1 //===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Decl subclasses.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/AST/Decl.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CanonicalType.h"
21 #include "clang/AST/DeclBase.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclOpenMP.h"
25 #include "clang/AST/DeclTemplate.h"
26 #include "clang/AST/DeclarationName.h"
27 #include "clang/AST/Expr.h"
28 #include "clang/AST/ExprCXX.h"
29 #include "clang/AST/ExternalASTSource.h"
30 #include "clang/AST/ODRHash.h"
31 #include "clang/AST/PrettyDeclStackTrace.h"
32 #include "clang/AST/PrettyPrinter.h"
33 #include "clang/AST/Randstruct.h"
34 #include "clang/AST/RecordLayout.h"
35 #include "clang/AST/Redeclarable.h"
36 #include "clang/AST/Stmt.h"
37 #include "clang/AST/TemplateBase.h"
38 #include "clang/AST/Type.h"
39 #include "clang/AST/TypeLoc.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/IdentifierTable.h"
42 #include "clang/Basic/LLVM.h"
43 #include "clang/Basic/LangOptions.h"
44 #include "clang/Basic/Linkage.h"
45 #include "clang/Basic/Module.h"
46 #include "clang/Basic/NoSanitizeList.h"
47 #include "clang/Basic/PartialDiagnostic.h"
48 #include "clang/Basic/Sanitizers.h"
49 #include "clang/Basic/SourceLocation.h"
50 #include "clang/Basic/SourceManager.h"
51 #include "clang/Basic/Specifiers.h"
52 #include "clang/Basic/TargetCXXABI.h"
53 #include "clang/Basic/TargetInfo.h"
54 #include "clang/Basic/Visibility.h"
55 #include "llvm/ADT/APSInt.h"
56 #include "llvm/ADT/ArrayRef.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/StringSwitch.h"
61 #include "llvm/ADT/Triple.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstring>
69 #include <memory>
70 #include <optional>
71 #include <string>
72 #include <tuple>
73 #include <type_traits>
74
75 using namespace clang;
76
getPrimaryMergedDecl(Decl * D)77 Decl *clang::getPrimaryMergedDecl(Decl *D) {
78 return D->getASTContext().getPrimaryMergedDecl(D);
79 }
80
print(raw_ostream & OS) const81 void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
82 SourceLocation Loc = this->Loc;
83 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
84 if (Loc.isValid()) {
85 Loc.print(OS, Context.getSourceManager());
86 OS << ": ";
87 }
88 OS << Message;
89
90 if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) {
91 OS << " '";
92 ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
93 OS << "'";
94 }
95
96 OS << '\n';
97 }
98
99 // Defined here so that it can be inlined into its direct callers.
isOutOfLine() const100 bool Decl::isOutOfLine() const {
101 return !getLexicalDeclContext()->Equals(getDeclContext());
102 }
103
TranslationUnitDecl(ASTContext & ctx)104 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
105 : Decl(TranslationUnit, nullptr, SourceLocation()),
106 DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {}
107
108 //===----------------------------------------------------------------------===//
109 // NamedDecl Implementation
110 //===----------------------------------------------------------------------===//
111
112 // Visibility rules aren't rigorously externally specified, but here
113 // are the basic principles behind what we implement:
114 //
115 // 1. An explicit visibility attribute is generally a direct expression
116 // of the user's intent and should be honored. Only the innermost
117 // visibility attribute applies. If no visibility attribute applies,
118 // global visibility settings are considered.
119 //
120 // 2. There is one caveat to the above: on or in a template pattern,
121 // an explicit visibility attribute is just a default rule, and
122 // visibility can be decreased by the visibility of template
123 // arguments. But this, too, has an exception: an attribute on an
124 // explicit specialization or instantiation causes all the visibility
125 // restrictions of the template arguments to be ignored.
126 //
127 // 3. A variable that does not otherwise have explicit visibility can
128 // be restricted by the visibility of its type.
129 //
130 // 4. A visibility restriction is explicit if it comes from an
131 // attribute (or something like it), not a global visibility setting.
132 // When emitting a reference to an external symbol, visibility
133 // restrictions are ignored unless they are explicit.
134 //
135 // 5. When computing the visibility of a non-type, including a
136 // non-type member of a class, only non-type visibility restrictions
137 // are considered: the 'visibility' attribute, global value-visibility
138 // settings, and a few special cases like __private_extern.
139 //
140 // 6. When computing the visibility of a type, including a type member
141 // of a class, only type visibility restrictions are considered:
142 // the 'type_visibility' attribute and global type-visibility settings.
143 // However, a 'visibility' attribute counts as a 'type_visibility'
144 // attribute on any declaration that only has the former.
145 //
146 // The visibility of a "secondary" entity, like a template argument,
147 // is computed using the kind of that entity, not the kind of the
148 // primary entity for which we are computing visibility. For example,
149 // the visibility of a specialization of either of these templates:
150 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
151 // template <class T, bool (&compare)(T, X)> class matcher;
152 // is restricted according to the type visibility of the argument 'T',
153 // the type visibility of 'bool(&)(T,X)', and the value visibility of
154 // the argument function 'compare'. That 'has_match' is a value
155 // and 'matcher' is a type only matters when looking for attributes
156 // and settings from the immediate context.
157
158 /// Does this computation kind permit us to consider additional
159 /// visibility settings from attributes and the like?
hasExplicitVisibilityAlready(LVComputationKind computation)160 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
161 return computation.IgnoreExplicitVisibility;
162 }
163
164 /// Given an LVComputationKind, return one of the same type/value sort
165 /// that records that it already has explicit visibility.
166 static LVComputationKind
withExplicitVisibilityAlready(LVComputationKind Kind)167 withExplicitVisibilityAlready(LVComputationKind Kind) {
168 Kind.IgnoreExplicitVisibility = true;
169 return Kind;
170 }
171
getExplicitVisibility(const NamedDecl * D,LVComputationKind kind)172 static std::optional<Visibility> getExplicitVisibility(const NamedDecl *D,
173 LVComputationKind kind) {
174 assert(!kind.IgnoreExplicitVisibility &&
175 "asking for explicit visibility when we shouldn't be");
176 return D->getExplicitVisibility(kind.getExplicitVisibilityKind());
177 }
178
179 /// Is the given declaration a "type" or a "value" for the purposes of
180 /// visibility computation?
usesTypeVisibility(const NamedDecl * D)181 static bool usesTypeVisibility(const NamedDecl *D) {
182 return isa<TypeDecl>(D) ||
183 isa<ClassTemplateDecl>(D) ||
184 isa<ObjCInterfaceDecl>(D);
185 }
186
187 /// Does the given declaration have member specialization information,
188 /// and if so, is it an explicit specialization?
189 template <class T>
190 static std::enable_if_t<!std::is_base_of_v<RedeclarableTemplateDecl, T>, bool>
isExplicitMemberSpecialization(const T * D)191 isExplicitMemberSpecialization(const T *D) {
192 if (const MemberSpecializationInfo *member =
193 D->getMemberSpecializationInfo()) {
194 return member->isExplicitSpecialization();
195 }
196 return false;
197 }
198
199 /// For templates, this question is easier: a member template can't be
200 /// explicitly instantiated, so there's a single bit indicating whether
201 /// or not this is an explicit member specialization.
isExplicitMemberSpecialization(const RedeclarableTemplateDecl * D)202 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
203 return D->isMemberSpecialization();
204 }
205
206 /// Given a visibility attribute, return the explicit visibility
207 /// associated with it.
208 template <class T>
getVisibilityFromAttr(const T * attr)209 static Visibility getVisibilityFromAttr(const T *attr) {
210 switch (attr->getVisibility()) {
211 case T::Default:
212 return DefaultVisibility;
213 case T::Hidden:
214 return HiddenVisibility;
215 case T::Protected:
216 return ProtectedVisibility;
217 }
218 llvm_unreachable("bad visibility kind");
219 }
220
221 /// Return the explicit visibility of the given declaration.
222 static std::optional<Visibility>
getVisibilityOf(const NamedDecl * D,NamedDecl::ExplicitVisibilityKind kind)223 getVisibilityOf(const NamedDecl *D, NamedDecl::ExplicitVisibilityKind kind) {
224 // If we're ultimately computing the visibility of a type, look for
225 // a 'type_visibility' attribute before looking for 'visibility'.
226 if (kind == NamedDecl::VisibilityForType) {
227 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
228 return getVisibilityFromAttr(A);
229 }
230 }
231
232 // If this declaration has an explicit visibility attribute, use it.
233 if (const auto *A = D->getAttr<VisibilityAttr>()) {
234 return getVisibilityFromAttr(A);
235 }
236
237 return std::nullopt;
238 }
239
getLVForType(const Type & T,LVComputationKind computation)240 LinkageInfo LinkageComputer::getLVForType(const Type &T,
241 LVComputationKind computation) {
242 if (computation.IgnoreAllVisibility)
243 return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
244 return getTypeLinkageAndVisibility(&T);
245 }
246
247 /// Get the most restrictive linkage for the types in the given
248 /// template parameter list. For visibility purposes, template
249 /// parameters are part of the signature of a template.
getLVForTemplateParameterList(const TemplateParameterList * Params,LVComputationKind computation)250 LinkageInfo LinkageComputer::getLVForTemplateParameterList(
251 const TemplateParameterList *Params, LVComputationKind computation) {
252 LinkageInfo LV;
253 for (const NamedDecl *P : *Params) {
254 // Template type parameters are the most common and never
255 // contribute to visibility, pack or not.
256 if (isa<TemplateTypeParmDecl>(P))
257 continue;
258
259 // Non-type template parameters can be restricted by the value type, e.g.
260 // template <enum X> class A { ... };
261 // We have to be careful here, though, because we can be dealing with
262 // dependent types.
263 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
264 // Handle the non-pack case first.
265 if (!NTTP->isExpandedParameterPack()) {
266 if (!NTTP->getType()->isDependentType()) {
267 LV.merge(getLVForType(*NTTP->getType(), computation));
268 }
269 continue;
270 }
271
272 // Look at all the types in an expanded pack.
273 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
274 QualType type = NTTP->getExpansionType(i);
275 if (!type->isDependentType())
276 LV.merge(getTypeLinkageAndVisibility(type));
277 }
278 continue;
279 }
280
281 // Template template parameters can be restricted by their
282 // template parameters, recursively.
283 const auto *TTP = cast<TemplateTemplateParmDecl>(P);
284
285 // Handle the non-pack case first.
286 if (!TTP->isExpandedParameterPack()) {
287 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
288 computation));
289 continue;
290 }
291
292 // Look at all expansions in an expanded pack.
293 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
294 i != n; ++i) {
295 LV.merge(getLVForTemplateParameterList(
296 TTP->getExpansionTemplateParameters(i), computation));
297 }
298 }
299
300 return LV;
301 }
302
getOutermostFuncOrBlockContext(const Decl * D)303 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
304 const Decl *Ret = nullptr;
305 const DeclContext *DC = D->getDeclContext();
306 while (DC->getDeclKind() != Decl::TranslationUnit) {
307 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
308 Ret = cast<Decl>(DC);
309 DC = DC->getParent();
310 }
311 return Ret;
312 }
313
314 /// Get the most restrictive linkage for the types and
315 /// declarations in the given template argument list.
316 ///
317 /// Note that we don't take an LVComputationKind because we always
318 /// want to honor the visibility of template arguments in the same way.
319 LinkageInfo
getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,LVComputationKind computation)320 LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
321 LVComputationKind computation) {
322 LinkageInfo LV;
323
324 for (const TemplateArgument &Arg : Args) {
325 switch (Arg.getKind()) {
326 case TemplateArgument::Null:
327 case TemplateArgument::Integral:
328 case TemplateArgument::Expression:
329 continue;
330
331 case TemplateArgument::Type:
332 LV.merge(getLVForType(*Arg.getAsType(), computation));
333 continue;
334
335 case TemplateArgument::Declaration: {
336 const NamedDecl *ND = Arg.getAsDecl();
337 assert(!usesTypeVisibility(ND));
338 LV.merge(getLVForDecl(ND, computation));
339 continue;
340 }
341
342 case TemplateArgument::NullPtr:
343 LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType()));
344 continue;
345
346 case TemplateArgument::Template:
347 case TemplateArgument::TemplateExpansion:
348 if (TemplateDecl *Template =
349 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
350 LV.merge(getLVForDecl(Template, computation));
351 continue;
352
353 case TemplateArgument::Pack:
354 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
355 continue;
356 }
357 llvm_unreachable("bad template argument kind");
358 }
359
360 return LV;
361 }
362
363 LinkageInfo
getLVForTemplateArgumentList(const TemplateArgumentList & TArgs,LVComputationKind computation)364 LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
365 LVComputationKind computation) {
366 return getLVForTemplateArgumentList(TArgs.asArray(), computation);
367 }
368
shouldConsiderTemplateVisibility(const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo)369 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
370 const FunctionTemplateSpecializationInfo *specInfo) {
371 // Include visibility from the template parameters and arguments
372 // only if this is not an explicit instantiation or specialization
373 // with direct explicit visibility. (Implicit instantiations won't
374 // have a direct attribute.)
375 if (!specInfo->isExplicitInstantiationOrSpecialization())
376 return true;
377
378 return !fn->hasAttr<VisibilityAttr>();
379 }
380
381 /// Merge in template-related linkage and visibility for the given
382 /// function template specialization.
383 ///
384 /// We don't need a computation kind here because we can assume
385 /// LVForValue.
386 ///
387 /// \param[out] LV the computation to use for the parent
mergeTemplateLV(LinkageInfo & LV,const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo,LVComputationKind computation)388 void LinkageComputer::mergeTemplateLV(
389 LinkageInfo &LV, const FunctionDecl *fn,
390 const FunctionTemplateSpecializationInfo *specInfo,
391 LVComputationKind computation) {
392 bool considerVisibility =
393 shouldConsiderTemplateVisibility(fn, specInfo);
394
395 FunctionTemplateDecl *temp = specInfo->getTemplate();
396 // Merge information from the template declaration.
397 LinkageInfo tempLV = getLVForDecl(temp, computation);
398 // The linkage of the specialization should be consistent with the
399 // template declaration.
400 LV.setLinkage(tempLV.getLinkage());
401
402 // Merge information from the template parameters.
403 LinkageInfo paramsLV =
404 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
405 LV.mergeMaybeWithVisibility(paramsLV, considerVisibility);
406
407 // Merge information from the template arguments.
408 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
409 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
410 LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
411 }
412
413 /// Does the given declaration have a direct visibility attribute
414 /// that would match the given rules?
hasDirectVisibilityAttribute(const NamedDecl * D,LVComputationKind computation)415 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
416 LVComputationKind computation) {
417 if (computation.IgnoreAllVisibility)
418 return false;
419
420 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
421 D->hasAttr<VisibilityAttr>();
422 }
423
424 /// Should we consider visibility associated with the template
425 /// arguments and parameters of the given class template specialization?
shouldConsiderTemplateVisibility(const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)426 static bool shouldConsiderTemplateVisibility(
427 const ClassTemplateSpecializationDecl *spec,
428 LVComputationKind computation) {
429 // Include visibility from the template parameters and arguments
430 // only if this is not an explicit instantiation or specialization
431 // with direct explicit visibility (and note that implicit
432 // instantiations won't have a direct attribute).
433 //
434 // Furthermore, we want to ignore template parameters and arguments
435 // for an explicit specialization when computing the visibility of a
436 // member thereof with explicit visibility.
437 //
438 // This is a bit complex; let's unpack it.
439 //
440 // An explicit class specialization is an independent, top-level
441 // declaration. As such, if it or any of its members has an
442 // explicit visibility attribute, that must directly express the
443 // user's intent, and we should honor it. The same logic applies to
444 // an explicit instantiation of a member of such a thing.
445
446 // Fast path: if this is not an explicit instantiation or
447 // specialization, we always want to consider template-related
448 // visibility restrictions.
449 if (!spec->isExplicitInstantiationOrSpecialization())
450 return true;
451
452 // This is the 'member thereof' check.
453 if (spec->isExplicitSpecialization() &&
454 hasExplicitVisibilityAlready(computation))
455 return false;
456
457 return !hasDirectVisibilityAttribute(spec, computation);
458 }
459
460 /// Merge in template-related linkage and visibility for the given
461 /// class template specialization.
mergeTemplateLV(LinkageInfo & LV,const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)462 void LinkageComputer::mergeTemplateLV(
463 LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
464 LVComputationKind computation) {
465 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
466
467 // Merge information from the template parameters, but ignore
468 // visibility if we're only considering template arguments.
469 ClassTemplateDecl *temp = spec->getSpecializedTemplate();
470 // Merge information from the template declaration.
471 LinkageInfo tempLV = getLVForDecl(temp, computation);
472 // The linkage of the specialization should be consistent with the
473 // template declaration.
474 LV.setLinkage(tempLV.getLinkage());
475
476 LinkageInfo paramsLV =
477 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
478 LV.mergeMaybeWithVisibility(paramsLV,
479 considerVisibility && !hasExplicitVisibilityAlready(computation));
480
481 // Merge information from the template arguments. We ignore
482 // template-argument visibility if we've got an explicit
483 // instantiation with a visibility attribute.
484 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
485 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
486 if (considerVisibility)
487 LV.mergeVisibility(argsLV);
488 LV.mergeExternalVisibility(argsLV);
489 }
490
491 /// Should we consider visibility associated with the template
492 /// arguments and parameters of the given variable template
493 /// specialization? As usual, follow class template specialization
494 /// logic up to initialization.
shouldConsiderTemplateVisibility(const VarTemplateSpecializationDecl * spec,LVComputationKind computation)495 static bool shouldConsiderTemplateVisibility(
496 const VarTemplateSpecializationDecl *spec,
497 LVComputationKind computation) {
498 // Include visibility from the template parameters and arguments
499 // only if this is not an explicit instantiation or specialization
500 // with direct explicit visibility (and note that implicit
501 // instantiations won't have a direct attribute).
502 if (!spec->isExplicitInstantiationOrSpecialization())
503 return true;
504
505 // An explicit variable specialization is an independent, top-level
506 // declaration. As such, if it has an explicit visibility attribute,
507 // that must directly express the user's intent, and we should honor
508 // it.
509 if (spec->isExplicitSpecialization() &&
510 hasExplicitVisibilityAlready(computation))
511 return false;
512
513 return !hasDirectVisibilityAttribute(spec, computation);
514 }
515
516 /// Merge in template-related linkage and visibility for the given
517 /// variable template specialization. As usual, follow class template
518 /// specialization logic up to initialization.
mergeTemplateLV(LinkageInfo & LV,const VarTemplateSpecializationDecl * spec,LVComputationKind computation)519 void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
520 const VarTemplateSpecializationDecl *spec,
521 LVComputationKind computation) {
522 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
523
524 // Merge information from the template parameters, but ignore
525 // visibility if we're only considering template arguments.
526 VarTemplateDecl *temp = spec->getSpecializedTemplate();
527 LinkageInfo tempLV =
528 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
529 LV.mergeMaybeWithVisibility(tempLV,
530 considerVisibility && !hasExplicitVisibilityAlready(computation));
531
532 // Merge information from the template arguments. We ignore
533 // template-argument visibility if we've got an explicit
534 // instantiation with a visibility attribute.
535 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
536 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
537 if (considerVisibility)
538 LV.mergeVisibility(argsLV);
539 LV.mergeExternalVisibility(argsLV);
540 }
541
useInlineVisibilityHidden(const NamedDecl * D)542 static bool useInlineVisibilityHidden(const NamedDecl *D) {
543 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
544 const LangOptions &Opts = D->getASTContext().getLangOpts();
545 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
546 return false;
547
548 const auto *FD = dyn_cast<FunctionDecl>(D);
549 if (!FD)
550 return false;
551
552 TemplateSpecializationKind TSK = TSK_Undeclared;
553 if (FunctionTemplateSpecializationInfo *spec
554 = FD->getTemplateSpecializationInfo()) {
555 TSK = spec->getTemplateSpecializationKind();
556 } else if (MemberSpecializationInfo *MSI =
557 FD->getMemberSpecializationInfo()) {
558 TSK = MSI->getTemplateSpecializationKind();
559 }
560
561 const FunctionDecl *Def = nullptr;
562 // InlineVisibilityHidden only applies to definitions, and
563 // isInlined() only gives meaningful answers on definitions
564 // anyway.
565 return TSK != TSK_ExplicitInstantiationDeclaration &&
566 TSK != TSK_ExplicitInstantiationDefinition &&
567 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
568 }
569
isFirstInExternCContext(T * D)570 template <typename T> static bool isFirstInExternCContext(T *D) {
571 const T *First = D->getFirstDecl();
572 return First->isInExternCContext();
573 }
574
isSingleLineLanguageLinkage(const Decl & D)575 static bool isSingleLineLanguageLinkage(const Decl &D) {
576 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
577 if (!SD->hasBraces())
578 return true;
579 return false;
580 }
581
582 /// Determine whether D is declared in the purview of a named module.
isInModulePurview(const NamedDecl * D)583 static bool isInModulePurview(const NamedDecl *D) {
584 if (auto *M = D->getOwningModule())
585 return M->isModulePurview();
586 return false;
587 }
588
isExportedFromModuleInterfaceUnit(const NamedDecl * D)589 static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
590 // FIXME: Handle isModulePrivate.
591 switch (D->getModuleOwnershipKind()) {
592 case Decl::ModuleOwnershipKind::Unowned:
593 case Decl::ModuleOwnershipKind::ReachableWhenImported:
594 case Decl::ModuleOwnershipKind::ModulePrivate:
595 return false;
596 case Decl::ModuleOwnershipKind::Visible:
597 case Decl::ModuleOwnershipKind::VisibleWhenImported:
598 return isInModulePurview(D);
599 }
600 llvm_unreachable("unexpected module ownership kind");
601 }
602
getInternalLinkageFor(const NamedDecl * D)603 static LinkageInfo getInternalLinkageFor(const NamedDecl *D) {
604 // (for the modules ts) Internal linkage declarations within a module
605 // interface unit are modeled as "module-internal linkage", which means that
606 // they have internal linkage formally but can be indirectly accessed from
607 // outside the module via inline functions and templates defined within the
608 // module.
609 if (isInModulePurview(D) && D->getASTContext().getLangOpts().ModulesTS)
610 return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false);
611
612 return LinkageInfo::internal();
613 }
614
getExternalLinkageFor(const NamedDecl * D)615 static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
616 // C++ Modules TS [basic.link]/6.8:
617 // - A name declared at namespace scope that does not have internal linkage
618 // by the previous rules and that is introduced by a non-exported
619 // declaration has module linkage.
620 //
621 // [basic.namespace.general]/p2
622 // A namespace is never attached to a named module and never has a name with
623 // module linkage.
624 if (isInModulePurview(D) &&
625 !isExportedFromModuleInterfaceUnit(
626 cast<NamedDecl>(D->getCanonicalDecl())) &&
627 !isa<NamespaceDecl>(D))
628 return LinkageInfo(ModuleLinkage, DefaultVisibility, false);
629
630 return LinkageInfo::external();
631 }
632
getStorageClass(const Decl * D)633 static StorageClass getStorageClass(const Decl *D) {
634 if (auto *TD = dyn_cast<TemplateDecl>(D))
635 D = TD->getTemplatedDecl();
636 if (D) {
637 if (auto *VD = dyn_cast<VarDecl>(D))
638 return VD->getStorageClass();
639 if (auto *FD = dyn_cast<FunctionDecl>(D))
640 return FD->getStorageClass();
641 }
642 return SC_None;
643 }
644
645 LinkageInfo
getLVForNamespaceScopeDecl(const NamedDecl * D,LVComputationKind computation,bool IgnoreVarTypeLinkage)646 LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
647 LVComputationKind computation,
648 bool IgnoreVarTypeLinkage) {
649 assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
650 "Not a name having namespace scope");
651 ASTContext &Context = D->getASTContext();
652
653 // C++ [basic.link]p3:
654 // A name having namespace scope (3.3.6) has internal linkage if it
655 // is the name of
656
657 if (getStorageClass(D->getCanonicalDecl()) == SC_Static) {
658 // - a variable, variable template, function, or function template
659 // that is explicitly declared static; or
660 // (This bullet corresponds to C99 6.2.2p3.)
661 return getInternalLinkageFor(D);
662 }
663
664 if (const auto *Var = dyn_cast<VarDecl>(D)) {
665 // - a non-template variable of non-volatile const-qualified type, unless
666 // - it is explicitly declared extern, or
667 // - it is inline or exported, or
668 // - it was previously declared and the prior declaration did not have
669 // internal linkage
670 // (There is no equivalent in C99.)
