1 //===- Type.cpp - Implement the Type class --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Type class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/IR/Type.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/IR/Constant.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Value.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/TypeSize.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <cassert>
28 #include <utility>
29
30 using namespace llvm;
31
32 //===----------------------------------------------------------------------===//
33 // Type Class Implementation
34 //===----------------------------------------------------------------------===//
35
getPrimitiveType(LLVMContext & C,TypeID IDNumber)36 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
37 switch (IDNumber) {
38 case VoidTyID : return getVoidTy(C);
39 case HalfTyID : return getHalfTy(C);
40 case BFloatTyID : return getBFloatTy(C);
41 case FloatTyID : return getFloatTy(C);
42 case DoubleTyID : return getDoubleTy(C);
43 case X86_FP80TyID : return getX86_FP80Ty(C);
44 case FP128TyID : return getFP128Ty(C);
45 case PPC_FP128TyID : return getPPC_FP128Ty(C);
46 case LabelTyID : return getLabelTy(C);
47 case MetadataTyID : return getMetadataTy(C);
48 case X86_MMXTyID : return getX86_MMXTy(C);
49 case X86_AMXTyID : return getX86_AMXTy(C);
50 case TokenTyID : return getTokenTy(C);
51 default:
52 return nullptr;
53 }
54 }
55
isIntegerTy(unsigned Bitwidth) const56 bool Type::isIntegerTy(unsigned Bitwidth) const {
57 return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
58 }
59
isOpaquePointerTy() const60 bool Type::isOpaquePointerTy() const {
61 if (auto *PTy = dyn_cast<PointerType>(this))
62 return PTy->isOpaque();
63 return false;
64 }
65
getFltSemantics() const66 const fltSemantics &Type::getFltSemantics() const {
67 switch (getTypeID()) {
68 case HalfTyID: return APFloat::IEEEhalf();
69 case BFloatTyID: return APFloat::BFloat();
70 case FloatTyID: return APFloat::IEEEsingle();
71 case DoubleTyID: return APFloat::IEEEdouble();
72 case X86_FP80TyID: return APFloat::x87DoubleExtended();
73 case FP128TyID: return APFloat::IEEEquad();
74 case PPC_FP128TyID: return APFloat::PPCDoubleDouble();
75 default: llvm_unreachable("Invalid floating type");
76 }
77 }
78
isIEEE() const79 bool Type::isIEEE() const {
80 return APFloat::getZero(getFltSemantics()).isIEEE();
81 }
82
getFloatingPointTy(LLVMContext & C,const fltSemantics & S)83 Type *Type::getFloatingPointTy(LLVMContext &C, const fltSemantics &S) {
84 Type *Ty;
85 if (&S == &APFloat::IEEEhalf())
86 Ty = Type::getHalfTy(C);
87 else if (&S == &APFloat::BFloat())
88 Ty = Type::getBFloatTy(C);
89 else if (&S == &APFloat::IEEEsingle())
90 Ty = Type::getFloatTy(C);
91 else if (&S == &APFloat::IEEEdouble())
92 Ty = Type::getDoubleTy(C);
93 else if (&S == &APFloat::x87DoubleExtended())
94 Ty = Type::getX86_FP80Ty(C);
95 else if (&S == &APFloat::IEEEquad())
96 Ty = Type::getFP128Ty(C);
97 else {
98 assert(&S == &APFloat::PPCDoubleDouble() && "Unknown FP format");
99 Ty = Type::getPPC_FP128Ty(C);
100 }
101 return Ty;
102 }
103
canLosslesslyBitCastTo(Type * Ty) const104 bool Type::canLosslesslyBitCastTo(Type *Ty) const {
105 // Identity cast means no change so return true
106 if (this == Ty)
107 return true;
108
109 // They are not convertible unless they are at least first class types
110 if (!this->isFirstClassType() || !Ty->isFirstClassType())
111 return false;
112
113 // Vector -> Vector conversions are always lossless if the two vector types
114 // have the same size, otherwise not.
115 if (isa<VectorType>(this) && isa<VectorType>(Ty))
116 return getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits();
117
118 // 64-bit fixed width vector types can be losslessly converted to x86mmx.
119 if (((isa<FixedVectorType>(this)) && Ty->isX86_MMXTy()) &&
120 getPrimitiveSizeInBits().getFixedValue() == 64)
121 return true;
122 if ((isX86_MMXTy() && isa<FixedVectorType>(Ty)) &&
123 Ty->getPrimitiveSizeInBits().getFixedValue() == 64)
124 return true;
125
126 // 8192-bit fixed width vector types can be losslessly converted to x86amx.
