link-layer payload, with no SNAP header at the link layer */
232 	OR_TRAN_IPV4,		/* transport-layer header, with IPv4 network layer */
233 	OR_TRAN_IPV6		/* transport-layer header, with IPv6 network layer */
234 };
235 
236 /*
237  * We divy out chunks of memory rather than call malloc each time so
238  * we don't have to worry about leaking memory.  It's probably
239  * not a big deal if all this memory was wasted but if this ever
240  * goes into a library that would probably not be a good idea.
241  *
242  * XXX - this *is* in a library....
243  */
244 #define NCHUNKS 16
245 #define CHUNK0SIZE 1024
246 struct chunk {
247 	size_t n_left;
248 	void *m;
249 };
250 
251 /* Code generator state */
252 
253 struct _compiler_state {
254 	jmp_buf top_ctx;
255 	pcap_t *bpf_pcap;
256 
257 	struct icode ic;
258 
259 	int snaplen;
260 
261 	int linktype;
262 	int prevlinktype;
263 	int outermostlinktype;
264 
265 	bpf_u_int32 netmask;
266 	int no_optimize;
267 
268 	/* Hack for handling VLAN and MPLS stacks. */
269 	u_int label_stack_depth;
270 	u_int vlan_stack_depth;
271 
272 	/* XXX */
273 	u_int pcap_fddipad;
274 
275 	/*
276 	 * As errors are handled by a longjmp, anything allocated must
277 	 * be freed in the longjmp handler, so it must be reachable
278 	 * from that handler.
279 	 *
280 	 * One thing that's allocated is the result of pcap_nametoaddrinfo();
281 	 * it must be freed with freeaddrinfo().  This variable points to
282 	 * any addrinfo structure that would need to be freed.
283 	 */
284 	struct addrinfo *ai;
285 
286 	/*
287 	 * Another thing that's allocated is the result of pcap_ether_aton();
288 	 * it must be freed with free().  This variable points to any
289 	 * address that would need to be freed.
290 	 */
291 	u_char *e;
292 
293 	/*
294 	 * Various code constructs need to know the layout of the packet.
295 	 * These values give the necessary offsets from the beginning
296 	 * of the packet data.
297 	 */
298 
299 	/*
300 	 * Absolute offset of the beginning of the link-layer header.
301 	 */
302 	bpf_abs_offset off_linkhdr;
303 
304 	/*
305 	 * If we're checking a link-layer header for a packet encapsulated
306 	 * in another protocol layer, this is the equivalent information
307 	 * for the previous layers' link-layer header from the beginning
308 	 * of the raw packet data.
309 	 */
310 	bpf_abs_offset off_prevlinkhdr;
311 
312 	/*
313 	 * This is the equivalent information for the outermost layers'
314 	 * link-layer header.
315 	 */
316 	bpf_abs_offset off_outermostlinkhdr;
317 
318 	/*
319 	 * Absolute offset of the beginning of the link-layer payload.
320 	 */
321 	bpf_abs_offset off_linkpl;
322 
323 	/*
324 	 * "off_linktype" is the offset to information in the link-layer
325 	 * header giving the packet type. This is an absolute offset
326 	 * from the beginning of the packet.
327 	 *
328 	 * For Ethernet, it's the offset of the Ethernet type field; this
329 	 * means that it must have a value that skips VLAN tags.
330 	 *
331 	 * For link-layer types that always use 802.2 headers, it's the
332 	 * offset of the LLC header; this means that it must have a value
333 	 * that skips VLAN tags.
334 	 *
335 	 * For PPP, it's the offset of the PPP type field.
336 	 *
337 	 * For Cisco HDLC, it's the offset of the CHDLC type field.
338 	 *
339 	 * For BSD loopback, it's the offset of the AF_ value.
340 	 *
341 	 * For Linux cooked sockets, it's the offset of the type field.
342 	 *
343 	 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
344 	 * encapsulation, in which case, IP is assumed.
345 	 */
346 	bpf_abs_offset off_linktype;
347 
348 	/*
349 	 * TRUE if the link layer includes an ATM pseudo-header.
350 	 */
351 	int is_atm;
352 
353 	/*
354 	 * TRUE if "geneve" appeared in the filter; it causes us to
355 	 * generate code that checks for a Geneve header and assume
356 	 * that later filters apply to the encapsulated payload.
357 	 */
358 	int is_geneve;
359 
360 	/*
361 	 * TRUE if we need variable length part of VLAN offset
362 	 */
363 	int is_vlan_vloffset;
364 
365 	/*
366 	 * These are offsets for the ATM pseudo-header.
367 	 */
368 	u_int off_vpi;
369 	u_int off_vci;
370 	u_int off_proto;
371 
372 	/*
373 	 * These are offsets for the MTP2 fields.
374 	 */
375 	u_int off_li;
376 	u_int off_li_hsl;
377 
378 	/*
379 	 * These are offsets for the MTP3 fields.
380 	 */
381 	u_int off_sio;
382 	u_int off_opc;
383 	u_int off_dpc;
384 	u_int off_sls;
385 
386 	/*
387 	 * This is the offset of the first byte after the ATM pseudo_header,
388 	 * or -1 if there is no ATM pseudo-header.
389 	 */
390 	u_int off_payload;
391 
392 	/*
393 	 * These are offsets to the beginning of the network-layer header.
394 	 * They are relative to the beginning of the link-layer payload
395 	 * (i.e., they don't include off_linkhdr.constant_part or
396 	 * off_linkpl.constant_part).
397 	 *
398 	 * If the link layer never uses 802.2 LLC:
399 	 *
400 	 *	"off_nl" and "off_nl_nosnap" are the same.
401 	 *
402 	 * If the link layer always uses 802.2 LLC:
403 	 *
404 	 *	"off_nl" is the offset if there's a SNAP header following
405 	 *	the 802.2 header;
406 	 *
407 	 *	"off_nl_nosnap" is the offset if there's no SNAP header.
408 	 *
409 	 * If the link layer is Ethernet:
410 	 *
411 	 *	"off_nl" is the offset if the packet is an Ethernet II packet
412 	 *	(we assume no 802.3+802.2+SNAP);
413 	 *
414 	 *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
415 	 *	with an 802.2 header following it.
416 	 */
417 	u_int off_nl;
418 	u_int off_nl_nosnap;
419 
420 	/*
421 	 * Here we handle simple allocation of the scratch registers.
422 	 * If too many registers are alloc'd, the allocator punts.
423 	 */
424 	int regused[BPF_MEMWORDS];
425 	int curreg;
426 
427 	/*
428 	 * Memory chunks.
429 	 */
430 	struct chunk chunks[NCHUNKS];
431 	int cur_chunk;
432 };
433 
434 /*
435  * For use by routines outside this file.
436  */
437 /* VARARGS */
438 void
bpf_set_error(compiler_state_t * cstate,const char * fmt,...)439 bpf_set_error(compiler_state_t *cstate, const char *fmt, ...)
440 {
441 	va_list ap;
442 
443 	va_start(ap, fmt);
444 	(void)pcap_vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
445 	    fmt, ap);
446 	va_end(ap);
447 }
448 
449 /*
450  * For use *ONLY* in routines in this file.
451  */
452 static void PCAP_NORETURN bpf_error(compiler_state_t *, const char *, ...)
453     PCAP_PRINTFLIKE(2, 3);
454 
455 /* VARARGS */
456 static void PCAP_NORETURN
bpf_error(compiler_state_t * cstate,const char * fmt,...)457 bpf_error(compiler_state_t *cstate, const char *fmt, ...)
458 {
459 	va_list ap;
460 
461 	va_start(ap, fmt);
462 	(void)pcap_vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
463 	    fmt, ap);
464 	va_end(ap);
465 	longjmp(cstate->top_ctx, 1);
466 	/*NOTREACHED*/
467 }
468 
469 static int init_linktype(compiler_state_t *, pcap_t *);
470 
471 static void init_regs(compiler_state_t *);
472 static int alloc_reg(compiler_state_t *);
473 static void free_reg(compiler_state_t *, int);
474 
475 static void initchunks(compiler_state_t *cstate);
476 static void *newchunk_nolongjmp(compiler_state_t *cstate, size_t);
477 static void *newchunk(compiler_state_t *cstate, size_t);
478 static void freechunks(compiler_state_t *cstate);
479 static inline struct block *new_block(compiler_state_t *cstate, int);
480 static inline struct slist *new_stmt(compiler_state_t *cstate, int);
481 static struct block *gen_retblk(compiler_state_t *cstate, int);
482 static inline void syntax(compiler_state_t *cstate);
483 
484 static void backpatch(struct block *, struct block *);
485 static void merge(struct block *, struct block *);
486 static struct block *gen_cmp(compiler_state_t *, enum e_offrel, u_int,
487     u_int, bpf_int32);
488 static struct block *gen_cmp_gt(compiler_state_t *, enum e_offrel, u_int,
489     u_int, bpf_int32);
490 static struct block *gen_cmp_ge(compiler_state_t *, enum e_offrel, u_int,
491     u_int, bpf_int32);
492 static struct block *gen_cmp_lt(compiler_state_t *, enum e_offrel, u_int,
493     u_int, bpf_int32);
494 static struct block *gen_cmp_le(compiler_state_t *, enum e_offrel, u_int,
495     u_int, bpf_int32);
496 static struct block *gen_mcmp(compiler_state_t *, enum e_offrel, u_int,
497     u_int, bpf_int32, bpf_u_int32);
498 static struct block *gen_bcmp(compiler_state_t *, enum e_offrel, u_int,
499     u_int, const u_char *);
500 static struct block *gen_ncmp(compiler_state_t *, enum e_offrel, bpf_u_int32,
501     bpf_u_int32, bpf_u_int32, bpf_u_int32, int, bpf_int32);
502 static struct slist *gen_load_absoffsetrel(compiler_state_t *, bpf_abs_offset *,
503     u_int, u_int);
504 static struct slist *gen_load_a(compiler_state_t *, enum e_offrel, u_int,
505     u_int);
506 static struct slist *gen_loadx_iphdrlen(compiler_state_t *);
507 static struct block *gen_uncond(compiler_state_t *, int);
508 static inline struct block *gen_true(compiler_state_t *);
509 static inline struct block *gen_false(compiler_state_t *);
510 static struct block *gen_ether_linktype(compiler_state_t *, int);
511 static struct block *gen_ipnet_linktype(compiler_state_t *, int);
512 static struct block *gen_linux_sll_linktype(compiler_state_t *, int);
513 static struct slist *gen_load_prism_llprefixlen(compiler_state_t *);
514 static struct slist *gen_load_avs_llprefixlen(compiler_state_t *);
515 static struct slist *gen_load_radiotap_llprefixlen(compiler_state_t *);
516 static struct slist *gen_load_ppi_llprefixlen(compiler_state_t *);
517 static void insert_compute_vloffsets(compiler_state_t *, struct block *);
518 static struct slist *gen_abs_offset_varpart(compiler_state_t *,
519     bpf_abs_offset *);
520 static int ethertype_to_ppptype(int);
521 static struct block *gen_linktype(compiler_state_t *, int);
522 static struct block *gen_snap(compiler_state_t *, bpf_u_int32, bpf_u_int32);
523 static struct block *gen_llc_linktype(compiler_state_t *, int);
524 static struct block *gen_hostop(compiler_state_t *, bpf_u_int32, bpf_u_int32,
525     int, int, u_int, u_int);
526 #ifdef INET6
527 static struct block *gen_hostop6(compiler_state_t *, struct in6_addr *,
528     struct in6_addr *, int, int, u_int, u_int);
529 #endif
530 static struct block *gen_ahostop(compiler_state_t *, const u_char *, int);
531 static struct block *gen_ehostop(compiler_state_t *, const u_char *, int);
532 static struct block *gen_fhostop(compiler_state_t *, const u_char *, int);
533 static struct block *gen_thostop(compiler_state_t *, const u_char *, int);
534 static struct block *gen_wlanhostop(compiler_state_t *, const u_char *, int);
535 static struct block *gen_ipfchostop(compiler_state_t *, const u_char *, int);
536 static struct block *gen_dnhostop(compiler_state_t *, bpf_u_int32, int);
537 static struct block *gen_mpls_linktype(compiler_state_t *, int);
538 static struct block *gen_host(compiler_state_t *, bpf_u_int32, bpf_u_int32,
539     int, int, int);
540 #ifdef INET6
541 static struct block *gen_host6(compiler_state_t *, struct in6_addr *,
542     struct in6_addr *, int, int, int);
543 #endif
544 #ifndef INET6
545 static struct block *gen_gateway(compiler_state_t *, const u_char *,
546     struct addrinfo *, int, int);
547 #endif
548 static struct block *gen_ipfrag(compiler_state_t *);
549 static struct block *gen_portatom(compiler_state_t *, int, bpf_int32);
550 static struct block *gen_portrangeatom(compiler_state_t *, int, bpf_int32,
551     bpf_int32);
552 static struct block *gen_portatom6(compiler_state_t *, int, bpf_int32);
553 static struct block *gen_portrangeatom6(compiler_state_t *, int, bpf_int32,
554     bpf_int32);
555 struct block *gen_portop(compiler_state_t *, int, int, int);
556 static struct block *gen_port(compiler_state_t *, int, int, int);
557 struct block *gen_portrangeop(compiler_state_t *, int, int, int, int);
558 static struct block *gen_portrange(compiler_state_t *, int, int, int, int);
559 struct block *gen_portop6(compiler_state_t *, int, int, int);
560 static struct block *gen_port6(compiler_state_t *, int, int, int);
561 struct block *gen_portrangeop6(compiler_state_t *, int, int, int, int);
562 static struct block *gen_portrange6(compiler_state_t *, int, int, int, int);
563 static int lookup_proto(compiler_state_t *, const char *, int);
564 static struct block *gen_protochain(compiler_state_t *, int, int, int);
565 static struct block *gen_proto(compiler_state_t *, int, int, int);
566 static struct slist *xfer_to_x(compiler_state_t *, struct arth *);
567 static struct slist *xfer_to_a(compiler_state_t *, struct arth *);
568 static struct block *gen_mac_multicast(compiler_state_t *, int);
569 static struct block *gen_len(compiler_state_t *, int, int);
570 static struct block *gen_check_802_11_data_frame(compiler_state_t *);
571 static struct block *gen_geneve_ll_check(compiler_state_t *cstate);
572 
573 static struct block *gen_ppi_dlt_check(compiler_state_t *);
574 static struct block *gen_atmfield_code_internal(compiler_state_t *, int,
575     bpf_int32, bpf_u_int32, int);
576 static struct block *gen_atmtype_llc(compiler_state_t *);
577 static struct block *gen_msg_abbrev(compiler_state_t *, int type);
578 
579 static void
initchunks(compiler_state_t * cstate)580 initchunks(compiler_state_t *cstate)
581 {
582 	int i;
583 
584 	for (i = 0; i < NCHUNKS; i++) {
585 		cstate->chunks[i].n_left = 0;
586 		cstate->chunks[i].m = NULL;
587 	}
588 	cstate->cur_chunk = 0;
589 }
590 
591 static void *
newchunk_nolongjmp(compiler_state_t * cstate,size_t n)592 newchunk_nolongjmp(compiler_state_t *cstate, size_t n)
593 {
594 	struct chunk *cp;
595 	int k;
596 	size_t size;
597 
598 #ifndef __NetBSD__
599 	/* XXX Round up to nearest long. */
600 	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
601 #else
602 	/* XXX Round up to structure boundary. */
603 	n = ALIGN(n);
604 #endif
605 
606 	cp = &cstate->chunks[cstate->cur_chunk];
607 	if (n > cp->n_left) {
608 		++cp;
609 		k = ++cstate->cur_chunk;
610 		if (k >= NCHUNKS) {
611 			bpf_set_error(cstate, "out of memory");
612 			return (NULL);
613 		}
614 		size = CHUNK0SIZE << k;
615 		cp->m = (void *)malloc(size);
616 		if (cp->m == NULL) {
617 			bpf_set_error(cstate, "out of memory");
618 			return (NULL);
619 		}
620 		memset((char *)cp->m, 0, size);
621 		cp->n_left = size;
622 		if (n > size) {
623 			bpf_set_error(cstate, "out of memory");
624 			return (NULL);
625 		}
626 	}
627 	cp->n_left -= n;
628 	return (void *)((char *)cp->m + cp->n_left);
629 }
630 
631 static void *
newchunk(compiler_state_t * cstate,size_t n)632 newchunk(compiler_state_t *cstate, size_t n)
633 {
634 	void *p;
635 
636 	p = newchunk_nolongjmp(cstate, n);
637 	if (p == NULL) {
638 		longjmp(cstate->top_ctx, 1);
639 		/*NOTREACHED*/
640 	}
641 	return (p);
642 }
643 
644 static void
freechunks(compiler_state_t * cstate)645 freechunks(compiler_state_t *cstate)
646 {
647 	int i;
648 
649 	for (i = 0; i < NCHUNKS; ++i)
650 		if (cstate->chunks[i].m != NULL)
651 			free(cstate->chunks[i].m);
652 }
653 
654 /*
655  * A strdup whose allocations are freed after code generation is over.
656  * This is used by the lexical analyzer, so it can't longjmp; it just
657  * returns NULL on an allocation error, and the callers must check
658  * for it.
659  */
660 char *
sdup(compiler_state_t * cstate,const char * s)661 sdup(compiler_state_t *cstate, const char *s)
662 {
663 	size_t n = strlen(s) + 1;
664 	char *cp = newchunk_nolongjmp(cstate, n);
665 
666 	if (cp == NULL)
667 		return (NULL);
668 	pcap_strlcpy(cp, s, n);
669 	return (cp);
670 }
671 
672 static inline struct block *
new_block(compiler_state_t * cstate,int code)673 new_block(compiler_state_t *cstate, int code)
674 {
675 	struct block *p;
676 
677 	p = (struct block *)newchunk(cstate, sizeof(*p));
678 	p->s.code = code;
679 	p->head = p;
680 
681 	return p;
682 }
683 
684 static inline struct slist *
new_stmt(compiler_state_t * cstate,int code)685 new_stmt(compiler_state_t *cstate, int code)
686 {
687 	struct slist *p;
688 
689 	p = (struct slist *)newchunk(cstate, sizeof(*p));
690 	p->s.code = code;
691 
692 	return p;
693 }
694 
695 static struct block *
gen_retblk(compiler_state_t * cstate,int v)696 gen_retblk(compiler_state_t *cstate, int v)
697 {
698 	struct block *b = new_block(cstate, BPF_RET|BPF_K);
699 
700 	b->s.k = v;
701 	return b;
702 }
703 
704 static inline PCAP_NORETURN_DEF void
syntax(compiler_state_t * cstate)705 syntax(compiler_state_t *cstate)
706 {
707 	bpf_error(cstate, "syntax error in filter expression");
708 }
709 
710 int
pcap_compile(pcap_t * p,struct bpf_program * program,const char * buf,int optimize,bpf_u_int32 mask)711 pcap_compile(pcap_t *p, struct bpf_program *program,
712 	     const char *buf, int optimize, bpf_u_int32 mask)
713 {
714 #ifdef _WIN32
715 	static int done = 0;
716 #endif
717 	compiler_state_t cstate;
718 	const char * volatile xbuf = buf;
719 	yyscan_t scanner = NULL;
720 	volatile YY_BUFFER_STATE in_buffer = NULL;
721 	u_int len;
722 	int  rc;
723 
724 	/*
725 	 * If this pcap_t hasn't been activated, it doesn't have a
726 	 * link-layer type, so we can't use it.
727 	 */
728 	if (!p->activated) {
729 		pcap_snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
730 		    "not-yet-activated pcap_t passed to pcap_compile");
731 		return (-1);
732 	}
733 
734 #ifdef _WIN32
735 	if (!done)
736 		pcap_wsockinit();
737 	done = 1;
738 #endif
739 
740 #ifdef ENABLE_REMOTE
741 	/*
742 	 * If the device on which we're capturing need to be notified
743 	 * that a new filter is being compiled, do so.
744 	 *
745 	 * This allows them to save a copy of it, in case, for example,
746 	 * they're implementing a form of remote packet capture, and
747 	 * want the remote machine to filter out the packets in which
748 	 * it's sending the packets it's captured.
749 	 *
750 	 * XXX - the fact that we happen to be compiling a filter
751 	 * doesn't necessarily mean we'll be installing it as the
752 	 * filter for this pcap_t; we might be running it from userland
753 	 * on captured packets to do packet classification.  We really
754 	 * need a better way of handling this, but this is all that
755 	 * the WinPcap remote capture code did.
756 	 */
757 	if (p->save_current_filter_op != NULL)
758 		(p->save_current_filter_op)(p, buf);
759 #endif
760 
761 	initchunks(&cstate);
762 	cstate.no_optimize = 0;
763 #ifdef INET6
764 	cstate.ai = NULL;
765 #endif
766 	cstate.e = NULL;
767 	cstate.ic.root = NULL;
768 	cstate.ic.cur_mark = 0;
769 	cstate.bpf_pcap = p;
770 	init_regs(&cstate);
771 
772 	cstate.netmask = mask;
773 
774 	cstate.snaplen = pcap_snapshot(p);
775 	if (cstate.snaplen == 0) {
776 		pcap_snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
777 			 "snaplen of 0 rejects all packets");
778 		rc = -1;
779 		goto quit;
780 	}
781 
782 	if (pcap_lex_init(&scanner) != 0)
783 		pcap_fmt_errmsg_for_errno(p->errbuf, PCAP_ERRBUF_SIZE,
784 		    errno, "can't initialize scanner");
785 	in_buffer = pcap__scan_string(xbuf ? xbuf : "", scanner);
786 
787 	/*
788 	 * Associate the compiler state with the lexical analyzer
789 	 * state.
790 	 */
791 	pcap_set_extra(&cstate, scanner);
792 
793 	if (init_linktype(&cstate, p) == -1) {
794 		rc = -1;
795 		goto quit;
796 	}
797 	if (pcap_parse(scanner, &cstate) != 0) {
798 #ifdef INET6
799 		if (cstate.ai != NULL)
800 			freeaddrinfo(cstate.ai);
801 #endif
802 		if (cstate.e != NULL)
803 			free(cstate.e);
804 		rc = -1;
805 		goto quit;
806 	}
807 
808 	if (cstate.ic.root == NULL) {
809 		/*
810 		 * Catch errors reported by gen_retblk().
811 		 */
812 		if (setjmp(cstate.top_ctx)) {
813 			rc = -1;
814 			goto quit;
815 		}
816 		cstate.ic.root = gen_retblk(&cstate, cstate.snaplen);
817 	}
818 
819 	if (optimize && !cstate.no_optimize) {
820 		if (bpf_optimize(&cstate.ic, p->errbuf) == -1) {
821 			/* Failure */
822 			rc = -1;
823 			goto quit;
824 		}
825 		if (cstate.ic.root == NULL ||
826 		    (cstate.ic.root->s.code == (BPF_RET|BPF_K) && cstate.ic.root->s.k == 0)) {
827 			(void)pcap_snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
828 			    "expression rejects all packets");
829 			rc = -1;
830 			goto quit;
831 		}
832 	}
833 	program->bf_insns = icode_to_fcode(&cstate.ic,
834 	    cstate.ic.root, &len, p->errbuf);
835 	if (program->bf_insns == NULL) {
836 		/* Failure */
837 		rc = -1;
838 		goto quit;
839 	}
840 	program->bf_len = len;
841 
842 	rc = 0;  /* We're all okay */
843 
844 quit:
845 	/*
846 	 * Clean up everything for the lexical analyzer.
847 	 */
848 	if (in_buffer != NULL)
849 		pcap__delete_buffer(in_buffer, scanner);
850 	if (scanner != NULL)
851 		pcap_lex_destroy(scanner);
852 
853 	/*
854 	 * Clean up our own allocated memory.
855 	 */
856 	freechunks(&cstate);
857 
858 	return (rc);
859 }
860 
861 /*
862  * entry point for using the compiler with no pcap open
863  * pass in all the stuff that is needed explicitly instead.
864  */
865 int
pcap_compile_nopcap(int snaplen_arg,int linktype_arg,struct bpf_program * program,const char * buf,int optimize,bpf_u_int32 mask)866 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
867 		    struct bpf_program *program,
868 	     const char *buf, int optimize, bpf_u_int32 mask)
869 {
870 	pcap_t *p;
871 	int ret;
872 
873 	p = pcap_open_dead(linktype_arg, snaplen_arg);
874 	if (p == NULL)
875 		return (-1);
876 	ret = pcap_compile(p, program, buf, optimize, mask);
877 	pcap_close(p);
878 	return (ret);
879 }
880 
881 /*
882  * Clean up a "struct bpf_program" by freeing all the memory allocated
883  * in it.
884  */
885 void
pcap_freecode(struct bpf_program * program)886 pcap_freecode(struct bpf_program *program)
887 {
888 	program->bf_len = 0;
889 	if (program->bf_insns != NULL) {
890 		free((char *)program->bf_insns);
891 		program->bf_insns = NULL;
892 	}
893 }
894 
895 /*
896  * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
897  * which of the jt and jf fields has been resolved and which is a pointer
898  * back to another unresolved block (or nil).  At least one of the fields
899  * in each block is already resolved.
900  */
901 static void
backpatch(struct block * list,struct block * target)902 backpatch(struct block *list, struct block *target)
903 {
904 	struct block *next;
905 
906 	while (list) {
907 		if (!list->sense) {
908 			next = JT(list);
909 			JT(list) = target;
910 		} else {
911 			next = JF(list);
912 			JF(list) = target;
913 		}
914 		list = next;
915 	}
916 }
917 
918 /*
919  * Merge the lists in b0 and b1, using the 'sense' field to indicate
920  * which of jt and jf is the link.
921  */
922 static void
merge(struct block * b0,struct block * b1)923 merge(struct block *b0, struct block *b1)
924 {
925 	register struct block **p = &b0;
926 
927 	/* Find end of list. */
928 	while (*p)
929 		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
930 
931 	/* Concatenate the lists. */
932 	*p = b1;
933 }
934 
935 int
finish_parse(compiler_state_t * cstate,struct block * p)936 finish_parse(compiler_state_t *cstate, struct block *p)
937 {
938 	struct block *ppi_dlt_check;
939 
940 	/*
941 	 * Catch errors reported by us and routines below us, and return -1
942 	 * on an error.
943 	 */
944 	if (setjmp(cstate->top_ctx))
945 		return (-1);
946 
947 	/*
948 	 * Insert before the statements of the first (root) block any
949 	 * statements needed to load the lengths of any variable-length
950 	 * headers into registers.
951 	 *
952 	 * XXX - a fancier strategy would be to insert those before the
953 	 * statements of all blocks that use those lengths and that
954 	 * have no predecessors that use them, so that we only compute
955 	 * the lengths if we need them.  There might be even better
956 	 * approaches than that.
957 	 *
958 	 * However, those strategies would be more complicated, and
959 	 * as we don't generate code to compute a length if the
960 	 * program has no tests that use the length, and as most
961 	 * tests will probably use those lengths, we would just
962 	 * postpone computing the lengths so that it's not done
963 	 * for tests that fail early, and it's not clear that's
964 	 * worth the effort.
965 	 */
966 	insert_compute_vloffsets(cstate, p->head);
967 
968 	/*
969 	 * For DLT_PPI captures, generate a check of the per-packet
970 	 * DLT value to make sure it's DLT_IEEE802_11.
971 	 *
972 	 * XXX - TurboCap cards use DLT_PPI for Ethernet.
973 	 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
974 	 * with appropriate Ethernet information and use that rather
975 	 * than using something such as DLT_PPI where you don't know
976 	 * the link-layer header type until runtime, which, in the
977 	 * general case, would force us to generate both Ethernet *and*
978 	 * 802.11 code (*and* anything else for which PPI is used)
979 	 * and choose between them early in the BPF program?
980 	 */
981 	ppi_dlt_check = gen_ppi_dlt_check(cstate);
982 	if (ppi_dlt_check != NULL)
983 		gen_and(ppi_dlt_check, p);
984 
985 	backpatch(p, gen_retblk(cstate, cstate->snaplen));
986 	p->sense = !p->sense;
987 	backpatch(p, gen_retblk(cstate, 0));
988 	cstate->ic.root = p->head;
989 	return (0);
990 }
991 
992 void
gen_and(struct block * b0,struct block * b1)993 gen_and(struct block *b0, struct block *b1)
994 {
995 	backpatch(b0, b1->head);
996 	b0->sense = !b0->sense;
997 	b1->sense = !b1->sense;
998 	merge(b1, b0);
999 	b1->sense = !b1->sense;
1000 	b1->head = b0->head;
1001 }
1002 
1003 void
gen_or(struct block * b0,struct block * b1)1004 gen_or(struct block *b0, struct block *b1)
1005 {
1006 	b0->sense = !b0->sense;
1007 	backpatch(b0, b1->head);
1008 	b0->sense = !b0->sense;
1009 	merge(b1, b0);
1010 	b1->head = b0->head;
1011 }
1012 
1013 void
gen_not(struct block * b)1014 gen_not(struct block *b)
1015 {
1016 	b->sense = !b->sense;
1017 }
1018 
1019 static struct block *
gen_cmp(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_int32 v)1020 gen_cmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1021     u_int size, bpf_int32 v)
1022 {
1023 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
1024 }
1025 
1026 static struct block *
gen_cmp_gt(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_int32 v)1027 gen_cmp_gt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1028     u_int size, bpf_int32 v)
1029 {
1030 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
1031 }
1032 
1033 static struct block *
gen_cmp_ge(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_int32 v)1034 gen_cmp_ge(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1035     u_int size, bpf_int32 v)
1036 {
1037 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
1038 }
1039 
1040 static struct block *
gen_cmp_lt(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_int32 v)1041 gen_cmp_lt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1042     u_int size, bpf_int32 v)
1043 {
1044 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
1045 }
1046 
1047 static struct block *
gen_cmp_le(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_int32 v)1048 gen_cmp_le(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1049     u_int size, bpf_int32 v)
1050 {
1051 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
1052 }
1053 
1054 static struct block *
gen_mcmp(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_int32 v,bpf_u_int32 mask)1055 gen_mcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1056     u_int size, bpf_int32 v, bpf_u_int32 mask)
1057 {
1058 	return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 0, v);
1059 }
1060 
1061 static struct block *
gen_bcmp(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,const u_char * v)1062 gen_bcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1063     u_int size, const u_char *v)
1064 {
1065 	register struct block *b, *tmp;
1066 
1067 	/*
1068 	 * XXX - the actual *instructions* do unsigned comparisons on
1069 	 * most platforms, and the load instructions don't do sign
1070 	 * extension, so gen_cmp() should really take an unsigned
1071 	 * value argument.
1072 	 *
1073 	 * As the load instructons also don't do sign-extension, we
1074 	 * fetch the values from the byte array as unsigned.  We don't
1075 	 * want to use the signed versions of the extract calls.
1076 	 */
1077 	b = NULL;
1078 	while (size >= 4) {
1079 		register const u_char *p = &v[size - 4];
1080 
1081 		tmp = gen_cmp(cstate, offrel, offset + size - 4, BPF_W,
1082 		    (bpf_int32)EXTRACT_32BITS(p));
1083 		if (b != NULL)
1084 			gen_and(b, tmp);
1085 		b = tmp;
1086 		size -= 4;
1087 	}
1088 	while (size >= 2) {
1089 		register const u_char *p = &v[size - 2];
1090 
1091 		tmp = gen_cmp(cstate, offrel, offset + size - 2, BPF_H,
1092 		    (bpf_int32)EXTRACT_16BITS(p));
1093 		if (b != NULL)
1094 			gen_and(b, tmp);
1095 		b = tmp;
1096 		size -= 2;
1097 	}
1098 	if (size > 0) {
1099 		tmp = gen_cmp(cstate, offrel, offset, BPF_B, (bpf_int32)v[0]);
1100 		if (b != NULL)
1101 			gen_and(b, tmp);
1102 		b = tmp;
1103 	}
1104 	return b;
1105 }
1106 
1107 /*
1108  * AND the field of size "size" at offset "offset" relative to the header
1109  * specified by "offrel" with "mask", and compare it with the value "v"
1110  * with the test specified by "jtype"; if "reverse" is true, the test
1111  * should test the opposite of "jtype".
1112  */
1113 static struct block *
gen_ncmp(compiler_state_t * cstate,enum e_offrel offrel,bpf_u_int32 offset,bpf_u_int32 size,bpf_u_int32 mask,bpf_u_int32 jtype,int reverse,bpf_int32 v)1114 gen_ncmp(compiler_state_t *cstate, enum e_offrel offrel, bpf_u_int32 offset,
1115     bpf_u_int32 size, bpf_u_int32 mask, bpf_u_int32 jtype, int reverse,
1116     bpf_int32 v)
1117 {
1118 	struct slist *s, *s2;
1119 	struct block *b;
1120 
1121 	s = gen_load_a(cstate, offrel, offset, size);
1122 
1123 	if (mask != 0xffffffff) {
1124 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1125 		s2->s.k = mask;
1126 		sappend(s, s2);
1127 	}
1128 
1129 	b = new_block(cstate, JMP(jtype));
1130 	b->stmts = s;
1131 	b->s.k = v;
1132 	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
1133 		gen_not(b);
1134 	return b;
1135 }
1136 
1137 static int
init_linktype(compiler_state_t * cstate,pcap_t * p)1138 init_linktype(compiler_state_t *cstate, pcap_t *p)
1139 {
1140 	cstate->pcap_fddipad = p->fddipad;
1141 
1142 	/*
1143 	 * We start out with only one link-layer header.
1144 	 */
1145 	cstate->outermostlinktype = pcap_datalink(p);
1146 	cstate->off_outermostlinkhdr.constant_part = 0;
1147 	cstate->off_outermostlinkhdr.is_variable = 0;
1148 	cstate->off_outermostlinkhdr.reg = -1;
1149 
1150 	cstate->prevlinktype = cstate->outermostlinktype;
1151 	cstate->off_prevlinkhdr.constant_part = 0;
1152 	cstate->off_prevlinkhdr.is_variable = 0;
1153 	cstate->off_prevlinkhdr.reg = -1;
1154 
1155 	cstate->linktype = cstate->outermostlinktype;
1156 	cstate->off_linkhdr.constant_part = 0;
1157 	cstate->off_linkhdr.is_variable = 0;
1158 	cstate->off_linkhdr.reg = -1;
1159 
1160 	/*
1161 	 * XXX
1162 	 */
1163 	cstate->off_linkpl.constant_part = 0;
1164 	cstate->off_linkpl.is_variable = 0;
1165 	cstate->off_linkpl.reg = -1;
1166 
1167 	cstate->off_linktype.constant_part = 0;
1168 	cstate->off_linktype.is_variable = 0;
1169 	cstate->off_linktype.reg = -1;
1170 
1171 	/*
1172 	 * Assume it's not raw ATM with a pseudo-header, for now.
1173 	 */
1174 	cstate->is_atm = 0;
1175 	cstate->off_vpi = OFFSET_NOT_SET;
1176 	cstate->off_vci = OFFSET_NOT_SET;
1177 	cstate->off_proto = OFFSET_NOT_SET;
1178 	cstate->off_payload = OFFSET_NOT_SET;
1179 
1180 	/*
1181 	 * And not Geneve.
1182 	 */
1183 	cstate->is_geneve = 0;
1184 
1185 	/*
1186 	 * No variable length VLAN offset by default
1187 	 */
1188 	cstate->is_vlan_vloffset = 0;
1189 
1190 	/*
1191 	 * And assume we're not doing SS7.
1192 	 */
1193 	cstate->off_li = OFFSET_NOT_SET;
1194 	cstate->off_li_hsl = OFFSET_NOT_SET;
1195 	cstate->off_sio = OFFSET_NOT_SET;
1196 	cstate->off_opc = OFFSET_NOT_SET;
1197 	cstate->off_dpc = OFFSET_NOT_SET;
1198 	cstate->off_sls = OFFSET_NOT_SET;
1199 
1200 	cstate->label_stack_depth = 0;
1201 	cstate->vlan_stack_depth = 0;
1202 
1203 	switch (cstate->linktype) {
1204 
1205 	case DLT_ARCNET:
1206 		cstate->off_linktype.constant_part = 2;
1207 		cstate->off_linkpl.constant_part = 6;
1208 		cstate->off_nl = 0;		/* XXX in reality, variable! */
1209 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1210 		break;
1211 
1212 	case DLT_ARCNET_LINUX:
1213 		cstate->off_linktype.constant_part = 4;
1214 		cstate->off_linkpl.constant_part = 8;
1215 		cstate->off_nl = 0;		/* XXX in reality, variable! */
1216 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1217 		break;
1218 
1219 	case DLT_EN10MB:
1220 		cstate->off_linktype.constant_part = 12;
1221 		cstate->off_linkpl.constant_part = 14;	/* Ethernet header length */
1222 		cstate->off_nl = 0;		/* Ethernet II */
1223 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1224 		break;
1225 
1226 	case DLT_SLIP:
1227 		/*
1228 		 * SLIP doesn't have a link level type.  The 16 byte
1229 		 * header is hacked into our SLIP driver.
1230 		 */
1231 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1232 		cstate->off_linkpl.constant_part = 16;
1233 		cstate->off_nl = 0;
1234 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1235 		break;
1236 
1237 	case DLT_SLIP_BSDOS:
1238 		/* XXX this may be the same as the DLT_PPP_BSDOS case */
1239 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1240 		/* XXX end */
1241 		cstate->off_linkpl.constant_part = 24;
1242 		cstate->off_nl = 0;
1243 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1244 		break;
1245 
1246 	case DLT_NULL:
1247 	case DLT_LOOP:
1248 		cstate->off_linktype.constant_part = 0;
1249 		cstate->off_linkpl.constant_part = 4;
1250 		cstate->off_nl = 0;
1251 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1252 		break;
1253 
1254 	case DLT_ENC:
1255 		cstate->off_linktype.constant_part = 0;
1256 		cstate->off_linkpl.constant_part = 12;
1257 		cstate->off_nl = 0;
1258 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1259 		break;
1260 
1261 	case DLT_PPP:
1262 	case DLT_PPP_PPPD:
1263 	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
1264 	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
1265 		cstate->off_linktype.constant_part = 2;	/* skip HDLC-like framing */
1266 		cstate->off_linkpl.constant_part = 4;	/* skip HDLC-like framing and protocol field */
1267 		cstate->off_nl = 0;
1268 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1269 		break;
1270 
1271 	case DLT_PPP_ETHER:
1272 		/*
1273 		 * This does no include the Ethernet header, and
1274 		 * only covers session state.
1275 		 */
1276 		cstate->off_linktype.constant_part = 6;
1277 		cstate->off_linkpl.constant_part = 8;
1278 		cstate->off_nl = 0;
1279 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1280 		break;
1281 
1282 	case DLT_PPP_BSDOS:
1283 		cstate->off_linktype.constant_part = 5;
1284 		cstate->off_linkpl.constant_part = 24;
1285 		cstate->off_nl = 0;
1286 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1287 		break;
1288 
1289 	case DLT_FDDI:
1290 		/*
1291 		 * FDDI doesn't really have a link-level type field.
1292 		 * We set "off_linktype" to the offset of the LLC header.
1293 		 *
1294 		 * To check for Ethernet types, we assume that SSAP = SNAP
1295 		 * is being used and pick out the encapsulated Ethernet type.
1296 		 * XXX - should we generate code to check for SNAP?
1297 		 */
1298 		cstate->off_linktype.constant_part = 13;
1299 		cstate->off_linktype.constant_part += cstate->pcap_fddipad;
1300 		cstate->off_linkpl.constant_part = 13;	/* FDDI MAC header length */
1301 		cstate->off_linkpl.constant_part += cstate->pcap_fddipad;
1302 		cstate->off_nl = 8;		/* 802.2+SNAP */
1303 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1304 		break;
1305 
1306 	case DLT_IEEE802:
1307 		/*
1308 		 * Token Ring doesn't really have a link-level type field.
1309 		 * We set "off_linktype" to the offset of the LLC header.
1310 		 *
1311 		 * To check for Ethernet types, we assume that SSAP = SNAP
1312 		 * is being used and pick out the encapsulated Ethernet type.
1313 		 * XXX - should we generate code to check for SNAP?
1314 		 *
1315 		 * XXX - the header is actually variable-length.
1316 		 * Some various Linux patched versions gave 38
1317 		 * as "off_linktype" and 40 as "off_nl"; however,
1318 		 * if a token ring packet has *no* routing
1319 		 * information, i.e. is not source-routed, the correct
1320 		 * values are 20 and 22, as they are in the vanilla code.
1321 		 *
1322 		 * A packet is source-routed iff the uppermost bit
1323 		 * of the first byte of the source address, at an
1324 		 * offset of 8, has the uppermost bit set.  If the
1325 		 * packet is source-routed, the total number of bytes
1326 		 * of routing information is 2 plus bits 0x1F00 of
1327 		 * the 16-bit value at an offset of 14 (shifted right
1328 		 * 8 - figure out which byte that is).
1329 		 */
1330 		cstate->off_linktype.constant_part = 14;
1331 		cstate->off_linkpl.constant_part = 14;	/* Token Ring MAC header length */
1332 		cstate->off_nl = 8;		/* 802.2+SNAP */
1333 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1334 		break;
1335 
1336 	case DLT_PRISM_HEADER:
1337 	case DLT_IEEE802_11_RADIO_AVS:
1338 	case DLT_IEEE802_11_RADIO:
1339 		cstate->off_linkhdr.is_variable = 1;
1340 		/* Fall through, 802.11 doesn't have a variable link
1341 		 * prefix but is otherwise the same. */
1342 		/* FALLTHROUGH */
1343 
1344 	case DLT_IEEE802_11:
1345 		/*
1346 		 * 802.11 doesn't really have a link-level type field.
1347 		 * We set "off_linktype.constant_part" to the offset of
1348 		 * the LLC header.
1349 		 *
1350 		 * To check for Ethernet types, we assume that SSAP = SNAP
1351 		 * is being used and pick out the encapsulated Ethernet type.
1352 		 * XXX - should we generate code to check for SNAP?
1353 		 *
1354 		 * We also handle variable-length radio headers here.
1355 		 * The Prism header is in theory variable-length, but in
1356 		 * practice it's always 144 bytes long.  However, some
1357 		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1358 		 * sometimes or always supply an AVS header, so we
1359 		 * have to check whether the radio header is a Prism
1360 		 * header or an AVS header, so, in practice, it's
1361 		 * variable-length.
1362 		 */
1363 		cstate->off_linktype.constant_part = 24;
1364 		cstate->off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1365 		cstate->off_linkpl.is_variable = 1;
1366 		cstate->off_nl = 8;		/* 802.2+SNAP */
1367 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1368 		break;
1369 
1370 	case DLT_PPI:
1371 		/*
1372 		 * At the moment we treat PPI the same way that we treat
1373 		 * normal Radiotap encoded packets. The difference is in
1374 		 * the function that generates the code at the beginning
1375 		 * to compute the header length.  Since this code generator
1376 		 * of PPI supports bare 802.11 encapsulation only (i.e.
1377 		 * the encapsulated DLT should be DLT_IEEE802_11) we
1378 		 * generate code to check for this too.
1379 		 */
1380 		cstate->off_linktype.constant_part = 24;
1381 		cstate->off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1382 		cstate->off_linkpl.is_variable = 1;
1383 		cstate->off_linkhdr.is_variable = 1;
1384 		cstate->off_nl = 8;		/* 802.2+SNAP */
1385 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1386 		break;
1387 
1388 	case DLT_ATM_RFC1483:
1389 	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1390 		/*
1391 		 * assume routed, non-ISO PDUs
1392 		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1393 		 *
1394 		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1395 		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1396 		 * latter would presumably be treated the way PPPoE
1397 		 * should be, so you can do "pppoe and udp port 2049"
1398 		 * or "pppoa and tcp port 80" and have it check for
1399 		 * PPPo{A,E} and a PPP protocol of IP and....
