1 //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the declaration of the MachineInstr class, which is the 10 // basic representation for all target dependent machine instructions used by 11 // the back end. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_CODEGEN_MACHINEINSTR_H 16 #define LLVM_CODEGEN_MACHINEINSTR_H 17 18 #include "llvm/ADT/DenseMapInfo.h" 19 #include "llvm/ADT/PointerSumType.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/ilist.h" 22 #include "llvm/ADT/ilist_node.h" 23 #include "llvm/ADT/iterator_range.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineOperand.h" 26 #include "llvm/CodeGen/TargetOpcodes.h" 27 #include "llvm/IR/DebugLoc.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/MC/MCInstrDesc.h" 30 #include "llvm/MC/MCSymbol.h" 31 #include "llvm/Support/ArrayRecycler.h" 32 #include "llvm/Support/TrailingObjects.h" 33 #include <algorithm> 34 #include <cassert> 35 #include <cstdint> 36 #include <utility> 37 38 namespace llvm { 39 40 class DILabel; 41 class Instruction; 42 class MDNode; 43 class AAResults; 44 template <typename T> class ArrayRef; 45 class DIExpression; 46 class DILocalVariable; 47 class MachineBasicBlock; 48 class MachineFunction; 49 class MachineRegisterInfo; 50 class ModuleSlotTracker; 51 class raw_ostream; 52 template <typename T> class SmallVectorImpl; 53 class SmallBitVector; 54 class StringRef; 55 class TargetInstrInfo; 56 class TargetRegisterClass; 57 class TargetRegisterInfo; 58 59 //===----------------------------------------------------------------------===// 60 /// Representation of each machine instruction. 61 /// 62 /// This class isn't a POD type, but it must have a trivial destructor. When a 63 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated 64 /// without having their destructor called. 65 /// 66 class MachineInstr 67 : public ilist_node_with_parent<MachineInstr, MachineBasicBlock, 68 ilist_sentinel_tracking<true>> { 69 public: 70 using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator; 71 72 /// Flags to specify different kinds of comments to output in 73 /// assembly code. These flags carry semantic information not 74 /// otherwise easily derivable from the IR text. 75 /// 76 enum CommentFlag { 77 ReloadReuse = 0x1, // higher bits are reserved for target dep comments. 78 NoSchedComment = 0x2, 79 TAsmComments = 0x4 // Target Asm comments should start from this value. 80 }; 81 82 enum MIFlag { 83 NoFlags = 0, 84 FrameSetup = 1 << 0, // Instruction is used as a part of 85 // function frame setup code. 86 FrameDestroy = 1 << 1, // Instruction is used as a part of 87 // function frame destruction code. 88 BundledPred = 1 << 2, // Instruction has bundled predecessors. 89 BundledSucc = 1 << 3, // Instruction has bundled successors. 90 FmNoNans = 1 << 4, // Instruction does not support Fast 91 // math nan values. 92 FmNoInfs = 1 << 5, // Instruction does not support Fast 93 // math infinity values. 94 FmNsz = 1 << 6, // Instruction is not required to retain 95 // signed zero values. 96 FmArcp = 1 << 7, // Instruction supports Fast math 97 // reciprocal approximations. 98 FmContract = 1 << 8, // Instruction supports Fast math 99 // contraction operations like fma. 100 FmAfn = 1 << 9, // Instruction may map to Fast math 101 // intrinsic approximation. 102 FmReassoc = 1 << 10, // Instruction supports Fast math 103 // reassociation of operand order. 104 NoUWrap = 1 << 11, // Instruction supports binary operator 105 // no unsigned wrap. 106 NoSWrap = 1 << 12, // Instruction supports binary operator 107 // no signed wrap. 108 IsExact = 1 << 13, // Instruction supports division is 109 // known to be exact. 110 NoFPExcept = 1 << 14, // Instruction does not raise 111 // floatint-point exceptions. 112 NoMerge = 1 << 15, // Passes that drop source location info 113 // (e.g. branch folding) should skip 114 // this instruction. 115 }; 116 117 private: 118 const MCInstrDesc *MCID; // Instruction descriptor. 119 MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block. 120 121 // Operands are allocated by an ArrayRecycler. 122 MachineOperand *Operands = nullptr; // Pointer to the first operand. 123 unsigned NumOperands = 0; // Number of operands on instruction. 124 125 uint16_t Flags = 0; // Various bits of additional 126 // information about machine 127 // instruction. 128 129 uint8_t AsmPrinterFlags = 0; // Various bits of information used by 130 // the AsmPrinter to emit helpful 131 // comments. This is *not* semantic 132 // information. Do not use this for 133 // anything other than to convey comment 134 // information to AsmPrinter. 135 136 // OperandCapacity has uint8_t size, so it should be next to AsmPrinterFlags 137 // to properly pack. 138 using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity; 139 OperandCapacity CapOperands; // Capacity of the Operands array. 140 141 /// Internal implementation detail class that provides out-of-line storage for 142 /// extra info used by the machine instruction when this info cannot be stored 143 /// in-line within the instruction itself. 144 /// 145 /// This has to be defined eagerly due to the implementation constraints of 146 /// `PointerSumType` where it is used. 147 class ExtraInfo final : TrailingObjects<ExtraInfo, MachineMemOperand *, 148 MCSymbol *, MDNode *, uint32_t> { 149 public: 150 static ExtraInfo *create(BumpPtrAllocator &Allocator, 151 ArrayRef<MachineMemOperand *> MMOs, 152 MCSymbol *PreInstrSymbol = nullptr, 153 MCSymbol *PostInstrSymbol = nullptr, 154 MDNode *HeapAllocMarker = nullptr, 155 MDNode *PCSections = nullptr, 156 uint32_t CFIType = 0) { 157 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 158 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 159 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 160 bool HasCFIType = CFIType != 0; 161 bool HasPCSections = PCSections != nullptr; 162 auto *Result = new (Allocator.Allocate( 163 totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *, uint32_t>( 164 MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol, 165 HasHeapAllocMarker + HasPCSections, HasCFIType), 166 alignof(ExtraInfo))) 167 ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol, 168 HasHeapAllocMarker, HasPCSections, HasCFIType); 169 170 // Copy the actual data into the trailing objects. 171 std::copy(MMOs.begin(), MMOs.end(), 172 Result->getTrailingObjects<MachineMemOperand *>()); 173 174 if (HasPreInstrSymbol) 175 Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol; 176 if (HasPostInstrSymbol) 177 Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] = 178 PostInstrSymbol; 179 if (HasHeapAllocMarker) 180 Result->getTrailingObjects<MDNode *>()[0] = HeapAllocMarker; 181 if (HasPCSections) 182 Result->getTrailingObjects<MDNode *>()[HasHeapAllocMarker] = 183 PCSections; 184 if (HasCFIType) 185 Result->getTrailingObjects<uint32_t>()[0] = CFIType; 186 187 return Result; 188 } 189 getMMOs()190 ArrayRef<MachineMemOperand *> getMMOs() const { 191 return ArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs); 192 } 193 getPreInstrSymbol()194 MCSymbol *getPreInstrSymbol() const { 195 return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr; 196 } 197 getPostInstrSymbol()198 MCSymbol *getPostInstrSymbol() const { 199 return HasPostInstrSymbol 200 ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] 201 : nullptr; 202 } 203 getHeapAllocMarker()204 MDNode *getHeapAllocMarker() const { 205 return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr; 206 } 207 getPCSections()208 MDNode *getPCSections() const { 209 return HasPCSections 210 ? getTrailingObjects<MDNode *>()[HasHeapAllocMarker] 211 : nullptr; 212 } 213 getCFIType()214 uint32_t getCFIType() const { 215 return HasCFIType ? getTrailingObjects<uint32_t>()[0] : 0; 216 } 217 218 private: 219 friend TrailingObjects; 220 221 // Description of the extra info, used to interpret the actual optional 222 // data appended. 223 // 224 // Note that this is not terribly space optimized. This leaves a great deal 225 // of flexibility to fit more in here later. 226 const int NumMMOs; 227 const bool HasPreInstrSymbol; 228 const bool HasPostInstrSymbol; 229 const bool HasHeapAllocMarker; 230 const bool HasPCSections; 231 const bool HasCFIType; 232 233 // Implement the `TrailingObjects` internal API. numTrailingObjects(OverloadToken<MachineMemOperand * >)234 size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const { 235 return NumMMOs; 236 } numTrailingObjects(OverloadToken<MCSymbol * >)237 size_t numTrailingObjects(OverloadToken<MCSymbol *>) const { 238 return HasPreInstrSymbol + HasPostInstrSymbol; 239 } numTrailingObjects(OverloadToken<MDNode * >)240 size_t numTrailingObjects(OverloadToken<MDNode *>) const { 241 return HasHeapAllocMarker + HasPCSections; 242 } numTrailingObjects(OverloadToken<uint32_t>)243 size_t numTrailingObjects(OverloadToken<uint32_t>) const { 244 return HasCFIType; 245 } 246 247 // Just a boring constructor to allow us to initialize the sizes. Always use 248 // the `create` routine above. ExtraInfo(int NumMMOs,bool HasPreInstrSymbol,bool HasPostInstrSymbol,bool HasHeapAllocMarker,bool HasPCSections,bool HasCFIType)249 ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol, 250 bool HasHeapAllocMarker, bool HasPCSections, bool HasCFIType) 251 : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol), 252 HasPostInstrSymbol(HasPostInstrSymbol), 253 HasHeapAllocMarker(HasHeapAllocMarker), HasPCSections(HasPCSections), 254 HasCFIType(HasCFIType) {} 255 }; 256 257 /// Enumeration of the kinds of inline extra info available. It is important 258 /// that the `MachineMemOperand` inline kind has a tag value of zero to make 259 /// it accessible as an `ArrayRef`. 260 enum ExtraInfoInlineKinds { 261 EIIK_MMO = 0, 262 EIIK_PreInstrSymbol, 263 EIIK_PostInstrSymbol, 264 EIIK_OutOfLine 265 }; 266 267 // We store extra information about the instruction here. The common case is 268 // expected to be nothing or a single pointer (typically a MMO or a symbol). 269 // We work to optimize this common case by storing it inline here rather than 270 // requiring a separate allocation, but we fall back to an allocation when 271 // multiple pointers are needed. 