127 if (((isa<FixedVectorType>(this)) && Ty->isX86_AMXTy()) &&
128 getPrimitiveSizeInBits().getFixedValue() == 8192)
129 return true;
130 if ((isX86_AMXTy() && isa<FixedVectorType>(Ty)) &&
131 Ty->getPrimitiveSizeInBits().getFixedValue() == 8192)
132 return true;
133
134 // At this point we have only various mismatches of the first class types
135 // remaining and ptr->ptr. Just select the lossless conversions. Everything
136 // else is not lossless. Conservatively assume we can't losslessly convert
137 // between pointers with different address spaces.
138 if (auto *PTy = dyn_cast<PointerType>(this)) {
139 if (auto *OtherPTy = dyn_cast<PointerType>(Ty))
140 return PTy->getAddressSpace() == OtherPTy->getAddressSpace();
141 return false;
142 }
143 return false; // Other types have no identity values
144 }
145
isEmptyTy() const146 bool Type::isEmptyTy() const {
147 if (auto *ATy = dyn_cast<ArrayType>(this)) {
148 unsigned NumElements = ATy->getNumElements();
149 return NumElements == 0 || ATy->getElementType()->isEmptyTy();
150 }
151
152 if (auto *STy = dyn_cast<StructType>(this)) {
153 unsigned NumElements = STy->getNumElements();
154 for (unsigned i = 0; i < NumElements; ++i)
155 if (!STy->getElementType(i)->isEmptyTy())
156 return false;
157 return true;
158 }
159
160 return false;
161 }
162
getPrimitiveSizeInBits() const163 TypeSize Type::getPrimitiveSizeInBits() const {
164 switch (getTypeID()) {
165 case Type::HalfTyID: return TypeSize::Fixed(16);
166 case Type::BFloatTyID: return TypeSize::Fixed(16);
167 case Type::FloatTyID: return TypeSize::Fixed(32);
168 case Type::DoubleTyID: return TypeSize::Fixed(64);
169 case Type::X86_FP80TyID: return TypeSize::Fixed(80);
170 case Type::FP128TyID: return TypeSize::Fixed(128);
171 case Type::PPC_FP128TyID: return TypeSize::Fixed(128);
172 case Type::X86_MMXTyID: return TypeSize::Fixed(64);
173 case Type::X86_AMXTyID: return TypeSize::Fixed(8192);
174 case Type::IntegerTyID:
175 return TypeSize::Fixed(cast<IntegerType>(this)->getBitWidth());
176 case Type::FixedVectorTyID:
177 case Type::ScalableVectorTyID: {
178 const VectorType *VTy = cast<VectorType>(this);
179 ElementCount EC = VTy->getElementCount();
180 TypeSize ETS = VTy->getElementType()->getPrimitiveSizeInBits();
181 assert(!ETS.isScalable() && "Vector type should have fixed-width elements");
182 return {ETS.getFixedValue() * EC.getKnownMinValue(), EC.isScalable()};
183 }
184 default: return TypeSize::Fixed(0);
185 }
186 }
187
getScalarSizeInBits() const188 unsigned Type::getScalarSizeInBits() const {
189 // It is safe to assume that the scalar types have a fixed size.