1400 		 */
1401 		cstate->off_linktype.constant_part = 0;
1402 		cstate->off_linkpl.constant_part = 0;	/* packet begins with LLC header */
1403 		cstate->off_nl = 8;		/* 802.2+SNAP */
1404 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1405 		break;
1406 
1407 	case DLT_SUNATM:
1408 		/*
1409 		 * Full Frontal ATM; you get AALn PDUs with an ATM
1410 		 * pseudo-header.
1411 		 */
1412 		cstate->is_atm = 1;
1413 		cstate->off_vpi = SUNATM_VPI_POS;
1414 		cstate->off_vci = SUNATM_VCI_POS;
1415 		cstate->off_proto = PROTO_POS;
1416 		cstate->off_payload = SUNATM_PKT_BEGIN_POS;
1417 		cstate->off_linktype.constant_part = cstate->off_payload;
1418 		cstate->off_linkpl.constant_part = cstate->off_payload;	/* if LLC-encapsulated */
1419 		cstate->off_nl = 8;		/* 802.2+SNAP */
1420 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1421 		break;
1422 
1423 	case DLT_RAW:
1424 	case DLT_IPV4:
1425 	case DLT_IPV6:
1426 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1427 		cstate->off_linkpl.constant_part = 0;
1428 		cstate->off_nl = 0;
1429 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1430 		break;
1431 
1432 	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket v1 */
1433 		cstate->off_linktype.constant_part = 14;
1434 		cstate->off_linkpl.constant_part = 16;
1435 		cstate->off_nl = 0;
1436 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1437 		break;
1438 
1439 	case DLT_LINUX_SLL2:	/* fake header for Linux cooked socket v2 */
1440 		cstate->off_linktype.constant_part = 0;
1441 		cstate->off_linkpl.constant_part = 20;
1442 		cstate->off_nl = 0;
1443 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1444 		break;
1445 
1446 	case DLT_LTALK:
1447 		/*
1448 		 * LocalTalk does have a 1-byte type field in the LLAP header,
1449 		 * but really it just indicates whether there is a "short" or
1450 		 * "long" DDP packet following.
1451 		 */
1452 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1453 		cstate->off_linkpl.constant_part = 0;
1454 		cstate->off_nl = 0;
1455 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1456 		break;
1457 
1458 	case DLT_IP_OVER_FC:
1459 		/*
1460 		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1461 		 * link-level type field.  We set "off_linktype" to the
1462 		 * offset of the LLC header.
1463 		 *
1464 		 * To check for Ethernet types, we assume that SSAP = SNAP
1465 		 * is being used and pick out the encapsulated Ethernet type.
1466 		 * XXX - should we generate code to check for SNAP? RFC
1467 		 * 2625 says SNAP should be used.
1468 		 */
1469 		cstate->off_linktype.constant_part = 16;
1470 		cstate->off_linkpl.constant_part = 16;
1471 		cstate->off_nl = 8;		/* 802.2+SNAP */
1472 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1473 		break;
1474 
1475 	case DLT_FRELAY:
1476 		/*
1477 		 * XXX - we should set this to handle SNAP-encapsulated
1478 		 * frames (NLPID of 0x80).
1479 		 */
1480 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1481 		cstate->off_linkpl.constant_part = 0;
1482 		cstate->off_nl = 0;
1483 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1484 		break;
1485 
1486                 /*
1487                  * the only BPF-interesting FRF.16 frames are non-control frames;
1488                  * Frame Relay has a variable length link-layer
1489                  * so lets start with offset 4 for now and increments later on (FIXME);
1490                  */
1491 	case DLT_MFR:
1492 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1493 		cstate->off_linkpl.constant_part = 0;
1494 		cstate->off_nl = 4;
1495 		cstate->off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1496 		break;
1497 
1498 	case DLT_APPLE_IP_OVER_IEEE1394:
1499 		cstate->off_linktype.constant_part = 16;
1500 		cstate->off_linkpl.constant_part = 18;
1501 		cstate->off_nl = 0;
1502 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1503 		break;
1504 
1505 	case DLT_SYMANTEC_FIREWALL:
1506 		cstate->off_linktype.constant_part = 6;
1507 		cstate->off_linkpl.constant_part = 44;
1508 		cstate->off_nl = 0;		/* Ethernet II */
1509 		cstate->off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */
1510 		break;
1511 
1512 #ifdef HAVE_NET_PFVAR_H
1513 	case DLT_PFLOG:
1514 		cstate->off_linktype.constant_part = 0;
1515 		cstate->off_linkpl.constant_part = PFLOG_HDRLEN;
1516 		cstate->off_nl = 0;
1517 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1518 		break;
1519 #endif
1520 
1521         case DLT_JUNIPER_MFR:
1522         case DLT_JUNIPER_MLFR:
1523         case DLT_JUNIPER_MLPPP:
1524         case DLT_JUNIPER_PPP:
1525         case DLT_JUNIPER_CHDLC:
1526         case DLT_JUNIPER_FRELAY:
1527 		cstate->off_linktype.constant_part = 4;
1528 		cstate->off_linkpl.constant_part = 4;
1529 		cstate->off_nl = 0;
1530 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1531                 break;
1532 
1533 	case DLT_JUNIPER_ATM1:
1534 		cstate->off_linktype.constant_part = 4;		/* in reality variable between 4-8 */
1535 		cstate->off_linkpl.constant_part = 4;	/* in reality variable between 4-8 */
1536 		cstate->off_nl = 0;
1537 		cstate->off_nl_nosnap = 10;
1538 		break;
1539 
1540 	case DLT_JUNIPER_ATM2:
1541 		cstate->off_linktype.constant_part = 8;		/* in reality variable between 8-12 */
1542 		cstate->off_linkpl.constant_part = 8;	/* in reality variable between 8-12 */
1543 		cstate->off_nl = 0;
1544 		cstate->off_nl_nosnap = 10;
1545 		break;
1546 
1547 		/* frames captured on a Juniper PPPoE service PIC
1548 		 * contain raw ethernet frames */
1549 	case DLT_JUNIPER_PPPOE:
1550         case DLT_JUNIPER_ETHER:
1551 		cstate->off_linkpl.constant_part = 14;
1552 		cstate->off_linktype.constant_part = 16;
1553 		cstate->off_nl = 18;		/* Ethernet II */
1554 		cstate->off_nl_nosnap = 21;	/* 802.3+802.2 */
1555 		break;
1556 
1557 	case DLT_JUNIPER_PPPOE_ATM:
1558 		cstate->off_linktype.constant_part = 4;
1559 		cstate->off_linkpl.constant_part = 6;
1560 		cstate->off_nl = 0;
1561 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1562 		break;
1563 
1564 	case DLT_JUNIPER_GGSN:
1565 		cstate->off_linktype.constant_part = 6;
1566 		cstate->off_linkpl.constant_part = 12;
1567 		cstate->off_nl = 0;
1568 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1569 		break;
1570 
1571 	case DLT_JUNIPER_ES:
1572 		cstate->off_linktype.constant_part = 6;
1573 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;	/* not really a network layer but raw IP addresses */
1574 		cstate->off_nl = OFFSET_NOT_SET;	/* not really a network layer but raw IP addresses */
1575 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1576 		break;
1577 
1578 	case DLT_JUNIPER_MONITOR:
1579 		cstate->off_linktype.constant_part = 12;
1580 		cstate->off_linkpl.constant_part = 12;
1581 		cstate->off_nl = 0;			/* raw IP/IP6 header */
1582 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1583 		break;
1584 
1585 	case DLT_BACNET_MS_TP:
1586 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1587 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1588 		cstate->off_nl = OFFSET_NOT_SET;
1589 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1590 		break;
1591 
1592 	case DLT_JUNIPER_SERVICES:
1593 		cstate->off_linktype.constant_part = 12;
1594 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;	/* L3 proto location dep. on cookie type */
1595 		cstate->off_nl = OFFSET_NOT_SET;	/* L3 proto location dep. on cookie type */
1596 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1597 		break;
1598 
1599 	case DLT_JUNIPER_VP:
1600 		cstate->off_linktype.constant_part = 18;
1601 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1602 		cstate->off_nl = OFFSET_NOT_SET;
1603 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1604 		break;
1605 
1606 	case DLT_JUNIPER_ST:
1607 		cstate->off_linktype.constant_part = 18;
1608 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1609 		cstate->off_nl = OFFSET_NOT_SET;
1610 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1611 		break;
1612 
1613 	case DLT_JUNIPER_ISM:
1614 		cstate->off_linktype.constant_part = 8;
1615 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1616 		cstate->off_nl = OFFSET_NOT_SET;
1617 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1618 		break;
1619 
1620 	case DLT_JUNIPER_VS:
1621 	case DLT_JUNIPER_SRX_E2E:
1622 	case DLT_JUNIPER_FIBRECHANNEL:
1623 	case DLT_JUNIPER_ATM_CEMIC:
1624 		cstate->off_linktype.constant_part = 8;
1625 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1626 		cstate->off_nl = OFFSET_NOT_SET;
1627 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1628 		break;
1629 
1630 	case DLT_MTP2:
1631 		cstate->off_li = 2;
1632 		cstate->off_li_hsl = 4;
1633 		cstate->off_sio = 3;
1634 		cstate->off_opc = 4;
1635 		cstate->off_dpc = 4;
1636 		cstate->off_sls = 7;
1637 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1638 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1639 		cstate->off_nl = OFFSET_NOT_SET;
1640 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1641 		break;
1642 
1643 	case DLT_MTP2_WITH_PHDR:
1644 		cstate->off_li = 6;
1645 		cstate->off_li_hsl = 8;
1646 		cstate->off_sio = 7;
1647 		cstate->off_opc = 8;
1648 		cstate->off_dpc = 8;
1649 		cstate->off_sls = 11;
1650 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1651 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1652 		cstate->off_nl = OFFSET_NOT_SET;
1653 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1654 		break;
1655 
1656 	case DLT_ERF:
1657 		cstate->off_li = 22;
1658 		cstate->off_li_hsl = 24;
1659 		cstate->off_sio = 23;
1660 		cstate->off_opc = 24;
1661 		cstate->off_dpc = 24;
1662 		cstate->off_sls = 27;
1663 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1664 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1665 		cstate->off_nl = OFFSET_NOT_SET;
1666 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1667 		break;
1668 
1669 	case DLT_PFSYNC:
1670 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1671 		cstate->off_linkpl.constant_part = 4;
1672 		cstate->off_nl = 0;
1673 		cstate->off_nl_nosnap = 0;
1674 		break;
1675 
1676 	case DLT_AX25_KISS:
1677 		/*
1678 		 * Currently, only raw "link[N:M]" filtering is supported.
1679 		 */
1680 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;	/* variable, min 15, max 71 steps of 7 */
1681 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1682 		cstate->off_nl = OFFSET_NOT_SET;	/* variable, min 16, max 71 steps of 7 */
1683 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1684 		break;
1685 
1686 	case DLT_IPNET:
1687 		cstate->off_linktype.constant_part = 1;
1688 		cstate->off_linkpl.constant_part = 24;	/* ipnet header length */
1689 		cstate->off_nl = 0;
1690 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1691 		break;
1692 
1693 	case DLT_NETANALYZER:
1694 		cstate->off_linkhdr.constant_part = 4;	/* Ethernet header is past 4-byte pseudo-header */
1695 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1696 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* pseudo-header+Ethernet header length */
1697 		cstate->off_nl = 0;		/* Ethernet II */
1698 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1699 		break;
1700 
1701 	case DLT_NETANALYZER_TRANSPARENT:
1702 		cstate->off_linkhdr.constant_part = 12;	/* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1703 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1704 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* pseudo-header+preamble+SFD+Ethernet header length */
1705 		cstate->off_nl = 0;		/* Ethernet II */
1706 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1707 		break;
1708 
1709 	default:
1710 		/*
1711 		 * For values in the range in which we've assigned new
1712 		 * DLT_ values, only raw "link[N:M]" filtering is supported.
1713 		 */
1714 		if (cstate->linktype >= DLT_MATCHING_MIN &&
1715 		    cstate->linktype <= DLT_MATCHING_MAX) {
1716 			cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1717 			cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1718 			cstate->off_nl = OFFSET_NOT_SET;
1719 			cstate->off_nl_nosnap = OFFSET_NOT_SET;
1720 		} else {
1721 			bpf_set_error(cstate, "unknown data link type %d", cstate->linktype);
1722 			return (-1);
1723 		}
1724 		break;
1725 	}
1726 
1727 	cstate->off_outermostlinkhdr = cstate->off_prevlinkhdr = cstate->off_linkhdr;
1728 	return (0);
1729 }
1730 
1731 /*
1732  * Load a value relative to the specified absolute offset.
1733  */
1734 static struct slist *
gen_load_absoffsetrel(compiler_state_t * cstate,bpf_abs_offset * abs_offset,u_int offset,u_int size)1735 gen_load_absoffsetrel(compiler_state_t *cstate, bpf_abs_offset *abs_offset,
1736     u_int offset, u_int size)
1737 {
1738 	struct slist *s, *s2;
1739 
1740 	s = gen_abs_offset_varpart(cstate, abs_offset);
1741 
1742 	/*
1743 	 * If "s" is non-null, it has code to arrange that the X register
1744 	 * contains the variable part of the absolute offset, so we
1745 	 * generate a load relative to that, with an offset of
1746 	 * abs_offset->constant_part + offset.
1747 	 *
1748 	 * Otherwise, we can do an absolute load with an offset of
1749 	 * abs_offset->constant_part + offset.
1750 	 */
1751 	if (s != NULL) {
1752 		/*
1753 		 * "s" points to a list of statements that puts the
1754 		 * variable part of the absolute offset into the X register.
1755 		 * Do an indirect load, to use the X register as an offset.
1756 		 */
1757 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1758 		s2->s.k = abs_offset->constant_part + offset;
1759 		sappend(s, s2);
1760 	} else {
1761 		/*
1762 		 * There is no variable part of the absolute offset, so
1763 		 * just do an absolute load.
1764 		 */
1765 		s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1766 		s->s.k = abs_offset->constant_part + offset;
1767 	}
1768 	return s;
1769 }
1770 
1771 /*
1772  * Load a value relative to the beginning of the specified header.
1773  */
1774 static struct slist *
gen_load_a(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size)1775 gen_load_a(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1776     u_int size)
1777 {
1778 	struct slist *s, *s2;
1779 
1780 	/*
1781 	 * Squelch warnings from compilers that *don't* assume that
1782 	 * offrel always has a valid enum value and therefore don't
1783 	 * assume that we'll always go through one of the case arms.
1784 	 *
1785 	 * If we have a default case, compilers that *do* assume that
1786 	 * will then complain about the default case code being
1787 	 * unreachable.
1788 	 *
1789 	 * Damned if you do, damned if you don't.
1790 	 */
1791 	s = NULL;
1792 
1793 	switch (offrel) {
1794 
1795 	case OR_PACKET:
1796                 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1797                 s->s.k = offset;
1798 		break;
1799 
1800 	case OR_LINKHDR:
1801 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkhdr, offset, size);
1802 		break;
1803 
1804 	case OR_PREVLINKHDR:
1805 		s = gen_load_absoffsetrel(cstate, &cstate->off_prevlinkhdr, offset, size);
1806 		break;
1807 
1808 	case OR_LLC:
1809 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, offset, size);
1810 		break;
1811 
1812 	case OR_PREVMPLSHDR:
1813 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl - 4 + offset, size);
1814 		break;
1815 
1816 	case OR_LINKPL:
1817 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + offset, size);
1818 		break;
1819 
1820 	case OR_LINKPL_NOSNAP:
1821 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl_nosnap + offset, size);
1822 		break;
1823 
1824 	case OR_LINKTYPE:
1825 		s = gen_load_absoffsetrel(cstate, &cstate->off_linktype, offset, size);
1826 		break;
1827 
1828 	case OR_TRAN_IPV4:
1829 		/*
1830 		 * Load the X register with the length of the IPv4 header
1831 		 * (plus the offset of the link-layer header, if it's
1832 		 * preceded by a variable-length header such as a radio
1833 		 * header), in bytes.
1834 		 */
1835 		s = gen_loadx_iphdrlen(cstate);
1836 
1837 		/*
1838 		 * Load the item at {offset of the link-layer payload} +
1839 		 * {offset, relative to the start of the link-layer
1840 		 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1841 		 * {specified offset}.
1842 		 *
1843 		 * If the offset of the link-layer payload is variable,
1844 		 * the variable part of that offset is included in the
1845 		 * value in the X register, and we include the constant
1846 		 * part in the offset of the load.
1847 		 */
1848 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1849 		s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + offset;
1850 		sappend(s, s2);
1851 		break;
1852 
1853 	case OR_TRAN_IPV6:
1854 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + 40 + offset, size);
1855 		break;
1856 	}
1857 	return s;
1858 }
1859 
1860 /*
1861  * Generate code to load into the X register the sum of the length of
1862  * the IPv4 header and the variable part of the offset of the link-layer
1863  * payload.
1864  */
1865 static struct slist *
gen_loadx_iphdrlen(compiler_state_t * cstate)1866 gen_loadx_iphdrlen(compiler_state_t *cstate)
1867 {
1868 	struct slist *s, *s2;
1869 
1870 	s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
1871 	if (s != NULL) {
1872 		/*
1873 		 * The offset of the link-layer payload has a variable
1874 		 * part.  "s" points to a list of statements that put
1875 		 * the variable part of that offset into the X register.
1876 		 *
1877 		 * The 4*([k]&0xf) addressing mode can't be used, as we
1878 		 * don't have a constant offset, so we have to load the
1879 		 * value in question into the A register and add to it
1880 		 * the value from the X register.
1881 		 */
1882 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
1883 		s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1884 		sappend(s, s2);
1885 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1886 		s2->s.k = 0xf;
1887 		sappend(s, s2);
1888 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
1889 		s2->s.k = 2;
1890 		sappend(s, s2);
1891 
1892 		/*
1893 		 * The A register now contains the length of the IP header.
1894 		 * We need to add to it the variable part of the offset of
1895 		 * the link-layer payload, which is still in the X
1896 		 * register, and move the result into the X register.
1897 		 */
1898 		sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
1899 		sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
1900 	} else {
1901 		/*
1902 		 * The offset of the link-layer payload is a constant,
1903 		 * so no code was generated to load the (non-existent)
1904 		 * variable part of that offset.
1905 		 *
1906 		 * This means we can use the 4*([k]&0xf) addressing
1907 		 * mode.  Load the length of the IPv4 header, which
1908 		 * is at an offset of cstate->off_nl from the beginning of
1909 		 * the link-layer payload, and thus at an offset of
1910 		 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
1911 		 * of the raw packet data, using that addressing mode.
1912 		 */
1913 		s = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
1914 		s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1915 	}
1916 	return s;
1917 }
1918 
1919 
1920 static struct block *
gen_uncond(compiler_state_t * cstate,int rsense)1921 gen_uncond(compiler_state_t *cstate, int rsense)
1922 {
1923 	struct block *b;
1924 	struct slist *s;
1925 
1926 	s = new_stmt(cstate, BPF_LD|BPF_IMM);
1927 	s->s.k = !rsense;
1928 	b = new_block(cstate, JMP(BPF_JEQ));
1929 	b->stmts = s;
1930 
1931 	return b;
1932 }
1933 
1934 static inline struct block *
gen_true(compiler_state_t * cstate)1935 gen_true(compiler_state_t *cstate)
1936 {
1937 	return gen_uncond(cstate, 1);
1938 }
1939 
1940 static inline struct block *
gen_false(compiler_state_t * cstate)1941 gen_false(compiler_state_t *cstate)
1942 {
1943 	return gen_uncond(cstate, 0);
1944 }
1945 
1946 /*
1947  * Byte-swap a 32-bit number.
1948  * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1949  * big-endian platforms.)
1950  */
1951 #define	SWAPLONG(y) \
1952 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1953 
1954 /*
1955  * Generate code to match a particular packet type.
1956  *
1957  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1958  * value, if <= ETHERMTU.  We use that to determine whether to
1959  * match the type/length field or to check the type/length field for
1960  * a value <= ETHERMTU to see whether it's a type field and then do
1961  * the appropriate test.
1962  */
1963 static struct block *
gen_ether_linktype(compiler_state_t * cstate,int proto)1964 gen_ether_linktype(compiler_state_t *cstate, int proto)
1965 {
1966 	struct block *b0, *b1;
1967 
1968 	switch (proto) {
1969 
1970 	case LLCSAP_ISONS:
1971 	case LLCSAP_IP:
1972 	case LLCSAP_NETBEUI:
1973 		/*
1974 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1975 		 * so we check the DSAP and SSAP.
1976 		 *
1977 		 * LLCSAP_IP checks for IP-over-802.2, rather
1978 		 * than IP-over-Ethernet or IP-over-SNAP.
1979 		 *
1980 		 * XXX - should we check both the DSAP and the
1981 		 * SSAP, like this, or should we check just the
1982 		 * DSAP, as we do for other types <= ETHERMTU
1983 		 * (i.e., other SAP values)?
1984 		 */
1985 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1986 		gen_not(b0);
1987 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)
1988 			     ((proto << 8) | proto));
1989 		gen_and(b0, b1);
1990 		return b1;
1991 
1992 	case LLCSAP_IPX:
1993 		/*
1994 		 * Check for;
1995 		 *
1996 		 *	Ethernet_II frames, which are Ethernet
1997 		 *	frames with a frame type of ETHERTYPE_IPX;
1998 		 *
1999 		 *	Ethernet_802.3 frames, which are 802.3
2000 		 *	frames (i.e., the type/length field is
2001 		 *	a length field, <= ETHERMTU, rather than
2002 		 *	a type field) with the first two bytes
2003 		 *	after the Ethernet/802.3 header being
2004 		 *	0xFFFF;
2005 		 *
2006 		 *	Ethernet_802.2 frames, which are 802.3
2007 		 *	frames with an 802.2 LLC header and
2008 		 *	with the IPX LSAP as the DSAP in the LLC
2009 		 *	header;
2010 		 *
2011 		 *	Ethernet_SNAP frames, which are 802.3
2012 		 *	frames with an LLC header and a SNAP
2013 		 *	header and with an OUI of 0x000000
2014 		 *	(encapsulated Ethernet) and a protocol
2015 		 *	ID of ETHERTYPE_IPX in the SNAP header.
2016 		 *
2017 		 * XXX - should we generate the same code both
2018 		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
2019 		 */
2020 
2021 		/*
2022 		 * This generates code to check both for the
2023 		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
2024 		 */
2025 		b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
2026 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF);
2027 		gen_or(b0, b1);
2028 
2029 		/*
2030 		 * Now we add code to check for SNAP frames with
2031 		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
2032 		 */
2033 		b0 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2034 		gen_or(b0, b1);
2035 
2036 		/*
2037 		 * Now we generate code to check for 802.3
2038 		 * frames in general.
2039 		 */
2040 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2041 		gen_not(b0);
2042 
2043 		/*
2044 		 * Now add the check for 802.3 frames before the
2045 		 * check for Ethernet_802.2 and Ethernet_802.3,
2046 		 * as those checks should only be done on 802.3
2047 		 * frames, not on Ethernet frames.
2048 		 */
2049 		gen_and(b0, b1);
2050 
2051 		/*
2052 		 * Now add the check for Ethernet_II frames, and
2053 		 * do that before checking for the other frame
2054 		 * types.
2055 		 */
2056 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX);
2057 		gen_or(b0, b1);
2058 		return b1;
2059 
2060 	case ETHERTYPE_ATALK:
2061 	case ETHERTYPE_AARP:
2062 		/*
2063 		 * EtherTalk (AppleTalk protocols on Ethernet link
2064 		 * layer) may use 802.2 encapsulation.
2065 		 */
2066 
2067 		/*
2068 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2069 		 * we check for an Ethernet type field less than
2070 		 * 1500, which means it's an 802.3 length field.
2071 		 */
2072 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2073 		gen_not(b0);
2074 
2075 		/*
2076 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2077 		 * SNAP packets with an organization code of
2078 		 * 0x080007 (Apple, for Appletalk) and a protocol
2079 		 * type of ETHERTYPE_ATALK (Appletalk).
2080 		 *
2081 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2082 		 * SNAP packets with an organization code of
2083 		 * 0x000000 (encapsulated Ethernet) and a protocol
2084 		 * type of ETHERTYPE_AARP (Appletalk ARP).
2085 		 */
2086 		if (proto == ETHERTYPE_ATALK)
2087 			b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2088 		else	/* proto == ETHERTYPE_AARP */
2089 			b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2090 		gen_and(b0, b1);
2091 
2092 		/*
2093 		 * Check for Ethernet encapsulation (Ethertalk
2094 		 * phase 1?); we just check for the Ethernet
2095 		 * protocol type.
2096 		 */
2097 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
2098 
2099 		gen_or(b0, b1);
2100 		return b1;
2101 
2102 	default:
2103 		if (proto <= ETHERMTU) {
2104 			/*
2105 			 * This is an LLC SAP value, so the frames
2106 			 * that match would be 802.2 frames.
2107 			 * Check that the frame is an 802.2 frame
2108 			 * (i.e., that the length/type field is
2109 			 * a length field, <= ETHERMTU) and
2110 			 * then check the DSAP.
2111 			 */
2112 			b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2113 			gen_not(b0);
2114 			b1 = gen_cmp(cstate, OR_LINKTYPE, 2, BPF_B, (bpf_int32)proto);
2115 			gen_and(b0, b1);
2116 			return b1;
2117 		} else {
2118 			/*
2119 			 * This is an Ethernet type, so compare
2120 			 * the length/type field with it (if
2121 			 * the frame is an 802.2 frame, the length
2122 			 * field will be <= ETHERMTU, and, as
2123 			 * "proto" is > ETHERMTU, this test
2124 			 * will fail and the frame won't match,
2125 			 * which is what we want).
2126 			 */
2127 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
2128 			    (bpf_int32)proto);
2129 		}
2130 	}
2131 }
2132 
2133 static struct block *
gen_loopback_linktype(compiler_state_t * cstate,int proto)2134 gen_loopback_linktype(compiler_state_t *cstate, int proto)
2135 {
2136 	/*
2137 	 * For DLT_NULL, the link-layer header is a 32-bit word
2138 	 * containing an AF_ value in *host* byte order, and for
2139 	 * DLT_ENC, the link-layer header begins with a 32-bit
2140 	 * word containing an AF_ value in host byte order.
2141 	 *
2142 	 * In addition, if we're reading a saved capture file,
2143 	 * the host byte order in the capture may not be the
2144 	 * same as the host byte order on this machine.
2145 	 *
2146 	 * For DLT_LOOP, the link-layer header is a 32-bit
2147 	 * word containing an AF_ value in *network* byte order.
2148 	 */
2149 	if (cstate->linktype == DLT_NULL || cstate->linktype == DLT_ENC) {
2150 		/*
2151 		 * The AF_ value is in host byte order, but the BPF
2152 		 * interpreter will convert it to network byte order.
2153 		 *
2154 		 * If this is a save file, and it's from a machine
2155 		 * with the opposite byte order to ours, we byte-swap
2156 		 * the AF_ value.
2157 		 *
2158 		 * Then we run it through "htonl()", and generate
2159 		 * code to compare against the result.
2160 		 */
2161 		if (cstate->bpf_pcap->rfile != NULL && cstate->bpf_pcap->swapped)
2162 			proto = SWAPLONG(proto);
2163 		proto = htonl(proto);
2164 	}
2165 	return (gen_cmp(cstate, OR_LINKHDR, 0, BPF_W, (bpf_int32)proto));
2166 }
2167 
2168 /*
2169  * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2170  * or IPv6 then we have an error.
2171  */
2172 static struct block *
gen_ipnet_linktype(compiler_state_t * cstate,int proto)2173 gen_ipnet_linktype(compiler_state_t *cstate, int proto)
2174 {
2175 	switch (proto) {
2176 
2177 	case ETHERTYPE_IP:
2178 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, (bpf_int32)IPH_AF_INET);
2179 		/*NOTREACHED*/
2180 
2181 	case ETHERTYPE_IPV6:
2182 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
2183 		    (bpf_int32)IPH_AF_INET6);
2184 		/*NOTREACHED*/
2185 
2186 	default:
2187 		break;
2188 	}
2189 
2190 	return gen_false(cstate);
2191 }
2192 
2193 /*
2194  * Generate code to match a particular packet type.
2195  *
2196  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2197  * value, if <= ETHERMTU.  We use that to determine whether to
2198  * match the type field or to check the type field for the special
2199  * LINUX_SLL_P_802_2 value and then do the appropriate test.
2200  */
2201 static struct block *
gen_linux_sll_linktype(compiler_state_t * cstate,int proto)2202 gen_linux_sll_linktype(compiler_state_t *cstate, int proto)
2203 {
2204 	struct block *b0, *b1;
2205 
2206 	switch (proto) {
2207 
2208 	case LLCSAP_ISONS:
2209 	case LLCSAP_IP:
2210 	case LLCSAP_NETBEUI:
2211 		/*
2212 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2213 		 * so we check the DSAP and SSAP.
2214 		 *
2215 		 * LLCSAP_IP checks for IP-over-802.2, rather
2216 		 * than IP-over-Ethernet or IP-over-SNAP.
2217 		 *
2218 		 * XXX - should we check both the DSAP and the
2219 		 * SSAP, like this, or should we check just the
2220 		 * DSAP, as we do for other types <= ETHERMTU
2221 		 * (i.e., other SAP values)?
2222 		 */
2223 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2224 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)
2225 			     ((proto << 8) | proto));
2226 		gen_and(b0, b1);
2227 		return b1;
2228 
2229 	case LLCSAP_IPX:
2230 		/*
2231 		 *	Ethernet_II frames, which are Ethernet
2232 		 *	frames with a frame type of ETHERTYPE_IPX;
2233 		 *
2234 		 *	Ethernet_802.3 frames, which have a frame
2235 		 *	type of LINUX_SLL_P_802_3;
2236 		 *
2237 		 *	Ethernet_802.2 frames, which are 802.3
2238 		 *	frames with an 802.2 LLC header (i.e, have
2239 		 *	a frame type of LINUX_SLL_P_802_2) and
2240 		 *	with the IPX LSAP as the DSAP in the LLC
2241 		 *	header;
2242 		 *
2243 		 *	Ethernet_SNAP frames, which are 802.3
2244 		 *	frames with an LLC header and a SNAP
2245 		 *	header and with an OUI of 0x000000
2246 		 *	(encapsulated Ethernet) and a protocol
2247 		 *	ID of ETHERTYPE_IPX in the SNAP header.
2248 		 *
2249 		 * First, do the checks on LINUX_SLL_P_802_2
2250 		 * frames; generate the check for either
2251 		 * Ethernet_802.2 or Ethernet_SNAP frames, and
2252 		 * then put a check for LINUX_SLL_P_802_2 frames
2253 		 * before it.
2254 		 */
2255 		b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
2256 		b1 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2257 		gen_or(b0, b1);
2258 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2259 		gen_and(b0, b1);
2260 
2261 		/*
2262 		 * Now check for 802.3 frames and OR that with
2263 		 * the previous test.
2264 		 */
2265 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3);
2266 		gen_or(b0, b1);
2267 
2268 		/*
2269 		 * Now add the check for Ethernet_II frames, and
2270 		 * do that before checking for the other frame
2271 		 * types.
2272 		 */
2273 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX);
2274 		gen_or(b0, b1);
2275 		return b1;
2276 
2277 	case ETHERTYPE_ATALK:
2278 	case ETHERTYPE_AARP:
2279 		/*
2280 		 * EtherTalk (AppleTalk protocols on Ethernet link
2281 		 * layer) may use 802.2 encapsulation.
2282 		 */
2283 
2284 		/*
2285 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2286 		 * we check for the 802.2 protocol type in the
2287 		 * "Ethernet type" field.
2288 		 */
2289 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2290 
2291 		/*
2292 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2293 		 * SNAP packets with an organization code of
2294 		 * 0x080007 (Apple, for Appletalk) and a protocol
2295 		 * type of ETHERTYPE_ATALK (Appletalk).
2296 		 *
2297 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2298 		 * SNAP packets with an organization code of
2299 		 * 0x000000 (encapsulated Ethernet) and a protocol
2300 		 * type of ETHERTYPE_AARP (Appletalk ARP).
2301 		 */
2302 		if (proto == ETHERTYPE_ATALK)
2303 			b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2304 		else	/* proto == ETHERTYPE_AARP */
2305 			b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2306 		gen_and(b0, b1);
2307 
2308 		/*
2309 		 * Check for Ethernet encapsulation (Ethertalk
2310 		 * phase 1?); we just check for the Ethernet
2311 		 * protocol type.
2312 		 */
2313 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
2314 
2315 		gen_or(b0, b1);
2316 		return b1;
2317 
2318 	default:
2319 		if (proto <= ETHERMTU) {
2320 			/*
2321 			 * This is an LLC SAP value, so the frames
2322 			 * that match would be 802.2 frames.
2323 			 * Check for the 802.2 protocol type
2324 			 * in the "Ethernet type" field, and
2325 			 * then check the DSAP.
2326 			 */
2327 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2328 			b1 = gen_cmp(cstate, OR_LINKHDR, cstate->off_linkpl.constant_part, BPF_B,
2329 			     (bpf_int32)proto);
2330 			gen_and(b0, b1);
2331 			return b1;
2332 		} else {
2333 			/*
2334 			 * This is an Ethernet type, so compare
2335 			 * the length/type field with it (if
2336 			 * the frame is an 802.2 frame, the length
2337 			 * field will be <= ETHERMTU, and, as
2338 			 * "proto" is > ETHERMTU, this test
2339 			 * will fail and the frame won't match,
2340 			 * which is what we want).
2341 			 */
2342 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
2343 		}
2344 	}
2345 }
2346 
2347 static struct slist *
gen_load_prism_llprefixlen(compiler_state_t * cstate)2348 gen_load_prism_llprefixlen(compiler_state_t *cstate)
2349 {
2350 	struct slist *s1, *s2;
2351 	struct slist *sjeq_avs_cookie;
2352 	struct slist *sjcommon;
2353 
2354 	/*
2355 	 * This code is not compatible with the optimizer, as
2356 	 * we are generating jmp instructions within a normal
2357 	 * slist of instructions
2358 	 */
2359 	cstate->no_optimize = 1;
2360 
2361 	/*
2362 	 * Generate code to load the length of the radio header into
2363 	 * the register assigned to hold that length, if one has been
2364 	 * assigned.  (If one hasn't been assigned, no code we've
2365 	 * generated uses that prefix, so we don't need to generate any
2366 	 * code to load it.)
2367 	 *
2368 	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2369 	 * or always use the AVS header rather than the Prism header.
2370 	 * We load a 4-byte big-endian value at the beginning of the
2371 	 * raw packet data, and see whether, when masked with 0xFFFFF000,
2372 	 * it's equal to 0x80211000.  If so, that indicates that it's
2373 	 * an AVS header (the masked-out bits are the version number).
2374 	 * Otherwise, it's a Prism header.
2375 	 *
2376 	 * XXX - the Prism header is also, in theory, variable-length,
2377 	 * but no known software generates headers that aren't 144
2378 	 * bytes long.
2379 	 */
2380 	if (cstate->off_linkhdr.reg != -1) {
2381 		/*
2382 		 * Load the cookie.
2383 		 */
2384 		s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2385 		s1->s.k = 0;
2386 
2387 		/*
2388 		 * AND it with 0xFFFFF000.
2389 		 */
2390 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2391 		s2->s.k = 0xFFFFF000;
2392 		sappend(s1, s2);
2393 
2394 		/*
2395 		 * Compare with 0x80211000.
2396 		 */
2397 		sjeq_avs_cookie = new_stmt(cstate, JMP(BPF_JEQ));
2398 		sjeq_avs_cookie->s.k = 0x80211000;
2399 		sappend(s1, sjeq_avs_cookie);
2400 
2401 		/*
2402 		 * If it's AVS:
2403 		 *
2404 		 * The 4 bytes at an offset of 4 from the beginning of
2405 		 * the AVS header are the length of the AVS header.
2406 		 * That field is big-endian.
2407 		 */
2408 		s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2409 		s2->s.k = 4;
2410 		sappend(s1, s2);
2411 		sjeq_avs_cookie->s.jt = s2;
2412 
2413 		/*
2414 		 * Now jump to the code to allocate a register
2415 		 * into which to save the header length and
2416 		 * store the length there.  (The "jump always"
2417 		 * instruction needs to have the k field set;
2418 		 * it's added to the PC, so, as we're jumping
2419 		 * over a single instruction, it should be 1.)
2420 		 */
2421 		sjcommon = new_stmt(cstate, JMP(BPF_JA));
2422 		sjcommon->s.k = 1;
2423 		sappend(s1, sjcommon);
2424 
2425 		/*
2426 		 * Now for the code that handles the Prism header.
2427 		 * Just load the length of the Prism header (144)
2428 		 * into the A register.  Have the test for an AVS
2429 		 * header branch here if we don't have an AVS header.
2430 		 */
2431 		s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2432 		s2->s.k = 144;
2433 		sappend(s1, s2);
2434 		sjeq_avs_cookie->s.jf = s2;
2435 
2436 		/*
2437 		 * Now allocate a register to hold that value and store
2438 		 * it.  The code for the AVS header will jump here after
2439 		 * loading the length of the AVS header.
2440 		 */
2441 		s2 = new_stmt(cstate, BPF_ST);
2442 		s2->s.k = cstate->off_linkhdr.reg;
2443 		sappend(s1, s2);
2444 		sjcommon->s.jf = s2;
2445 
2446 		/*
2447 		 * Now move it into the X register.
2448 		 */
2449 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2450 		sappend(s1, s2);
2451 
2452 		return (s1);
2453 	} else
2454 		return (NULL);
2455 }
2456 
2457 static struct slist *
gen_load_avs_llprefixlen(compiler_state_t * cstate)2458 gen_load_avs_llprefixlen(compiler_state_t *cstate)
2459 {
2460 	struct slist *s1, *s2;
2461 
2462 	/*
2463 	 * Generate code to load the length of the AVS header into
2464 	 * the register assigned to hold that length, if one has been
2465 	 * assigned.  (If one hasn't been assigned, no code we've
2466 	 * generated uses that prefix, so we don't need to generate any
2467 	 * code to load it.)
2468 	 */
2469 	if (cstate->off_linkhdr.reg != -1) {
2470 		/*
2471 		 * The 4 bytes at an offset of 4 from the beginning of
2472 		 * the AVS header are the length of the AVS header.
2473 		 * That field is big-endian.
2474 		 */
2475 		s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2476 		s1->s.k = 4;
2477 
2478 		/*
2479 		 * Now allocate a register to hold that value and store
2480 		 * it.
2481 		 */
2482 		s2 = new_stmt(cstate, BPF_ST);
2483 		s2->s.k = cstate->off_linkhdr.reg;
2484 		sappend(s1, s2);
2485 
2486 		/*
2487 		 * Now move it into the X register.
2488 		 */
2489 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2490 		sappend(s1, s2);
2491 
2492 		return (s1);
2493 	} else
2494 		return (NULL);
2495 }
2496 
2497 static struct slist *
gen_load_radiotap_llprefixlen(compiler_state_t * cstate)2498 gen_load_radiotap_llprefixlen(compiler_state_t *cstate)
2499 {
2500 	struct slist *s1, *s2;
2501 
2502 	/*
2503 	 * Generate code to load the length of the radiotap header into
2504 	 * the register assigned to hold that length, if one has been
2505 	 * assigned.  (If one hasn't been assigned, no code we've
2506 	 * generated uses that prefix, so we don't need to generate any
2507 	 * code to load it.)
2508 	 */
2509 	if (cstate->off_linkhdr.reg != -1) {
2510 		/*
2511 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2512 		 * of the radiotap header are the length of the radiotap
2513 		 * header; unfortunately, it's little-endian, so we have
2514 		 * to load it a byte at a time and construct the value.
2515 		 */
2516 
2517 		/*
2518 		 * Load the high-order byte, at an offset of 3, shift it
2519 		 * left a byte, and put the result in the X register.
2520 		 */
2521 		s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2522 		s1->s.k = 3;
2523 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2524 		sappend(s1, s2);
2525 		s2->s.k = 8;
2526 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2527 		sappend(s1, s2);
2528 
2529 		/*
2530 		 * Load the next byte, at an offset of 2, and OR the
2531 		 * value from the X register into it.
2532 		 */
2533 		s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2534 		sappend(s1, s2);
2535 		s2->s.k = 2;
2536 		s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2537 		sappend(s1, s2);
2538 
2539 		/*
2540 		 * Now allocate a register to hold that value and store
2541 		 * it.
2542 		 */
2543 		s2 = new_stmt(cstate, BPF_ST);
2544 		s2->s.k = cstate->off_linkhdr.reg;
2545 		sappend(s1, s2);
2546 
2547 		/*
2548 		 * Now move it into the X register.
2549 		 */
2550 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2551 		sappend(s1, s2);
2552 
2553 		return (s1);
2554 	} else
2555 		return (NULL);
2556 }
2557 
2558 /*
2559  * At the moment we treat PPI as normal Radiotap encoded
2560  * packets. The difference is in the function that generates
2561  * the code at the beginning to compute the header length.
2562  * Since this code generator of PPI supports bare 802.11
2563  * encapsulation only (i.e. the encapsulated DLT should be
2564  * DLT_IEEE802_11) we generate code to check for this too;
2565  * that's done in finish_parse().
2566  */
2567 static struct slist *
gen_load_ppi_llprefixlen(compiler_state_t * cstate)2568 gen_load_ppi_llprefixlen(compiler_state_t *cstate)
2569 {
2570 	struct slist *s1, *s2;
2571 
2572 	/*
2573 	 * Generate code to load the length of the radiotap header
2574 	 * into the register assigned to hold that length, if one has
2575 	 * been assigned.
2576 	 */
2577 	if (cstate->off_linkhdr.reg != -1) {
2578 		/*
2579 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2580 		 * of the radiotap header are the length of the radiotap
2581 		 * header; unfortunately, it's little-endian, so we have
2582 		 * to load it a byte at a time and construct the value.
2583 		 */
2584 
2585 		/*
2586 		 * Load the high-order byte, at an offset of 3, shift it
2587 		 * left a byte, and put the result in the X register.
2588 		 */
2589 		s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2590 		s1->s.k = 3;
2591 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2592 		sappend(s1, s2);
2593 		s2->s.k = 8;
2594 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2595 		sappend(s1, s2);
2596 
2597 		/*
2598 		 * Load the next byte, at an offset of 2, and OR the
2599 		 * value from the X register into it.
2600 		 */
2601 		s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2602 		sappend(s1, s2);
2603 		s2->s.k = 2;
2604 		s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2605 		sappend(s1, s2);
2606 
2607 		/*
2608 		 * Now allocate a register to hold that value and store
2609 		 * it.
2610 		 */
2611 		s2 = new_stmt(cstate, BPF_ST);
2612 		s2->s.k = cstate->off_linkhdr.reg;
2613 		sappend(s1, s2);
2614 
2615 		/*
2616 		 * Now move it into the X register.
2617 		 */
2618 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2619 		sappend(s1, s2);
2620 
2621 		return (s1);
2622 	} else
2623 		return (NULL);
2624 }
2625 
2626 /*
2627  * Load a value relative to the beginning of the link-layer header after the 802.11
2628  * header, i.e. LLC_SNAP.
2629  * The link-layer header doesn't necessarily begin at the beginning
2630  * of the packet data; there might be a variable-length prefix containing
2631  * radio information.