272 PointerSumType<ExtraInfoInlineKinds, 273 PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>, 274 PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>, 275 PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>, 276 PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>> 277 Info; 278 279 DebugLoc DbgLoc; // Source line information. 280 281 /// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values 282 /// defined by this instruction. 283 unsigned DebugInstrNum; 284 285 // Intrusive list support 286 friend struct ilist_traits<MachineInstr>; 287 friend struct ilist_callback_traits<MachineBasicBlock>; 288 void setParent(MachineBasicBlock *P) { Parent = P; } 289 290 /// This constructor creates a copy of the given 291 /// MachineInstr in the given MachineFunction. 292 MachineInstr(MachineFunction &, const MachineInstr &); 293 294 /// This constructor create a MachineInstr and add the implicit operands. 295 /// It reserves space for number of operands specified by 296 /// MCInstrDesc. An explicit DebugLoc is supplied. 297 MachineInstr(MachineFunction &, const MCInstrDesc &TID, DebugLoc DL, 298 bool NoImp = false); 299 300 // MachineInstrs are pool-allocated and owned by MachineFunction. 301 friend class MachineFunction; 302 303 void 304 dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 305 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const; 306 307 public: 308 MachineInstr(const MachineInstr &) = delete; 309 MachineInstr &operator=(const MachineInstr &) = delete; 310 // Use MachineFunction::DeleteMachineInstr() instead. 311 ~MachineInstr() = delete; 312 313 const MachineBasicBlock* getParent() const { return Parent; } 314 MachineBasicBlock* getParent() { return Parent; } 315 316 /// Move the instruction before \p MovePos. 317 void moveBefore(MachineInstr *MovePos); 318 319 /// Return the function that contains the basic block that this instruction 320 /// belongs to. 321 /// 322 /// Note: this is undefined behaviour if the instruction does not have a 323 /// parent. 324 const MachineFunction *getMF() const; 325 MachineFunction *getMF() { 326 return const_cast<MachineFunction *>( 327 static_cast<const MachineInstr *>(this)->getMF()); 328 } 329 330 /// Return the asm printer flags bitvector. 331 uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; } 332 333 /// Clear the AsmPrinter bitvector. 334 void clearAsmPrinterFlags() { AsmPrinterFlags = 0; } 335 336 /// Return whether an AsmPrinter flag is set. 337 bool getAsmPrinterFlag(CommentFlag Flag) const { 338 return AsmPrinterFlags & Flag; 339 } 340 341 /// Set a flag for the AsmPrinter. 342 void setAsmPrinterFlag(uint8_t Flag) { 343 AsmPrinterFlags |= Flag; 344 } 345 346 /// Clear specific AsmPrinter flags. 347 void clearAsmPrinterFlag(CommentFlag Flag) { 348 AsmPrinterFlags &= ~Flag; 349 } 350 351 /// Return the MI flags bitvector. 352 uint16_t getFlags() const { 353 return Flags; 354 } 355 356 /// Return whether an MI flag is set. 357 bool getFlag(MIFlag Flag) const { 358 return Flags & Flag; 359 } 360 361 /// Set a MI flag. 362 void setFlag(MIFlag Flag) { 363 Flags |= (uint16_t)Flag; 364 } 365 366 void setFlags(unsigned flags) { 367 // Filter out the automatically maintained flags. 368 unsigned Mask = BundledPred | BundledSucc; 369 Flags = (Flags & Mask) | (flags & ~Mask); 370 } 371 372 /// clearFlag - Clear a MI flag. 373 void clearFlag(MIFlag Flag) { 374 Flags &= ~((uint16_t)Flag); 375 } 376 377 /// Return true if MI is in a bundle (but not the first MI in a bundle). 378 /// 379 /// A bundle looks like this before it's finalized: 380 /// ---------------- 381 /// | MI | 382 /// ---------------- 383 /// | 384 /// ---------------- 385 /// | MI * | 386 /// ---------------- 387 /// | 388 /// ---------------- 389 /// | MI * | 390 /// ---------------- 391 /// In this case, the first MI starts a bundle but is not inside a bundle, the 392 /// next 2 MIs are considered "inside" the bundle. 393 /// 394 /// After a bundle is finalized, it looks like this: 395 /// ---------------- 396 /// | Bundle | 397 /// ---------------- 398 /// | 399 /// ---------------- 400 /// | MI * | 401 /// ---------------- 402 /// | 403 /// ---------------- 404 /// | MI * | 405 /// ---------------- 406 /// | 407 /// ---------------- 408 /// | MI * | 409 /// ---------------- 410 /// The first instruction has the special opcode "BUNDLE". It's not "inside" 411 /// a bundle, but the next three MIs are. 412 bool isInsideBundle() const { 413 return getFlag(BundledPred); 414 } 415 416 /// Return true if this instruction part of a bundle. This is true 417 /// if either itself or its following instruction is marked "InsideBundle". 418 bool isBundled() const { 419 return isBundledWithPred() || isBundledWithSucc(); 420 } 421 422 /// Return true if this instruction is part of a bundle, and it is not the 423 /// first instruction in the bundle. 424 bool isBundledWithPred() const { return getFlag(BundledPred); } 425 426 /// Return true if this instruction is part of a bundle, and it is not the 427 /// last instruction in the bundle. 428 bool isBundledWithSucc() const { return getFlag(BundledSucc); } 429 430 /// Bundle this instruction with its predecessor. This can be an unbundled 431 /// instruction, or it can be the first instruction in a bundle. 432 void bundleWithPred(); 433 434 /// Bundle this instruction with its successor. This can be an unbundled 435 /// instruction, or it can be the last instruction in a bundle. 436 void bundleWithSucc(); 437 438 /// Break bundle above this instruction. 439 void unbundleFromPred(); 440 441 /// Break bundle below this instruction. 442 void unbundleFromSucc(); 443 444 /// Returns the debug location id of this MachineInstr. 445 const DebugLoc &getDebugLoc() const { return DbgLoc; } 446 447 /// Return the operand containing the offset to be used if this DBG_VALUE 448 /// instruction is indirect; will be an invalid register if this value is 449 /// not indirect, and an immediate with value 0 otherwise. 450 const MachineOperand &getDebugOffset() const { 451 assert(isNonListDebugValue() && "not a DBG_VALUE"); 452 return getOperand(1); 453 } 454 MachineOperand &getDebugOffset() { 455 assert(isNonListDebugValue() && "not a DBG_VALUE"); 456 return getOperand(1); 457 } 458 459 /// Return the operand for the debug variable referenced by 460 /// this DBG_VALUE instruction. 461 const MachineOperand &getDebugVariableOp() const; 462 MachineOperand &getDebugVariableOp(); 463 464 /// Return the debug variable referenced by 465 /// this DBG_VALUE instruction. 466 const DILocalVariable *getDebugVariable() const; 467 468 /// Return the operand for the complex address expression referenced by 469 /// this DBG_VALUE instruction. 470 const MachineOperand &getDebugExpressionOp() const; 471 MachineOperand &getDebugExpressionOp(); 472 473 /// Return the complex address expression referenced by 474 /// this DBG_VALUE instruction. 475 const DIExpression *getDebugExpression() const; 476 477 /// Return the debug label referenced by 478 /// this DBG_LABEL instruction. 479 const DILabel *getDebugLabel() const; 480 481 /// Fetch the instruction number of this MachineInstr. If it does not have 482 /// one already, a new and unique number will be assigned. 483 unsigned getDebugInstrNum(); 484 485 /// Fetch instruction number of this MachineInstr -- but before it's inserted 486 /// into \p MF. Needed for transformations that create an instruction but 487 /// don't immediately insert them. 488 unsigned getDebugInstrNum(MachineFunction &MF); 489 490 /// Examine the instruction number of this MachineInstr. May be zero if 491 /// it hasn't been assigned a number yet. 492 unsigned peekDebugInstrNum() const { return DebugInstrNum; } 493 494 /// Set instruction number of this MachineInstr. Avoid using unless you're 495 /// deserializing this information. 496 void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; } 497 498 /// Drop any variable location debugging information associated with this 499 /// instruction. Use when an instruction is modified in such a way that it no 500 /// longer defines the value it used to. Variable locations using that value 501 /// will be dropped. 502 void dropDebugNumber() { DebugInstrNum = 0; } 503 504 /// Emit an error referring to the source location of this instruction. 505 /// This should only be used for inline assembly that is somehow 506 /// impossible to compile. Other errors should have been handled much 507 /// earlier. 508 /// 509 /// If this method returns, the caller should try to recover from the error. 510 void emitError(StringRef Msg) const; 511 512 /// Returns the target instruction descriptor of this MachineInstr. 513 const MCInstrDesc &getDesc() const { return *MCID; } 514 515 /// Returns the opcode of this MachineInstr. 516 unsigned getOpcode() const { return MCID->Opcode; } 517 518 /// Retuns the total number of operands. 519 unsigned getNumOperands() const { return NumOperands; } 520 521 /// Returns the total number of operands which are debug locations. 