190 return getScalarType()->getPrimitiveSizeInBits().getFixedValue();
191 }
192
getFPMantissaWidth() const193 int Type::getFPMantissaWidth() const {
194 if (auto *VTy = dyn_cast<VectorType>(this))
195 return VTy->getElementType()->getFPMantissaWidth();
196 assert(isFloatingPointTy() && "Not a floating point type!");
197 if (getTypeID() == HalfTyID) return 11;
198 if (getTypeID() == BFloatTyID) return 8;
199 if (getTypeID() == FloatTyID) return 24;
200 if (getTypeID() == DoubleTyID) return 53;
201 if (getTypeID() == X86_FP80TyID) return 64;
202 if (getTypeID() == FP128TyID) return 113;
203 assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
204 return -1;
205 }
206
isSizedDerivedType(SmallPtrSetImpl<Type * > * Visited) const207 bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const {
208 if (auto *ATy = dyn_cast<ArrayType>(this))
209 return ATy->getElementType()->isSized(Visited);
210
211 if (auto *VTy = dyn_cast<VectorType>(this))
212 return VTy->getElementType()->isSized(Visited);
213
214 if (auto *TTy = dyn_cast<TargetExtType>(this))
215 return TTy->getLayoutType()->isSized(Visited);
216
217 return cast<StructType>(this)->isSized(Visited);
218 }
219
220 //===----------------------------------------------------------------------===//
221 // Primitive 'Type' data
222 //===----------------------------------------------------------------------===//
223
getVoidTy(LLVMContext & C)224 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
getLabelTy(LLVMContext & C)225 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
getHalfTy(LLVMContext & C)226 Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
getBFloatTy(LLVMContext & C)227 Type *Type::getBFloatTy(LLVMContext &C) { return &C.pImpl->BFloatTy; }
getFloatTy(LLVMContext & C)228 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
getDoubleTy(LLVMContext & C)229 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
getMetadataTy(LLVMContext & C)230 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
getTokenTy(LLVMContext & C)231 Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; }
getX86_FP80Ty(LLVMContext & C)232 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
getFP128Ty(LLVMContext & C)233 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
getPPC_FP128Ty(LLVMContext & C)234 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
getX86_MMXTy(LLVMContext & C)235 Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
getX86_AMXTy(LLVMContext & C)236 Type *Type::getX86_AMXTy(LLVMContext &C) { return &C.pImpl->X86_AMXTy; }
237
getInt1Ty(LLVMContext & C)238 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
getInt8Ty(LLVMContext & C)239 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
getInt16Ty(LLVMContext & C)240 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
getInt32Ty(LLVMContext & C)241 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
getInt64Ty(LLVMContext & C)242 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
getInt128Ty(LLVMContext & C)243 IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; }
244
getIntNTy(LLVMContext & C,unsigned N)245 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
246 return IntegerType::get(C, N);
247 }
248
getHalfPtrTy(LLVMContext & C,unsigned AS)249 PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
250 return getHalfTy(C)->getPointerTo(AS);
251 }
252
getBFloatPtrTy(LLVMContext & C,unsigned AS)253 PointerType *Type::getBFloatPtrTy(LLVMContext &C, unsigned AS) {
254 return getBFloatTy(C)->getPointerTo(AS);
255 }
256
getFloatPtrTy(LLVMContext & C,unsigned AS)257 PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
258 return getFloatTy(C)->getPointerTo(AS);
259 }
260
getDoublePtrTy(LLVMContext & C,unsigned AS)261 PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
262 return getDoubleTy(C)->getPointerTo(AS);
263 }
264
getX86_FP80PtrTy(LLVMContext & C,unsigned AS)265 PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
266 return getX86_FP80Ty(C)->getPointerTo(AS);
267 }
268
getFP128PtrTy(LLVMContext & C,unsigned AS)269 PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
270 return getFP128Ty(C)->getPointerTo(AS);
271 }
272
getPPC_FP128PtrTy(LLVMContext & C,unsigned AS)273 PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
274 return getPPC_FP128Ty(C)->getPointerTo(AS);
275 }
276
getX86_MMXPtrTy(LLVMContext & C,unsigned AS)277 PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
278 return getX86_MMXTy(C)->getPointerTo(AS);
279 }
280
getX86_AMXPtrTy(LLVMContext & C,unsigned AS)281 PointerType *Type::getX86_AMXPtrTy(LLVMContext &C, unsigned AS) {
282 return getX86_AMXTy(C)->getPointerTo(AS);
283 }
284
getIntNPtrTy(LLVMContext & C,unsigned N,unsigned AS)285 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
286 return getIntNTy(C, N)->getPointerTo(AS);
287 }
288
getInt1PtrTy(LLVMContext & C,unsigned AS)289 PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
290 return getInt1Ty(C)->getPointerTo(AS);
291 }
292
getInt8PtrTy(LLVMContext & C,unsigned AS)293 PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
294 return getInt8Ty(C)->getPointerTo(AS);
295 }
296
getInt16PtrTy(LLVMContext & C,unsigned AS)297 PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