671 if (Context.getLangOpts().CPlusPlus &&
672 Var->getType().isConstQualified() &&
673 !Var->getType().isVolatileQualified() &&
674 !Var->isInline() &&
675 !isExportedFromModuleInterfaceUnit(Var) &&
676 !isa<VarTemplateSpecializationDecl>(Var) &&
677 !Var->getDescribedVarTemplate()) {
678 const VarDecl *PrevVar = Var->getPreviousDecl();
679 if (PrevVar)
680 return getLVForDecl(PrevVar, computation);
681
682 if (Var->getStorageClass() != SC_Extern &&
683 Var->getStorageClass() != SC_PrivateExtern &&
684 !isSingleLineLanguageLinkage(*Var))
685 return getInternalLinkageFor(Var);
686 }
687
688 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
689 PrevVar = PrevVar->getPreviousDecl()) {
690 if (PrevVar->getStorageClass() == SC_PrivateExtern &&
691 Var->getStorageClass() == SC_None)
692 return getDeclLinkageAndVisibility(PrevVar);
693 // Explicitly declared static.
694 if (PrevVar->getStorageClass() == SC_Static)
695 return getInternalLinkageFor(Var);
696 }
697 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
698 // - a data member of an anonymous union.
699 const VarDecl *VD = IFD->getVarDecl();
700 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
701 return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage);
702 }
703 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
704
705 // FIXME: This gives internal linkage to names that should have no linkage
706 // (those not covered by [basic.link]p6).
707 if (D->isInAnonymousNamespace()) {
708 const auto *Var = dyn_cast<VarDecl>(D);
709 const auto *Func = dyn_cast<FunctionDecl>(D);
710 // FIXME: The check for extern "C" here is not justified by the standard
711 // wording, but we retain it from the pre-DR1113 model to avoid breaking
712 // code.
713 //
714 // C++11 [basic.link]p4:
715 // An unnamed namespace or a namespace declared directly or indirectly
716 // within an unnamed namespace has internal linkage.
717 if ((!Var || !isFirstInExternCContext(Var)) &&
718 (!Func || !isFirstInExternCContext(Func)))
719 return getInternalLinkageFor(D);
720 }
721
722 // Set up the defaults.
723
724 // C99 6.2.2p5:
725 // If the declaration of an identifier for an object has file
726 // scope and no storage-class specifier, its linkage is
727 // external.
728 LinkageInfo LV = getExternalLinkageFor(D);
729
730 if (!hasExplicitVisibilityAlready(computation)) {
731 if (std::optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
732 LV.mergeVisibility(*Vis, true);
733 } else {
734 // If we're declared in a namespace with a visibility attribute,
735 // use that namespace's visibility, and it still counts as explicit.
736 for (const DeclContext *DC = D->getDeclContext();
737 !isa<TranslationUnitDecl>(DC);
738 DC = DC->getParent()) {
739 const auto *ND = dyn_cast<NamespaceDecl>(DC);
740 if (!ND) continue;
741 if (std::optional<Visibility> Vis =
742 getExplicitVisibility(ND, computation)) {
743 LV.mergeVisibility(*Vis, true);
744 break;
745 }
746 }
747 }
748
749 // Add in global settings if the above didn't give us direct visibility.
750 if (!LV.isVisibilityExplicit()) {
751 // Use global type/value visibility as appropriate.
752 Visibility globalVisibility =
753 computation.isValueVisibility()
754 ? Context.getLangOpts().getValueVisibilityMode()
755 : Context.getLangOpts().getTypeVisibilityMode();
756 LV.mergeVisibility(globalVisibility, /*explicit*/ false);
757
758 // If we're paying attention to global visibility, apply
759 // -finline-visibility-hidden if this is an inline method.
760 if (useInlineVisibilityHidden(D))
761 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
762 }
763 }
764
765 // C++ [basic.link]p4:
766
767 // A name having namespace scope that has not been given internal linkage
768 // above and that is the name of
769 // [...bullets...]
770 // has its linkage determined as follows:
771 // - if the enclosing namespace has internal linkage, the name has
772 // internal linkage; [handled above]
773 // - otherwise, if the declaration of the name is attached to a named
774 // module and is not exported, the name has module linkage;
775 // - otherwise, the name has external linkage.
776 // LV is currently set up to handle the last two bullets.
777 //
778 // The bullets are:
779
780 // - a variable; or
781 if (const auto *Var = dyn_cast<VarDecl>(D)) {
782 // GCC applies the following optimization to variables and static
783 // data members, but not to functions:
784 //
785 // Modify the variable's LV by the LV of its type unless this is
786 // C or extern "C". This follows from [basic.link]p9:
787 // A type without linkage shall not be used as the type of a
788 // variable or function with external linkage unless
789 // - the entity has C language linkage, or
790 // - the entity is declared within an unnamed namespace, or
791 // - the entity is not used or is defined in the same
792 // translation unit.
793 // and [basic.link]p10:
794 // ...the types specified by all declarations referring to a
795 // given variable or function shall be identical...
796 // C does not have an equivalent rule.
797 //
798 // Ignore this if we've got an explicit attribute; the user
799 // probably knows what they're doing.
800 //
801 // Note that we don't want to make the variable non-external
802 // because of this, but unique-external linkage suits us.
803
804 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) &&
805 !IgnoreVarTypeLinkage) {
806 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
807 if (!isExternallyVisible(TypeLV.getLinkage()))
808 return LinkageInfo::uniqueExternal();
809 if (!LV.isVisibilityExplicit())
810 LV.mergeVisibility(TypeLV);
811 }
812
813 if (Var->getStorageClass() == SC_PrivateExtern)
814 LV.mergeVisibility(HiddenVisibility, true);
815
816 // Note that Sema::MergeVarDecl already takes care of implementing
817 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
818 // to do it here.
819
820 // As per function and class template specializations (below),
821 // consider LV for the template and template arguments. We're at file
822 // scope, so we do not need to worry about nested specializations.
823 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
824 mergeTemplateLV(LV, spec, computation);
825 }
826
827 // - a function; or
828 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
829 // In theory, we can modify the function's LV by the LV of its
830 // type unless it has C linkage (see comment above about variables
831 // for justification). In practice, GCC doesn't do this, so it's
832 // just too painful to make work.
833
834 if (Function->getStorageClass() == SC_PrivateExtern)
835 LV.mergeVisibility(HiddenVisibility, true);
836
837 // OpenMP target declare device functions are not callable from the host so
838 // they should not be exported from the device image. This applies to all
839 // functions as the host-callable kernel functions are emitted at codegen.
840 if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice &&
841 ((Context.getTargetInfo().getTriple().isAMDGPU() ||
842 Context.getTargetInfo().getTriple().isNVPTX()) ||
843 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Function)))
844 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
845
846 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
847 // merging storage classes and visibility attributes, so we don't have to
848 // look at previous decls in here.
849
850 // In C++, then if the type of the function uses a type with
851 // unique-external linkage, it's not legally usable from outside
852 // this translation unit. However, we should use the C linkage
853 // rules instead for extern "C" declarations.
854 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) {
855 // Only look at the type-as-written. Otherwise, deducing the return type
856 // of a function could change its linkage.
857 QualType TypeAsWritten = Function->getType();
858 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
859 TypeAsWritten = TSI->getType();
860 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
861 return LinkageInfo::uniqueExternal();
862 }
863
864 // Consider LV from the template and the template arguments.
865 // We're at file scope, so we do not need to worry about nested
866 // specializations.
867 if (FunctionTemplateSpecializationInfo *specInfo
868 = Function->getTemplateSpecializationInfo()) {
869 mergeTemplateLV(LV, Function, specInfo, computation);
870 }
871
872 // - a named class (Clause 9), or an unnamed class defined in a
873 // typedef declaration in which the class has the typedef name
874 // for linkage purposes (7.1.3); or
875 // - a named enumeration (7.2), or an unnamed enumeration
876 // defined in a typedef declaration in which the enumeration
877 // has the typedef name for linkage purposes (7.1.3); or
878 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
879 // Unnamed tags have no linkage.
880 if (!Tag->hasNameForLinkage())
881 return LinkageInfo::none();
882
883 // If this is a class template specialization, consider the
884 // linkage of the template and template arguments. We're at file
885 // scope, so we do not need to worry about nested specializations.
886 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
887 mergeTemplateLV(LV, spec, computation);
888 }
889
890 // FIXME: This is not part of the C++ standard any more.
891 // - an enumerator belonging to an enumeration with external linkage; or
892 } else if (isa<EnumConstantDecl>(D)) {
893 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
894 computation);
895 if (!isExternalFormalLinkage(EnumLV.getLinkage()))
896 return LinkageInfo::none();
897 LV.merge(EnumLV);
898
899 // - a template
900 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
901 bool considerVisibility = !hasExplicitVisibilityAlready(computation);
902 LinkageInfo tempLV =
903 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
904 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
905
906 // An unnamed namespace or a namespace declared directly or indirectly
907 // within an unnamed namespace has internal linkage. All other namespaces
908 // have external linkage.
909 //
910 // We handled names in anonymous namespaces above.
911 } else if (isa<NamespaceDecl>(D)) {
912 return LV;
913
914 // By extension, we assign external linkage to Objective-C
915 // interfaces.
916 } else if (isa<ObjCInterfaceDecl>(D)) {
917 // fallout
918
919 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
920 // A typedef declaration has linkage if it gives a type a name for
921 // linkage purposes.
922 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
923 return LinkageInfo::none();
924
925 } else if (isa<MSGuidDecl>(D)) {
926 // A GUID behaves like an inline variable with external linkage. Fall
927 // through.
928
929 // Everything not covered here has no linkage.
930 } else {
931 return LinkageInfo::none();
932 }
933
934 // If we ended up with non-externally-visible linkage, visibility should
935 // always be default.
936 if (!isExternallyVisible(LV.getLinkage()))
937 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
938
939 return LV;
940 }
941
942 LinkageInfo
getLVForClassMember(const NamedDecl * D,LVComputationKind computation,bool IgnoreVarTypeLinkage)943 LinkageComputer::getLVForClassMember(const NamedDecl *D,
944 LVComputationKind computation,
945 bool IgnoreVarTypeLinkage) {
946 // Only certain class members have linkage. Note that fields don't
947 // really have linkage, but it's convenient to say they do for the
948 // purposes of calculating linkage of pointer-to-data-member
949 // template arguments.
950 //
951 // Templates also don't officially have linkage, but since we ignore
952 // the C++ standard and look at template arguments when determining
953 // linkage and visibility of a template specialization, we might hit
954 // a template template argument that way. If we do, we need to
955 // consider its linkage.
956 if (!(isa<CXXMethodDecl>(D) ||
957 isa<VarDecl>(D) ||
958 isa<FieldDecl>(D) ||
959 isa<IndirectFieldDecl>(D) ||
960 isa<TagDecl>(D) ||
961 isa<TemplateDecl>(D)))
962 return LinkageInfo::none();
963
964 LinkageInfo LV;
965
966 // If we have an explicit visibility attribute, merge that in.
967 if (!hasExplicitVisibilityAlready(computation)) {
968 if (std::optional<Visibility> Vis = getExplicitVisibility(D, computation))
969 LV.mergeVisibility(*Vis, true);
970 // If we're paying attention to global visibility, apply
971 // -finline-visibility-hidden if this is an inline method.
972 //
973 // Note that we do this before merging information about
974 // the class visibility.
975 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
976 LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false);
977 }
978
979 // If this class member has an explicit visibility attribute, the only
980 // thing that can change its visibility is the template arguments, so
981 // only look for them when processing the class.
982 LVComputationKind classComputation = computation;
983 if (LV.isVisibilityExplicit())
984 classComputation = withExplicitVisibilityAlready(computation);
985
986 LinkageInfo classLV =
987 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
988 // The member has the same linkage as the class. If that's not externally
989 // visible, we don't need to compute anything about the linkage.
990 // FIXME: If we're only computing linkage, can we bail out here?
991 if (!isExternallyVisible(classLV.getLinkage()))
992 return classLV;
993
994
995 // Otherwise, don't merge in classLV yet, because in certain cases
996 // we need to completely ignore the visibility from it.
997
998 // Specifically, if this decl exists and has an explicit attribute.
999 const NamedDecl *explicitSpecSuppressor = nullptr;
1000
1001 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
1002 // Only look at the type-as-written. Otherwise, deducing the return type
1003 // of a function could change its linkage.
1004 QualType TypeAsWritten = MD->getType();
1005 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
1006 TypeAsWritten = TSI->getType();
1007 if (!isExternallyVisible(TypeAsWritten->getLinkage()))
1008 return LinkageInfo::uniqueExternal();
1009
1010 // If this is a method template specialization, use the linkage for
1011 // the template parameters and arguments.
1012 if (FunctionTemplateSpecializationInfo *spec
1013 = MD->getTemplateSpecializationInfo()) {
1014 mergeTemplateLV(LV, MD, spec, computation);
1015 if (spec->isExplicitSpecialization()) {
1016 explicitSpecSuppressor = MD;
1017 } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
1018 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
1019 }
1020 } else if (isExplicitMemberSpecialization(MD)) {
1021 explicitSpecSuppressor = MD;
1022 }
1023
1024 // OpenMP target declare device functions are not callable from the host so
1025 // they should not be exported from the device image. This applies to all
1026 // functions as the host-callable kernel functions are emitted at codegen.
1027 ASTContext &Context = D->getASTContext();
1028 if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice &&
1029 ((Context.getTargetInfo().getTriple().isAMDGPU() ||
1030 Context.getTargetInfo().getTriple().isNVPTX()) ||
1031 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(MD)))
1032 LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false);
1033
1034 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
1035 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
1036 mergeTemplateLV(LV, spec, computation);
1037 if (spec->isExplicitSpecialization()) {
1038 explicitSpecSuppressor = spec;
1039 } else {
1040 const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1041 if (isExplicitMemberSpecialization(temp)) {
1042 explicitSpecSuppressor = temp->getTemplatedDecl();
1043 }
1044 }
1045 } else if (isExplicitMemberSpecialization(RD)) {
1046 explicitSpecSuppressor = RD;
1047 }
1048
1049 // Static data members.
1050 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
1051 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
1052 mergeTemplateLV(LV, spec, computation);
1053
1054 // Modify the variable's linkage by its type, but ignore the
1055 // type's visibility unless it's a definition.
1056 if (!IgnoreVarTypeLinkage) {
1057 LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
1058 // FIXME: If the type's linkage is not externally visible, we can
1059 // give this static data member UniqueExternalLinkage.
1060 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1061 LV.mergeVisibility(typeLV);
1062 LV.mergeExternalVisibility(typeLV);
1063 }
1064
1065 if (isExplicitMemberSpecialization(VD)) {
1066 explicitSpecSuppressor = VD;
1067 }
1068
1069 // Template members.
1070 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
1071 bool considerVisibility =
1072 (!LV.isVisibilityExplicit() &&
1073 !classLV.isVisibilityExplicit() &&
1074 !hasExplicitVisibilityAlready(computation));
1075 LinkageInfo tempLV =
1076 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
1077 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
1078
1079 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
1080 if (isExplicitMemberSpecialization(redeclTemp)) {
1081 explicitSpecSuppressor = temp->getTemplatedDecl();
1082 }
1083 }
1084 }
1085
1086 // We should never be looking for an attribute directly on a template.
1087 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1088
1089 // If this member is an explicit member specialization, and it has
1090 // an explicit attribute, ignore visibility from the parent.
1091 bool considerClassVisibility = true;
1092 if (explicitSpecSuppressor &&
1093 // optimization: hasDVA() is true only with explicit visibility.
1094 LV.isVisibilityExplicit() &&
1095 classLV.getVisibility() != DefaultVisibility &&
1096 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
1097 considerClassVisibility = false;
1098 }
1099
1100 // Finally, merge in information from the class.
1101 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1102 return LV;
1103 }
1104
anchor()1105 void NamedDecl::anchor() {}
1106
isLinkageValid() const1107 bool NamedDecl::isLinkageValid() const {
1108 if (!hasCachedLinkage())
1109 return true;
1110
1111 Linkage L = LinkageComputer{}
1112 .computeLVForDecl(this, LVComputationKind::forLinkageOnly())
1113 .getLinkage();
1114 return L == getCachedLinkage();
1115 }
1116
1117 ReservedIdentifierStatus
isReserved(const LangOptions & LangOpts) const1118 NamedDecl::isReserved(const LangOptions &LangOpts) const {
1119 const IdentifierInfo *II = getIdentifier();
1120
1121 // This triggers at least for CXXLiteralIdentifiers, which we already checked
1122 // at lexing time.
1123 if (!II)
1124 return ReservedIdentifierStatus::NotReserved;
1125
1126 ReservedIdentifierStatus Status = II->isReserved(LangOpts);
1127 if (isReservedAtGlobalScope(Status) && !isReservedInAllContexts(Status)) {
1128 // This name is only reserved at global scope. Check if this declaration
1129 // conflicts with a global scope declaration.
1130 if (isa<ParmVarDecl>(this) || isTemplateParameter())
1131 return ReservedIdentifierStatus::NotReserved;
1132
1133 // C++ [dcl.link]/7:
1134 // Two declarations [conflict] if [...] one declares a function or
1135 // variable with C language linkage, and the other declares [...] a
1136 // variable that belongs to the global scope.
1137 //
1138 // Therefore names that are reserved at global scope are also reserved as
1139 // names of variables and functions with C language linkage.
1140 const DeclContext *DC = getDeclContext()->getRedeclContext();
1141 if (DC->isTranslationUnit())
1142 return Status;
1143 if (auto *VD = dyn_cast<VarDecl>(this))
1144 if (VD->isExternC())
1145 return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1146 if (auto *FD = dyn_cast<FunctionDecl>(this))
1147 if (FD->isExternC())
1148 return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1149 return ReservedIdentifierStatus::NotReserved;
1150 }
1151
1152 return Status;
1153 }
1154
getObjCFStringFormattingFamily() const1155 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1156 StringRef name = getName();
1157 if (name.empty()) return SFF_None;
1158
1159 if (name.front() == 'C')
1160 if (name == "CFStringCreateWithFormat" ||
1161 name == "CFStringCreateWithFormatAndArguments" ||
1162 name == "CFStringAppendFormat" ||
1163 name == "CFStringAppendFormatAndArguments")
1164 return SFF_CFString;
1165 return SFF_None;
1166 }
1167
getLinkageInternal() const1168 Linkage NamedDecl::getLinkageInternal() const {
1169 // We don't care about visibility here, so ask for the cheapest
1170 // possible visibility analysis.
1171 return LinkageComputer{}
1172 .getLVForDecl(this, LVComputationKind::forLinkageOnly())
1173 .getLinkage();
1174 }
1175
getLinkageAndVisibility() const1176 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1177 return LinkageComputer{}.getDeclLinkageAndVisibility(this);
1178 }
1179
1180 static std::optional<Visibility>
getExplicitVisibilityAux(const NamedDecl * ND,NamedDecl::ExplicitVisibilityKind kind,bool IsMostRecent)1181 getExplicitVisibilityAux(const NamedDecl *ND,
1182 NamedDecl::ExplicitVisibilityKind kind,
1183 bool IsMostRecent) {
1184 assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1185
1186 // Check the declaration itself first.
1187 if (std::optional<Visibility> V = getVisibilityOf(ND, kind))
1188 return V;
1189
1190 // If this is a member class of a specialization of a class template
1191 // and the corresponding decl has explicit visibility, use that.
1192 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1193 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1194 if (InstantiatedFrom)
1195 return getVisibilityOf(InstantiatedFrom, kind);
1196 }
1197
1198 // If there wasn't explicit visibility there, and this is a
1199 // specialization of a class template, check for visibility
1200 // on the pattern.
1201 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
1202 // Walk all the template decl till this point to see if there are
1203 // explicit visibility attributes.
1204 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1205 while (TD != nullptr) {
1206 auto Vis = getVisibilityOf(TD, kind);
1207 if (Vis != std::nullopt)
1208 return Vis;
1209 TD = TD->getPreviousDecl();
1210 }
1211 return std::nullopt;
1212 }
1213
1214 // Use the most recent declaration.
1215 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1216 const NamedDecl *MostRecent = ND->getMostRecentDecl();
1217 if (MostRecent != ND)
1218 return getExplicitVisibilityAux(MostRecent, kind, true);
1219 }
1220
1221 if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1222 if (Var->isStaticDataMember()) {
1223 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1224 if (InstantiatedFrom)
1225 return getVisibilityOf(InstantiatedFrom, kind);
1226 }
1227
1228 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1229 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1230 kind);
1231
1232 return std::nullopt;
1233 }
1234 // Also handle function template specializations.
1235 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1236 // If the function is a specialization of a template with an
1237 // explicit visibility attribute, use that.
1238 if (FunctionTemplateSpecializationInfo *templateInfo
1239 = fn->getTemplateSpecializationInfo())
1240 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1241 kind);
1242
1243 // If the function is a member of a specialization of a class template
1244 // and the corresponding decl has explicit visibility, use that.
1245 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1246 if (InstantiatedFrom)
1247 return getVisibilityOf(InstantiatedFrom, kind);
1248
1249 return std::nullopt;
1250 }
1251
1252 // The visibility of a template is stored in the templated decl.
1253 if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1254 return getVisibilityOf(TD->getTemplatedDecl(), kind);
1255
1256 return std::nullopt;
1257 }
1258
1259 std::optional<Visibility>
getExplicitVisibility(ExplicitVisibilityKind kind) const1260 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1261 return getExplicitVisibilityAux(this, kind, false);
1262 }
1263
getLVForClosure(const DeclContext * DC,Decl * ContextDecl,LVComputationKind computation)1264 LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1265 Decl *ContextDecl,
1266 LVComputationKind computation) {
1267 // This lambda has its linkage/visibility determined by its owner.
1268 const NamedDecl *Owner;
1269 if (!ContextDecl)
1270 Owner = dyn_cast<NamedDecl>(DC);
1271 else if (isa<ParmVarDecl>(ContextDecl))
1272 Owner =
1273 dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext());
1274 else if (isa<ImplicitConceptSpecializationDecl>(ContextDecl)) {
1275 // Replace with the concept's owning decl, which is either a namespace or a
1276 // TU, so this needs a dyn_cast.
1277 Owner = dyn_cast<NamedDecl>(ContextDecl->getDeclContext());
1278 } else {
1279 Owner = cast<NamedDecl>(ContextDecl);
1280 }
1281
1282 if (!Owner)
1283 return LinkageInfo::none();
1284
1285 // If the owner has a deduced type, we need to skip querying the linkage and
1286 // visibility of that type, because it might involve this closure type. The
1287 // only effect of this is that we might give a lambda VisibleNoLinkage rather
1288 // than NoLinkage when we don't strictly need to, which is benign.
1289 auto *VD = dyn_cast<VarDecl>(Owner);
1290 LinkageInfo OwnerLV =
1291 VD && VD->getType()->getContainedDeducedType()
1292 ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true)
1293 : getLVForDecl(Owner, computation);
1294
1295 // A lambda never formally has linkage. But if the owner is externally
1296 // visible, then the lambda is too. We apply the same rules to blocks.
1297 if (!isExternallyVisible(OwnerLV.getLinkage()))
1298 return LinkageInfo::none();
1299 return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(),
1300 OwnerLV.isVisibilityExplicit());
1301 }
1302
getLVForLocalDecl(const NamedDecl * D,LVComputationKind computation)1303 LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1304 LVComputationKind computation) {
1305 if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1306 if (Function->isInAnonymousNamespace() &&
1307 !isFirstInExternCContext(Function))
1308 return getInternalLinkageFor(Function);
1309
1310 // This is a "void f();" which got merged with a file static.
1311 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1312 return getInternalLinkageFor(Function);
1313
1314 LinkageInfo LV;
1315 if (!hasExplicitVisibilityAlready(computation)) {
1316 if (std::optional<Visibility> Vis =
1317 getExplicitVisibility(Function, computation))
1318 LV.mergeVisibility(*Vis, true);
1319 }
1320
1321 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1322 // merging storage classes and visibility attributes, so we don't have to
1323 // look at previous decls in here.
1324
1325 return LV;
1326 }
1327
1328 if (const auto *Var = dyn_cast<VarDecl>(D)) {
1329 if (Var->hasExternalStorage()) {
1330 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var))
1331 return getInternalLinkageFor(Var);
1332
1333 LinkageInfo LV;
1334 if (Var->getStorageClass() == SC_PrivateExtern)
1335 LV.mergeVisibility(HiddenVisibility, true);
1336 else if (!hasExplicitVisibilityAlready(computation)) {
1337 if (std::optional<Visibility> Vis =
1338 getExplicitVisibility(Var, computation))
1339 LV.mergeVisibility(*Vis, true);
1340 }
1341
1342 if (const VarDecl *Prev = Var->getPreviousDecl()) {
1343 LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1344 if (PrevLV.getLinkage())
1345 LV.setLinkage(PrevLV.getLinkage());
1346 LV.mergeVisibility(PrevLV);
1347 }
1348
1349 return LV;
1350 }
1351
1352 if (!Var->isStaticLocal())
1353 return LinkageInfo::none();
1354 }
1355
1356 ASTContext &Context = D->getASTContext();
1357 if (!Context.getLangOpts().CPlusPlus)
1358 return LinkageInfo::none();
1359
1360 const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1361 if (!OuterD || OuterD->isInvalidDecl())
1362 return LinkageInfo::none();
1363
1364 LinkageInfo LV;
1365 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1366 if (!BD->getBlockManglingNumber())
1367 return LinkageInfo::none();
1368
1369 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1370 BD->getBlockManglingContextDecl(), computation);
1371 } else {
1372 const auto *FD = cast<FunctionDecl>(OuterD);
1373 if (!FD->isInlined() &&
1374 !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1375 return LinkageInfo::none();
1376
1377 // If a function is hidden by -fvisibility-inlines-hidden option and
1378 // is not explicitly attributed as a hidden function,
1379 // we should not make static local variables in the function hidden.