522 unsigned getNumDebugOperands() const { 523 return std::distance(debug_operands().begin(), debug_operands().end()); 524 } 525 526 const MachineOperand& getOperand(unsigned i) const { 527 assert(i < getNumOperands() && "getOperand() out of range!"); 528 return Operands[i]; 529 } 530 MachineOperand& getOperand(unsigned i) { 531 assert(i < getNumOperands() && "getOperand() out of range!"); 532 return Operands[i]; 533 } 534 535 MachineOperand &getDebugOperand(unsigned Index) { 536 assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!"); 537 return *(debug_operands().begin() + Index); 538 } 539 const MachineOperand &getDebugOperand(unsigned Index) const { 540 assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!"); 541 return *(debug_operands().begin() + Index); 542 } 543 544 SmallSet<Register, 4> getUsedDebugRegs() const { 545 assert(isDebugValue() && "not a DBG_VALUE*"); 546 SmallSet<Register, 4> UsedRegs; 547 for (const auto &MO : debug_operands()) 548 if (MO.isReg() && MO.getReg()) 549 UsedRegs.insert(MO.getReg()); 550 return UsedRegs; 551 } 552 553 /// Returns whether this debug value has at least one debug operand with the 554 /// register \p Reg. 555 bool hasDebugOperandForReg(Register Reg) const { 556 return any_of(debug_operands(), [Reg](const MachineOperand &Op) { 557 return Op.isReg() && Op.getReg() == Reg; 558 }); 559 } 560 561 /// Returns a range of all of the operands that correspond to a debug use of 562 /// \p Reg. 563 template <typename Operand, typename Instruction> 564 static iterator_range< 565 filter_iterator<Operand *, std::function<bool(Operand &Op)>>> 566 getDebugOperandsForReg(Instruction *MI, Register Reg) { 567 std::function<bool(Operand & Op)> OpUsesReg( 568 [Reg](Operand &Op) { return Op.isReg() && Op.getReg() == Reg; }); 569 return make_filter_range(MI->debug_operands(), OpUsesReg); 570 } 571 iterator_range<filter_iterator<const MachineOperand *, 572 std::function<bool(const MachineOperand &Op)>>> 573 getDebugOperandsForReg(Register Reg) const { 574 return MachineInstr::getDebugOperandsForReg<const MachineOperand, 575 const MachineInstr>(this, Reg); 576 } 577 iterator_range<filter_iterator<MachineOperand *, 578 std::function<bool(MachineOperand &Op)>>> 579 getDebugOperandsForReg(Register Reg) { 580 return MachineInstr::getDebugOperandsForReg<MachineOperand, MachineInstr>( 581 this, Reg); 582 } 583 584 bool isDebugOperand(const MachineOperand *Op) const { 585 return Op >= adl_begin(debug_operands()) && Op <= adl_end(debug_operands()); 586 } 587 588 unsigned getDebugOperandIndex(const MachineOperand *Op) const { 589 assert(isDebugOperand(Op) && "Expected a debug operand."); 590 return std::distance(adl_begin(debug_operands()), Op); 591 } 592 593 /// Returns the total number of definitions. 594 unsigned getNumDefs() const { 595 return getNumExplicitDefs() + MCID->implicit_defs().size(); 596 } 597 598 /// Returns true if the instruction has implicit definition. 599 bool hasImplicitDef() const { 600 for (const MachineOperand &MO : implicit_operands()) 601 if (MO.isDef() && MO.isImplicit()) 602 return true; 603 return false; 604 } 605 606 /// Returns the implicit operands number. 607 unsigned getNumImplicitOperands() const { 608 return getNumOperands() - getNumExplicitOperands(); 609 } 610 611 /// Return true if operand \p OpIdx is a subregister index. 612 bool isOperandSubregIdx(unsigned OpIdx) const { 613 assert(getOperand(OpIdx).isImm() && "Expected MO_Immediate operand type."); 614 if (isExtractSubreg() && OpIdx == 2) 615 return true; 616 if (isInsertSubreg() && OpIdx == 3) 617 return true; 618 if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0) 619 return true; 620 if (isSubregToReg() && OpIdx == 3) 621 return true; 622 return false; 623 } 624 625 /// Returns the number of non-implicit operands. 626 unsigned getNumExplicitOperands() const; 627 628 /// Returns the number of non-implicit definitions. 629 unsigned getNumExplicitDefs() const; 630 631 /// iterator/begin/end - Iterate over all operands of a machine instruction. 632 using mop_iterator = MachineOperand *; 633 using const_mop_iterator = const MachineOperand *; 634 635 mop_iterator operands_begin() { return Operands; } 636 mop_iterator operands_end() { return Operands + NumOperands; } 637 638 const_mop_iterator operands_begin() const { return Operands; } 639 const_mop_iterator operands_end() const { return Operands + NumOperands; } 640 641 iterator_range<mop_iterator> operands() { 642 return make_range(operands_begin(), operands_end()); 643 } 644 iterator_range<const_mop_iterator> operands() const { 645 return make_range(operands_begin(), operands_end()); 646 } 647 iterator_range<mop_iterator> explicit_operands() { 648 return make_range(operands_begin(), 649 operands_begin() + getNumExplicitOperands()); 650 } 651 iterator_range<const_mop_iterator> explicit_operands() const { 652 return make_range(operands_begin(), 653 operands_begin() + getNumExplicitOperands()); 654 } 655 iterator_range<mop_iterator> implicit_operands() { 656 return make_range(explicit_operands().end(), operands_end()); 657 } 658 iterator_range<const_mop_iterator> implicit_operands() const { 659 return make_range(explicit_operands().end(), operands_end()); 660 } 661 /// Returns a range over all operands that are used to determine the variable 662 /// location for this DBG_VALUE instruction. 663 iterator_range<mop_iterator> debug_operands() { 664 assert((isDebugValueLike()) && "Must be a debug value instruction."); 665 return isNonListDebugValue() 666 ? make_range(operands_begin(), operands_begin() + 1) 667 : make_range(operands_begin() + 2, operands_end()); 668 } 669 /// \copydoc debug_operands() 670 iterator_range<const_mop_iterator> debug_operands() const { 671 assert((isDebugValueLike()) && "Must be a debug value instruction."); 672 return isNonListDebugValue() 673 ? make_range(operands_begin(), operands_begin() + 1) 674 : make_range(operands_begin() + 2, operands_end()); 675 } 676 /// Returns a range over all explicit operands that are register definitions. 677 /// Implicit definition are not included! 678 iterator_range<mop_iterator> defs() { 679 return make_range(operands_begin(), 680 operands_begin() + getNumExplicitDefs()); 681 } 682 /// \copydoc defs() 683 iterator_range<const_mop_iterator> defs() const { 684 return make_range(operands_begin(), 685 operands_begin() + getNumExplicitDefs()); 686 } 687 /// Returns a range that includes all operands that are register uses. 688 /// This may include unrelated operands which are not register uses. 689 iterator_range<mop_iterator> uses() { 690 return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); 691 } 692 /// \copydoc uses() 693 iterator_range<const_mop_iterator> uses() const { 694 return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); 695 } 696 iterator_range<mop_iterator> explicit_uses() { 697 return make_range(operands_begin() + getNumExplicitDefs(), 698 operands_begin() + getNumExplicitOperands()); 699 } 700 iterator_range<const_mop_iterator> explicit_uses() const { 701 return make_range(operands_begin() + getNumExplicitDefs(), 702 operands_begin() + getNumExplicitOperands()); 703 } 704 705 /// Returns the number of the operand iterator \p I points to. 706 unsigned getOperandNo(const_mop_iterator I) const { 707 return I - operands_begin(); 708 } 709 710 /// Access to memory operands of the instruction. If there are none, that does 711 /// not imply anything about whether the function accesses memory. Instead, 712 /// the caller must behave conservatively. 713 ArrayRef<MachineMemOperand *> memoperands() const { 714 if (!Info) 715 return {}; 716 717 if (Info.is<EIIK_MMO>()) 718 return ArrayRef(Info.getAddrOfZeroTagPointer(), 1); 719 720 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 721 return EI->getMMOs(); 722 723 return {}; 724 } 725 726 /// Access to memory operands of the instruction. 727 /// 728 /// If `memoperands_begin() == memoperands_end()`, that does not imply 729 /// anything about whether the function accesses memory. Instead, the caller 730 /// must behave conservatively. 731 mmo_iterator memoperands_begin() const { return memoperands().begin(); } 732 733 /// Access to memory operands of the instruction. 734 /// 735 /// If `memoperands_begin() == memoperands_end()`, that does not imply 736 /// anything about whether the function accesses memory. Instead, the caller 737 /// must behave conservatively. 738 mmo_iterator memoperands_end() const { return memoperands().end(); } 739 740 /// Return true if we don't have any memory operands which described the 741 /// memory access done by this instruction. If this is true, calling code 742 /// must be conservative. 743 bool memoperands_empty() const { return memoperands().empty(); } 744 745 /// Return true if this instruction has exactly one MachineMemOperand. 746 bool hasOneMemOperand() const { return memoperands().size() == 1; } 747 748 /// Return the number of memory operands. 749 unsigned getNumMemOperands() const { return memoperands().size(); } 750 751 /// Helper to extract a pre-instruction symbol if one has been added. 752 MCSymbol *getPreInstrSymbol() const { 753 if (!Info) 754 return nullptr; 755 if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>()) 756 return S; 757 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 758 return EI->getPreInstrSymbol(); 759 760 return nullptr; 761 } 762 763 /// Helper to extract a post-instruction symbol if one has been added. 764 MCSymbol *getPostInstrSymbol() const { 765 if (!Info) 766 return nullptr; 767 if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>()) 768 return S; 769 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 770 return EI->getPostInstrSymbol(); 771 772 return nullptr; 773 } 774 775 /// Helper to extract a heap alloc marker if one has been added. 776 MDNode *getHeapAllocMarker() const { 777 if (!Info) 778 return nullptr; 779 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 780 return EI->getHeapAllocMarker(); 781 782 return nullptr; 783 } 784 785 /// Helper to extract PCSections metadata target sections. 786 MDNode *getPCSections() const { 787 if (!Info) 788 return nullptr; 789 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 790 return EI->getPCSections(); 791 792 return nullptr; 793 } 794 795 /// Helper to extract a CFI type hash if one has been added. 796 uint32_t getCFIType() const { 797 if (!Info) 798 return 0; 799 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 800 return EI->getCFIType(); 801 802 return 0; 803 } 804 805 /// API for querying MachineInstr properties. They are the same as MCInstrDesc 806 /// queries but they are bundle aware. 807 808 enum QueryType { 809 IgnoreBundle, // Ignore bundles 810 AnyInBundle, // Return true if any instruction in bundle has property 811 AllInBundle // Return true if all instructions in bundle have property 812 }; 813 814 /// Return true if the instruction (or in the case of a bundle, 815 /// the instructions inside the bundle) has the specified property. 816 /// The first argument is the property being queried. 817 /// The second argument indicates whether the query should look inside 818 /// instruction bundles. 