1 //===- ASTContext.h - Context to hold long-lived AST nodes ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines the clang::ASTContext interface.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15 #define LLVM_CLANG_AST_ASTCONTEXT_H
16
17 #include "clang/AST/ASTFwd.h"
18 #include "clang/AST/CanonicalType.h"
19 #include "clang/AST/CommentCommandTraits.h"
20 #include "clang/AST/ComparisonCategories.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclarationName.h"
23 #include "clang/AST/ExternalASTSource.h"
24 #include "clang/AST/NestedNameSpecifier.h"
25 #include "clang/AST/PrettyPrinter.h"
26 #include "clang/AST/RawCommentList.h"
27 #include "clang/AST/TemplateName.h"
28 #include "clang/Basic/IdentifierTable.h"
29 #include "clang/Basic/LLVM.h"
30 #include "clang/Basic/LangOptions.h"
31 #include "clang/Basic/NoSanitizeList.h"
32 #include "clang/Basic/PartialDiagnostic.h"
33 #include "clang/Basic/ProfileList.h"
34 #include "clang/Basic/SourceLocation.h"
35 #include "clang/Basic/XRayLists.h"
36 #include "llvm/ADT/DenseMap.h"
37 #include "llvm/ADT/DenseSet.h"
38 #include "llvm/ADT/FoldingSet.h"
39 #include "llvm/ADT/IntrusiveRefCntPtr.h"
40 #include "llvm/ADT/MapVector.h"
41 #include "llvm/ADT/PointerIntPair.h"
42 #include "llvm/ADT/PointerUnion.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/StringMap.h"
45 #include "llvm/ADT/StringRef.h"
46 #include "llvm/ADT/TinyPtrVector.h"
47 #include "llvm/Support/TypeSize.h"
48 #include <optional>
49
50 namespace llvm {
51
52 class APFixedPoint;
53 class FixedPointSemantics;
54 struct fltSemantics;
55 template <typename T, unsigned N> class SmallPtrSet;
56
57 } // namespace llvm
58
59 namespace clang {
60
61 class APValue;
62 class ASTMutationListener;
63 class ASTRecordLayout;
64 class AtomicExpr;
65 class BlockExpr;
66 class BuiltinTemplateDecl;
67 class CharUnits;
68 class ConceptDecl;
69 class CXXABI;
70 class CXXConstructorDecl;
71 class CXXMethodDecl;
72 class CXXRecordDecl;
73 class DiagnosticsEngine;
74 class ParentMapContext;
75 class DynTypedNodeList;
76 class Expr;
77 enum class FloatModeKind;
78 class GlobalDecl;
79 class MangleContext;
80 class MangleNumberingContext;
81 class MemberSpecializationInfo;
82 class Module;
83 struct MSGuidDeclParts;
84 class ObjCCategoryDecl;
85 class ObjCCategoryImplDecl;
86 class ObjCContainerDecl;
87 class ObjCImplDecl;
88 class ObjCImplementationDecl;
89 class ObjCInterfaceDecl;
90 class ObjCIvarDecl;
91 class ObjCMethodDecl;
92 class ObjCPropertyDecl;
93 class ObjCPropertyImplDecl;
94 class ObjCProtocolDecl;
95 class ObjCTypeParamDecl;
96 class OMPTraitInfo;
97 struct ParsedTargetAttr;
98 class Preprocessor;
99 class StoredDeclsMap;
100 class TargetAttr;
101 class TargetInfo;
102 class TemplateDecl;
103 class TemplateParameterList;
104 class TemplateTemplateParmDecl;
105 class TemplateTypeParmDecl;
106 class TypeConstraint;
107 class UnresolvedSetIterator;
108 class UsingShadowDecl;
109 class VarTemplateDecl;
110 class VTableContextBase;
111 struct BlockVarCopyInit;
112
113 namespace Builtin {
114
115 class Context;
116
117 } // namespace Builtin
118
119 enum BuiltinTemplateKind : int;
120 enum OpenCLTypeKind : uint8_t;
121
122 namespace comments {
123
124 class FullComment;
125
126 } // namespace comments
127
128 namespace interp {
129
130 class Context;
131
132 } // namespace interp
133
134 namespace serialization {
135 template <class> class AbstractTypeReader;
136 } // namespace serialization
137
138 enum class AlignRequirementKind {
139 /// The alignment was not explicit in code.
140 None,
141
142 /// The alignment comes from an alignment attribute on a typedef.