1380 LV = getLVForDecl(FD, computation);
1381 if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) &&
1382 !LV.isVisibilityExplicit() &&
1383 !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) {
1384 assert(cast<VarDecl>(D)->isStaticLocal());
1385 // If this was an implicitly hidden inline method, check again for
1386 // explicit visibility on the parent class, and use that for static locals
1387 // if present.
1388 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
1389 LV = getLVForDecl(MD->getParent(), computation);
1390 if (!LV.isVisibilityExplicit()) {
1391 Visibility globalVisibility =
1392 computation.isValueVisibility()
1393 ? Context.getLangOpts().getValueVisibilityMode()
1394 : Context.getLangOpts().getTypeVisibilityMode();
1395 return LinkageInfo(VisibleNoLinkage, globalVisibility,
1396 /*visibilityExplicit=*/false);
1397 }
1398 }
1399 }
1400 if (!isExternallyVisible(LV.getLinkage()))
1401 return LinkageInfo::none();
1402 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1403 LV.isVisibilityExplicit());
1404 }
1405
computeLVForDecl(const NamedDecl * D,LVComputationKind computation,bool IgnoreVarTypeLinkage)1406 LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1407 LVComputationKind computation,
1408 bool IgnoreVarTypeLinkage) {
1409 // Internal_linkage attribute overrides other considerations.
1410 if (D->hasAttr<InternalLinkageAttr>())
1411 return getInternalLinkageFor(D);
1412
1413 // Objective-C: treat all Objective-C declarations as having external
1414 // linkage.
1415 switch (D->getKind()) {
1416 default:
1417 break;
1418
1419 // Per C++ [basic.link]p2, only the names of objects, references,
1420 // functions, types, templates, namespaces, and values ever have linkage.
1421 //
1422 // Note that the name of a typedef, namespace alias, using declaration,
1423 // and so on are not the name of the corresponding type, namespace, or
1424 // declaration, so they do *not* have linkage.
1425 case Decl::ImplicitParam:
1426 case Decl::Label:
1427 case Decl::NamespaceAlias:
1428 case Decl::ParmVar:
1429 case Decl::Using:
1430 case Decl::UsingEnum:
1431 case Decl::UsingShadow:
1432 case Decl::UsingDirective:
1433 return LinkageInfo::none();
1434
1435 case Decl::EnumConstant:
1436 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1437 if (D->getASTContext().getLangOpts().CPlusPlus)
1438 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1439 return LinkageInfo::visible_none();
1440
1441 case Decl::Typedef:
1442 case Decl::TypeAlias:
1443 // A typedef declaration has linkage if it gives a type a name for
1444 // linkage purposes.
1445 if (!cast<TypedefNameDecl>(D)
1446 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1447 return LinkageInfo::none();
1448 break;
1449
1450 case Decl::TemplateTemplateParm: // count these as external
1451 case Decl::NonTypeTemplateParm:
1452 case Decl::ObjCAtDefsField:
1453 case Decl::ObjCCategory:
1454 case Decl::ObjCCategoryImpl:
1455 case Decl::ObjCCompatibleAlias:
1456 case Decl::ObjCImplementation:
1457 case Decl::ObjCMethod:
1458 case Decl::ObjCProperty:
1459 case Decl::ObjCPropertyImpl:
1460 case Decl::ObjCProtocol:
1461 return getExternalLinkageFor(D);
1462
1463 case Decl::CXXRecord: {
1464 const auto *Record = cast<CXXRecordDecl>(D);
1465 if (Record->isLambda()) {
1466 if (Record->hasKnownLambdaInternalLinkage() ||
1467 !Record->getLambdaManglingNumber()) {
1468 // This lambda has no mangling number, so it's internal.
1469 return getInternalLinkageFor(D);
1470 }
1471
1472 return getLVForClosure(
1473 Record->getDeclContext()->getRedeclContext(),
1474 Record->getLambdaContextDecl(), computation);
1475 }
1476
1477 break;
1478 }
1479
1480 case Decl::TemplateParamObject: {
1481 // The template parameter object can be referenced from anywhere its type
1482 // and value can be referenced.
1483 auto *TPO = cast<TemplateParamObjectDecl>(D);
1484 LinkageInfo LV = getLVForType(*TPO->getType(), computation);
1485 LV.merge(getLVForValue(TPO->getValue(), computation));
1486 return LV;
1487 }
1488 }
1489
1490 // Handle linkage for namespace-scope names.
1491 if (D->getDeclContext()->getRedeclContext()->isFileContext())
1492 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1493
1494 // C++ [basic.link]p5:
1495 // In addition, a member function, static data member, a named
1496 // class or enumeration of class scope, or an unnamed class or
1497 // enumeration defined in a class-scope typedef declaration such
1498 // that the class or enumeration has the typedef name for linkage
1499 // purposes (7.1.3), has external linkage if the name of the class
1500 // has external linkage.
1501 if (D->getDeclContext()->isRecord())
1502 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1503
1504 // C++ [basic.link]p6:
1505 // The name of a function declared in block scope and the name of
1506 // an object declared by a block scope extern declaration have
1507 // linkage. If there is a visible declaration of an entity with
1508 // linkage having the same name and type, ignoring entities
1509 // declared outside the innermost enclosing namespace scope, the
1510 // block scope declaration declares that same entity and receives
1511 // the linkage of the previous declaration. If there is more than
1512 // one such matching entity, the program is ill-formed. Otherwise,
1513 // if no matching entity is found, the block scope entity receives
1514 // external linkage.
1515 if (D->getDeclContext()->isFunctionOrMethod())
1516 return getLVForLocalDecl(D, computation);
1517
1518 // C++ [basic.link]p6:
1519 // Names not covered by these rules have no linkage.
1520 return LinkageInfo::none();
1521 }
1522
1523 /// getLVForDecl - Get the linkage and visibility for the given declaration.
getLVForDecl(const NamedDecl * D,LVComputationKind computation)1524 LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1525 LVComputationKind computation) {
1526 // Internal_linkage attribute overrides other considerations.
1527 if (D->hasAttr<InternalLinkageAttr>())
1528 return getInternalLinkageFor(D);
1529
1530 if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1531 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1532
1533 if (std::optional<LinkageInfo> LI = lookup(D, computation))
1534 return *LI;
1535
1536 LinkageInfo LV = computeLVForDecl(D, computation);
1537 if (D->hasCachedLinkage())
1538 assert(D->getCachedLinkage() == LV.getLinkage());
1539
1540 D->setCachedLinkage(LV.getLinkage());
1541 cache(D, computation, LV);
1542
1543 #ifndef NDEBUG
1544 // In C (because of gnu inline) and in c++ with microsoft extensions an
1545 // static can follow an extern, so we can have two decls with different
1546 // linkages.
1547 const LangOptions &Opts = D->getASTContext().getLangOpts();
1548 if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1549 return LV;
1550
1551 // We have just computed the linkage for this decl. By induction we know
1552 // that all other computed linkages match, check that the one we just
1553 // computed also does.
1554 NamedDecl *Old = nullptr;
1555 for (auto *I : D->redecls()) {
1556 auto *T = cast<NamedDecl>(I);
1557 if (T == D)
1558 continue;
1559 if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1560 Old = T;
1561 break;
1562 }
1563 }
1564 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1565 #endif
1566
1567 return LV;
1568 }
1569
getDeclLinkageAndVisibility(const NamedDecl * D)1570 LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1571 NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D)
1572 ? NamedDecl::VisibilityForType
1573 : NamedDecl::VisibilityForValue;
1574 LVComputationKind CK(EK);
1575 return getLVForDecl(D, D->getASTContext().getLangOpts().IgnoreXCOFFVisibility
1576 ? CK.forLinkageOnly()
1577 : CK);
1578 }
1579
getOwningModuleForLinkage(bool IgnoreLinkage) const1580 Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const {
1581 if (isa<NamespaceDecl>(this))
1582 // Namespaces never have module linkage. It is the entities within them
1583 // that [may] do.
1584 return nullptr;
1585
1586 Module *M = getOwningModule();
1587 if (!M)
1588 return nullptr;
1589
1590 switch (M->Kind) {
1591 case Module::ModuleMapModule:
1592 // Module map modules have no special linkage semantics.
1593 return nullptr;
1594
1595 case Module::ModuleInterfaceUnit:
1596 case Module::ModulePartitionInterface:
1597 case Module::ModulePartitionImplementation:
1598 return M;
1599
1600 case Module::ModuleHeaderUnit:
1601 case Module::GlobalModuleFragment: {
1602 // External linkage declarations in the global module have no owning module
1603 // for linkage purposes. But internal linkage declarations in the global
1604 // module fragment of a particular module are owned by that module for
1605 // linkage purposes.
1606 // FIXME: p1815 removes the need for this distinction -- there are no
1607 // internal linkage declarations that need to be referred to from outside
1608 // this TU.
1609 if (IgnoreLinkage)
1610 return nullptr;
1611 bool InternalLinkage;
1612 if (auto *ND = dyn_cast<NamedDecl>(this))
1613 InternalLinkage = !ND->hasExternalFormalLinkage();
1614 else
1615 InternalLinkage = isInAnonymousNamespace();
1616 return InternalLinkage ? M->Kind == Module::ModuleHeaderUnit ? M : M->Parent
1617 : nullptr;
1618 }
1619
1620 case Module::PrivateModuleFragment:
1621 // The private module fragment is part of its containing module for linkage
1622 // purposes.
1623 return M->Parent;
1624 }
1625
1626 llvm_unreachable("unknown module kind");
1627 }
1628
printName(raw_ostream & OS,const PrintingPolicy &) const1629 void NamedDecl::printName(raw_ostream &OS, const PrintingPolicy&) const {
1630 OS << Name;
1631 }
1632
printName(raw_ostream & OS) const1633 void NamedDecl::printName(raw_ostream &OS) const {
1634 printName(OS, getASTContext().getPrintingPolicy());
1635 }
1636
getQualifiedNameAsString() const1637 std::string NamedDecl::getQualifiedNameAsString() const {
1638 std::string QualName;
1639 llvm::raw_string_ostream OS(QualName);
1640 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1641 return QualName;
1642 }
1643
printQualifiedName(raw_ostream & OS) const1644 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1645 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1646 }
1647
printQualifiedName(raw_ostream & OS,const PrintingPolicy & P) const1648 void NamedDecl::printQualifiedName(raw_ostream &OS,
1649 const PrintingPolicy &P) const {
1650 if (getDeclContext()->isFunctionOrMethod()) {
1651 // We do not print '(anonymous)' for function parameters without name.
1652 printName(OS, P);
1653 return;
1654 }
1655 printNestedNameSpecifier(OS, P);
1656 if (getDeclName())
1657 OS << *this;
1658 else {
1659 // Give the printName override a chance to pick a different name before we
1660 // fall back to "(anonymous)".
1661 SmallString<64> NameBuffer;
1662 llvm::raw_svector_ostream NameOS(NameBuffer);
1663 printName(NameOS, P);
1664 if (NameBuffer.empty())
1665 OS << "(anonymous)";
1666 else
1667 OS << NameBuffer;
1668 }
1669 }
1670
printNestedNameSpecifier(raw_ostream & OS) const1671 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1672 printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy());
1673 }
1674
printNestedNameSpecifier(raw_ostream & OS,const PrintingPolicy & P) const1675 void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1676 const PrintingPolicy &P) const {
1677 const DeclContext *Ctx = getDeclContext();
1678
1679 // For ObjC methods and properties, look through categories and use the
1680 // interface as context.
1681 if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) {
1682 if (auto *ID = MD->getClassInterface())
1683 Ctx = ID;
1684 } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) {
1685 if (auto *MD = PD->getGetterMethodDecl())
1686 if (auto *ID = MD->getClassInterface())
1687 Ctx = ID;
1688 } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) {
1689 if (auto *CI = ID->getContainingInterface())
1690 Ctx = CI;
1691 }
1692
1693 if (Ctx->isFunctionOrMethod())
1694 return;
1695
1696 using ContextsTy = SmallVector<const DeclContext *, 8>;
1697 ContextsTy Contexts;
1698
1699 // Collect named contexts.
1700 DeclarationName NameInScope = getDeclName();
1701 for (; Ctx; Ctx = Ctx->getParent()) {
1702 // Suppress anonymous namespace if requested.
1703 if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Ctx) &&
1704 cast<NamespaceDecl>(Ctx)->isAnonymousNamespace())
1705 continue;
1706
1707 // Suppress inline namespace if it doesn't make the result ambiguous.
1708 if (P.SuppressInlineNamespace && Ctx->isInlineNamespace() && NameInScope &&
1709 cast<NamespaceDecl>(Ctx)->isRedundantInlineQualifierFor(NameInScope))
1710 continue;
1711
1712 // Skip non-named contexts such as linkage specifications and ExportDecls.
1713 const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx);
1714 if (!ND)
1715 continue;
1716
1717 Contexts.push_back(Ctx);
1718 NameInScope = ND->getDeclName();
1719 }
1720
1721 for (const DeclContext *DC : llvm::reverse(Contexts)) {
1722 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1723 OS << Spec->getName();
1724 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1725 printTemplateArgumentList(
1726 OS, TemplateArgs.asArray(), P,
1727 Spec->getSpecializedTemplate()->getTemplateParameters());
1728 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1729 if (ND->isAnonymousNamespace()) {
1730 OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1731 : "(anonymous namespace)");
1732 }
1733 else
1734 OS << *ND;
1735 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1736 if (!RD->getIdentifier())
1737 OS << "(anonymous " << RD->getKindName() << ')';
1738 else
1739 OS << *RD;
1740 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1741 const FunctionProtoType *FT = nullptr;
1742 if (FD->hasWrittenPrototype())
1743 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1744
1745 OS << *FD << '(';
1746 if (FT) {
1747 unsigned NumParams = FD->getNumParams();
1748 for (unsigned i = 0; i < NumParams; ++i) {
1749 if (i)
1750 OS << ", ";
1751 OS << FD->getParamDecl(i)->getType().stream(P);
1752 }
1753
1754 if (FT->isVariadic()) {
1755 if (NumParams > 0)
1756 OS << ", ";
1757 OS << "...";
1758 }
1759 }
1760 OS << ')';
1761 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1762 // C++ [dcl.enum]p10: Each enum-name and each unscoped
1763 // enumerator is declared in the scope that immediately contains
1764 // the enum-specifier. Each scoped enumerator is declared in the
1765 // scope of the enumeration.
1766 // For the case of unscoped enumerator, do not include in the qualified
1767 // name any information about its enum enclosing scope, as its visibility
1768 // is global.
1769 if (ED->isScoped())
1770 OS << *ED;
1771 else
1772 continue;
1773 } else {
1774 OS << *cast<NamedDecl>(DC);
1775 }
1776 OS << "::";
1777 }
1778 }
1779
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const1780 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1781 const PrintingPolicy &Policy,
1782 bool Qualified) const {
1783 if (Qualified)
1784 printQualifiedName(OS, Policy);
1785 else
1786 printName(OS, Policy);
1787 }
1788
isRedeclarableImpl(Redeclarable<T> *)1789 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1790 return true;
1791 }
isRedeclarableImpl(...)1792 static bool isRedeclarableImpl(...) { return false; }
isRedeclarable(Decl::Kind K)1793 static bool isRedeclarable(Decl::Kind K) {
1794 switch (K) {
1795 #define DECL(Type, Base) \
1796 case Decl::Type: \
1797 return isRedeclarableImpl((Type##Decl *)nullptr);
1798 #define ABSTRACT_DECL(DECL)
1799 #include "clang/AST/DeclNodes.inc"
1800 }
1801 llvm_unreachable("unknown decl kind");
1802 }
1803
declarationReplaces(NamedDecl * OldD,bool IsKnownNewer) const1804 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1805 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1806
1807 // Never replace one imported declaration with another; we need both results
1808 // when re-exporting.
1809 if (OldD->isFromASTFile() && isFromASTFile())
1810 return false;
1811
1812 // A kind mismatch implies that the declaration is not replaced.
1813 if (OldD->getKind() != getKind())
1814 return false;
1815
1816 // For method declarations, we never replace. (Why?)
1817 if (isa<ObjCMethodDecl>(this))
1818 return false;
1819
1820 // For parameters, pick the newer one. This is either an error or (in
1821 // Objective-C) permitted as an extension.
1822 if (isa<ParmVarDecl>(this))
1823 return true;
1824
1825 // Inline namespaces can give us two declarations with the same
1826 // name and kind in the same scope but different contexts; we should
1827 // keep both declarations in this case.
1828 if (!this->getDeclContext()->getRedeclContext()->Equals(
1829 OldD->getDeclContext()->getRedeclContext()))
1830 return false;
1831
1832 // Using declarations can be replaced if they import the same name from the
1833 // same context.
1834 if (auto *UD = dyn_cast<UsingDecl>(this)) {
1835 ASTContext &Context = getASTContext();
1836 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1837 Context.getCanonicalNestedNameSpecifier(
1838 cast<UsingDecl>(OldD)->getQualifier());
1839 }
1840 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1841 ASTContext &Context = getASTContext();
1842 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1843 Context.getCanonicalNestedNameSpecifier(
1844 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1845 }
1846
1847 if (isRedeclarable(getKind())) {
1848 if (getCanonicalDecl() != OldD->getCanonicalDecl())
1849 return false;
1850
1851 if (IsKnownNewer)
1852 return true;
1853
1854 // Check whether this is actually newer than OldD. We want to keep the
1855 // newer declaration. This loop will usually only iterate once, because
1856 // OldD is usually the previous declaration.
1857 for (auto *D : redecls()) {
1858 if (D == OldD)
1859 break;
1860
1861 // If we reach the canonical declaration, then OldD is not actually older
1862 // than this one.
1863 //
1864 // FIXME: In this case, we should not add this decl to the lookup table.
1865 if (D->isCanonicalDecl())
1866 return false;
1867 }
1868
1869 // It's a newer declaration of the same kind of declaration in the same
1870 // scope: we want this decl instead of the existing one.
1871 return true;
1872 }
1873
1874 // In all other cases, we need to keep both declarations in case they have
1875 // different visibility. Any attempt to use the name will result in an
1876 // ambiguity if more than one is visible.
1877 return false;
1878 }
1879
hasLinkage() const1880 bool NamedDecl::hasLinkage() const {
1881 return getFormalLinkage() != NoLinkage;
1882 }
1883
getUnderlyingDeclImpl()1884 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1885 NamedDecl *ND = this;
1886 if (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1887 ND = UD->getTargetDecl();
1888
1889 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1890 return AD->getClassInterface();
1891
1892 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1893 return AD->getNamespace();
1894
1895 return ND;
1896 }
1897
isCXXInstanceMember() const1898 bool NamedDecl::isCXXInstanceMember() const {
1899 if (!isCXXClassMember())
1900 return false;
1901
1902 const NamedDecl *D = this;
1903 if (isa<UsingShadowDecl>(D))
1904 D = cast<UsingShadowDecl>(D)->getTargetDecl();
1905
1906 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1907 return true;
1908 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1909 return MD->isInstance();
1910 return false;
1911 }
1912
1913 //===----------------------------------------------------------------------===//
1914 // DeclaratorDecl Implementation
1915 //===----------------------------------------------------------------------===//
1916
1917 template <typename DeclT>
getTemplateOrInnerLocStart(const DeclT * decl)1918 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1919 if (decl->getNumTemplateParameterLists() > 0)
1920 return decl->getTemplateParameterList(0)->getTemplateLoc();
1921 return decl->getInnerLocStart();
1922 }
1923
getTypeSpecStartLoc() const1924 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1925 TypeSourceInfo *TSI = getTypeSourceInfo();
1926 if (TSI) return TSI->getTypeLoc().getBeginLoc();
1927 return SourceLocation();
1928 }
1929
getTypeSpecEndLoc() const1930 SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1931 TypeSourceInfo *TSI = getTypeSourceInfo();
1932 if (TSI) return TSI->getTypeLoc().getEndLoc();
1933 return SourceLocation();
1934 }
1935
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)1936 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1937 if (QualifierLoc) {
1938 // Make sure the extended decl info is allocated.
1939 if (!hasExtInfo()) {
1940 // Save (non-extended) type source info pointer.
1941 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1942 // Allocate external info struct.
1943 DeclInfo = new (getASTContext()) ExtInfo;
1944 // Restore savedTInfo into (extended) decl info.
1945 getExtInfo()->TInfo = savedTInfo;
1946 }
1947 // Set qualifier info.
1948 getExtInfo()->QualifierLoc = QualifierLoc;
1949 } else if (hasExtInfo()) {
1950 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1951 getExtInfo()->QualifierLoc = QualifierLoc;
1952 }
1953 }
1954
setTrailingRequiresClause(Expr * TrailingRequiresClause)1955 void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) {
1956 assert(TrailingRequiresClause);
1957 // Make sure the extended decl info is allocated.
1958 if (!hasExtInfo()) {
1959 // Save (non-extended) type source info pointer.
1960 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1961 // Allocate external info struct.
1962 DeclInfo = new (getASTContext()) ExtInfo;
1963 // Restore savedTInfo into (extended) decl info.
1964 getExtInfo()->TInfo = savedTInfo;
1965 }
1966 // Set requires clause info.
1967 getExtInfo()->TrailingRequiresClause = TrailingRequiresClause;
1968 }
1969
setTemplateParameterListsInfo(ASTContext & Context,ArrayRef<TemplateParameterList * > TPLists)1970 void DeclaratorDecl::setTemplateParameterListsInfo(
1971 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1972 assert(!TPLists.empty());
1973 // Make sure the extended decl info is allocated.
1974 if (!hasExtInfo()) {
1975 // Save (non-extended) type source info pointer.
1976 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1977 // Allocate external info struct.
1978 DeclInfo = new (getASTContext()) ExtInfo;
1979 // Restore savedTInfo into (extended) decl info.
1980 getExtInfo()->TInfo = savedTInfo;
1981 }
1982 // Set the template parameter lists info.
1983 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1984 }
1985
getOuterLocStart() const1986 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1987 return getTemplateOrInnerLocStart(this);
1988 }
1989
1990 // Helper function: returns true if QT is or contains a type
1991 // having a postfix component.
typeIsPostfix(QualType QT)1992 static bool typeIsPostfix(QualType QT) {
1993 while (true) {
1994 const Type* T = QT.getTypePtr();
1995 switch (T->getTypeClass()) {
1996 default:
1997 return false;
1998 case Type::Pointer:
1999 QT = cast<PointerType>(T)->getPointeeType();
2000 break;
2001 case Type::BlockPointer:
2002 QT = cast<BlockPointerType>(T)->getPointeeType();
2003 break;
2004 case Type::MemberPointer:
2005 QT = cast<MemberPointerType>(T)->getPointeeType();
2006 break;
2007 case Type::LValueReference:
2008 case Type::RValueReference:
2009 QT = cast<ReferenceType>(T)->getPointeeType();
2010 break;
2011 case Type::PackExpansion:
2012 QT = cast<PackExpansionType>(T)->getPattern();
2013 break;
2014 case Type::Paren:
2015 case Type::ConstantArray:
2016 case Type::DependentSizedArray:
2017 case Type::IncompleteArray:
2018 case Type::VariableArray:
2019 case Type::FunctionProto:
2020 case Type::FunctionNoProto:
2021 return true;
2022 }
2023 }
2024 }
2025
getSourceRange() const2026 SourceRange DeclaratorDecl::getSourceRange() const {
2027 SourceLocation RangeEnd = getLocation();
2028 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
2029 // If the declaration has no name or the type extends past the name take the
2030 // end location of the type.
2031 if (!getDeclName() || typeIsPostfix(TInfo->getType()))
2032 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
2033 }
2034 return SourceRange(getOuterLocStart(), RangeEnd);
2035 }
2036
setTemplateParameterListsInfo(ASTContext & Context,ArrayRef<TemplateParameterList * > TPLists)2037 void QualifierInfo::setTemplateParameterListsInfo(
2038 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
2039 // Free previous template parameters (if any).
2040 if (NumTemplParamLists > 0) {
2041 Context.Deallocate(TemplParamLists);
2042 TemplParamLists = nullptr;
2043 NumTemplParamLists = 0;
2044 }
2045 // Set info on matched template parameter lists (if any).