819 bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const { 820 assert(MCFlag < 64 && 821 "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle."); 822 // Inline the fast path for unbundled or bundle-internal instructions. 823 if (Type == IgnoreBundle || !isBundled() || isBundledWithPred()) 824 return getDesc().getFlags() & (1ULL << MCFlag); 825 826 // If this is the first instruction in a bundle, take the slow path. 827 return hasPropertyInBundle(1ULL << MCFlag, Type); 828 } 829 830 /// Return true if this is an instruction that should go through the usual 831 /// legalization steps. 832 bool isPreISelOpcode(QueryType Type = IgnoreBundle) const { 833 return hasProperty(MCID::PreISelOpcode, Type); 834 } 835 836 /// Return true if this instruction can have a variable number of operands. 837 /// In this case, the variable operands will be after the normal 838 /// operands but before the implicit definitions and uses (if any are 839 /// present). 840 bool isVariadic(QueryType Type = IgnoreBundle) const { 841 return hasProperty(MCID::Variadic, Type); 842 } 843 844 /// Set if this instruction has an optional definition, e.g. 845 /// ARM instructions which can set condition code if 's' bit is set. 846 bool hasOptionalDef(QueryType Type = IgnoreBundle) const { 847 return hasProperty(MCID::HasOptionalDef, Type); 848 } 849 850 /// Return true if this is a pseudo instruction that doesn't 851 /// correspond to a real machine instruction. 852 bool isPseudo(QueryType Type = IgnoreBundle) const { 853 return hasProperty(MCID::Pseudo, Type); 854 } 855 856 /// Return true if this instruction doesn't produce any output in the form of 857 /// executable instructions. 858 bool isMetaInstruction(QueryType Type = IgnoreBundle) const { 859 return hasProperty(MCID::Meta, Type); 860 } 861 862 bool isReturn(QueryType Type = AnyInBundle) const { 863 return hasProperty(MCID::Return, Type); 864 } 865 866 /// Return true if this is an instruction that marks the end of an EH scope, 867 /// i.e., a catchpad or a cleanuppad instruction. 868 bool isEHScopeReturn(QueryType Type = AnyInBundle) const { 869 return hasProperty(MCID::EHScopeReturn, Type); 870 } 871 872 bool isCall(QueryType Type = AnyInBundle) const { 873 return hasProperty(MCID::Call, Type); 874 } 875 876 /// Return true if this is a call instruction that may have an associated 877 /// call site entry in the debug info. 878 bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const; 879 /// Return true if copying, moving, or erasing this instruction requires 880 /// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo, 881 /// \ref eraseCallSiteInfo). 882 bool shouldUpdateCallSiteInfo() const; 883 884 /// Returns true if the specified instruction stops control flow 885 /// from executing the instruction immediately following it. Examples include 886 /// unconditional branches and return instructions. 887 bool isBarrier(QueryType Type = AnyInBundle) const { 888 return hasProperty(MCID::Barrier, Type); 889 } 890 891 /// Returns true if this instruction part of the terminator for a basic block. 892 /// Typically this is things like return and branch instructions. 893 /// 894 /// Various passes use this to insert code into the bottom of a basic block, 895 /// but before control flow occurs. 896 bool isTerminator(QueryType Type = AnyInBundle) const { 897 return hasProperty(MCID::Terminator, Type); 898 } 899 900 /// Returns true if this is a conditional, unconditional, or indirect branch. 901 /// Predicates below can be used to discriminate between 902 /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to 903 /// get more information. 904 bool isBranch(QueryType Type = AnyInBundle) const { 905 return hasProperty(MCID::Branch, Type); 906 } 907 908 /// Return true if this is an indirect branch, such as a 909 /// branch through a register. 910 bool isIndirectBranch(QueryType Type = AnyInBundle) const { 911 return hasProperty(MCID::IndirectBranch, Type); 912 } 913 914 /// Return true if this is a branch which may fall 915 /// through to the next instruction or may transfer control flow to some other 916 /// block. The TargetInstrInfo::analyzeBranch method can be used to get more 917 /// information about this branch. 918 bool isConditionalBranch(QueryType Type = AnyInBundle) const { 919 return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type); 920 } 921 922 /// Return true if this is a branch which always 923 /// transfers control flow to some other block. The 924 /// TargetInstrInfo::analyzeBranch method can be used to get more information 925 /// about this branch. 926 bool isUnconditionalBranch(QueryType Type = AnyInBundle) const { 927 return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type); 928 } 929 930 /// Return true if this instruction has a predicate operand that 931 /// controls execution. It may be set to 'always', or may be set to other 932 /// values. There are various methods in TargetInstrInfo that can be used to 933 /// control and modify the predicate in this instruction. 934 bool isPredicable(QueryType Type = AllInBundle) const { 935 // If it's a bundle than all bundled instructions must be predicable for this 936 // to return true. 937 return hasProperty(MCID::Predicable, Type); 938 } 939 940 /// Return true if this instruction is a comparison. 941 bool isCompare(QueryType Type = IgnoreBundle) const { 942 return hasProperty(MCID::Compare, Type); 943 } 944 945 /// Return true if this instruction is a move immediate 946 /// (including conditional moves) instruction. 947 bool isMoveImmediate(QueryType Type = IgnoreBundle) const { 948 return hasProperty(MCID::MoveImm, Type); 949 } 950 951 /// Return true if this instruction is a register move. 952 /// (including moving values from subreg to reg) 953 bool isMoveReg(QueryType Type = IgnoreBundle) const { 954 return hasProperty(MCID::MoveReg, Type); 955 } 956 957 /// Return true if this instruction is a bitcast instruction. 958 bool isBitcast(QueryType Type = IgnoreBundle) const { 959 return hasProperty(MCID::Bitcast, Type); 960 } 961 962 /// Return true if this instruction is a select instruction. 963 bool isSelect(QueryType Type = IgnoreBundle) const { 964 return hasProperty(MCID::Select, Type); 965 } 966 967 /// Return true if this instruction cannot be safely duplicated. 968 /// For example, if the instruction has a unique labels attached 969 /// to it, duplicating it would cause multiple definition errors. 970 bool isNotDuplicable(QueryType Type = AnyInBundle) const { 971 if (getPreInstrSymbol() || getPostInstrSymbol()) 972 return true; 973 return hasProperty(MCID::NotDuplicable, Type); 974 } 975 976 /// Return true if this instruction is convergent. 977 /// Convergent instructions can not be made control-dependent on any 978 /// additional values. 979 bool isConvergent(QueryType Type = AnyInBundle) const { 980 if (isInlineAsm()) { 981 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 982 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 983 return true; 984 } 985 return hasProperty(MCID::Convergent, Type); 986 } 987 988 /// Returns true if the specified instruction has a delay slot 989 /// which must be filled by the code generator. 990 bool hasDelaySlot(QueryType Type = AnyInBundle) const { 991 return hasProperty(MCID::DelaySlot, Type); 992 } 993 994 /// Return true for instructions that can be folded as 995 /// memory operands in other instructions. The most common use for this 996 /// is instructions that are simple loads from memory that don't modify 997 /// the loaded value in any way, but it can also be used for instructions 998 /// that can be expressed as constant-pool loads, such as V_SETALLONES 999 /// on x86, to allow them to be folded when it is beneficial. 1000 /// This should only be set on instructions that return a value in their 1001 /// only virtual register definition. 1002 bool canFoldAsLoad(QueryType Type = IgnoreBundle) const { 1003 return hasProperty(MCID::FoldableAsLoad, Type); 1004 } 1005 1006 /// Return true if this instruction behaves 1007 /// the same way as the generic REG_SEQUENCE instructions. 1008 /// E.g., on ARM, 1009 /// dX VMOVDRR rY, rZ 1010 /// is equivalent to 1011 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. 1012 /// 1013 /// Note that for the optimizers to be able to take advantage of 1014 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be 1015 /// override accordingly. 1016 bool isRegSequenceLike(QueryType Type = IgnoreBundle) const { 1017 return hasProperty(MCID::RegSequence, Type); 1018 } 1019 1020 /// Return true if this instruction behaves 1021 /// the same way as the generic EXTRACT_SUBREG instructions. 1022 /// E.g., on ARM, 1023 /// rX, rY VMOVRRD dZ 1024 /// is equivalent to two EXTRACT_SUBREG: 1025 /// rX = EXTRACT_SUBREG dZ, ssub_0 1026 /// rY = EXTRACT_SUBREG dZ, ssub_1 1027 /// 1028 /// Note that for the optimizers to be able to take advantage of 1029 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be 1030 /// override accordingly. 1031 bool isExtractSubregLike(QueryType Type = IgnoreBundle) const { 1032 return hasProperty(MCID::ExtractSubreg, Type); 1033 } 1034 1035 /// Return true if this instruction behaves 1036 /// the same way as the generic INSERT_SUBREG instructions. 1037 /// E.g., on ARM, 1038 /// dX = VSETLNi32 dY, rZ, Imm 1039 /// is equivalent to a INSERT_SUBREG: 1040 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) 1041 /// 1042 /// Note that for the optimizers to be able to take advantage of 1043 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be 1044 /// override accordingly. 1045 bool isInsertSubregLike(QueryType Type = IgnoreBundle) const { 1046 return hasProperty(MCID::InsertSubreg, Type); 1047 } 1048 1049 //===--------------------------------------------------------------------===// 1050 // Side Effect Analysis 1051 //===--------------------------------------------------------------------===// 1052 1053 /// Return true if this instruction could possibly read memory. 1054 /// Instructions with this flag set are not necessarily simple load 1055 /// instructions, they may load a value and modify it, for example. 