298 return getInt16Ty(C)->getPointerTo(AS);
299 }
300
getInt32PtrTy(LLVMContext & C,unsigned AS)301 PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
302 return getInt32Ty(C)->getPointerTo(AS);
303 }
304
getInt64PtrTy(LLVMContext & C,unsigned AS)305 PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
306 return getInt64Ty(C)->getPointerTo(AS);
307 }
308
309 //===----------------------------------------------------------------------===//
310 // IntegerType Implementation
311 //===----------------------------------------------------------------------===//
312
get(LLVMContext & C,unsigned NumBits)313 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
314 assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
315 assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
316
317 // Check for the built-in integer types
318 switch (NumBits) {
319 case 1: return cast<IntegerType>(Type::getInt1Ty(C));
320 case 8: return cast<IntegerType>(Type::getInt8Ty(C));
321 case 16: return cast<IntegerType>(Type::getInt16Ty(C));
322 case 32: return cast<IntegerType>(Type::getInt32Ty(C));
323 case 64: return cast<IntegerType>(Type::getInt64Ty(C));
324 case 128: return cast<IntegerType>(Type::getInt128Ty(C));
325 default:
326 break;
327 }
328
329 IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
330
331 if (!Entry)
332 Entry = new (C.pImpl->Alloc) IntegerType(C, NumBits);
333
334 return Entry;
335 }
336
getMask() const337 APInt IntegerType::getMask() const { return APInt::getAllOnes(getBitWidth()); }
338
339 //===----------------------------------------------------------------------===//
340 // FunctionType Implementation
341 //===----------------------------------------------------------------------===//
342
FunctionType(Type * Result,ArrayRef<Type * > Params,bool IsVarArgs)343 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
344 bool IsVarArgs)
345 : Type(Result->getContext(), FunctionTyID) {
346 Type **SubTys = reinterpret_cast<Type**>(this+1);
347 assert(isValidReturnType(Result) && "invalid return type for function");
348 setSubclassData(IsVarArgs);
349
350 SubTys[0] = Result;
351
352 for (unsigned i = 0, e = Params.size(); i != e; ++i) {
353 assert(isValidArgumentType(Params[i]) &&
354 "Not a valid type for function argument!");
355 SubTys[i+1] = Params[i];
356 }
357
358 ContainedTys = SubTys;
359 NumContainedTys = Params.size() + 1; // + 1 for result type
360 }
361
362 // This is the factory function for the FunctionType class.
get(Type * ReturnType,ArrayRef<Type * > Params,bool isVarArg)363 FunctionType *FunctionType::get(Type *ReturnType,
364 ArrayRef<Type*> Params, bool isVarArg) {
365 LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
366 const FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
367 FunctionType *FT;
368 // Since we only want to allocate a fresh function type in case none is found
369 // and we don't want to perform two lookups (one for checking if existent and
370 // one for inserting the newly allocated one), here we instead lookup based on
371 // Key and update the reference to the function type in-place to a newly
372 // allocated one if not found.
373 auto Insertion = pImpl->FunctionTypes.insert_as(nullptr, Key);
374 if (Insertion.second) {
375 // The function type was not found. Allocate one and update FunctionTypes
376 // in-place.
377 FT = (FunctionType *)pImpl->Alloc.Allocate(
378 sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1),
379 alignof(FunctionType));
380 new (FT) FunctionType(ReturnType, Params, isVarArg);
381 *Insertion.first = FT;
382 } else {
383 // The function type was found. Just return it.
384 FT = *Insertion.first;
385 }
386 return FT;
387 }
388
get(Type * Result,bool isVarArg)389 FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
390 return get(Result, std::nullopt, isVarArg);
391 }
392
isValidReturnType(Type * RetTy)393 bool FunctionType::isValidReturnType(Type *RetTy) {
394 return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
395 !RetTy->isMetadataTy();
396 }
397
isValidArgumentType(Type * ArgTy)398 bool FunctionType::isValidArgumentType(Type *ArgTy) {
399 return ArgTy->isFirstClassType();
400 }
401
402 //===----------------------------------------------------------------------===//
403 // StructType Implementation
404 //===----------------------------------------------------------------------===//
405
406 // Primitive Constructors.
407
get(LLVMContext & Context,ArrayRef<Type * > ETypes,bool isPacked)408 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
409 bool isPacked) {
410 LLVMContextImpl *pImpl = Context.pImpl;
411 const AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
412
413 StructType *ST;
414 // Since we only want to allocate a fresh struct type in case none is found
415 // and we don't want to perform two lookups (one for checking if existent and
416 // one for inserting the newly allocated one), here we instead lookup based on
417 // Key and update the reference to the struct type in-place to a newly
418 // allocated one if not found.
419 auto Insertion = pImpl->AnonStructTypes.insert_as(nullptr, Key);
420 if (Insertion.second) {
421 // The struct type was not found. Allocate one and update AnonStructTypes
422 // in-place.