2046 if (!TPLists.empty()) {
2047 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
2048 NumTemplParamLists = TPLists.size();
2049 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
2050 }
2051 }
2052
2053 //===----------------------------------------------------------------------===//
2054 // VarDecl Implementation
2055 //===----------------------------------------------------------------------===//
2056
getStorageClassSpecifierString(StorageClass SC)2057 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
2058 switch (SC) {
2059 case SC_None: break;
2060 case SC_Auto: return "auto";
2061 case SC_Extern: return "extern";
2062 case SC_PrivateExtern: return "__private_extern__";
2063 case SC_Register: return "register";
2064 case SC_Static: return "static";
2065 }
2066
2067 llvm_unreachable("Invalid storage class");
2068 }
2069
VarDecl(Kind DK,ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,const IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass SC)2070 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
2071 SourceLocation StartLoc, SourceLocation IdLoc,
2072 const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2073 StorageClass SC)
2074 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2075 redeclarable_base(C) {
2076 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
2077 "VarDeclBitfields too large!");
2078 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
2079 "ParmVarDeclBitfields too large!");
2080 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
2081 "NonParmVarDeclBitfields too large!");
2082 AllBits = 0;
2083 VarDeclBits.SClass = SC;
2084 // Everything else is implicitly initialized to false.
2085 }
2086
Create(ASTContext & C,DeclContext * DC,SourceLocation StartL,SourceLocation IdL,const IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S)2087 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartL,
2088 SourceLocation IdL, const IdentifierInfo *Id,
2089 QualType T, TypeSourceInfo *TInfo, StorageClass S) {
2090 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
2091 }
2092
CreateDeserialized(ASTContext & C,unsigned ID)2093 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2094 return new (C, ID)
2095 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
2096 QualType(), nullptr, SC_None);
2097 }
2098
setStorageClass(StorageClass SC)2099 void VarDecl::setStorageClass(StorageClass SC) {
2100 assert(isLegalForVariable(SC));
2101 VarDeclBits.SClass = SC;
2102 }
2103
getTLSKind() const2104 VarDecl::TLSKind VarDecl::getTLSKind() const {
2105 switch (VarDeclBits.TSCSpec) {
2106 case TSCS_unspecified:
2107 if (!hasAttr<ThreadAttr>() &&
2108 !(getASTContext().getLangOpts().OpenMPUseTLS &&
2109 getASTContext().getTargetInfo().isTLSSupported() &&
2110 hasAttr<OMPThreadPrivateDeclAttr>()))
2111 return TLS_None;
2112 return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
2113 LangOptions::MSVC2015)) ||
2114 hasAttr<OMPThreadPrivateDeclAttr>())
2115 ? TLS_Dynamic
2116 : TLS_Static;
2117 case TSCS___thread: // Fall through.
2118 case TSCS__Thread_local:
2119 return TLS_Static;
2120 case TSCS_thread_local:
2121 return TLS_Dynamic;
2122 }
2123 llvm_unreachable("Unknown thread storage class specifier!");
2124 }
2125
getSourceRange() const2126 SourceRange VarDecl::getSourceRange() const {
2127 if (const Expr *Init = getInit()) {
2128 SourceLocation InitEnd = Init->getEndLoc();
2129 // If Init is implicit, ignore its source range and fallback on
2130 // DeclaratorDecl::getSourceRange() to handle postfix elements.
2131 if (InitEnd.isValid() && InitEnd != getLocation())
2132 return SourceRange(getOuterLocStart(), InitEnd);
2133 }
2134 return DeclaratorDecl::getSourceRange();
2135 }
2136
2137 template<typename T>
getDeclLanguageLinkage(const T & D)2138 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2139 // C++ [dcl.link]p1: All function types, function names with external linkage,
2140 // and variable names with external linkage have a language linkage.
2141 if (!D.hasExternalFormalLinkage())
2142 return NoLanguageLinkage;
2143
2144 // Language linkage is a C++ concept, but saying that everything else in C has
2145 // C language linkage fits the implementation nicely.
2146 ASTContext &Context = D.getASTContext();
2147 if (!Context.getLangOpts().CPlusPlus)
2148 return CLanguageLinkage;
2149
2150 // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2151 // language linkage of the names of class members and the function type of
2152 // class member functions.
2153 const DeclContext *DC = D.getDeclContext();
2154 if (DC->isRecord())
2155 return CXXLanguageLinkage;
2156
2157 // If the first decl is in an extern "C" context, any other redeclaration
2158 // will have C language linkage. If the first one is not in an extern "C"
2159 // context, we would have reported an error for any other decl being in one.
2160 if (isFirstInExternCContext(&D))
2161 return CLanguageLinkage;
2162 return CXXLanguageLinkage;
2163 }
2164
2165 template<typename T>
isDeclExternC(const T & D)2166 static bool isDeclExternC(const T &D) {
2167 // Since the context is ignored for class members, they can only have C++
2168 // language linkage or no language linkage.
2169 const DeclContext *DC = D.getDeclContext();
2170 if (DC->isRecord()) {
2171 assert(D.getASTContext().getLangOpts().CPlusPlus);
2172 return false;
2173 }
2174
2175 return D.getLanguageLinkage() == CLanguageLinkage;
2176 }
2177
getLanguageLinkage() const2178 LanguageLinkage VarDecl::getLanguageLinkage() const {
2179 return getDeclLanguageLinkage(*this);
2180 }
2181
isExternC() const2182 bool VarDecl::isExternC() const {
2183 return isDeclExternC(*this);
2184 }
2185
isInExternCContext() const2186 bool VarDecl::isInExternCContext() const {
2187 return getLexicalDeclContext()->isExternCContext();
2188 }
2189
isInExternCXXContext() const2190 bool VarDecl::isInExternCXXContext() const {
2191 return getLexicalDeclContext()->isExternCXXContext();
2192 }
2193
getCanonicalDecl()2194 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2195
2196 VarDecl::DefinitionKind
isThisDeclarationADefinition(ASTContext & C) const2197 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2198 if (isThisDeclarationADemotedDefinition())
2199 return DeclarationOnly;
2200
2201 // C++ [basic.def]p2:
2202 // A declaration is a definition unless [...] it contains the 'extern'
2203 // specifier or a linkage-specification and neither an initializer [...],
2204 // it declares a non-inline static data member in a class declaration [...],
2205 // it declares a static data member outside a class definition and the variable
2206 // was defined within the class with the constexpr specifier [...],
2207 // C++1y [temp.expl.spec]p15:
2208 // An explicit specialization of a static data member or an explicit
2209 // specialization of a static data member template is a definition if the
2210 // declaration includes an initializer; otherwise, it is a declaration.
2211 //
2212 // FIXME: How do you declare (but not define) a partial specialization of
2213 // a static data member template outside the containing class?
2214 if (isStaticDataMember()) {
2215 if (isOutOfLine() &&
2216 !(getCanonicalDecl()->isInline() &&
2217 getCanonicalDecl()->isConstexpr()) &&
2218 (hasInit() ||
2219 // If the first declaration is out-of-line, this may be an
2220 // instantiation of an out-of-line partial specialization of a variable
2221 // template for which we have not yet instantiated the initializer.
2222 (getFirstDecl()->isOutOfLine()
2223 ? getTemplateSpecializationKind() == TSK_Undeclared
2224 : getTemplateSpecializationKind() !=
2225 TSK_ExplicitSpecialization) ||
2226 isa<VarTemplatePartialSpecializationDecl>(this)))
2227 return Definition;
2228 if (!isOutOfLine() && isInline())
2229 return Definition;
2230 return DeclarationOnly;
2231 }
2232 // C99 6.7p5:
2233 // A definition of an identifier is a declaration for that identifier that
2234 // [...] causes storage to be reserved for that object.
2235 // Note: that applies for all non-file-scope objects.
2236 // C99 6.9.2p1:
2237 // If the declaration of an identifier for an object has file scope and an
2238 // initializer, the declaration is an external definition for the identifier
2239 if (hasInit())
2240 return Definition;
2241
2242 if (hasDefiningAttr())
2243 return Definition;
2244
2245 if (const auto *SAA = getAttr<SelectAnyAttr>())
2246 if (!SAA->isInherited())
2247 return Definition;
2248
2249 // A variable template specialization (other than a static data member
2250 // template or an explicit specialization) is a declaration until we
2251 // instantiate its initializer.
2252 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) {
2253 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2254 !isa<VarTemplatePartialSpecializationDecl>(VTSD) &&
2255 !VTSD->IsCompleteDefinition)
2256 return DeclarationOnly;
2257 }
2258
2259 if (hasExternalStorage())
2260 return DeclarationOnly;
2261
2262 // [dcl.link] p7:
2263 // A declaration directly contained in a linkage-specification is treated
2264 // as if it contains the extern specifier for the purpose of determining
2265 // the linkage of the declared name and whether it is a definition.
2266 if (isSingleLineLanguageLinkage(*this))
2267 return DeclarationOnly;
2268
2269 // C99 6.9.2p2:
2270 // A declaration of an object that has file scope without an initializer,
2271 // and without a storage class specifier or the scs 'static', constitutes
2272 // a tentative definition.
2273 // No such thing in C++.
2274 if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2275 return TentativeDefinition;
2276
2277 // What's left is (in C, block-scope) declarations without initializers or
2278 // external storage. These are definitions.
2279 return Definition;
2280 }
2281
getActingDefinition()2282 VarDecl *VarDecl::getActingDefinition() {
2283 DefinitionKind Kind = isThisDeclarationADefinition();
2284 if (Kind != TentativeDefinition)
2285 return nullptr;
2286
2287 VarDecl *LastTentative = nullptr;
2288
2289 // Loop through the declaration chain, starting with the most recent.
2290 for (VarDecl *Decl = getMostRecentDecl(); Decl;
2291 Decl = Decl->getPreviousDecl()) {
2292 Kind = Decl->isThisDeclarationADefinition();
2293 if (Kind == Definition)
2294 return nullptr;
2295 // Record the first (most recent) TentativeDefinition that is encountered.
2296 if (Kind == TentativeDefinition && !LastTentative)
2297 LastTentative = Decl;
2298 }
2299
2300 return LastTentative;
2301 }
2302
getDefinition(ASTContext & C)2303 VarDecl *VarDecl::getDefinition(ASTContext &C) {
2304 VarDecl *First = getFirstDecl();
2305 for (auto *I : First->redecls()) {
2306 if (I->isThisDeclarationADefinition(C) == Definition)
2307 return I;
2308 }
2309 return nullptr;
2310 }
2311
hasDefinition(ASTContext & C) const2312 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2313 DefinitionKind Kind = DeclarationOnly;
2314
2315 const VarDecl *First = getFirstDecl();
2316 for (auto *I : First->redecls()) {
2317 Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2318 if (Kind == Definition)
2319 break;
2320 }
2321
2322 return Kind;
2323 }
2324
getAnyInitializer(const VarDecl * & D) const2325 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2326 for (auto *I : redecls()) {
2327 if (auto Expr = I->getInit()) {
2328 D = I;
2329 return Expr;
2330 }
2331 }
2332 return nullptr;
2333 }
2334
hasInit() const2335 bool VarDecl::hasInit() const {
2336 if (auto *P = dyn_cast<ParmVarDecl>(this))
2337 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2338 return false;
2339
2340 return !Init.isNull();
2341 }
2342
getInit()2343 Expr *VarDecl::getInit() {
2344 if (!hasInit())
2345 return nullptr;
2346
2347 if (auto *S = Init.dyn_cast<Stmt *>())
2348 return cast<Expr>(S);
2349
2350 return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2351 }
2352
getInitAddress()2353 Stmt **VarDecl::getInitAddress() {
2354 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2355 return &ES->Value;
2356
2357 return Init.getAddrOfPtr1();
2358 }
2359
getInitializingDeclaration()2360 VarDecl *VarDecl::getInitializingDeclaration() {
2361 VarDecl *Def = nullptr;
2362 for (auto *I : redecls()) {
2363 if (I->hasInit())
2364 return I;
2365
2366 if (I->isThisDeclarationADefinition()) {
2367 if (isStaticDataMember())
2368 return I;
2369 Def = I;
2370 }
2371 }
2372 return Def;
2373 }
2374
isOutOfLine() const2375 bool VarDecl::isOutOfLine() const {
2376 if (Decl::isOutOfLine())
2377 return true;
2378
2379 if (!isStaticDataMember())
2380 return false;
2381
2382 // If this static data member was instantiated from a static data member of
2383 // a class template, check whether that static data member was defined
2384 // out-of-line.
2385 if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2386 return VD->isOutOfLine();
2387
2388 return false;
2389 }
2390
setInit(Expr * I)2391 void VarDecl::setInit(Expr *I) {
2392 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2393 Eval->~EvaluatedStmt();
2394 getASTContext().Deallocate(Eval);
2395 }
2396
2397 Init = I;
2398 }
2399
mightBeUsableInConstantExpressions(const ASTContext & C) const2400 bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const {
2401 const LangOptions &Lang = C.getLangOpts();
2402
2403 // OpenCL permits const integral variables to be used in constant
2404 // expressions, like in C++98.
2405 if (!Lang.CPlusPlus && !Lang.OpenCL)
2406 return false;
2407
2408 // Function parameters are never usable in constant expressions.
2409 if (isa<ParmVarDecl>(this))
2410 return false;
2411
2412 // The values of weak variables are never usable in constant expressions.
2413 if (isWeak())
2414 return false;
2415
2416 // In C++11, any variable of reference type can be used in a constant
2417 // expression if it is initialized by a constant expression.
2418 if (Lang.CPlusPlus11 && getType()->isReferenceType())
2419 return true;
2420
2421 // Only const objects can be used in constant expressions in C++. C++98 does
2422 // not require the variable to be non-volatile, but we consider this to be a
2423 // defect.
2424 if (!getType().isConstant(C) || getType().isVolatileQualified())
2425 return false;
2426
2427 // In C++, const, non-volatile variables of integral or enumeration types
2428 // can be used in constant expressions.
2429 if (getType()->isIntegralOrEnumerationType())
2430 return true;
2431
2432 // Additionally, in C++11, non-volatile constexpr variables can be used in
2433 // constant expressions.
2434 return Lang.CPlusPlus11 && isConstexpr();
2435 }
2436
isUsableInConstantExpressions(const ASTContext & Context) const2437 bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const {
2438 // C++2a [expr.const]p3:
2439 // A variable is usable in constant expressions after its initializing
2440 // declaration is encountered...
2441 const VarDecl *DefVD = nullptr;
2442 const Expr *Init = getAnyInitializer(DefVD);
2443 if (!Init || Init->isValueDependent() || getType()->isDependentType())
2444 return false;
2445 // ... if it is a constexpr variable, or it is of reference type or of
2446 // const-qualified integral or enumeration type, ...
2447 if (!DefVD->mightBeUsableInConstantExpressions(Context))
2448 return false;
2449 // ... and its initializer is a constant initializer.
2450 if (Context.getLangOpts().CPlusPlus && !DefVD->hasConstantInitialization())
2451 return false;
2452 // C++98 [expr.const]p1:
2453 // An integral constant-expression can involve only [...] const variables
2454 // or static data members of integral or enumeration types initialized with
2455 // [integer] constant expressions (dcl.init)
2456 if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) &&
2457 !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context))
2458 return false;
2459 return true;
2460 }
2461
2462 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2463 /// form, which contains extra information on the evaluated value of the
2464 /// initializer.
ensureEvaluatedStmt() const2465 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2466 auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2467 if (!Eval) {
2468 // Note: EvaluatedStmt contains an APValue, which usually holds
2469 // resources not allocated from the ASTContext. We need to do some
2470 // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2471 // where we can detect whether there's anything to clean up or not.
2472 Eval = new (getASTContext()) EvaluatedStmt;
2473 Eval->Value = Init.get<Stmt *>();
2474 Init = Eval;
2475 }
2476 return Eval;
2477 }
2478
getEvaluatedStmt() const2479 EvaluatedStmt *VarDecl::getEvaluatedStmt() const {
2480 return Init.dyn_cast<EvaluatedStmt *>();
2481 }
2482
evaluateValue() const2483 APValue *VarDecl::evaluateValue() const {
2484 SmallVector<PartialDiagnosticAt, 8> Notes;
2485 return evaluateValueImpl(Notes, hasConstantInitialization());
2486 }
2487
evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> & Notes,bool IsConstantInitialization) const2488 APValue *VarDecl::evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
2489 bool IsConstantInitialization) const {
2490 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2491
2492 const auto *Init = cast<Expr>(Eval->Value);
2493 assert(!Init->isValueDependent());
2494
2495 // We only produce notes indicating why an initializer is non-constant the
2496 // first time it is evaluated. FIXME: The notes won't always be emitted the
2497 // first time we try evaluation, so might not be produced at all.
2498 if (Eval->WasEvaluated)
2499 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2500
2501 if (Eval->IsEvaluating) {
2502 // FIXME: Produce a diagnostic for self-initialization.
2503 return nullptr;
2504 }
2505
2506 Eval->IsEvaluating = true;
2507
2508 ASTContext &Ctx = getASTContext();
2509 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, Ctx, this, Notes,
2510 IsConstantInitialization);
2511
2512 // In C++11, this isn't a constant initializer if we produced notes. In that
2513 // case, we can't keep the result, because it may only be correct under the
2514 // assumption that the initializer is a constant context.
2515 if (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus11 &&
2516 !Notes.empty())
2517 Result = false;
2518
2519 // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2520 // or that it's empty (so that there's nothing to clean up) if evaluation
2521 // failed.
2522 if (!Result)
2523 Eval->Evaluated = APValue();
2524 else if (Eval->Evaluated.needsCleanup())
2525 Ctx.addDestruction(&Eval->Evaluated);
2526
2527 Eval->IsEvaluating = false;
2528 Eval->WasEvaluated = true;
2529
2530 return Result ? &Eval->Evaluated : nullptr;
2531 }
2532
getEvaluatedValue() const2533 APValue *VarDecl::getEvaluatedValue() const {
2534 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2535 if (Eval->WasEvaluated)
2536 return &Eval->Evaluated;
2537
2538 return nullptr;
2539 }
2540
hasICEInitializer(const ASTContext & Context) const2541 bool VarDecl::hasICEInitializer(const ASTContext &Context) const {
2542 const Expr *Init = getInit();
2543 assert(Init && "no initializer");
2544
2545 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2546 if (!Eval->CheckedForICEInit) {
2547 Eval->CheckedForICEInit = true;
2548 Eval->HasICEInit = Init->isIntegerConstantExpr(Context);
2549 }
2550 return Eval->HasICEInit;
2551 }
2552
hasConstantInitialization() const2553 bool VarDecl::hasConstantInitialization() const {
2554 // In C, all globals (and only globals) have constant initialization.
2555 if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus)
2556 return true;
2557
2558 // In C++, it depends on whether the evaluation at the point of definition
2559 // was evaluatable as a constant initializer.
2560 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2561 return Eval->HasConstantInitialization;
2562
2563 return false;
2564 }
2565
checkForConstantInitialization(SmallVectorImpl<PartialDiagnosticAt> & Notes) const2566 bool VarDecl::checkForConstantInitialization(
2567 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2568 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2569 // If we ask for the value before we know whether we have a constant
2570 // initializer, we can compute the wrong value (for example, due to
2571 // std::is_constant_evaluated()).
2572 assert(!Eval->WasEvaluated &&
2573 "already evaluated var value before checking for constant init");
2574 assert(getASTContext().getLangOpts().CPlusPlus && "only meaningful in C++");
2575
2576 assert(!cast<Expr>(Eval->Value)->isValueDependent());
2577
2578 // Evaluate the initializer to check whether it's a constant expression.
2579 Eval->HasConstantInitialization =
2580 evaluateValueImpl(Notes, true) && Notes.empty();
2581
2582 // If evaluation as a constant initializer failed, allow re-evaluation as a
2583 // non-constant initializer if we later find we want the value.
2584 if (!Eval->HasConstantInitialization)
2585 Eval->WasEvaluated = false;
2586
2587 return Eval->HasConstantInitialization;
2588 }
2589
isParameterPack() const2590 bool VarDecl::isParameterPack() const {
2591 return isa<PackExpansionType>(getType());
2592 }
2593
2594 template<typename DeclT>
getDefinitionOrSelf(DeclT * D)2595 static DeclT *getDefinitionOrSelf(DeclT *D) {
2596 assert(D);
2597 if (auto *Def = D->getDefinition())
2598 return Def;
2599 return D;
2600 }
2601
isEscapingByref() const2602 bool VarDecl::isEscapingByref() const {
2603 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2604 }
2605
isNonEscapingByref() const2606 bool VarDecl::isNonEscapingByref() const {
2607 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2608 }
2609
hasDependentAlignment() const2610 bool VarDecl::hasDependentAlignment() const {
2611 QualType T = getType();
2612 return T->isDependentType() || T->isUndeducedType() ||
2613 llvm::any_of(specific_attrs<AlignedAttr>(), [](const AlignedAttr *AA) {
2614 return AA->isAlignmentDependent();
2615 });
2616 }
2617
getTemplateInstantiationPattern() const2618 VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2619 const VarDecl *VD = this;
2620
2621 // If this is an instantiated member, walk back to the template from which
2622 // it was instantiated.
2623 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2624 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
2625 VD = VD->getInstantiatedFromStaticDataMember();
2626 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2627 VD = NewVD;
2628 }
2629 }
2630
2631 // If it's an instantiated variable template specialization, find the
2632 // template or partial specialization from which it was instantiated.
2633 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
2634 if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) {
2635 auto From = VDTemplSpec->getInstantiatedFrom();
2636 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2637 while (!VTD->isMemberSpecialization()) {
2638 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2639 if (!NewVTD)
2640 break;
2641 VTD = NewVTD;
2642 }
2643 return getDefinitionOrSelf(VTD->getTemplatedDecl());
2644 }
2645 if (auto *VTPSD =
2646 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2647 while (!VTPSD->isMemberSpecialization()) {
2648 auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2649 if (!NewVTPSD)
2650 break;
2651 VTPSD = NewVTPSD;
2652 }
2653 return getDefinitionOrSelf<VarDecl>(VTPSD);
2654 }
2655 }
2656 }
2657
2658 // If this is the pattern of a variable template, find where it was
2659 // instantiated from. FIXME: Is this necessary?
2660 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2661 while (!VarTemplate->isMemberSpecialization()) {
2662 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2663 if (!NewVT)
2664 break;
2665 VarTemplate = NewVT;
2666 }
2667
2668 return getDefinitionOrSelf(VarTemplate->getTemplatedDecl());
2669 }
2670
2671 if (VD == this)
2672 return nullptr;
2673 return getDefinitionOrSelf(const_cast<VarDecl*>(VD));
2674 }
2675
getInstantiatedFromStaticDataMember() const2676 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2677 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2678 return cast<VarDecl>(MSI->getInstantiatedFrom());
2679
2680 return nullptr;
2681 }
2682
getTemplateSpecializationKind() const2683 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2684 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2685 return Spec->getSpecializationKind();
2686
2687 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2688 return MSI->getTemplateSpecializationKind();
2689
2690 return TSK_Undeclared;
2691 }
2692
2693 TemplateSpecializationKind
getTemplateSpecializationKindForInstantiation() const2694 VarDecl::getTemplateSpecializationKindForInstantiation() const {
2695 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2696 return MSI->getTemplateSpecializationKind();
2697
2698 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2699 return Spec->getSpecializationKind();
2700
2701 return TSK_Undeclared;
2702 }
2703
getPointOfInstantiation() const2704 SourceLocation VarDecl::getPointOfInstantiation() const {
2705 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2706 return Spec->getPointOfInstantiation();
2707
2708 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2709 return MSI->getPointOfInstantiation();
2710
2711 return SourceLocation();
2712 }
2713
getDescribedVarTemplate() const2714 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2715 return getASTContext().getTemplateOrSpecializationInfo(this)
2716 .dyn_cast<VarTemplateDecl *>();
2717 }
2718
setDescribedVarTemplate(VarTemplateDecl * Template)2719 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2720 getASTContext().setTemplateOrSpecializationInfo(this, Template);
2721 }
2722
isKnownToBeDefined() const2723 bool VarDecl::isKnownToBeDefined() const {
2724 const auto &LangOpts = getASTContext().getLangOpts();
2725 // In CUDA mode without relocatable device code, variables of form 'extern
2726 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2727 // memory pool. These are never undefined variables, even if they appear
2728 // inside of an anon namespace or static function.
2729 //
2730 // With CUDA relocatable device code enabled, these variables don't get
2731 // special handling; they're treated like regular extern variables.