2632  */
2633 static struct slist *
gen_load_802_11_header_len(compiler_state_t * cstate,struct slist * s,struct slist * snext)2634 gen_load_802_11_header_len(compiler_state_t *cstate, struct slist *s, struct slist *snext)
2635 {
2636 	struct slist *s2;
2637 	struct slist *sjset_data_frame_1;
2638 	struct slist *sjset_data_frame_2;
2639 	struct slist *sjset_qos;
2640 	struct slist *sjset_radiotap_flags_present;
2641 	struct slist *sjset_radiotap_ext_present;
2642 	struct slist *sjset_radiotap_tsft_present;
2643 	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2644 	struct slist *s_roundup;
2645 
2646 	if (cstate->off_linkpl.reg == -1) {
2647 		/*
2648 		 * No register has been assigned to the offset of
2649 		 * the link-layer payload, which means nobody needs
2650 		 * it; don't bother computing it - just return
2651 		 * what we already have.
2652 		 */
2653 		return (s);
2654 	}
2655 
2656 	/*
2657 	 * This code is not compatible with the optimizer, as
2658 	 * we are generating jmp instructions within a normal
2659 	 * slist of instructions
2660 	 */
2661 	cstate->no_optimize = 1;
2662 
2663 	/*
2664 	 * If "s" is non-null, it has code to arrange that the X register
2665 	 * contains the length of the prefix preceding the link-layer
2666 	 * header.
2667 	 *
2668 	 * Otherwise, the length of the prefix preceding the link-layer
2669 	 * header is "off_outermostlinkhdr.constant_part".
2670 	 */
2671 	if (s == NULL) {
2672 		/*
2673 		 * There is no variable-length header preceding the
2674 		 * link-layer header.
2675 		 *
2676 		 * Load the length of the fixed-length prefix preceding
2677 		 * the link-layer header (if any) into the X register,
2678 		 * and store it in the cstate->off_linkpl.reg register.
2679 		 * That length is off_outermostlinkhdr.constant_part.
2680 		 */
2681 		s = new_stmt(cstate, BPF_LDX|BPF_IMM);
2682 		s->s.k = cstate->off_outermostlinkhdr.constant_part;
2683 	}
2684 
2685 	/*
2686 	 * The X register contains the offset of the beginning of the
2687 	 * link-layer header; add 24, which is the minimum length
2688 	 * of the MAC header for a data frame, to that, and store it
2689 	 * in cstate->off_linkpl.reg, and then load the Frame Control field,
2690 	 * which is at the offset in the X register, with an indexed load.
2691 	 */
2692 	s2 = new_stmt(cstate, BPF_MISC|BPF_TXA);
2693 	sappend(s, s2);
2694 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2695 	s2->s.k = 24;
2696 	sappend(s, s2);
2697 	s2 = new_stmt(cstate, BPF_ST);
2698 	s2->s.k = cstate->off_linkpl.reg;
2699 	sappend(s, s2);
2700 
2701 	s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
2702 	s2->s.k = 0;
2703 	sappend(s, s2);
2704 
2705 	/*
2706 	 * Check the Frame Control field to see if this is a data frame;
2707 	 * a data frame has the 0x08 bit (b3) in that field set and the
2708 	 * 0x04 bit (b2) clear.
2709 	 */
2710 	sjset_data_frame_1 = new_stmt(cstate, JMP(BPF_JSET));
2711 	sjset_data_frame_1->s.k = 0x08;
2712 	sappend(s, sjset_data_frame_1);
2713 
2714 	/*
2715 	 * If b3 is set, test b2, otherwise go to the first statement of
2716 	 * the rest of the program.
2717 	 */
2718 	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(cstate, JMP(BPF_JSET));
2719 	sjset_data_frame_2->s.k = 0x04;
2720 	sappend(s, sjset_data_frame_2);
2721 	sjset_data_frame_1->s.jf = snext;
2722 
2723 	/*
2724 	 * If b2 is not set, this is a data frame; test the QoS bit.
2725 	 * Otherwise, go to the first statement of the rest of the
2726 	 * program.
2727 	 */
2728 	sjset_data_frame_2->s.jt = snext;
2729 	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(cstate, JMP(BPF_JSET));
2730 	sjset_qos->s.k = 0x80;	/* QoS bit */
2731 	sappend(s, sjset_qos);
2732 
2733 	/*
2734 	 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
2735 	 * field.
2736 	 * Otherwise, go to the first statement of the rest of the
2737 	 * program.
2738 	 */
2739 	sjset_qos->s.jt = s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
2740 	s2->s.k = cstate->off_linkpl.reg;
2741 	sappend(s, s2);
2742 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2743 	s2->s.k = 2;
2744 	sappend(s, s2);
2745 	s2 = new_stmt(cstate, BPF_ST);
2746 	s2->s.k = cstate->off_linkpl.reg;
2747 	sappend(s, s2);
2748 
2749 	/*
2750 	 * If we have a radiotap header, look at it to see whether
2751 	 * there's Atheros padding between the MAC-layer header
2752 	 * and the payload.
2753 	 *
2754 	 * Note: all of the fields in the radiotap header are
2755 	 * little-endian, so we byte-swap all of the values
2756 	 * we test against, as they will be loaded as big-endian
2757 	 * values.
2758 	 *
2759 	 * XXX - in the general case, we would have to scan through
2760 	 * *all* the presence bits, if there's more than one word of
2761 	 * presence bits.  That would require a loop, meaning that
2762 	 * we wouldn't be able to run the filter in the kernel.
2763 	 *
2764 	 * We assume here that the Atheros adapters that insert the
2765 	 * annoying padding don't have multiple antennae and therefore
2766 	 * do not generate radiotap headers with multiple presence words.
2767 	 */
2768 	if (cstate->linktype == DLT_IEEE802_11_RADIO) {
2769 		/*
2770 		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2771 		 * in the first presence flag word?
2772 		 */
2773 		sjset_qos->s.jf = s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_W);
2774 		s2->s.k = 4;
2775 		sappend(s, s2);
2776 
2777 		sjset_radiotap_flags_present = new_stmt(cstate, JMP(BPF_JSET));
2778 		sjset_radiotap_flags_present->s.k = SWAPLONG(0x00000002);
2779 		sappend(s, sjset_radiotap_flags_present);
2780 
2781 		/*
2782 		 * If not, skip all of this.
2783 		 */
2784 		sjset_radiotap_flags_present->s.jf = snext;
2785 
2786 		/*
2787 		 * Otherwise, is the "extension" bit set in that word?
2788 		 */
2789 		sjset_radiotap_ext_present = new_stmt(cstate, JMP(BPF_JSET));
2790 		sjset_radiotap_ext_present->s.k = SWAPLONG(0x80000000);
2791 		sappend(s, sjset_radiotap_ext_present);
2792 		sjset_radiotap_flags_present->s.jt = sjset_radiotap_ext_present;
2793 
2794 		/*
2795 		 * If so, skip all of this.
2796 		 */
2797 		sjset_radiotap_ext_present->s.jt = snext;
2798 
2799 		/*
2800 		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2801 		 */
2802 		sjset_radiotap_tsft_present = new_stmt(cstate, JMP(BPF_JSET));
2803 		sjset_radiotap_tsft_present->s.k = SWAPLONG(0x00000001);
2804 		sappend(s, sjset_radiotap_tsft_present);
2805 		sjset_radiotap_ext_present->s.jf = sjset_radiotap_tsft_present;
2806 
2807 		/*
2808 		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2809 		 * at an offset of 16 from the beginning of the raw packet
2810 		 * data (8 bytes for the radiotap header and 8 bytes for
2811 		 * the TSFT field).
2812 		 *
2813 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2814 		 * is set.
2815 		 */
2816 		s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2817 		s2->s.k = 16;
2818 		sappend(s, s2);
2819 		sjset_radiotap_tsft_present->s.jt = s2;
2820 
2821 		sjset_tsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2822 		sjset_tsft_datapad->s.k = 0x20;
2823 		sappend(s, sjset_tsft_datapad);
2824 
2825 		/*
2826 		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2827 		 * at an offset of 8 from the beginning of the raw packet
2828 		 * data (8 bytes for the radiotap header).
2829 		 *
2830 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2831 		 * is set.
2832 		 */
2833 		s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2834 		s2->s.k = 8;
2835 		sappend(s, s2);
2836 		sjset_radiotap_tsft_present->s.jf = s2;
2837 
2838 		sjset_notsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2839 		sjset_notsft_datapad->s.k = 0x20;
2840 		sappend(s, sjset_notsft_datapad);
2841 
2842 		/*
2843 		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2844 		 * set, round the length of the 802.11 header to
2845 		 * a multiple of 4.  Do that by adding 3 and then
2846 		 * dividing by and multiplying by 4, which we do by
2847 		 * ANDing with ~3.
2848 		 */
2849 		s_roundup = new_stmt(cstate, BPF_LD|BPF_MEM);
2850 		s_roundup->s.k = cstate->off_linkpl.reg;
2851 		sappend(s, s_roundup);
2852 		s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2853 		s2->s.k = 3;
2854 		sappend(s, s2);
2855 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_IMM);
2856 		s2->s.k = ~3;
2857 		sappend(s, s2);
2858 		s2 = new_stmt(cstate, BPF_ST);
2859 		s2->s.k = cstate->off_linkpl.reg;
2860 		sappend(s, s2);
2861 
2862 		sjset_tsft_datapad->s.jt = s_roundup;
2863 		sjset_tsft_datapad->s.jf = snext;
2864 		sjset_notsft_datapad->s.jt = s_roundup;
2865 		sjset_notsft_datapad->s.jf = snext;
2866 	} else
2867 		sjset_qos->s.jf = snext;
2868 
2869 	return s;
2870 }
2871 
2872 static void
insert_compute_vloffsets(compiler_state_t * cstate,struct block * b)2873 insert_compute_vloffsets(compiler_state_t *cstate, struct block *b)
2874 {
2875 	struct slist *s;
2876 
2877 	/* There is an implicit dependency between the link
2878 	 * payload and link header since the payload computation
2879 	 * includes the variable part of the header. Therefore,
2880 	 * if nobody else has allocated a register for the link
2881 	 * header and we need it, do it now. */
2882 	if (cstate->off_linkpl.reg != -1 && cstate->off_linkhdr.is_variable &&
2883 	    cstate->off_linkhdr.reg == -1)
2884 		cstate->off_linkhdr.reg = alloc_reg(cstate);
2885 
2886 	/*
2887 	 * For link-layer types that have a variable-length header
2888 	 * preceding the link-layer header, generate code to load
2889 	 * the offset of the link-layer header into the register
2890 	 * assigned to that offset, if any.
2891 	 *
2892 	 * XXX - this, and the next switch statement, won't handle
2893 	 * encapsulation of 802.11 or 802.11+radio information in
2894 	 * some other protocol stack.  That's significantly more
2895 	 * complicated.
2896 	 */
2897 	switch (cstate->outermostlinktype) {
2898 
2899 	case DLT_PRISM_HEADER:
2900 		s = gen_load_prism_llprefixlen(cstate);
2901 		break;
2902 
2903 	case DLT_IEEE802_11_RADIO_AVS:
2904 		s = gen_load_avs_llprefixlen(cstate);
2905 		break;
2906 
2907 	case DLT_IEEE802_11_RADIO:
2908 		s = gen_load_radiotap_llprefixlen(cstate);
2909 		break;
2910 
2911 	case DLT_PPI:
2912 		s = gen_load_ppi_llprefixlen(cstate);
2913 		break;
2914 
2915 	default:
2916 		s = NULL;
2917 		break;
2918 	}
2919 
2920 	/*
2921 	 * For link-layer types that have a variable-length link-layer
2922 	 * header, generate code to load the offset of the link-layer
2923 	 * payload into the register assigned to that offset, if any.
2924 	 */
2925 	switch (cstate->outermostlinktype) {
2926 
2927 	case DLT_IEEE802_11:
2928 	case DLT_PRISM_HEADER:
2929 	case DLT_IEEE802_11_RADIO_AVS:
2930 	case DLT_IEEE802_11_RADIO:
2931 	case DLT_PPI:
2932 		s = gen_load_802_11_header_len(cstate, s, b->stmts);
2933 		break;
2934 	}
2935 
2936 	/*
2937 	 * If there there is no initialization yet and we need variable
2938 	 * length offsets for VLAN, initialize them to zero
2939 	 */
2940 	if (s == NULL && cstate->is_vlan_vloffset) {
2941 		struct slist *s2;
2942 
2943 		if (cstate->off_linkpl.reg == -1)
2944 			cstate->off_linkpl.reg = alloc_reg(cstate);
2945 		if (cstate->off_linktype.reg == -1)
2946 			cstate->off_linktype.reg = alloc_reg(cstate);
2947 
2948 		s = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2949 		s->s.k = 0;
2950 		s2 = new_stmt(cstate, BPF_ST);
2951 		s2->s.k = cstate->off_linkpl.reg;
2952 		sappend(s, s2);
2953 		s2 = new_stmt(cstate, BPF_ST);
2954 		s2->s.k = cstate->off_linktype.reg;
2955 		sappend(s, s2);
2956 	}
2957 
2958 	/*
2959 	 * If we have any offset-loading code, append all the
2960 	 * existing statements in the block to those statements,
2961 	 * and make the resulting list the list of statements
2962 	 * for the block.
2963 	 */
2964 	if (s != NULL) {
2965 		sappend(s, b->stmts);
2966 		b->stmts = s;
2967 	}
2968 }
2969 
2970 static struct block *
gen_ppi_dlt_check(compiler_state_t * cstate)2971 gen_ppi_dlt_check(compiler_state_t *cstate)
2972 {
2973 	struct slist *s_load_dlt;
2974 	struct block *b;
2975 
2976 	if (cstate->linktype == DLT_PPI)
2977 	{
2978 		/* Create the statements that check for the DLT
2979 		 */
2980 		s_load_dlt = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2981 		s_load_dlt->s.k = 4;
2982 
2983 		b = new_block(cstate, JMP(BPF_JEQ));
2984 
2985 		b->stmts = s_load_dlt;
2986 		b->s.k = SWAPLONG(DLT_IEEE802_11);
2987 	}
2988 	else
2989 	{
2990 		b = NULL;
2991 	}
2992 
2993 	return b;
2994 }
2995 
2996 /*
2997  * Take an absolute offset, and:
2998  *
2999  *    if it has no variable part, return NULL;
3000  *
3001  *    if it has a variable part, generate code to load the register
3002  *    containing that variable part into the X register, returning
3003  *    a pointer to that code - if no register for that offset has
3004  *    been allocated, allocate it first.
3005  *
3006  * (The code to set that register will be generated later, but will
3007  * be placed earlier in the code sequence.)
3008  */
3009 static struct slist *
gen_abs_offset_varpart(compiler_state_t * cstate,bpf_abs_offset * off)3010 gen_abs_offset_varpart(compiler_state_t *cstate, bpf_abs_offset *off)
3011 {
3012 	struct slist *s;
3013 
3014 	if (off->is_variable) {
3015 		if (off->reg == -1) {
3016 			/*
3017 			 * We haven't yet assigned a register for the
3018 			 * variable part of the offset of the link-layer
3019 			 * header; allocate one.
3020 			 */
3021 			off->reg = alloc_reg(cstate);
3022 		}
3023 
3024 		/*
3025 		 * Load the register containing the variable part of the
3026 		 * offset of the link-layer header into the X register.
3027 		 */
3028 		s = new_stmt(cstate, BPF_LDX|BPF_MEM);
3029 		s->s.k = off->reg;
3030 		return s;
3031 	} else {
3032 		/*
3033 		 * That offset isn't variable, there's no variable part,
3034 		 * so we don't need to generate any code.
3035 		 */
3036 		return NULL;
3037 	}
3038 }
3039 
3040 /*
3041  * Map an Ethernet type to the equivalent PPP type.
3042  */
3043 static int
ethertype_to_ppptype(int proto)3044 ethertype_to_ppptype(int proto)
3045 {
3046 	switch (proto) {
3047 
3048 	case ETHERTYPE_IP:
3049 		proto = PPP_IP;
3050 		break;
3051 
3052 	case ETHERTYPE_IPV6:
3053 		proto = PPP_IPV6;
3054 		break;
3055 
3056 	case ETHERTYPE_DN:
3057 		proto = PPP_DECNET;
3058 		break;
3059 
3060 	case ETHERTYPE_ATALK:
3061 		proto = PPP_APPLE;
3062 		break;
3063 
3064 	case ETHERTYPE_NS:
3065 		proto = PPP_NS;
3066 		break;
3067 
3068 	case LLCSAP_ISONS:
3069 		proto = PPP_OSI;
3070 		break;
3071 
3072 	case LLCSAP_8021D:
3073 		/*
3074 		 * I'm assuming the "Bridging PDU"s that go
3075 		 * over PPP are Spanning Tree Protocol
3076 		 * Bridging PDUs.
3077 		 */
3078 		proto = PPP_BRPDU;
3079 		break;
3080 
3081 	case LLCSAP_IPX:
3082 		proto = PPP_IPX;
3083 		break;
3084 	}
3085 	return (proto);
3086 }
3087 
3088 /*
3089  * Generate any tests that, for encapsulation of a link-layer packet
3090  * inside another protocol stack, need to be done to check for those
3091  * link-layer packets (and that haven't already been done by a check
3092  * for that encapsulation).
3093  */
3094 static struct block *
gen_prevlinkhdr_check(compiler_state_t * cstate)3095 gen_prevlinkhdr_check(compiler_state_t *cstate)
3096 {
3097 	struct block *b0;
3098 
3099 	if (cstate->is_geneve)
3100 		return gen_geneve_ll_check(cstate);
3101 
3102 	switch (cstate->prevlinktype) {
3103 
3104 	case DLT_SUNATM:
3105 		/*
3106 		 * This is LANE-encapsulated Ethernet; check that the LANE
3107 		 * packet doesn't begin with an LE Control marker, i.e.
3108 		 * that it's data, not a control message.
3109 		 *
3110 		 * (We've already generated a test for LANE.)
3111 		 */
3112 		b0 = gen_cmp(cstate, OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00);
3113 		gen_not(b0);
3114 		return b0;
3115 
3116 	default:
3117 		/*
3118 		 * No such tests are necessary.
3119 		 */
3120 		return NULL;
3121 	}
3122 	/*NOTREACHED*/
3123 }
3124 
3125 /*
3126  * The three different values we should check for when checking for an
3127  * IPv6 packet with DLT_NULL.
3128  */
3129 #define BSD_AFNUM_INET6_BSD	24	/* NetBSD, OpenBSD, BSD/OS, Npcap */
3130 #define BSD_AFNUM_INET6_FREEBSD	28	/* FreeBSD */
3131 #define BSD_AFNUM_INET6_DARWIN	30	/* macOS, iOS, other Darwin-based OSes */
3132 
3133 /*
3134  * Generate code to match a particular packet type by matching the
3135  * link-layer type field or fields in the 802.2 LLC header.
3136  *
3137  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3138  * value, if <= ETHERMTU.
3139  */
3140 static struct block *
gen_linktype(compiler_state_t * cstate,int proto)3141 gen_linktype(compiler_state_t *cstate, int proto)
3142 {
3143 	struct block *b0, *b1, *b2;
3144 	const char *description;
3145 
3146 	/* are we checking MPLS-encapsulated packets? */
3147 	if (cstate->label_stack_depth > 0) {
3148 		switch (proto) {
3149 		case ETHERTYPE_IP:
3150 		case PPP_IP:
3151 			/* FIXME add other L3 proto IDs */
3152 			return gen_mpls_linktype(cstate, Q_IP);
3153 
3154 		case ETHERTYPE_IPV6:
3155 		case PPP_IPV6:
3156 			/* FIXME add other L3 proto IDs */
3157 			return gen_mpls_linktype(cstate, Q_IPV6);
3158 
3159 		default:
3160 			bpf_error(cstate, "unsupported protocol over mpls");
3161 			/*NOTREACHED*/
3162 		}
3163 	}
3164 
3165 	switch (cstate->linktype) {
3166 
3167 	case DLT_EN10MB:
3168 	case DLT_NETANALYZER:
3169 	case DLT_NETANALYZER_TRANSPARENT:
3170 		/* Geneve has an EtherType regardless of whether there is an
3171 		 * L2 header. */
3172 		if (!cstate->is_geneve)
3173 			b0 = gen_prevlinkhdr_check(cstate);
3174 		else
3175 			b0 = NULL;
3176 
3177 		b1 = gen_ether_linktype(cstate, proto);
3178 		if (b0 != NULL)
3179 			gen_and(b0, b1);
3180 		return b1;
3181 		/*NOTREACHED*/
3182 
3183 	case DLT_C_HDLC:
3184 		switch (proto) {
3185 
3186 		case LLCSAP_ISONS:
3187 			proto = (proto << 8 | LLCSAP_ISONS);
3188 			/* fall through */
3189 
3190 		default:
3191 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
3192 			/*NOTREACHED*/
3193 		}
3194 
3195 	case DLT_IEEE802_11:
3196 	case DLT_PRISM_HEADER:
3197 	case DLT_IEEE802_11_RADIO_AVS:
3198 	case DLT_IEEE802_11_RADIO:
3199 	case DLT_PPI:
3200 		/*
3201 		 * Check that we have a data frame.
3202 		 */
3203 		b0 = gen_check_802_11_data_frame(cstate);
3204 
3205 		/*
3206 		 * Now check for the specified link-layer type.
3207 		 */
3208 		b1 = gen_llc_linktype(cstate, proto);
3209 		gen_and(b0, b1);
3210 		return b1;
3211 		/*NOTREACHED*/
3212 
3213 	case DLT_FDDI:
3214 		/*
3215 		 * XXX - check for LLC frames.
3216 		 */
3217 		return gen_llc_linktype(cstate, proto);
3218 		/*NOTREACHED*/
3219 
3220 	case DLT_IEEE802:
3221 		/*
3222 		 * XXX - check for LLC PDUs, as per IEEE 802.5.
3223 		 */
3224 		return gen_llc_linktype(cstate, proto);
3225 		/*NOTREACHED*/
3226 
3227 	case DLT_ATM_RFC1483:
3228 	case DLT_ATM_CLIP:
3229 	case DLT_IP_OVER_FC:
3230 		return gen_llc_linktype(cstate, proto);
3231 		/*NOTREACHED*/
3232 
3233 	case DLT_SUNATM:
3234 		/*
3235 		 * Check for an LLC-encapsulated version of this protocol;
3236 		 * if we were checking for LANE, linktype would no longer
3237 		 * be DLT_SUNATM.
3238 		 *
3239 		 * Check for LLC encapsulation and then check the protocol.
3240 		 */
3241 		b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3242 		b1 = gen_llc_linktype(cstate, proto);
3243 		gen_and(b0, b1);
3244 		return b1;
3245 		/*NOTREACHED*/
3246 
3247 	case DLT_LINUX_SLL:
3248 		return gen_linux_sll_linktype(cstate, proto);
3249 		/*NOTREACHED*/
3250 
3251 	case DLT_SLIP:
3252 	case DLT_SLIP_BSDOS:
3253 	case DLT_RAW:
3254 		/*
3255 		 * These types don't provide any type field; packets
3256 		 * are always IPv4 or IPv6.
3257 		 *
3258 		 * XXX - for IPv4, check for a version number of 4, and,
3259 		 * for IPv6, check for a version number of 6?
3260 		 */
3261 		switch (proto) {
3262 
3263 		case ETHERTYPE_IP:
3264 			/* Check for a version number of 4. */
3265 			return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x40, 0xF0);
3266 
3267 		case ETHERTYPE_IPV6:
3268 			/* Check for a version number of 6. */
3269 			return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x60, 0xF0);
3270 
3271 		default:
3272 			return gen_false(cstate);	/* always false */
3273 		}
3274 		/*NOTREACHED*/
3275 
3276 	case DLT_IPV4:
3277 		/*
3278 		 * Raw IPv4, so no type field.
3279 		 */
3280 		if (proto == ETHERTYPE_IP)
3281 			return gen_true(cstate);	/* always true */
3282 
3283 		/* Checking for something other than IPv4; always false */
3284 		return gen_false(cstate);
3285 		/*NOTREACHED*/
3286 
3287 	case DLT_IPV6:
3288 		/*
3289 		 * Raw IPv6, so no type field.
3290 		 */
3291 		if (proto == ETHERTYPE_IPV6)
3292 			return gen_true(cstate);	/* always true */
3293 
3294 		/* Checking for something other than IPv6; always false */
3295 		return gen_false(cstate);
3296 		/*NOTREACHED*/
3297 
3298 	case DLT_PPP:
3299 	case DLT_PPP_PPPD:
3300 	case DLT_PPP_SERIAL:
3301 	case DLT_PPP_ETHER:
3302 		/*
3303 		 * We use Ethernet protocol types inside libpcap;
3304 		 * map them to the corresponding PPP protocol types.
3305 		 */
3306 		proto = ethertype_to_ppptype(proto);
3307 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
3308 		/*NOTREACHED*/
3309 
3310 	case DLT_PPP_BSDOS:
3311 		/*
3312 		 * We use Ethernet protocol types inside libpcap;
3313 		 * map them to the corresponding PPP protocol types.
3314 		 */
3315 		switch (proto) {
3316 
3317 		case ETHERTYPE_IP:
3318 			/*
3319 			 * Also check for Van Jacobson-compressed IP.
3320 			 * XXX - do this for other forms of PPP?
3321 			 */
3322 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_IP);
3323 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJC);
3324 			gen_or(b0, b1);
3325 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJNC);
3326 			gen_or(b1, b0);
3327 			return b0;
3328 
3329 		default:
3330 			proto = ethertype_to_ppptype(proto);
3331 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3332 				(bpf_int32)proto);
3333 		}
3334 		/*NOTREACHED*/
3335 
3336 	case DLT_NULL:
3337 	case DLT_LOOP:
3338 	case DLT_ENC:
3339 		switch (proto) {
3340 
3341 		case ETHERTYPE_IP:
3342 			return (gen_loopback_linktype(cstate, AF_INET));
3343 
3344 		case ETHERTYPE_IPV6:
3345 			/*
3346 			 * AF_ values may, unfortunately, be platform-
3347 			 * dependent; AF_INET isn't, because everybody
3348 			 * used 4.2BSD's value, but AF_INET6 is, because
3349 			 * 4.2BSD didn't have a value for it (given that
3350 			 * IPv6 didn't exist back in the early 1980's),
3351 			 * and they all picked their own values.
3352 			 *
3353 			 * This means that, if we're reading from a
3354 			 * savefile, we need to check for all the
3355 			 * possible values.
3356 			 *
3357 			 * If we're doing a live capture, we only need
3358 			 * to check for this platform's value; however,
3359 			 * Npcap uses 24, which isn't Windows's AF_INET6
3360 			 * value.  (Given the multiple different values,
3361 			 * programs that read pcap files shouldn't be
3362 			 * checking for their platform's AF_INET6 value
3363 			 * anyway, they should check for all of the
3364 			 * possible values. and they might as well do
3365 			 * that even for live captures.)
3366 			 */
3367 			if (cstate->bpf_pcap->rfile != NULL) {
3368 				/*
3369 				 * Savefile - check for all three
3370 				 * possible IPv6 values.
3371 				 */
3372 				b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_BSD);
3373 				b1 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_FREEBSD);
3374 				gen_or(b0, b1);
3375 				b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_DARWIN);
3376 				gen_or(b0, b1);
3377 				return (b1);
3378 			} else {
3379 				/*
3380 				 * Live capture, so we only need to
3381 				 * check for the value used on this
3382 				 * platform.
3383 				 */
3384 #ifdef _WIN32
3385 				/*
3386 				 * Npcap doesn't use Windows's AF_INET6,
3387 				 * as that collides with AF_IPX on
3388 				 * some BSDs (both have the value 23).
3389 				 * Instead, it uses 24.
3390 				 */
3391 				return (gen_loopback_linktype(cstate, 24));
3392 #else /* _WIN32 */
3393 #ifdef AF_INET6
3394 				return (gen_loopback_linktype(cstate, AF_INET6));
3395 #else /* AF_INET6 */
3396 				/*
3397 				 * I guess this platform doesn't support
3398 				 * IPv6, so we just reject all packets.
3399 				 */
3400 				return gen_false(cstate);
3401 #endif /* AF_INET6 */
3402 #endif /* _WIN32 */
3403 			}
3404 
3405 		default:
3406 			/*
3407 			 * Not a type on which we support filtering.
3408 			 * XXX - support those that have AF_ values
3409 			 * #defined on this platform, at least?
3410 			 */
3411 			return gen_false(cstate);
3412 		}
3413 
3414 #ifdef HAVE_NET_PFVAR_H
3415 	case DLT_PFLOG:
3416 		/*
3417 		 * af field is host byte order in contrast to the rest of
3418 		 * the packet.
3419 		 */
3420 		if (proto == ETHERTYPE_IP)
3421 			return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3422 			    BPF_B, (bpf_int32)AF_INET));
3423 		else if (proto == ETHERTYPE_IPV6)
3424 			return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3425 			    BPF_B, (bpf_int32)AF_INET6));
3426 		else
3427 			return gen_false(cstate);
3428 		/*NOTREACHED*/
3429 #endif /* HAVE_NET_PFVAR_H */
3430 
3431 	case DLT_ARCNET:
3432 	case DLT_ARCNET_LINUX:
3433 		/*
3434 		 * XXX should we check for first fragment if the protocol
3435 		 * uses PHDS?
3436 		 */
3437 		switch (proto) {
3438 
3439 		default:
3440 			return gen_false(cstate);
3441 
3442 		case ETHERTYPE_IPV6:
3443 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3444 				(bpf_int32)ARCTYPE_INET6));
3445 
3446 		case ETHERTYPE_IP:
3447 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3448 				     (bpf_int32)ARCTYPE_IP);
3449 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3450 				     (bpf_int32)ARCTYPE_IP_OLD);
3451 			gen_or(b0, b1);
3452 			return (b1);
3453 
3454 		case ETHERTYPE_ARP:
3455 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3456 				     (bpf_int32)ARCTYPE_ARP);
3457 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3458 				     (bpf_int32)ARCTYPE_ARP_OLD);
3459 			gen_or(b0, b1);
3460 			return (b1);
3461 
3462 		case ETHERTYPE_REVARP:
3463 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3464 					(bpf_int32)ARCTYPE_REVARP));
3465 
3466 		case ETHERTYPE_ATALK:
3467 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3468 					(bpf_int32)ARCTYPE_ATALK));
3469 		}
3470 		/*NOTREACHED*/
3471 
3472 	case DLT_LTALK:
3473 		switch (proto) {
3474 		case ETHERTYPE_ATALK:
3475 			return gen_true(cstate);
3476 		default:
3477 			return gen_false(cstate);
3478 		}
3479 		/*NOTREACHED*/
3480 
3481 	case DLT_FRELAY:
3482 		/*
3483 		 * XXX - assumes a 2-byte Frame Relay header with
3484 		 * DLCI and flags.  What if the address is longer?
3485 		 */
3486 		switch (proto) {
3487 
3488 		case ETHERTYPE_IP:
3489 			/*
3490 			 * Check for the special NLPID for IP.
3491 			 */
3492 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc);
3493 
3494 		case ETHERTYPE_IPV6:
3495 			/*
3496 			 * Check for the special NLPID for IPv6.
3497 			 */
3498 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e);
3499 
3500 		case LLCSAP_ISONS:
3501 			/*
3502 			 * Check for several OSI protocols.
3503 			 *
3504 			 * Frame Relay packets typically have an OSI
3505 			 * NLPID at the beginning; we check for each
3506 			 * of them.
3507 			 *
3508 			 * What we check for is the NLPID and a frame
3509 			 * control field of UI, i.e. 0x03 followed
3510 			 * by the NLPID.
3511 			 */
3512 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3513 			b1 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3514 			b2 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3515 			gen_or(b1, b2);
3516 			gen_or(b0, b2);
3517 			return b2;
3518 
3519 		default:
3520 			return gen_false(cstate);
3521 		}
3522 		/*NOTREACHED*/
3523 
3524 	case DLT_MFR:
3525 		bpf_error(cstate, "Multi-link Frame Relay link-layer type filtering not implemented");
3526 
3527         case DLT_JUNIPER_MFR:
3528         case DLT_JUNIPER_MLFR:
3529         case DLT_JUNIPER_MLPPP:
3530 	case DLT_JUNIPER_ATM1:
3531 	case DLT_JUNIPER_ATM2:
3532 	case DLT_JUNIPER_PPPOE:
3533 	case DLT_JUNIPER_PPPOE_ATM:
3534         case DLT_JUNIPER_GGSN:
3535         case DLT_JUNIPER_ES:
3536         case DLT_JUNIPER_MONITOR:
3537         case DLT_JUNIPER_SERVICES:
3538         case DLT_JUNIPER_ETHER:
3539         case DLT_JUNIPER_PPP:
3540         case DLT_JUNIPER_FRELAY:
3541         case DLT_JUNIPER_CHDLC:
3542         case DLT_JUNIPER_VP:
3543         case DLT_JUNIPER_ST:
3544         case DLT_JUNIPER_ISM:
3545         case DLT_JUNIPER_VS:
3546         case DLT_JUNIPER_SRX_E2E:
3547         case DLT_JUNIPER_FIBRECHANNEL:
3548 	case DLT_JUNIPER_ATM_CEMIC:
3549 
3550 		/* just lets verify the magic number for now -
3551 		 * on ATM we may have up to 6 different encapsulations on the wire
3552 		 * and need a lot of heuristics to figure out that the payload
3553 		 * might be;
3554 		 *
3555 		 * FIXME encapsulation specific BPF_ filters
3556 		 */
3557 		return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3558 
3559 	case DLT_BACNET_MS_TP:
3560 		return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000);
3561 
3562 	case DLT_IPNET:
3563 		return gen_ipnet_linktype(cstate, proto);
3564 
3565 	case DLT_LINUX_IRDA:
3566 		bpf_error(cstate, "IrDA link-layer type filtering not implemented");
3567 
3568 	case DLT_DOCSIS:
3569 		bpf_error(cstate, "DOCSIS link-layer type filtering not implemented");
3570 
3571 	case DLT_MTP2:
3572 	case DLT_MTP2_WITH_PHDR:
3573 		bpf_error(cstate, "MTP2 link-layer type filtering not implemented");
3574 
3575 	case DLT_ERF:
3576 		bpf_error(cstate, "ERF link-layer type filtering not implemented");
3577 
3578 	case DLT_PFSYNC:
3579 		bpf_error(cstate, "PFSYNC link-layer type filtering not implemented");
3580 
3581 	case DLT_LINUX_LAPD:
3582 		bpf_error(cstate, "LAPD link-layer type filtering not implemented");
3583 
3584 	case DLT_USB_FREEBSD:
3585 	case DLT_USB_LINUX:
3586 	case DLT_USB_LINUX_MMAPPED:
3587 	case DLT_USBPCAP:
3588 		bpf_error(cstate, "USB link-layer type filtering not implemented");
3589 
3590 	case DLT_BLUETOOTH_HCI_H4:
3591 	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3592 		bpf_error(cstate, "Bluetooth link-layer type filtering not implemented");
3593 
3594 	case DLT_CAN20B:
3595 	case DLT_CAN_SOCKETCAN:
3596 		bpf_error(cstate, "CAN link-layer type filtering not implemented");
3597 
3598 	case DLT_IEEE802_15_4:
3599 	case DLT_IEEE802_15_4_LINUX:
3600 	case DLT_IEEE802_15_4_NONASK_PHY:
3601 	case DLT_IEEE802_15_4_NOFCS:
3602 		bpf_error(cstate, "IEEE 802.15.4 link-layer type filtering not implemented");
3603 
3604 	case DLT_IEEE802_16_MAC_CPS_RADIO:
3605 		bpf_error(cstate, "IEEE 802.16 link-layer type filtering not implemented");
3606 
3607 	case DLT_SITA:
3608 		bpf_error(cstate, "SITA link-layer type filtering not implemented");
3609 
3610 	case DLT_RAIF1:
3611 		bpf_error(cstate, "RAIF1 link-layer type filtering not implemented");
3612 
3613 	case DLT_IPMB_KONTRON:
3614 	case DLT_IPMB_LINUX:
3615 		bpf_error(cstate, "IPMB link-layer type filtering not implemented");
3616 
3617 	case DLT_AX25_KISS:
3618 		bpf_error(cstate, "AX.25 link-layer type filtering not implemented");
3619 
3620 	case DLT_NFLOG:
3621 		/* Using the fixed-size NFLOG header it is possible to tell only
3622 		 * the address family of the packet, other meaningful data is
3623 		 * either missing or behind TLVs.
3624 		 */
3625 		bpf_error(cstate, "NFLOG link-layer type filtering not implemented");
3626 
3627 	default:
3628 		/*
3629 		 * Does this link-layer header type have a field
3630 		 * indicating the type of the next protocol?  If
3631 		 * so, off_linktype.constant_part will be the offset of that
3632 		 * field in the packet; if not, it will be OFFSET_NOT_SET.
3633 		 */
3634 		if (cstate->off_linktype.constant_part != OFFSET_NOT_SET) {
3635 			/*
3636 			 * Yes; assume it's an Ethernet type.  (If
3637 			 * it's not, it needs to be handled specially
3638 			 * above.)
3639 			 */
3640 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
3641 			/*NOTREACHED */
3642 		} else {
3643 			/*
3644 			 * No; report an error.
3645 			 */
3646 			description = pcap_datalink_val_to_description_or_dlt(cstate->linktype);
3647 			bpf_error(cstate, "%s link-layer type filtering not implemented",
3648 			    description);
3649 			/*NOTREACHED */
3650 		}
3651 	}
3652 }
3653 
3654 /*
3655  * Check for an LLC SNAP packet with a given organization code and
3656  * protocol type; we check the entire contents of the 802.2 LLC and
3657  * snap headers, checking for DSAP and SSAP of SNAP and a control
3658  * field of 0x03 in the LLC header, and for the specified organization
3659  * code and protocol type in the SNAP header.
3660  */
3661 static struct block *
gen_snap(compiler_state_t * cstate,bpf_u_int32 orgcode,bpf_u_int32 ptype)3662 gen_snap(compiler_state_t *cstate, bpf_u_int32 orgcode, bpf_u_int32 ptype)
3663 {
3664 	u_char snapblock[8];
3665 
3666 	snapblock[0] = LLCSAP_SNAP;		/* DSAP = SNAP */
3667 	snapblock[1] = LLCSAP_SNAP;		/* SSAP = SNAP */
3668 	snapblock[2] = 0x03;			/* control = UI */
3669 	snapblock[3] = (u_char)(orgcode >> 16);	/* upper 8 bits of organization code */
3670 	snapblock[4] = (u_char)(orgcode >> 8);	/* middle 8 bits of organization code */
3671 	snapblock[5] = (u_char)(orgcode >> 0);	/* lower 8 bits of organization code */
3672 	snapblock[6] = (u_char)(ptype >> 8);	/* upper 8 bits of protocol type */
3673 	snapblock[7] = (u_char)(ptype >> 0);	/* lower 8 bits of protocol type */
3674 	return gen_bcmp(cstate, OR_LLC, 0, 8, snapblock);
3675 }
3676 
3677 /*
3678  * Generate code to match frames with an LLC header.
3679  */
3680 static struct block *
gen_llc_internal(compiler_state_t * cstate)3681 gen_llc_internal(compiler_state_t *cstate)
3682 {
3683 	struct block *b0, *b1;
3684 
3685 	switch (cstate->linktype) {
3686 
3687 	case DLT_EN10MB:
3688 		/*
3689 		 * We check for an Ethernet type field less than
3690 		 * 1500, which means it's an 802.3 length field.
3691 		 */
3692 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
3693 		gen_not(b0);
3694 
3695 		/*
3696 		 * Now check for the purported DSAP and SSAP not being
3697 		 * 0xFF, to rule out NetWare-over-802.3.
3698 		 */
3699 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF);
3700 		gen_not(b1);
3701 		gen_and(b0, b1);
3702 		return b1;
3703 
3704 	case DLT_SUNATM:
3705 		/*
3706 		 * We check for LLC traffic.
3707 		 */
3708 		b0 = gen_atmtype_llc(cstate);
3709 		return b0;
3710 
3711 	case DLT_IEEE802:	/* Token Ring */
3712 		/*
3713 		 * XXX - check for LLC frames.
3714 		 */
3715 		return gen_true(cstate);
3716 
3717 	case DLT_FDDI:
3718 		/*
3719 		 * XXX - check for LLC frames.
3720 		 */
3721 		return gen_true(cstate);
3722 
3723 	case DLT_ATM_RFC1483:
3724 		/*
3725 		 * For LLC encapsulation, these are defined to have an
3726 		 * 802.2 LLC header.
3727 		 *
3728 		 * For VC encapsulation, they don't, but there's no
3729 		 * way to check for that; the protocol used on the VC
3730 		 * is negotiated out of band.
3731 		 */
3732 		return gen_true(cstate);
3733 
3734 	case DLT_IEEE802_11:
3735 	case DLT_PRISM_HEADER:
3736 	case DLT_IEEE802_11_RADIO:
3737 	case DLT_IEEE802_11_RADIO_AVS:
3738 	case DLT_PPI:
3739 		/*
3740 		 * Check that we have a data frame.
3741 		 */
3742 		b0 = gen_check_802_11_data_frame(cstate);
3743 		return b0;
3744 
3745 	default:
3746 		bpf_error(cstate, "'llc' not supported for %s",
3747 			  pcap_datalink_val_to_description_or_dlt(cstate->linktype));
3748 		/*NOTREACHED*/
3749 	}
3750 }
3751 
3752 struct block *
gen_llc(compiler_state_t * cstate)3753 gen_llc(compiler_state_t *cstate)
3754 {
3755 	/*
3756 	 * Catch errors reported by us and routines below us, and return NULL
3757 	 * on an error.
3758 	 */
3759 	if (setjmp(cstate->top_ctx))
3760 		return (NULL);
3761 
3762 	return gen_llc_internal(cstate);
3763 }
3764 
3765 struct block *
gen_llc_i(compiler_state_t * cstate)3766 gen_llc_i(compiler_state_t *cstate)
3767 {
3768 	struct block *b0, *b1;
3769 	struct slist *s;
3770 
3771 	/*
3772 	 * Catch errors reported by us and routines below us, and return NULL
3773 	 * on an error.
3774 	 */
3775 	if (setjmp(cstate->top_ctx))
3776 		return (NULL);
3777 
3778 	/*
3779 	 * Check whether this is an LLC frame.
3780 	 */
3781 	b0 = gen_llc_internal(cstate);
3782 
3783 	/*
3784 	 * Load the control byte and test the low-order bit; it must
3785 	 * be clear for I frames.
3786 	 */
3787 	s = gen_load_a(cstate, OR_LLC, 2, BPF_B);
3788 	b1 = new_block(cstate, JMP(BPF_JSET));
3789 	b1->s.k = 0x01;
3790 	b1->stmts = s;
3791 	gen_not(b1);
3792 	gen_and(b0, b1);
3793 	return b1;
3794 }
3795 
3796 struct block *
gen_llc_s(compiler_state_t * cstate)3797 gen_llc_s(compiler_state_t *cstate)
3798 {
3799 	struct block *b0, *b1;
3800 
3801 	/*
3802 	 * Catch errors reported by us and routines below us, and return NULL
3803 	 * on an error.
3804 	 */
3805 	if (setjmp(cstate->top_ctx))
3806 		return (NULL);
3807 
3808 	/*
3809 	 * Check whether this is an LLC frame.
3810 	 */
3811 	b0 = gen_llc_internal(cstate);
3812 
3813 	/*
3814 	 * Now compare the low-order 2 bit of the control byte against
3815 	 * the appropriate value for S frames.
3816 	 */
3817 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03);
3818 	gen_and(b0, b1);
3819 	return b1;
3820 }
3821 
3822 struct block *
gen_llc_u(compiler_state_t * cstate)3823 gen_llc_u(compiler_state_t *cstate)
3824 {
3825 	struct block *b0, *b1;
3826 
3827 	/*
3828 	 * Catch errors reported by us and routines below us, and return NULL
3829 	 * on an error.
3830 	 */
3831 	if (setjmp(cstate->top_ctx))
3832 		return (NULL);
3833 
3834 	/*
3835 	 * Check whether this is an LLC frame.