1056 bool mayLoad(QueryType Type = AnyInBundle) const { 1057 if (isInlineAsm()) { 1058 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1059 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1060 return true; 1061 } 1062 return hasProperty(MCID::MayLoad, Type); 1063 } 1064 1065 /// Return true if this instruction could possibly modify memory. 1066 /// Instructions with this flag set are not necessarily simple store 1067 /// instructions, they may store a modified value based on their operands, or 1068 /// may not actually modify anything, for example. 1069 bool mayStore(QueryType Type = AnyInBundle) const { 1070 if (isInlineAsm()) { 1071 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1072 if (ExtraInfo & InlineAsm::Extra_MayStore) 1073 return true; 1074 } 1075 return hasProperty(MCID::MayStore, Type); 1076 } 1077 1078 /// Return true if this instruction could possibly read or modify memory. 1079 bool mayLoadOrStore(QueryType Type = AnyInBundle) const { 1080 return mayLoad(Type) || mayStore(Type); 1081 } 1082 1083 /// Return true if this instruction could possibly raise a floating-point 1084 /// exception. This is the case if the instruction is a floating-point 1085 /// instruction that can in principle raise an exception, as indicated 1086 /// by the MCID::MayRaiseFPException property, *and* at the same time, 1087 /// the instruction is used in a context where we expect floating-point 1088 /// exceptions are not disabled, as indicated by the NoFPExcept MI flag. 1089 bool mayRaiseFPException() const { 1090 return hasProperty(MCID::MayRaiseFPException) && 1091 !getFlag(MachineInstr::MIFlag::NoFPExcept); 1092 } 1093 1094 //===--------------------------------------------------------------------===// 1095 // Flags that indicate whether an instruction can be modified by a method. 1096 //===--------------------------------------------------------------------===// 1097 1098 /// Return true if this may be a 2- or 3-address 1099 /// instruction (of the form "X = op Y, Z, ..."), which produces the same 1100 /// result if Y and Z are exchanged. If this flag is set, then the 1101 /// TargetInstrInfo::commuteInstruction method may be used to hack on the 1102 /// instruction. 1103 /// 1104 /// Note that this flag may be set on instructions that are only commutable 1105 /// sometimes. In these cases, the call to commuteInstruction will fail. 1106 /// Also note that some instructions require non-trivial modification to 1107 /// commute them. 1108 bool isCommutable(QueryType Type = IgnoreBundle) const { 1109 return hasProperty(MCID::Commutable, Type); 1110 } 1111 1112 /// Return true if this is a 2-address instruction 1113 /// which can be changed into a 3-address instruction if needed. Doing this 1114 /// transformation can be profitable in the register allocator, because it 1115 /// means that the instruction can use a 2-address form if possible, but 1116 /// degrade into a less efficient form if the source and dest register cannot 1117 /// be assigned to the same register. For example, this allows the x86 1118 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which 1119 /// is the same speed as the shift but has bigger code size. 1120 /// 1121 /// If this returns true, then the target must implement the 1122 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which 1123 /// is allowed to fail if the transformation isn't valid for this specific 1124 /// instruction (e.g. shl reg, 4 on x86). 1125 /// 1126 bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const { 1127 return hasProperty(MCID::ConvertibleTo3Addr, Type); 1128 } 1129 1130 /// Return true if this instruction requires 1131 /// custom insertion support when the DAG scheduler is inserting it into a 1132 /// machine basic block. If this is true for the instruction, it basically 1133 /// means that it is a pseudo instruction used at SelectionDAG time that is 1134 /// expanded out into magic code by the target when MachineInstrs are formed. 1135 /// 1136 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method 1137 /// is used to insert this into the MachineBasicBlock. 1138 bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const { 1139 return hasProperty(MCID::UsesCustomInserter, Type); 1140 } 1141 1142 /// Return true if this instruction requires *adjustment* 1143 /// after instruction selection by calling a target hook. For example, this 1144 /// can be used to fill in ARM 's' optional operand depending on whether 1145 /// the conditional flag register is used. 1146 bool hasPostISelHook(QueryType Type = IgnoreBundle) const { 1147 return hasProperty(MCID::HasPostISelHook, Type); 1148 } 1149 1150 /// Returns true if this instruction is a candidate for remat. 1151 /// This flag is deprecated, please don't use it anymore. If this 1152 /// flag is set, the isReallyTriviallyReMaterializable() method is called to 1153 /// verify the instruction is really rematable. 1154 bool isRematerializable(QueryType Type = AllInBundle) const { 1155 // It's only possible to re-mat a bundle if all bundled instructions are 1156 // re-materializable. 1157 return hasProperty(MCID::Rematerializable, Type); 1158 } 1159 1160 /// Returns true if this instruction has the same cost (or less) than a move 1161 /// instruction. This is useful during certain types of optimizations 1162 /// (e.g., remat during two-address conversion or machine licm) 1163 /// where we would like to remat or hoist the instruction, but not if it costs 1164 /// more than moving the instruction into the appropriate register. Note, we 1165 /// are not marking copies from and to the same register class with this flag. 1166 bool isAsCheapAsAMove(QueryType Type = AllInBundle) const { 1167 // Only returns true for a bundle if all bundled instructions are cheap. 1168 return hasProperty(MCID::CheapAsAMove, Type); 1169 } 1170 1171 /// Returns true if this instruction source operands 1172 /// have special register allocation requirements that are not captured by the 1173 /// operand register classes. e.g. ARM::STRD's two source registers must be an 1174 /// even / odd pair, ARM::STM registers have to be in ascending order. 1175 /// Post-register allocation passes should not attempt to change allocations 1176 /// for sources of instructions with this flag. 1177 bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const { 1178 return hasProperty(MCID::ExtraSrcRegAllocReq, Type); 1179 } 1180 1181 /// Returns true if this instruction def operands 1182 /// have special register allocation requirements that are not captured by the 1183 /// operand register classes. e.g. ARM::LDRD's two def registers must be an 1184 /// even / odd pair, ARM::LDM registers have to be in ascending order. 1185 /// Post-register allocation passes should not attempt to change allocations 1186 /// for definitions of instructions with this flag. 1187 bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const { 1188 return hasProperty(MCID::ExtraDefRegAllocReq, Type); 1189 } 1190 1191 enum MICheckType { 1192 CheckDefs, // Check all operands for equality 1193 CheckKillDead, // Check all operands including kill / dead markers 1194 IgnoreDefs, // Ignore all definitions 1195 IgnoreVRegDefs // Ignore virtual register definitions 1196 }; 1197 1198 /// Return true if this instruction is identical to \p Other. 1199 /// Two instructions are identical if they have the same opcode and all their 1200 /// operands are identical (with respect to MachineOperand::isIdenticalTo()). 1201 /// Note that this means liveness related flags (dead, undef, kill) do not 1202 /// affect the notion of identical. 1203 bool isIdenticalTo(const MachineInstr &Other, 1204 MICheckType Check = CheckDefs) const; 1205 1206 /// Returns true if this instruction is a debug instruction that represents an 1207 /// identical debug value to \p Other. 1208 /// This function considers these debug instructions equivalent if they have 1209 /// identical variables, debug locations, and debug operands, and if the 1210 /// DIExpressions combined with the directness flags are equivalent. 1211 bool isEquivalentDbgInstr(const MachineInstr &Other) const; 1212 1213 /// Unlink 'this' from the containing basic block, and return it without 1214 /// deleting it. 1215 /// 1216 /// This function can not be used on bundled instructions, use 1217 /// removeFromBundle() to remove individual instructions from a bundle. 1218 MachineInstr *removeFromParent(); 1219 1220 /// Unlink this instruction from its basic block and return it without 1221 /// deleting it. 1222 /// 1223 /// If the instruction is part of a bundle, the other instructions in the 1224 /// bundle remain bundled. 1225 MachineInstr *removeFromBundle(); 1226 1227 /// Unlink 'this' from the containing basic block and delete it. 1228 /// 1229 /// If this instruction is the header of a bundle, the whole bundle is erased. 1230 /// This function can not be used for instructions inside a bundle, use 1231 /// eraseFromBundle() to erase individual bundled instructions. 1232 void eraseFromParent(); 1233 1234 /// Unlink 'this' form its basic block and delete it. 1235 /// 1236 /// If the instruction is part of a bundle, the other instructions in the 1237 /// bundle remain bundled. 1238 void eraseFromBundle(); 1239 1240 bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; } 1241 bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; } 1242 bool isAnnotationLabel() const { 1243 return getOpcode() == TargetOpcode::ANNOTATION_LABEL; 1244 } 1245 1246 /// Returns true if the MachineInstr represents a label. 1247 bool isLabel() const { 1248 return isEHLabel() || isGCLabel() || isAnnotationLabel(); 1249 } 1250 1251 bool isCFIInstruction() const { 1252 return getOpcode() == TargetOpcode::CFI_INSTRUCTION; 1253 } 1254 1255 bool isPseudoProbe() const { 1256 return getOpcode() == TargetOpcode::PSEUDO_PROBE; 1257 } 1258 1259 // True if the instruction represents a position in the function. 