143 RequiredByTypedef,
144
145 /// The alignment comes from an alignment attribute on a record type.
146 RequiredByRecord,
147
148 /// The alignment comes from an alignment attribute on a enum type.
149 RequiredByEnum,
150 };
151
152 struct TypeInfo {
153 uint64_t Width = 0;
154 unsigned Align = 0;
155 AlignRequirementKind AlignRequirement;
156
TypeInfoTypeInfo157 TypeInfo() : AlignRequirement(AlignRequirementKind::None) {}
TypeInfoTypeInfo158 TypeInfo(uint64_t Width, unsigned Align,
159 AlignRequirementKind AlignRequirement)
160 : Width(Width), Align(Align), AlignRequirement(AlignRequirement) {}
isAlignRequiredTypeInfo161 bool isAlignRequired() {
162 return AlignRequirement != AlignRequirementKind::None;
163 }
164 };
165
166 struct TypeInfoChars {
167 CharUnits Width;
168 CharUnits Align;
169 AlignRequirementKind AlignRequirement;
170
TypeInfoCharsTypeInfoChars171 TypeInfoChars() : AlignRequirement(AlignRequirementKind::None) {}
TypeInfoCharsTypeInfoChars172 TypeInfoChars(CharUnits Width, CharUnits Align,
173 AlignRequirementKind AlignRequirement)
174 : Width(Width), Align(Align), AlignRequirement(AlignRequirement) {}
isAlignRequiredTypeInfoChars175 bool isAlignRequired() {
176 return AlignRequirement != AlignRequirementKind::None;
177 }
178 };
179
180 /// Holds long-lived AST nodes (such as types and decls) that can be
181 /// referred to throughout the semantic analysis of a file.
182 class ASTContext : public RefCountedBase<ASTContext> {
183 friend class NestedNameSpecifier;
184
185 mutable SmallVector<Type *, 0> Types;
186 mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
187 mutable llvm::FoldingSet<ComplexType> ComplexTypes;
188 mutable llvm::FoldingSet<PointerType> PointerTypes{GeneralTypesLog2InitSize};
189 mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
190 mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
191 mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
192 mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
193 mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
194 mutable llvm::ContextualFoldingSet<ConstantArrayType, ASTContext &>
195 ConstantArrayTypes;
196 mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
197 mutable std::vector<VariableArrayType*> VariableArrayTypes;
198 mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
199 mutable llvm::FoldingSet<DependentSizedExtVectorType>
200 DependentSizedExtVectorTypes;
201 mutable llvm::FoldingSet<DependentAddressSpaceType>
202 DependentAddressSpaceTypes;
203 mutable llvm::FoldingSet<VectorType> VectorTypes;
204 mutable llvm::FoldingSet<DependentVectorType> DependentVectorTypes;
205 mutable llvm::FoldingSet<ConstantMatrixType> MatrixTypes;
206 mutable llvm::FoldingSet<DependentSizedMatrixType> DependentSizedMatrixTypes;
207 mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
208 mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
209 FunctionProtoTypes;
210 mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
211 mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
212 mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
213 mutable llvm::FoldingSet<ObjCTypeParamType> ObjCTypeParamTypes;
214 mutable llvm::FoldingSet<SubstTemplateTypeParmType>
215 SubstTemplateTypeParmTypes;
216 mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
217 SubstTemplateTypeParmPackTypes;
218 mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
219 TemplateSpecializationTypes;
220 mutable llvm::FoldingSet<ParenType> ParenTypes{GeneralTypesLog2InitSize};
221 mutable llvm::FoldingSet<UsingType> UsingTypes;
222 mutable llvm::FoldingSet<TypedefType> TypedefTypes;
223 mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes{
224 GeneralTypesLog2InitSize};
225 mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
226 mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
227 ASTContext&>
228 DependentTemplateSpecializationTypes;
229 llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
230 mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
231 mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
232 mutable llvm::FoldingSet<DependentUnaryTransformType>
233 DependentUnaryTransformTypes;
234 mutable llvm::ContextualFoldingSet<AutoType, ASTContext&> AutoTypes;
235 mutable llvm::FoldingSet<DeducedTemplateSpecializationType>
236 DeducedTemplateSpecializationTypes;
237 mutable llvm::FoldingSet<AtomicType> AtomicTypes;
238 mutable llvm::FoldingSet<AttributedType> AttributedTypes;
239 mutable llvm::FoldingSet<PipeType> PipeTypes;
240 mutable llvm::FoldingSet<BitIntType> BitIntTypes;
241 mutable llvm::FoldingSet<DependentBitIntType> DependentBitIntTypes;
242 llvm::FoldingSet<BTFTagAttributedType> BTFTagAttributedTypes;
243
244 mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
245 mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
246 mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
247 SubstTemplateTemplateParms;
248 mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
249 ASTContext&>
250 SubstTemplateTemplateParmPacks;
251
252 /// The set of nested name specifiers.