3836 	 */
3837 	b0 = gen_llc_internal(cstate);
3838 
3839 	/*
3840 	 * Now compare the low-order 2 bit of the control byte against
3841 	 * the appropriate value for U frames.
3842 	 */
3843 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03);
3844 	gen_and(b0, b1);
3845 	return b1;
3846 }
3847 
3848 struct block *
gen_llc_s_subtype(compiler_state_t * cstate,bpf_u_int32 subtype)3849 gen_llc_s_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3850 {
3851 	struct block *b0, *b1;
3852 
3853 	/*
3854 	 * Catch errors reported by us and routines below us, and return NULL
3855 	 * on an error.
3856 	 */
3857 	if (setjmp(cstate->top_ctx))
3858 		return (NULL);
3859 
3860 	/*
3861 	 * Check whether this is an LLC frame.
3862 	 */
3863 	b0 = gen_llc_internal(cstate);
3864 
3865 	/*
3866 	 * Now check for an S frame with the appropriate type.
3867 	 */
3868 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK);
3869 	gen_and(b0, b1);
3870 	return b1;
3871 }
3872 
3873 struct block *
gen_llc_u_subtype(compiler_state_t * cstate,bpf_u_int32 subtype)3874 gen_llc_u_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3875 {
3876 	struct block *b0, *b1;
3877 
3878 	/*
3879 	 * Catch errors reported by us and routines below us, and return NULL
3880 	 * on an error.
3881 	 */
3882 	if (setjmp(cstate->top_ctx))
3883 		return (NULL);
3884 
3885 	/*
3886 	 * Check whether this is an LLC frame.
3887 	 */
3888 	b0 = gen_llc_internal(cstate);
3889 
3890 	/*
3891 	 * Now check for a U frame with the appropriate type.
3892 	 */
3893 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK);
3894 	gen_and(b0, b1);
3895 	return b1;
3896 }
3897 
3898 /*
3899  * Generate code to match a particular packet type, for link-layer types
3900  * using 802.2 LLC headers.
3901  *
3902  * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3903  * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3904  *
3905  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3906  * value, if <= ETHERMTU.  We use that to determine whether to
3907  * match the DSAP or both DSAP and LSAP or to check the OUI and
3908  * protocol ID in a SNAP header.
3909  */
3910 static struct block *
gen_llc_linktype(compiler_state_t * cstate,int proto)3911 gen_llc_linktype(compiler_state_t *cstate, int proto)
3912 {
3913 	/*
3914 	 * XXX - handle token-ring variable-length header.
3915 	 */
3916 	switch (proto) {
3917 
3918 	case LLCSAP_IP:
3919 	case LLCSAP_ISONS:
3920 	case LLCSAP_NETBEUI:
3921 		/*
3922 		 * XXX - should we check both the DSAP and the
3923 		 * SSAP, like this, or should we check just the
3924 		 * DSAP, as we do for other SAP values?
3925 		 */
3926 		return gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_u_int32)
3927 			     ((proto << 8) | proto));
3928 
3929 	case LLCSAP_IPX:
3930 		/*
3931 		 * XXX - are there ever SNAP frames for IPX on
3932 		 * non-Ethernet 802.x networks?
3933 		 */
3934 		return gen_cmp(cstate, OR_LLC, 0, BPF_B,
3935 		    (bpf_int32)LLCSAP_IPX);
3936 
3937 	case ETHERTYPE_ATALK:
3938 		/*
3939 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3940 		 * SNAP packets with an organization code of
3941 		 * 0x080007 (Apple, for Appletalk) and a protocol
3942 		 * type of ETHERTYPE_ATALK (Appletalk).
3943 		 *
3944 		 * XXX - check for an organization code of
3945 		 * encapsulated Ethernet as well?
3946 		 */
3947 		return gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
3948 
3949 	default:
3950 		/*
3951 		 * XXX - we don't have to check for IPX 802.3
3952 		 * here, but should we check for the IPX Ethertype?
3953 		 */
3954 		if (proto <= ETHERMTU) {
3955 			/*
3956 			 * This is an LLC SAP value, so check
3957 			 * the DSAP.
3958 			 */
3959 			return gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)proto);
3960 		} else {
3961 			/*
3962 			 * This is an Ethernet type; we assume that it's
3963 			 * unlikely that it'll appear in the right place
3964 			 * at random, and therefore check only the
3965 			 * location that would hold the Ethernet type
3966 			 * in a SNAP frame with an organization code of
3967 			 * 0x000000 (encapsulated Ethernet).
3968 			 *
3969 			 * XXX - if we were to check for the SNAP DSAP and
3970 			 * LSAP, as per XXX, and were also to check for an
3971 			 * organization code of 0x000000 (encapsulated
3972 			 * Ethernet), we'd do
3973 			 *
3974 			 *	return gen_snap(cstate, 0x000000, proto);
3975 			 *
3976 			 * here; for now, we don't, as per the above.
3977 			 * I don't know whether it's worth the extra CPU
3978 			 * time to do the right check or not.
3979 			 */
3980 			return gen_cmp(cstate, OR_LLC, 6, BPF_H, (bpf_int32)proto);
3981 		}
3982 	}
3983 }
3984 
3985 static struct block *
gen_hostop(compiler_state_t * cstate,bpf_u_int32 addr,bpf_u_int32 mask,int dir,int proto,u_int src_off,u_int dst_off)3986 gen_hostop(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
3987     int dir, int proto, u_int src_off, u_int dst_off)
3988 {
3989 	struct block *b0, *b1;
3990 	u_int offset;
3991 
3992 	switch (dir) {
3993 
3994 	case Q_SRC:
3995 		offset = src_off;
3996 		break;
3997 
3998 	case Q_DST:
3999 		offset = dst_off;
4000 		break;
4001 
4002 	case Q_AND:
4003 		b0 = gen_hostop(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
4004 		b1 = gen_hostop(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
4005 		gen_and(b0, b1);
4006 		return b1;
4007 
4008 	case Q_DEFAULT:
4009 	case Q_OR:
4010 		b0 = gen_hostop(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
4011 		b1 = gen_hostop(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
4012 		gen_or(b0, b1);
4013 		return b1;
4014 
4015 	case Q_ADDR1:
4016 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4017 		/*NOTREACHED*/
4018 
4019 	case Q_ADDR2:
4020 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4021 		/*NOTREACHED*/
4022 
4023 	case Q_ADDR3:
4024 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4025 		/*NOTREACHED*/
4026 
4027 	case Q_ADDR4:
4028 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4029 		/*NOTREACHED*/
4030 
4031 	case Q_RA:
4032 		bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4033 		/*NOTREACHED*/
4034 
4035 	case Q_TA:
4036 		bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4037 		/*NOTREACHED*/
4038 
4039 	default:
4040 		abort();
4041 		/*NOTREACHED*/
4042 	}
4043 	b0 = gen_linktype(cstate, proto);
4044 	b1 = gen_mcmp(cstate, OR_LINKPL, offset, BPF_W, (bpf_int32)addr, mask);
4045 	gen_and(b0, b1);
4046 	return b1;
4047 }
4048 
4049 #ifdef INET6
4050 static struct block *
gen_hostop6(compiler_state_t * cstate,struct in6_addr * addr,struct in6_addr * mask,int dir,int proto,u_int src_off,u_int dst_off)4051 gen_hostop6(compiler_state_t *cstate, struct in6_addr *addr,
4052     struct in6_addr *mask, int dir, int proto, u_int src_off, u_int dst_off)
4053 {
4054 	struct block *b0, *b1;
4055 	u_int offset;
4056 	uint32_t *a, *m;
4057 
4058 	switch (dir) {
4059 
4060 	case Q_SRC:
4061 		offset = src_off;
4062 		break;
4063 
4064 	case Q_DST:
4065 		offset = dst_off;
4066 		break;
4067 
4068 	case Q_AND:
4069 		b0 = gen_hostop6(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
4070 		b1 = gen_hostop6(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
4071 		gen_and(b0, b1);
4072 		return b1;
4073 
4074 	case Q_DEFAULT:
4075 	case Q_OR:
4076 		b0 = gen_hostop6(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
4077 		b1 = gen_hostop6(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
4078 		gen_or(b0, b1);
4079 		return b1;
4080 
4081 	case Q_ADDR1:
4082 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4083 		/*NOTREACHED*/
4084 
4085 	case Q_ADDR2:
4086 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4087 		/*NOTREACHED*/
4088 
4089 	case Q_ADDR3:
4090 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4091 		/*NOTREACHED*/
4092 
4093 	case Q_ADDR4:
4094 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4095 		/*NOTREACHED*/
4096 
4097 	case Q_RA:
4098 		bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4099 		/*NOTREACHED*/
4100 
4101 	case Q_TA:
4102 		bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4103 		/*NOTREACHED*/
4104 
4105 	default:
4106 		abort();
4107 		/*NOTREACHED*/
4108 	}
4109 	/* this order is important */
4110 	a = (uint32_t *)addr;
4111 	m = (uint32_t *)mask;
4112 	b1 = gen_mcmp(cstate, OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
4113 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
4114 	gen_and(b0, b1);
4115 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
4116 	gen_and(b0, b1);
4117 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
4118 	gen_and(b0, b1);
4119 	b0 = gen_linktype(cstate, proto);
4120 	gen_and(b0, b1);
4121 	return b1;
4122 }
4123 #endif
4124 
4125 static struct block *
gen_ehostop(compiler_state_t * cstate,const u_char * eaddr,int dir)4126 gen_ehostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4127 {
4128 	register struct block *b0, *b1;
4129 
4130 	switch (dir) {
4131 	case Q_SRC:
4132 		return gen_bcmp(cstate, OR_LINKHDR, 6, 6, eaddr);
4133 
4134 	case Q_DST:
4135 		return gen_bcmp(cstate, OR_LINKHDR, 0, 6, eaddr);
4136 
4137 	case Q_AND:
4138 		b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4139 		b1 = gen_ehostop(cstate, eaddr, Q_DST);
4140 		gen_and(b0, b1);
4141 		return b1;
4142 
4143 	case Q_DEFAULT:
4144 	case Q_OR:
4145 		b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4146 		b1 = gen_ehostop(cstate, eaddr, Q_DST);
4147 		gen_or(b0, b1);
4148 		return b1;
4149 
4150 	case Q_ADDR1:
4151 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11 with 802.11 headers");
4152 		/*NOTREACHED*/
4153 
4154 	case Q_ADDR2:
4155 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11 with 802.11 headers");
4156 		/*NOTREACHED*/
4157 
4158 	case Q_ADDR3:
4159 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11 with 802.11 headers");
4160 		/*NOTREACHED*/
4161 
4162 	case Q_ADDR4:
4163 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11 with 802.11 headers");
4164 		/*NOTREACHED*/
4165 
4166 	case Q_RA:
4167 		bpf_error(cstate, "'ra' is only supported on 802.11 with 802.11 headers");
4168 		/*NOTREACHED*/
4169 
4170 	case Q_TA:
4171 		bpf_error(cstate, "'ta' is only supported on 802.11 with 802.11 headers");
4172 		/*NOTREACHED*/
4173 	}
4174 	abort();
4175 	/*NOTREACHED*/
4176 }
4177 
4178 /*
4179  * Like gen_ehostop, but for DLT_FDDI
4180  */
4181 static struct block *
gen_fhostop(compiler_state_t * cstate,const u_char * eaddr,int dir)4182 gen_fhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4183 {
4184 	struct block *b0, *b1;
4185 
4186 	switch (dir) {
4187 	case Q_SRC:
4188 		return gen_bcmp(cstate, OR_LINKHDR, 6 + 1 + cstate->pcap_fddipad, 6, eaddr);
4189 
4190 	case Q_DST:
4191 		return gen_bcmp(cstate, OR_LINKHDR, 0 + 1 + cstate->pcap_fddipad, 6, eaddr);
4192 
4193 	case Q_AND:
4194 		b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4195 		b1 = gen_fhostop(cstate, eaddr, Q_DST);
4196 		gen_and(b0, b1);
4197 		return b1;
4198 
4199 	case Q_DEFAULT:
4200 	case Q_OR:
4201 		b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4202 		b1 = gen_fhostop(cstate, eaddr, Q_DST);
4203 		gen_or(b0, b1);
4204 		return b1;
4205 
4206 	case Q_ADDR1:
4207 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4208 		/*NOTREACHED*/
4209 
4210 	case Q_ADDR2:
4211 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4212 		/*NOTREACHED*/
4213 
4214 	case Q_ADDR3:
4215 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4216 		/*NOTREACHED*/
4217 
4218 	case Q_ADDR4:
4219 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4220 		/*NOTREACHED*/
4221 
4222 	case Q_RA:
4223 		bpf_error(cstate, "'ra' is only supported on 802.11");
4224 		/*NOTREACHED*/
4225 
4226 	case Q_TA:
4227 		bpf_error(cstate, "'ta' is only supported on 802.11");
4228 		/*NOTREACHED*/
4229 	}
4230 	abort();
4231 	/*NOTREACHED*/
4232 }
4233 
4234 /*
4235  * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4236  */
4237 static struct block *
gen_thostop(compiler_state_t * cstate,const u_char * eaddr,int dir)4238 gen_thostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4239 {
4240 	register struct block *b0, *b1;
4241 
4242 	switch (dir) {
4243 	case Q_SRC:
4244 		return gen_bcmp(cstate, OR_LINKHDR, 8, 6, eaddr);
4245 
4246 	case Q_DST:
4247 		return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4248 
4249 	case Q_AND:
4250 		b0 = gen_thostop(cstate, eaddr, Q_SRC);
4251 		b1 = gen_thostop(cstate, eaddr, Q_DST);
4252 		gen_and(b0, b1);
4253 		return b1;
4254 
4255 	case Q_DEFAULT:
4256 	case Q_OR:
4257 		b0 = gen_thostop(cstate, eaddr, Q_SRC);
4258 		b1 = gen_thostop(cstate, eaddr, Q_DST);
4259 		gen_or(b0, b1);
4260 		return b1;
4261 
4262 	case Q_ADDR1:
4263 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4264 		/*NOTREACHED*/
4265 
4266 	case Q_ADDR2:
4267 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4268 		/*NOTREACHED*/
4269 
4270 	case Q_ADDR3:
4271 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4272 		/*NOTREACHED*/
4273 
4274 	case Q_ADDR4:
4275 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4276 		/*NOTREACHED*/
4277 
4278 	case Q_RA:
4279 		bpf_error(cstate, "'ra' is only supported on 802.11");
4280 		/*NOTREACHED*/
4281 
4282 	case Q_TA:
4283 		bpf_error(cstate, "'ta' is only supported on 802.11");
4284 		/*NOTREACHED*/
4285 	}
4286 	abort();
4287 	/*NOTREACHED*/
4288 }
4289 
4290 /*
4291  * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4292  * various 802.11 + radio headers.
4293  */
4294 static struct block *
gen_wlanhostop(compiler_state_t * cstate,const u_char * eaddr,int dir)4295 gen_wlanhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4296 {
4297 	register struct block *b0, *b1, *b2;
4298 	register struct slist *s;
4299 
4300 #ifdef ENABLE_WLAN_FILTERING_PATCH
4301 	/*
4302 	 * TODO GV 20070613
4303 	 * We need to disable the optimizer because the optimizer is buggy
4304 	 * and wipes out some LD instructions generated by the below
4305 	 * code to validate the Frame Control bits
4306 	 */
4307 	cstate->no_optimize = 1;
4308 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4309 
4310 	switch (dir) {
4311 	case Q_SRC:
4312 		/*
4313 		 * Oh, yuk.
4314 		 *
4315 		 *	For control frames, there is no SA.
4316 		 *
4317 		 *	For management frames, SA is at an
4318 		 *	offset of 10 from the beginning of
4319 		 *	the packet.
4320 		 *
4321 		 *	For data frames, SA is at an offset
4322 		 *	of 10 from the beginning of the packet
4323 		 *	if From DS is clear, at an offset of
4324 		 *	16 from the beginning of the packet
4325 		 *	if From DS is set and To DS is clear,
4326 		 *	and an offset of 24 from the beginning
4327 		 *	of the packet if From DS is set and To DS
4328 		 *	is set.
4329 		 */
4330 
4331 		/*
4332 		 * Generate the tests to be done for data frames
4333 		 * with From DS set.
4334 		 *
4335 		 * First, check for To DS set, i.e. check "link[1] & 0x01".
4336 		 */
4337 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4338 		b1 = new_block(cstate, JMP(BPF_JSET));
4339 		b1->s.k = 0x01;	/* To DS */
4340 		b1->stmts = s;
4341 
4342 		/*
4343 		 * If To DS is set, the SA is at 24.
4344 		 */
4345 		b0 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4346 		gen_and(b1, b0);
4347 
4348 		/*
4349 		 * Now, check for To DS not set, i.e. check
4350 		 * "!(link[1] & 0x01)".
4351 		 */
4352 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4353 		b2 = new_block(cstate, JMP(BPF_JSET));
4354 		b2->s.k = 0x01;	/* To DS */
4355 		b2->stmts = s;
4356 		gen_not(b2);
4357 
4358 		/*
4359 		 * If To DS is not set, the SA is at 16.
4360 		 */
4361 		b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4362 		gen_and(b2, b1);
4363 
4364 		/*
4365 		 * Now OR together the last two checks.  That gives
4366 		 * the complete set of checks for data frames with
4367 		 * From DS set.
4368 		 */
4369 		gen_or(b1, b0);
4370 
4371 		/*
4372 		 * Now check for From DS being set, and AND that with
4373 		 * the ORed-together checks.
4374 		 */
4375 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4376 		b1 = new_block(cstate, JMP(BPF_JSET));
4377 		b1->s.k = 0x02;	/* From DS */
4378 		b1->stmts = s;
4379 		gen_and(b1, b0);
4380 
4381 		/*
4382 		 * Now check for data frames with From DS not set.
4383 		 */
4384 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4385 		b2 = new_block(cstate, JMP(BPF_JSET));
4386 		b2->s.k = 0x02;	/* From DS */
4387 		b2->stmts = s;
4388 		gen_not(b2);
4389 
4390 		/*
4391 		 * If From DS isn't set, the SA is at 10.
4392 		 */
4393 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4394 		gen_and(b2, b1);
4395 
4396 		/*
4397 		 * Now OR together the checks for data frames with
4398 		 * From DS not set and for data frames with From DS
4399 		 * set; that gives the checks done for data frames.
4400 		 */
4401 		gen_or(b1, b0);
4402 
4403 		/*
4404 		 * Now check for a data frame.
4405 		 * I.e, check "link[0] & 0x08".
4406 		 */
4407 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4408 		b1 = new_block(cstate, JMP(BPF_JSET));
4409 		b1->s.k = 0x08;
4410 		b1->stmts = s;
4411 
4412 		/*
4413 		 * AND that with the checks done for data frames.
4414 		 */
4415 		gen_and(b1, b0);
4416 
4417 		/*
4418 		 * If the high-order bit of the type value is 0, this
4419 		 * is a management frame.
4420 		 * I.e, check "!(link[0] & 0x08)".
4421 		 */
4422 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4423 		b2 = new_block(cstate, JMP(BPF_JSET));
4424 		b2->s.k = 0x08;
4425 		b2->stmts = s;
4426 		gen_not(b2);
4427 
4428 		/*
4429 		 * For management frames, the SA is at 10.
4430 		 */
4431 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4432 		gen_and(b2, b1);
4433 
4434 		/*
4435 		 * OR that with the checks done for data frames.
4436 		 * That gives the checks done for management and
4437 		 * data frames.
4438 		 */
4439 		gen_or(b1, b0);
4440 
4441 		/*
4442 		 * If the low-order bit of the type value is 1,
4443 		 * this is either a control frame or a frame
4444 		 * with a reserved type, and thus not a
4445 		 * frame with an SA.
4446 		 *
4447 		 * I.e., check "!(link[0] & 0x04)".
4448 		 */
4449 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4450 		b1 = new_block(cstate, JMP(BPF_JSET));
4451 		b1->s.k = 0x04;
4452 		b1->stmts = s;
4453 		gen_not(b1);
4454 
4455 		/*
4456 		 * AND that with the checks for data and management
4457 		 * frames.
4458 		 */
4459 		gen_and(b1, b0);
4460 		return b0;
4461 
4462 	case Q_DST:
4463 		/*
4464 		 * Oh, yuk.
4465 		 *
4466 		 *	For control frames, there is no DA.
4467 		 *
4468 		 *	For management frames, DA is at an
4469 		 *	offset of 4 from the beginning of
4470 		 *	the packet.
4471 		 *
4472 		 *	For data frames, DA is at an offset
4473 		 *	of 4 from the beginning of the packet
4474 		 *	if To DS is clear and at an offset of
4475 		 *	16 from the beginning of the packet
4476 		 *	if To DS is set.
4477 		 */
4478 
4479 		/*
4480 		 * Generate the tests to be done for data frames.
4481 		 *
4482 		 * First, check for To DS set, i.e. "link[1] & 0x01".
4483 		 */
4484 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4485 		b1 = new_block(cstate, JMP(BPF_JSET));
4486 		b1->s.k = 0x01;	/* To DS */
4487 		b1->stmts = s;
4488 
4489 		/*
4490 		 * If To DS is set, the DA is at 16.
4491 		 */
4492 		b0 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4493 		gen_and(b1, b0);
4494 
4495 		/*
4496 		 * Now, check for To DS not set, i.e. check
4497 		 * "!(link[1] & 0x01)".
4498 		 */
4499 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4500 		b2 = new_block(cstate, JMP(BPF_JSET));
4501 		b2->s.k = 0x01;	/* To DS */
4502 		b2->stmts = s;
4503 		gen_not(b2);
4504 
4505 		/*
4506 		 * If To DS is not set, the DA is at 4.
4507 		 */
4508 		b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4509 		gen_and(b2, b1);
4510 
4511 		/*
4512 		 * Now OR together the last two checks.  That gives
4513 		 * the complete set of checks for data frames.
4514 		 */
4515 		gen_or(b1, b0);
4516 
4517 		/*
4518 		 * Now check for a data frame.
4519 		 * I.e, check "link[0] & 0x08".
4520 		 */
4521 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4522 		b1 = new_block(cstate, JMP(BPF_JSET));
4523 		b1->s.k = 0x08;
4524 		b1->stmts = s;
4525 
4526 		/*
4527 		 * AND that with the checks done for data frames.
4528 		 */
4529 		gen_and(b1, b0);
4530 
4531 		/*
4532 		 * If the high-order bit of the type value is 0, this
4533 		 * is a management frame.
4534 		 * I.e, check "!(link[0] & 0x08)".
4535 		 */
4536 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4537 		b2 = new_block(cstate, JMP(BPF_JSET));
4538 		b2->s.k = 0x08;
4539 		b2->stmts = s;
4540 		gen_not(b2);
4541 
4542 		/*
4543 		 * For management frames, the DA is at 4.
4544 		 */
4545 		b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4546 		gen_and(b2, b1);
4547 
4548 		/*
4549 		 * OR that with the checks done for data frames.
4550 		 * That gives the checks done for management and
4551 		 * data frames.
4552 		 */
4553 		gen_or(b1, b0);
4554 
4555 		/*
4556 		 * If the low-order bit of the type value is 1,
4557 		 * this is either a control frame or a frame
4558 		 * with a reserved type, and thus not a
4559 		 * frame with an SA.
4560 		 *
4561 		 * I.e., check "!(link[0] & 0x04)".
4562 		 */
4563 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4564 		b1 = new_block(cstate, JMP(BPF_JSET));
4565 		b1->s.k = 0x04;
4566 		b1->stmts = s;
4567 		gen_not(b1);
4568 
4569 		/*
4570 		 * AND that with the checks for data and management
4571 		 * frames.
4572 		 */
4573 		gen_and(b1, b0);
4574 		return b0;
4575 
4576 	case Q_AND:
4577 		b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4578 		b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4579 		gen_and(b0, b1);
4580 		return b1;
4581 
4582 	case Q_DEFAULT:
4583 	case Q_OR:
4584 		b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4585 		b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4586 		gen_or(b0, b1);
4587 		return b1;
4588 
4589 	/*
4590 	 * XXX - add BSSID keyword?
4591 	 */
4592 	case Q_ADDR1:
4593 		return (gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr));
4594 
4595 	case Q_ADDR2:
4596 		/*
4597 		 * Not present in CTS or ACK control frames.
4598 		 */
4599 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4600 			IEEE80211_FC0_TYPE_MASK);
4601 		gen_not(b0);
4602 		b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4603 			IEEE80211_FC0_SUBTYPE_MASK);
4604 		gen_not(b1);
4605 		b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4606 			IEEE80211_FC0_SUBTYPE_MASK);
4607 		gen_not(b2);
4608 		gen_and(b1, b2);
4609 		gen_or(b0, b2);
4610 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4611 		gen_and(b2, b1);
4612 		return b1;
4613 
4614 	case Q_ADDR3:
4615 		/*
4616 		 * Not present in control frames.
4617 		 */
4618 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4619 			IEEE80211_FC0_TYPE_MASK);
4620 		gen_not(b0);
4621 		b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4622 		gen_and(b0, b1);
4623 		return b1;
4624 
4625 	case Q_ADDR4:
4626 		/*
4627 		 * Present only if the direction mask has both "From DS"
4628 		 * and "To DS" set.  Neither control frames nor management
4629 		 * frames should have both of those set, so we don't
4630 		 * check the frame type.
4631 		 */
4632 		b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B,
4633 			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4634 		b1 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4635 		gen_and(b0, b1);
4636 		return b1;
4637 
4638 	case Q_RA:
4639 		/*
4640 		 * Not present in management frames; addr1 in other
4641 		 * frames.
4642 		 */
4643 
4644 		/*
4645 		 * If the high-order bit of the type value is 0, this
4646 		 * is a management frame.
4647 		 * I.e, check "(link[0] & 0x08)".
4648 		 */
4649 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4650 		b1 = new_block(cstate, JMP(BPF_JSET));
4651 		b1->s.k = 0x08;
4652 		b1->stmts = s;
4653 
4654 		/*
4655 		 * Check addr1.
4656 		 */
4657 		b0 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4658 
4659 		/*
4660 		 * AND that with the check of addr1.
4661 		 */
4662 		gen_and(b1, b0);
4663 		return (b0);
4664 
4665 	case Q_TA:
4666 		/*
4667 		 * Not present in management frames; addr2, if present,
4668 		 * in other frames.
4669 		 */
4670 
4671 		/*
4672 		 * Not present in CTS or ACK control frames.
4673 		 */
4674 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4675 			IEEE80211_FC0_TYPE_MASK);
4676 		gen_not(b0);
4677 		b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4678 			IEEE80211_FC0_SUBTYPE_MASK);
4679 		gen_not(b1);
4680 		b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4681 			IEEE80211_FC0_SUBTYPE_MASK);
4682 		gen_not(b2);
4683 		gen_and(b1, b2);
4684 		gen_or(b0, b2);
4685 
4686 		/*
4687 		 * If the high-order bit of the type value is 0, this
4688 		 * is a management frame.
4689 		 * I.e, check "(link[0] & 0x08)".
4690 		 */
4691 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4692 		b1 = new_block(cstate, JMP(BPF_JSET));
4693 		b1->s.k = 0x08;
4694 		b1->stmts = s;
4695 
4696 		/*
4697 		 * AND that with the check for frames other than
4698 		 * CTS and ACK frames.
4699 		 */
4700 		gen_and(b1, b2);
4701 
4702 		/*
4703 		 * Check addr2.
4704 		 */
4705 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4706 		gen_and(b2, b1);
4707 		return b1;
4708 	}
4709 	abort();
4710 	/*NOTREACHED*/
4711 }
4712 
4713 /*
4714  * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4715  * (We assume that the addresses are IEEE 48-bit MAC addresses,
4716  * as the RFC states.)
4717  */
4718 static struct block *
gen_ipfchostop(compiler_state_t * cstate,const u_char * eaddr,int dir)4719 gen_ipfchostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4720 {
4721 	register struct block *b0, *b1;
4722 
4723 	switch (dir) {
4724 	case Q_SRC:
4725 		return gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4726 
4727 	case Q_DST:
4728 		return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4729 
4730 	case Q_AND:
4731 		b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4732 		b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4733 		gen_and(b0, b1);
4734 		return b1;
4735 
4736 	case Q_DEFAULT:
4737 	case Q_OR:
4738 		b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4739 		b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4740 		gen_or(b0, b1);
4741 		return b1;
4742 
4743 	case Q_ADDR1:
4744 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4745 		/*NOTREACHED*/
4746 
4747 	case Q_ADDR2:
4748 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4749 		/*NOTREACHED*/
4750 
4751 	case Q_ADDR3:
4752 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4753 		/*NOTREACHED*/
4754 
4755 	case Q_ADDR4:
4756 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4757 		/*NOTREACHED*/
4758 
4759 	case Q_RA:
4760 		bpf_error(cstate, "'ra' is only supported on 802.11");
4761 		/*NOTREACHED*/
4762 
4763 	case Q_TA:
4764 		bpf_error(cstate, "'ta' is only supported on 802.11");
4765 		/*NOTREACHED*/
4766 	}
4767 	abort();
4768 	/*NOTREACHED*/
4769 }
4770 
4771 /*
4772  * This is quite tricky because there may be pad bytes in front of the
4773  * DECNET header, and then there are two possible data packet formats that
4774  * carry both src and dst addresses, plus 5 packet types in a format that
4775  * carries only the src node, plus 2 types that use a different format and
4776  * also carry just the src node.
4777  *
4778  * Yuck.
4779  *
4780  * Instead of doing those all right, we just look for data packets with
4781  * 0 or 1 bytes of padding.  If you want to look at other packets, that
4782  * will require a lot more hacking.
4783  *
4784  * To add support for filtering on DECNET "areas" (network numbers)
4785  * one would want to add a "mask" argument to this routine.  That would
4786  * make the filter even more inefficient, although one could be clever
4787  * and not generate masking instructions if the mask is 0xFFFF.
4788  */
4789 static struct block *
gen_dnhostop(compiler_state_t * cstate,bpf_u_int32 addr,int dir)4790 gen_dnhostop(compiler_state_t *cstate, bpf_u_int32 addr, int dir)
4791 {
4792 	struct block *b0, *b1, *b2, *tmp;
4793 	u_int offset_lh;	/* offset if long header is received */
4794 	u_int offset_sh;	/* offset if short header is received */
4795 
4796 	switch (dir) {
4797 
4798 	case Q_DST:
4799 		offset_sh = 1;	/* follows flags */
4800 		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
4801 		break;
4802 
4803 	case Q_SRC:
4804 		offset_sh = 3;	/* follows flags, dstnode */
4805 		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4806 		break;
4807 
4808 	case Q_AND:
4809 		/* Inefficient because we do our Calvinball dance twice */
4810 		b0 = gen_dnhostop(cstate, addr, Q_SRC);
4811 		b1 = gen_dnhostop(cstate, addr, Q_DST);
4812 		gen_and(b0, b1);
4813 		return b1;
4814 
4815 	case Q_DEFAULT:
4816 	case Q_OR:
4817 		/* Inefficient because we do our Calvinball dance twice */
4818 		b0 = gen_dnhostop(cstate, addr, Q_SRC);
4819 		b1 = gen_dnhostop(cstate, addr, Q_DST);
4820 		gen_or(b0, b1);
4821 		return b1;
4822 
4823 	case Q_ADDR1:
4824 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4825 		/*NOTREACHED*/
4826 
4827 	case Q_ADDR2:
4828 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4829 		/*NOTREACHED*/
4830 
4831 	case Q_ADDR3:
4832 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4833 		/*NOTREACHED*/
4834 
4835 	case Q_ADDR4:
4836 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4837 		/*NOTREACHED*/
4838 
4839 	case Q_RA:
4840 		bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4841 		/*NOTREACHED*/
4842 
4843 	case Q_TA:
4844 		bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4845 		/*NOTREACHED*/
4846 
4847 	default:
4848 		abort();
4849 		/*NOTREACHED*/
4850 	}
4851 	b0 = gen_linktype(cstate, ETHERTYPE_DN);
4852 	/* Check for pad = 1, long header case */
4853 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4854 	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
4855 	b1 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_lh,
4856 	    BPF_H, (bpf_int32)ntohs((u_short)addr));
4857 	gen_and(tmp, b1);
4858 	/* Check for pad = 0, long header case */
4859 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
4860 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4861 	gen_and(tmp, b2);
4862 	gen_or(b2, b1);
4863 	/* Check for pad = 1, short header case */
4864 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4865 	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
4866 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4867 	gen_and(tmp, b2);
4868 	gen_or(b2, b1);
4869 	/* Check for pad = 0, short header case */
4870 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
4871 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4872 	gen_and(tmp, b2);
4873 	gen_or(b2, b1);
4874 
4875 	/* Combine with test for cstate->linktype */
4876 	gen_and(b0, b1);
4877 	return b1;
4878 }
4879 
4880 /*
4881  * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4882  * test the bottom-of-stack bit, and then check the version number
4883  * field in the IP header.
4884  */
4885 static struct block *
gen_mpls_linktype(compiler_state_t * cstate,int proto)4886 gen_mpls_linktype(compiler_state_t *cstate, int proto)
4887 {
4888 	struct block *b0, *b1;
4889 
4890         switch (proto) {
4891 
4892         case Q_IP:
4893                 /* match the bottom-of-stack bit */
4894                 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4895                 /* match the IPv4 version number */
4896                 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x40, 0xf0);
4897                 gen_and(b0, b1);
4898                 return b1;
4899 
4900        case Q_IPV6:
4901                 /* match the bottom-of-stack bit */
4902                 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4903                 /* match the IPv4 version number */
4904                 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x60, 0xf0);
4905                 gen_and(b0, b1);
4906                 return b1;
4907 
4908        default:
4909                 abort();
4910         }
4911 }
4912 
4913 static struct block *
gen_host(compiler_state_t * cstate,bpf_u_int32 addr,bpf_u_int32 mask,int proto,int dir,int type)4914 gen_host(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4915     int proto, int dir, int type)
4916 {
4917 	struct block *b0, *b1;
4918 	const char *typestr;
4919 
4920 	if (type == Q_NET)
4921 		typestr = "net";
4922 	else
4923 		typestr = "host";
4924 
4925 	switch (proto) {
4926 
4927 	case Q_DEFAULT:
4928 		b0 = gen_host(cstate, addr, mask, Q_IP, dir, type);
4929 		/*
4930 		 * Only check for non-IPv4 addresses if we're not
4931 		 * checking MPLS-encapsulated packets.
4932 		 */
4933 		if (cstate->label_stack_depth == 0) {
4934 			b1 = gen_host(cstate, addr, mask, Q_ARP, dir, type);
4935 			gen_or(b0, b1);
4936 			b0 = gen_host(cstate, addr, mask, Q_RARP, dir, type);
4937 			gen_or(b1, b0);
4938 		}
4939 		return b0;
4940 
4941 	case Q_LINK:
4942 		bpf_error(cstate, "link-layer modifier applied to %s", typestr);
4943 
4944 	case Q_IP:
4945 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_IP, 12, 16);
4946 
4947 	case Q_RARP:
4948 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4949 
4950 	case Q_ARP:
4951 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4952 
4953 	case Q_SCTP:
4954 		bpf_error(cstate, "'sctp' modifier applied to %s", typestr);
4955 
4956 	case Q_TCP:
4957 		bpf_error(cstate, "'tcp' modifier applied to %s", typestr);
4958 
4959 	case Q_UDP:
4960 		bpf_error(cstate, "'udp' modifier applied to %s", typestr);
4961 
4962 	case Q_ICMP:
4963 		bpf_error(cstate, "'icmp' modifier applied to %s", typestr);
4964 
4965 	case Q_IGMP:
4966 		bpf_error(cstate, "'igmp' modifier applied to %s", typestr);
4967 
4968 	case Q_IGRP:
4969 		bpf_error(cstate, "'igrp' modifier applied to %s", typestr);
4970 
4971 	case Q_ATALK:
4972 		bpf_error(cstate, "AppleTalk host filtering not implemented");
4973 
4974 	case Q_DECNET:
4975 		return gen_dnhostop(cstate, addr, dir);
4976 
4977 	case Q_LAT:
4978 		bpf_error(cstate, "LAT host filtering not implemented");
4979 
4980 	case Q_SCA:
4981 		bpf_error(cstate, "SCA host filtering not implemented");
4982 
4983 	case Q_MOPRC:
4984 		bpf_error(cstate, "MOPRC host filtering not implemented");
4985 
4986 	case Q_MOPDL:
4987 		bpf_error(cstate, "MOPDL host filtering not implemented");
4988 
4989 	case Q_IPV6:
4990 		bpf_error(cstate, "'ip6' modifier applied to ip host");
4991 
4992 	case Q_ICMPV6:
4993 		bpf_error(cstate, "'icmp6' modifier applied to %s", typestr);
4994 
4995 	case Q_AH:
4996 		bpf_error(cstate, "'ah' modifier applied to %s", typestr);
4997 
4998 	case Q_ESP:
4999 		bpf_error(cstate, "'esp' modifier applied to %s", typestr);
5000 
5001 	case Q_PIM:
5002 		bpf_error(cstate, "'pim' modifier applied to %s", typestr);
5003 
5004 	case Q_VRRP:
5005 		bpf_error(cstate, "'vrrp' modifier applied to %s", typestr);
5006 
5007 	case Q_AARP:
5008 		bpf_error(cstate, "AARP host filtering not implemented");
5009 
5010 	case Q_ISO:
5011 		bpf_error(cstate, "ISO host filtering not implemented");
5012 
5013 	case Q_ESIS:
5014 		bpf_error(cstate, "'esis' modifier applied to %s", typestr);
5015 
5016 	case Q_ISIS:
5017 		bpf_error(cstate, "'isis' modifier applied to %s", typestr);
5018 
5019 	case Q_CLNP:
5020 		bpf_error(cstate, "'clnp' modifier applied to %s", typestr);
5021 
5022 	case Q_STP:
5023 		bpf_error(cstate, "'stp' modifier applied to %s", typestr);
5024 
5025 	case Q_IPX:
5026 		bpf_error(cstate, "IPX host filtering not implemented");
5027 
5028 	case Q_NETBEUI:
5029 		bpf_error(cstate, "'netbeui' modifier applied to %s", typestr);
5030 
5031 	case Q_ISIS_L1:
5032 		bpf_error(cstate, "'l1' modifier applied to %s", typestr);
5033 
5034 	case Q_ISIS_L2:
5035 		bpf_error(cstate, "'l2' modifier applied to %s", typestr);
5036 
5037 	case Q_ISIS_IIH:
5038 		bpf_error(cstate, "'iih' modifier applied to %s", typestr);
5039 
5040 	case Q_ISIS_SNP:
5041 		bpf_error(cstate, "'snp' modifier applied to %s", typestr);
5042 
5043 	case Q_ISIS_CSNP:
5044 		bpf_error(cstate, "'csnp' modifier applied to %s", typestr);
5045 
5046 	case Q_ISIS_PSNP:
5047 		bpf_error(cstate, "'psnp' modifier applied to %s", typestr);
5048 
5049 	case Q_ISIS_LSP:
5050 		bpf_error(cstate, "'lsp' modifier applied to %s", typestr);
5051 
5052 	case Q_RADIO:
5053 		bpf_error(cstate, "'radio' modifier applied to %s", typestr);
5054 
5055 	case Q_CARP:
5056 		bpf_error(cstate, "'carp' modifier applied to %s", typestr);
5057 
5058 	default:
5059 		abort();
5060 	}
5061 	/*NOTREACHED*/
5062 }
5063 
5064 #ifdef INET6
5065 static struct block *
gen_host6(compiler_state_t * cstate,struct in6_addr * addr,struct in6_addr * mask,int proto,int dir,int type)5066 gen_host6(compiler_state_t *cstate, struct in6_addr *addr,
5067     struct in6_addr *mask, int proto, int dir, int type)
5068 {
5069 	const char *typestr;
5070 
5071 	if (type == Q_NET)
5072 		typestr = "net";
5073 	else
5074 		typestr = "host";
5075 
5076 	switch (proto) {
5077 
5078 	case Q_DEFAULT:
5079 		return gen_host6(cstate, addr, mask, Q_IPV6, dir, type);
5080 
5081 	case Q_LINK:
5082 		bpf_error(cstate, "link-layer modifier applied to ip6 %s", typestr);
5083 
5084 	case Q_IP:
5085 		bpf_error(cstate, "'ip' modifier applied to ip6 %s", typestr);
5086 
5087 	case Q_RARP:
5088 		bpf_error(cstate, "'rarp' modifier applied to ip6 %s", typestr);
5089 
5090 	case Q_ARP:
5091 		bpf_error(cstate, "'arp' modifier applied to ip6 %s", typestr);
5092 
5093 	case Q_SCTP:
5094 		bpf_error(cstate, "'sctp' modifier applied to ip6 %s", typestr);
5095 
5096 	case Q_TCP:
5097 		bpf_error(cstate, "'tcp' modifier applied to ip6 %s", typestr);
5098 
5099 	case Q_UDP:
5100 		bpf_error(cstate, "'udp' modifier applied to ip6 %s", typestr);
5101 
5102 	case Q_ICMP:
5103 		bpf_error(cstate, "'icmp' modifier applied to ip6 %s", typestr);
5104 
5105 	case Q_IGMP:
5106 		bpf_error(cstate, "'igmp' modifier applied to ip6 %s", typestr);
5107 
5108 	case Q_IGRP:
5109 		bpf_error(cstate, "'igrp' modifier applied to ip6 %s", typestr);
5110 
5111 	case Q_ATALK:
5112 		bpf_error(cstate, "AppleTalk modifier applied to ip6 %s", typestr);
5113 
5114 	case Q_DECNET:
5115 		bpf_error(cstate, "'decnet' modifier applied to ip6 %s", typestr);
5116 
5117 	case Q_LAT:
5118 		bpf_error(cstate, "'lat' modifier applied to ip6 %s", typestr);
5119 
5120 	case Q_SCA:
5121 		bpf_error(cstate, "'sca' modifier applied to ip6 %s", typestr);
5122 
5123 	case Q_MOPRC:
5124 		bpf_error(cstate, "'moprc' modifier applied to ip6 %s", typestr);
5125 
5126 	case Q_MOPDL:
5127 		bpf_error(cstate, "'mopdl' modifier applied to ip6 %s", typestr);
5128 
5129 	case Q_IPV6:
5130 		return gen_hostop6(cstate, addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
5131 
5132 	case Q_ICMPV6:
5133 		bpf_error(cstate, "'icmp6' modifier applied to ip6 %s", typestr);
5134 
5135 	case Q_AH:
5136 		bpf_error(cstate, "'ah' modifier applied to ip6 %s", typestr);
5137 
5138 	case Q_ESP:
5139 		bpf_error(cstate, "'esp' modifier applied to ip6 %s", typestr);
5140 
5141 	case Q_PIM:
5142 		bpf_error(cstate, "'pim' modifier applied to ip6 %s", typestr);
5143 
5144 	case Q_VRRP:
5145 		bpf_error(cstate, "'vrrp' modifier applied to ip6 %s", typestr);
5146 
5147 	case Q_AARP:
5148 		bpf_error(cstate, "'aarp' modifier applied to ip6 %s", typestr);
5149 
5150 	case Q_ISO:
5151 		bpf_error(cstate, "'iso' modifier applied to ip6 %s", typestr);
5152 
5153 	case Q_ESIS:
5154 		bpf_error(cstate, "'esis' modifier applied to ip6 %s", typestr);
5155 
5156 	case Q_ISIS:
5157 		bpf_error(cstate, "'isis' modifier applied to ip6 %s", typestr);
5158 
5159 	case Q_CLNP:
5160 		bpf_error(cstate, "'clnp' modifier applied to ip6 %s", typestr);
5161 
5162 	case Q_STP:
5163 		bpf_error(cstate, "'stp' modifier applied to ip6 %s", typestr);
5164 
5165 	case Q_IPX:
5166 		bpf_error(cstate, "'ipx' modifier applied to ip6 %s", typestr);
5167 
5168 	case Q_NETBEUI:
5169 		bpf_error(cstate, "'netbeui' modifier applied to ip6 %s", typestr);
5170 
5171 	case Q_ISIS_L1:
5172 		bpf_error(cstate, "'l1' modifier applied to ip6 %s", typestr);
5173 
5174 	case Q_ISIS_L2:
5175 		bpf_error(cstate, "'l2' modifier applied to ip6 %s", typestr);
5176 
5177 	case Q_ISIS_IIH:
5178 		bpf_error(cstate, "'iih' modifier applied to ip6 %s", typestr);
5179 
5180 	case Q_ISIS_SNP:
5181 		bpf_error(cstate, "'snp' modifier applied to ip6 %s", typestr);
5182 
5183 	case Q_ISIS_CSNP:
5184 		bpf_error(cstate, "'csnp' modifier applied to ip6 %s", typestr);
5185 
5186 	case Q_ISIS_PSNP:
5187 		bpf_error(cstate, "'psnp' modifier applied to ip6 %s", typestr);
5188 
5189 	case Q_ISIS_LSP:
5190 		bpf_error(cstate, "'lsp' modifier applied to ip6 %s", typestr);
5191 
5192 	case Q_RADIO:
5193 		bpf_error(cstate, "'radio' modifier applied to ip6 %s", typestr);
5194 
5195 	case Q_CARP:
5196 		bpf_error(cstate, "'carp' modifier applied to ip6 %s", typestr);
5197 
5198 	default:
5199 		abort();
5200 	}
5201 	/*NOTREACHED*/
5202 }
5203 #endif
5204 
5205 #ifndef INET6
5206 static struct block *
gen_gateway(compiler_state_t * cstate,const u_char * eaddr,struct addrinfo * alist,int proto,int dir)5207 gen_gateway(compiler_state_t *cstate, const u_char *eaddr,
5208     struct addrinfo *alist, int proto, int dir)
5209 {
5210 	struct block *b0, *b1, *tmp;
5211 	struct addrinfo *ai;
5212 	struct sockaddr_in *sin;
5213 
5214 	if (dir != 0)
5215 		bpf_error(cstate, "direction applied to 'gateway'");
5216 
5217 	switch (proto) {
5218 	case Q_DEFAULT:
5219 	case Q_IP:
5220 	case Q_ARP:
5221 	case Q_RARP:
5222 		switch (cstate->linktype) {
5223 		case DLT_EN10MB:
5224 		case DLT_NETANALYZER:
5225 		case DLT_NETANALYZER_TRANSPARENT:
5226 			b1 = gen_prevlinkhdr_check(cstate);
5227 			b0 = gen_ehostop(cstate, eaddr, Q_OR);
5228 			if (b1 != NULL)
5229 				gen_and(b1, b0);
5230 			break;
5231 		case DLT_FDDI:
5232 			b0 = gen_fhostop(cstate, eaddr, Q_OR);
5233 			break;
5234 		case DLT_IEEE802:
5235 			b0 = gen_thostop(cstate, eaddr, Q_OR);
5236 			break;
5237 		case DLT_IEEE802_11:
5238 		case DLT_PRISM_HEADER:
5239 		case DLT_IEEE802_11_RADIO_AVS:
5240 		case DLT_IEEE802_11_RADIO:
5241 		case DLT_PPI:
5242 			b0 = gen_wlanhostop(cstate, eaddr, Q_OR);
5243 			break;
5244 		case DLT_SUNATM:
5245 			/*
5246 			 * This is LLC-multiplexed traffic; if it were
5247 			 * LANE, cstate->linktype would have been set to
5248 			 * DLT_EN10MB.