2732 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2733 hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2734 isa<IncompleteArrayType>(getType()))
2735 return true;
2736
2737 return hasDefinition();
2738 }
2739
isNoDestroy(const ASTContext & Ctx) const2740 bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2741 return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() ||
2742 (!Ctx.getLangOpts().RegisterStaticDestructors &&
2743 !hasAttr<AlwaysDestroyAttr>()));
2744 }
2745
2746 QualType::DestructionKind
needsDestruction(const ASTContext & Ctx) const2747 VarDecl::needsDestruction(const ASTContext &Ctx) const {
2748 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2749 if (Eval->HasConstantDestruction)
2750 return QualType::DK_none;
2751
2752 if (isNoDestroy(Ctx))
2753 return QualType::DK_none;
2754
2755 return getType().isDestructedType();
2756 }
2757
hasFlexibleArrayInit(const ASTContext & Ctx) const2758 bool VarDecl::hasFlexibleArrayInit(const ASTContext &Ctx) const {
2759 assert(hasInit() && "Expect initializer to check for flexible array init");
2760 auto *Ty = getType()->getAs<RecordType>();
2761 if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember())
2762 return false;
2763 auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens());
2764 if (!List)
2765 return false;
2766 const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1);
2767 auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType());
2768 if (!InitTy)
2769 return false;
2770 return InitTy->getSize() != 0;
2771 }
2772
getFlexibleArrayInitChars(const ASTContext & Ctx) const2773 CharUnits VarDecl::getFlexibleArrayInitChars(const ASTContext &Ctx) const {
2774 assert(hasInit() && "Expect initializer to check for flexible array init");
2775 auto *Ty = getType()->getAs<RecordType>();
2776 if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember())
2777 return CharUnits::Zero();
2778 auto *List = dyn_cast<InitListExpr>(getInit()->IgnoreParens());
2779 if (!List)
2780 return CharUnits::Zero();
2781 const Expr *FlexibleInit = List->getInit(List->getNumInits() - 1);
2782 auto InitTy = Ctx.getAsConstantArrayType(FlexibleInit->getType());
2783 if (!InitTy)
2784 return CharUnits::Zero();
2785 CharUnits FlexibleArraySize = Ctx.getTypeSizeInChars(InitTy);
2786 const ASTRecordLayout &RL = Ctx.getASTRecordLayout(Ty->getDecl());
2787 CharUnits FlexibleArrayOffset =
2788 Ctx.toCharUnitsFromBits(RL.getFieldOffset(RL.getFieldCount() - 1));
2789 if (FlexibleArrayOffset + FlexibleArraySize < RL.getSize())
2790 return CharUnits::Zero();
2791 return FlexibleArrayOffset + FlexibleArraySize - RL.getSize();
2792 }
2793
getMemberSpecializationInfo() const2794 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2795 if (isStaticDataMember())
2796 // FIXME: Remove ?
2797 // return getASTContext().getInstantiatedFromStaticDataMember(this);
2798 return getASTContext().getTemplateOrSpecializationInfo(this)
2799 .dyn_cast<MemberSpecializationInfo *>();
2800 return nullptr;
2801 }
2802
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)2803 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2804 SourceLocation PointOfInstantiation) {
2805 assert((isa<VarTemplateSpecializationDecl>(this) ||
2806 getMemberSpecializationInfo()) &&
2807 "not a variable or static data member template specialization");
2808
2809 if (VarTemplateSpecializationDecl *Spec =
2810 dyn_cast<VarTemplateSpecializationDecl>(this)) {
2811 Spec->setSpecializationKind(TSK);
2812 if (TSK != TSK_ExplicitSpecialization &&
2813 PointOfInstantiation.isValid() &&
2814 Spec->getPointOfInstantiation().isInvalid()) {
2815 Spec->setPointOfInstantiation(PointOfInstantiation);
2816 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2817 L->InstantiationRequested(this);
2818 }
2819 } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2820 MSI->setTemplateSpecializationKind(TSK);
2821 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2822 MSI->getPointOfInstantiation().isInvalid()) {
2823 MSI->setPointOfInstantiation(PointOfInstantiation);
2824 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2825 L->InstantiationRequested(this);
2826 }
2827 }
2828 }
2829
2830 void
setInstantiationOfStaticDataMember(VarDecl * VD,TemplateSpecializationKind TSK)2831 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2832 TemplateSpecializationKind TSK) {
2833 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2834 "Previous template or instantiation?");
2835 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2836 }
2837
2838 //===----------------------------------------------------------------------===//
2839 // ParmVarDecl Implementation
2840 //===----------------------------------------------------------------------===//
2841
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S,Expr * DefArg)2842 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2843 SourceLocation StartLoc,
2844 SourceLocation IdLoc, IdentifierInfo *Id,
2845 QualType T, TypeSourceInfo *TInfo,
2846 StorageClass S, Expr *DefArg) {
2847 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2848 S, DefArg);
2849 }
2850
getOriginalType() const2851 QualType ParmVarDecl::getOriginalType() const {
2852 TypeSourceInfo *TSI = getTypeSourceInfo();
2853 QualType T = TSI ? TSI->getType() : getType();
2854 if (const auto *DT = dyn_cast<DecayedType>(T))
2855 return DT->getOriginalType();
2856 return T;
2857 }
2858
CreateDeserialized(ASTContext & C,unsigned ID)2859 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2860 return new (C, ID)
2861 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2862 nullptr, QualType(), nullptr, SC_None, nullptr);
2863 }
2864
getSourceRange() const2865 SourceRange ParmVarDecl::getSourceRange() const {
2866 if (!hasInheritedDefaultArg()) {
2867 SourceRange ArgRange = getDefaultArgRange();
2868 if (ArgRange.isValid())
2869 return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2870 }
2871
2872 // DeclaratorDecl considers the range of postfix types as overlapping with the
2873 // declaration name, but this is not the case with parameters in ObjC methods.
2874 if (isa<ObjCMethodDecl>(getDeclContext()))
2875 return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2876
2877 return DeclaratorDecl::getSourceRange();
2878 }
2879
isDestroyedInCallee() const2880 bool ParmVarDecl::isDestroyedInCallee() const {
2881 // ns_consumed only affects code generation in ARC
2882 if (hasAttr<NSConsumedAttr>())
2883 return getASTContext().getLangOpts().ObjCAutoRefCount;
2884
2885 // FIXME: isParamDestroyedInCallee() should probably imply
2886 // isDestructedType()
2887 auto *RT = getType()->getAs<RecordType>();
2888 if (RT && RT->getDecl()->isParamDestroyedInCallee() &&
2889 getType().isDestructedType())
2890 return true;
2891
2892 return false;
2893 }
2894
getDefaultArg()2895 Expr *ParmVarDecl::getDefaultArg() {
2896 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2897 assert(!hasUninstantiatedDefaultArg() &&
2898 "Default argument is not yet instantiated!");
2899
2900 Expr *Arg = getInit();
2901 if (auto *E = dyn_cast_or_null<FullExpr>(Arg))
2902 return E->getSubExpr();
2903
2904 return Arg;
2905 }
2906
setDefaultArg(Expr * defarg)2907 void ParmVarDecl::setDefaultArg(Expr *defarg) {
2908 ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2909 Init = defarg;
2910 }
2911
getDefaultArgRange() const2912 SourceRange ParmVarDecl::getDefaultArgRange() const {
2913 switch (ParmVarDeclBits.DefaultArgKind) {
2914 case DAK_None:
2915 case DAK_Unparsed:
2916 // Nothing we can do here.
2917 return SourceRange();
2918
2919 case DAK_Uninstantiated:
2920 return getUninstantiatedDefaultArg()->getSourceRange();
2921
2922 case DAK_Normal:
2923 if (const Expr *E = getInit())
2924 return E->getSourceRange();
2925
2926 // Missing an actual expression, may be invalid.
2927 return SourceRange();
2928 }
2929 llvm_unreachable("Invalid default argument kind.");
2930 }
2931
setUninstantiatedDefaultArg(Expr * arg)2932 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2933 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2934 Init = arg;
2935 }
2936
getUninstantiatedDefaultArg()2937 Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2938 assert(hasUninstantiatedDefaultArg() &&
2939 "Wrong kind of initialization expression!");
2940 return cast_or_null<Expr>(Init.get<Stmt *>());
2941 }
2942
hasDefaultArg() const2943 bool ParmVarDecl::hasDefaultArg() const {
2944 // FIXME: We should just return false for DAK_None here once callers are
2945 // prepared for the case that we encountered an invalid default argument and
2946 // were unable to even build an invalid expression.
2947 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2948 !Init.isNull();
2949 }
2950
setParameterIndexLarge(unsigned parameterIndex)2951 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2952 getASTContext().setParameterIndex(this, parameterIndex);
2953 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2954 }
2955
getParameterIndexLarge() const2956 unsigned ParmVarDecl::getParameterIndexLarge() const {
2957 return getASTContext().getParameterIndex(this);
2958 }
2959
2960 //===----------------------------------------------------------------------===//
2961 // FunctionDecl Implementation
2962 //===----------------------------------------------------------------------===//
2963
FunctionDecl(Kind DK,ASTContext & C,DeclContext * DC,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass S,bool UsesFPIntrin,bool isInlineSpecified,ConstexprSpecKind ConstexprKind,Expr * TrailingRequiresClause)2964 FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
2965 SourceLocation StartLoc,
2966 const DeclarationNameInfo &NameInfo, QualType T,
2967 TypeSourceInfo *TInfo, StorageClass S,
2968 bool UsesFPIntrin, bool isInlineSpecified,
2969 ConstexprSpecKind ConstexprKind,
2970 Expr *TrailingRequiresClause)
2971 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
2972 StartLoc),
2973 DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
2974 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
2975 assert(T.isNull() || T->isFunctionType());
2976 FunctionDeclBits.SClass = S;
2977 FunctionDeclBits.IsInline = isInlineSpecified;
2978 FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
2979 FunctionDeclBits.IsVirtualAsWritten = false;
2980 FunctionDeclBits.IsPure = false;
2981 FunctionDeclBits.HasInheritedPrototype = false;
2982 FunctionDeclBits.HasWrittenPrototype = true;
2983 FunctionDeclBits.IsDeleted = false;
2984 FunctionDeclBits.IsTrivial = false;
2985 FunctionDeclBits.IsTrivialForCall = false;
2986 FunctionDeclBits.IsDefaulted = false;
2987 FunctionDeclBits.IsExplicitlyDefaulted = false;
2988 FunctionDeclBits.HasDefaultedFunctionInfo = false;
2989 FunctionDeclBits.IsIneligibleOrNotSelected = false;
2990 FunctionDeclBits.HasImplicitReturnZero = false;
2991 FunctionDeclBits.IsLateTemplateParsed = false;
2992 FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind);
2993 FunctionDeclBits.InstantiationIsPending = false;
2994 FunctionDeclBits.UsesSEHTry = false;
2995 FunctionDeclBits.UsesFPIntrin = UsesFPIntrin;
2996 FunctionDeclBits.HasSkippedBody = false;
2997 FunctionDeclBits.WillHaveBody = false;
2998 FunctionDeclBits.IsMultiVersion = false;
2999 FunctionDeclBits.IsCopyDeductionCandidate = false;
3000 FunctionDeclBits.HasODRHash = false;
3001 FunctionDeclBits.FriendConstraintRefersToEnclosingTemplate = false;
3002 if (TrailingRequiresClause)
3003 setTrailingRequiresClause(TrailingRequiresClause);
3004 }
3005
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const3006 void FunctionDecl::getNameForDiagnostic(
3007 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
3008 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
3009 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
3010 if (TemplateArgs)
3011 printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy);
3012 }
3013
isVariadic() const3014 bool FunctionDecl::isVariadic() const {
3015 if (const auto *FT = getType()->getAs<FunctionProtoType>())
3016 return FT->isVariadic();
3017 return false;
3018 }
3019
3020 FunctionDecl::DefaultedFunctionInfo *
Create(ASTContext & Context,ArrayRef<DeclAccessPair> Lookups)3021 FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context,
3022 ArrayRef<DeclAccessPair> Lookups) {
3023 DefaultedFunctionInfo *Info = new (Context.Allocate(
3024 totalSizeToAlloc<DeclAccessPair>(Lookups.size()),
3025 std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair))))
3026 DefaultedFunctionInfo;
3027 Info->NumLookups = Lookups.size();
3028 std::uninitialized_copy(Lookups.begin(), Lookups.end(),
3029 Info->getTrailingObjects<DeclAccessPair>());
3030 return Info;
3031 }
3032
setDefaultedFunctionInfo(DefaultedFunctionInfo * Info)3033 void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) {
3034 assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this");
3035 assert(!Body && "can't replace function body with defaulted function info");
3036
3037 FunctionDeclBits.HasDefaultedFunctionInfo = true;
3038 DefaultedInfo = Info;
3039 }
3040
3041 FunctionDecl::DefaultedFunctionInfo *
getDefaultedFunctionInfo() const3042 FunctionDecl::getDefaultedFunctionInfo() const {
3043 return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr;
3044 }
3045
hasBody(const FunctionDecl * & Definition) const3046 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
3047 for (auto *I : redecls()) {
3048 if (I->doesThisDeclarationHaveABody()) {
3049 Definition = I;
3050 return true;
3051 }
3052 }
3053
3054 return false;
3055 }
3056
hasTrivialBody() const3057 bool FunctionDecl::hasTrivialBody() const {
3058 Stmt *S = getBody();
3059 if (!S) {
3060 // Since we don't have a body for this function, we don't know if it's
3061 // trivial or not.
3062 return false;
3063 }
3064
3065 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
3066 return true;
3067 return false;
3068 }
3069
isThisDeclarationInstantiatedFromAFriendDefinition() const3070 bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const {
3071 if (!getFriendObjectKind())
3072 return false;
3073
3074 // Check for a friend function instantiated from a friend function
3075 // definition in a templated class.
3076 if (const FunctionDecl *InstantiatedFrom =
3077 getInstantiatedFromMemberFunction())
3078 return InstantiatedFrom->getFriendObjectKind() &&
3079 InstantiatedFrom->isThisDeclarationADefinition();
3080
3081 // Check for a friend function template instantiated from a friend
3082 // function template definition in a templated class.
3083 if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) {
3084 if (const FunctionTemplateDecl *InstantiatedFrom =
3085 Template->getInstantiatedFromMemberTemplate())
3086 return InstantiatedFrom->getFriendObjectKind() &&
3087 InstantiatedFrom->isThisDeclarationADefinition();
3088 }
3089
3090 return false;
3091 }
3092
isDefined(const FunctionDecl * & Definition,bool CheckForPendingFriendDefinition) const3093 bool FunctionDecl::isDefined(const FunctionDecl *&Definition,
3094 bool CheckForPendingFriendDefinition) const {
3095 for (const FunctionDecl *FD : redecls()) {
3096 if (FD->isThisDeclarationADefinition()) {
3097 Definition = FD;
3098 return true;
3099 }
3100
3101 // If this is a friend function defined in a class template, it does not
3102 // have a body until it is used, nevertheless it is a definition, see
3103 // [temp.inst]p2:
3104 //
3105 // ... for the purpose of determining whether an instantiated redeclaration
3106 // is valid according to [basic.def.odr] and [class.mem], a declaration that
3107 // corresponds to a definition in the template is considered to be a
3108 // definition.
3109 //
3110 // The following code must produce redefinition error:
3111 //
3112 // template<typename T> struct C20 { friend void func_20() {} };
3113 // C20<int> c20i;
3114 // void func_20() {}
3115 //
3116 if (CheckForPendingFriendDefinition &&
3117 FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
3118 Definition = FD;
3119 return true;
3120 }
3121 }
3122
3123 return false;
3124 }
3125
getBody(const FunctionDecl * & Definition) const3126 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
3127 if (!hasBody(Definition))
3128 return nullptr;
3129
3130 assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo &&
3131 "definition should not have a body");
3132 if (Definition->Body)
3133 return Definition->Body.get(getASTContext().getExternalSource());
3134
3135 return nullptr;
3136 }
3137
setBody(Stmt * B)3138 void FunctionDecl::setBody(Stmt *B) {
3139 FunctionDeclBits.HasDefaultedFunctionInfo = false;
3140 Body = LazyDeclStmtPtr(B);
3141 if (B)
3142 EndRangeLoc = B->getEndLoc();
3143 }
3144
setPure(bool P)3145 void FunctionDecl::setPure(bool P) {
3146 FunctionDeclBits.IsPure = P;
3147 if (P)
3148 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
3149 Parent->markedVirtualFunctionPure();
3150 }
3151
3152 template<std::size_t Len>
isNamed(const NamedDecl * ND,const char (& Str)[Len])3153 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
3154 IdentifierInfo *II = ND->getIdentifier();
3155 return II && II->isStr(Str);
3156 }
3157
isMain() const3158 bool FunctionDecl::isMain() const {
3159 const TranslationUnitDecl *tunit =
3160 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3161 return tunit &&
3162 !tunit->getASTContext().getLangOpts().Freestanding &&
3163 isNamed(this, "main");
3164 }
3165
isMSVCRTEntryPoint() const3166 bool FunctionDecl::isMSVCRTEntryPoint() const {
3167 const TranslationUnitDecl *TUnit =
3168 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
3169 if (!TUnit)
3170 return false;
3171
3172 // Even though we aren't really targeting MSVCRT if we are freestanding,
3173 // semantic analysis for these functions remains the same.
3174
3175 // MSVCRT entry points only exist on MSVCRT targets.
3176 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
3177 return false;
3178
3179 // Nameless functions like constructors cannot be entry points.
3180 if (!getIdentifier())
3181 return false;
3182
3183 return llvm::StringSwitch<bool>(getName())
3184 .Cases("main", // an ANSI console app
3185 "wmain", // a Unicode console App
3186 "WinMain", // an ANSI GUI app
3187 "wWinMain", // a Unicode GUI app
3188 "DllMain", // a DLL
3189 true)
3190 .Default(false);
3191 }
3192
isReservedGlobalPlacementOperator() const3193 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
3194 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3195 return false;
3196 if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3197 getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3198 getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3199 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3200 return false;
3201
3202 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3203 return false;
3204
3205 const auto *proto = getType()->castAs<FunctionProtoType>();
3206 if (proto->getNumParams() != 2 || proto->isVariadic())
3207 return false;
3208
3209 ASTContext &Context =
3210 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
3211 ->getASTContext();
3212
3213 // The result type and first argument type are constant across all
3214 // these operators. The second argument must be exactly void*.
3215 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
3216 }
3217
isReplaceableGlobalAllocationFunction(std::optional<unsigned> * AlignmentParam,bool * IsNothrow) const3218 bool FunctionDecl::isReplaceableGlobalAllocationFunction(
3219 std::optional<unsigned> *AlignmentParam, bool *IsNothrow) const {
3220 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
3221 return false;
3222 if (getDeclName().getCXXOverloadedOperator() != OO_New &&
3223 getDeclName().getCXXOverloadedOperator() != OO_Delete &&
3224 getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
3225 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
3226 return false;
3227
3228 if (isa<CXXRecordDecl>(getDeclContext()))
3229 return false;
3230
3231 // This can only fail for an invalid 'operator new' declaration.
3232 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3233 return false;
3234
3235 const auto *FPT = getType()->castAs<FunctionProtoType>();
3236 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic())
3237 return false;
3238
3239 // If this is a single-parameter function, it must be a replaceable global
3240 // allocation or deallocation function.
3241 if (FPT->getNumParams() == 1)
3242 return true;
3243
3244 unsigned Params = 1;
3245 QualType Ty = FPT->getParamType(Params);
3246 ASTContext &Ctx = getASTContext();
3247
3248 auto Consume = [&] {
3249 ++Params;
3250 Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType();
3251 };
3252
3253 // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3254 bool IsSizedDelete = false;
3255 if (Ctx.getLangOpts().SizedDeallocation &&
3256 (getDeclName().getCXXOverloadedOperator() == OO_Delete ||
3257 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) &&
3258 Ctx.hasSameType(Ty, Ctx.getSizeType())) {
3259 IsSizedDelete = true;
3260 Consume();
3261 }
3262
3263 // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3264 // new/delete.
3265 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3266 Consume();
3267 if (AlignmentParam)
3268 *AlignmentParam = Params;
3269 }
3270
3271 // Finally, if this is not a sized delete, the final parameter can
3272 // be a 'const std::nothrow_t&'.
3273 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3274 Ty = Ty->getPointeeType();
3275 if (Ty.getCVRQualifiers() != Qualifiers::Const)
3276 return false;
3277 if (Ty->isNothrowT()) {
3278 if (IsNothrow)
3279 *IsNothrow = true;
3280 Consume();
3281 }
3282 }
3283
3284 return Params == FPT->getNumParams();
3285 }
3286
isInlineBuiltinDeclaration() const3287 bool FunctionDecl::isInlineBuiltinDeclaration() const {
3288 if (!getBuiltinID())
3289 return false;
3290
3291 const FunctionDecl *Definition;
3292 return hasBody(Definition) && Definition->isInlineSpecified() &&
3293 Definition->hasAttr<AlwaysInlineAttr>() &&
3294 Definition->hasAttr<GNUInlineAttr>();
3295 }
3296
isDestroyingOperatorDelete() const3297 bool FunctionDecl::isDestroyingOperatorDelete() const {
3298 // C++ P0722:
3299 // Within a class C, a single object deallocation function with signature
3300 // (T, std::destroying_delete_t, <more params>)
3301 // is a destroying operator delete.
3302 if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete ||
3303 getNumParams() < 2)
3304 return false;
3305
3306 auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl();
3307 return RD && RD->isInStdNamespace() && RD->getIdentifier() &&
3308 RD->getIdentifier()->isStr("destroying_delete_t");
3309 }
3310
getLanguageLinkage() const3311 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3312 return getDeclLanguageLinkage(*this);
3313 }
3314
isExternC() const3315 bool FunctionDecl::isExternC() const {
3316 return isDeclExternC(*this);
3317 }
3318
isInExternCContext() const3319 bool FunctionDecl::isInExternCContext() const {
3320 if (hasAttr<OpenCLKernelAttr>())
3321 return true;
3322 return getLexicalDeclContext()->isExternCContext();
3323 }
3324
isInExternCXXContext() const3325 bool FunctionDecl::isInExternCXXContext() const {
3326 return getLexicalDeclContext()->isExternCXXContext();
3327 }
3328
isGlobal() const3329 bool FunctionDecl::isGlobal() const {
3330 if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
3331 return Method->isStatic();
3332
3333 if (getCanonicalDecl()->getStorageClass() == SC_Static)
3334 return false;
3335
3336 for (const DeclContext *DC = getDeclContext();
3337 DC->isNamespace();
3338 DC = DC->getParent()) {
3339 if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
3340 if (!Namespace->getDeclName())
3341 return false;
3342 }
3343 }
3344
3345 return true;
3346 }
3347
isNoReturn() const3348 bool FunctionDecl::isNoReturn() const {
3349 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3350 hasAttr<C11NoReturnAttr>())
3351 return true;
3352
3353 if (auto *FnTy = getType()->getAs<FunctionType>())
3354 return FnTy->getNoReturnAttr();
3355
3356 return false;
3357 }
3358
3359
getMultiVersionKind() const3360 MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3361 if (hasAttr<TargetAttr>())
3362 return MultiVersionKind::Target;
3363 if (hasAttr<TargetVersionAttr>())
3364 return MultiVersionKind::TargetVersion;
3365 if (hasAttr<CPUDispatchAttr>())
3366 return MultiVersionKind::CPUDispatch;
3367 if (hasAttr<CPUSpecificAttr>())
3368 return MultiVersionKind::CPUSpecific;
3369 if (hasAttr<TargetClonesAttr>())
3370 return MultiVersionKind::TargetClones;
3371 return MultiVersionKind::None;
3372 }
3373
isCPUDispatchMultiVersion() const3374 bool FunctionDecl::isCPUDispatchMultiVersion() const {
3375 return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3376 }
3377
isCPUSpecificMultiVersion() const3378 bool FunctionDecl::isCPUSpecificMultiVersion() const {
3379 return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3380 }
3381
isTargetMultiVersion() const3382 bool FunctionDecl::isTargetMultiVersion() const {
3383 return isMultiVersion() &&
3384 (hasAttr<TargetAttr>() || hasAttr<TargetVersionAttr>());
3385 }
3386
isTargetClonesMultiVersion() const3387 bool FunctionDecl::isTargetClonesMultiVersion() const {
3388 return isMultiVersion() && hasAttr<TargetClonesAttr>();
3389 }
3390
3391 void
setPreviousDeclaration(FunctionDecl * PrevDecl)3392 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3393 redeclarable_base::setPreviousDecl(PrevDecl);
3394
3395 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3396 FunctionTemplateDecl *PrevFunTmpl
3397 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3398 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3399 FunTmpl->setPreviousDecl(PrevFunTmpl);
3400 }
3401
3402 if (PrevDecl && PrevDecl->isInlined())
3403 setImplicitlyInline(true);
3404 }
3405
getCanonicalDecl()3406 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3407
3408 /// Returns a value indicating whether this function corresponds to a builtin
3409 /// function.
3410 ///
3411 /// The function corresponds to a built-in function if it is declared at
3412 /// translation scope or within an extern "C" block and its name matches with
3413 /// the name of a builtin. The returned value will be 0 for functions that do
3414 /// not correspond to a builtin, a value of type \c Builtin::ID if in the
3415 /// target-independent range \c [1,Builtin::First), or a target-specific builtin
3416 /// value.