423 ST = new (Context.pImpl->Alloc) StructType(Context);
424 ST->setSubclassData(SCDB_IsLiteral); // Literal struct.
425 ST->setBody(ETypes, isPacked);
426 *Insertion.first = ST;
427 } else {
428 // The struct type was found. Just return it.
429 ST = *Insertion.first;
430 }
431
432 return ST;
433 }
434
containsScalableVectorType() const435 bool StructType::containsScalableVectorType() const {
436 for (Type *Ty : elements()) {
437 if (isa<ScalableVectorType>(Ty))
438 return true;
439 if (auto *STy = dyn_cast<StructType>(Ty))
440 if (STy->containsScalableVectorType())
441 return true;
442 }
443
444 return false;
445 }
446
setBody(ArrayRef<Type * > Elements,bool isPacked)447 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
448 assert(isOpaque() && "Struct body already set!");
449
450 setSubclassData(getSubclassData() | SCDB_HasBody);
451 if (isPacked)
452 setSubclassData(getSubclassData() | SCDB_Packed);
453
454 NumContainedTys = Elements.size();
455
456 if (Elements.empty()) {
457 ContainedTys = nullptr;
458 return;
459 }
460
461 ContainedTys = Elements.copy(getContext().pImpl->Alloc).data();
462 }
463
setName(StringRef Name)464 void StructType::setName(StringRef Name) {
465 if (Name == getName()) return;
466
467 StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
468
469 using EntryTy = StringMap<StructType *>::MapEntryTy;
470
471 // If this struct already had a name, remove its symbol table entry. Don't
472 // delete the data yet because it may be part of the new name.
473 if (SymbolTableEntry)
474 SymbolTable.remove((EntryTy *)SymbolTableEntry);
475
476 // If this is just removing the name, we're done.
477 if (Name.empty()) {
478 if (SymbolTableEntry) {
479 // Delete the old string data.
480 ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
481 SymbolTableEntry = nullptr;
482 }
483 return;
484 }
485
486 // Look up the entry for the name.
487 auto IterBool =
488 getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this));
489
490 // While we have a name collision, try a random rename.
491 if (!IterBool.second) {
492 SmallString<64> TempStr(Name);
493 TempStr.push_back('.');
494 raw_svector_ostream TmpStream(TempStr);
495 unsigned NameSize = Name.size();
496
497 do {
498 TempStr.resize(NameSize + 1);
499 TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
500
501 IterBool = getContext().pImpl->NamedStructTypes.insert(
502 std::make_pair(TmpStream.str(), this));
503 } while (!IterBool.second);
504 }
505
506 // Delete the old string data.
507 if (SymbolTableEntry)
508 ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
509 SymbolTableEntry = &*IterBool.first;
510 }
511
512 //===----------------------------------------------------------------------===//
513 // StructType Helper functions.
514
create(LLVMContext & Context,StringRef Name)515 StructType *StructType::create(LLVMContext &Context, StringRef Name) {
516 StructType *ST = new (Context.pImpl->Alloc) StructType(Context);
517 if (!Name.empty())
518 ST->setName(Name);
519 return ST;
520 }
521
get(LLVMContext & Context,bool isPacked)522 StructType *StructType::get(LLVMContext &Context, bool isPacked) {
523 return get(Context, std::nullopt, isPacked);
524 }
525
create(LLVMContext & Context,ArrayRef<Type * > Elements,StringRef Name,bool isPacked)526 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
527 StringRef Name, bool isPacked) {
528 StructType *ST = create(Context, Name);
529 ST->setBody(Elements, isPacked);
530 return ST;
531 }
532
create(LLVMContext & Context,ArrayRef<Type * > Elements)533 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
534 return create(Context, Elements, StringRef());
535 }
536
create(LLVMContext & Context)537 StructType *StructType::create(LLVMContext &Context) {
538 return create(Context, StringRef());
539 }
540
create(ArrayRef<Type * > Elements,StringRef Name,bool isPacked)541 StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
542 bool isPacked) {
543 assert(!Elements.empty() &&
544 "This method may not be invoked with an empty list");
545 return create(Elements[0]->getContext(), Elements, Name, isPacked);
546 }
547
create(ArrayRef<Type * > Elements)548 StructType *StructType::create(ArrayRef<Type*> Elements) {
549 assert(!Elements.empty() &&
550 "This method may not be invoked with an empty list");
551 return create(Elements[0]->getContext(), Elements, StringRef());
552 }
553
isSized(SmallPtrSetImpl<Type * > * Visited) const554 bool StructType::isSized(SmallPtrSetImpl<Type*> *Visited) const {
555 if ((getSubclassData() & SCDB_IsSized) != 0)
556 return true;
557 if (isOpaque())
558 return false;
559
560 if (Visited && !Visited->insert(const_cast<StructType*>(this)).second)
561 return false;
562
563 // Okay, our struct is sized if all of the elements are, but if one of the
564 // elements is opaque, the struct isn't sized *yet*, but may become sized in
565 // the future, so just bail out without caching.