1260 bool isPosition() const { return isLabel() || isCFIInstruction(); } 1261 1262 bool isNonListDebugValue() const { 1263 return getOpcode() == TargetOpcode::DBG_VALUE; 1264 } 1265 bool isDebugValueList() const { 1266 return getOpcode() == TargetOpcode::DBG_VALUE_LIST; 1267 } 1268 bool isDebugValue() const { 1269 return isNonListDebugValue() || isDebugValueList(); 1270 } 1271 bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; } 1272 bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; } 1273 bool isDebugValueLike() const { return isDebugValue() || isDebugRef(); } 1274 bool isDebugPHI() const { return getOpcode() == TargetOpcode::DBG_PHI; } 1275 bool isDebugInstr() const { 1276 return isDebugValue() || isDebugLabel() || isDebugRef() || isDebugPHI(); 1277 } 1278 bool isDebugOrPseudoInstr() const { 1279 return isDebugInstr() || isPseudoProbe(); 1280 } 1281 1282 bool isDebugOffsetImm() const { 1283 return isNonListDebugValue() && getDebugOffset().isImm(); 1284 } 1285 1286 /// A DBG_VALUE is indirect iff the location operand is a register and 1287 /// the offset operand is an immediate. 1288 bool isIndirectDebugValue() const { 1289 return isDebugOffsetImm() && getDebugOperand(0).isReg(); 1290 } 1291 1292 /// A DBG_VALUE is an entry value iff its debug expression contains the 1293 /// DW_OP_LLVM_entry_value operation. 1294 bool isDebugEntryValue() const; 1295 1296 /// Return true if the instruction is a debug value which describes a part of 1297 /// a variable as unavailable. 1298 bool isUndefDebugValue() const { 1299 if (!isDebugValue()) 1300 return false; 1301 // If any $noreg locations are given, this DV is undef. 1302 for (const MachineOperand &Op : debug_operands()) 1303 if (Op.isReg() && !Op.getReg().isValid()) 1304 return true; 1305 return false; 1306 } 1307 1308 bool isPHI() const { 1309 return getOpcode() == TargetOpcode::PHI || 1310 getOpcode() == TargetOpcode::G_PHI; 1311 } 1312 bool isKill() const { return getOpcode() == TargetOpcode::KILL; } 1313 bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; } 1314 bool isInlineAsm() const { 1315 return getOpcode() == TargetOpcode::INLINEASM || 1316 getOpcode() == TargetOpcode::INLINEASM_BR; 1317 } 1318 1319 /// FIXME: Seems like a layering violation that the AsmDialect, which is X86 1320 /// specific, be attached to a generic MachineInstr. 1321 bool isMSInlineAsm() const { 1322 return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel; 1323 } 1324 1325 bool isStackAligningInlineAsm() const; 1326 InlineAsm::AsmDialect getInlineAsmDialect() const; 1327 1328 bool isInsertSubreg() const { 1329 return getOpcode() == TargetOpcode::INSERT_SUBREG; 1330 } 1331 1332 bool isSubregToReg() const { 1333 return getOpcode() == TargetOpcode::SUBREG_TO_REG; 1334 } 1335 1336 bool isRegSequence() const { 1337 return getOpcode() == TargetOpcode::REG_SEQUENCE; 1338 } 1339 1340 bool isBundle() const { 1341 return getOpcode() == TargetOpcode::BUNDLE; 1342 } 1343 1344 bool isCopy() const { 1345 return getOpcode() == TargetOpcode::COPY; 1346 } 1347 1348 bool isFullCopy() const { 1349 return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg(); 1350 } 1351 1352 bool isExtractSubreg() const { 1353 return getOpcode() == TargetOpcode::EXTRACT_SUBREG; 1354 } 1355 1356 /// Return true if the instruction behaves like a copy. 1357 /// This does not include native copy instructions. 1358 bool isCopyLike() const { 1359 return isCopy() || isSubregToReg(); 1360 } 1361 1362 /// Return true is the instruction is an identity copy. 1363 bool isIdentityCopy() const { 1364 return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() && 1365 getOperand(0).getSubReg() == getOperand(1).getSubReg(); 1366 } 1367 1368 /// Return true if this is a transient instruction that is either very likely 1369 /// to be eliminated during register allocation (such as copy-like 1370 /// instructions), or if this instruction doesn't have an execution-time cost. 1371 bool isTransient() const { 1372 switch (getOpcode()) { 1373 default: 1374 return isMetaInstruction(); 1375 // Copy-like instructions are usually eliminated during register allocation. 1376 case TargetOpcode::PHI: 1377 case TargetOpcode::G_PHI: 1378 case TargetOpcode::COPY: 1379 case TargetOpcode::INSERT_SUBREG: 1380 case TargetOpcode::SUBREG_TO_REG: 1381 case TargetOpcode::REG_SEQUENCE: 1382 return true; 1383 } 1384 } 1385 1386 /// Return the number of instructions inside the MI bundle, excluding the 1387 /// bundle header. 1388 /// 1389 /// This is the number of instructions that MachineBasicBlock::iterator 1390 /// skips, 0 for unbundled instructions. 1391 unsigned getBundleSize() const; 1392 1393 /// Return true if the MachineInstr reads the specified register. 1394 /// If TargetRegisterInfo is passed, then it also checks if there 1395 /// is a read of a super-register. 1396 /// This does not count partial redefines of virtual registers as reads: 1397 /// %reg1024:6 = OP. 1398 bool readsRegister(Register Reg, 1399 const TargetRegisterInfo *TRI = nullptr) const { 1400 return findRegisterUseOperandIdx(Reg, false, TRI) != -1; 1401 } 1402 1403 /// Return true if the MachineInstr reads the specified virtual register. 1404 /// Take into account that a partial define is a 1405 /// read-modify-write operation. 1406 bool readsVirtualRegister(Register Reg) const { 1407 return readsWritesVirtualRegister(Reg).first; 1408 } 1409 1410 /// Return a pair of bools (reads, writes) indicating if this instruction 1411 /// reads or writes Reg. This also considers partial defines. 1412 /// If Ops is not null, all operand indices for Reg are added. 1413 std::pair<bool,bool> readsWritesVirtualRegister(Register Reg, 1414 SmallVectorImpl<unsigned> *Ops = nullptr) const; 1415 1416 /// Return true if the MachineInstr kills the specified register. 1417 /// If TargetRegisterInfo is passed, then it also checks if there is 1418 /// a kill of a super-register. 1419 bool killsRegister(Register Reg, 1420 const TargetRegisterInfo *TRI = nullptr) const { 1421 return findRegisterUseOperandIdx(Reg, true, TRI) != -1; 1422 } 1423 1424 /// Return true if the MachineInstr fully defines the specified register. 1425 /// If TargetRegisterInfo is passed, then it also checks 1426 /// if there is a def of a super-register. 1427 /// NOTE: It's ignoring subreg indices on virtual registers. 1428 bool definesRegister(Register Reg, 1429 const TargetRegisterInfo *TRI = nullptr) const { 1430 return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1; 1431 } 1432 1433 /// Return true if the MachineInstr modifies (fully define or partially 1434 /// define) the specified register. 1435 /// NOTE: It's ignoring subreg indices on virtual registers. 1436 bool modifiesRegister(Register Reg, 1437 const TargetRegisterInfo *TRI = nullptr) const { 1438 return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1; 1439 } 1440 1441 /// Returns true if the register is dead in this machine instruction. 1442 /// If TargetRegisterInfo is passed, then it also checks 1443 /// if there is a dead def of a super-register. 1444 bool registerDefIsDead(Register Reg, 1445 const TargetRegisterInfo *TRI = nullptr) const { 1446 return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1; 1447 } 1448 1449 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1450 /// the given register (not considering sub/super-registers). 1451 bool hasRegisterImplicitUseOperand(Register Reg) const; 1452 1453 /// Returns the operand index that is a use of the specific register or -1 1454 /// if it is not found. It further tightens the search criteria to a use 1455 /// that kills the register if isKill is true. 1456 int findRegisterUseOperandIdx(Register Reg, bool isKill = false, 1457 const TargetRegisterInfo *TRI = nullptr) const; 1458 1459 /// Wrapper for findRegisterUseOperandIdx, it returns 1460 /// a pointer to the MachineOperand rather than an index. 1461 MachineOperand *findRegisterUseOperand(Register Reg, bool isKill = false, 1462 const TargetRegisterInfo *TRI = nullptr) { 1463 int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI); 1464 return (Idx == -1) ? nullptr : &getOperand(Idx); 1465 } 1466 1467 const MachineOperand *findRegisterUseOperand( 1468 Register Reg, bool isKill = false, 1469 const TargetRegisterInfo *TRI = nullptr) const { 1470 return const_cast<MachineInstr *>(this)-> 1471 findRegisterUseOperand(Reg, isKill, TRI); 1472 } 1473 1474 /// Returns the operand index that is a def of the specified register or 1475 /// -1 if it is not found. If isDead is true, defs that are not dead are 1476 /// skipped. If Overlap is true, then it also looks for defs that merely 1477 /// overlap the specified register. If TargetRegisterInfo is non-null, 1478 /// then it also checks if there is a def of a super-register. 1479 /// This may also return a register mask operand when Overlap is true. 1480 int findRegisterDefOperandIdx(Register Reg, 1481 bool isDead = false, bool Overlap = false, 1482 const TargetRegisterInfo *TRI = nullptr) const; 1483 1484 /// Wrapper for findRegisterDefOperandIdx, it returns 1485 /// a pointer to the MachineOperand rather than an index. 1486 MachineOperand * 1487 findRegisterDefOperand(Register Reg, bool isDead = false, 1488 bool Overlap = false, 1489 const TargetRegisterInfo *TRI = nullptr) { 1490 int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI); 1491 return (Idx == -1) ? nullptr : &getOperand(Idx); 1492 } 1493 1494 const MachineOperand * 1495 findRegisterDefOperand(Register Reg, bool isDead = false, 1496 bool Overlap = false, 1497 const TargetRegisterInfo *TRI = nullptr) const { 1498 return const_cast<MachineInstr *>(this)->findRegisterDefOperand( 1499 Reg, isDead, Overlap, TRI); 1500 } 1501 1502 /// Find the index of the first operand in the 1503 /// operand list that is used to represent the predicate. It returns -1 if 1504 /// none is found. 1505 int findFirstPredOperandIdx() const; 1506 1507 /// Find the index of the flag word operand that 1508 /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if 1509 /// getOperand(OpIdx) does not belong to an inline asm operand group. 1510 /// 1511 /// If GroupNo is not NULL, it will receive the number of the operand group 1512 /// containing OpIdx. 