5249 			 */
5250 			bpf_error(cstate,
5251 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5252 			break;
5253 		case DLT_IP_OVER_FC:
5254 			b0 = gen_ipfchostop(cstate, eaddr, Q_OR);
5255 			break;
5256 		default:
5257 			bpf_error(cstate,
5258 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5259 		}
5260 		b1 = NULL;
5261 		for (ai = alist; ai != NULL; ai = ai->ai_next) {
5262 			/*
5263 			 * Does it have an address?
5264 			 */
5265 			if (ai->ai_addr != NULL) {
5266 				/*
5267 				 * Yes.  Is it an IPv4 address?
5268 				 */
5269 				if (ai->ai_addr->sa_family == AF_INET) {
5270 					/*
5271 					 * Generate an entry for it.
5272 					 */
5273 					sin = (struct sockaddr_in *)ai->ai_addr;
5274 					tmp = gen_host(cstate,
5275 					    ntohl(sin->sin_addr.s_addr),
5276 					    0xffffffff, proto, Q_OR, Q_HOST);
5277 					/*
5278 					 * Is it the *first* IPv4 address?
5279 					 */
5280 					if (b1 == NULL) {
5281 						/*
5282 						 * Yes, so start with it.
5283 						 */
5284 						b1 = tmp;
5285 					} else {
5286 						/*
5287 						 * No, so OR it into the
5288 						 * existing set of
5289 						 * addresses.
5290 						 */
5291 						gen_or(b1, tmp);
5292 						b1 = tmp;
5293 					}
5294 				}
5295 			}
5296 		}
5297 		if (b1 == NULL) {
5298 			/*
5299 			 * No IPv4 addresses found.
5300 			 */
5301 			return (NULL);
5302 		}
5303 		gen_not(b1);
5304 		gen_and(b0, b1);
5305 		return b1;
5306 	}
5307 	bpf_error(cstate, "illegal modifier of 'gateway'");
5308 	/*NOTREACHED*/
5309 }
5310 #endif
5311 
5312 static struct block *
gen_proto_abbrev_internal(compiler_state_t * cstate,int proto)5313 gen_proto_abbrev_internal(compiler_state_t *cstate, int proto)
5314 {
5315 	struct block *b0;
5316 	struct block *b1;
5317 
5318 	switch (proto) {
5319 
5320 	case Q_SCTP:
5321 		b1 = gen_proto(cstate, IPPROTO_SCTP, Q_IP, Q_DEFAULT);
5322 		b0 = gen_proto(cstate, IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
5323 		gen_or(b0, b1);
5324 		break;
5325 
5326 	case Q_TCP:
5327 		b1 = gen_proto(cstate, IPPROTO_TCP, Q_IP, Q_DEFAULT);
5328 		b0 = gen_proto(cstate, IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
5329 		gen_or(b0, b1);
5330 		break;
5331 
5332 	case Q_UDP:
5333 		b1 = gen_proto(cstate, IPPROTO_UDP, Q_IP, Q_DEFAULT);
5334 		b0 = gen_proto(cstate, IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
5335 		gen_or(b0, b1);
5336 		break;
5337 
5338 	case Q_ICMP:
5339 		b1 = gen_proto(cstate, IPPROTO_ICMP, Q_IP, Q_DEFAULT);
5340 		break;
5341 
5342 #ifndef	IPPROTO_IGMP
5343 #define	IPPROTO_IGMP	2
5344 #endif
5345 
5346 	case Q_IGMP:
5347 		b1 = gen_proto(cstate, IPPROTO_IGMP, Q_IP, Q_DEFAULT);
5348 		break;
5349 
5350 #ifndef	IPPROTO_IGRP
5351 #define	IPPROTO_IGRP	9
5352 #endif
5353 	case Q_IGRP:
5354 		b1 = gen_proto(cstate, IPPROTO_IGRP, Q_IP, Q_DEFAULT);
5355 		break;
5356 
5357 #ifndef IPPROTO_PIM
5358 #define IPPROTO_PIM	103
5359 #endif
5360 
5361 	case Q_PIM:
5362 		b1 = gen_proto(cstate, IPPROTO_PIM, Q_IP, Q_DEFAULT);
5363 		b0 = gen_proto(cstate, IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
5364 		gen_or(b0, b1);
5365 		break;
5366 
5367 #ifndef IPPROTO_VRRP
5368 #define IPPROTO_VRRP	112
5369 #endif
5370 
5371 	case Q_VRRP:
5372 		b1 = gen_proto(cstate, IPPROTO_VRRP, Q_IP, Q_DEFAULT);
5373 		break;
5374 
5375 #ifndef IPPROTO_CARP
5376 #define IPPROTO_CARP	112
5377 #endif
5378 
5379 	case Q_CARP:
5380 		b1 = gen_proto(cstate, IPPROTO_CARP, Q_IP, Q_DEFAULT);
5381 		break;
5382 
5383 	case Q_IP:
5384 		b1 = gen_linktype(cstate, ETHERTYPE_IP);
5385 		break;
5386 
5387 	case Q_ARP:
5388 		b1 = gen_linktype(cstate, ETHERTYPE_ARP);
5389 		break;
5390 
5391 	case Q_RARP:
5392 		b1 = gen_linktype(cstate, ETHERTYPE_REVARP);
5393 		break;
5394 
5395 	case Q_LINK:
5396 		bpf_error(cstate, "link layer applied in wrong context");
5397 
5398 	case Q_ATALK:
5399 		b1 = gen_linktype(cstate, ETHERTYPE_ATALK);
5400 		break;
5401 
5402 	case Q_AARP:
5403 		b1 = gen_linktype(cstate, ETHERTYPE_AARP);
5404 		break;
5405 
5406 	case Q_DECNET:
5407 		b1 = gen_linktype(cstate, ETHERTYPE_DN);
5408 		break;
5409 
5410 	case Q_SCA:
5411 		b1 = gen_linktype(cstate, ETHERTYPE_SCA);
5412 		break;
5413 
5414 	case Q_LAT:
5415 		b1 = gen_linktype(cstate, ETHERTYPE_LAT);
5416 		break;
5417 
5418 	case Q_MOPDL:
5419 		b1 = gen_linktype(cstate, ETHERTYPE_MOPDL);
5420 		break;
5421 
5422 	case Q_MOPRC:
5423 		b1 = gen_linktype(cstate, ETHERTYPE_MOPRC);
5424 		break;
5425 
5426 	case Q_IPV6:
5427 		b1 = gen_linktype(cstate, ETHERTYPE_IPV6);
5428 		break;
5429 
5430 #ifndef IPPROTO_ICMPV6
5431 #define IPPROTO_ICMPV6	58
5432 #endif
5433 	case Q_ICMPV6:
5434 		b1 = gen_proto(cstate, IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
5435 		break;
5436 
5437 #ifndef IPPROTO_AH
5438 #define IPPROTO_AH	51
5439 #endif
5440 	case Q_AH:
5441 		b1 = gen_proto(cstate, IPPROTO_AH, Q_IP, Q_DEFAULT);
5442 		b0 = gen_proto(cstate, IPPROTO_AH, Q_IPV6, Q_DEFAULT);
5443 		gen_or(b0, b1);
5444 		break;
5445 
5446 #ifndef IPPROTO_ESP
5447 #define IPPROTO_ESP	50
5448 #endif
5449 	case Q_ESP:
5450 		b1 = gen_proto(cstate, IPPROTO_ESP, Q_IP, Q_DEFAULT);
5451 		b0 = gen_proto(cstate, IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
5452 		gen_or(b0, b1);
5453 		break;
5454 
5455 	case Q_ISO:
5456 		b1 = gen_linktype(cstate, LLCSAP_ISONS);
5457 		break;
5458 
5459 	case Q_ESIS:
5460 		b1 = gen_proto(cstate, ISO9542_ESIS, Q_ISO, Q_DEFAULT);
5461 		break;
5462 
5463 	case Q_ISIS:
5464 		b1 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5465 		break;
5466 
5467 	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
5468 		b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5469 		b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5470 		gen_or(b0, b1);
5471 		b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5472 		gen_or(b0, b1);
5473 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5474 		gen_or(b0, b1);
5475 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5476 		gen_or(b0, b1);
5477 		break;
5478 
5479 	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
5480 		b0 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5481 		b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5482 		gen_or(b0, b1);
5483 		b0 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5484 		gen_or(b0, b1);
5485 		b0 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5486 		gen_or(b0, b1);
5487 		b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5488 		gen_or(b0, b1);
5489 		break;
5490 
5491 	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
5492 		b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5493 		b1 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5494 		gen_or(b0, b1);
5495 		b0 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
5496 		gen_or(b0, b1);
5497 		break;
5498 
5499 	case Q_ISIS_LSP:
5500 		b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5501 		b1 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5502 		gen_or(b0, b1);
5503 		break;
5504 
5505 	case Q_ISIS_SNP:
5506 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5507 		b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5508 		gen_or(b0, b1);
5509 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5510 		gen_or(b0, b1);
5511 		b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5512 		gen_or(b0, b1);
5513 		break;
5514 
5515 	case Q_ISIS_CSNP:
5516 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5517 		b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5518 		gen_or(b0, b1);
5519 		break;
5520 
5521 	case Q_ISIS_PSNP:
5522 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5523 		b1 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5524 		gen_or(b0, b1);
5525 		break;
5526 
5527 	case Q_CLNP:
5528 		b1 = gen_proto(cstate, ISO8473_CLNP, Q_ISO, Q_DEFAULT);
5529 		break;
5530 
5531 	case Q_STP:
5532 		b1 = gen_linktype(cstate, LLCSAP_8021D);
5533 		break;
5534 
5535 	case Q_IPX:
5536 		b1 = gen_linktype(cstate, LLCSAP_IPX);
5537 		break;
5538 
5539 	case Q_NETBEUI:
5540 		b1 = gen_linktype(cstate, LLCSAP_NETBEUI);
5541 		break;
5542 
5543 	case Q_RADIO:
5544 		bpf_error(cstate, "'radio' is not a valid protocol type");
5545 
5546 	default:
5547 		abort();
5548 	}
5549 	return b1;
5550 }
5551 
5552 struct block *
gen_proto_abbrev(compiler_state_t * cstate,int proto)5553 gen_proto_abbrev(compiler_state_t *cstate, int proto)
5554 {
5555 	/*
5556 	 * Catch errors reported by us and routines below us, and return NULL
5557 	 * on an error.
5558 	 */
5559 	if (setjmp(cstate->top_ctx))
5560 		return (NULL);
5561 
5562 	return gen_proto_abbrev_internal(cstate, proto);
5563 }
5564 
5565 static struct block *
gen_ipfrag(compiler_state_t * cstate)5566 gen_ipfrag(compiler_state_t *cstate)
5567 {
5568 	struct slist *s;
5569 	struct block *b;
5570 
5571 	/* not IPv4 frag other than the first frag */
5572 	s = gen_load_a(cstate, OR_LINKPL, 6, BPF_H);
5573 	b = new_block(cstate, JMP(BPF_JSET));
5574 	b->s.k = 0x1fff;
5575 	b->stmts = s;
5576 	gen_not(b);
5577 
5578 	return b;
5579 }
5580 
5581 /*
5582  * Generate a comparison to a port value in the transport-layer header
5583  * at the specified offset from the beginning of that header.
5584  *
5585  * XXX - this handles a variable-length prefix preceding the link-layer
5586  * header, such as the radiotap or AVS radio prefix, but doesn't handle
5587  * variable-length link-layer headers (such as Token Ring or 802.11
5588  * headers).
5589  */
5590 static struct block *
gen_portatom(compiler_state_t * cstate,int off,bpf_int32 v)5591 gen_portatom(compiler_state_t *cstate, int off, bpf_int32 v)
5592 {
5593 	return gen_cmp(cstate, OR_TRAN_IPV4, off, BPF_H, v);
5594 }
5595 
5596 static struct block *
gen_portatom6(compiler_state_t * cstate,int off,bpf_int32 v)5597 gen_portatom6(compiler_state_t *cstate, int off, bpf_int32 v)
5598 {
5599 	return gen_cmp(cstate, OR_TRAN_IPV6, off, BPF_H, v);
5600 }
5601 
5602 struct block *
gen_portop(compiler_state_t * cstate,int port,int proto,int dir)5603 gen_portop(compiler_state_t *cstate, int port, int proto, int dir)
5604 {
5605 	struct block *b0, *b1, *tmp;
5606 
5607 	/* ip proto 'proto' and not a fragment other than the first fragment */
5608 	tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)proto);
5609 	b0 = gen_ipfrag(cstate);
5610 	gen_and(tmp, b0);
5611 
5612 	switch (dir) {
5613 	case Q_SRC:
5614 		b1 = gen_portatom(cstate, 0, (bpf_int32)port);
5615 		break;
5616 
5617 	case Q_DST:
5618 		b1 = gen_portatom(cstate, 2, (bpf_int32)port);
5619 		break;
5620 
5621 	case Q_AND:
5622 		tmp = gen_portatom(cstate, 0, (bpf_int32)port);
5623 		b1 = gen_portatom(cstate, 2, (bpf_int32)port);
5624 		gen_and(tmp, b1);
5625 		break;
5626 
5627 	case Q_DEFAULT:
5628 	case Q_OR:
5629 		tmp = gen_portatom(cstate, 0, (bpf_int32)port);
5630 		b1 = gen_portatom(cstate, 2, (bpf_int32)port);
5631 		gen_or(tmp, b1);
5632 		break;
5633 
5634 	case Q_ADDR1:
5635 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for ports");
5636 		/*NOTREACHED*/
5637 
5638 	case Q_ADDR2:
5639 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for ports");
5640 		/*NOTREACHED*/
5641 
5642 	case Q_ADDR3:
5643 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for ports");
5644 		/*NOTREACHED*/
5645 
5646 	case Q_ADDR4:
5647 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for ports");
5648 		/*NOTREACHED*/
5649 
5650 	case Q_RA:
5651 		bpf_error(cstate, "'ra' is not a valid qualifier for ports");
5652 		/*NOTREACHED*/
5653 
5654 	case Q_TA:
5655 		bpf_error(cstate, "'ta' is not a valid qualifier for ports");
5656 		/*NOTREACHED*/
5657 
5658 	default:
5659 		abort();
5660 		/*NOTREACHED*/
5661 	}
5662 	gen_and(b0, b1);
5663 
5664 	return b1;
5665 }
5666 
5667 static struct block *
gen_port(compiler_state_t * cstate,int port,int ip_proto,int dir)5668 gen_port(compiler_state_t *cstate, int port, int ip_proto, int dir)
5669 {
5670 	struct block *b0, *b1, *tmp;
5671 
5672 	/*
5673 	 * ether proto ip
5674 	 *
5675 	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5676 	 * not LLC encapsulation with LLCSAP_IP.
5677 	 *
5678 	 * For IEEE 802 networks - which includes 802.5 token ring
5679 	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5680 	 * says that SNAP encapsulation is used, not LLC encapsulation
5681 	 * with LLCSAP_IP.
5682 	 *
5683 	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5684 	 * RFC 2225 say that SNAP encapsulation is used, not LLC
5685 	 * encapsulation with LLCSAP_IP.
5686 	 *
5687 	 * So we always check for ETHERTYPE_IP.
5688 	 */
5689 	b0 = gen_linktype(cstate, ETHERTYPE_IP);
5690 
5691 	switch (ip_proto) {
5692 	case IPPROTO_UDP:
5693 	case IPPROTO_TCP:
5694 	case IPPROTO_SCTP:
5695 		b1 = gen_portop(cstate, port, ip_proto, dir);
5696 		break;
5697 
5698 	case PROTO_UNDEF:
5699 		tmp = gen_portop(cstate, port, IPPROTO_TCP, dir);
5700 		b1 = gen_portop(cstate, port, IPPROTO_UDP, dir);
5701 		gen_or(tmp, b1);
5702 		tmp = gen_portop(cstate, port, IPPROTO_SCTP, dir);
5703 		gen_or(tmp, b1);
5704 		break;
5705 
5706 	default:
5707 		abort();
5708 	}
5709 	gen_and(b0, b1);
5710 	return b1;
5711 }
5712 
5713 struct block *
gen_portop6(compiler_state_t * cstate,int port,int proto,int dir)5714 gen_portop6(compiler_state_t *cstate, int port, int proto, int dir)
5715 {
5716 	struct block *b0, *b1, *tmp;
5717 
5718 	/* ip6 proto 'proto' */
5719 	/* XXX - catch the first fragment of a fragmented packet? */
5720 	b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)proto);
5721 
5722 	switch (dir) {
5723 	case Q_SRC:
5724 		b1 = gen_portatom6(cstate, 0, (bpf_int32)port);
5725 		break;
5726 
5727 	case Q_DST:
5728 		b1 = gen_portatom6(cstate, 2, (bpf_int32)port);
5729 		break;
5730 
5731 	case Q_AND:
5732 		tmp = gen_portatom6(cstate, 0, (bpf_int32)port);
5733 		b1 = gen_portatom6(cstate, 2, (bpf_int32)port);
5734 		gen_and(tmp, b1);
5735 		break;
5736 
5737 	case Q_DEFAULT:
5738 	case Q_OR:
5739 		tmp = gen_portatom6(cstate, 0, (bpf_int32)port);
5740 		b1 = gen_portatom6(cstate, 2, (bpf_int32)port);
5741 		gen_or(tmp, b1);
5742 		break;
5743 
5744 	default:
5745 		abort();
5746 	}
5747 	gen_and(b0, b1);
5748 
5749 	return b1;
5750 }
5751 
5752 static struct block *
gen_port6(compiler_state_t * cstate,int port,int ip_proto,int dir)5753 gen_port6(compiler_state_t *cstate, int port, int ip_proto, int dir)
5754 {
5755 	struct block *b0, *b1, *tmp;
5756 
5757 	/* link proto ip6 */
5758 	b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5759 
5760 	switch (ip_proto) {
5761 	case IPPROTO_UDP:
5762 	case IPPROTO_TCP:
5763 	case IPPROTO_SCTP:
5764 		b1 = gen_portop6(cstate, port, ip_proto, dir);
5765 		break;
5766 
5767 	case PROTO_UNDEF:
5768 		tmp = gen_portop6(cstate, port, IPPROTO_TCP, dir);
5769 		b1 = gen_portop6(cstate, port, IPPROTO_UDP, dir);
5770 		gen_or(tmp, b1);
5771 		tmp = gen_portop6(cstate, port, IPPROTO_SCTP, dir);
5772 		gen_or(tmp, b1);
5773 		break;
5774 
5775 	default:
5776 		abort();
5777 	}
5778 	gen_and(b0, b1);
5779 	return b1;
5780 }
5781 
5782 /* gen_portrange code */
5783 static struct block *
gen_portrangeatom(compiler_state_t * cstate,int off,bpf_int32 v1,bpf_int32 v2)5784 gen_portrangeatom(compiler_state_t *cstate, int off, bpf_int32 v1,
5785     bpf_int32 v2)
5786 {
5787 	struct block *b1, *b2;
5788 
5789 	if (v1 > v2) {
5790 		/*
5791 		 * Reverse the order of the ports, so v1 is the lower one.
5792 		 */
5793 		bpf_int32 vtemp;
5794 
5795 		vtemp = v1;
5796 		v1 = v2;
5797 		v2 = vtemp;
5798 	}
5799 
5800 	b1 = gen_cmp_ge(cstate, OR_TRAN_IPV4, off, BPF_H, v1);
5801 	b2 = gen_cmp_le(cstate, OR_TRAN_IPV4, off, BPF_H, v2);
5802 
5803 	gen_and(b1, b2);
5804 
5805 	return b2;
5806 }
5807 
5808 struct block *
gen_portrangeop(compiler_state_t * cstate,int port1,int port2,int proto,int dir)5809 gen_portrangeop(compiler_state_t *cstate, int port1, int port2, int proto,
5810     int dir)
5811 {
5812 	struct block *b0, *b1, *tmp;
5813 
5814 	/* ip proto 'proto' and not a fragment other than the first fragment */
5815 	tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)proto);
5816 	b0 = gen_ipfrag(cstate);
5817 	gen_and(tmp, b0);
5818 
5819 	switch (dir) {
5820 	case Q_SRC:
5821 		b1 = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5822 		break;
5823 
5824 	case Q_DST:
5825 		b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5826 		break;
5827 
5828 	case Q_AND:
5829 		tmp = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5830 		b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5831 		gen_and(tmp, b1);
5832 		break;
5833 
5834 	case Q_DEFAULT:
5835 	case Q_OR:
5836 		tmp = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5837 		b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5838 		gen_or(tmp, b1);
5839 		break;
5840 
5841 	case Q_ADDR1:
5842 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for port ranges");
5843 		/*NOTREACHED*/
5844 
5845 	case Q_ADDR2:
5846 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for port ranges");
5847 		/*NOTREACHED*/
5848 
5849 	case Q_ADDR3:
5850 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for port ranges");
5851 		/*NOTREACHED*/
5852 
5853 	case Q_ADDR4:
5854 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for port ranges");
5855 		/*NOTREACHED*/
5856 
5857 	case Q_RA:
5858 		bpf_error(cstate, "'ra' is not a valid qualifier for port ranges");
5859 		/*NOTREACHED*/
5860 
5861 	case Q_TA:
5862 		bpf_error(cstate, "'ta' is not a valid qualifier for port ranges");
5863 		/*NOTREACHED*/
5864 
5865 	default:
5866 		abort();
5867 		/*NOTREACHED*/
5868 	}
5869 	gen_and(b0, b1);
5870 
5871 	return b1;
5872 }
5873 
5874 static struct block *
gen_portrange(compiler_state_t * cstate,int port1,int port2,int ip_proto,int dir)5875 gen_portrange(compiler_state_t *cstate, int port1, int port2, int ip_proto,
5876     int dir)
5877 {
5878 	struct block *b0, *b1, *tmp;
5879 
5880 	/* link proto ip */
5881 	b0 = gen_linktype(cstate, ETHERTYPE_IP);
5882 
5883 	switch (ip_proto) {
5884 	case IPPROTO_UDP:
5885 	case IPPROTO_TCP:
5886 	case IPPROTO_SCTP:
5887 		b1 = gen_portrangeop(cstate, port1, port2, ip_proto, dir);
5888 		break;
5889 
5890 	case PROTO_UNDEF:
5891 		tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_TCP, dir);
5892 		b1 = gen_portrangeop(cstate, port1, port2, IPPROTO_UDP, dir);
5893 		gen_or(tmp, b1);
5894 		tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_SCTP, dir);
5895 		gen_or(tmp, b1);
5896 		break;
5897 
5898 	default:
5899 		abort();
5900 	}
5901 	gen_and(b0, b1);
5902 	return b1;
5903 }
5904 
5905 static struct block *
gen_portrangeatom6(compiler_state_t * cstate,int off,bpf_int32 v1,bpf_int32 v2)5906 gen_portrangeatom6(compiler_state_t *cstate, int off, bpf_int32 v1,
5907     bpf_int32 v2)
5908 {
5909 	struct block *b1, *b2;
5910 
5911 	if (v1 > v2) {
5912 		/*
5913 		 * Reverse the order of the ports, so v1 is the lower one.
5914 		 */
5915 		bpf_int32 vtemp;
5916 
5917 		vtemp = v1;
5918 		v1 = v2;
5919 		v2 = vtemp;
5920 	}
5921 
5922 	b1 = gen_cmp_ge(cstate, OR_TRAN_IPV6, off, BPF_H, v1);
5923 	b2 = gen_cmp_le(cstate, OR_TRAN_IPV6, off, BPF_H, v2);
5924 
5925 	gen_and(b1, b2);
5926 
5927 	return b2;
5928 }
5929 
5930 struct block *
gen_portrangeop6(compiler_state_t * cstate,int port1,int port2,int proto,int dir)5931 gen_portrangeop6(compiler_state_t *cstate, int port1, int port2, int proto,
5932     int dir)
5933 {
5934 	struct block *b0, *b1, *tmp;
5935 
5936 	/* ip6 proto 'proto' */
5937 	/* XXX - catch the first fragment of a fragmented packet? */
5938 	b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)proto);
5939 
5940 	switch (dir) {
5941 	case Q_SRC:
5942 		b1 = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5943 		break;
5944 
5945 	case Q_DST:
5946 		b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5947 		break;
5948 
5949 	case Q_AND:
5950 		tmp = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5951 		b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5952 		gen_and(tmp, b1);
5953 		break;
5954 
5955 	case Q_DEFAULT:
5956 	case Q_OR:
5957 		tmp = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5958 		b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5959 		gen_or(tmp, b1);
5960 		break;
5961 
5962 	default:
5963 		abort();
5964 	}
5965 	gen_and(b0, b1);
5966 
5967 	return b1;
5968 }
5969 
5970 static struct block *
gen_portrange6(compiler_state_t * cstate,int port1,int port2,int ip_proto,int dir)5971 gen_portrange6(compiler_state_t *cstate, int port1, int port2, int ip_proto,
5972     int dir)
5973 {
5974 	struct block *b0, *b1, *tmp;
5975 
5976 	/* link proto ip6 */
5977 	b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5978 
5979 	switch (ip_proto) {
5980 	case IPPROTO_UDP:
5981 	case IPPROTO_TCP:
5982 	case IPPROTO_SCTP:
5983 		b1 = gen_portrangeop6(cstate, port1, port2, ip_proto, dir);
5984 		break;
5985 
5986 	case PROTO_UNDEF:
5987 		tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_TCP, dir);
5988 		b1 = gen_portrangeop6(cstate, port1, port2, IPPROTO_UDP, dir);
5989 		gen_or(tmp, b1);
5990 		tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_SCTP, dir);
5991 		gen_or(tmp, b1);
5992 		break;
5993 
5994 	default:
5995 		abort();
5996 	}
5997 	gen_and(b0, b1);
5998 	return b1;
5999 }
6000 
6001 static int
lookup_proto(compiler_state_t * cstate,const char * name,int proto)6002 lookup_proto(compiler_state_t *cstate, const char *name, int proto)
6003 {
6004 	register int v;
6005 
6006 	switch (proto) {
6007 
6008 	case Q_DEFAULT:
6009 	case Q_IP:
6010 	case Q_IPV6:
6011 		v = pcap_nametoproto(name);
6012 		if (v == PROTO_UNDEF)
6013 			bpf_error(cstate, "unknown ip proto '%s'", name);
6014 		break;
6015 
6016 	case Q_LINK:
6017 		/* XXX should look up h/w protocol type based on cstate->linktype */
6018 		v = pcap_nametoeproto(name);
6019 		if (v == PROTO_UNDEF) {
6020 			v = pcap_nametollc(name);
6021 			if (v == PROTO_UNDEF)
6022 				bpf_error(cstate, "unknown ether proto '%s'", name);
6023 		}
6024 		break;
6025 
6026 	case Q_ISO:
6027 		if (strcmp(name, "esis") == 0)
6028 			v = ISO9542_ESIS;
6029 		else if (strcmp(name, "isis") == 0)
6030 			v = ISO10589_ISIS;
6031 		else if (strcmp(name, "clnp") == 0)
6032 			v = ISO8473_CLNP;
6033 		else
6034 			bpf_error(cstate, "unknown osi proto '%s'", name);
6035 		break;
6036 
6037 	default:
6038 		v = PROTO_UNDEF;
6039 		break;
6040 	}
6041 	return v;
6042 }
6043 
6044 #if 0
6045 struct stmt *
6046 gen_joinsp(struct stmt **s, int n)
6047 {
6048 	return NULL;
6049 }
6050 #endif
6051 
6052 static struct block *
gen_protochain(compiler_state_t * cstate,int v,int proto,int dir)6053 gen_protochain(compiler_state_t *cstate, int v, int proto, int dir)
6054 {
6055 #ifdef NO_PROTOCHAIN
6056 	return gen_proto(cstate, v, proto, dir);
6057 #else
6058 	struct block *b0, *b;
6059 	struct slist *s[100];
6060 	int fix2, fix3, fix4, fix5;
6061 	int ahcheck, again, end;
6062 	int i, max;
6063 	int reg2 = alloc_reg(cstate);
6064 
6065 	memset(s, 0, sizeof(s));
6066 	fix3 = fix4 = fix5 = 0;
6067 
6068 	switch (proto) {
6069 	case Q_IP:
6070 	case Q_IPV6:
6071 		break;
6072 	case Q_DEFAULT:
6073 		b0 = gen_protochain(cstate, v, Q_IP, dir);
6074 		b = gen_protochain(cstate, v, Q_IPV6, dir);
6075 		gen_or(b0, b);
6076 		return b;
6077 	default:
6078 		bpf_error(cstate, "bad protocol applied for 'protochain'");
6079 		/*NOTREACHED*/
6080 	}
6081 
6082 	/*
6083 	 * We don't handle variable-length prefixes before the link-layer
6084 	 * header, or variable-length link-layer headers, here yet.
6085 	 * We might want to add BPF instructions to do the protochain
6086 	 * work, to simplify that and, on platforms that have a BPF
6087 	 * interpreter with the new instructions, let the filtering
6088 	 * be done in the kernel.  (We already require a modified BPF
6089 	 * engine to do the protochain stuff, to support backward
6090 	 * branches, and backward branch support is unlikely to appear
6091 	 * in kernel BPF engines.)
6092 	 */
6093 	if (cstate->off_linkpl.is_variable)
6094 		bpf_error(cstate, "'protochain' not supported with variable length headers");
6095 
6096 	cstate->no_optimize = 1; /* this code is not compatible with optimizer yet */
6097 
6098 	/*
6099 	 * s[0] is a dummy entry to protect other BPF insn from damage
6100 	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
6101 	 * hard to find interdependency made by jump table fixup.
6102 	 */
6103 	i = 0;
6104 	s[i] = new_stmt(cstate, 0);	/*dummy*/
6105 	i++;
6106 
6107 	switch (proto) {
6108 	case Q_IP:
6109 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
6110 
6111 		/* A = ip->ip_p */
6112 		s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6113 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 9;
6114 		i++;
6115 		/* X = ip->ip_hl << 2 */
6116 		s[i] = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
6117 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6118 		i++;
6119 		break;
6120 
6121 	case Q_IPV6:
6122 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6123 
6124 		/* A = ip6->ip_nxt */
6125 		s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6126 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 6;
6127 		i++;
6128 		/* X = sizeof(struct ip6_hdr) */
6129 		s[i] = new_stmt(cstate, BPF_LDX|BPF_IMM);
6130 		s[i]->s.k = 40;
6131 		i++;
6132 		break;
6133 
6134 	default:
6135 		bpf_error(cstate, "unsupported proto to gen_protochain");
6136 		/*NOTREACHED*/
6137 	}
6138 
6139 	/* again: if (A == v) goto end; else fall through; */
6140 	again = i;
6141 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6142 	s[i]->s.k = v;
6143 	s[i]->s.jt = NULL;		/*later*/
6144 	s[i]->s.jf = NULL;		/*update in next stmt*/
6145 	fix5 = i;
6146 	i++;
6147 
6148 #ifndef IPPROTO_NONE
6149 #define IPPROTO_NONE	59
6150 #endif
6151 	/* if (A == IPPROTO_NONE) goto end */
6152 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6153 	s[i]->s.jt = NULL;	/*later*/
6154 	s[i]->s.jf = NULL;	/*update in next stmt*/
6155 	s[i]->s.k = IPPROTO_NONE;
6156 	s[fix5]->s.jf = s[i];
6157 	fix2 = i;
6158 	i++;
6159 
6160 	if (proto == Q_IPV6) {
6161 		int v6start, v6end, v6advance, j;
6162 
6163 		v6start = i;
6164 		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
6165 		s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6166 		s[i]->s.jt = NULL;	/*later*/
6167 		s[i]->s.jf = NULL;	/*update in next stmt*/
6168 		s[i]->s.k = IPPROTO_HOPOPTS;
6169 		s[fix2]->s.jf = s[i];
6170 		i++;
6171 		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
6172 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6173 		s[i]->s.jt = NULL;	/*later*/
6174 		s[i]->s.jf = NULL;	/*update in next stmt*/
6175 		s[i]->s.k = IPPROTO_DSTOPTS;
6176 		i++;
6177 		/* if (A == IPPROTO_ROUTING) goto v6advance */
6178 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6179 		s[i]->s.jt = NULL;	/*later*/
6180 		s[i]->s.jf = NULL;	/*update in next stmt*/
6181 		s[i]->s.k = IPPROTO_ROUTING;
6182 		i++;
6183 		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
6184 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6185 		s[i]->s.jt = NULL;	/*later*/
6186 		s[i]->s.jf = NULL;	/*later*/
6187 		s[i]->s.k = IPPROTO_FRAGMENT;
6188 		fix3 = i;
6189 		v6end = i;
6190 		i++;
6191 
6192 		/* v6advance: */
6193 		v6advance = i;
6194 
6195 		/*
6196 		 * in short,
6197 		 * A = P[X + packet head];
6198 		 * X = X + (P[X + packet head + 1] + 1) * 8;
6199 		 */
6200 		/* A = P[X + packet head] */
6201 		s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6202 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6203 		i++;
6204 		/* MEM[reg2] = A */
6205 		s[i] = new_stmt(cstate, BPF_ST);
6206 		s[i]->s.k = reg2;
6207 		i++;
6208 		/* A = P[X + packet head + 1]; */
6209 		s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6210 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 1;
6211 		i++;
6212 		/* A += 1 */
6213 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6214 		s[i]->s.k = 1;
6215 		i++;
6216 		/* A *= 8 */
6217 		s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6218 		s[i]->s.k = 8;
6219 		i++;
6220 		/* A += X */
6221 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
6222 		s[i]->s.k = 0;
6223 		i++;
6224 		/* X = A; */
6225 		s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6226 		i++;
6227 		/* A = MEM[reg2] */
6228 		s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6229 		s[i]->s.k = reg2;
6230 		i++;
6231 
6232 		/* goto again; (must use BPF_JA for backward jump) */
6233 		s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6234 		s[i]->s.k = again - i - 1;
6235 		s[i - 1]->s.jf = s[i];
6236 		i++;
6237 
6238 		/* fixup */
6239 		for (j = v6start; j <= v6end; j++)
6240 			s[j]->s.jt = s[v6advance];
6241 	} else {
6242 		/* nop */
6243 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6244 		s[i]->s.k = 0;
6245 		s[fix2]->s.jf = s[i];
6246 		i++;
6247 	}
6248 
6249 	/* ahcheck: */
6250 	ahcheck = i;
6251 	/* if (A == IPPROTO_AH) then fall through; else goto end; */
6252 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6253 	s[i]->s.jt = NULL;	/*later*/
6254 	s[i]->s.jf = NULL;	/*later*/
6255 	s[i]->s.k = IPPROTO_AH;
6256 	if (fix3)
6257 		s[fix3]->s.jf = s[ahcheck];
6258 	fix4 = i;
6259 	i++;
6260 
6261 	/*
6262 	 * in short,
6263 	 * A = P[X];
6264 	 * X = X + (P[X + 1] + 2) * 4;
6265 	 */
6266 	/* A = X */
6267 	s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6268 	i++;
6269 	/* A = P[X + packet head]; */
6270 	s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6271 	s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6272 	i++;
6273 	/* MEM[reg2] = A */
6274 	s[i] = new_stmt(cstate, BPF_ST);
6275 	s[i]->s.k = reg2;
6276 	i++;
6277 	/* A = X */
6278 	s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6279 	i++;
6280 	/* A += 1 */
6281 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6282 	s[i]->s.k = 1;
6283 	i++;
6284 	/* X = A */
6285 	s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6286 	i++;
6287 	/* A = P[X + packet head] */
6288 	s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6289 	s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6290 	i++;
6291 	/* A += 2 */
6292 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6293 	s[i]->s.k = 2;
6294 	i++;
6295 	/* A *= 4 */
6296 	s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6297 	s[i]->s.k = 4;
6298 	i++;
6299 	/* X = A; */
6300 	s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6301 	i++;
6302 	/* A = MEM[reg2] */
6303 	s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6304 	s[i]->s.k = reg2;
6305 	i++;
6306 
6307 	/* goto again; (must use BPF_JA for backward jump) */
6308 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6309 	s[i]->s.k = again - i - 1;
6310 	i++;
6311 
6312 	/* end: nop */
6313 	end = i;
6314 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6315 	s[i]->s.k = 0;
6316 	s[fix2]->s.jt = s[end];
6317 	s[fix4]->s.jf = s[end];
6318 	s[fix5]->s.jt = s[end];
6319 	i++;
6320 
6321 	/*
6322 	 * make slist chain
6323 	 */
6324 	max = i;
6325 	for (i = 0; i < max - 1; i++)
6326 		s[i]->next = s[i + 1];
6327 	s[max - 1]->next = NULL;
6328 
6329 	/*
6330 	 * emit final check
6331 	 */
6332 	b = new_block(cstate, JMP(BPF_JEQ));
6333 	b->stmts = s[1];	/*remember, s[0] is dummy*/
6334 	b->s.k = v;
6335 
6336 	free_reg(cstate, reg2);
6337 
6338 	gen_and(b0, b);
6339 	return b;
6340 #endif
6341 }
6342 
6343 static struct block *
gen_check_802_11_data_frame(compiler_state_t * cstate)6344 gen_check_802_11_data_frame(compiler_state_t *cstate)
6345 {
6346 	struct slist *s;
6347 	struct block *b0, *b1;
6348 
6349 	/*
6350 	 * A data frame has the 0x08 bit (b3) in the frame control field set
6351 	 * and the 0x04 bit (b2) clear.
6352 	 */
6353 	s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6354 	b0 = new_block(cstate, JMP(BPF_JSET));
6355 	b0->s.k = 0x08;
6356 	b0->stmts = s;
6357 
6358 	s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6359 	b1 = new_block(cstate, JMP(BPF_JSET));
6360 	b1->s.k = 0x04;
6361 	b1->stmts = s;
6362 	gen_not(b1);
6363 
6364 	gen_and(b1, b0);
6365 
6366 	return b0;
6367 }
6368 
6369 /*
6370  * Generate code that checks whether the packet is a packet for protocol
6371  * <proto> and whether the type field in that protocol's header has
6372  * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6373  * IP packet and checks the protocol number in the IP header against <v>.
6374  *
6375  * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6376  * against Q_IP and Q_IPV6.
6377  */
6378 static struct block *
gen_proto(compiler_state_t * cstate,int v,int proto,int dir)6379 gen_proto(compiler_state_t *cstate, int v, int proto, int dir)
6380 {
6381 	struct block *b0, *b1;
6382 #ifndef CHASE_CHAIN
6383 	struct block *b2;
6384 #endif
6385 
6386 	if (dir != Q_DEFAULT)
6387 		bpf_error(cstate, "direction applied to 'proto'");
6388 
6389 	switch (proto) {
6390 	case Q_DEFAULT:
6391 		b0 = gen_proto(cstate, v, Q_IP, dir);
6392 		b1 = gen_proto(cstate, v, Q_IPV6, dir);
6393 		gen_or(b0, b1);
6394 		return b1;
6395 
6396 	case Q_LINK:
6397 		return gen_linktype(cstate, v);
6398 
6399 	case Q_IP:
6400 		/*
6401 		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6402 		 * not LLC encapsulation with LLCSAP_IP.
6403 		 *
6404 		 * For IEEE 802 networks - which includes 802.5 token ring
6405 		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6406 		 * says that SNAP encapsulation is used, not LLC encapsulation
6407 		 * with LLCSAP_IP.
6408 		 *
6409 		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6410 		 * RFC 2225 say that SNAP encapsulation is used, not LLC
6411 		 * encapsulation with LLCSAP_IP.
6412 		 *
6413 		 * So we always check for ETHERTYPE_IP.