566 for (Type *Ty : elements()) {
567 // If the struct contains a scalable vector type, don't consider it sized.
568 // This prevents it from being used in loads/stores/allocas/GEPs.
569 if (isa<ScalableVectorType>(Ty))
570 return false;
571 if (!Ty->isSized(Visited))
572 return false;
573 }
574
575 // Here we cheat a bit and cast away const-ness. The goal is to memoize when
576 // we find a sized type, as types can only move from opaque to sized, not the
577 // other way.
578 const_cast<StructType*>(this)->setSubclassData(
579 getSubclassData() | SCDB_IsSized);
580 return true;
581 }
582
getName() const583 StringRef StructType::getName() const {
584 assert(!isLiteral() && "Literal structs never have names");
585 if (!SymbolTableEntry) return StringRef();
586
587 return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
588 }
589
isValidElementType(Type * ElemTy)590 bool StructType::isValidElementType(Type *ElemTy) {
591 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
592 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
593 !ElemTy->isTokenTy();
594 }
595
isLayoutIdentical(StructType * Other) const596 bool StructType::isLayoutIdentical(StructType *Other) const {
597 if (this == Other) return true;
598
599 if (isPacked() != Other->isPacked())
600 return false;
601
602 return elements() == Other->elements();
603 }
604
getTypeAtIndex(const Value * V) const605 Type *StructType::getTypeAtIndex(const Value *V) const {
606 unsigned Idx = (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
607 assert(indexValid(Idx) && "Invalid structure index!");
608 return getElementType(Idx);
609 }
610
indexValid(const Value * V) const611 bool StructType::indexValid(const Value *V) const {
612 // Structure indexes require (vectors of) 32-bit integer constants. In the
613 // vector case all of the indices must be equal.
614 if (!V->getType()->isIntOrIntVectorTy(32))
615 return false;
616 if (isa<ScalableVectorType>(V->getType()))
617 return false;
618 const Constant *C = dyn_cast<Constant>(V);
619 if (C && V->getType()->isVectorTy())
620 C = C->getSplatValue();
621 const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
622 return CU && CU->getZExtValue() < getNumElements();
623 }
624
getTypeByName(LLVMContext & C,StringRef Name)625 StructType *StructType::getTypeByName(LLVMContext &C, StringRef Name) {
626 return C.pImpl->NamedStructTypes.lookup(Name);
627 }
628
629 //===----------------------------------------------------------------------===//
630 // ArrayType Implementation
631 //===----------------------------------------------------------------------===//
632
ArrayType(Type * ElType,uint64_t NumEl)633 ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
634 : Type(ElType->getContext(), ArrayTyID), ContainedType(ElType),
635 NumElements(NumEl) {
636 ContainedTys = &ContainedType;
637 NumContainedTys = 1;
638 }
639
get(Type * ElementType,uint64_t NumElements)640 ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) {
641 assert(isValidElementType(ElementType) && "Invalid type for array element!");
642
643 LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
644 ArrayType *&Entry =
645 pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
646
647 if (!Entry)
648 Entry = new (pImpl->Alloc) ArrayType(ElementType, NumElements);
649 return Entry;
650 }
651
isValidElementType(Type * ElemTy)652 bool ArrayType::isValidElementType(Type *ElemTy) {
653 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
654 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
655 !ElemTy->isTokenTy() && !ElemTy->isX86_AMXTy() &&
656 !isa<ScalableVectorType>(ElemTy);
657 }
658
659 //===----------------------------------------------------------------------===//
660 // VectorType Implementation
661 //===----------------------------------------------------------------------===//
662
VectorType(Type * ElType,unsigned EQ,Type::TypeID TID)663 VectorType::VectorType(Type *ElType, unsigned EQ, Type::TypeID TID)