1513 int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const; 1514 1515 /// Compute the static register class constraint for operand OpIdx. 1516 /// For normal instructions, this is derived from the MCInstrDesc. 1517 /// For inline assembly it is derived from the flag words. 1518 /// 1519 /// Returns NULL if the static register class constraint cannot be 1520 /// determined. 1521 const TargetRegisterClass* 1522 getRegClassConstraint(unsigned OpIdx, 1523 const TargetInstrInfo *TII, 1524 const TargetRegisterInfo *TRI) const; 1525 1526 /// Applies the constraints (def/use) implied by this MI on \p Reg to 1527 /// the given \p CurRC. 1528 /// If \p ExploreBundle is set and MI is part of a bundle, all the 1529 /// instructions inside the bundle will be taken into account. In other words, 1530 /// this method accumulates all the constraints of the operand of this MI and 1531 /// the related bundle if MI is a bundle or inside a bundle. 1532 /// 1533 /// Returns the register class that satisfies both \p CurRC and the 1534 /// constraints set by MI. Returns NULL if such a register class does not 1535 /// exist. 1536 /// 1537 /// \pre CurRC must not be NULL. 1538 const TargetRegisterClass *getRegClassConstraintEffectForVReg( 1539 Register Reg, const TargetRegisterClass *CurRC, 1540 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1541 bool ExploreBundle = false) const; 1542 1543 /// Applies the constraints (def/use) implied by the \p OpIdx operand 1544 /// to the given \p CurRC. 1545 /// 1546 /// Returns the register class that satisfies both \p CurRC and the 1547 /// constraints set by \p OpIdx MI. Returns NULL if such a register class 1548 /// does not exist. 1549 /// 1550 /// \pre CurRC must not be NULL. 1551 /// \pre The operand at \p OpIdx must be a register. 1552 const TargetRegisterClass * 1553 getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC, 1554 const TargetInstrInfo *TII, 1555 const TargetRegisterInfo *TRI) const; 1556 1557 /// Add a tie between the register operands at DefIdx and UseIdx. 1558 /// The tie will cause the register allocator to ensure that the two 1559 /// operands are assigned the same physical register. 1560 /// 1561 /// Tied operands are managed automatically for explicit operands in the 1562 /// MCInstrDesc. This method is for exceptional cases like inline asm. 1563 void tieOperands(unsigned DefIdx, unsigned UseIdx); 1564 1565 /// Given the index of a tied register operand, find the 1566 /// operand it is tied to. Defs are tied to uses and vice versa. Returns the 1567 /// index of the tied operand which must exist. 1568 unsigned findTiedOperandIdx(unsigned OpIdx) const; 1569 1570 /// Given the index of a register def operand, 1571 /// check if the register def is tied to a source operand, due to either 1572 /// two-address elimination or inline assembly constraints. Returns the 1573 /// first tied use operand index by reference if UseOpIdx is not null. 1574 bool isRegTiedToUseOperand(unsigned DefOpIdx, 1575 unsigned *UseOpIdx = nullptr) const { 1576 const MachineOperand &MO = getOperand(DefOpIdx); 1577 if (!MO.isReg() || !MO.isDef() || !MO.isTied()) 1578 return false; 1579 if (UseOpIdx) 1580 *UseOpIdx = findTiedOperandIdx(DefOpIdx); 1581 return true; 1582 } 1583 1584 /// Return true if the use operand of the specified index is tied to a def 1585 /// operand. It also returns the def operand index by reference if DefOpIdx 1586 /// is not null. 1587 bool isRegTiedToDefOperand(unsigned UseOpIdx, 1588 unsigned *DefOpIdx = nullptr) const { 1589 const MachineOperand &MO = getOperand(UseOpIdx); 1590 if (!MO.isReg() || !MO.isUse() || !MO.isTied()) 1591 return false; 1592 if (DefOpIdx) 1593 *DefOpIdx = findTiedOperandIdx(UseOpIdx); 1594 return true; 1595 } 1596 1597 /// Clears kill flags on all operands. 1598 void clearKillInfo(); 1599 1600 /// Replace all occurrences of FromReg with ToReg:SubIdx, 1601 /// properly composing subreg indices where necessary. 1602 void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx, 1603 const TargetRegisterInfo &RegInfo); 1604 1605 /// We have determined MI kills a register. Look for the 1606 /// operand that uses it and mark it as IsKill. If AddIfNotFound is true, 1607 /// add a implicit operand if it's not found. Returns true if the operand 1608 /// exists / is added. 1609 bool addRegisterKilled(Register IncomingReg, 1610 const TargetRegisterInfo *RegInfo, 1611 bool AddIfNotFound = false); 1612 1613 /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes 1614 /// all aliasing registers. 1615 void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo); 1616 1617 /// We have determined MI defined a register without a use. 1618 /// Look for the operand that defines it and mark it as IsDead. If 1619 /// AddIfNotFound is true, add a implicit operand if it's not found. Returns 1620 /// true if the operand exists / is added. 1621 bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo, 1622 bool AddIfNotFound = false); 1623 1624 /// Clear all dead flags on operands defining register @p Reg. 1625 void clearRegisterDeads(Register Reg); 1626 1627 /// Mark all subregister defs of register @p Reg with the undef flag. 1628 /// This function is used when we determined to have a subregister def in an 1629 /// otherwise undefined super register. 1630 void setRegisterDefReadUndef(Register Reg, bool IsUndef = true); 1631 1632 /// We have determined MI defines a register. Make sure there is an operand 1633 /// defining Reg. 1634 void addRegisterDefined(Register Reg, 1635 const TargetRegisterInfo *RegInfo = nullptr); 1636 1637 /// Mark every physreg used by this instruction as 1638 /// dead except those in the UsedRegs list. 1639 /// 1640 /// On instructions with register mask operands, also add implicit-def 1641 /// operands for all registers in UsedRegs. 1642 void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 1643 const TargetRegisterInfo &TRI); 1644 1645 /// Return true if it is safe to move this instruction. If 1646 /// SawStore is set to true, it means that there is a store (or call) between 1647 /// the instruction's location and its intended destination. 1648 bool isSafeToMove(AAResults *AA, bool &SawStore) const; 1649 1650 /// Returns true if this instruction's memory access aliases the memory 1651 /// access of Other. 1652 // 1653 /// Assumes any physical registers used to compute addresses 1654 /// have the same value for both instructions. Returns false if neither 1655 /// instruction writes to memory. 1656 /// 1657 /// @param AA Optional alias analysis, used to compare memory operands. 1658 /// @param Other MachineInstr to check aliasing against. 1659 /// @param UseTBAA Whether to pass TBAA information to alias analysis. 1660 bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const; 1661 1662 /// Return true if this instruction may have an ordered 1663 /// or volatile memory reference, or if the information describing the memory 1664 /// reference is not available. Return false if it is known to have no 1665 /// ordered or volatile memory references. 1666 bool hasOrderedMemoryRef() const; 1667 1668 /// Return true if this load instruction never traps and points to a memory 1669 /// location whose value doesn't change during the execution of this function. 1670 /// 1671 /// Examples include loading a value from the constant pool or from the 1672 /// argument area of a function (if it does not change). If the instruction 1673 /// does multiple loads, this returns true only if all of the loads are 1674 /// dereferenceable and invariant. 1675 bool isDereferenceableInvariantLoad() const; 1676 1677 /// If the specified instruction is a PHI that always merges together the 1678 /// same virtual register, return the register, otherwise return 0. 1679 unsigned isConstantValuePHI() const; 1680 1681 /// Return true if this instruction has side effects that are not modeled 1682 /// by mayLoad / mayStore, etc. 1683 /// For all instructions, the property is encoded in MCInstrDesc::Flags 1684 /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is 1685 /// INLINEASM instruction, in which case the side effect property is encoded 1686 /// in one of its operands (see InlineAsm::Extra_HasSideEffect). 1687 /// 1688 bool hasUnmodeledSideEffects() const; 1689 1690 /// Returns true if it is illegal to fold a load across this instruction. 1691 bool isLoadFoldBarrier() const; 1692 1693 /// Return true if all the defs of this instruction are dead. 1694 bool allDefsAreDead() const; 1695 1696 /// Return a valid size if the instruction is a spill instruction. 1697 std::optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const; 1698 1699 /// Return a valid size if the instruction is a folded spill instruction. 1700 std::optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const; 1701 1702 /// Return a valid size if the instruction is a restore instruction. 1703 std::optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const; 1704 1705 /// Return a valid size if the instruction is a folded restore instruction. 1706 std::optional<unsigned> 1707 getFoldedRestoreSize(const TargetInstrInfo *TII) const; 1708 1709 /// Copy implicit register operands from specified 1710 /// instruction to this instruction. 1711 void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI); 1712 1713 /// Debugging support 1714 /// @{ 1715 /// Determine the generic type to be printed (if needed) on uses and defs. 1716 LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1717 const MachineRegisterInfo &MRI) const; 1718 1719 /// Return true when an instruction has tied register that can't be determined 1720 /// by the instruction's descriptor. This is useful for MIR printing, to 1721 /// determine whether we need to print the ties or not. 1722 bool hasComplexRegisterTies() const; 1723 1724 /// Print this MI to \p OS. 1725 /// Don't print information that can be inferred from other instructions if 1726 /// \p IsStandalone is false. It is usually true when only a fragment of the 1727 /// function is printed. 