253 ///
254 /// This set is managed by the NestedNameSpecifier class.
255 mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
256 mutable NestedNameSpecifier *GlobalNestedNameSpecifier = nullptr;
257
258 /// A cache mapping from RecordDecls to ASTRecordLayouts.
259 ///
260 /// This is lazily created. This is intentionally not serialized.
261 mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
262 ASTRecordLayouts;
263 mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
264 ObjCLayouts;
265
266 /// A cache from types to size and alignment information.
267 using TypeInfoMap = llvm::DenseMap<const Type *, struct TypeInfo>;
268 mutable TypeInfoMap MemoizedTypeInfo;
269
270 /// A cache from types to unadjusted alignment information. Only ARM and
271 /// AArch64 targets need this information, keeping it separate prevents
272 /// imposing overhead on TypeInfo size.
273 using UnadjustedAlignMap = llvm::DenseMap<const Type *, unsigned>;
274 mutable UnadjustedAlignMap MemoizedUnadjustedAlign;
275
276 /// A cache mapping from CXXRecordDecls to key functions.
277 llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
278
279 /// Mapping from ObjCContainers to their ObjCImplementations.
280 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
281
282 /// Mapping from ObjCMethod to its duplicate declaration in the same
283 /// interface.
284 llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
285
286 /// Mapping from __block VarDecls to BlockVarCopyInit.
287 llvm::DenseMap<const VarDecl *, BlockVarCopyInit> BlockVarCopyInits;
288
289 /// Mapping from GUIDs to the corresponding MSGuidDecl.
290 mutable llvm::FoldingSet<MSGuidDecl> MSGuidDecls;
291
292 /// Mapping from APValues to the corresponding UnnamedGlobalConstantDecl.
293 mutable llvm::FoldingSet<UnnamedGlobalConstantDecl>
294 UnnamedGlobalConstantDecls;
295
296 /// Mapping from APValues to the corresponding TemplateParamObjects.
297 mutable llvm::FoldingSet<TemplateParamObjectDecl> TemplateParamObjectDecls;
298
299 /// A cache mapping a string value to a StringLiteral object with the same
300 /// value.
301 ///
302 /// This is lazily created. This is intentionally not serialized.
303 mutable llvm::StringMap<StringLiteral *> StringLiteralCache;
304
305 /// MD5 hash of CUID. It is calculated when first used and cached by this
306 /// data member.
307 mutable std::string CUIDHash;
308
309 /// Representation of a "canonical" template template parameter that
310 /// is used in canonical template names.
311 class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
312 TemplateTemplateParmDecl *Parm;
313
314 public:
CanonicalTemplateTemplateParm(TemplateTemplateParmDecl * Parm)315 CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
316 : Parm(Parm) {}
317
getParam()318 TemplateTemplateParmDecl *getParam() const { return Parm; }
319
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & C)320 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &C) {
321 Profile(ID, C, Parm);
322 }
323
324 static void Profile(llvm::FoldingSetNodeID &ID,
325 const ASTContext &C,
326 TemplateTemplateParmDecl *Parm);
327 };
328 mutable llvm::ContextualFoldingSet<CanonicalTemplateTemplateParm,
329 const ASTContext&>
330 CanonTemplateTemplateParms;
331
332 TemplateTemplateParmDecl *
333 getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
334
335 /// The typedef for the __int128_t type.
336 mutable TypedefDecl *Int128Decl = nullptr;
337
338 /// The typedef for the __uint128_t type.
339 mutable TypedefDecl *UInt128Decl = nullptr;
340
341 /// The typedef for the target specific predefined
342 /// __builtin_va_list type.
343 mutable TypedefDecl *BuiltinVaListDecl = nullptr;
344
345 /// The typedef for the predefined \c __builtin_ms_va_list type.
346 mutable TypedefDecl *BuiltinMSVaListDecl = nullptr;
347
348 /// The typedef for the predefined \c id type.
349 mutable TypedefDecl *ObjCIdDecl = nullptr;
350
351 /// The typedef for the predefined \c SEL type.