664 : Type(ElType->getContext(), TID), ContainedType(ElType),
665 ElementQuantity(EQ) {
666 ContainedTys = &ContainedType;
667 NumContainedTys = 1;
668 }
669
get(Type * ElementType,ElementCount EC)670 VectorType *VectorType::get(Type *ElementType, ElementCount EC) {
671 if (EC.isScalable())
672 return ScalableVectorType::get(ElementType, EC.getKnownMinValue());
673 else
674 return FixedVectorType::get(ElementType, EC.getKnownMinValue());
675 }
676
isValidElementType(Type * ElemTy)677 bool VectorType::isValidElementType(Type *ElemTy) {
678 return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
679 ElemTy->isPointerTy() || ElemTy->getTypeID() == TypedPointerTyID;
680 }
681
682 //===----------------------------------------------------------------------===//
683 // FixedVectorType Implementation
684 //===----------------------------------------------------------------------===//
685
get(Type * ElementType,unsigned NumElts)686 FixedVectorType *FixedVectorType::get(Type *ElementType, unsigned NumElts) {
687 assert(NumElts > 0 && "#Elements of a VectorType must be greater than 0");
688 assert(isValidElementType(ElementType) && "Element type of a VectorType must "
689 "be an integer, floating point, or "
690 "pointer type.");
691
692 auto EC = ElementCount::getFixed(NumElts);
693
694 LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
695 VectorType *&Entry = ElementType->getContext()
696 .pImpl->VectorTypes[std::make_pair(ElementType, EC)];
697
698 if (!Entry)
699 Entry = new (pImpl->Alloc) FixedVectorType(ElementType, NumElts);
700 return cast<FixedVectorType>(Entry);
701 }
702
703 //===----------------------------------------------------------------------===//
704 // ScalableVectorType Implementation
705 //===----------------------------------------------------------------------===//
706
get(Type * ElementType,unsigned MinNumElts)707 ScalableVectorType *ScalableVectorType::get(Type *ElementType,
708 unsigned MinNumElts) {
709 assert(MinNumElts > 0 && "#Elements of a VectorType must be greater than 0");
710 assert(isValidElementType(ElementType) && "Element type of a VectorType must "
711 "be an integer, floating point, or "
712 "pointer type.");
713
714 auto EC = ElementCount::getScalable(MinNumElts);
715
716 LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
717 VectorType *&Entry = ElementType->getContext()
718 .pImpl->VectorTypes[std::make_pair(ElementType, EC)];
719
720 if (!Entry)
721 Entry = new (pImpl->Alloc) ScalableVectorType(ElementType, MinNumElts);
722 return cast<ScalableVectorType>(Entry);
723 }
724
725 //===----------------------------------------------------------------------===//
726 // PointerType Implementation
727 //===----------------------------------------------------------------------===//
728
get(Type * EltTy,unsigned AddressSpace)729 PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
730 assert(EltTy && "Can't get a pointer to <null> type!");
731 assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
732
733 LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
734
735 // Automatically convert typed pointers to opaque pointers.
736 if (CImpl->getOpaquePointers())
737 return get(EltTy->getContext(), AddressSpace);
738
739 // Since AddressSpace #0 is the common case, we special case it.
740 PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
741 : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
742
743 if (!Entry)
744 Entry = new (CImpl->Alloc) PointerType(EltTy, AddressSpace);
745 return Entry;
746 }
747
get(LLVMContext & C,unsigned AddressSpace)748 PointerType *PointerType::get(LLVMContext &C, unsigned AddressSpace) {
749 LLVMContextImpl *CImpl = C.pImpl;
750 assert(CImpl->getOpaquePointers() &&
751 "Can only create opaque pointers in opaque pointer mode");
752
753 // Since AddressSpace #0 is the common case, we special case it.