3417 ///
3418 /// \param ConsiderWrapperFunctions If true, we should consider wrapper
3419 /// functions as their wrapped builtins. This shouldn't be done in general, but
3420 /// it's useful in Sema to diagnose calls to wrappers based on their semantics.
getBuiltinID(bool ConsiderWrapperFunctions) const3421 unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3422 unsigned BuiltinID = 0;
3423
3424 if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3425 BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3426 } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) {
3427 BuiltinID = BAA->getBuiltinName()->getBuiltinID();
3428 } else if (const auto *A = getAttr<BuiltinAttr>()) {
3429 BuiltinID = A->getID();
3430 }
3431
3432 if (!BuiltinID)
3433 return 0;
3434
3435 // If the function is marked "overloadable", it has a different mangled name
3436 // and is not the C library function.
3437 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3438 (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>()))
3439 return 0;
3440
3441 ASTContext &Context = getASTContext();
3442 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3443 return BuiltinID;
3444
3445 // This function has the name of a known C library
3446 // function. Determine whether it actually refers to the C library
3447 // function or whether it just has the same name.
3448
3449 // If this is a static function, it's not a builtin.
3450 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3451 return 0;
3452
3453 // OpenCL v1.2 s6.9.f - The library functions defined in
3454 // the C99 standard headers are not available.
3455 if (Context.getLangOpts().OpenCL &&
3456 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
3457 return 0;
3458
3459 // CUDA does not have device-side standard library. printf and malloc are the
3460 // only special cases that are supported by device-side runtime.
3461 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3462 !hasAttr<CUDAHostAttr>() &&
3463 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3464 return 0;
3465
3466 // As AMDGCN implementation of OpenMP does not have a device-side standard
3467 // library, none of the predefined library functions except printf and malloc
3468 // should be treated as a builtin i.e. 0 should be returned for them.
3469 if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3470 Context.getLangOpts().OpenMPIsDevice &&
3471 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
3472 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3473 return 0;
3474
3475 return BuiltinID;
3476 }
3477
3478 /// getNumParams - Return the number of parameters this function must have
3479 /// based on its FunctionType. This is the length of the ParamInfo array
3480 /// after it has been created.
getNumParams() const3481 unsigned FunctionDecl::getNumParams() const {
3482 const auto *FPT = getType()->getAs<FunctionProtoType>();
3483 return FPT ? FPT->getNumParams() : 0;
3484 }
3485
setParams(ASTContext & C,ArrayRef<ParmVarDecl * > NewParamInfo)3486 void FunctionDecl::setParams(ASTContext &C,
3487 ArrayRef<ParmVarDecl *> NewParamInfo) {
3488 assert(!ParamInfo && "Already has param info!");
3489 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3490
3491 // Zero params -> null pointer.
3492 if (!NewParamInfo.empty()) {
3493 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3494 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3495 }
3496 }
3497
3498 /// getMinRequiredArguments - Returns the minimum number of arguments
3499 /// needed to call this function. This may be fewer than the number of
3500 /// function parameters, if some of the parameters have default
3501 /// arguments (in C++) or are parameter packs (C++11).
getMinRequiredArguments() const3502 unsigned FunctionDecl::getMinRequiredArguments() const {
3503 if (!getASTContext().getLangOpts().CPlusPlus)
3504 return getNumParams();
3505
3506 // Note that it is possible for a parameter with no default argument to
3507 // follow a parameter with a default argument.
3508 unsigned NumRequiredArgs = 0;
3509 unsigned MinParamsSoFar = 0;
3510 for (auto *Param : parameters()) {
3511 if (!Param->isParameterPack()) {
3512 ++MinParamsSoFar;
3513 if (!Param->hasDefaultArg())
3514 NumRequiredArgs = MinParamsSoFar;
3515 }
3516 }
3517 return NumRequiredArgs;
3518 }
3519
hasOneParamOrDefaultArgs() const3520 bool FunctionDecl::hasOneParamOrDefaultArgs() const {
3521 return getNumParams() == 1 ||
3522 (getNumParams() > 1 &&
3523 llvm::all_of(llvm::drop_begin(parameters()),
3524 [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3525 }
3526
3527 /// The combination of the extern and inline keywords under MSVC forces
3528 /// the function to be required.
3529 ///
3530 /// Note: This function assumes that we will only get called when isInlined()
3531 /// would return true for this FunctionDecl.
isMSExternInline() const3532 bool FunctionDecl::isMSExternInline() const {
3533 assert(isInlined() && "expected to get called on an inlined function!");
3534
3535 const ASTContext &Context = getASTContext();
3536 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3537 !hasAttr<DLLExportAttr>())
3538 return false;
3539
3540 for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3541 FD = FD->getPreviousDecl())
3542 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3543 return true;
3544
3545 return false;
3546 }
3547
redeclForcesDefMSVC(const FunctionDecl * Redecl)3548 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3549 if (Redecl->getStorageClass() != SC_Extern)
3550 return false;
3551
3552 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3553 FD = FD->getPreviousDecl())
3554 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3555 return false;
3556
3557 return true;
3558 }
3559
RedeclForcesDefC99(const FunctionDecl * Redecl)3560 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3561 // Only consider file-scope declarations in this test.
3562 if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3563 return false;
3564
3565 // Only consider explicit declarations; the presence of a builtin for a
3566 // libcall shouldn't affect whether a definition is externally visible.
3567 if (Redecl->isImplicit())
3568 return false;
3569
3570 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3571 return true; // Not an inline definition
3572
3573 return false;
3574 }
3575
3576 /// For a function declaration in C or C++, determine whether this
3577 /// declaration causes the definition to be externally visible.
3578 ///
3579 /// For instance, this determines if adding the current declaration to the set
3580 /// of redeclarations of the given functions causes
3581 /// isInlineDefinitionExternallyVisible to change from false to true.
doesDeclarationForceExternallyVisibleDefinition() const3582 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3583 assert(!doesThisDeclarationHaveABody() &&
3584 "Must have a declaration without a body.");
3585
3586 ASTContext &Context = getASTContext();
3587
3588 if (Context.getLangOpts().MSVCCompat) {
3589 const FunctionDecl *Definition;
3590 if (hasBody(Definition) && Definition->isInlined() &&
3591 redeclForcesDefMSVC(this))
3592 return true;
3593 }
3594
3595 if (Context.getLangOpts().CPlusPlus)
3596 return false;
3597
3598 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3599 // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3600 // an externally visible definition.
3601 //
3602 // FIXME: What happens if gnu_inline gets added on after the first
3603 // declaration?
3604 if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3605 return false;
3606
3607 const FunctionDecl *Prev = this;
3608 bool FoundBody = false;
3609 while ((Prev = Prev->getPreviousDecl())) {
3610 FoundBody |= Prev->doesThisDeclarationHaveABody();
3611
3612 if (Prev->doesThisDeclarationHaveABody()) {
3613 // If it's not the case that both 'inline' and 'extern' are
3614 // specified on the definition, then it is always externally visible.
3615 if (!Prev->isInlineSpecified() ||
3616 Prev->getStorageClass() != SC_Extern)
3617 return false;
3618 } else if (Prev->isInlineSpecified() &&
3619 Prev->getStorageClass() != SC_Extern) {
3620 return false;
3621 }
3622 }
3623 return FoundBody;
3624 }
3625
3626 // C99 6.7.4p6:
3627 // [...] If all of the file scope declarations for a function in a
3628 // translation unit include the inline function specifier without extern,
3629 // then the definition in that translation unit is an inline definition.
3630 if (isInlineSpecified() && getStorageClass() != SC_Extern)
3631 return false;
3632 const FunctionDecl *Prev = this;
3633 bool FoundBody = false;
3634 while ((Prev = Prev->getPreviousDecl())) {
3635 FoundBody |= Prev->doesThisDeclarationHaveABody();
3636 if (RedeclForcesDefC99(Prev))
3637 return false;
3638 }
3639 return FoundBody;
3640 }
3641
getFunctionTypeLoc() const3642 FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3643 const TypeSourceInfo *TSI = getTypeSourceInfo();
3644 return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>()
3645 : FunctionTypeLoc();
3646 }
3647
getReturnTypeSourceRange() const3648 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3649 FunctionTypeLoc FTL = getFunctionTypeLoc();
3650 if (!FTL)
3651 return SourceRange();
3652
3653 // Skip self-referential return types.
3654 const SourceManager &SM = getASTContext().getSourceManager();
3655 SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3656 SourceLocation Boundary = getNameInfo().getBeginLoc();
3657 if (RTRange.isInvalid() || Boundary.isInvalid() ||
3658 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
3659 return SourceRange();
3660
3661 return RTRange;
3662 }
3663
getParametersSourceRange() const3664 SourceRange FunctionDecl::getParametersSourceRange() const {
3665 unsigned NP = getNumParams();
3666 SourceLocation EllipsisLoc = getEllipsisLoc();
3667
3668 if (NP == 0 && EllipsisLoc.isInvalid())
3669 return SourceRange();
3670
3671 SourceLocation Begin =
3672 NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3673 SourceLocation End = EllipsisLoc.isValid()
3674 ? EllipsisLoc
3675 : ParamInfo[NP - 1]->getSourceRange().getEnd();
3676
3677 return SourceRange(Begin, End);
3678 }
3679
getExceptionSpecSourceRange() const3680 SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3681 FunctionTypeLoc FTL = getFunctionTypeLoc();
3682 return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3683 }
3684
3685 /// For an inline function definition in C, or for a gnu_inline function
3686 /// in C++, determine whether the definition will be externally visible.
3687 ///
3688 /// Inline function definitions are always available for inlining optimizations.
3689 /// However, depending on the language dialect, declaration specifiers, and
3690 /// attributes, the definition of an inline function may or may not be
3691 /// "externally" visible to other translation units in the program.
3692 ///
3693 /// In C99, inline definitions are not externally visible by default. However,
3694 /// if even one of the global-scope declarations is marked "extern inline", the
3695 /// inline definition becomes externally visible (C99 6.7.4p6).
3696 ///
3697 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
3698 /// definition, we use the GNU semantics for inline, which are nearly the
3699 /// opposite of C99 semantics. In particular, "inline" by itself will create
3700 /// an externally visible symbol, but "extern inline" will not create an
3701 /// externally visible symbol.
isInlineDefinitionExternallyVisible() const3702 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
3703 assert((doesThisDeclarationHaveABody() || willHaveBody() ||
3704 hasAttr<AliasAttr>()) &&
3705 "Must be a function definition");
3706 assert(isInlined() && "Function must be inline");
3707 ASTContext &Context = getASTContext();
3708
3709 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3710 // Note: If you change the logic here, please change
3711 // doesDeclarationForceExternallyVisibleDefinition as well.
3712 //
3713 // If it's not the case that both 'inline' and 'extern' are
3714 // specified on the definition, then this inline definition is
3715 // externally visible.
3716 if (Context.getLangOpts().CPlusPlus)
3717 return false;
3718 if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
3719 return true;
3720
3721 // If any declaration is 'inline' but not 'extern', then this definition
3722 // is externally visible.
3723 for (auto *Redecl : redecls()) {
3724 if (Redecl->isInlineSpecified() &&
3725 Redecl->getStorageClass() != SC_Extern)
3726 return true;
3727 }
3728
3729 return false;
3730 }
3731
3732 // The rest of this function is C-only.
3733 assert(!Context.getLangOpts().CPlusPlus &&
3734 "should not use C inline rules in C++");
3735
3736 // C99 6.7.4p6:
3737 // [...] If all of the file scope declarations for a function in a
3738 // translation unit include the inline function specifier without extern,
3739 // then the definition in that translation unit is an inline definition.
3740 for (auto *Redecl : redecls()) {
3741 if (RedeclForcesDefC99(Redecl))
3742 return true;
3743 }
3744
3745 // C99 6.7.4p6:
3746 // An inline definition does not provide an external definition for the
3747 // function, and does not forbid an external definition in another
3748 // translation unit.
3749 return false;
3750 }
3751
3752 /// getOverloadedOperator - Which C++ overloaded operator this
3753 /// function represents, if any.
getOverloadedOperator() const3754 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3755 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3756 return getDeclName().getCXXOverloadedOperator();
3757 return OO_None;
3758 }
3759
3760 /// getLiteralIdentifier - The literal suffix identifier this function
3761 /// represents, if any.
getLiteralIdentifier() const3762 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3763 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3764 return getDeclName().getCXXLiteralIdentifier();
3765 return nullptr;
3766 }
3767
getTemplatedKind() const3768 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3769 if (TemplateOrSpecialization.isNull())
3770 return TK_NonTemplate;
3771 if (const auto *ND = TemplateOrSpecialization.dyn_cast<NamedDecl *>()) {
3772 if (isa<FunctionDecl>(ND))
3773 return TK_DependentNonTemplate;
3774 assert(isa<FunctionTemplateDecl>(ND) &&
3775 "No other valid types in NamedDecl");
3776 return TK_FunctionTemplate;
3777 }
3778 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3779 return TK_MemberSpecialization;
3780 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3781 return TK_FunctionTemplateSpecialization;
3782 if (TemplateOrSpecialization.is
3783 <DependentFunctionTemplateSpecializationInfo*>())
3784 return TK_DependentFunctionTemplateSpecialization;
3785
3786 llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3787 }
3788
getInstantiatedFromMemberFunction() const3789 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3790 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3791 return cast<FunctionDecl>(Info->getInstantiatedFrom());
3792
3793 return nullptr;
3794 }
3795
getMemberSpecializationInfo() const3796 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3797 if (auto *MSI =
3798 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
3799 return MSI;
3800 if (auto *FTSI = TemplateOrSpecialization
3801 .dyn_cast<FunctionTemplateSpecializationInfo *>())
3802 return FTSI->getMemberSpecializationInfo();
3803 return nullptr;
3804 }
3805
3806 void
setInstantiationOfMemberFunction(ASTContext & C,FunctionDecl * FD,TemplateSpecializationKind TSK)3807 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3808 FunctionDecl *FD,
3809 TemplateSpecializationKind TSK) {
3810 assert(TemplateOrSpecialization.isNull() &&
3811 "Member function is already a specialization");
3812 MemberSpecializationInfo *Info
3813 = new (C) MemberSpecializationInfo(FD, TSK);
3814 TemplateOrSpecialization = Info;
3815 }
3816
getDescribedFunctionTemplate() const3817 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3818 return dyn_cast_or_null<FunctionTemplateDecl>(
3819 TemplateOrSpecialization.dyn_cast<NamedDecl *>());
3820 }
3821
setDescribedFunctionTemplate(FunctionTemplateDecl * Template)3822 void FunctionDecl::setDescribedFunctionTemplate(
3823 FunctionTemplateDecl *Template) {
3824 assert(TemplateOrSpecialization.isNull() &&
3825 "Member function is already a specialization");
3826 TemplateOrSpecialization = Template;
3827 }
3828
setInstantiatedFromDecl(FunctionDecl * FD)3829 void FunctionDecl::setInstantiatedFromDecl(FunctionDecl *FD) {
3830 assert(TemplateOrSpecialization.isNull() &&
3831 "Function is already a specialization");
3832 TemplateOrSpecialization = FD;
3833 }
3834
getInstantiatedFromDecl() const3835 FunctionDecl *FunctionDecl::getInstantiatedFromDecl() const {
3836 return dyn_cast_or_null<FunctionDecl>(
3837 TemplateOrSpecialization.dyn_cast<NamedDecl *>());
3838 }
3839
isImplicitlyInstantiable() const3840 bool FunctionDecl::isImplicitlyInstantiable() const {
3841 // If the function is invalid, it can't be implicitly instantiated.
3842 if (isInvalidDecl())
3843 return false;
3844
3845 switch (getTemplateSpecializationKindForInstantiation()) {
3846 case TSK_Undeclared:
3847 case TSK_ExplicitInstantiationDefinition:
3848 case TSK_ExplicitSpecialization:
3849 return false;
3850
3851 case TSK_ImplicitInstantiation:
3852 return true;
3853
3854 case TSK_ExplicitInstantiationDeclaration:
3855 // Handled below.
3856 break;
3857 }
3858
3859 // Find the actual template from which we will instantiate.
3860 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3861 bool HasPattern = false;
3862 if (PatternDecl)
3863 HasPattern = PatternDecl->hasBody(PatternDecl);
3864
3865 // C++0x [temp.explicit]p9:
3866 // Except for inline functions, other explicit instantiation declarations
3867 // have the effect of suppressing the implicit instantiation of the entity
3868 // to which they refer.
3869 if (!HasPattern || !PatternDecl)
3870 return true;
3871
3872 return PatternDecl->isInlined();
3873 }
3874
isTemplateInstantiation() const3875 bool FunctionDecl::isTemplateInstantiation() const {
3876 // FIXME: Remove this, it's not clear what it means. (Which template
3877 // specialization kind?)
3878 return clang::isTemplateInstantiation(getTemplateSpecializationKind());
3879 }
3880
3881 FunctionDecl *
getTemplateInstantiationPattern(bool ForDefinition) const3882 FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
3883 // If this is a generic lambda call operator specialization, its
3884 // instantiation pattern is always its primary template's pattern
3885 // even if its primary template was instantiated from another
3886 // member template (which happens with nested generic lambdas).
3887 // Since a lambda's call operator's body is transformed eagerly,
3888 // we don't have to go hunting for a prototype definition template
3889 // (i.e. instantiated-from-member-template) to use as an instantiation
3890 // pattern.
3891
3892 if (isGenericLambdaCallOperatorSpecialization(
3893 dyn_cast<CXXMethodDecl>(this))) {
3894 assert(getPrimaryTemplate() && "not a generic lambda call operator?");
3895 return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl());
3896 }
3897
3898 // Check for a declaration of this function that was instantiated from a
3899 // friend definition.
3900 const FunctionDecl *FD = nullptr;
3901 if (!isDefined(FD, /*CheckForPendingFriendDefinition=*/true))
3902 FD = this;
3903
3904 if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) {
3905 if (ForDefinition &&
3906 !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind()))
3907 return nullptr;
3908 return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom()));
3909 }
3910
3911 if (ForDefinition &&
3912 !clang::isTemplateInstantiation(getTemplateSpecializationKind()))
3913 return nullptr;
3914
3915 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3916 // If we hit a point where the user provided a specialization of this
3917 // template, we're done looking.
3918 while (!ForDefinition || !Primary->isMemberSpecialization()) {
3919 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
3920 if (!NewPrimary)
3921 break;
3922 Primary = NewPrimary;
3923 }
3924
3925 return getDefinitionOrSelf(Primary->getTemplatedDecl());
3926 }
3927
3928 return nullptr;
3929 }
3930
getPrimaryTemplate() const3931 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3932 if (FunctionTemplateSpecializationInfo *Info
3933 = TemplateOrSpecialization
3934 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3935 return Info->getTemplate();
3936 }
3937 return nullptr;
3938 }
3939
3940 FunctionTemplateSpecializationInfo *
getTemplateSpecializationInfo() const3941 FunctionDecl::getTemplateSpecializationInfo() const {
3942 return TemplateOrSpecialization
3943 .dyn_cast<FunctionTemplateSpecializationInfo *>();
3944 }
3945
3946 const TemplateArgumentList *
getTemplateSpecializationArgs() const3947 FunctionDecl::getTemplateSpecializationArgs() const {
3948 if (FunctionTemplateSpecializationInfo *Info
3949 = TemplateOrSpecialization
3950 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3951 return Info->TemplateArguments;
3952 }
3953 return nullptr;
3954 }
3955
3956 const ASTTemplateArgumentListInfo *
getTemplateSpecializationArgsAsWritten() const3957 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3958 if (FunctionTemplateSpecializationInfo *Info
3959 = TemplateOrSpecialization
3960 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3961 return Info->TemplateArgumentsAsWritten;
3962 }
3963 return nullptr;
3964 }
3965
3966 void
setFunctionTemplateSpecialization(ASTContext & C,FunctionTemplateDecl * Template,const TemplateArgumentList * TemplateArgs,void * InsertPos,TemplateSpecializationKind TSK,const TemplateArgumentListInfo * TemplateArgsAsWritten,SourceLocation PointOfInstantiation)3967 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3968 FunctionTemplateDecl *Template,
3969 const TemplateArgumentList *TemplateArgs,
3970 void *InsertPos,
3971 TemplateSpecializationKind TSK,
3972 const TemplateArgumentListInfo *TemplateArgsAsWritten,
3973 SourceLocation PointOfInstantiation) {
3974 assert((TemplateOrSpecialization.isNull() ||
3975 TemplateOrSpecialization.is<MemberSpecializationInfo *>()) &&
3976 "Member function is already a specialization");
3977 assert(TSK != TSK_Undeclared &&
3978 "Must specify the type of function template specialization");
3979 assert((TemplateOrSpecialization.isNull() ||
3980 TSK == TSK_ExplicitSpecialization) &&
3981 "Member specialization must be an explicit specialization");
3982 FunctionTemplateSpecializationInfo *Info =
3983 FunctionTemplateSpecializationInfo::Create(
3984 C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
3985 PointOfInstantiation,
3986 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>());
3987 TemplateOrSpecialization = Info;
3988 Template->addSpecialization(Info, InsertPos);
3989 }
3990
3991 void
setDependentTemplateSpecialization(ASTContext & Context,const UnresolvedSetImpl & Templates,const TemplateArgumentListInfo & TemplateArgs)3992 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3993 const UnresolvedSetImpl &Templates,
3994 const TemplateArgumentListInfo &TemplateArgs) {
3995 assert(TemplateOrSpecialization.isNull());
3996 DependentFunctionTemplateSpecializationInfo *Info =
3997 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
3998 TemplateArgs);
3999 TemplateOrSpecialization = Info;
4000 }
4001
4002 DependentFunctionTemplateSpecializationInfo *
getDependentSpecializationInfo() const4003 FunctionDecl::getDependentSpecializationInfo() const {
4004 return TemplateOrSpecialization
4005 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
4006 }
4007
4008 DependentFunctionTemplateSpecializationInfo *
Create(ASTContext & Context,const UnresolvedSetImpl & Ts,const TemplateArgumentListInfo & TArgs)4009 DependentFunctionTemplateSpecializationInfo::Create(
4010 ASTContext &Context, const UnresolvedSetImpl &Ts,
4011 const TemplateArgumentListInfo &TArgs) {
4012 void *Buffer = Context.Allocate(
4013 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
4014 TArgs.size(), Ts.size()));
4015 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
4016 }
4017
4018 DependentFunctionTemplateSpecializationInfo::
DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl & Ts,const TemplateArgumentListInfo & TArgs)4019 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
4020 const TemplateArgumentListInfo &TArgs)
4021 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
4022 NumTemplates = Ts.size();
4023 NumArgs = TArgs.size();
4024
4025 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
4026 for (unsigned I = 0, E = Ts.size(); I != E; ++I)
4027 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
4028
4029 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
4030 for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
4031 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
4032 }
4033
getTemplateSpecializationKind() const4034 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
4035 // For a function template specialization, query the specialization
4036 // information object.
4037 if (FunctionTemplateSpecializationInfo *FTSInfo =
4038 TemplateOrSpecialization
4039 .dyn_cast<FunctionTemplateSpecializationInfo *>())
4040 return FTSInfo->getTemplateSpecializationKind();
4041
4042 if (MemberSpecializationInfo *MSInfo =
4043 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4044 return MSInfo->getTemplateSpecializationKind();
4045
4046 return TSK_Undeclared;
4047 }
4048
4049 TemplateSpecializationKind
getTemplateSpecializationKindForInstantiation() const4050 FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
4051 // This is the same as getTemplateSpecializationKind(), except that for a
4052 // function that is both a function template specialization and a member
4053 // specialization, we prefer the member specialization information. Eg:
4054 //
4055 // template<typename T> struct A {
4056 // template<typename U> void f() {}
4057 // template<> void f<int>() {}
4058 // };
4059 //
4060 // For A<int>::f<int>():
4061 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
4062 // * getTemplateSpecializationKindForInstantiation() will return
4063 // TSK_ImplicitInstantiation
4064 //
4065 // This reflects the facts that A<int>::f<int> is an explicit specialization
4066 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
4067 // from A::f<int> if a definition is needed.