352 mutable TypedefDecl *ObjCSelDecl = nullptr;
353
354 /// The typedef for the predefined \c Class type.
355 mutable TypedefDecl *ObjCClassDecl = nullptr;
356
357 /// The typedef for the predefined \c Protocol class in Objective-C.
358 mutable ObjCInterfaceDecl *ObjCProtocolClassDecl = nullptr;
359
360 /// The typedef for the predefined 'BOOL' type.
361 mutable TypedefDecl *BOOLDecl = nullptr;
362
363 // Typedefs which may be provided defining the structure of Objective-C
364 // pseudo-builtins
365 QualType ObjCIdRedefinitionType;
366 QualType ObjCClassRedefinitionType;
367 QualType ObjCSelRedefinitionType;
368
369 /// The identifier 'bool'.
370 mutable IdentifierInfo *BoolName = nullptr;
371
372 /// The identifier 'NSObject'.
373 mutable IdentifierInfo *NSObjectName = nullptr;
374
375 /// The identifier 'NSCopying'.
376 IdentifierInfo *NSCopyingName = nullptr;
377
378 /// The identifier '__make_integer_seq'.
379 mutable IdentifierInfo *MakeIntegerSeqName = nullptr;
380
381 /// The identifier '__type_pack_element'.
382 mutable IdentifierInfo *TypePackElementName = nullptr;
383
384 QualType ObjCConstantStringType;
385 mutable RecordDecl *CFConstantStringTagDecl = nullptr;
386 mutable TypedefDecl *CFConstantStringTypeDecl = nullptr;
387
388 mutable QualType ObjCSuperType;
389
390 QualType ObjCNSStringType;
391
392 /// The typedef declaration for the Objective-C "instancetype" type.
393 TypedefDecl *ObjCInstanceTypeDecl = nullptr;
394
395 /// The type for the C FILE type.
396 TypeDecl *FILEDecl = nullptr;
397
398 /// The type for the C jmp_buf type.
399 TypeDecl *jmp_bufDecl = nullptr;
400
401 /// The type for the C sigjmp_buf type.
402 TypeDecl *sigjmp_bufDecl = nullptr;
403
404 /// The type for the C ucontext_t type.
405 TypeDecl *ucontext_tDecl = nullptr;
406
407 /// Type for the Block descriptor for Blocks CodeGen.
408 ///
409 /// Since this is only used for generation of debug info, it is not
410 /// serialized.
411 mutable RecordDecl *BlockDescriptorType = nullptr;
412
413 /// Type for the Block descriptor for Blocks CodeGen.
414 ///
415 /// Since this is only used for generation of debug info, it is not
416 /// serialized.
417 mutable RecordDecl *BlockDescriptorExtendedType = nullptr;
418
419 /// Declaration for the CUDA cudaConfigureCall function.
420 FunctionDecl *cudaConfigureCallDecl = nullptr;
421
422 /// Keeps track of all declaration attributes.
423 ///
424 /// Since so few decls have attrs, we keep them in a hash map instead of
425 /// wasting space in the Decl class.
426 llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
427
428 /// A mapping from non-redeclarable declarations in modules that were
429 /// merged with other declarations to the canonical declaration that they were
430 /// merged into.
431 llvm::DenseMap<Decl*, Decl*> MergedDecls;
432
433 /// A mapping from a defining declaration to a list of modules (other
434 /// than the owning module of the declaration) that contain merged
435 /// definitions of that entity.
436 llvm::DenseMap<NamedDecl*, llvm::TinyPtrVector<Module*>> MergedDefModules;
437
438 /// Initializers for a module, in order. Each Decl will be either
439 /// something that has a semantic effect on startup (such as a variable with
440 /// a non-constant initializer), or an ImportDecl (which recursively triggers
441 /// initialization of another module).
442 struct PerModuleInitializers {
443 llvm::SmallVector<Decl*, 4> Initializers;
444 llvm::SmallVector<uint32_t, 4> LazyInitializers;
445
446 void resolve(ASTContext &Ctx);
447 };
448 llvm::DenseMap<Module*, PerModuleInitializers*> ModuleInitializers;
449
450 /// For module code-gen cases, this is the top-level module we are building.