754 PointerType *&Entry =
755 AddressSpace == 0
756 ? CImpl->PointerTypes[nullptr]
757 : CImpl->ASPointerTypes[std::make_pair(nullptr, AddressSpace)];
758
759 if (!Entry)
760 Entry = new (CImpl->Alloc) PointerType(C, AddressSpace);
761 return Entry;
762 }
763
PointerType(Type * E,unsigned AddrSpace)764 PointerType::PointerType(Type *E, unsigned AddrSpace)
765 : Type(E->getContext(), PointerTyID), PointeeTy(E) {
766 ContainedTys = &PointeeTy;
767 NumContainedTys = 1;
768 setSubclassData(AddrSpace);
769 }
770
PointerType(LLVMContext & C,unsigned AddrSpace)771 PointerType::PointerType(LLVMContext &C, unsigned AddrSpace)
772 : Type(C, PointerTyID), PointeeTy(nullptr) {
773 setSubclassData(AddrSpace);
774 }
775
getPointerTo(unsigned AddrSpace) const776 PointerType *Type::getPointerTo(unsigned AddrSpace) const {
777 return PointerType::get(const_cast<Type*>(this), AddrSpace);
778 }
779
isValidElementType(Type * ElemTy)780 bool PointerType::isValidElementType(Type *ElemTy) {
781 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
782 !ElemTy->isMetadataTy() && !ElemTy->isTokenTy() &&
783 !ElemTy->isX86_AMXTy();
784 }
785
isLoadableOrStorableType(Type * ElemTy)786 bool PointerType::isLoadableOrStorableType(Type *ElemTy) {
787 return isValidElementType(ElemTy) && !ElemTy->isFunctionTy();
788 }
789
790 //===----------------------------------------------------------------------===//
791 // TargetExtType Implementation
792 //===----------------------------------------------------------------------===//
793
TargetExtType(LLVMContext & C,StringRef Name,ArrayRef<Type * > Types,ArrayRef<unsigned> Ints)794 TargetExtType::TargetExtType(LLVMContext &C, StringRef Name,
795 ArrayRef<Type *> Types, ArrayRef<unsigned> Ints)
796 : Type(C, TargetExtTyID), Name(C.pImpl->Saver.save(Name)) {
797 NumContainedTys = Types.size();
798
799 // Parameter storage immediately follows the class in allocation.
800 Type **Params = reinterpret_cast<Type **>(this + 1);
801 ContainedTys = Params;
802 for (Type *T : Types)
803 *Params++ = T;
804
805 setSubclassData(Ints.size());
806 unsigned *IntParamSpace = reinterpret_cast<unsigned *>(Params);
807 IntParams = IntParamSpace;
808 for (unsigned IntParam : Ints)
809 *IntParamSpace++ = IntParam;
810 }
811
get(LLVMContext & C,StringRef Name,ArrayRef<Type * > Types,ArrayRef<unsigned> Ints)812 TargetExtType *TargetExtType::get(LLVMContext &C, StringRef Name,
813 ArrayRef<Type *> Types,
814 ArrayRef<unsigned> Ints) {
815 const TargetExtTypeKeyInfo::KeyTy Key(Name, Types, Ints);
816 TargetExtType *TT;
817 // Since we only want to allocate a fresh target type in case none is found
818 // and we don't want to perform two lookups (one for checking if existent and
819 // one for inserting the newly allocated one), here we instead lookup based on
820 // Key and update the reference to the target type in-place to a newly
821 // allocated one if not found.
822 auto Insertion = C.pImpl->TargetExtTypes.insert_as(nullptr, Key);
823 if (Insertion.second) {
824 // The target type was not found. Allocate one and update TargetExtTypes
825 // in-place.
826 TT = (TargetExtType *)C.pImpl->Alloc.Allocate(
827 sizeof(TargetExtType) + sizeof(Type *) * Types.size() +
828 sizeof(unsigned) * Ints.size(),
829 alignof(TargetExtType));
830 new (TT) TargetExtType(C, Name, Types, Ints);
831 *Insertion.first = TT;
832 } else {
833 // The target type was found. Just return it.
834 TT = *Insertion.first;
835 }
836 return TT;
837 }
838
839 namespace {
840 struct TargetTypeInfo {
841 Type *LayoutType;
842 uint64_t Properties;
843
844 template <typename... ArgTys>
TargetTypeInfo__anond34a23290111::TargetTypeInfo845 TargetTypeInfo(Type *LayoutType, ArgTys... Properties)
846 : LayoutType(LayoutType), Properties((0 | ... | Properties)) {}
847 };
848 } // anonymous namespace
849
getTargetTypeInfo(const TargetExtType * Ty)850 static TargetTypeInfo getTargetTypeInfo(const TargetExtType *Ty) {
851 LLVMContext &C = Ty->getContext();
852 StringRef Name = Ty->getName();
853 if (Name.startswith("spirv.")) {
854 return TargetTypeInfo(Type::getInt8PtrTy(C, 0), TargetExtType::HasZeroInit,
855 TargetExtType::CanBeGlobal);
856 }
857 return TargetTypeInfo(Type::getVoidTy(C));
858 }
859
getLayoutType() const860 Type *TargetExtType::getLayoutType() const {
861 return getTargetTypeInfo(this).LayoutType;
862 }
863
hasProperty(Property Prop) const864 bool TargetExtType::hasProperty(Property Prop) const {
865 uint64_t Properties = getTargetTypeInfo(this).Properties;
866 return (Properties & Prop) == Prop;
867 }
868