1728 /// Only print the defs and the opcode if \p SkipOpers is true. 1729 /// Otherwise, also print operands if \p SkipDebugLoc is true. 1730 /// Otherwise, also print the debug loc, with a terminating newline. 1731 /// \p TII is used to print the opcode name. If it's not present, but the 1732 /// MI is in a function, the opcode will be printed using the function's TII. 1733 void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false, 1734 bool SkipDebugLoc = false, bool AddNewLine = true, 1735 const TargetInstrInfo *TII = nullptr) const; 1736 void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true, 1737 bool SkipOpers = false, bool SkipDebugLoc = false, 1738 bool AddNewLine = true, 1739 const TargetInstrInfo *TII = nullptr) const; 1740 void dump() const; 1741 /// Print on dbgs() the current instruction and the instructions defining its 1742 /// operands and so on until we reach \p MaxDepth. 1743 void dumpr(const MachineRegisterInfo &MRI, 1744 unsigned MaxDepth = UINT_MAX) const; 1745 /// @} 1746 1747 //===--------------------------------------------------------------------===// 1748 // Accessors used to build up machine instructions. 1749 1750 /// Add the specified operand to the instruction. If it is an implicit 1751 /// operand, it is added to the end of the operand list. If it is an 1752 /// explicit operand it is added at the end of the explicit operand list 1753 /// (before the first implicit operand). 1754 /// 1755 /// MF must be the machine function that was used to allocate this 1756 /// instruction. 1757 /// 1758 /// MachineInstrBuilder provides a more convenient interface for creating 1759 /// instructions and adding operands. 1760 void addOperand(MachineFunction &MF, const MachineOperand &Op); 1761 1762 /// Add an operand without providing an MF reference. This only works for 1763 /// instructions that are inserted in a basic block. 1764 /// 1765 /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be 1766 /// preferred. 1767 void addOperand(const MachineOperand &Op); 1768 1769 /// Replace the instruction descriptor (thus opcode) of 1770 /// the current instruction with a new one. 1771 void setDesc(const MCInstrDesc &TID) { MCID = &TID; } 1772 1773 /// Replace current source information with new such. 1774 /// Avoid using this, the constructor argument is preferable. 1775 void setDebugLoc(DebugLoc DL) { 1776 DbgLoc = std::move(DL); 1777 assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor"); 1778 } 1779 1780 /// Erase an operand from an instruction, leaving it with one 1781 /// fewer operand than it started with. 1782 void removeOperand(unsigned OpNo); 1783 1784 /// Clear this MachineInstr's memory reference descriptor list. This resets 1785 /// the memrefs to their most conservative state. This should be used only 1786 /// as a last resort since it greatly pessimizes our knowledge of the memory 1787 /// access performed by the instruction. 1788 void dropMemRefs(MachineFunction &MF); 1789 1790 /// Assign this MachineInstr's memory reference descriptor list. 1791 /// 1792 /// Unlike other methods, this *will* allocate them into a new array 1793 /// associated with the provided `MachineFunction`. 1794 void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs); 1795 1796 /// Add a MachineMemOperand to the machine instruction. 1797 /// This function should be used only occasionally. The setMemRefs function 1798 /// is the primary method for setting up a MachineInstr's MemRefs list. 1799 void addMemOperand(MachineFunction &MF, MachineMemOperand *MO); 1800 1801 /// Clone another MachineInstr's memory reference descriptor list and replace 1802 /// ours with it. 1803 /// 1804 /// Note that `*this` may be the incoming MI! 1805 /// 1806 /// Prefer this API whenever possible as it can avoid allocations in common 1807 /// cases. 1808 void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI); 1809 1810 /// Clone the merge of multiple MachineInstrs' memory reference descriptors 1811 /// list and replace ours with it. 1812 /// 1813 /// Note that `*this` may be one of the incoming MIs! 1814 /// 1815 /// Prefer this API whenever possible as it can avoid allocations in common 1816 /// cases. 1817 void cloneMergedMemRefs(MachineFunction &MF, 1818 ArrayRef<const MachineInstr *> MIs); 1819 1820 /// Set a symbol that will be emitted just prior to the instruction itself. 1821 /// 1822 /// Setting this to a null pointer will remove any such symbol. 1823 /// 1824 /// FIXME: This is not fully implemented yet. 1825 void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); 1826 1827 /// Set a symbol that will be emitted just after the instruction itself. 1828 /// 1829 /// Setting this to a null pointer will remove any such symbol. 1830 /// 1831 /// FIXME: This is not fully implemented yet. 1832 void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); 1833 1834 /// Clone another MachineInstr's pre- and post- instruction symbols and 1835 /// replace ours with it. 1836 void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI); 1837 1838 /// Set a marker on instructions that denotes where we should create and emit 1839 /// heap alloc site labels. This waits until after instruction selection and 1840 /// optimizations to create the label, so it should still work if the 1841 /// instruction is removed or duplicated. 1842 void setHeapAllocMarker(MachineFunction &MF, MDNode *MD); 1843 1844 // Set metadata on instructions that say which sections to emit instruction 1845 // addresses into. 1846 void setPCSections(MachineFunction &MF, MDNode *MD); 1847 1848 /// Set the CFI type for the instruction. 1849 void setCFIType(MachineFunction &MF, uint32_t Type); 1850 1851 /// Return the MIFlags which represent both MachineInstrs. This 1852 /// should be used when merging two MachineInstrs into one. This routine does 1853 /// not modify the MIFlags of this MachineInstr. 1854 uint16_t mergeFlagsWith(const MachineInstr& Other) const; 1855 1856 static uint16_t copyFlagsFromInstruction(const Instruction &I); 1857 1858 /// Copy all flags to MachineInst MIFlags 1859 void copyIRFlags(const Instruction &I); 1860 1861 /// Break any tie involving OpIdx. 1862 void untieRegOperand(unsigned OpIdx) { 1863 MachineOperand &MO = getOperand(OpIdx); 1864 if (MO.isReg() && MO.isTied()) { 1865 getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0; 1866 MO.TiedTo = 0; 1867 } 1868 } 1869 1870 /// Add all implicit def and use operands to this instruction. 1871 void addImplicitDefUseOperands(MachineFunction &MF); 1872 1873 /// Scan instructions immediately following MI and collect any matching 1874 /// DBG_VALUEs. 1875 void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues); 1876 1877 /// Find all DBG_VALUEs that point to the register def in this instruction 1878 /// and point them to \p Reg instead. 1879 void changeDebugValuesDefReg(Register Reg); 1880 1881 /// Returns the Intrinsic::ID for this instruction. 1882 /// \pre Must have an intrinsic ID operand. 1883 unsigned getIntrinsicID() const { 1884 return getOperand(getNumExplicitDefs()).getIntrinsicID(); 1885 } 1886 1887 /// Sets all register debug operands in this debug value instruction to be 1888 /// undef. 1889 void setDebugValueUndef() { 1890 assert(isDebugValue() && "Must be a debug value instruction."); 1891 for (MachineOperand &MO : debug_operands()) { 1892 if (MO.isReg()) { 1893 MO.setReg(0); 1894 MO.setSubReg(0); 1895 } 1896 } 1897 } 1898 1899 private: 1900 /// If this instruction is embedded into a MachineFunction, return the 1901 /// MachineRegisterInfo object for the current function, otherwise 1902 /// return null. 1903 MachineRegisterInfo *getRegInfo(); 1904 1905 /// Unlink all of the register operands in this instruction from their 1906 /// respective use lists. This requires that the operands already be on their 1907 /// use lists. 1908 void removeRegOperandsFromUseLists(MachineRegisterInfo&); 1909 1910 /// Add all of the register operands in this instruction from their 1911 /// respective use lists. This requires that the operands not be on their 1912 /// use lists yet. 1913 void addRegOperandsToUseLists(MachineRegisterInfo&); 1914 1915 /// Slow path for hasProperty when we're dealing with a bundle. 1916 bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const; 1917 1918 /// Implements the logic of getRegClassConstraintEffectForVReg for the 1919 /// this MI and the given operand index \p OpIdx. 1920 /// If the related operand does not constrained Reg, this returns CurRC. 1921 const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl( 1922 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 1923 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const; 1924 1925 /// Stores extra instruction information inline or allocates as ExtraInfo 1926 /// based on the number of pointers. 1927 void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs, 1928 MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol, 1929 MDNode *HeapAllocMarker, MDNode *PCSections, 1930 uint32_t CFIType); 1931 }; 1932 1933 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the 1934 /// instruction rather than by pointer value. 1935 /// The hashing and equality testing functions ignore definitions so this is 1936 /// useful for CSE, etc. 1937 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> { 1938 static inline MachineInstr *getEmptyKey() { 1939 return nullptr; 1940 } 1941 1942 static inline MachineInstr *getTombstoneKey() { 1943 return reinterpret_cast<MachineInstr*>(-1); 1944 } 1945 1946 static unsigned getHashValue(const MachineInstr* const &MI); 1947 1948 static bool isEqual(const MachineInstr* const &LHS, 1949 const MachineInstr* const &RHS) { 1950 if (RHS == getEmptyKey() || RHS == getTombstoneKey() || 1951 LHS == getEmptyKey() || LHS == getTombstoneKey()) 1952 return LHS == RHS; 1953 return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs); 1954 } 1955 }; 1956 1957 //===----------------------------------------------------------------------===// 1958 // Debugging Support 1959 1960 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) { 1961 MI.print(OS); 1962 return OS; 1963 } 1964 1965 } // end namespace llvm 1966 1967 #endif // LLVM_CODEGEN_MACHINEINSTR_H 1968