6414 		 */
6415 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
6416 #ifndef CHASE_CHAIN
6417 		b1 = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)v);
6418 #else
6419 		b1 = gen_protochain(cstate, v, Q_IP);
6420 #endif
6421 		gen_and(b0, b1);
6422 		return b1;
6423 
6424 	case Q_ARP:
6425 		bpf_error(cstate, "arp does not encapsulate another protocol");
6426 		/*NOTREACHED*/
6427 
6428 	case Q_RARP:
6429 		bpf_error(cstate, "rarp does not encapsulate another protocol");
6430 		/*NOTREACHED*/
6431 
6432 	case Q_SCTP:
6433 		bpf_error(cstate, "'sctp proto' is bogus");
6434 		/*NOTREACHED*/
6435 
6436 	case Q_TCP:
6437 		bpf_error(cstate, "'tcp proto' is bogus");
6438 		/*NOTREACHED*/
6439 
6440 	case Q_UDP:
6441 		bpf_error(cstate, "'udp proto' is bogus");
6442 		/*NOTREACHED*/
6443 
6444 	case Q_ICMP:
6445 		bpf_error(cstate, "'icmp proto' is bogus");
6446 		/*NOTREACHED*/
6447 
6448 	case Q_IGMP:
6449 		bpf_error(cstate, "'igmp proto' is bogus");
6450 		/*NOTREACHED*/
6451 
6452 	case Q_IGRP:
6453 		bpf_error(cstate, "'igrp proto' is bogus");
6454 		/*NOTREACHED*/
6455 
6456 	case Q_ATALK:
6457 		bpf_error(cstate, "AppleTalk encapsulation is not specifiable");
6458 		/*NOTREACHED*/
6459 
6460 	case Q_DECNET:
6461 		bpf_error(cstate, "DECNET encapsulation is not specifiable");
6462 		/*NOTREACHED*/
6463 
6464 	case Q_LAT:
6465 		bpf_error(cstate, "LAT does not encapsulate another protocol");
6466 		/*NOTREACHED*/
6467 
6468 	case Q_SCA:
6469 		bpf_error(cstate, "SCA does not encapsulate another protocol");
6470 		/*NOTREACHED*/
6471 
6472 	case Q_MOPRC:
6473 		bpf_error(cstate, "MOPRC does not encapsulate another protocol");
6474 		/*NOTREACHED*/
6475 
6476 	case Q_MOPDL:
6477 		bpf_error(cstate, "MOPDL does not encapsulate another protocol");
6478 		/*NOTREACHED*/
6479 
6480 	case Q_IPV6:
6481 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6482 #ifndef CHASE_CHAIN
6483 		/*
6484 		 * Also check for a fragment header before the final
6485 		 * header.
6486 		 */
6487 		b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT);
6488 		b1 = gen_cmp(cstate, OR_LINKPL, 40, BPF_B, (bpf_int32)v);
6489 		gen_and(b2, b1);
6490 		b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)v);
6491 		gen_or(b2, b1);
6492 #else
6493 		b1 = gen_protochain(cstate, v, Q_IPV6);
6494 #endif
6495 		gen_and(b0, b1);
6496 		return b1;
6497 
6498 	case Q_ICMPV6:
6499 		bpf_error(cstate, "'icmp6 proto' is bogus");
6500 		/*NOTREACHED*/
6501 
6502 	case Q_AH:
6503 		bpf_error(cstate, "'ah proto' is bogus");
6504 		/*NOTREACHED*/
6505 
6506 	case Q_ESP:
6507 		bpf_error(cstate, "'ah proto' is bogus");
6508 		/*NOTREACHED*/
6509 
6510 	case Q_PIM:
6511 		bpf_error(cstate, "'pim proto' is bogus");
6512 		/*NOTREACHED*/
6513 
6514 	case Q_VRRP:
6515 		bpf_error(cstate, "'vrrp proto' is bogus");
6516 		/*NOTREACHED*/
6517 
6518 	case Q_AARP:
6519 		bpf_error(cstate, "'aarp proto' is bogus");
6520 		/*NOTREACHED*/
6521 
6522 	case Q_ISO:
6523 		switch (cstate->linktype) {
6524 
6525 		case DLT_FRELAY:
6526 			/*
6527 			 * Frame Relay packets typically have an OSI
6528 			 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6529 			 * generates code to check for all the OSI
6530 			 * NLPIDs, so calling it and then adding a check
6531 			 * for the particular NLPID for which we're
6532 			 * looking is bogus, as we can just check for
6533 			 * the NLPID.
6534 			 *
6535 			 * What we check for is the NLPID and a frame
6536 			 * control field value of UI, i.e. 0x03 followed
6537 			 * by the NLPID.
6538 			 *
6539 			 * XXX - assumes a 2-byte Frame Relay header with
6540 			 * DLCI and flags.  What if the address is longer?
6541 			 *
6542 			 * XXX - what about SNAP-encapsulated frames?
6543 			 */
6544 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | v);
6545 			/*NOTREACHED*/
6546 
6547 		case DLT_C_HDLC:
6548 			/*
6549 			 * Cisco uses an Ethertype lookalike - for OSI,
6550 			 * it's 0xfefe.
6551 			 */
6552 			b0 = gen_linktype(cstate, LLCSAP_ISONS<<8 | LLCSAP_ISONS);
6553 			/* OSI in C-HDLC is stuffed with a fudge byte */
6554 			b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 1, BPF_B, (long)v);
6555 			gen_and(b0, b1);
6556 			return b1;
6557 
6558 		default:
6559 			b0 = gen_linktype(cstate, LLCSAP_ISONS);
6560 			b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 0, BPF_B, (long)v);
6561 			gen_and(b0, b1);
6562 			return b1;
6563 		}
6564 
6565 	case Q_ESIS:
6566 		bpf_error(cstate, "'esis proto' is bogus");
6567 		/*NOTREACHED*/
6568 
6569 	case Q_ISIS:
6570 		b0 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
6571 		/*
6572 		 * 4 is the offset of the PDU type relative to the IS-IS
6573 		 * header.
6574 		 */
6575 		b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 4, BPF_B, (long)v);
6576 		gen_and(b0, b1);
6577 		return b1;
6578 
6579 	case Q_CLNP:
6580 		bpf_error(cstate, "'clnp proto' is not supported");
6581 		/*NOTREACHED*/
6582 
6583 	case Q_STP:
6584 		bpf_error(cstate, "'stp proto' is bogus");
6585 		/*NOTREACHED*/
6586 
6587 	case Q_IPX:
6588 		bpf_error(cstate, "'ipx proto' is bogus");
6589 		/*NOTREACHED*/
6590 
6591 	case Q_NETBEUI:
6592 		bpf_error(cstate, "'netbeui proto' is bogus");
6593 		/*NOTREACHED*/
6594 
6595 	case Q_ISIS_L1:
6596 		bpf_error(cstate, "'l1 proto' is bogus");
6597 		/*NOTREACHED*/
6598 
6599 	case Q_ISIS_L2:
6600 		bpf_error(cstate, "'l2 proto' is bogus");
6601 		/*NOTREACHED*/
6602 
6603 	case Q_ISIS_IIH:
6604 		bpf_error(cstate, "'iih proto' is bogus");
6605 		/*NOTREACHED*/
6606 
6607 	case Q_ISIS_SNP:
6608 		bpf_error(cstate, "'snp proto' is bogus");
6609 		/*NOTREACHED*/
6610 
6611 	case Q_ISIS_CSNP:
6612 		bpf_error(cstate, "'csnp proto' is bogus");
6613 		/*NOTREACHED*/
6614 
6615 	case Q_ISIS_PSNP:
6616 		bpf_error(cstate, "'psnp proto' is bogus");
6617 		/*NOTREACHED*/
6618 
6619 	case Q_ISIS_LSP:
6620 		bpf_error(cstate, "'lsp proto' is bogus");
6621 		/*NOTREACHED*/
6622 
6623 	case Q_RADIO:
6624 		bpf_error(cstate, "'radio proto' is bogus");
6625 		/*NOTREACHED*/
6626 
6627 	case Q_CARP:
6628 		bpf_error(cstate, "'carp proto' is bogus");
6629 		/*NOTREACHED*/
6630 
6631 	default:
6632 		abort();
6633 		/*NOTREACHED*/
6634 	}
6635 	/*NOTREACHED*/
6636 }
6637 
6638 struct block *
gen_scode(compiler_state_t * cstate,const char * name,struct qual q)6639 gen_scode(compiler_state_t *cstate, const char *name, struct qual q)
6640 {
6641 	int proto = q.proto;
6642 	int dir = q.dir;
6643 	int tproto;
6644 	u_char *eaddr;
6645 	bpf_u_int32 mask, addr;
6646 	struct addrinfo *res, *res0;
6647 	struct sockaddr_in *sin4;
6648 #ifdef INET6
6649 	int tproto6;
6650 	struct sockaddr_in6 *sin6;
6651 	struct in6_addr mask128;
6652 #endif /*INET6*/
6653 	struct block *b, *tmp;
6654 	int port, real_proto;
6655 	int port1, port2;
6656 
6657 	/*
6658 	 * Catch errors reported by us and routines below us, and return NULL
6659 	 * on an error.
6660 	 */
6661 	if (setjmp(cstate->top_ctx))
6662 		return (NULL);
6663 
6664 	switch (q.addr) {
6665 
6666 	case Q_NET:
6667 		addr = pcap_nametonetaddr(name);
6668 		if (addr == 0)
6669 			bpf_error(cstate, "unknown network '%s'", name);
6670 		/* Left justify network addr and calculate its network mask */
6671 		mask = 0xffffffff;
6672 		while (addr && (addr & 0xff000000) == 0) {
6673 			addr <<= 8;
6674 			mask <<= 8;
6675 		}
6676 		return gen_host(cstate, addr, mask, proto, dir, q.addr);
6677 
6678 	case Q_DEFAULT:
6679 	case Q_HOST:
6680 		if (proto == Q_LINK) {
6681 			switch (cstate->linktype) {
6682 
6683 			case DLT_EN10MB:
6684 			case DLT_NETANALYZER:
6685 			case DLT_NETANALYZER_TRANSPARENT:
6686 				eaddr = pcap_ether_hostton(name);
6687 				if (eaddr == NULL)
6688 					bpf_error(cstate,
6689 					    "unknown ether host '%s'", name);
6690 				tmp = gen_prevlinkhdr_check(cstate);
6691 				b = gen_ehostop(cstate, eaddr, dir);
6692 				if (tmp != NULL)
6693 					gen_and(tmp, b);
6694 				free(eaddr);
6695 				return b;
6696 
6697 			case DLT_FDDI:
6698 				eaddr = pcap_ether_hostton(name);
6699 				if (eaddr == NULL)
6700 					bpf_error(cstate,
6701 					    "unknown FDDI host '%s'", name);
6702 				b = gen_fhostop(cstate, eaddr, dir);
6703 				free(eaddr);
6704 				return b;
6705 
6706 			case DLT_IEEE802:
6707 				eaddr = pcap_ether_hostton(name);
6708 				if (eaddr == NULL)
6709 					bpf_error(cstate,
6710 					    "unknown token ring host '%s'", name);
6711 				b = gen_thostop(cstate, eaddr, dir);
6712 				free(eaddr);
6713 				return b;
6714 
6715 			case DLT_IEEE802_11:
6716 			case DLT_PRISM_HEADER:
6717 			case DLT_IEEE802_11_RADIO_AVS:
6718 			case DLT_IEEE802_11_RADIO:
6719 			case DLT_PPI:
6720 				eaddr = pcap_ether_hostton(name);
6721 				if (eaddr == NULL)
6722 					bpf_error(cstate,
6723 					    "unknown 802.11 host '%s'", name);
6724 				b = gen_wlanhostop(cstate, eaddr, dir);
6725 				free(eaddr);
6726 				return b;
6727 
6728 			case DLT_IP_OVER_FC:
6729 				eaddr = pcap_ether_hostton(name);
6730 				if (eaddr == NULL)
6731 					bpf_error(cstate,
6732 					    "unknown Fibre Channel host '%s'", name);
6733 				b = gen_ipfchostop(cstate, eaddr, dir);
6734 				free(eaddr);
6735 				return b;
6736 			}
6737 
6738 			bpf_error(cstate, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6739 		} else if (proto == Q_DECNET) {
6740 			unsigned short dn_addr;
6741 
6742 			if (!__pcap_nametodnaddr(name, &dn_addr)) {
6743 #ifdef	DECNETLIB
6744 				bpf_error(cstate, "unknown decnet host name '%s'\n", name);
6745 #else
6746 				bpf_error(cstate, "decnet name support not included, '%s' cannot be translated\n",
6747 					name);
6748 #endif
6749 			}
6750 			/*
6751 			 * I don't think DECNET hosts can be multihomed, so
6752 			 * there is no need to build up a list of addresses
6753 			 */
6754 			return (gen_host(cstate, dn_addr, 0, proto, dir, q.addr));
6755 		} else {
6756 #ifdef INET6
6757 			memset(&mask128, 0xff, sizeof(mask128));
6758 #endif
6759 			res0 = res = pcap_nametoaddrinfo(name);
6760 			if (res == NULL)
6761 				bpf_error(cstate, "unknown host '%s'", name);
6762 			cstate->ai = res;
6763 			b = tmp = NULL;
6764 			tproto = proto;
6765 #ifdef INET6
6766 			tproto6 = proto;
6767 #endif
6768 			if (cstate->off_linktype.constant_part == OFFSET_NOT_SET &&
6769 			    tproto == Q_DEFAULT) {
6770 				tproto = Q_IP;
6771 #ifdef INET6
6772 				tproto6 = Q_IPV6;
6773 #endif
6774 			}
6775 			for (res = res0; res; res = res->ai_next) {
6776 				switch (res->ai_family) {
6777 				case AF_INET:
6778 #ifdef INET6
6779 					if (tproto == Q_IPV6)
6780 						continue;
6781 #endif
6782 
6783 					sin4 = (struct sockaddr_in *)
6784 						res->ai_addr;
6785 					tmp = gen_host(cstate, ntohl(sin4->sin_addr.s_addr),
6786 						0xffffffff, tproto, dir, q.addr);
6787 					break;
6788 #ifdef INET6
6789 				case AF_INET6:
6790 					if (tproto6 == Q_IP)
6791 						continue;
6792 
6793 					sin6 = (struct sockaddr_in6 *)
6794 						res->ai_addr;
6795 					tmp = gen_host6(cstate, &sin6->sin6_addr,
6796 						&mask128, tproto6, dir, q.addr);
6797 					break;
6798 #endif
6799 				default:
6800 					continue;
6801 				}
6802 				if (b)
6803 					gen_or(b, tmp);
6804 				b = tmp;
6805 			}
6806 			cstate->ai = NULL;
6807 			freeaddrinfo(res0);
6808 			if (b == NULL) {
6809 				bpf_error(cstate, "unknown host '%s'%s", name,
6810 				    (proto == Q_DEFAULT)
6811 					? ""
6812 					: " for specified address family");
6813 			}
6814 			return b;
6815 		}
6816 
6817 	case Q_PORT:
6818 		if (proto != Q_DEFAULT &&
6819 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6820 			bpf_error(cstate, "illegal qualifier of 'port'");
6821 		if (pcap_nametoport(name, &port, &real_proto) == 0)
6822 			bpf_error(cstate, "unknown port '%s'", name);
6823 		if (proto == Q_UDP) {
6824 			if (real_proto == IPPROTO_TCP)
6825 				bpf_error(cstate, "port '%s' is tcp", name);
6826 			else if (real_proto == IPPROTO_SCTP)
6827 				bpf_error(cstate, "port '%s' is sctp", name);
6828 			else
6829 				/* override PROTO_UNDEF */
6830 				real_proto = IPPROTO_UDP;
6831 		}
6832 		if (proto == Q_TCP) {
6833 			if (real_proto == IPPROTO_UDP)
6834 				bpf_error(cstate, "port '%s' is udp", name);
6835 
6836 			else if (real_proto == IPPROTO_SCTP)
6837 				bpf_error(cstate, "port '%s' is sctp", name);
6838 			else
6839 				/* override PROTO_UNDEF */
6840 				real_proto = IPPROTO_TCP;
6841 		}
6842 		if (proto == Q_SCTP) {
6843 			if (real_proto == IPPROTO_UDP)
6844 				bpf_error(cstate, "port '%s' is udp", name);
6845 
6846 			else if (real_proto == IPPROTO_TCP)
6847 				bpf_error(cstate, "port '%s' is tcp", name);
6848 			else
6849 				/* override PROTO_UNDEF */
6850 				real_proto = IPPROTO_SCTP;
6851 		}
6852 		if (port < 0)
6853 			bpf_error(cstate, "illegal port number %d < 0", port);
6854 		if (port > 65535)
6855 			bpf_error(cstate, "illegal port number %d > 65535", port);
6856 		b = gen_port(cstate, port, real_proto, dir);
6857 		gen_or(gen_port6(cstate, port, real_proto, dir), b);
6858 		return b;
6859 
6860 	case Q_PORTRANGE:
6861 		if (proto != Q_DEFAULT &&
6862 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6863 			bpf_error(cstate, "illegal qualifier of 'portrange'");
6864 		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6865 			bpf_error(cstate, "unknown port in range '%s'", name);
6866 		if (proto == Q_UDP) {
6867 			if (real_proto == IPPROTO_TCP)
6868 				bpf_error(cstate, "port in range '%s' is tcp", name);
6869 			else if (real_proto == IPPROTO_SCTP)
6870 				bpf_error(cstate, "port in range '%s' is sctp", name);
6871 			else
6872 				/* override PROTO_UNDEF */
6873 				real_proto = IPPROTO_UDP;
6874 		}
6875 		if (proto == Q_TCP) {
6876 			if (real_proto == IPPROTO_UDP)
6877 				bpf_error(cstate, "port in range '%s' is udp", name);
6878 			else if (real_proto == IPPROTO_SCTP)
6879 				bpf_error(cstate, "port in range '%s' is sctp", name);
6880 			else
6881 				/* override PROTO_UNDEF */
6882 				real_proto = IPPROTO_TCP;
6883 		}
6884 		if (proto == Q_SCTP) {
6885 			if (real_proto == IPPROTO_UDP)
6886 				bpf_error(cstate, "port in range '%s' is udp", name);
6887 			else if (real_proto == IPPROTO_TCP)
6888 				bpf_error(cstate, "port in range '%s' is tcp", name);
6889 			else
6890 				/* override PROTO_UNDEF */
6891 				real_proto = IPPROTO_SCTP;
6892 		}
6893 		if (port1 < 0)
6894 			bpf_error(cstate, "illegal port number %d < 0", port1);
6895 		if (port1 > 65535)
6896 			bpf_error(cstate, "illegal port number %d > 65535", port1);
6897 		if (port2 < 0)
6898 			bpf_error(cstate, "illegal port number %d < 0", port2);
6899 		if (port2 > 65535)
6900 			bpf_error(cstate, "illegal port number %d > 65535", port2);
6901 
6902 		b = gen_portrange(cstate, port1, port2, real_proto, dir);
6903 		gen_or(gen_portrange6(cstate, port1, port2, real_proto, dir), b);
6904 		return b;
6905 
6906 	case Q_GATEWAY:
6907 #ifndef INET6
6908 		eaddr = pcap_ether_hostton(name);
6909 		if (eaddr == NULL)
6910 			bpf_error(cstate, "unknown ether host: %s", name);
6911 
6912 		res = pcap_nametoaddrinfo(name);
6913 		cstate->ai = res;
6914 		if (res == NULL)
6915 			bpf_error(cstate, "unknown host '%s'", name);
6916 		b = gen_gateway(cstate, eaddr, res, proto, dir);
6917 		cstate->ai = NULL;
6918 		freeaddrinfo(res);
6919 		if (b == NULL)
6920 			bpf_error(cstate, "unknown host '%s'", name);
6921 		return b;
6922 #else
6923 		bpf_error(cstate, "'gateway' not supported in this configuration");
6924 #endif /*INET6*/
6925 
6926 	case Q_PROTO:
6927 		real_proto = lookup_proto(cstate, name, proto);
6928 		if (real_proto >= 0)
6929 			return gen_proto(cstate, real_proto, proto, dir);
6930 		else
6931 			bpf_error(cstate, "unknown protocol: %s", name);
6932 
6933 	case Q_PROTOCHAIN:
6934 		real_proto = lookup_proto(cstate, name, proto);
6935 		if (real_proto >= 0)
6936 			return gen_protochain(cstate, real_proto, proto, dir);
6937 		else
6938 			bpf_error(cstate, "unknown protocol: %s", name);
6939 
6940 	case Q_UNDEF:
6941 		syntax(cstate);
6942 		/*NOTREACHED*/
6943 	}
6944 	abort();
6945 	/*NOTREACHED*/
6946 }
6947 
6948 struct block *
gen_mcode(compiler_state_t * cstate,const char * s1,const char * s2,unsigned int masklen,struct qual q)6949 gen_mcode(compiler_state_t *cstate, const char *s1, const char *s2,
6950     unsigned int masklen, struct qual q)
6951 {
6952 	register int nlen, mlen;
6953 	bpf_u_int32 n, m;
6954 
6955 	/*
6956 	 * Catch errors reported by us and routines below us, and return NULL
6957 	 * on an error.
6958 	 */
6959 	if (setjmp(cstate->top_ctx))
6960 		return (NULL);
6961 
6962 	nlen = __pcap_atoin(s1, &n);
6963 	/* Promote short ipaddr */
6964 	n <<= 32 - nlen;
6965 
6966 	if (s2 != NULL) {
6967 		mlen = __pcap_atoin(s2, &m);
6968 		/* Promote short ipaddr */
6969 		m <<= 32 - mlen;
6970 		if ((n & ~m) != 0)
6971 			bpf_error(cstate, "non-network bits set in \"%s mask %s\"",
6972 			    s1, s2);
6973 	} else {
6974 		/* Convert mask len to mask */
6975 		if (masklen > 32)
6976 			bpf_error(cstate, "mask length must be <= 32");
6977 		if (masklen == 0) {
6978 			/*
6979 			 * X << 32 is not guaranteed by C to be 0; it's
6980 			 * undefined.
6981 			 */
6982 			m = 0;
6983 		} else
6984 			m = 0xffffffff << (32 - masklen);
6985 		if ((n & ~m) != 0)
6986 			bpf_error(cstate, "non-network bits set in \"%s/%d\"",
6987 			    s1, masklen);
6988 	}
6989 
6990 	switch (q.addr) {
6991 
6992 	case Q_NET:
6993 		return gen_host(cstate, n, m, q.proto, q.dir, q.addr);
6994 
6995 	default:
6996 		bpf_error(cstate, "Mask syntax for networks only");
6997 		/*NOTREACHED*/
6998 	}
6999 	/*NOTREACHED*/
7000 }
7001 
7002 struct block *
gen_ncode(compiler_state_t * cstate,const char * s,bpf_u_int32 v,struct qual q)7003 gen_ncode(compiler_state_t *cstate, const char *s, bpf_u_int32 v, struct qual q)
7004 {
7005 	bpf_u_int32 mask;
7006 	int proto;
7007 	int dir;
7008 	register int vlen;
7009 
7010 	/*
7011 	 * Catch errors reported by us and routines below us, and return NULL
7012 	 * on an error.
7013 	 */
7014 	if (setjmp(cstate->top_ctx))
7015 		return (NULL);
7016 
7017 	proto = q.proto;
7018 	dir = q.dir;
7019 	if (s == NULL)
7020 		vlen = 32;
7021 	else if (q.proto == Q_DECNET) {
7022 		vlen = __pcap_atodn(s, &v);
7023 		if (vlen == 0)
7024 			bpf_error(cstate, "malformed decnet address '%s'", s);
7025 	} else
7026 		vlen = __pcap_atoin(s, &v);
7027 
7028 	switch (q.addr) {
7029 
7030 	case Q_DEFAULT:
7031 	case Q_HOST:
7032 	case Q_NET:
7033 		if (proto == Q_DECNET)
7034 			return gen_host(cstate, v, 0, proto, dir, q.addr);
7035 		else if (proto == Q_LINK) {
7036 			bpf_error(cstate, "illegal link layer address");
7037 		} else {
7038 			mask = 0xffffffff;
7039 			if (s == NULL && q.addr == Q_NET) {
7040 				/* Promote short net number */
7041 				while (v && (v & 0xff000000) == 0) {
7042 					v <<= 8;
7043 					mask <<= 8;
7044 				}
7045 			} else {
7046 				/* Promote short ipaddr */
7047 				v <<= 32 - vlen;
7048 				mask <<= 32 - vlen ;
7049 			}
7050 			return gen_host(cstate, v, mask, proto, dir, q.addr);
7051 		}
7052 
7053 	case Q_PORT:
7054 		if (proto == Q_UDP)
7055 			proto = IPPROTO_UDP;
7056 		else if (proto == Q_TCP)
7057 			proto = IPPROTO_TCP;
7058 		else if (proto == Q_SCTP)
7059 			proto = IPPROTO_SCTP;
7060 		else if (proto == Q_DEFAULT)
7061 			proto = PROTO_UNDEF;
7062 		else
7063 			bpf_error(cstate, "illegal qualifier of 'port'");
7064 
7065 		if (v > 65535)
7066 			bpf_error(cstate, "illegal port number %u > 65535", v);
7067 
7068 	    {
7069 		struct block *b;
7070 		b = gen_port(cstate, (int)v, proto, dir);
7071 		gen_or(gen_port6(cstate, (int)v, proto, dir), b);
7072 		return b;
7073 	    }
7074 
7075 	case Q_PORTRANGE:
7076 		if (proto == Q_UDP)
7077 			proto = IPPROTO_UDP;
7078 		else if (proto == Q_TCP)
7079 			proto = IPPROTO_TCP;
7080 		else if (proto == Q_SCTP)
7081 			proto = IPPROTO_SCTP;
7082 		else if (proto == Q_DEFAULT)
7083 			proto = PROTO_UNDEF;
7084 		else
7085 			bpf_error(cstate, "illegal qualifier of 'portrange'");
7086 
7087 		if (v > 65535)
7088 			bpf_error(cstate, "illegal port number %u > 65535", v);
7089 
7090 	    {
7091 		struct block *b;
7092 		b = gen_portrange(cstate, (int)v, (int)v, proto, dir);
7093 		gen_or(gen_portrange6(cstate, (int)v, (int)v, proto, dir), b);
7094 		return b;
7095 	    }
7096 
7097 	case Q_GATEWAY:
7098 		bpf_error(cstate, "'gateway' requires a name");
7099 		/*NOTREACHED*/
7100 
7101 	case Q_PROTO:
7102 		return gen_proto(cstate, (int)v, proto, dir);
7103 
7104 	case Q_PROTOCHAIN:
7105 		return gen_protochain(cstate, (int)v, proto, dir);
7106 
7107 	case Q_UNDEF:
7108 		syntax(cstate);
7109 		/*NOTREACHED*/
7110 
7111 	default:
7112 		abort();
7113 		/*NOTREACHED*/
7114 	}
7115 	/*NOTREACHED*/
7116 }
7117 
7118 #ifdef INET6
7119 struct block *
gen_mcode6(compiler_state_t * cstate,const char * s1,const char * s2,unsigned int masklen,struct qual q)7120 gen_mcode6(compiler_state_t *cstate, const char *s1, const char *s2,
7121     unsigned int masklen, struct qual q)
7122 {
7123 	struct addrinfo *res;
7124 	struct in6_addr *addr;
7125 	struct in6_addr mask;
7126 	struct block *b;
7127 	uint32_t *a, *m;
7128 
7129 	/*
7130 	 * Catch errors reported by us and routines below us, and return NULL
7131 	 * on an error.
7132 	 */
7133 	if (setjmp(cstate->top_ctx))
7134 		return (NULL);
7135 
7136 	if (s2)
7137 		bpf_error(cstate, "no mask %s supported", s2);
7138 
7139 	res = pcap_nametoaddrinfo(s1);
7140 	if (!res)
7141 		bpf_error(cstate, "invalid ip6 address %s", s1);
7142 	cstate->ai = res;
7143 	if (res->ai_next)
7144 		bpf_error(cstate, "%s resolved to multiple address", s1);
7145 	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
7146 
7147 	if (sizeof(mask) * 8 < masklen)
7148 		bpf_error(cstate, "mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
7149 	memset(&mask, 0, sizeof(mask));
7150 	memset(&mask, 0xff, masklen / 8);
7151 	if (masklen % 8) {
7152 		mask.s6_addr[masklen / 8] =
7153 			(0xff << (8 - masklen % 8)) & 0xff;
7154 	}
7155 
7156 	a = (uint32_t *)addr;
7157 	m = (uint32_t *)&mask;
7158 	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
7159 	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
7160 		bpf_error(cstate, "non-network bits set in \"%s/%d\"", s1, masklen);
7161 	}
7162 
7163 	switch (q.addr) {
7164 
7165 	case Q_DEFAULT:
7166 	case Q_HOST:
7167 		if (masklen != 128)
7168 			bpf_error(cstate, "Mask syntax for networks only");
7169 		/* FALLTHROUGH */
7170 
7171 	case Q_NET:
7172 		b = gen_host6(cstate, addr, &mask, q.proto, q.dir, q.addr);
7173 		cstate->ai = NULL;
7174 		freeaddrinfo(res);
7175 		return b;
7176 
7177 	default:
7178 		bpf_error(cstate, "invalid qualifier against IPv6 address");
7179 		/*NOTREACHED*/
7180 	}
7181 }
7182 #endif /*INET6*/
7183 
7184 struct block *
gen_ecode(compiler_state_t * cstate,const char * s,struct qual q)7185 gen_ecode(compiler_state_t *cstate, const char *s, struct qual q)
7186 {
7187 	struct block *b, *tmp;
7188 
7189 	/*
7190 	 * Catch errors reported by us and routines below us, and return NULL
7191 	 * on an error.
7192 	 */
7193 	if (setjmp(cstate->top_ctx))
7194 		return (NULL);
7195 
7196 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
7197 		cstate->e = pcap_ether_aton(s);
7198 		if (cstate->e == NULL)
7199 			bpf_error(cstate, "malloc");
7200 		switch (cstate->linktype) {
7201 		case DLT_EN10MB:
7202 		case DLT_NETANALYZER:
7203 		case DLT_NETANALYZER_TRANSPARENT:
7204 			tmp = gen_prevlinkhdr_check(cstate);
7205 			b = gen_ehostop(cstate, cstate->e, (int)q.dir);
7206 			if (tmp != NULL)
7207 				gen_and(tmp, b);
7208 			break;
7209 		case DLT_FDDI:
7210 			b = gen_fhostop(cstate, cstate->e, (int)q.dir);
7211 			break;
7212 		case DLT_IEEE802:
7213 			b = gen_thostop(cstate, cstate->e, (int)q.dir);
7214 			break;
7215 		case DLT_IEEE802_11:
7216 		case DLT_PRISM_HEADER:
7217 		case DLT_IEEE802_11_RADIO_AVS:
7218 		case DLT_IEEE802_11_RADIO:
7219 		case DLT_PPI:
7220 			b = gen_wlanhostop(cstate, cstate->e, (int)q.dir);
7221 			break;
7222 		case DLT_IP_OVER_FC:
7223 			b = gen_ipfchostop(cstate, cstate->e, (int)q.dir);
7224 			break;
7225 		default:
7226 			free(cstate->e);
7227 			cstate->e = NULL;
7228 			bpf_error(cstate, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
7229 			/*NOTREACHED*/
7230 		}
7231 		free(cstate->e);
7232 		cstate->e = NULL;
7233 		return (b);
7234 	}
7235 	bpf_error(cstate, "ethernet address used in non-ether expression");
7236 	/*NOTREACHED*/
7237 }
7238 
7239 void
sappend(struct slist * s0,struct slist * s1)7240 sappend(struct slist *s0, struct slist *s1)
7241 {
7242 	/*
7243 	 * This is definitely not the best way to do this, but the
7244 	 * lists will rarely get long.
7245 	 */
7246 	while (s0->next)
7247 		s0 = s0->next;
7248 	s0->next = s1;
7249 }
7250 
7251 static struct slist *
xfer_to_x(compiler_state_t * cstate,struct arth * a)7252 xfer_to_x(compiler_state_t *cstate, struct arth *a)
7253 {
7254 	struct slist *s;
7255 
7256 	s = new_stmt(cstate, BPF_LDX|BPF_MEM);
7257 	s->s.k = a->regno;
7258 	return s;
7259 }
7260 
7261 static struct slist *
xfer_to_a(compiler_state_t * cstate,struct arth * a)7262 xfer_to_a(compiler_state_t *cstate, struct arth *a)
7263 {
7264 	struct slist *s;
7265 
7266 	s = new_stmt(cstate, BPF_LD|BPF_MEM);
7267 	s->s.k = a->regno;
7268 	return s;
7269 }
7270 
7271 /*
7272  * Modify "index" to use the value stored into its register as an
7273  * offset relative to the beginning of the header for the protocol
7274  * "proto", and allocate a register and put an item "size" bytes long
7275  * (1, 2, or 4) at that offset into that register, making it the register
7276  * for "index".
7277  */
7278 static struct arth *
gen_load_internal(compiler_state_t * cstate,int proto,struct arth * inst,int size)7279 gen_load_internal(compiler_state_t *cstate, int proto, struct arth *inst, int size)
7280 {
7281 	struct slist *s, *tmp;
7282 	struct block *b;
7283 	int regno = alloc_reg(cstate);
7284 
7285 	free_reg(cstate, inst->regno);
7286 	switch (size) {
7287 
7288 	default:
7289 		bpf_error(cstate, "data size must be 1, 2, or 4");
7290 
7291 	case 1:
7292 		size = BPF_B;
7293 		break;
7294 
7295 	case 2:
7296 		size = BPF_H;
7297 		break;
7298 
7299 	case 4:
7300 		size = BPF_W;
7301 		break;
7302 	}
7303 	switch (proto) {
7304 	default:
7305 		bpf_error(cstate, "unsupported index operation");
7306 
7307 	case Q_RADIO:
7308 		/*
7309 		 * The offset is relative to the beginning of the packet
7310 		 * data, if we have a radio header.  (If we don't, this
7311 		 * is an error.)
7312 		 */
7313 		if (cstate->linktype != DLT_IEEE802_11_RADIO_AVS &&
7314 		    cstate->linktype != DLT_IEEE802_11_RADIO &&
7315 		    cstate->linktype != DLT_PRISM_HEADER)
7316 			bpf_error(cstate, "radio information not present in capture");
7317 
7318 		/*
7319 		 * Load into the X register the offset computed into the
7320 		 * register specified by "index".
7321 		 */
7322 		s = xfer_to_x(cstate, inst);
7323 
7324 		/*
7325 		 * Load the item at that offset.
7326 		 */
7327 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
7328 		sappend(s, tmp);
7329 		sappend(inst->s, s);
7330 		break;
7331 
7332 	case Q_LINK:
7333 		/*
7334 		 * The offset is relative to the beginning of
7335 		 * the link-layer header.
7336 		 *
7337 		 * XXX - what about ATM LANE?  Should the index be
7338 		 * relative to the beginning of the AAL5 frame, so
7339 		 * that 0 refers to the beginning of the LE Control
7340 		 * field, or relative to the beginning of the LAN
7341 		 * frame, so that 0 refers, for Ethernet LANE, to
7342 		 * the beginning of the destination address?
7343 		 */
7344 		s = gen_abs_offset_varpart(cstate, &cstate->off_linkhdr);
7345 
7346 		/*
7347 		 * If "s" is non-null, it has code to arrange that the
7348 		 * X register contains the length of the prefix preceding
7349 		 * the link-layer header.  Add to it the offset computed
7350 		 * into the register specified by "index", and move that
7351 		 * into the X register.  Otherwise, just load into the X
7352 		 * register the offset computed into the register specified
7353 		 * by "index".
7354 		 */
7355 		if (s != NULL) {
7356 			sappend(s, xfer_to_a(cstate, inst));
7357 			sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7358 			sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7359 		} else
7360 			s = xfer_to_x(cstate, inst);
7361 
7362 		/*
7363 		 * Load the item at the sum of the offset we've put in the
7364 		 * X register and the offset of the start of the link
7365 		 * layer header (which is 0 if the radio header is
7366 		 * variable-length; that header length is what we put
7367 		 * into the X register and then added to the index).
7368 		 */
7369 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
7370 		tmp->s.k = cstate->off_linkhdr.constant_part;
7371 		sappend(s, tmp);
7372 		sappend(inst->s, s);
7373 		break;
7374 
7375 	case Q_IP:
7376 	case Q_ARP:
7377 	case Q_RARP:
7378 	case Q_ATALK:
7379 	case Q_DECNET:
7380 	case Q_SCA:
7381 	case Q_LAT:
7382 	case Q_MOPRC:
7383 	case Q_MOPDL:
7384 	case Q_IPV6:
7385 		/*
7386 		 * The offset is relative to the beginning of
7387 		 * the network-layer header.
7388 		 * XXX - are there any cases where we want
7389 		 * cstate->off_nl_nosnap?
7390 		 */
7391 		s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7392 
7393 		/*
7394 		 * If "s" is non-null, it has code to arrange that the
7395 		 * X register contains the variable part of the offset
7396 		 * of the link-layer payload.  Add to it the offset
7397 		 * computed into the register specified by "index",
7398 		 * and move that into the X register.  Otherwise, just
7399 		 * load into the X register the offset computed into
7400 		 * the register specified by "index".
7401 		 */
7402 		if (s != NULL) {
7403 			sappend(s, xfer_to_a(cstate, inst));
7404 			sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7405 			sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7406 		} else
7407 			s = xfer_to_x(cstate, inst);
7408 
7409 		/*
7410 		 * Load the item at the sum of the offset we've put in the
7411 		 * X register, the offset of the start of the network
7412 		 * layer header from the beginning of the link-layer
7413 		 * payload, and the constant part of the offset of the
7414 		 * start of the link-layer payload.
7415 		 */
7416 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
7417 		tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7418 		sappend(s, tmp);
7419 		sappend(inst->s, s);
7420 
7421 		/*
7422 		 * Do the computation only if the packet contains
7423 		 * the protocol in question.
7424 		 */
7425 		b = gen_proto_abbrev_internal(cstate, proto);
7426 		if (inst->b)
7427 			gen_and(inst->b, b);
7428 		inst->b = b;
7429 		break;
7430 
7431 	case Q_SCTP:
7432 	case Q_TCP:
7433 	case Q_UDP:
7434 	case Q_ICMP:
7435 	case Q_IGMP:
7436 	case Q_IGRP:
7437 	case Q_PIM:
7438 	case Q_VRRP:
7439 	case Q_CARP:
7440 		/*
7441 		 * The offset is relative to the beginning of
7442 		 * the transport-layer header.
7443 		 *
7444 		 * Load the X register with the length of the IPv4 header
7445 		 * (plus the offset of the link-layer header, if it's
7446 		 * a variable-length header), in bytes.
7447 		 *
7448 		 * XXX - are there any cases where we want
7449 		 * cstate->off_nl_nosnap?
7450 		 * XXX - we should, if we're built with
7451 		 * IPv6 support, generate code to load either
7452 		 * IPv4, IPv6, or both, as appropriate.
7453 		 */
7454 		s = gen_loadx_iphdrlen(cstate);
7455 
7456 		/*
7457 		 * The X register now contains the sum of the variable
7458 		 * part of the offset of the link-layer payload and the
7459 		 * length of the network-layer header.
7460 		 *
7461 		 * Load into the A register the offset relative to
7462 		 * the beginning of the transport layer header,
7463 		 * add the X register to that, move that to the
7464 		 * X register, and load with an offset from the
7465 		 * X register equal to the sum of the constant part of
7466 		 * the offset of the link-layer payload and the offset,
7467 		 * relative to the beginning of the link-layer payload,
7468 		 * of the network-layer header.
7469 		 */
7470 		sappend(s, xfer_to_a(cstate, inst));
7471 		sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7472 		sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7473 		sappend(s, tmp = new_stmt(cstate, BPF_LD|BPF_IND|size));
7474 		tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7475 		sappend(inst->s, s);
7476 
7477 		/*
7478 		 * Do the computation only if the packet contains
7479 		 * the protocol in question - which is true only
7480 		 * if this is an IP datagram and is the first or
7481 		 * only fragment of that datagram.
7482 		 */
7483 		gen_and(gen_proto_abbrev_internal(cstate, proto), b = gen_ipfrag(cstate));
7484 		if (inst->b)
7485 			gen_and(inst->b, b);
7486 		gen_and(gen_proto_abbrev_internal(cstate, Q_IP), b);
7487 		inst->b = b;
7488 		break;
7489 	case Q_ICMPV6:
7490         /*
7491         * Do the computation only if the packet contains
7492         * the protocol in question.
7493         */
7494         b = gen_proto_abbrev_internal(cstate, Q_IPV6);
7495         if (inst->b) {
7496             gen_and(inst->b, b);
7497         }
7498         inst->b = b;
7499 
7500         /*
7501         * Check if we have an icmp6 next header
7502         */
7503         b = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, 58);
7504         if (inst->b) {
7505             gen_and(inst->b, b);
7506         }
7507         inst->b = b;
7508 
7509 
7510         s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7511         /*
7512         * If "s" is non-null, it has code to arrange that the
7513         * X register contains the variable part of the offset
7514         * of the link-layer payload.  Add to it the offset
7515         * computed into the register specified by "index",
7516         * and move that into the X register.  Otherwise, just
7517         * load into the X register the offset computed into
7518         * the register specified by "index".
7519         */
7520         if (s != NULL) {
7521             sappend(s, xfer_to_a(cstate, inst));
7522             sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7523             sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7524         } else {
7525             s = xfer_to_x(cstate, inst);
7526         }
7527 
7528         /*
7529         * Load the item at the sum of the offset we've put in the
7530         * X register, the offset of the start of the network
7531         * layer header from the beginning of the link-layer
7532         * payload, and the constant part of the offset of the
7533         * start of the link-layer payload.
7534         */
7535         tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
7536         tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 40;
7537 
7538         sappend(s, tmp);
7539         sappend(inst->s, s);
7540 
7541         break;
7542 	}
7543 	inst->regno = regno;
7544 	s = new_stmt(cstate, BPF_ST);
7545 	s->s.k = regno;
7546 	sappend(inst->s, s);
7547 
7548 	return inst;
7549 }
7550 
7551 struct arth *
gen_load(compiler_state_t * cstate,int proto,struct arth * inst,int size)7552 gen_load(compiler_state_t *cstate, int proto, struct arth *inst, int size)
7553 {
7554 	/*
7555 	 * Catch errors reported by us and routines below us, and return NULL
7556 	 * on an error.
7557 	 */
7558 	if (setjmp(cstate->top_ctx))
7559 		return (NULL);
7560 
7561 	return gen_load_internal(cstate, proto, inst, size);
7562 }
7563 
7564 static struct block *
gen_relation_internal(compiler_state_t * cstate,int code,struct arth * a0,struct arth * a1,int reversed)7565 gen_relation_internal(compiler_state_t *cstate, int code, struct arth *a0,
7566     struct arth *a1, int reversed)
7567 {
7568 	struct slist *s0, *s1, *s2;
7569 	struct block *b, *tmp;
7570 
7571 	s0 = xfer_to_x(cstate, a1);
7572 	s1 = xfer_to_a(cstate, a0);
7573 	if (code == BPF_JEQ) {
7574 		s2 = new_stmt(cstate, BPF_ALU|BPF_SUB|BPF_X);
7575 		b = new_block(cstate, JMP(code));
7576 		sappend(s1, s2);
7577 	}
7578 	else
7579 		b = new_block(cstate, BPF_JMP|code|BPF_X);
7580 	if (reversed)
7581 		gen_not(b);
7582 
7583 	sappend(s0, s1);
7584 	sappend(a1->s, s0);
7585 	sappend(a0->s, a1->s);
7586 
7587 	b->stmts = a0->s;
7588 
7589 	free_reg(cstate, a0->regno);
7590 	free_reg(cstate, a1->regno);
7591 
7592 	/* 'and' together protocol checks */
7593 	if (a0->b) {
7594 		if (a1->b) {
7595 			gen_and(a0->b, tmp = a1->b);
7596 		}
7597 		else
7598 			tmp = a0->b;
7599 	} else
7600 		tmp = a1->b;
7601 
7602 	if (tmp)
7603 		gen_and(tmp, b);
7604 
7605 	return b;
7606 }
7607 
7608 struct block *
gen_relation(compiler_state_t * cstate,int code,struct arth * a0,struct arth * a1,int reversed)7609 gen_relation(compiler_state_t *cstate, int code, struct arth *a0,
7610     struct arth *a1, int reversed)
7611 {
7612 	/*
7613 	 * Catch errors reported by us and routines below us, and return NULL
7614 	 * on an error.