451 Module *TopLevelModule = nullptr;
452
453 static constexpr unsigned ConstantArrayTypesLog2InitSize = 8;
454 static constexpr unsigned GeneralTypesLog2InitSize = 9;
455 static constexpr unsigned FunctionProtoTypesLog2InitSize = 12;
456
this_()457 ASTContext &this_() { return *this; }
458
459 public:
460 /// A type synonym for the TemplateOrInstantiation mapping.
461 using TemplateOrSpecializationInfo =
462 llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>;
463
464 private:
465 friend class ASTDeclReader;
466 friend class ASTReader;
467 friend class ASTWriter;
468 template <class> friend class serialization::AbstractTypeReader;
469 friend class CXXRecordDecl;
470 friend class IncrementalParser;
471
472 /// A mapping to contain the template or declaration that
473 /// a variable declaration describes or was instantiated from,
474 /// respectively.
475 ///
476 /// For non-templates, this value will be NULL. For variable
477 /// declarations that describe a variable template, this will be a
478 /// pointer to a VarTemplateDecl. For static data members
479 /// of class template specializations, this will be the
480 /// MemberSpecializationInfo referring to the member variable that was
481 /// instantiated or specialized. Thus, the mapping will keep track of
482 /// the static data member templates from which static data members of
483 /// class template specializations were instantiated.
484 ///
485 /// Given the following example:
486 ///
487 /// \code
488 /// template<typename T>
489 /// struct X {
490 /// static T value;
491 /// };
492 ///
493 /// template<typename T>
494 /// T X<T>::value = T(17);
495 ///
496 /// int *x = &X<int>::value;
497 /// \endcode
498 ///
499 /// This mapping will contain an entry that maps from the VarDecl for
500 /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
501 /// class template X) and will be marked TSK_ImplicitInstantiation.
502 llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
503 TemplateOrInstantiation;
504
505 /// Keeps track of the declaration from which a using declaration was
506 /// created during instantiation.
507 ///
508 /// The source and target declarations are always a UsingDecl, an
509 /// UnresolvedUsingValueDecl, or an UnresolvedUsingTypenameDecl.
510 ///
511 /// For example:
512 /// \code
513 /// template<typename T>
514 /// struct A {
515 /// void f();
516 /// };
517 ///
518 /// template<typename T>
519 /// struct B : A<T> {
520 /// using A<T>::f;
521 /// };
522 ///
523 /// template struct B<int>;
524 /// \endcode
525 ///
526 /// This mapping will contain an entry that maps from the UsingDecl in
527 /// B<int> to the UnresolvedUsingDecl in B<T>.
528 llvm::DenseMap<NamedDecl *, NamedDecl *> InstantiatedFromUsingDecl;
529
530 /// Like InstantiatedFromUsingDecl, but for using-enum-declarations. Maps
531 /// from the instantiated using-enum to the templated decl from whence it
532 /// came.
533 /// Note that using-enum-declarations cannot be dependent and
534 /// thus will never be instantiated from an "unresolved"
535 /// version thereof (as with using-declarations), so each mapping is from
536 /// a (resolved) UsingEnumDecl to a (resolved) UsingEnumDecl.
537 llvm::DenseMap<UsingEnumDecl *, UsingEnumDecl *>
538 InstantiatedFromUsingEnumDecl;
539
540 /// Simlarly maps instantiated UsingShadowDecls to their origin.
541 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
542 InstantiatedFromUsingShadowDecl;
543
544 llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
545
546 /// Mapping that stores the methods overridden by a given C++
547 /// member function.
548 ///
549 /// Since most C++ member functions aren't virtual and therefore
550 /// don't override anything, we store the overridden functions in
551 /// this map on the side rather than within the CXXMethodDecl structure.
552 using CXXMethodVector = llvm::TinyPtrVector<const CXXMethodDecl *>;
553 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
554
555 /// Mapping from each declaration context to its corresponding
556 /// mangling numbering context (used for constructs like lambdas which
557 /// need to be consistently numbered for the mangler).
558 llvm::DenseMap<const DeclContext *, std::unique_ptr<MangleNumberingContext>>
559 MangleNumberingContexts;
560 llvm::DenseMap<const Decl *, std::unique_ptr<MangleNumberingContext>>
561 ExtraMangleNumberingContexts;
562
563 /// Side-table of mangling numbers for declarations which rarely
564 /// need them (like static local vars).
565 llvm::MapVector<const NamedDecl *, unsigned> MangleNumbers;
566 llvm::MapVector<const VarDecl *, unsigned> StaticLocalNumbers;
567 /// Mapping the associated device lambda mangling number if present.