4068 if (FunctionTemplateSpecializationInfo *FTSInfo =
4069 TemplateOrSpecialization
4070 .dyn_cast<FunctionTemplateSpecializationInfo *>()) {
4071 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
4072 return MSInfo->getTemplateSpecializationKind();
4073 return FTSInfo->getTemplateSpecializationKind();
4074 }
4075
4076 if (MemberSpecializationInfo *MSInfo =
4077 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4078 return MSInfo->getTemplateSpecializationKind();
4079
4080 return TSK_Undeclared;
4081 }
4082
4083 void
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)4084 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4085 SourceLocation PointOfInstantiation) {
4086 if (FunctionTemplateSpecializationInfo *FTSInfo
4087 = TemplateOrSpecialization.dyn_cast<
4088 FunctionTemplateSpecializationInfo*>()) {
4089 FTSInfo->setTemplateSpecializationKind(TSK);
4090 if (TSK != TSK_ExplicitSpecialization &&
4091 PointOfInstantiation.isValid() &&
4092 FTSInfo->getPointOfInstantiation().isInvalid()) {
4093 FTSInfo->setPointOfInstantiation(PointOfInstantiation);
4094 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
4095 L->InstantiationRequested(this);
4096 }
4097 } else if (MemberSpecializationInfo *MSInfo
4098 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
4099 MSInfo->setTemplateSpecializationKind(TSK);
4100 if (TSK != TSK_ExplicitSpecialization &&
4101 PointOfInstantiation.isValid() &&
4102 MSInfo->getPointOfInstantiation().isInvalid()) {
4103 MSInfo->setPointOfInstantiation(PointOfInstantiation);
4104 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
4105 L->InstantiationRequested(this);
4106 }
4107 } else
4108 llvm_unreachable("Function cannot have a template specialization kind");
4109 }
4110
getPointOfInstantiation() const4111 SourceLocation FunctionDecl::getPointOfInstantiation() const {
4112 if (FunctionTemplateSpecializationInfo *FTSInfo
4113 = TemplateOrSpecialization.dyn_cast<
4114 FunctionTemplateSpecializationInfo*>())
4115 return FTSInfo->getPointOfInstantiation();
4116 if (MemberSpecializationInfo *MSInfo =
4117 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4118 return MSInfo->getPointOfInstantiation();
4119
4120 return SourceLocation();
4121 }
4122
isOutOfLine() const4123 bool FunctionDecl::isOutOfLine() const {
4124 if (Decl::isOutOfLine())
4125 return true;
4126
4127 // If this function was instantiated from a member function of a
4128 // class template, check whether that member function was defined out-of-line.
4129 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
4130 const FunctionDecl *Definition;
4131 if (FD->hasBody(Definition))
4132 return Definition->isOutOfLine();
4133 }
4134
4135 // If this function was instantiated from a function template,
4136 // check whether that function template was defined out-of-line.
4137 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
4138 const FunctionDecl *Definition;
4139 if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
4140 return Definition->isOutOfLine();
4141 }
4142
4143 return false;
4144 }
4145
getSourceRange() const4146 SourceRange FunctionDecl::getSourceRange() const {
4147 return SourceRange(getOuterLocStart(), EndRangeLoc);
4148 }
4149
getMemoryFunctionKind() const4150 unsigned FunctionDecl::getMemoryFunctionKind() const {
4151 IdentifierInfo *FnInfo = getIdentifier();
4152
4153 if (!FnInfo)
4154 return 0;
4155
4156 // Builtin handling.
4157 switch (getBuiltinID()) {
4158 case Builtin::BI__builtin_memset:
4159 case Builtin::BI__builtin___memset_chk:
4160 case Builtin::BImemset:
4161 return Builtin::BImemset;
4162
4163 case Builtin::BI__builtin_memcpy:
4164 case Builtin::BI__builtin___memcpy_chk:
4165 case Builtin::BImemcpy:
4166 return Builtin::BImemcpy;
4167
4168 case Builtin::BI__builtin_mempcpy:
4169 case Builtin::BI__builtin___mempcpy_chk:
4170 case Builtin::BImempcpy:
4171 return Builtin::BImempcpy;
4172
4173 case Builtin::BI__builtin_memmove:
4174 case Builtin::BI__builtin___memmove_chk:
4175 case Builtin::BImemmove:
4176 return Builtin::BImemmove;
4177
4178 case Builtin::BIstrlcpy:
4179 case Builtin::BI__builtin___strlcpy_chk:
4180 return Builtin::BIstrlcpy;
4181
4182 case Builtin::BIstrlcat:
4183 case Builtin::BI__builtin___strlcat_chk:
4184 return Builtin::BIstrlcat;
4185
4186 case Builtin::BI__builtin_memcmp:
4187 case Builtin::BImemcmp:
4188 return Builtin::BImemcmp;
4189
4190 case Builtin::BI__builtin_bcmp:
4191 case Builtin::BIbcmp:
4192 return Builtin::BIbcmp;
4193
4194 case Builtin::BI__builtin_strncpy:
4195 case Builtin::BI__builtin___strncpy_chk:
4196 case Builtin::BIstrncpy:
4197 return Builtin::BIstrncpy;
4198
4199 case Builtin::BI__builtin_strncmp:
4200 case Builtin::BIstrncmp:
4201 return Builtin::BIstrncmp;
4202
4203 case Builtin::BI__builtin_strncasecmp:
4204 case Builtin::BIstrncasecmp:
4205 return Builtin::BIstrncasecmp;
4206
4207 case Builtin::BI__builtin_strncat:
4208 case Builtin::BI__builtin___strncat_chk:
4209 case Builtin::BIstrncat:
4210 return Builtin::BIstrncat;
4211
4212 case Builtin::BI__builtin_strndup:
4213 case Builtin::BIstrndup:
4214 return Builtin::BIstrndup;
4215
4216 case Builtin::BI__builtin_strlen:
4217 case Builtin::BIstrlen:
4218 return Builtin::BIstrlen;
4219
4220 case Builtin::BI__builtin_bzero:
4221 case Builtin::BIbzero:
4222 return Builtin::BIbzero;
4223
4224 case Builtin::BIfree:
4225 return Builtin::BIfree;
4226
4227 default:
4228 if (isExternC()) {
4229 if (FnInfo->isStr("memset"))
4230 return Builtin::BImemset;
4231 if (FnInfo->isStr("memcpy"))
4232 return Builtin::BImemcpy;
4233 if (FnInfo->isStr("mempcpy"))
4234 return Builtin::BImempcpy;
4235 if (FnInfo->isStr("memmove"))
4236 return Builtin::BImemmove;
4237 if (FnInfo->isStr("memcmp"))
4238 return Builtin::BImemcmp;
4239 if (FnInfo->isStr("bcmp"))
4240 return Builtin::BIbcmp;
4241 if (FnInfo->isStr("strncpy"))
4242 return Builtin::BIstrncpy;
4243 if (FnInfo->isStr("strncmp"))
4244 return Builtin::BIstrncmp;
4245 if (FnInfo->isStr("strncasecmp"))
4246 return Builtin::BIstrncasecmp;
4247 if (FnInfo->isStr("strncat"))
4248 return Builtin::BIstrncat;
4249 if (FnInfo->isStr("strndup"))
4250 return Builtin::BIstrndup;
4251 if (FnInfo->isStr("strlen"))
4252 return Builtin::BIstrlen;
4253 if (FnInfo->isStr("bzero"))
4254 return Builtin::BIbzero;
4255 } else if (isInStdNamespace()) {
4256 if (FnInfo->isStr("free"))
4257 return Builtin::BIfree;
4258 }
4259 break;
4260 }
4261 return 0;
4262 }
4263
getODRHash() const4264 unsigned FunctionDecl::getODRHash() const {
4265 assert(hasODRHash());
4266 return ODRHash;
4267 }
4268
getODRHash()4269 unsigned FunctionDecl::getODRHash() {
4270 if (hasODRHash())
4271 return ODRHash;
4272
4273 if (auto *FT = getInstantiatedFromMemberFunction()) {
4274 setHasODRHash(true);
4275 ODRHash = FT->getODRHash();
4276 return ODRHash;
4277 }
4278
4279 class ODRHash Hash;
4280 Hash.AddFunctionDecl(this);
4281 setHasODRHash(true);
4282 ODRHash = Hash.CalculateHash();
4283 return ODRHash;
4284 }
4285
4286 //===----------------------------------------------------------------------===//
4287 // FieldDecl Implementation
4288 //===----------------------------------------------------------------------===//
4289
Create(const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,Expr * BW,bool Mutable,InClassInitStyle InitStyle)4290 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4291 SourceLocation StartLoc, SourceLocation IdLoc,
4292 IdentifierInfo *Id, QualType T,
4293 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4294 InClassInitStyle InitStyle) {
4295 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4296 BW, Mutable, InitStyle);
4297 }
4298
CreateDeserialized(ASTContext & C,unsigned ID)4299 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4300 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4301 SourceLocation(), nullptr, QualType(), nullptr,
4302 nullptr, false, ICIS_NoInit);
4303 }
4304
isAnonymousStructOrUnion() const4305 bool FieldDecl::isAnonymousStructOrUnion() const {
4306 if (!isImplicit() || getDeclName())
4307 return false;
4308
4309 if (const auto *Record = getType()->getAs<RecordType>())
4310 return Record->getDecl()->isAnonymousStructOrUnion();
4311
4312 return false;
4313 }
4314
getBitWidthValue(const ASTContext & Ctx) const4315 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
4316 assert(isBitField() && "not a bitfield");
4317 return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue();
4318 }
4319
isZeroLengthBitField(const ASTContext & Ctx) const4320 bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const {
4321 return isUnnamedBitfield() && !getBitWidth()->isValueDependent() &&
4322 getBitWidthValue(Ctx) == 0;
4323 }
4324
isZeroSize(const ASTContext & Ctx) const4325 bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4326 if (isZeroLengthBitField(Ctx))
4327 return true;
4328
4329 // C++2a [intro.object]p7:
4330 // An object has nonzero size if it
4331 // -- is not a potentially-overlapping subobject, or
4332 if (!hasAttr<NoUniqueAddressAttr>())
4333 return false;
4334
4335 // -- is not of class type, or
4336 const auto *RT = getType()->getAs<RecordType>();
4337 if (!RT)
4338 return false;
4339 const RecordDecl *RD = RT->getDecl()->getDefinition();
4340 if (!RD) {
4341 assert(isInvalidDecl() && "valid field has incomplete type");
4342 return false;
4343 }
4344
4345 // -- [has] virtual member functions or virtual base classes, or
4346 // -- has subobjects of nonzero size or bit-fields of nonzero length
4347 const auto *CXXRD = cast<CXXRecordDecl>(RD);
4348 if (!CXXRD->isEmpty())
4349 return false;
4350
4351 // Otherwise, [...] the circumstances under which the object has zero size
4352 // are implementation-defined.
4353 // FIXME: This might be Itanium ABI specific; we don't yet know what the MS
4354 // ABI will do.
4355 return true;
4356 }
4357
getFieldIndex() const4358 unsigned FieldDecl::getFieldIndex() const {
4359 const FieldDecl *Canonical = getCanonicalDecl();
4360 if (Canonical != this)
4361 return Canonical->getFieldIndex();
4362
4363 if (CachedFieldIndex) return CachedFieldIndex - 1;
4364
4365 unsigned Index = 0;
4366 const RecordDecl *RD = getParent()->getDefinition();
4367 assert(RD && "requested index for field of struct with no definition");
4368
4369 for (auto *Field : RD->fields()) {
4370 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4371 ++Index;
4372 }
4373
4374 assert(CachedFieldIndex && "failed to find field in parent");
4375 return CachedFieldIndex - 1;
4376 }
4377
getSourceRange() const4378 SourceRange FieldDecl::getSourceRange() const {
4379 const Expr *FinalExpr = getInClassInitializer();
4380 if (!FinalExpr)
4381 FinalExpr = getBitWidth();
4382 if (FinalExpr)
4383 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4384 return DeclaratorDecl::getSourceRange();
4385 }
4386
setCapturedVLAType(const VariableArrayType * VLAType)4387 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4388 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
4389 "capturing type in non-lambda or captured record.");
4390 assert(InitStorage.getInt() == ISK_NoInit &&
4391 InitStorage.getPointer() == nullptr &&
4392 "bit width, initializer or captured type already set");
4393 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
4394 ISK_CapturedVLAType);
4395 }
4396
4397 //===----------------------------------------------------------------------===//
4398 // TagDecl Implementation
4399 //===----------------------------------------------------------------------===//
4400
TagDecl(Kind DK,TagKind TK,const ASTContext & C,DeclContext * DC,SourceLocation L,IdentifierInfo * Id,TagDecl * PrevDecl,SourceLocation StartL)4401 TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4402 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4403 SourceLocation StartL)
4404 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4405 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4406 assert((DK != Enum || TK == TTK_Enum) &&
4407 "EnumDecl not matched with TTK_Enum");
4408 setPreviousDecl(PrevDecl);
4409 setTagKind(TK);
4410 setCompleteDefinition(false);
4411 setBeingDefined(false);
4412 setEmbeddedInDeclarator(false);
4413 setFreeStanding(false);
4414 setCompleteDefinitionRequired(false);
4415 TagDeclBits.IsThisDeclarationADemotedDefinition = false;
4416 }
4417
getOuterLocStart() const4418 SourceLocation TagDecl::getOuterLocStart() const {
4419 return getTemplateOrInnerLocStart(this);
4420 }
4421
getSourceRange() const4422 SourceRange TagDecl::getSourceRange() const {
4423 SourceLocation RBraceLoc = BraceRange.getEnd();
4424 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4425 return SourceRange(getOuterLocStart(), E);
4426 }
4427
getCanonicalDecl()4428 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4429
setTypedefNameForAnonDecl(TypedefNameDecl * TDD)4430 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4431 TypedefNameDeclOrQualifier = TDD;
4432 if (const Type *T = getTypeForDecl()) {
4433 (void)T;
4434 assert(T->isLinkageValid());
4435 }
4436 assert(isLinkageValid());
4437 }
4438
startDefinition()4439 void TagDecl::startDefinition() {
4440 setBeingDefined(true);
4441
4442 if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
4443 struct CXXRecordDecl::DefinitionData *Data =
4444 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4445 for (auto *I : redecls())
4446 cast<CXXRecordDecl>(I)->DefinitionData = Data;
4447 }
4448 }
4449
completeDefinition()4450 void TagDecl::completeDefinition() {
4451 assert((!isa<CXXRecordDecl>(this) ||
4452 cast<CXXRecordDecl>(this)->hasDefinition()) &&
4453 "definition completed but not started");
4454
4455 setCompleteDefinition(true);
4456 setBeingDefined(false);
4457
4458 if (ASTMutationListener *L = getASTMutationListener())
4459 L->CompletedTagDefinition(this);
4460 }
4461
getDefinition() const4462 TagDecl *TagDecl::getDefinition() const {
4463 if (isCompleteDefinition())
4464 return const_cast<TagDecl *>(this);
4465
4466 // If it's possible for us to have an out-of-date definition, check now.
4467 if (mayHaveOutOfDateDef()) {
4468 if (IdentifierInfo *II = getIdentifier()) {
4469 if (II->isOutOfDate()) {
4470 updateOutOfDate(*II);
4471 }
4472 }
4473 }
4474
4475 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
4476 return CXXRD->getDefinition();
4477
4478 for (auto *R : redecls())
4479 if (R->isCompleteDefinition())
4480 return R;
4481
4482 return nullptr;
4483 }
4484
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)4485 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4486 if (QualifierLoc) {
4487 // Make sure the extended qualifier info is allocated.
4488 if (!hasExtInfo())
4489 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4490 // Set qualifier info.
4491 getExtInfo()->QualifierLoc = QualifierLoc;
4492 } else {
4493 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4494 if (hasExtInfo()) {
4495 if (getExtInfo()->NumTemplParamLists == 0) {
4496 getASTContext().Deallocate(getExtInfo());
4497 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4498 }
4499 else
4500 getExtInfo()->QualifierLoc = QualifierLoc;
4501 }
4502 }
4503 }
4504
printName(raw_ostream & OS,const PrintingPolicy & Policy) const4505 void TagDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const {
4506 DeclarationName Name = getDeclName();
4507 // If the name is supposed to have an identifier but does not have one, then
4508 // the tag is anonymous and we should print it differently.
4509 if (Name.isIdentifier() && !Name.getAsIdentifierInfo()) {
4510 // If the caller wanted to print a qualified name, they've already printed
4511 // the scope. And if the caller doesn't want that, the scope information
4512 // is already printed as part of the type.
4513 PrintingPolicy Copy(Policy);
4514 Copy.SuppressScope = true;
4515 getASTContext().getTagDeclType(this).print(OS, Copy);
4516 return;
4517 }
4518 // Otherwise, do the normal printing.
4519 Name.print(OS, Policy);
4520 }
4521
setTemplateParameterListsInfo(ASTContext & Context,ArrayRef<TemplateParameterList * > TPLists)4522 void TagDecl::setTemplateParameterListsInfo(
4523 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4524 assert(!TPLists.empty());
4525 // Make sure the extended decl info is allocated.
4526 if (!hasExtInfo())
4527 // Allocate external info struct.
4528 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4529 // Set the template parameter lists info.
4530 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4531 }
4532
4533 //===----------------------------------------------------------------------===//
4534 // EnumDecl Implementation
4535 //===----------------------------------------------------------------------===//
4536
EnumDecl(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,EnumDecl * PrevDecl,bool Scoped,bool ScopedUsingClassTag,bool Fixed)4537 EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4538 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4539 bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4540 : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4541 assert(Scoped || !ScopedUsingClassTag);
4542 IntegerType = nullptr;
4543 setNumPositiveBits(0);
4544 setNumNegativeBits(0);
4545 setScoped(Scoped);
4546 setScopedUsingClassTag(ScopedUsingClassTag);
4547 setFixed(Fixed);
4548 setHasODRHash(false);
4549 ODRHash = 0;
4550 }
4551
anchor()4552 void EnumDecl::anchor() {}
4553
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,EnumDecl * PrevDecl,bool IsScoped,bool IsScopedUsingClassTag,bool IsFixed)4554 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4555 SourceLocation StartLoc, SourceLocation IdLoc,
4556 IdentifierInfo *Id,
4557 EnumDecl *PrevDecl, bool IsScoped,
4558 bool IsScopedUsingClassTag, bool IsFixed) {
4559 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4560 IsScoped, IsScopedUsingClassTag, IsFixed);
4561 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4562 C.getTypeDeclType(Enum, PrevDecl);
4563 return Enum;
4564 }
4565
CreateDeserialized(ASTContext & C,unsigned ID)4566 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4567 EnumDecl *Enum =
4568 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4569 nullptr, nullptr, false, false, false);
4570 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4571 return Enum;
4572 }
4573
getIntegerTypeRange() const4574 SourceRange EnumDecl::getIntegerTypeRange() const {
4575 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4576 return TI->getTypeLoc().getSourceRange();
4577 return SourceRange();
4578 }
4579
completeDefinition(QualType NewType,QualType NewPromotionType,unsigned NumPositiveBits,unsigned NumNegativeBits)4580 void EnumDecl::completeDefinition(QualType NewType,
4581 QualType NewPromotionType,
4582 unsigned NumPositiveBits,
4583 unsigned NumNegativeBits) {
4584 assert(!isCompleteDefinition() && "Cannot redefine enums!");
4585 if (!IntegerType)
4586 IntegerType = NewType.getTypePtr();
4587 PromotionType = NewPromotionType;
4588 setNumPositiveBits(NumPositiveBits);
4589 setNumNegativeBits(NumNegativeBits);
4590 TagDecl::completeDefinition();
4591 }
4592
isClosed() const4593 bool EnumDecl::isClosed() const {
4594 if (const auto *A = getAttr<EnumExtensibilityAttr>())
4595 return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4596 return true;
4597 }
4598
isClosedFlag() const4599 bool EnumDecl::isClosedFlag() const {
4600 return isClosed() && hasAttr<FlagEnumAttr>();
4601 }
4602
isClosedNonFlag() const4603 bool EnumDecl::isClosedNonFlag() const {
4604 return isClosed() && !hasAttr<FlagEnumAttr>();
4605 }
4606
getTemplateSpecializationKind() const4607 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
4608 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
4609 return MSI->getTemplateSpecializationKind();
4610
4611 return TSK_Undeclared;
4612 }
4613
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)4614 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4615 SourceLocation PointOfInstantiation) {
4616 MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
4617 assert(MSI && "Not an instantiated member enumeration?");
4618 MSI->setTemplateSpecializationKind(TSK);
4619 if (TSK != TSK_ExplicitSpecialization &&
4620 PointOfInstantiation.isValid() &&
4621 MSI->getPointOfInstantiation().isInvalid())
4622 MSI->setPointOfInstantiation(PointOfInstantiation);
4623 }
4624
getTemplateInstantiationPattern() const4625 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
4626 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
4627 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
4628 EnumDecl *ED = getInstantiatedFromMemberEnum();
4629 while (auto *NewED = ED->getInstantiatedFromMemberEnum())
4630 ED = NewED;
4631 return getDefinitionOrSelf(ED);
4632 }
4633 }
4634
4635 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
4636 "couldn't find pattern for enum instantiation");
4637 return nullptr;
4638 }
4639
getInstantiatedFromMemberEnum() const4640 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
4641 if (SpecializationInfo)
4642 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
4643
4644 return nullptr;
4645 }
4646
setInstantiationOfMemberEnum(ASTContext & C,EnumDecl * ED,TemplateSpecializationKind TSK)4647 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
4648 TemplateSpecializationKind TSK) {
4649 assert(!SpecializationInfo && "Member enum is already a specialization");
4650 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
4651 }
4652
getODRHash()4653 unsigned EnumDecl::getODRHash() {
4654 if (hasODRHash())
4655 return ODRHash;
4656
4657 class ODRHash Hash;
4658 Hash.AddEnumDecl(this);
4659 setHasODRHash(true);
4660 ODRHash = Hash.CalculateHash();
4661 return ODRHash;
4662 }
4663
getSourceRange() const4664 SourceRange EnumDecl::getSourceRange() const {
4665 auto Res = TagDecl::getSourceRange();
4666 // Set end-point to enum-base, e.g. enum foo : ^bar
4667 if (auto *TSI = getIntegerTypeSourceInfo()) {
4668 // TagDecl doesn't know about the enum base.
4669 if (!getBraceRange().getEnd().isValid())
4670 Res.setEnd(TSI->getTypeLoc().getEndLoc());
4671 }
4672 return Res;
4673 }
4674
getValueRange(llvm::APInt & Max,llvm::APInt & Min) const4675 void EnumDecl::getValueRange(llvm::APInt &Max, llvm::APInt &Min) const {
4676 unsigned Bitwidth = getASTContext().getIntWidth(getIntegerType());
4677 unsigned NumNegativeBits = getNumNegativeBits();
4678 unsigned NumPositiveBits = getNumPositiveBits();
4679
4680 if (NumNegativeBits) {
4681 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
4682 Max = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
4683 Min = -Max;
4684 } else {
4685 Max = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
4686 Min = llvm::APInt::getZero(Bitwidth);
4687 }
4688 }
4689
4690 //===----------------------------------------------------------------------===//
4691 // RecordDecl Implementation
4692 //===----------------------------------------------------------------------===//
4693
RecordDecl(Kind DK,TagKind TK,const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)4694 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
4695 DeclContext *DC, SourceLocation StartLoc,
4696 SourceLocation IdLoc, IdentifierInfo *Id,
4697 RecordDecl *PrevDecl)
4698 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4699 assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
4700 setHasFlexibleArrayMember(false);
4701 setAnonymousStructOrUnion(false);
4702 setHasObjectMember(false);
4703 setHasVolatileMember(false);
4704 setHasLoadedFieldsFromExternalStorage(false);
4705 setNonTrivialToPrimitiveDefaultInitialize(false);
4706 setNonTrivialToPrimitiveCopy(false);
4707 setNonTrivialToPrimitiveDestroy(false);
4708 setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
4709 setHasNonTrivialToPrimitiveDestructCUnion(false);
4710 setHasNonTrivialToPrimitiveCopyCUnion(false);
4711 setParamDestroyedInCallee(false);
4712 setArgPassingRestrictions(APK_CanPassInRegs);
4713 setIsRandomized(false);
4714 setODRHash(0);
4715 }
4716
Create(const ASTContext & C,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)4717 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
4718 SourceLocation StartLoc, SourceLocation IdLoc,
4719 IdentifierInfo *Id, RecordDecl* PrevDecl) {
4720 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
4721 StartLoc, IdLoc, Id, PrevDecl);
4722 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4723
4724 C.getTypeDeclType(R, PrevDecl);
4725 return R;
4726 }
4727
CreateDeserialized(const ASTContext & C,unsigned ID)4728 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
4729 RecordDecl *R =
4730 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
4731 SourceLocation(), nullptr, nullptr);
4732 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4733 return R;
4734 }
4735
isInjectedClassName() const4736 bool RecordDecl::isInjectedClassName() const {
4737 return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
4738 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
4739 }
4740
isLambda() const4741 bool RecordDecl::isLambda() const {
4742 if (auto RD = dyn_cast<CXXRecordDecl>(this))
4743 return RD->isLambda();
4744 return false;
4745 }
4746
isCapturedRecord() const4747 bool RecordDecl::isCapturedRecord() const {
4748 return hasAttr<CapturedRecordAttr>();
4749 }
4750
setCapturedRecord()4751 void RecordDecl::setCapturedRecord() {
4752 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
4753 }
4754
isOrContainsUnion() const4755 bool RecordDecl::isOrContainsUnion() const {
4756 if (isUnion())
4757 return true;
4758
4759 if (const RecordDecl *Def = getDefinition()) {
4760 for (const FieldDecl *FD : Def->fields()) {
4761 const RecordType *RT = FD->getType()->getAs<RecordType>();
4762 if (RT && RT->getDecl()->isOrContainsUnion())
4763 return true;
4764 }
4765 }
4766
4767 return false;
4768 }
4769
field_begin() const4770 RecordDecl::field_iterator RecordDecl::field_begin() const {
4771 if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
4772 LoadFieldsFromExternalStorage();
4773
4774 return field_iterator(decl_iterator(FirstDecl));
4775 }
4776
4777 /// completeDefinition - Notes that the definition of this type is now
4778 /// complete.
completeDefinition()4779 void RecordDecl::completeDefinition() {
4780 assert(!isCompleteDefinition() && "Cannot redefine record!");
4781 TagDecl::completeDefinition();
4782
4783 ASTContext &Ctx = getASTContext();
4784
4785 // Layouts are dumped when computed, so if we are dumping for all complete
4786 // types, we need to force usage to get types that wouldn't be used elsewhere.