7615 	 */
7616 	if (setjmp(cstate->top_ctx))
7617 		return (NULL);
7618 
7619 	return gen_relation_internal(cstate, code, a0, a1, reversed);
7620 }
7621 
7622 struct arth *
gen_loadlen(compiler_state_t * cstate)7623 gen_loadlen(compiler_state_t *cstate)
7624 {
7625 	int regno;
7626 	struct arth *a;
7627 	struct slist *s;
7628 
7629 	/*
7630 	 * Catch errors reported by us and routines below us, and return NULL
7631 	 * on an error.
7632 	 */
7633 	if (setjmp(cstate->top_ctx))
7634 		return (NULL);
7635 
7636 	regno = alloc_reg(cstate);
7637 	a = (struct arth *)newchunk(cstate, sizeof(*a));
7638 	s = new_stmt(cstate, BPF_LD|BPF_LEN);
7639 	s->next = new_stmt(cstate, BPF_ST);
7640 	s->next->s.k = regno;
7641 	a->s = s;
7642 	a->regno = regno;
7643 
7644 	return a;
7645 }
7646 
7647 static struct arth *
gen_loadi_internal(compiler_state_t * cstate,int val)7648 gen_loadi_internal(compiler_state_t *cstate, int val)
7649 {
7650 	struct arth *a;
7651 	struct slist *s;
7652 	int reg;
7653 
7654 	a = (struct arth *)newchunk(cstate, sizeof(*a));
7655 
7656 	reg = alloc_reg(cstate);
7657 
7658 	s = new_stmt(cstate, BPF_LD|BPF_IMM);
7659 	s->s.k = val;
7660 	s->next = new_stmt(cstate, BPF_ST);
7661 	s->next->s.k = reg;
7662 	a->s = s;
7663 	a->regno = reg;
7664 
7665 	return a;
7666 }
7667 
7668 struct arth *
gen_loadi(compiler_state_t * cstate,int val)7669 gen_loadi(compiler_state_t *cstate, int val)
7670 {
7671 	/*
7672 	 * Catch errors reported by us and routines below us, and return NULL
7673 	 * on an error.
7674 	 */
7675 	if (setjmp(cstate->top_ctx))
7676 		return (NULL);
7677 
7678 	return gen_loadi_internal(cstate, val);
7679 }
7680 
7681 /*
7682  * The a_arg dance is to avoid annoying whining by compilers that
7683  * a might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7684  * It's not *used* after setjmp returns.
7685  */
7686 struct arth *
gen_neg(compiler_state_t * cstate,struct arth * a_arg)7687 gen_neg(compiler_state_t *cstate, struct arth *a_arg)
7688 {
7689 	struct arth * volatile a = a_arg;
7690 	struct slist *s;
7691 
7692 	/*
7693 	 * Catch errors reported by us and routines below us, and return NULL
7694 	 * on an error.
7695 	 */
7696 	if (setjmp(cstate->top_ctx))
7697 		return (NULL);
7698 
7699 	s = xfer_to_a(cstate, a);
7700 	sappend(a->s, s);
7701 	s = new_stmt(cstate, BPF_ALU|BPF_NEG);
7702 	s->s.k = 0;
7703 	sappend(a->s, s);
7704 	s = new_stmt(cstate, BPF_ST);
7705 	s->s.k = a->regno;
7706 	sappend(a->s, s);
7707 
7708 	return a;
7709 }
7710 
7711 /*
7712  * The a0_arg dance is to avoid annoying whining by compilers that
7713  * a0 might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7714  * It's not *used* after setjmp returns.
7715  */
7716 struct arth *
gen_arth(compiler_state_t * cstate,int code,struct arth * a0_arg,struct arth * a1)7717 gen_arth(compiler_state_t *cstate, int code, struct arth *a0_arg,
7718     struct arth *a1)
7719 {
7720 	struct arth * volatile a0 = a0_arg;
7721 	struct slist *s0, *s1, *s2;
7722 
7723 	/*
7724 	 * Catch errors reported by us and routines below us, and return NULL
7725 	 * on an error.
7726 	 */
7727 	if (setjmp(cstate->top_ctx))
7728 		return (NULL);
7729 
7730 	/*
7731 	 * Disallow division by, or modulus by, zero; we do this here
7732 	 * so that it gets done even if the optimizer is disabled.
7733 	 *
7734 	 * Also disallow shifts by a value greater than 31; we do this
7735 	 * here, for the same reason.
7736 	 */
7737 	if (code == BPF_DIV) {
7738 		if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7739 			bpf_error(cstate, "division by zero");
7740 	} else if (code == BPF_MOD) {
7741 		if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7742 			bpf_error(cstate, "modulus by zero");
7743 	} else if (code == BPF_LSH || code == BPF_RSH) {
7744 		/*
7745 		 * XXX - we need to make up our minds as to what integers
7746 		 * are signed and what integers are unsigned in BPF programs
7747 		 * and in our IR.
7748 		 */
7749 		if (a1->s->s.code == (BPF_LD|BPF_IMM) &&
7750 		    (a1->s->s.k < 0 || a1->s->s.k > 31))
7751 			bpf_error(cstate, "shift by more than 31 bits");
7752 	}
7753 	s0 = xfer_to_x(cstate, a1);
7754 	s1 = xfer_to_a(cstate, a0);
7755 	s2 = new_stmt(cstate, BPF_ALU|BPF_X|code);
7756 
7757 	sappend(s1, s2);
7758 	sappend(s0, s1);
7759 	sappend(a1->s, s0);
7760 	sappend(a0->s, a1->s);
7761 
7762 	free_reg(cstate, a0->regno);
7763 	free_reg(cstate, a1->regno);
7764 
7765 	s0 = new_stmt(cstate, BPF_ST);
7766 	a0->regno = s0->s.k = alloc_reg(cstate);
7767 	sappend(a0->s, s0);
7768 
7769 	return a0;
7770 }
7771 
7772 /*
7773  * Initialize the table of used registers and the current register.
7774  */
7775 static void
init_regs(compiler_state_t * cstate)7776 init_regs(compiler_state_t *cstate)
7777 {
7778 	cstate->curreg = 0;
7779 	memset(cstate->regused, 0, sizeof cstate->regused);
7780 }
7781 
7782 /*
7783  * Return the next free register.
7784  */
7785 static int
alloc_reg(compiler_state_t * cstate)7786 alloc_reg(compiler_state_t *cstate)
7787 {
7788 	int n = BPF_MEMWORDS;
7789 
7790 	while (--n >= 0) {
7791 		if (cstate->regused[cstate->curreg])
7792 			cstate->curreg = (cstate->curreg + 1) % BPF_MEMWORDS;
7793 		else {
7794 			cstate->regused[cstate->curreg] = 1;
7795 			return cstate->curreg;
7796 		}
7797 	}
7798 	bpf_error(cstate, "too many registers needed to evaluate expression");
7799 	/*NOTREACHED*/
7800 }
7801 
7802 /*
7803  * Return a register to the table so it can
7804  * be used later.
7805  */
7806 static void
free_reg(compiler_state_t * cstate,int n)7807 free_reg(compiler_state_t *cstate, int n)
7808 {
7809 	cstate->regused[n] = 0;
7810 }
7811 
7812 static struct block *
gen_len(compiler_state_t * cstate,int jmp,int n)7813 gen_len(compiler_state_t *cstate, int jmp, int n)
7814 {
7815 	struct slist *s;
7816 	struct block *b;
7817 
7818 	s = new_stmt(cstate, BPF_LD|BPF_LEN);
7819 	b = new_block(cstate, JMP(jmp));
7820 	b->stmts = s;
7821 	b->s.k = n;
7822 
7823 	return b;
7824 }
7825 
7826 struct block *
gen_greater(compiler_state_t * cstate,int n)7827 gen_greater(compiler_state_t *cstate, int n)
7828 {
7829 	/*
7830 	 * Catch errors reported by us and routines below us, and return NULL
7831 	 * on an error.
7832 	 */
7833 	if (setjmp(cstate->top_ctx))
7834 		return (NULL);
7835 
7836 	return gen_len(cstate, BPF_JGE, n);
7837 }
7838 
7839 /*
7840  * Actually, this is less than or equal.
7841  */
7842 struct block *
gen_less(compiler_state_t * cstate,int n)7843 gen_less(compiler_state_t *cstate, int n)
7844 {
7845 	struct block *b;
7846 
7847 	/*
7848 	 * Catch errors reported by us and routines below us, and return NULL
7849 	 * on an error.
7850 	 */
7851 	if (setjmp(cstate->top_ctx))
7852 		return (NULL);
7853 
7854 	b = gen_len(cstate, BPF_JGT, n);
7855 	gen_not(b);
7856 
7857 	return b;
7858 }
7859 
7860 /*
7861  * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7862  * the beginning of the link-layer header.
7863  * XXX - that means you can't test values in the radiotap header, but
7864  * as that header is difficult if not impossible to parse generally
7865  * without a loop, that might not be a severe problem.  A new keyword
7866  * "radio" could be added for that, although what you'd really want
7867  * would be a way of testing particular radio header values, which
7868  * would generate code appropriate to the radio header in question.
7869  */
7870 struct block *
gen_byteop(compiler_state_t * cstate,int op,int idx,int val)7871 gen_byteop(compiler_state_t *cstate, int op, int idx, int val)
7872 {
7873 	struct block *b;
7874 	struct slist *s;
7875 
7876 	/*
7877 	 * Catch errors reported by us and routines below us, and return NULL
7878 	 * on an error.
7879 	 */
7880 	if (setjmp(cstate->top_ctx))
7881 		return (NULL);
7882 
7883 	switch (op) {
7884 	default:
7885 		abort();
7886 
7887 	case '=':
7888 		return gen_cmp(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
7889 
7890 	case '<':
7891 		b = gen_cmp_lt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
7892 		return b;
7893 
7894 	case '>':
7895 		b = gen_cmp_gt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
7896 		return b;
7897 
7898 	case '|':
7899 		s = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_K);
7900 		break;
7901 
7902 	case '&':
7903 		s = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
7904 		break;
7905 	}
7906 	s->s.k = val;
7907 	b = new_block(cstate, JMP(BPF_JEQ));
7908 	b->stmts = s;
7909 	gen_not(b);
7910 
7911 	return b;
7912 }
7913 
7914 static const u_char abroadcast[] = { 0x0 };
7915 
7916 struct block *
gen_broadcast(compiler_state_t * cstate,int proto)7917 gen_broadcast(compiler_state_t *cstate, int proto)
7918 {
7919 	bpf_u_int32 hostmask;
7920 	struct block *b0, *b1, *b2;
7921 	static const u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7922 
7923 	/*
7924 	 * Catch errors reported by us and routines below us, and return NULL
7925 	 * on an error.
7926 	 */
7927 	if (setjmp(cstate->top_ctx))
7928 		return (NULL);
7929 
7930 	switch (proto) {
7931 
7932 	case Q_DEFAULT:
7933 	case Q_LINK:
7934 		switch (cstate->linktype) {
7935 		case DLT_ARCNET:
7936 		case DLT_ARCNET_LINUX:
7937 			return gen_ahostop(cstate, abroadcast, Q_DST);
7938 		case DLT_EN10MB:
7939 		case DLT_NETANALYZER:
7940 		case DLT_NETANALYZER_TRANSPARENT:
7941 			b1 = gen_prevlinkhdr_check(cstate);
7942 			b0 = gen_ehostop(cstate, ebroadcast, Q_DST);
7943 			if (b1 != NULL)
7944 				gen_and(b1, b0);
7945 			return b0;
7946 		case DLT_FDDI:
7947 			return gen_fhostop(cstate, ebroadcast, Q_DST);
7948 		case DLT_IEEE802:
7949 			return gen_thostop(cstate, ebroadcast, Q_DST);
7950 		case DLT_IEEE802_11:
7951 		case DLT_PRISM_HEADER:
7952 		case DLT_IEEE802_11_RADIO_AVS:
7953 		case DLT_IEEE802_11_RADIO:
7954 		case DLT_PPI:
7955 			return gen_wlanhostop(cstate, ebroadcast, Q_DST);
7956 		case DLT_IP_OVER_FC:
7957 			return gen_ipfchostop(cstate, ebroadcast, Q_DST);
7958 		default:
7959 			bpf_error(cstate, "not a broadcast link");
7960 		}
7961  		/*NOTREACHED*/
7962 
7963 	case Q_IP:
7964 		/*
7965 		 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7966 		 * as an indication that we don't know the netmask, and fail
7967 		 * in that case.
7968 		 */
7969 		if (cstate->netmask == PCAP_NETMASK_UNKNOWN)
7970 			bpf_error(cstate, "netmask not known, so 'ip broadcast' not supported");
7971 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
7972 		hostmask = ~cstate->netmask;
7973 		b1 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, (bpf_int32)0, hostmask);
7974 		b2 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W,
7975 			      (bpf_int32)(~0 & hostmask), hostmask);
7976 		gen_or(b1, b2);
7977 		gen_and(b0, b2);
7978 		return b2;
7979 	}
7980 	bpf_error(cstate, "only link-layer/IP broadcast filters supported");
7981 	/*NOTREACHED*/
7982 }
7983 
7984 /*
7985  * Generate code to test the low-order bit of a MAC address (that's
7986  * the bottom bit of the *first* byte).
7987  */
7988 static struct block *
gen_mac_multicast(compiler_state_t * cstate,int offset)7989 gen_mac_multicast(compiler_state_t *cstate, int offset)
7990 {
7991 	register struct block *b0;
7992 	register struct slist *s;
7993 
7994 	/* link[offset] & 1 != 0 */
7995 	s = gen_load_a(cstate, OR_LINKHDR, offset, BPF_B);
7996 	b0 = new_block(cstate, JMP(BPF_JSET));
7997 	b0->s.k = 1;
7998 	b0->stmts = s;
7999 	return b0;
8000 }
8001 
8002 struct block *
gen_multicast(compiler_state_t * cstate,int proto)8003 gen_multicast(compiler_state_t *cstate, int proto)
8004 {
8005 	register struct block *b0, *b1, *b2;
8006 	register struct slist *s;
8007 
8008 	/*
8009 	 * Catch errors reported by us and routines below us, and return NULL
8010 	 * on an error.
8011 	 */
8012 	if (setjmp(cstate->top_ctx))
8013 		return (NULL);
8014 
8015 	switch (proto) {
8016 
8017 	case Q_DEFAULT:
8018 	case Q_LINK:
8019 		switch (cstate->linktype) {
8020 		case DLT_ARCNET:
8021 		case DLT_ARCNET_LINUX:
8022 			/* all ARCnet multicasts use the same address */
8023 			return gen_ahostop(cstate, abroadcast, Q_DST);
8024 		case DLT_EN10MB:
8025 		case DLT_NETANALYZER:
8026 		case DLT_NETANALYZER_TRANSPARENT:
8027 			b1 = gen_prevlinkhdr_check(cstate);
8028 			/* ether[0] & 1 != 0 */
8029 			b0 = gen_mac_multicast(cstate, 0);
8030 			if (b1 != NULL)
8031 				gen_and(b1, b0);
8032 			return b0;
8033 		case DLT_FDDI:
8034 			/*
8035 			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
8036 			 *
8037 			 * XXX - was that referring to bit-order issues?
8038 			 */
8039 			/* fddi[1] & 1 != 0 */
8040 			return gen_mac_multicast(cstate, 1);
8041 		case DLT_IEEE802:
8042 			/* tr[2] & 1 != 0 */
8043 			return gen_mac_multicast(cstate, 2);
8044 		case DLT_IEEE802_11:
8045 		case DLT_PRISM_HEADER:
8046 		case DLT_IEEE802_11_RADIO_AVS:
8047 		case DLT_IEEE802_11_RADIO:
8048 		case DLT_PPI:
8049 			/*
8050 			 * Oh, yuk.
8051 			 *
8052 			 *	For control frames, there is no DA.
8053 			 *
8054 			 *	For management frames, DA is at an
8055 			 *	offset of 4 from the beginning of
8056 			 *	the packet.
8057 			 *
8058 			 *	For data frames, DA is at an offset
8059 			 *	of 4 from the beginning of the packet
8060 			 *	if To DS is clear and at an offset of
8061 			 *	16 from the beginning of the packet
8062 			 *	if To DS is set.
8063 			 */
8064 
8065 			/*
8066 			 * Generate the tests to be done for data frames.
8067 			 *
8068 			 * First, check for To DS set, i.e. "link[1] & 0x01".
8069 			 */
8070 			s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8071 			b1 = new_block(cstate, JMP(BPF_JSET));
8072 			b1->s.k = 0x01;	/* To DS */
8073 			b1->stmts = s;
8074 
8075 			/*
8076 			 * If To DS is set, the DA is at 16.
8077 			 */
8078 			b0 = gen_mac_multicast(cstate, 16);
8079 			gen_and(b1, b0);
8080 
8081 			/*
8082 			 * Now, check for To DS not set, i.e. check
8083 			 * "!(link[1] & 0x01)".
8084 			 */
8085 			s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8086 			b2 = new_block(cstate, JMP(BPF_JSET));
8087 			b2->s.k = 0x01;	/* To DS */
8088 			b2->stmts = s;
8089 			gen_not(b2);
8090 
8091 			/*
8092 			 * If To DS is not set, the DA is at 4.
8093 			 */
8094 			b1 = gen_mac_multicast(cstate, 4);
8095 			gen_and(b2, b1);
8096 
8097 			/*
8098 			 * Now OR together the last two checks.  That gives
8099 			 * the complete set of checks for data frames.
8100 			 */
8101 			gen_or(b1, b0);
8102 
8103 			/*
8104 			 * Now check for a data frame.
8105 			 * I.e, check "link[0] & 0x08".
8106 			 */
8107 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8108 			b1 = new_block(cstate, JMP(BPF_JSET));
8109 			b1->s.k = 0x08;
8110 			b1->stmts = s;
8111 
8112 			/*
8113 			 * AND that with the checks done for data frames.
8114 			 */
8115 			gen_and(b1, b0);
8116 
8117 			/*
8118 			 * If the high-order bit of the type value is 0, this
8119 			 * is a management frame.
8120 			 * I.e, check "!(link[0] & 0x08)".
8121 			 */
8122 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8123 			b2 = new_block(cstate, JMP(BPF_JSET));
8124 			b2->s.k = 0x08;
8125 			b2->stmts = s;
8126 			gen_not(b2);
8127 
8128 			/*
8129 			 * For management frames, the DA is at 4.
8130 			 */
8131 			b1 = gen_mac_multicast(cstate, 4);
8132 			gen_and(b2, b1);
8133 
8134 			/*
8135 			 * OR that with the checks done for data frames.
8136 			 * That gives the checks done for management and
8137 			 * data frames.
8138 			 */
8139 			gen_or(b1, b0);
8140 
8141 			/*
8142 			 * If the low-order bit of the type value is 1,
8143 			 * this is either a control frame or a frame
8144 			 * with a reserved type, and thus not a
8145 			 * frame with an SA.
8146 			 *
8147 			 * I.e., check "!(link[0] & 0x04)".
8148 			 */
8149 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8150 			b1 = new_block(cstate, JMP(BPF_JSET));
8151 			b1->s.k = 0x04;
8152 			b1->stmts = s;
8153 			gen_not(b1);
8154 
8155 			/*
8156 			 * AND that with the checks for data and management
8157 			 * frames.
8158 			 */
8159 			gen_and(b1, b0);
8160 			return b0;
8161 		case DLT_IP_OVER_FC:
8162 			b0 = gen_mac_multicast(cstate, 2);
8163 			return b0;
8164 		default:
8165 			break;
8166 		}
8167 		/* Link not known to support multicasts */
8168 		break;
8169 
8170 	case Q_IP:
8171 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
8172 		b1 = gen_cmp_ge(cstate, OR_LINKPL, 16, BPF_B, (bpf_int32)224);
8173 		gen_and(b0, b1);
8174 		return b1;
8175 
8176 	case Q_IPV6:
8177 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
8178 		b1 = gen_cmp(cstate, OR_LINKPL, 24, BPF_B, (bpf_int32)255);
8179 		gen_and(b0, b1);
8180 		return b1;
8181 	}
8182 	bpf_error(cstate, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
8183 	/*NOTREACHED*/
8184 }
8185 
8186 /*
8187  * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
8188  * Outbound traffic is sent by this machine, while inbound traffic is
8189  * sent by a remote machine (and may include packets destined for a
8190  * unicast or multicast link-layer address we are not subscribing to).
8191  * These are the same definitions implemented by pcap_setdirection().
8192  * Capturing only unicast traffic destined for this host is probably
8193  * better accomplished using a higher-layer filter.
8194  */
8195 struct block *
gen_inbound(compiler_state_t * cstate,int dir)8196 gen_inbound(compiler_state_t *cstate, int dir)
8197 {
8198 	register struct block *b0;
8199 
8200 	/*
8201 	 * Catch errors reported by us and routines below us, and return NULL
8202 	 * on an error.
8203 	 */
8204 	if (setjmp(cstate->top_ctx))
8205 		return (NULL);
8206 
8207 	/*
8208 	 * Only some data link types support inbound/outbound qualifiers.
8209 	 */
8210 	switch (cstate->linktype) {
8211 	case DLT_SLIP:
8212 		b0 = gen_relation_internal(cstate, BPF_JEQ,
8213 			  gen_load_internal(cstate, Q_LINK, gen_loadi_internal(cstate, 0), 1),
8214 			  gen_loadi_internal(cstate, 0),
8215 			  dir);
8216 		break;
8217 
8218 	case DLT_IPNET:
8219 		if (dir) {
8220 			/* match outgoing packets */
8221 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_OUTBOUND);
8222 		} else {
8223 			/* match incoming packets */
8224 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_INBOUND);
8225 		}
8226 		break;
8227 
8228 	case DLT_LINUX_SLL:
8229 		/* match outgoing packets */
8230 		b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING);
8231 		if (!dir) {
8232 			/* to filter on inbound traffic, invert the match */
8233 			gen_not(b0);
8234 		}
8235 		break;
8236 
8237 	case DLT_LINUX_SLL2:
8238 		/* match outgoing packets */
8239 		b0 = gen_cmp(cstate, OR_LINKHDR, 10, BPF_B, LINUX_SLL_OUTGOING);
8240 		if (!dir) {
8241 			/* to filter on inbound traffic, invert the match */
8242 			gen_not(b0);
8243 		}
8244 		break;
8245 
8246 #ifdef HAVE_NET_PFVAR_H
8247 	case DLT_PFLOG:
8248 		b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B,
8249 		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
8250 		break;
8251 #endif
8252 
8253 	case DLT_PPP_PPPD:
8254 		if (dir) {
8255 			/* match outgoing packets */
8256 			b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_OUT);
8257 		} else {
8258 			/* match incoming packets */
8259 			b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_IN);
8260 		}
8261 		break;
8262 
8263         case DLT_JUNIPER_MFR:
8264         case DLT_JUNIPER_MLFR:
8265         case DLT_JUNIPER_MLPPP:
8266 	case DLT_JUNIPER_ATM1:
8267 	case DLT_JUNIPER_ATM2:
8268 	case DLT_JUNIPER_PPPOE:
8269 	case DLT_JUNIPER_PPPOE_ATM:
8270         case DLT_JUNIPER_GGSN:
8271         case DLT_JUNIPER_ES:
8272         case DLT_JUNIPER_MONITOR:
8273         case DLT_JUNIPER_SERVICES:
8274         case DLT_JUNIPER_ETHER:
8275         case DLT_JUNIPER_PPP:
8276         case DLT_JUNIPER_FRELAY:
8277         case DLT_JUNIPER_CHDLC:
8278         case DLT_JUNIPER_VP:
8279         case DLT_JUNIPER_ST:
8280         case DLT_JUNIPER_ISM:
8281         case DLT_JUNIPER_VS:
8282         case DLT_JUNIPER_SRX_E2E:
8283         case DLT_JUNIPER_FIBRECHANNEL:
8284 	case DLT_JUNIPER_ATM_CEMIC:
8285 
8286 		/* juniper flags (including direction) are stored
8287 		 * the byte after the 3-byte magic number */
8288 		if (dir) {
8289 			/* match outgoing packets */
8290 			b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 0, 0x01);
8291 		} else {
8292 			/* match incoming packets */
8293 			b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 1, 0x01);
8294 		}
8295 		break;
8296 
8297 	default:
8298 		/*
8299 		 * If we have packet meta-data indicating a direction,
8300 		 * and that metadata can be checked by BPF code, check
8301 		 * it.  Otherwise, give up, as this link-layer type has
8302 		 * nothing in the packet data.
8303 		 *
8304 		 * Currently, the only platform where a BPF filter can
8305 		 * check that metadata is Linux with the in-kernel
8306 		 * BPF interpreter.  If other packet capture mechanisms
8307 		 * and BPF filters also supported this, it would be
8308 		 * nice.  It would be even better if they made that
8309 		 * metadata available so that we could provide it
8310 		 * with newer capture APIs, allowing it to be saved
8311 		 * in pcapng files.
8312 		 */
8313 #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
8314 		/*
8315 		 * This is Linux with PF_PACKET support.
8316 		 * If this is a *live* capture, we can look at
8317 		 * special meta-data in the filter expression;
8318 		 * if it's a savefile, we can't.
8319 		 */
8320 		if (cstate->bpf_pcap->rfile != NULL) {
8321 			/* We have a FILE *, so this is a savefile */
8322 			bpf_error(cstate, "inbound/outbound not supported on %s when reading savefiles",
8323 			    pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8324 			b0 = NULL;
8325 			/*NOTREACHED*/
8326 		}
8327 		/* match outgoing packets */
8328 		b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
8329 		             PACKET_OUTGOING);
8330 		if (!dir) {
8331 			/* to filter on inbound traffic, invert the match */
8332 			gen_not(b0);
8333 		}
8334 #else /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
8335 		bpf_error(cstate, "inbound/outbound not supported on %s",
8336 		    pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8337 		/*NOTREACHED*/
8338 #endif /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
8339 	}
8340 	return (b0);
8341 }
8342 
8343 #ifdef HAVE_NET_PFVAR_H
8344 /* PF firewall log matched interface */
8345 struct block *
gen_pf_ifname(compiler_state_t * cstate,const char * ifname)8346 gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
8347 {
8348 	struct block *b0;
8349 	u_int len, off;
8350 
8351 	/*
8352 	 * Catch errors reported by us and routines below us, and return NULL
8353 	 * on an error.
8354 	 */
8355 	if (setjmp(cstate->top_ctx))
8356 		return (NULL);
8357 
8358 	if (cstate->linktype != DLT_PFLOG) {
8359 		bpf_error(cstate, "ifname supported only on PF linktype");
8360 		/*NOTREACHED*/
8361 	}
8362 	len = sizeof(((struct pfloghdr *)0)->ifname);
8363 	off = offsetof(struct pfloghdr, ifname);
8364 	if (strlen(ifname) >= len) {
8365 		bpf_error(cstate, "ifname interface names can only be %d characters",
8366 		    len-1);
8367 		/*NOTREACHED*/
8368 	}
8369 	b0 = gen_bcmp(cstate, OR_LINKHDR, off, (u_int)strlen(ifname),
8370 	    (const u_char *)ifname);
8371 	return (b0);
8372 }
8373 
8374 /* PF firewall log ruleset name */
8375 struct block *
gen_pf_ruleset(compiler_state_t * cstate,char * ruleset)8376 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
8377 {
8378 	struct block *b0;
8379 
8380 	/*
8381 	 * Catch errors reported by us and routines below us, and return NULL
8382 	 * on an error.
8383 	 */
8384 	if (setjmp(cstate->top_ctx))
8385 		return (NULL);
8386 
8387 	if (cstate->linktype != DLT_PFLOG) {
8388 		bpf_error(cstate, "ruleset supported only on PF linktype");
8389 		/*NOTREACHED*/
8390 	}
8391 
8392 	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
8393 		bpf_error(cstate, "ruleset names can only be %ld characters",
8394 		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
8395 		/*NOTREACHED*/
8396 	}
8397 
8398 	b0 = gen_bcmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, ruleset),
8399 	    (u_int)strlen(ruleset), (const u_char *)ruleset);
8400 	return (b0);
8401 }
8402 
8403 /* PF firewall log rule number */
8404 struct block *
gen_pf_rnr(compiler_state_t * cstate,int rnr)8405 gen_pf_rnr(compiler_state_t *cstate, int rnr)
8406 {
8407 	struct block *b0;
8408 
8409 	/*
8410 	 * Catch errors reported by us and routines below us, and return NULL
8411 	 * on an error.
8412 	 */
8413 	if (setjmp(cstate->top_ctx))
8414 		return (NULL);
8415 
8416 	if (cstate->linktype != DLT_PFLOG) {
8417 		bpf_error(cstate, "rnr supported only on PF linktype");
8418 		/*NOTREACHED*/
8419 	}
8420 
8421 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W,
8422 		 (bpf_int32)rnr);
8423 	return (b0);
8424 }
8425 
8426 /* PF firewall log sub-rule number */
8427 struct block *
gen_pf_srnr(compiler_state_t * cstate,int srnr)8428 gen_pf_srnr(compiler_state_t *cstate, int srnr)
8429 {
8430 	struct block *b0;
8431 
8432 	/*
8433 	 * Catch errors reported by us and routines below us, and return NULL
8434 	 * on an error.
8435 	 */
8436 	if (setjmp(cstate->top_ctx))
8437 		return (NULL);
8438 
8439 	if (cstate->linktype != DLT_PFLOG) {
8440 		bpf_error(cstate, "srnr supported only on PF linktype");
8441 		/*NOTREACHED*/
8442 	}
8443 
8444 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W,
8445 	    (bpf_int32)srnr);
8446 	return (b0);
8447 }
8448 
8449 /* PF firewall log reason code */
8450 struct block *
gen_pf_reason(compiler_state_t * cstate,int reason)8451 gen_pf_reason(compiler_state_t *cstate, int reason)
8452 {
8453 	struct block *b0;
8454 
8455 	/*
8456 	 * Catch errors reported by us and routines below us, and return NULL
8457 	 * on an error.
8458 	 */
8459 	if (setjmp(cstate->top_ctx))
8460 		return (NULL);
8461 
8462 	if (cstate->linktype != DLT_PFLOG) {
8463 		bpf_error(cstate, "reason supported only on PF linktype");
8464 		/*NOTREACHED*/
8465 	}
8466 
8467 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B,
8468 	    (bpf_int32)reason);
8469 	return (b0);
8470 }
8471 
8472 /* PF firewall log action */
8473 struct block *
gen_pf_action(compiler_state_t * cstate,int action)8474 gen_pf_action(compiler_state_t *cstate, int action)
8475 {
8476 	struct block *b0;
8477 
8478 	/*
8479 	 * Catch errors reported by us and routines below us, and return NULL
8480 	 * on an error.
8481 	 */
8482 	if (setjmp(cstate->top_ctx))
8483 		return (NULL);
8484 
8485 	if (cstate->linktype != DLT_PFLOG) {
8486 		bpf_error(cstate, "action supported only on PF linktype");
8487 		/*NOTREACHED*/
8488 	}
8489 
8490 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B,
8491 	    (bpf_int32)action);
8492 	return (b0);
8493 }
8494 #else /* !HAVE_NET_PFVAR_H */
8495 struct block *
gen_pf_ifname(compiler_state_t * cstate,const char * ifname _U_)8496 gen_pf_ifname(compiler_state_t *cstate, const char *ifname _U_)
8497 {
8498 	/*
8499 	 * Catch errors reported by us and routines below us, and return NULL
8500 	 * on an error.
8501 	 */
8502 	if (setjmp(cstate->top_ctx))
8503 		return (NULL);
8504 
8505 	bpf_error(cstate, "libpcap was compiled without pf support");
8506 	/*NOTREACHED*/
8507 }
8508 
8509 struct block *
gen_pf_ruleset(compiler_state_t * cstate,char * ruleset _U_)8510 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset _U_)
8511 {
8512 	/*
8513 	 * Catch errors reported by us and routines below us, and return NULL
8514 	 * on an error.
8515 	 */
8516 	if (setjmp(cstate->top_ctx))
8517 		return (NULL);
8518 
8519 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
8520 	/*NOTREACHED*/
8521 }
8522 
8523 struct block *
gen_pf_rnr(compiler_state_t * cstate,int rnr _U_)8524 gen_pf_rnr(compiler_state_t *cstate, int rnr _U_)
8525 {
8526 	/*
8527 	 * Catch errors reported by us and routines below us, and return NULL
8528 	 * on an error.
8529 	 */
8530 	if (setjmp(cstate->top_ctx))
8531 		return (NULL);
8532 
8533 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
8534 	/*NOTREACHED*/
8535 }
8536 
8537 struct block *
gen_pf_srnr(compiler_state_t * cstate,int srnr _U_)8538 gen_pf_srnr(compiler_state_t *cstate, int srnr _U_)
8539 {
8540 	/*
8541 	 * Catch errors reported by us and routines below us, and return NULL
8542 	 * on an error.
8543 	 */
8544 	if (setjmp(cstate->top_ctx))
8545 		return (NULL);
8546 
8547 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
8548 	/*NOTREACHED*/
8549 }
8550 
8551 struct block *
gen_pf_reason(compiler_state_t * cstate,int reason _U_)8552 gen_pf_reason(compiler_state_t *cstate, int reason _U_)
8553 {
8554 	/*
8555 	 * Catch errors reported by us and routines below us, and return NULL
8556 	 * on an error.
8557 	 */
8558 	if (setjmp(cstate->top_ctx))
8559 		return (NULL);
8560 
8561 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
8562 	/*NOTREACHED*/
8563 }
8564 
8565 struct block *
gen_pf_action(compiler_state_t * cstate,int action _U_)8566 gen_pf_action(compiler_state_t *cstate, int action _U_)
8567 {
8568 	/*
8569 	 * Catch errors reported by us and routines below us, and return NULL
8570 	 * on an error.
8571 	 */
8572 	if (setjmp(cstate->top_ctx))
8573 		return (NULL);
8574 
8575 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
8576 	/*NOTREACHED*/
8577 }
8578 #endif /* HAVE_NET_PFVAR_H */
8579 
8580 /* IEEE 802.11 wireless header */
8581 struct block *
gen_p80211_type(compiler_state_t * cstate,int type,int mask)8582 gen_p80211_type(compiler_state_t *cstate, int type, int mask)
8583 {
8584 	struct block *b0;
8585 
8586 	/*
8587 	 * Catch errors reported by us and routines below us, and return NULL
8588 	 * on an error.
8589 	 */
8590 	if (setjmp(cstate->top_ctx))
8591 		return (NULL);
8592 
8593 	switch (cstate->linktype) {
8594 
8595 	case DLT_IEEE802_11:
8596 	case DLT_PRISM_HEADER:
8597 	case DLT_IEEE802_11_RADIO_AVS:
8598 	case DLT_IEEE802_11_RADIO:
8599 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, (bpf_int32)type,
8600 		    (bpf_int32)mask);
8601 		break;
8602 
8603 	default:
8604 		bpf_error(cstate, "802.11 link-layer types supported only on 802.11");
8605 		/*NOTREACHED*/
8606 	}
8607 
8608 	return (b0);
8609 }
8610 
8611 struct block *
gen_p80211_fcdir(compiler_state_t * cstate,int fcdir)8612 gen_p80211_fcdir(compiler_state_t *cstate, int fcdir)
8613 {
8614 	struct block *b0;
8615 
8616 	/*
8617 	 * Catch errors reported by us and routines below us, and return NULL
8618 	 * on an error.
8619 	 */
8620 	if (setjmp(cstate->top_ctx))
8621 		return (NULL);
8622 
8623 	switch (cstate->linktype) {
8624 
8625 	case DLT_IEEE802_11:
8626 	case DLT_PRISM_HEADER:
8627 	case DLT_IEEE802_11_RADIO_AVS:
8628 	case DLT_IEEE802_11_RADIO:
8629 		break;
8630 
8631 	default:
8632 		bpf_error(cstate, "frame direction supported only with 802.11 headers");
8633 		/*NOTREACHED*/
8634 	}
8635 
8636 	b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, (bpf_int32)fcdir,
8637 		(bpf_u_int32)IEEE80211_FC1_DIR_MASK);
8638 
8639 	return (b0);
8640 }
8641 
8642 struct block *
gen_acode(compiler_state_t * cstate,const char * s,struct qual q)8643 gen_acode(compiler_state_t *cstate, const char *s, struct qual q)
8644 {
8645 	struct block *b;
8646 
8647 	/*
8648 	 * Catch errors reported by us and routines below us, and return NULL
8649 	 * on an error.
8650 	 */
8651 	if (setjmp(cstate->top_ctx))
8652 		return (NULL);
8653 
8654 	switch (cstate->linktype) {
8655 
8656 	case DLT_ARCNET:
8657 	case DLT_ARCNET_LINUX:
8658 		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
8659 		    q.proto == Q_LINK) {
8660 			cstate->e = pcap_ether_aton(s);
8661 			if (cstate->e == NULL)
8662 				bpf_error(cstate, "malloc");
8663 			b = gen_ahostop(cstate, cstate->e, (int)q.dir);
8664 			free(cstate->e);
8665 			cstate->e = NULL;
8666 			return (b);
8667 		} else
8668 			bpf_error(cstate, "ARCnet address used in non-arc expression");
8669  		/*NOTREACHED*/
8670 
8671 	default:
8672 		bpf_error(cstate, "aid supported only on ARCnet");
8673 		/*NOTREACHED*/
8674 	}
8675 }
8676 
8677 static struct block *
gen_ahostop(compiler_state_t * cstate,const u_char * eaddr,int dir)8678 gen_ahostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
8679 {
8680 	register struct block *b0, *b1;
8681 
8682 	switch (dir) {
8683 	/* src comes first, different from Ethernet */
8684 	case Q_SRC:
8685 		return gen_bcmp(cstate, OR_LINKHDR, 0, 1, eaddr);
8686 
8687 	case Q_DST:
8688 		return gen_bcmp(cstate, OR_LINKHDR, 1, 1, eaddr);
8689 
8690 	case Q_AND:
8691 		b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8692 		b1 = gen_ahostop(cstate, eaddr, Q_DST);
8693 		gen_and(b0, b1);
8694 		return b1;
8695 
8696 	case Q_DEFAULT:
8697 	case Q_OR:
8698 		b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8699 		b1 = gen_ahostop(cstate, eaddr, Q_DST);
8700 		gen_or(b0, b1);
8701 		return b1;
8702 
8703 	case Q_ADDR1:
8704 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
8705  		/*NOTREACHED*/
8706 
8707 	case Q_ADDR2:
8708 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
8709  		/*NOTREACHED*/
8710 
8711 	case Q_ADDR3:
8712 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
8713  		/*NOTREACHED*/
8714 
8715 	case Q_ADDR4:
8716 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
8717  		/*NOTREACHED*/
8718 
8719 	case Q_RA:
8720 		bpf_error(cstate, "'ra' is only supported on 802.11");
8721  		/*NOTREACHED*/
8722 
8723 	case Q_TA:
8724 		bpf_error(cstate, "'ta' is only supported on 802.11");
8725  		/*NOTREACHED*/
8726 	}
8727 	abort();
8728 	/*NOTREACHED*/
8729 }
8730 
8731 static struct block *
gen_vlan_tpid_test(compiler_state_t * cstate)8732 gen_vlan_tpid_test(compiler_state_t *cstate)
8733 {
8734 	struct block *b0, *b1;
8735 
8736 	/* check for VLAN, including QinQ */
8737 	b0 = gen_linktype(cstate, ETHERTYPE_8021Q);
8738 	b1 = gen_linktype(cstate, ETHERTYPE_8021AD);
8739 	gen_or(b0,b1);
8740 	b0 = b1;
8741 	b1 = gen_linktype(cstate, ETHERTYPE_8021QINQ);
8742 	gen_or(b0,b1);
8743 
8744 	return b1;
8745 }
8746 
8747 static struct block *
gen_vlan_vid_test(compiler_state_t * cstate,bpf_u_int32 vlan_num)8748 gen_vlan_vid_test(compiler_state_t *cstate, bpf_u_int32 vlan_num)
8749 {
8750 	if (vlan_num > 0x0fff) {
8751 		bpf_error(cstate, "VLAN tag %u greater than maximum %u",
8752 		    vlan_num, 0x0fff);
8753 	}
8754 	return gen_mcmp(cstate, OR_LINKPL, 0, BPF_H, (bpf_int32)vlan_num, 0x0fff);
8755 }
8756 
8757 static struct block *
gen_vlan_no_bpf_extensions(compiler_state_t * cstate,bpf_u_int32 vlan_num,int has_vlan_tag)8758 gen_vlan_no_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
8759     int has_vlan_tag)
8760 {
8761 	struct block *b0, *b1;
8762 
8763 	b0 = gen_vlan_tpid_test(cstate);
8764 
8765 	if (has_vlan_tag) {
8766 		b1 = gen_vlan_vid_test(cstate, vlan_num);
8767 		gen_and(b0, b1);
8768 		b0 = b1;
8769 	}
8770 
8771 	/*
8772 	 * Both payload and link header type follow the VLAN tags so that
8773 	 * both need to be updated.
8774 	 */
8775 	cstate->off_linkpl.constant_part += 4;
8776 	cstate->off_linktype.constant_part += 4;
8777 
8778 	return b0;
8779 }
8780 
8781 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8782 /* add v to variable part of off */
8783 static void
gen_vlan_vloffset_add(compiler_state_t * cstate,bpf_abs_offset * off,int v,struct slist * s)8784 gen_vlan_vloffset_add(compiler_state_t *cstate, bpf_abs_offset *off, int v, struct slist *s)
8785 {
8786 	struct slist *s2;
8787 
8788 	if (!off->is_variable)
8789 		off->is_variable = 1;
8790 	if (off->reg == -1)
8791 		off->reg = alloc_reg(cstate);
8792 
8793 	s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
8794 	s2->s.k = off->reg;
8795 	sappend(s, s2);
8796 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
8797 	s2->s.k = v;
8798 	sappend(s, s2);
8799 	s2 = new_stmt(cstate, BPF_ST);
8800 	s2->s.k = off->reg;
8801 	sappend(s, s2);
8802 }
8803 
8804 /*
8805  * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
8806  * and link type offsets first
8807  */
8808 static void
gen_vlan_patch_tpid_test(compiler_state_t * cstate,struct block * b_tpid)8809 gen_vlan_patch_tpid_test(compiler_state_t *cstate, struct block *b_tpid)
8810 {
8811 	struct slist s;
8812 
8813 	/* offset determined at run time, shift variable part */
8814 	s.next = NULL;
8815 	cstate->is_vlan_vloffset = 1;
8816 	gen_vlan_vloffset_add(cstate, &cstate->off_linkpl, 4, &s);
8817 	gen_vlan_vloffset_add(cstate, &cstate->off_linktype, 4, &s);
8818 
8819 	/* we get a pointer to a chain of or-ed blocks, patch first of them */
8820 	sappend(s.next, b_tpid->head->stmts);
8821 	b_tpid->head->stmts = s.next;
8822 }
8823 
8824 /*
8825  * patch block b_vid (VLAN id test) to load VID value either from packet
8826  * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
8827  */
8828 static void
gen_vlan_patch_vid_test(compiler_state_t * cstate,struct block * b_vid)8829 gen_vlan_patch_vid_test(compiler_state_t *cstate, struct block *b_vid)
8830 {
8831 	struct slist *s, *s2, *sjeq;
8832 	unsigned cnt;
8833 
8834 	s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8835 	s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
8836 
8837 	/* true -> next instructions, false -> beginning of b_vid */
8838 	sjeq = new_stmt(cstate, JMP(BPF_JEQ));
8839 	sjeq->s.k = 1;
8840 	sjeq->s.jf = b_vid->stmts;
8841 	sappend(s, sjeq);
8842 
8843 	s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8844 	s2->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG;
8845 	sappend(s, s2);
8846 	sjeq->s.jt = s2;
8847 
8848 	/* Jump to the test in b_vid. We need to jump one instruction before
8849 	 * the end of the b_vid block so that we only skip loading the TCI
8850 	 * from packet data and not the 'and' instruction extractging VID.