568 mutable llvm::DenseMap<const CXXRecordDecl *, unsigned>
569 DeviceLambdaManglingNumbers;
570
571 /// Mapping that stores parameterIndex values for ParmVarDecls when
572 /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
573 using ParameterIndexTable = llvm::DenseMap<const VarDecl *, unsigned>;
574 ParameterIndexTable ParamIndices;
575
576 ImportDecl *FirstLocalImport = nullptr;
577 ImportDecl *LastLocalImport = nullptr;
578
579 TranslationUnitDecl *TUDecl = nullptr;
580 mutable ExternCContextDecl *ExternCContext = nullptr;
581 mutable BuiltinTemplateDecl *MakeIntegerSeqDecl = nullptr;
582 mutable BuiltinTemplateDecl *TypePackElementDecl = nullptr;
583
584 /// The associated SourceManager object.
585 SourceManager &SourceMgr;
586
587 /// The language options used to create the AST associated with
588 /// this ASTContext object.
589 LangOptions &LangOpts;
590
591 /// NoSanitizeList object that is used by sanitizers to decide which
592 /// entities should not be instrumented.
593 std::unique_ptr<NoSanitizeList> NoSanitizeL;
594
595 /// Function filtering mechanism to determine whether a given function
596 /// should be imbued with the XRay "always" or "never" attributes.
597 std::unique_ptr<XRayFunctionFilter> XRayFilter;
598
599 /// ProfileList object that is used by the profile instrumentation
600 /// to decide which entities should be instrumented.
601 std::unique_ptr<ProfileList> ProfList;
602
603 /// The allocator used to create AST objects.
604 ///
605 /// AST objects are never destructed; rather, all memory associated with the
606 /// AST objects will be released when the ASTContext itself is destroyed.
607 mutable llvm::BumpPtrAllocator BumpAlloc;
608
609 /// Allocator for partial diagnostics.
610 PartialDiagnostic::DiagStorageAllocator DiagAllocator;
611
612 /// The current C++ ABI.
613 std::unique_ptr<CXXABI> ABI;
614 CXXABI *createCXXABI(const TargetInfo &T);
615
616 /// Address space map mangling must be used with language specific
617 /// address spaces (e.g. OpenCL/CUDA)
618 bool AddrSpaceMapMangling;
619
620 const TargetInfo *Target = nullptr;
621 const TargetInfo *AuxTarget = nullptr;
622 clang::PrintingPolicy PrintingPolicy;
623 std::unique_ptr<interp::Context> InterpContext;
624 std::unique_ptr<ParentMapContext> ParentMapCtx;
625
626 /// Keeps track of the deallocated DeclListNodes for future reuse.
627 DeclListNode *ListNodeFreeList = nullptr;
628
629 public:
630 IdentifierTable &Idents;
631 SelectorTable &Selectors;
632 Builtin::Context &BuiltinInfo;
633 const TranslationUnitKind TUKind;
634 mutable DeclarationNameTable DeclarationNames;
635 IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
636 ASTMutationListener *Listener = nullptr;
637
638 /// Returns the clang bytecode interpreter context.
639 interp::Context &getInterpContext();
640
641 struct CUDAConstantEvalContext {
642 /// Do not allow wrong-sided variables in constant expressions.
643 bool NoWrongSidedVars = false;
644 } CUDAConstantEvalCtx;
645 struct CUDAConstantEvalContextRAII {
646 ASTContext &Ctx;
647 CUDAConstantEvalContext SavedCtx;
CUDAConstantEvalContextRAIICUDAConstantEvalContextRAII648 CUDAConstantEvalContextRAII(ASTContext &Ctx_, bool NoWrongSidedVars)
649 : Ctx(Ctx_), SavedCtx(Ctx_.CUDAConstantEvalCtx) {
650 Ctx_.CUDAConstantEvalCtx.NoWrongSidedVars = NoWrongSidedVars;
651 }
~CUDAConstantEvalContextRAIICUDAConstantEvalContextRAII652 ~CUDAConstantEvalContextRAII() { Ctx.CUDAConstantEvalCtx = SavedCtx; }
653 };
654
655 /// Returns the dynamic AST node parent map context.
656 ParentMapContext &getParentMapContext();
657
658 // A traversal scope limits the parts of the AST visible to certain analyses.
659 // RecursiveASTVisitor only visits specified children of TranslationUnitDecl.
660 // getParents() will only observe reachable parent edges.