4787 if (Ctx.getLangOpts().DumpRecordLayoutsComplete)
4788 (void)Ctx.getASTRecordLayout(this);
4789 }
4790
4791 /// isMsStruct - Get whether or not this record uses ms_struct layout.
4792 /// This which can be turned on with an attribute, pragma, or the
4793 /// -mms-bitfields command-line option.
isMsStruct(const ASTContext & C) const4794 bool RecordDecl::isMsStruct(const ASTContext &C) const {
4795 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
4796 }
4797
reorderDecls(const SmallVectorImpl<Decl * > & Decls)4798 void RecordDecl::reorderDecls(const SmallVectorImpl<Decl *> &Decls) {
4799 std::tie(FirstDecl, LastDecl) = DeclContext::BuildDeclChain(Decls, false);
4800 LastDecl->NextInContextAndBits.setPointer(nullptr);
4801 setIsRandomized(true);
4802 }
4803
LoadFieldsFromExternalStorage() const4804 void RecordDecl::LoadFieldsFromExternalStorage() const {
4805 ExternalASTSource *Source = getASTContext().getExternalSource();
4806 assert(hasExternalLexicalStorage() && Source && "No external storage?");
4807
4808 // Notify that we have a RecordDecl doing some initialization.
4809 ExternalASTSource::Deserializing TheFields(Source);
4810
4811 SmallVector<Decl*, 64> Decls;
4812 setHasLoadedFieldsFromExternalStorage(true);
4813 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
4814 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
4815 }, Decls);
4816
4817 #ifndef NDEBUG
4818 // Check that all decls we got were FieldDecls.
4819 for (unsigned i=0, e=Decls.size(); i != e; ++i)
4820 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
4821 #endif
4822
4823 if (Decls.empty())
4824 return;
4825
4826 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
4827 /*FieldsAlreadyLoaded=*/false);
4828 }
4829
mayInsertExtraPadding(bool EmitRemark) const4830 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
4831 ASTContext &Context = getASTContext();
4832 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
4833 (SanitizerKind::Address | SanitizerKind::KernelAddress);
4834 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
4835 return false;
4836 const auto &NoSanitizeList = Context.getNoSanitizeList();
4837 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
4838 // We may be able to relax some of these requirements.
4839 int ReasonToReject = -1;
4840 if (!CXXRD || CXXRD->isExternCContext())
4841 ReasonToReject = 0; // is not C++.
4842 else if (CXXRD->hasAttr<PackedAttr>())
4843 ReasonToReject = 1; // is packed.
4844 else if (CXXRD->isUnion())
4845 ReasonToReject = 2; // is a union.
4846 else if (CXXRD->isTriviallyCopyable())
4847 ReasonToReject = 3; // is trivially copyable.
4848 else if (CXXRD->hasTrivialDestructor())
4849 ReasonToReject = 4; // has trivial destructor.
4850 else if (CXXRD->isStandardLayout())
4851 ReasonToReject = 5; // is standard layout.
4852 else if (NoSanitizeList.containsLocation(EnabledAsanMask, getLocation(),
4853 "field-padding"))
4854 ReasonToReject = 6; // is in an excluded file.
4855 else if (NoSanitizeList.containsType(
4856 EnabledAsanMask, getQualifiedNameAsString(), "field-padding"))
4857 ReasonToReject = 7; // The type is excluded.
4858
4859 if (EmitRemark) {
4860 if (ReasonToReject >= 0)
4861 Context.getDiagnostics().Report(
4862 getLocation(),
4863 diag::remark_sanitize_address_insert_extra_padding_rejected)
4864 << getQualifiedNameAsString() << ReasonToReject;
4865 else
4866 Context.getDiagnostics().Report(
4867 getLocation(),
4868 diag::remark_sanitize_address_insert_extra_padding_accepted)
4869 << getQualifiedNameAsString();
4870 }
4871 return ReasonToReject < 0;
4872 }
4873
findFirstNamedDataMember() const4874 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
4875 for (const auto *I : fields()) {
4876 if (I->getIdentifier())
4877 return I;
4878
4879 if (const auto *RT = I->getType()->getAs<RecordType>())
4880 if (const FieldDecl *NamedDataMember =
4881 RT->getDecl()->findFirstNamedDataMember())
4882 return NamedDataMember;
4883 }
4884
4885 // We didn't find a named data member.
4886 return nullptr;
4887 }
4888
getODRHash()4889 unsigned RecordDecl::getODRHash() {
4890 if (hasODRHash())
4891 return RecordDeclBits.ODRHash;
4892
4893 // Only calculate hash on first call of getODRHash per record.
4894 ODRHash Hash;
4895 Hash.AddRecordDecl(this);
4896 // For RecordDecl the ODRHash is stored in the remaining 26
4897 // bit of RecordDeclBits, adjust the hash to accomodate.
4898 setODRHash(Hash.CalculateHash() >> 6);
4899 return RecordDeclBits.ODRHash;
4900 }
4901
4902 //===----------------------------------------------------------------------===//
4903 // BlockDecl Implementation
4904 //===----------------------------------------------------------------------===//
4905
BlockDecl(DeclContext * DC,SourceLocation CaretLoc)4906 BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
4907 : Decl(Block, DC, CaretLoc), DeclContext(Block) {
4908 setIsVariadic(false);
4909 setCapturesCXXThis(false);
4910 setBlockMissingReturnType(true);
4911 setIsConversionFromLambda(false);
4912 setDoesNotEscape(false);
4913 setCanAvoidCopyToHeap(false);
4914 }
4915
setParams(ArrayRef<ParmVarDecl * > NewParamInfo)4916 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
4917 assert(!ParamInfo && "Already has param info!");
4918
4919 // Zero params -> null pointer.
4920 if (!NewParamInfo.empty()) {
4921 NumParams = NewParamInfo.size();
4922 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
4923 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
4924 }
4925 }
4926
setCaptures(ASTContext & Context,ArrayRef<Capture> Captures,bool CapturesCXXThis)4927 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
4928 bool CapturesCXXThis) {
4929 this->setCapturesCXXThis(CapturesCXXThis);
4930 this->NumCaptures = Captures.size();
4931
4932 if (Captures.empty()) {
4933 this->Captures = nullptr;
4934 return;
4935 }
4936
4937 this->Captures = Captures.copy(Context).data();
4938 }
4939
capturesVariable(const VarDecl * variable) const4940 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
4941 for (const auto &I : captures())
4942 // Only auto vars can be captured, so no redeclaration worries.
4943 if (I.getVariable() == variable)
4944 return true;
4945
4946 return false;
4947 }
4948
getSourceRange() const4949 SourceRange BlockDecl::getSourceRange() const {
4950 return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
4951 }
4952
4953 //===----------------------------------------------------------------------===//
4954 // Other Decl Allocation/Deallocation Method Implementations
4955 //===----------------------------------------------------------------------===//
4956
anchor()4957 void TranslationUnitDecl::anchor() {}
4958
Create(ASTContext & C)4959 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
4960 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
4961 }
4962
anchor()4963 void PragmaCommentDecl::anchor() {}
4964
Create(const ASTContext & C,TranslationUnitDecl * DC,SourceLocation CommentLoc,PragmaMSCommentKind CommentKind,StringRef Arg)4965 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
4966 TranslationUnitDecl *DC,
4967 SourceLocation CommentLoc,
4968 PragmaMSCommentKind CommentKind,
4969 StringRef Arg) {
4970 PragmaCommentDecl *PCD =
4971 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
4972 PragmaCommentDecl(DC, CommentLoc, CommentKind);
4973 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
4974 PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
4975 return PCD;
4976 }
4977
CreateDeserialized(ASTContext & C,unsigned ID,unsigned ArgSize)4978 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
4979 unsigned ID,
4980 unsigned ArgSize) {
4981 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
4982 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
4983 }
4984
anchor()4985 void PragmaDetectMismatchDecl::anchor() {}
4986
4987 PragmaDetectMismatchDecl *
Create(const ASTContext & C,TranslationUnitDecl * DC,SourceLocation Loc,StringRef Name,StringRef Value)4988 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
4989 SourceLocation Loc, StringRef Name,
4990 StringRef Value) {
4991 size_t ValueStart = Name.size() + 1;
4992 PragmaDetectMismatchDecl *PDMD =
4993 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
4994 PragmaDetectMismatchDecl(DC, Loc, ValueStart);
4995 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
4996 PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
4997 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
4998 Value.size());
4999 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
5000 return PDMD;
5001 }
5002
5003 PragmaDetectMismatchDecl *
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NameValueSize)5004 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5005 unsigned NameValueSize) {
5006 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
5007 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
5008 }
5009
anchor()5010 void ExternCContextDecl::anchor() {}
5011
Create(const ASTContext & C,TranslationUnitDecl * DC)5012 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
5013 TranslationUnitDecl *DC) {
5014 return new (C, DC) ExternCContextDecl(DC);
5015 }
5016
anchor()5017 void LabelDecl::anchor() {}
5018
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II)5019 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
5020 SourceLocation IdentL, IdentifierInfo *II) {
5021 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
5022 }
5023
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II,SourceLocation GnuLabelL)5024 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
5025 SourceLocation IdentL, IdentifierInfo *II,
5026 SourceLocation GnuLabelL) {
5027 assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
5028 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
5029 }
5030
CreateDeserialized(ASTContext & C,unsigned ID)5031 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5032 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
5033 SourceLocation());
5034 }
5035
setMSAsmLabel(StringRef Name)5036 void LabelDecl::setMSAsmLabel(StringRef Name) {
5037 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
5038 memcpy(Buffer, Name.data(), Name.size());
5039 Buffer[Name.size()] = '\0';
5040 MSAsmName = Buffer;
5041 }
5042
anchor()5043 void ValueDecl::anchor() {}
5044
isWeak() const5045 bool ValueDecl::isWeak() const {
5046 auto *MostRecent = getMostRecentDecl();
5047 return MostRecent->hasAttr<WeakAttr>() ||
5048 MostRecent->hasAttr<WeakRefAttr>() || isWeakImported();
5049 }
5050
isInitCapture() const5051 bool ValueDecl::isInitCapture() const {
5052 if (auto *Var = llvm::dyn_cast<VarDecl>(this))
5053 return Var->isInitCapture();
5054 return false;
5055 }
5056
anchor()5057 void ImplicitParamDecl::anchor() {}
5058
Create(ASTContext & C,DeclContext * DC,SourceLocation IdLoc,IdentifierInfo * Id,QualType Type,ImplicitParamKind ParamKind)5059 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
5060 SourceLocation IdLoc,
5061 IdentifierInfo *Id, QualType Type,
5062 ImplicitParamKind ParamKind) {
5063 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
5064 }
5065
Create(ASTContext & C,QualType Type,ImplicitParamKind ParamKind)5066 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
5067 ImplicitParamKind ParamKind) {
5068 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
5069 }
5070
CreateDeserialized(ASTContext & C,unsigned ID)5071 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
5072 unsigned ID) {
5073 return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
5074 }
5075
5076 FunctionDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass SC,bool UsesFPIntrin,bool isInlineSpecified,bool hasWrittenPrototype,ConstexprSpecKind ConstexprKind,Expr * TrailingRequiresClause)5077 FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
5078 const DeclarationNameInfo &NameInfo, QualType T,
5079 TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin,
5080 bool isInlineSpecified, bool hasWrittenPrototype,
5081 ConstexprSpecKind ConstexprKind,
5082 Expr *TrailingRequiresClause) {
5083 FunctionDecl *New = new (C, DC) FunctionDecl(
5084 Function, C, DC, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
5085 isInlineSpecified, ConstexprKind, TrailingRequiresClause);
5086 New->setHasWrittenPrototype(hasWrittenPrototype);
5087 return New;
5088 }
5089
CreateDeserialized(ASTContext & C,unsigned ID)5090 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5091 return new (C, ID) FunctionDecl(
5092 Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(),
5093 nullptr, SC_None, false, false, ConstexprSpecKind::Unspecified, nullptr);
5094 }
5095
Create(ASTContext & C,DeclContext * DC,SourceLocation L)5096 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5097 return new (C, DC) BlockDecl(DC, L);
5098 }
5099
CreateDeserialized(ASTContext & C,unsigned ID)5100 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5101 return new (C, ID) BlockDecl(nullptr, SourceLocation());
5102 }
5103
CapturedDecl(DeclContext * DC,unsigned NumParams)5104 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
5105 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
5106 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
5107
Create(ASTContext & C,DeclContext * DC,unsigned NumParams)5108 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
5109 unsigned NumParams) {
5110 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
5111 CapturedDecl(DC, NumParams);
5112 }
5113
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumParams)5114 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5115 unsigned NumParams) {
5116 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
5117 CapturedDecl(nullptr, NumParams);
5118 }
5119
getBody() const5120 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
setBody(Stmt * B)5121 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
5122
isNothrow() const5123 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
setNothrow(bool Nothrow)5124 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
5125
Create(ASTContext & C,EnumDecl * CD,SourceLocation L,IdentifierInfo * Id,QualType T,Expr * E,const llvm::APSInt & V)5126 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
5127 SourceLocation L,
5128 IdentifierInfo *Id, QualType T,
5129 Expr *E, const llvm::APSInt &V) {
5130 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
5131 }
5132
5133 EnumConstantDecl *
CreateDeserialized(ASTContext & C,unsigned ID)5134 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5135 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
5136 QualType(), nullptr, llvm::APSInt());
5137 }
5138
anchor()5139 void IndirectFieldDecl::anchor() {}
5140
IndirectFieldDecl(ASTContext & C,DeclContext * DC,SourceLocation L,DeclarationName N,QualType T,MutableArrayRef<NamedDecl * > CH)5141 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
5142 SourceLocation L, DeclarationName N,
5143 QualType T,
5144 MutableArrayRef<NamedDecl *> CH)
5145 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
5146 ChainingSize(CH.size()) {
5147 // In C++, indirect field declarations conflict with tag declarations in the
5148 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
5149 if (C.getLangOpts().CPlusPlus)
5150 IdentifierNamespace |= IDNS_Tag;
5151 }
5152
5153 IndirectFieldDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation L,IdentifierInfo * Id,QualType T,llvm::MutableArrayRef<NamedDecl * > CH)5154 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
5155 IdentifierInfo *Id, QualType T,
5156 llvm::MutableArrayRef<NamedDecl *> CH) {
5157 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
5158 }
5159
CreateDeserialized(ASTContext & C,unsigned ID)5160 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
5161 unsigned ID) {
5162 return new (C, ID)
5163 IndirectFieldDecl(C, nullptr, SourceLocation(), DeclarationName(),
5164 QualType(), std::nullopt);
5165 }
5166
getSourceRange() const5167 SourceRange EnumConstantDecl::getSourceRange() const {
5168 SourceLocation End = getLocation();
5169 if (Init)
5170 End = Init->getEndLoc();
5171 return SourceRange(getLocation(), End);
5172 }
5173
anchor()5174 void TypeDecl::anchor() {}
5175
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)5176 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
5177 SourceLocation StartLoc, SourceLocation IdLoc,
5178 IdentifierInfo *Id, TypeSourceInfo *TInfo) {
5179 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5180 }
5181
anchor()5182 void TypedefNameDecl::anchor() {}
5183
getAnonDeclWithTypedefName(bool AnyRedecl) const5184 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
5185 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
5186 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
5187 auto *ThisTypedef = this;
5188 if (AnyRedecl && OwningTypedef) {
5189 OwningTypedef = OwningTypedef->getCanonicalDecl();
5190 ThisTypedef = ThisTypedef->getCanonicalDecl();
5191 }
5192 if (OwningTypedef == ThisTypedef)
5193 return TT->getDecl();
5194 }
5195
5196 return nullptr;
5197 }
5198
isTransparentTagSlow() const5199 bool TypedefNameDecl::isTransparentTagSlow() const {
5200 auto determineIsTransparent = [&]() {
5201 if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
5202 if (auto *TD = TT->getDecl()) {
5203 if (TD->getName() != getName())
5204 return false;
5205 SourceLocation TTLoc = getLocation();
5206 SourceLocation TDLoc = TD->getLocation();
5207 if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
5208 return false;
5209 SourceManager &SM = getASTContext().getSourceManager();
5210 return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc);
5211 }
5212 }
5213 return false;
5214 };
5215
5216 bool isTransparent = determineIsTransparent();
5217 MaybeModedTInfo.setInt((isTransparent << 1) | 1);
5218 return isTransparent;
5219 }
5220
CreateDeserialized(ASTContext & C,unsigned ID)5221 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5222 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
5223 nullptr, nullptr);
5224 }
5225
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)5226 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
5227 SourceLocation StartLoc,
5228 SourceLocation IdLoc, IdentifierInfo *Id,
5229 TypeSourceInfo *TInfo) {
5230 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5231 }
5232
CreateDeserialized(ASTContext & C,unsigned ID)5233 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5234 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
5235 SourceLocation(), nullptr, nullptr);
5236 }
5237
getSourceRange() const5238 SourceRange TypedefDecl::getSourceRange() const {
5239 SourceLocation RangeEnd = getLocation();
5240 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
5241 if (typeIsPostfix(TInfo->getType()))
5242 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5243 }
5244 return SourceRange(getBeginLoc(), RangeEnd);
5245 }
5246
getSourceRange() const5247 SourceRange TypeAliasDecl::getSourceRange() const {
5248 SourceLocation RangeEnd = getBeginLoc();
5249 if (TypeSourceInfo *TInfo = getTypeSourceInfo())
5250 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5251 return SourceRange(getBeginLoc(), RangeEnd);
5252 }
5253
anchor()5254 void FileScopeAsmDecl::anchor() {}
5255
Create(ASTContext & C,DeclContext * DC,StringLiteral * Str,SourceLocation AsmLoc,SourceLocation RParenLoc)5256 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
5257 StringLiteral *Str,
5258 SourceLocation AsmLoc,
5259 SourceLocation RParenLoc) {
5260 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
5261 }
5262
CreateDeserialized(ASTContext & C,unsigned ID)5263 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
5264 unsigned ID) {
5265 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
5266 SourceLocation());
5267 }
5268
anchor()5269 void TopLevelStmtDecl::anchor() {}
5270
Create(ASTContext & C,Stmt * Statement)5271 TopLevelStmtDecl *TopLevelStmtDecl::Create(ASTContext &C, Stmt *Statement) {
5272 assert(Statement);
5273 assert(C.getLangOpts().IncrementalExtensions &&
5274 "Must be used only in incremental mode");
5275
5276 SourceLocation BeginLoc = Statement->getBeginLoc();
5277 DeclContext *DC = C.getTranslationUnitDecl();
5278
5279 return new (C, DC) TopLevelStmtDecl(DC, BeginLoc, Statement);
5280 }
5281
CreateDeserialized(ASTContext & C,unsigned ID)5282 TopLevelStmtDecl *TopLevelStmtDecl::CreateDeserialized(ASTContext &C,
5283 unsigned ID) {
5284 return new (C, ID)
5285 TopLevelStmtDecl(/*DC=*/nullptr, SourceLocation(), /*S=*/nullptr);
5286 }
5287
getSourceRange() const5288 SourceRange TopLevelStmtDecl::getSourceRange() const {
5289 return SourceRange(getLocation(), Statement->getEndLoc());
5290 }
5291
anchor()5292 void EmptyDecl::anchor() {}
5293
Create(ASTContext & C,DeclContext * DC,SourceLocation L)5294 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5295 return new (C, DC) EmptyDecl(DC, L);
5296 }
5297
CreateDeserialized(ASTContext & C,unsigned ID)5298 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5299 return new (C, ID) EmptyDecl(nullptr, SourceLocation());
5300 }
5301
HLSLBufferDecl(DeclContext * DC,bool CBuffer,SourceLocation KwLoc,IdentifierInfo * ID,SourceLocation IDLoc,SourceLocation LBrace)5302 HLSLBufferDecl::HLSLBufferDecl(DeclContext *DC, bool CBuffer,
5303 SourceLocation KwLoc, IdentifierInfo *ID,
5304 SourceLocation IDLoc, SourceLocation LBrace)
5305 : NamedDecl(Decl::Kind::HLSLBuffer, DC, IDLoc, DeclarationName(ID)),
5306 DeclContext(Decl::Kind::HLSLBuffer), LBraceLoc(LBrace), KwLoc(KwLoc),
5307 IsCBuffer(CBuffer) {}
5308
Create(ASTContext & C,DeclContext * LexicalParent,bool CBuffer,SourceLocation KwLoc,IdentifierInfo * ID,SourceLocation IDLoc,SourceLocation LBrace)5309 HLSLBufferDecl *HLSLBufferDecl::Create(ASTContext &C,
5310 DeclContext *LexicalParent, bool CBuffer,
5311 SourceLocation KwLoc, IdentifierInfo *ID,
5312 SourceLocation IDLoc,
5313 SourceLocation LBrace) {
5314 // For hlsl like this
5315 // cbuffer A {
5316 // cbuffer B {
5317 // }
5318 // }
5319 // compiler should treat it as
5320 // cbuffer A {
5321 // }
5322 // cbuffer B {
5323 // }
5324 // FIXME: support nested buffers if required for back-compat.
5325 DeclContext *DC = LexicalParent;
5326 HLSLBufferDecl *Result =
5327 new (C, DC) HLSLBufferDecl(DC, CBuffer, KwLoc, ID, IDLoc, LBrace);
5328 return Result;
5329 }
5330
CreateDeserialized(ASTContext & C,unsigned ID)5331 HLSLBufferDecl *HLSLBufferDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5332 return new (C, ID) HLSLBufferDecl(nullptr, false, SourceLocation(), nullptr,
5333 SourceLocation(), SourceLocation());
5334 }
5335
5336 //===----------------------------------------------------------------------===//
5337 // ImportDecl Implementation
5338 //===----------------------------------------------------------------------===//
5339
5340 /// Retrieve the number of module identifiers needed to name the given
5341 /// module.
getNumModuleIdentifiers(Module * Mod)5342 static unsigned getNumModuleIdentifiers(Module *Mod) {
5343 unsigned Result = 1;
5344 while (Mod->Parent) {
5345 Mod = Mod->Parent;
5346 ++Result;
5347 }
5348 return Result;
5349 }
5350
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)5351 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5352 Module *Imported,
5353 ArrayRef<SourceLocation> IdentifierLocs)
5354 : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5355 NextLocalImportAndComplete(nullptr, true) {
5356 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
5357 auto *StoredLocs = getTrailingObjects<SourceLocation>();
5358 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
5359 StoredLocs);
5360 }
5361
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)5362 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5363 Module *Imported, SourceLocation EndLoc)
5364 : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5365 NextLocalImportAndComplete(nullptr, false) {
5366 *getTrailingObjects<SourceLocation>() = EndLoc;
5367 }
5368
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)5369 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
5370 SourceLocation StartLoc, Module *Imported,
5371 ArrayRef<SourceLocation> IdentifierLocs) {
5372 return new (C, DC,
5373 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
5374 ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
5375 }
5376
CreateImplicit(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)5377 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
5378 SourceLocation StartLoc,
5379 Module *Imported,
5380 SourceLocation EndLoc) {
5381 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
5382 ImportDecl(DC, StartLoc, Imported, EndLoc);
5383 Import->setImplicit();
5384 return Import;
5385 }
5386
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumLocations)5387 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
5388 unsigned NumLocations) {
5389 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
5390 ImportDecl(EmptyShell());
5391 }
5392
getIdentifierLocs() const5393 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
5394 if (!isImportComplete())
5395 return std::nullopt;
5396
5397 const auto *StoredLocs = getTrailingObjects<SourceLocation>();
5398 return llvm::ArrayRef(StoredLocs,
5399 getNumModuleIdentifiers(getImportedModule()));
5400 }
5401
getSourceRange() const5402 SourceRange ImportDecl::getSourceRange() const {
5403 if (!isImportComplete())
5404 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
5405
5406 return SourceRange(getLocation(), getIdentifierLocs().back());
5407 }
5408
5409 //===----------------------------------------------------------------------===//
5410 // ExportDecl Implementation
5411 //===----------------------------------------------------------------------===//
5412
anchor()5413 void ExportDecl::anchor() {}
5414
Create(ASTContext & C,DeclContext * DC,SourceLocation ExportLoc)5415 ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
5416 SourceLocation ExportLoc) {
5417 return new (C, DC) ExportDecl(DC, ExportLoc);
5418 }
5419
CreateDeserialized(ASTContext & C,unsigned ID)5420 ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
5421 return new (C, ID) ExportDecl(nullptr, SourceLocation());
5422 }
5423