8851 	 */
8852 	cnt = 0;
8853 	for (s2 = b_vid->stmts; s2; s2 = s2->next)
8854 		cnt++;
8855 	s2 = new_stmt(cstate, JMP(BPF_JA));
8856 	s2->s.k = cnt - 1;
8857 	sappend(s, s2);
8858 
8859 	/* insert our statements at the beginning of b_vid */
8860 	sappend(s, b_vid->stmts);
8861 	b_vid->stmts = s;
8862 }
8863 
8864 /*
8865  * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
8866  * extensions.  Even if kernel supports VLAN BPF extensions, (outermost) VLAN
8867  * tag can be either in metadata or in packet data; therefore if the
8868  * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
8869  * header for VLAN tag. As the decision is done at run time, we need
8870  * update variable part of the offsets
8871  */
8872 static struct block *
gen_vlan_bpf_extensions(compiler_state_t * cstate,bpf_u_int32 vlan_num,int has_vlan_tag)8873 gen_vlan_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
8874     int has_vlan_tag)
8875 {
8876         struct block *b0, *b_tpid, *b_vid = NULL;
8877         struct slist *s;
8878 
8879         /* generate new filter code based on extracting packet
8880          * metadata */
8881         s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8882         s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
8883 
8884         b0 = new_block(cstate, JMP(BPF_JEQ));
8885         b0->stmts = s;
8886         b0->s.k = 1;
8887 
8888 	/*
8889 	 * This is tricky. We need to insert the statements updating variable
8890 	 * parts of offsets before the the traditional TPID and VID tests so
8891 	 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
8892 	 * we do not want this update to affect those checks. That's why we
8893 	 * generate both test blocks first and insert the statements updating
8894 	 * variable parts of both offsets after that. This wouldn't work if
8895 	 * there already were variable length link header when entering this
8896 	 * function but gen_vlan_bpf_extensions() isn't called in that case.
8897 	 */
8898 	b_tpid = gen_vlan_tpid_test(cstate);
8899 	if (has_vlan_tag)
8900 		b_vid = gen_vlan_vid_test(cstate, vlan_num);
8901 
8902 	gen_vlan_patch_tpid_test(cstate, b_tpid);
8903 	gen_or(b0, b_tpid);
8904 	b0 = b_tpid;
8905 
8906 	if (has_vlan_tag) {
8907 		gen_vlan_patch_vid_test(cstate, b_vid);
8908 		gen_and(b0, b_vid);
8909 		b0 = b_vid;
8910 	}
8911 
8912         return b0;
8913 }
8914 #endif
8915 
8916 /*
8917  * support IEEE 802.1Q VLAN trunk over ethernet
8918  */
8919 struct block *
gen_vlan(compiler_state_t * cstate,bpf_u_int32 vlan_num,int has_vlan_tag)8920 gen_vlan(compiler_state_t *cstate, bpf_u_int32 vlan_num, int has_vlan_tag)
8921 {
8922 	struct	block	*b0;
8923 
8924 	/*
8925 	 * Catch errors reported by us and routines below us, and return NULL
8926 	 * on an error.
8927 	 */
8928 	if (setjmp(cstate->top_ctx))
8929 		return (NULL);
8930 
8931 	/* can't check for VLAN-encapsulated packets inside MPLS */
8932 	if (cstate->label_stack_depth > 0)
8933 		bpf_error(cstate, "no VLAN match after MPLS");
8934 
8935 	/*
8936 	 * Check for a VLAN packet, and then change the offsets to point
8937 	 * to the type and data fields within the VLAN packet.  Just
8938 	 * increment the offsets, so that we can support a hierarchy, e.g.
8939 	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
8940 	 * VLAN 100.
8941 	 *
8942 	 * XXX - this is a bit of a kludge.  If we were to split the
8943 	 * compiler into a parser that parses an expression and
8944 	 * generates an expression tree, and a code generator that
8945 	 * takes an expression tree (which could come from our
8946 	 * parser or from some other parser) and generates BPF code,
8947 	 * we could perhaps make the offsets parameters of routines
8948 	 * and, in the handler for an "AND" node, pass to subnodes
8949 	 * other than the VLAN node the adjusted offsets.
8950 	 *
8951 	 * This would mean that "vlan" would, instead of changing the
8952 	 * behavior of *all* tests after it, change only the behavior
8953 	 * of tests ANDed with it.  That would change the documented
8954 	 * semantics of "vlan", which might break some expressions.
8955 	 * However, it would mean that "(vlan and ip) or ip" would check
8956 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8957 	 * checking only for VLAN-encapsulated IP, so that could still
8958 	 * be considered worth doing; it wouldn't break expressions
8959 	 * that are of the form "vlan and ..." or "vlan N and ...",
8960 	 * which I suspect are the most common expressions involving
8961 	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
8962 	 * would really want, now, as all the "or ..." tests would
8963 	 * be done assuming a VLAN, even though the "or" could be viewed
8964 	 * as meaning "or, if this isn't a VLAN packet...".
8965 	 */
8966 	switch (cstate->linktype) {
8967 
8968 	case DLT_EN10MB:
8969 	case DLT_NETANALYZER:
8970 	case DLT_NETANALYZER_TRANSPARENT:
8971 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8972 		/* Verify that this is the outer part of the packet and
8973 		 * not encapsulated somehow. */
8974 		if (cstate->vlan_stack_depth == 0 && !cstate->off_linkhdr.is_variable &&
8975 		    cstate->off_linkhdr.constant_part ==
8976 		    cstate->off_outermostlinkhdr.constant_part) {
8977 			/*
8978 			 * Do we need special VLAN handling?
8979 			 */
8980 			if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING)
8981 				b0 = gen_vlan_bpf_extensions(cstate, vlan_num,
8982 				    has_vlan_tag);
8983 			else
8984 				b0 = gen_vlan_no_bpf_extensions(cstate,
8985 				    vlan_num, has_vlan_tag);
8986 		} else
8987 #endif
8988 			b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num,
8989 			    has_vlan_tag);
8990                 break;
8991 
8992 	case DLT_IEEE802_11:
8993 	case DLT_PRISM_HEADER:
8994 	case DLT_IEEE802_11_RADIO_AVS:
8995 	case DLT_IEEE802_11_RADIO:
8996 		b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num, has_vlan_tag);
8997 		break;
8998 
8999 	default:
9000 		bpf_error(cstate, "no VLAN support for %s",
9001 		      pcap_datalink_val_to_description_or_dlt(cstate->linktype));
9002 		/*NOTREACHED*/
9003 	}
9004 
9005         cstate->vlan_stack_depth++;
9006 
9007 	return (b0);
9008 }
9009 
9010 /*
9011  * support for MPLS
9012  *
9013  * The label_num_arg dance is to avoid annoying whining by compilers that
9014  * label_num might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9015  * It's not *used* after setjmp returns.
9016  */
9017 struct block *
gen_mpls(compiler_state_t * cstate,bpf_u_int32 label_num_arg,int has_label_num)9018 gen_mpls(compiler_state_t *cstate, bpf_u_int32 label_num_arg,
9019     int has_label_num)
9020 {
9021 	volatile bpf_u_int32 label_num = label_num_arg;
9022 	struct	block	*b0, *b1;
9023 
9024 	/*
9025 	 * Catch errors reported by us and routines below us, and return NULL
9026 	 * on an error.
9027 	 */
9028 	if (setjmp(cstate->top_ctx))
9029 		return (NULL);
9030 
9031         if (cstate->label_stack_depth > 0) {
9032             /* just match the bottom-of-stack bit clear */
9033             b0 = gen_mcmp(cstate, OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01);
9034         } else {
9035             /*
9036              * We're not in an MPLS stack yet, so check the link-layer
9037              * type against MPLS.
9038              */
9039             switch (cstate->linktype) {
9040 
9041             case DLT_C_HDLC: /* fall through */
9042             case DLT_EN10MB:
9043             case DLT_NETANALYZER:
9044             case DLT_NETANALYZER_TRANSPARENT:
9045                     b0 = gen_linktype(cstate, ETHERTYPE_MPLS);
9046                     break;
9047 
9048             case DLT_PPP:
9049                     b0 = gen_linktype(cstate, PPP_MPLS_UCAST);
9050                     break;
9051 
9052                     /* FIXME add other DLT_s ...
9053                      * for Frame-Relay/and ATM this may get messy due to SNAP headers
9054                      * leave it for now */
9055 
9056             default:
9057                     bpf_error(cstate, "no MPLS support for %s",
9058                           pcap_datalink_val_to_description_or_dlt(cstate->linktype));
9059                     /*NOTREACHED*/
9060             }
9061         }
9062 
9063 	/* If a specific MPLS label is requested, check it */
9064 	if (has_label_num) {
9065 		if (label_num > 0xFFFFF) {
9066 			bpf_error(cstate, "MPLS label %u greater than maximum %u",
9067 			    label_num, 0xFFFFF);
9068 		}
9069 		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
9070 		b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, (bpf_int32)label_num,
9071 		    0xfffff000); /* only compare the first 20 bits */
9072 		gen_and(b0, b1);
9073 		b0 = b1;
9074 	}
9075 
9076         /*
9077          * Change the offsets to point to the type and data fields within
9078          * the MPLS packet.  Just increment the offsets, so that we
9079          * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
9080          * capture packets with an outer label of 100000 and an inner
9081          * label of 1024.
9082          *
9083          * Increment the MPLS stack depth as well; this indicates that
9084          * we're checking MPLS-encapsulated headers, to make sure higher
9085          * level code generators don't try to match against IP-related
9086          * protocols such as Q_ARP, Q_RARP etc.
9087          *
9088          * XXX - this is a bit of a kludge.  See comments in gen_vlan().
9089          */
9090         cstate->off_nl_nosnap += 4;
9091         cstate->off_nl += 4;
9092         cstate->label_stack_depth++;
9093 	return (b0);
9094 }
9095 
9096 /*
9097  * Support PPPOE discovery and session.
9098  */
9099 struct block *
gen_pppoed(compiler_state_t * cstate)9100 gen_pppoed(compiler_state_t *cstate)
9101 {
9102 	/*
9103 	 * Catch errors reported by us and routines below us, and return NULL
9104 	 * on an error.
9105 	 */
9106 	if (setjmp(cstate->top_ctx))
9107 		return (NULL);
9108 
9109 	/* check for PPPoE discovery */
9110 	return gen_linktype(cstate, (bpf_int32)ETHERTYPE_PPPOED);
9111 }
9112 
9113 struct block *
gen_pppoes(compiler_state_t * cstate,bpf_u_int32 sess_num,int has_sess_num)9114 gen_pppoes(compiler_state_t *cstate, bpf_u_int32 sess_num, int has_sess_num)
9115 {
9116 	struct block *b0, *b1;
9117 
9118 	/*
9119 	 * Catch errors reported by us and routines below us, and return NULL
9120 	 * on an error.
9121 	 */
9122 	if (setjmp(cstate->top_ctx))
9123 		return (NULL);
9124 
9125 	/*
9126 	 * Test against the PPPoE session link-layer type.
9127 	 */
9128 	b0 = gen_linktype(cstate, (bpf_int32)ETHERTYPE_PPPOES);
9129 
9130 	/* If a specific session is requested, check PPPoE session id */
9131 	if (has_sess_num) {
9132 		if (sess_num > 0x0000ffff) {
9133 			bpf_error(cstate, "PPPoE session number %u greater than maximum %u",
9134 			    sess_num, 0x0000ffff);
9135 		}
9136 		b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W,
9137 		    (bpf_int32)sess_num, 0x0000ffff);
9138 		gen_and(b0, b1);
9139 		b0 = b1;
9140 	}
9141 
9142 	/*
9143 	 * Change the offsets to point to the type and data fields within
9144 	 * the PPP packet, and note that this is PPPoE rather than
9145 	 * raw PPP.
9146 	 *
9147 	 * XXX - this is a bit of a kludge.  See the comments in
9148 	 * gen_vlan().
9149 	 *
9150 	 * The "network-layer" protocol is PPPoE, which has a 6-byte
9151 	 * PPPoE header, followed by a PPP packet.
9152 	 *
9153 	 * There is no HDLC encapsulation for the PPP packet (it's
9154 	 * encapsulated in PPPoES instead), so the link-layer type
9155 	 * starts at the first byte of the PPP packet.  For PPPoE,
9156 	 * that offset is relative to the beginning of the total
9157 	 * link-layer payload, including any 802.2 LLC header, so
9158 	 * it's 6 bytes past cstate->off_nl.
9159 	 */
9160 	PUSH_LINKHDR(cstate, DLT_PPP, cstate->off_linkpl.is_variable,
9161 	    cstate->off_linkpl.constant_part + cstate->off_nl + 6, /* 6 bytes past the PPPoE header */
9162 	    cstate->off_linkpl.reg);
9163 
9164 	cstate->off_linktype = cstate->off_linkhdr;
9165 	cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 2;
9166 
9167 	cstate->off_nl = 0;
9168 	cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
9169 
9170 	return b0;
9171 }
9172 
9173 /* Check that this is Geneve and the VNI is correct if
9174  * specified. Parameterized to handle both IPv4 and IPv6. */
9175 static struct block *
gen_geneve_check(compiler_state_t * cstate,struct block * (* gen_portfn)(compiler_state_t *,int,int,int),enum e_offrel offrel,bpf_u_int32 vni,int has_vni)9176 gen_geneve_check(compiler_state_t *cstate,
9177     struct block *(*gen_portfn)(compiler_state_t *, int, int, int),
9178     enum e_offrel offrel, bpf_u_int32 vni, int has_vni)
9179 {
9180 	struct block *b0, *b1;
9181 
9182 	b0 = gen_portfn(cstate, GENEVE_PORT, IPPROTO_UDP, Q_DST);
9183 
9184 	/* Check that we are operating on version 0. Otherwise, we
9185 	 * can't decode the rest of the fields. The version is 2 bits
9186 	 * in the first byte of the Geneve header. */
9187 	b1 = gen_mcmp(cstate, offrel, 8, BPF_B, (bpf_int32)0, 0xc0);
9188 	gen_and(b0, b1);
9189 	b0 = b1;
9190 
9191 	if (has_vni) {
9192 		if (vni > 0xffffff) {
9193 			bpf_error(cstate, "Geneve VNI %u greater than maximum %u",
9194 			    vni, 0xffffff);
9195 		}
9196 		vni <<= 8; /* VNI is in the upper 3 bytes */
9197 		b1 = gen_mcmp(cstate, offrel, 12, BPF_W, (bpf_int32)vni,
9198 			      0xffffff00);
9199 		gen_and(b0, b1);
9200 		b0 = b1;
9201 	}
9202 
9203 	return b0;
9204 }
9205 
9206 /* The IPv4 and IPv6 Geneve checks need to do two things:
9207  * - Verify that this actually is Geneve with the right VNI.
9208  * - Place the IP header length (plus variable link prefix if
9209  *   needed) into register A to be used later to compute
9210  *   the inner packet offsets. */
9211 static struct block *
gen_geneve4(compiler_state_t * cstate,bpf_u_int32 vni,int has_vni)9212 gen_geneve4(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9213 {
9214 	struct block *b0, *b1;
9215 	struct slist *s, *s1;
9216 
9217 	b0 = gen_geneve_check(cstate, gen_port, OR_TRAN_IPV4, vni, has_vni);
9218 
9219 	/* Load the IP header length into A. */
9220 	s = gen_loadx_iphdrlen(cstate);
9221 
9222 	s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9223 	sappend(s, s1);
9224 
9225 	/* Forcibly append these statements to the true condition
9226 	 * of the protocol check by creating a new block that is
9227 	 * always true and ANDing them. */
9228 	b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9229 	b1->stmts = s;
9230 	b1->s.k = 0;
9231 
9232 	gen_and(b0, b1);
9233 
9234 	return b1;
9235 }
9236 
9237 static struct block *
gen_geneve6(compiler_state_t * cstate,bpf_u_int32 vni,int has_vni)9238 gen_geneve6(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9239 {
9240 	struct block *b0, *b1;
9241 	struct slist *s, *s1;
9242 
9243 	b0 = gen_geneve_check(cstate, gen_port6, OR_TRAN_IPV6, vni, has_vni);
9244 
9245 	/* Load the IP header length. We need to account for a
9246 	 * variable length link prefix if there is one. */
9247 	s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
9248 	if (s) {
9249 		s1 = new_stmt(cstate, BPF_LD|BPF_IMM);
9250 		s1->s.k = 40;
9251 		sappend(s, s1);
9252 
9253 		s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9254 		s1->s.k = 0;
9255 		sappend(s, s1);
9256 	} else {
9257 		s = new_stmt(cstate, BPF_LD|BPF_IMM);
9258 		s->s.k = 40;
9259 	}
9260 
9261 	/* Forcibly append these statements to the true condition
9262 	 * of the protocol check by creating a new block that is
9263 	 * always true and ANDing them. */
9264 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9265 	sappend(s, s1);
9266 
9267 	b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9268 	b1->stmts = s;
9269 	b1->s.k = 0;
9270 
9271 	gen_and(b0, b1);
9272 
9273 	return b1;
9274 }
9275 
9276 /* We need to store three values based on the Geneve header::
9277  * - The offset of the linktype.
9278  * - The offset of the end of the Geneve header.
9279  * - The offset of the end of the encapsulated MAC header. */
9280 static struct slist *
gen_geneve_offsets(compiler_state_t * cstate)9281 gen_geneve_offsets(compiler_state_t *cstate)
9282 {
9283 	struct slist *s, *s1, *s_proto;
9284 
9285 	/* First we need to calculate the offset of the Geneve header
9286 	 * itself. This is composed of the IP header previously calculated
9287 	 * (include any variable link prefix) and stored in A plus the
9288 	 * fixed sized headers (fixed link prefix, MAC length, and UDP
9289 	 * header). */
9290 	s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9291 	s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8;
9292 
9293 	/* Stash this in X since we'll need it later. */
9294 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9295 	sappend(s, s1);
9296 
9297 	/* The EtherType in Geneve is 2 bytes in. Calculate this and
9298 	 * store it. */
9299 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9300 	s1->s.k = 2;
9301 	sappend(s, s1);
9302 
9303 	cstate->off_linktype.reg = alloc_reg(cstate);
9304 	cstate->off_linktype.is_variable = 1;
9305 	cstate->off_linktype.constant_part = 0;
9306 
9307 	s1 = new_stmt(cstate, BPF_ST);
9308 	s1->s.k = cstate->off_linktype.reg;
9309 	sappend(s, s1);
9310 
9311 	/* Load the Geneve option length and mask and shift to get the
9312 	 * number of bytes. It is stored in the first byte of the Geneve
9313 	 * header. */
9314 	s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
9315 	s1->s.k = 0;
9316 	sappend(s, s1);
9317 
9318 	s1 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
9319 	s1->s.k = 0x3f;
9320 	sappend(s, s1);
9321 
9322 	s1 = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
9323 	s1->s.k = 4;
9324 	sappend(s, s1);
9325 
9326 	/* Add in the rest of the Geneve base header. */
9327 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9328 	s1->s.k = 8;
9329 	sappend(s, s1);
9330 
9331 	/* Add the Geneve header length to its offset and store. */
9332 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9333 	s1->s.k = 0;
9334 	sappend(s, s1);
9335 
9336 	/* Set the encapsulated type as Ethernet. Even though we may
9337 	 * not actually have Ethernet inside there are two reasons this
9338 	 * is useful:
9339 	 * - The linktype field is always in EtherType format regardless
9340 	 *   of whether it is in Geneve or an inner Ethernet frame.
9341 	 * - The only link layer that we have specific support for is
9342 	 *   Ethernet. We will confirm that the packet actually is
9343 	 *   Ethernet at runtime before executing these checks. */
9344 	PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate));
9345 
9346 	s1 = new_stmt(cstate, BPF_ST);
9347 	s1->s.k = cstate->off_linkhdr.reg;
9348 	sappend(s, s1);
9349 
9350 	/* Calculate whether we have an Ethernet header or just raw IP/
9351 	 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
9352 	 * and linktype by 14 bytes so that the network header can be found
9353 	 * seamlessly. Otherwise, keep what we've calculated already. */
9354 
9355 	/* We have a bare jmp so we can't use the optimizer. */
9356 	cstate->no_optimize = 1;
9357 
9358 	/* Load the EtherType in the Geneve header, 2 bytes in. */
9359 	s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_H);
9360 	s1->s.k = 2;
9361 	sappend(s, s1);
9362 
9363 	/* Load X with the end of the Geneve header. */
9364 	s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9365 	s1->s.k = cstate->off_linkhdr.reg;
9366 	sappend(s, s1);
9367 
9368 	/* Check if the EtherType is Transparent Ethernet Bridging. At the
9369 	 * end of this check, we should have the total length in X. In
9370 	 * the non-Ethernet case, it's already there. */
9371 	s_proto = new_stmt(cstate, JMP(BPF_JEQ));
9372 	s_proto->s.k = ETHERTYPE_TEB;
9373 	sappend(s, s_proto);
9374 
9375 	s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9376 	sappend(s, s1);
9377 	s_proto->s.jt = s1;
9378 
9379 	/* Since this is Ethernet, use the EtherType of the payload
9380 	 * directly as the linktype. Overwrite what we already have. */
9381 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9382 	s1->s.k = 12;
9383 	sappend(s, s1);
9384 
9385 	s1 = new_stmt(cstate, BPF_ST);
9386 	s1->s.k = cstate->off_linktype.reg;
9387 	sappend(s, s1);
9388 
9389 	/* Advance two bytes further to get the end of the Ethernet
9390 	 * header. */
9391 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9392 	s1->s.k = 2;
9393 	sappend(s, s1);
9394 
9395 	/* Move the result to X. */
9396 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9397 	sappend(s, s1);
9398 
9399 	/* Store the final result of our linkpl calculation. */
9400 	cstate->off_linkpl.reg = alloc_reg(cstate);
9401 	cstate->off_linkpl.is_variable = 1;
9402 	cstate->off_linkpl.constant_part = 0;
9403 
9404 	s1 = new_stmt(cstate, BPF_STX);
9405 	s1->s.k = cstate->off_linkpl.reg;
9406 	sappend(s, s1);
9407 	s_proto->s.jf = s1;
9408 
9409 	cstate->off_nl = 0;
9410 
9411 	return s;
9412 }
9413 
9414 /* Check to see if this is a Geneve packet. */
9415 struct block *
gen_geneve(compiler_state_t * cstate,bpf_u_int32 vni,int has_vni)9416 gen_geneve(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9417 {
9418 	struct block *b0, *b1;
9419 	struct slist *s;
9420 
9421 	/*
9422 	 * Catch errors reported by us and routines below us, and return NULL
9423 	 * on an error.
9424 	 */
9425 	if (setjmp(cstate->top_ctx))
9426 		return (NULL);
9427 
9428 	b0 = gen_geneve4(cstate, vni, has_vni);
9429 	b1 = gen_geneve6(cstate, vni, has_vni);
9430 
9431 	gen_or(b0, b1);
9432 	b0 = b1;
9433 
9434 	/* Later filters should act on the payload of the Geneve frame,
9435 	 * update all of the header pointers. Attach this code so that
9436 	 * it gets executed in the event that the Geneve filter matches. */
9437 	s = gen_geneve_offsets(cstate);
9438 
9439 	b1 = gen_true(cstate);
9440 	sappend(s, b1->stmts);
9441 	b1->stmts = s;
9442 
9443 	gen_and(b0, b1);
9444 
9445 	cstate->is_geneve = 1;
9446 
9447 	return b1;
9448 }
9449 
9450 /* Check that the encapsulated frame has a link layer header
9451  * for Ethernet filters. */
9452 static struct block *
gen_geneve_ll_check(compiler_state_t * cstate)9453 gen_geneve_ll_check(compiler_state_t *cstate)
9454 {
9455 	struct block *b0;
9456 	struct slist *s, *s1;
9457 
9458 	/* The easiest way to see if there is a link layer present
9459 	 * is to check if the link layer header and payload are not
9460 	 * the same. */
9461 
9462 	/* Geneve always generates pure variable offsets so we can
9463 	 * compare only the registers. */
9464 	s = new_stmt(cstate, BPF_LD|BPF_MEM);
9465 	s->s.k = cstate->off_linkhdr.reg;
9466 
9467 	s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9468 	s1->s.k = cstate->off_linkpl.reg;
9469 	sappend(s, s1);
9470 
9471 	b0 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9472 	b0->stmts = s;
9473 	b0->s.k = 0;
9474 	gen_not(b0);
9475 
9476 	return b0;
9477 }
9478 
9479 static struct block *
gen_atmfield_code_internal(compiler_state_t * cstate,int atmfield,bpf_int32 jvalue,bpf_u_int32 jtype,int reverse)9480 gen_atmfield_code_internal(compiler_state_t *cstate, int atmfield,
9481     bpf_int32 jvalue, bpf_u_int32 jtype, int reverse)
9482 {
9483 	struct block *b0;
9484 
9485 	switch (atmfield) {
9486 
9487 	case A_VPI:
9488 		if (!cstate->is_atm)
9489 			bpf_error(cstate, "'vpi' supported only on raw ATM");
9490 		if (cstate->off_vpi == OFFSET_NOT_SET)
9491 			abort();
9492 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vpi, BPF_B, 0xffffffff, jtype,
9493 		    reverse, jvalue);
9494 		break;
9495 
9496 	case A_VCI:
9497 		if (!cstate->is_atm)
9498 			bpf_error(cstate, "'vci' supported only on raw ATM");
9499 		if (cstate->off_vci == OFFSET_NOT_SET)
9500 			abort();
9501 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vci, BPF_H, 0xffffffff, jtype,
9502 		    reverse, jvalue);
9503 		break;
9504 
9505 	case A_PROTOTYPE:
9506 		if (cstate->off_proto == OFFSET_NOT_SET)
9507 			abort();	/* XXX - this isn't on FreeBSD */
9508 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B, 0x0f, jtype,
9509 		    reverse, jvalue);
9510 		break;
9511 
9512 	case A_MSGTYPE:
9513 		if (cstate->off_payload == OFFSET_NOT_SET)
9514 			abort();
9515 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_payload + MSG_TYPE_POS, BPF_B,
9516 		    0xffffffff, jtype, reverse, jvalue);
9517 		break;
9518 
9519 	case A_CALLREFTYPE:
9520 		if (!cstate->is_atm)
9521 			bpf_error(cstate, "'callref' supported only on raw ATM");
9522 		if (cstate->off_proto == OFFSET_NOT_SET)
9523 			abort();
9524 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B, 0xffffffff,
9525 		    jtype, reverse, jvalue);
9526 		break;
9527 
9528 	default:
9529 		abort();
9530 	}
9531 	return b0;
9532 }
9533 
9534 static struct block *
gen_atmtype_metac(compiler_state_t * cstate)9535 gen_atmtype_metac(compiler_state_t *cstate)
9536 {
9537 	struct block *b0, *b1;
9538 
9539 	b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9540 	b1 = gen_atmfield_code_internal(cstate, A_VCI, 1, BPF_JEQ, 0);
9541 	gen_and(b0, b1);
9542 	return b1;
9543 }
9544 
9545 static struct block *
gen_atmtype_sc(compiler_state_t * cstate)9546 gen_atmtype_sc(compiler_state_t *cstate)
9547 {
9548 	struct block *b0, *b1;
9549 
9550 	b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9551 	b1 = gen_atmfield_code_internal(cstate, A_VCI, 5, BPF_JEQ, 0);
9552 	gen_and(b0, b1);
9553 	return b1;
9554 }
9555 
9556 static struct block *
gen_atmtype_llc(compiler_state_t * cstate)9557 gen_atmtype_llc(compiler_state_t *cstate)
9558 {
9559 	struct block *b0;
9560 
9561 	b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
9562 	cstate->linktype = cstate->prevlinktype;
9563 	return b0;
9564 }
9565 
9566 struct block *
gen_atmfield_code(compiler_state_t * cstate,int atmfield,bpf_int32 jvalue,bpf_u_int32 jtype,int reverse)9567 gen_atmfield_code(compiler_state_t *cstate, int atmfield,
9568     bpf_int32 jvalue, bpf_u_int32 jtype, int reverse)
9569 {
9570 	/*
9571 	 * Catch errors reported by us and routines below us, and return NULL
9572 	 * on an error.
9573 	 */
9574 	if (setjmp(cstate->top_ctx))
9575 		return (NULL);
9576 
9577 	return gen_atmfield_code_internal(cstate, atmfield, jvalue, jtype,
9578 	    reverse);
9579 }
9580 
9581 struct block *
gen_atmtype_abbrev(compiler_state_t * cstate,int type)9582 gen_atmtype_abbrev(compiler_state_t *cstate, int type)
9583 {
9584 	struct block *b0, *b1;
9585 
9586 	/*
9587 	 * Catch errors reported by us and routines below us, and return NULL
9588 	 * on an error.
9589 	 */
9590 	if (setjmp(cstate->top_ctx))
9591 		return (NULL);
9592 
9593 	switch (type) {
9594 
9595 	case A_METAC:
9596 		/* Get all packets in Meta signalling Circuit */
9597 		if (!cstate->is_atm)
9598 			bpf_error(cstate, "'metac' supported only on raw ATM");
9599 		b1 = gen_atmtype_metac(cstate);
9600 		break;
9601 
9602 	case A_BCC:
9603 		/* Get all packets in Broadcast Circuit*/
9604 		if (!cstate->is_atm)
9605 			bpf_error(cstate, "'bcc' supported only on raw ATM");
9606 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9607 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 2, BPF_JEQ, 0);
9608 		gen_and(b0, b1);
9609 		break;
9610 
9611 	case A_OAMF4SC:
9612 		/* Get all cells in Segment OAM F4 circuit*/
9613 		if (!cstate->is_atm)
9614 			bpf_error(cstate, "'oam4sc' supported only on raw ATM");
9615 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9616 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
9617 		gen_and(b0, b1);
9618 		break;
9619 
9620 	case A_OAMF4EC:
9621 		/* Get all cells in End-to-End OAM F4 Circuit*/
9622 		if (!cstate->is_atm)
9623 			bpf_error(cstate, "'oam4ec' supported only on raw ATM");
9624 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9625 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
9626 		gen_and(b0, b1);
9627 		break;
9628 
9629 	case A_SC:
9630 		/*  Get all packets in connection Signalling Circuit */
9631 		if (!cstate->is_atm)
9632 			bpf_error(cstate, "'sc' supported only on raw ATM");
9633 		b1 = gen_atmtype_sc(cstate);
9634 		break;
9635 
9636 	case A_ILMIC:
9637 		/* Get all packets in ILMI Circuit */
9638 		if (!cstate->is_atm)
9639 			bpf_error(cstate, "'ilmic' supported only on raw ATM");
9640 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9641 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 16, BPF_JEQ, 0);
9642 		gen_and(b0, b1);
9643 		break;
9644 
9645 	case A_LANE:
9646 		/* Get all LANE packets */
9647 		if (!cstate->is_atm)
9648 			bpf_error(cstate, "'lane' supported only on raw ATM");
9649 		b1 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
9650 
9651 		/*
9652 		 * Arrange that all subsequent tests assume LANE
9653 		 * rather than LLC-encapsulated packets, and set
9654 		 * the offsets appropriately for LANE-encapsulated
9655 		 * Ethernet.
9656 		 *
9657 		 * We assume LANE means Ethernet, not Token Ring.
9658 		 */
9659 		PUSH_LINKHDR(cstate, DLT_EN10MB, 0,
9660 		    cstate->off_payload + 2,	/* Ethernet header */
9661 		    -1);
9662 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
9663 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* Ethernet */
9664 		cstate->off_nl = 0;			/* Ethernet II */
9665 		cstate->off_nl_nosnap = 3;		/* 802.3+802.2 */
9666 		break;
9667 
9668 	case A_LLC:
9669 		/* Get all LLC-encapsulated packets */
9670 		if (!cstate->is_atm)
9671 			bpf_error(cstate, "'llc' supported only on raw ATM");
9672 		b1 = gen_atmtype_llc(cstate);
9673 		break;
9674 
9675 	default:
9676 		abort();
9677 	}
9678 	return b1;
9679 }
9680 
9681 /*
9682  * Filtering for MTP2 messages based on li value
9683  * FISU, length is null
9684  * LSSU, length is 1 or 2
9685  * MSU, length is 3 or more
9686  * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
9687  */
9688 struct block *
gen_mtp2type_abbrev(compiler_state_t * cstate,int type)9689 gen_mtp2type_abbrev(compiler_state_t *cstate, int type)
9690 {
9691 	struct block *b0, *b1;
9692 
9693 	/*
9694 	 * Catch errors reported by us and routines below us, and return NULL
9695 	 * on an error.
9696 	 */
9697 	if (setjmp(cstate->top_ctx))
9698 		return (NULL);
9699 
9700 	switch (type) {
9701 
9702 	case M_FISU:
9703 		if ( (cstate->linktype != DLT_MTP2) &&
9704 		     (cstate->linktype != DLT_ERF) &&
9705 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9706 			bpf_error(cstate, "'fisu' supported only on MTP2");
9707 		/* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
9708 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
9709 		break;
9710 
9711 	case M_LSSU:
9712 		if ( (cstate->linktype != DLT_MTP2) &&
9713 		     (cstate->linktype != DLT_ERF) &&
9714 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9715 			bpf_error(cstate, "'lssu' supported only on MTP2");
9716 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
9717 		b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
9718 		gen_and(b1, b0);
9719 		break;
9720 
9721 	case M_MSU:
9722 		if ( (cstate->linktype != DLT_MTP2) &&
9723 		     (cstate->linktype != DLT_ERF) &&
9724 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9725 			bpf_error(cstate, "'msu' supported only on MTP2");
9726 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
9727 		break;
9728 
9729 	case MH_FISU:
9730 		if ( (cstate->linktype != DLT_MTP2) &&
9731 		     (cstate->linktype != DLT_ERF) &&
9732 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9733 			bpf_error(cstate, "'hfisu' supported only on MTP2_HSL");
9734 		/* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
9735 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JEQ, 0, 0);
9736 		break;
9737 
9738 	case MH_LSSU:
9739 		if ( (cstate->linktype != DLT_MTP2) &&
9740 		     (cstate->linktype != DLT_ERF) &&
9741 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9742 			bpf_error(cstate, "'hlssu' supported only on MTP2_HSL");
9743 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 1, 0x0100);
9744 		b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0);
9745 		gen_and(b1, b0);
9746 		break;
9747 
9748 	case MH_MSU:
9749 		if ( (cstate->linktype != DLT_MTP2) &&
9750 		     (cstate->linktype != DLT_ERF) &&
9751 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9752 			bpf_error(cstate, "'hmsu' supported only on MTP2_HSL");
9753 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0x0100);
9754 		break;
9755 
9756 	default:
9757 		abort();
9758 	}
9759 	return b0;
9760 }
9761 
9762 /*
9763  * The jvalue_arg dance is to avoid annoying whining by compilers that
9764  * jvalue might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9765  * It's not *used* after setjmp returns.
9766  */
9767 struct block *
gen_mtp3field_code(compiler_state_t * cstate,int mtp3field,bpf_u_int32 jvalue_arg,bpf_u_int32 jtype,int reverse)9768 gen_mtp3field_code(compiler_state_t *cstate, int mtp3field,
9769     bpf_u_int32 jvalue_arg, bpf_u_int32 jtype, int reverse)
9770 {
9771 	volatile bpf_u_int32 jvalue = jvalue_arg;
9772 	struct block *b0;
9773 	bpf_u_int32 val1 , val2 , val3;
9774 	u_int newoff_sio;
9775 	u_int newoff_opc;
9776 	u_int newoff_dpc;
9777 	u_int newoff_sls;
9778 
9779 	/*
9780 	 * Catch errors reported by us and routines below us, and return NULL
9781 	 * on an error.
9782 	 */
9783 	if (setjmp(cstate->top_ctx))
9784 		return (NULL);
9785 
9786 	newoff_sio = cstate->off_sio;
9787 	newoff_opc = cstate->off_opc;
9788 	newoff_dpc = cstate->off_dpc;
9789 	newoff_sls = cstate->off_sls;
9790 	switch (mtp3field) {
9791 
9792 	case MH_SIO:
9793 		newoff_sio += 3; /* offset for MTP2_HSL */
9794 		/* FALLTHROUGH */
9795 
9796 	case M_SIO:
9797 		if (cstate->off_sio == OFFSET_NOT_SET)
9798 			bpf_error(cstate, "'sio' supported only on SS7");
9799 		/* sio coded on 1 byte so max value 255 */
9800 		if(jvalue > 255)
9801 		        bpf_error(cstate, "sio value %u too big; max value = 255",
9802 		            jvalue);
9803 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_sio, BPF_B, 0xffffffff,
9804 		    (u_int)jtype, reverse, (u_int)jvalue);
9805 		break;
9806 
9807 	case MH_OPC:
9808 		newoff_opc += 3;
9809 
9810 		/* FALLTHROUGH */
9811         case M_OPC:
9812 	        if (cstate->off_opc == OFFSET_NOT_SET)
9813 			bpf_error(cstate, "'opc' supported only on SS7");
9814 		/* opc coded on 14 bits so max value 16383 */
9815 		if (jvalue > 16383)
9816 		        bpf_error(cstate, "opc value %u too big; max value = 16383",
9817 		            jvalue);
9818 		/* the following instructions are made to convert jvalue
9819 		 * to the form used to write opc in an ss7 message*/
9820 		val1 = jvalue & 0x00003c00;
9821 		val1 = val1 >>10;
9822 		val2 = jvalue & 0x000003fc;
9823 		val2 = val2 <<6;
9824 		val3 = jvalue & 0x00000003;
9825 		val3 = val3 <<22;
9826 		jvalue = val1 + val2 + val3;
9827 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0f,
9828 		    (u_int)jtype, reverse, (u_int)jvalue);
9829 		break;
9830 
9831 	case MH_DPC:
9832 		newoff_dpc += 3;
9833 		/* FALLTHROUGH */
9834 
9835 	case M_DPC:
9836 	        if (cstate->off_dpc == OFFSET_NOT_SET)
9837 			bpf_error(cstate, "'dpc' supported only on SS7");
9838 		/* dpc coded on 14 bits so max value 16383 */
9839 		if (jvalue > 16383)
9840 		        bpf_error(cstate, "dpc value %u too big; max value = 16383",
9841 		            jvalue);
9842 		/* the following instructions are made to convert jvalue
9843 		 * to the forme used to write dpc in an ss7 message*/
9844 		val1 = jvalue & 0x000000ff;
9845 		val1 = val1 << 24;
9846 		val2 = jvalue & 0x00003f00;
9847 		val2 = val2 << 8;
9848 		jvalue = val1 + val2;
9849 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000,
9850 		    (u_int)jtype, reverse, (u_int)jvalue);
9851 		break;
9852 
9853 	case MH_SLS:
9854 		newoff_sls += 3;
9855 		/* FALLTHROUGH */
9856 
9857 	case M_SLS:
9858 	        if (cstate->off_sls == OFFSET_NOT_SET)
9859 			bpf_error(cstate, "'sls' supported only on SS7");
9860 		/* sls coded on 4 bits so max value 15 */
9861 		if (jvalue > 15)
9862 		         bpf_error(cstate, "sls value %u too big; max value = 15",
9863 		             jvalue);
9864 		/* the following instruction is made to convert jvalue
9865 		 * to the forme used to write sls in an ss7 message*/
9866 		jvalue = jvalue << 4;
9867 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_sls, BPF_B, 0xf0,
9868 		    (u_int)jtype,reverse, (u_int)jvalue);
9869 		break;
9870 
9871 	default:
9872 		abort();
9873 	}
9874 	return b0;
9875 }
9876 
9877 static struct block *
gen_msg_abbrev(compiler_state_t * cstate,int type)9878 gen_msg_abbrev(compiler_state_t *cstate, int type)
9879 {
9880 	struct block *b1;
9881 
9882 	/*
9883 	 * Q.2931 signalling protocol messages for handling virtual circuits
9884 	 * establishment and teardown
9885 	 */
9886 	switch (type) {
9887 
9888 	case A_SETUP:
9889 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, SETUP, BPF_JEQ, 0);
9890 		break;
9891 
9892 	case A_CALLPROCEED:
9893 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
9894 		break;
9895 
9896 	case A_CONNECT:
9897 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT, BPF_JEQ, 0);
9898 		break;
9899 
9900 	case A_CONNECTACK:
9901 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
9902 		break;
9903 
9904 	case A_RELEASE:
9905 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE, BPF_JEQ, 0);
9906 		break;
9907 
9908 	case A_RELEASE_DONE:
9909 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
9910 		break;
9911 
9912 	default:
9913 		abort();
9914 	}
9915 	return b1;
9916 }
9917 
9918 struct block *
gen_atmmulti_abbrev(compiler_state_t * cstate,int type)9919 gen_atmmulti_abbrev(compiler_state_t *cstate, int type)
9920 {
9921 	struct block *b0, *b1;
9922 
9923 	/*
9924 	 * Catch errors reported by us and routines below us, and return NULL
9925 	 * on an error.
9926 	 */
9927 	if (setjmp(cstate->top_ctx))
9928 		return (NULL);
9929 
9930 	switch (type) {
9931 
9932 	case A_OAM:
9933 		if (!cstate->is_atm)
9934 			bpf_error(cstate, "'oam' supported only on raw ATM");
9935 		/* OAM F4 type */
9936 		b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
9937 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
9938 		gen_or(b0, b1);
9939 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9940 		gen_and(b0, b1);
9941 		break;
9942 
9943 	case A_OAMF4:
9944 		if (!cstate->is_atm)
9945 			bpf_error(cstate, "'oamf4' supported only on raw ATM");
9946 		/* OAM F4 type */
9947 		b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
9948 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
9949 		gen_or(b0, b1);
9950 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9951 		gen_and(b0, b1);
9952 		break;
9953 
9954 	case A_CONNECTMSG:
9955 		/*
9956 		 * Get Q.2931 signalling messages for switched
9957 		 * virtual connection
9958 		 */
9959 		if (!cstate->is_atm)
9960 			bpf_error(cstate, "'connectmsg' supported only on raw ATM");
9961 		b0 = gen_msg_abbrev(cstate, A_SETUP);
9962 		b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
9963 		gen_or(b0, b1);
9964 		b0 = gen_msg_abbrev(cstate, A_CONNECT);
9965 		gen_or(b0, b1);
9966 		b0 = gen_msg_abbrev(cstate, A_CONNECTACK);
9967 		gen_or(b0, b1);
9968 		b0 = gen_msg_abbrev(cstate, A_RELEASE);
9969 		gen_or(b0, b1);
9970 		b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
9971 		gen_or(b0, b1);
9972 		b0 = gen_atmtype_sc(cstate);
9973 		gen_and(b0, b1);
9974 		break;
9975 
9976 	case A_METACONNECT:
9977 		if (!cstate->is_atm)
9978 			bpf_error(cstate, "'metaconnect' supported only on raw ATM");
9979 		b0 = gen_msg_abbrev(cstate, A_SETUP);
9980 		b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
9981 		gen_or(b0, b1);
9982 		b0 = gen_msg_abbrev(cstate, A_CONNECT);
9983 		gen_or(b0, b1);
9984 		b0 = gen_msg_abbrev(cstate, A_RELEASE);
9985 		gen_or(b0, b1);
9986 		b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
9987 		gen_or(b0, b1);
9988 		b0 = gen_atmtype_metac(cstate);
9989 		gen_and(b0, b1);
9990 		break;
9991 
9992 	default:
9993 		abort();
9994 	}
9995 	return b1;
9996 }
9997