661 //
662 // The scope is defined by a set of "top-level" declarations which will be
663 // visible under the TranslationUnitDecl.
664 // Initially, it is the entire TU, represented by {getTranslationUnitDecl()}.
665 //
666 // After setTraversalScope({foo, bar}), the exposed AST looks like:
667 // TranslationUnitDecl
668 // - foo
669 // - ...
670 // - bar
671 // - ...
672 // All other siblings of foo and bar are pruned from the tree.
673 // (However they are still accessible via TranslationUnitDecl->decls())
674 //
675 // Changing the scope clears the parent cache, which is expensive to rebuild.
getTraversalScope()676 std::vector<Decl *> getTraversalScope() const { return TraversalScope; }
677 void setTraversalScope(const std::vector<Decl *> &);
678
679 /// Forwards to get node parents from the ParentMapContext. New callers should
680 /// use ParentMapContext::getParents() directly.
681 template <typename NodeT> DynTypedNodeList getParents(const NodeT &Node);
682
getPrintingPolicy()683 const clang::PrintingPolicy &getPrintingPolicy() const {
684 return PrintingPolicy;
685 }
686
setPrintingPolicy(const clang::PrintingPolicy & Policy)687 void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
688 PrintingPolicy = Policy;
689 }
690
getSourceManager()691 SourceManager& getSourceManager() { return SourceMgr; }
getSourceManager()692 const SourceManager& getSourceManager() const { return SourceMgr; }
693
694 // Cleans up some of the data structures. This allows us to do cleanup
695 // normally done in the destructor earlier. Renders much of the ASTContext
696 // unusable, mostly the actual AST nodes, so should be called when we no
697 // longer need access to the AST.
698 void cleanup();
699
getAllocator()700 llvm::BumpPtrAllocator &getAllocator() const {
701 return BumpAlloc;
702 }
703
704 void *Allocate(size_t Size, unsigned Align = 8) const {
705 return BumpAlloc.Allocate(Size, Align);
706 }
707 template <typename T> T *Allocate(size_t Num = 1) const {
708 return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
709 }
Deallocate(void * Ptr)710 void Deallocate(void *Ptr) const {}
711
712 /// Allocates a \c DeclListNode or returns one from the \c ListNodeFreeList
713 /// pool.
AllocateDeclListNode(clang::NamedDecl * ND)714 DeclListNode *AllocateDeclListNode(clang::NamedDecl *ND) {
715 if (DeclListNode *Alloc = ListNodeFreeList) {
716 ListNodeFreeList = Alloc->Rest.dyn_cast<DeclListNode*>();
717 Alloc->D = ND;
718 Alloc->Rest = nullptr;
719 return Alloc;
720 }
721 return new (*this) DeclListNode(ND);
722 }
723 /// Deallcates a \c DeclListNode by returning it to the \c ListNodeFreeList
724 /// pool.
DeallocateDeclListNode(DeclListNode * N)725 void DeallocateDeclListNode(DeclListNode *N) {
726 N->Rest = ListNodeFreeList;
727 ListNodeFreeList = N;
728 }
729
730 /// Return the total amount of physical memory allocated for representing
731 /// AST nodes and type information.
getASTAllocatedMemory()732 size_t getASTAllocatedMemory() const {
733 return BumpAlloc.getTotalMemory();
734 }
735
736 /// Return the total memory used for various side tables.
737 size_t getSideTableAllocatedMemory() const;
738
getDiagAllocator()739 PartialDiagnostic::DiagStorageAllocator &getDiagAllocator() {
740 return DiagAllocator;
741 }
742
getTargetInfo()743 const TargetInfo &getTargetInfo() const { return *Target; }
getAuxTargetInfo()744 const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
745
746 /// getIntTypeForBitwidth -
747 /// sets integer QualTy according to specified details:
748 /// bitwidth, signed/unsigned.
749 /// Returns empty type if there is no appropriate target types.
750 QualType getIntTypeForBitwidth(unsigned DestWidth,
751 unsigned Signed) const;
752
753 /// getRealTypeForBitwidth -
754 /// sets floating point QualTy according to specified bitwidth.
755 /// Returns empty type if there is no appropriate target types.
756 QualType getRealTypeForBitwidth(unsigned DestWidth,
757 FloatModeKind ExplicitType) const;
758
759 bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
760
getLangOpts()761 const LangOptions& getLangOpts() const { return LangOpts; }
762
763 // If this condition is false, typo correction must be performed eagerly
764 // rather than delayed in many places, as it makes use of dependent types.
765 // the condition is false for clang's C-only codepath, as it doesn't support
766 // dependent types yet.
isDependenceAllowed()767 bool isDependenceAllowed() const {
768 return LangOpts.CPlusPlus || LangOpts.RecoveryAST;
769 }
770
getNoSanitizeList()771 const NoSanitizeList &getNoSanitizeList() const { return *NoSanitizeL; }
772
getXRayFilter()773 const XRayFunctionFilter &getXRayFilter() const {
774 return *XRayFilter;
775 }
776
getProfileList()777 const ProfileList &getProfileList() const { return *ProfList; }
778
779 DiagnosticsEngine &getDiagnostics() const;
780
getFullLoc(SourceLocation Loc)781 FullSourceLoc getFullLoc(SourceLocation Loc) const {
782 return FullSourceLoc(Loc,SourceMgr);
783 }
784
785 /// Return the C++ ABI kind that should be used. The C++ ABI can be overriden
786 /// at compile time with `-fc++-abi=`. If this is not provided, we instead use
787 /// the default ABI set by the target.
788 TargetCXXABI::Kind getCXXABIKind() const;
789
790 /// All comments in this translation unit.
791 RawCommentList Comments;
792
793 /// True if comments are already loaded from ExternalASTSource.
794 mutable bool CommentsLoaded = false;
795
796 /// Mapping from declaration to directly attached comment.
797 ///
798 /// Raw comments are owned by Comments list. This mapping is populated
799 /// lazily.
800 mutable llvm::DenseMap<const Decl *, const RawComment *> DeclRawComments;
801
802 /// Mapping from canonical declaration to the first redeclaration in chain
803 /// that has a comment attached.
804 ///
805 /// Raw comments are owned by Comments list. This mapping is populated
806 /// lazily.
807 mutable llvm::DenseMap<const Decl *, const Decl *> RedeclChainComments;
808
809 /// Keeps track of redeclaration chains that don't have any comment attached.
810 /// Mapping from canonical declaration to redeclaration chain that has no
811 /// comments attached to any redeclaration. Specifically it's mapping to
812 /// the last redeclaration we've checked.
813 ///
814 /// Shall not contain declarations that have comments attached to any
815 /// redeclaration in their chain.
816 mutable llvm::DenseMap<const Decl *, const Decl *> CommentlessRedeclChains;
817
818 /// Mapping from declarations to parsed comments attached to any
819 /// redeclaration.
820 mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
821
822 /// Attaches \p Comment to \p OriginalD and to its redeclaration chain
823 /// and removes the redeclaration chain from the set of commentless chains.
824 ///
825 /// Don't do anything if a comment has already been attached to \p OriginalD
826 /// or its redeclaration chain.
827 void cacheRawCommentForDecl(const Decl &OriginalD,
828 const RawComment &Comment) const;
829
830 /// \returns searches \p CommentsInFile for doc comment for \p D.
831 ///
832 /// \p RepresentativeLocForDecl is used as a location for searching doc
833 /// comments. \p CommentsInFile is a mapping offset -> comment of files in the
834 /// same file where \p RepresentativeLocForDecl is.
835 RawComment *getRawCommentForDeclNoCacheImpl(
836 const Decl *D, const SourceLocation RepresentativeLocForDecl,
837 const std::map<unsigned, RawComment *> &CommentsInFile) const;
838
839 /// Return the documentation comment attached to a given declaration,
840 /// without looking into cache.
841 RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
842
843 public:
844 void addComment(const RawComment &RC);
845
846 /// Return the documentation comment attached to a given declaration.
847 /// Returns nullptr if no comment is attached.
848 ///
849 /// \param OriginalDecl if not nullptr, is set to declaration AST node that
850 /// had the comment, if the comment we found comes from a redeclaration.
851 const RawComment *
852 getRawCommentForAnyRedecl(const Decl *D,
853 const Decl **OriginalDecl = nullptr) const;
854
855 /// Searches existing comments for doc comments that should be attached to \p
856 /// Decls. If any doc comment is found, it is parsed.
857 ///
858 /// Requirement: All \p Decls are in the same file.
859 ///
860 /// If the last comment in the file is already attached we assume
861 /// there are not comments left to be attached to \p Decls.
862 void attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
863 const Preprocessor *PP);
864
865 /// Return parsed documentation comment attached to a given declaration.
866 /// Returns nullptr if no comment is attached.
867 ///
868 /// \param PP the Preprocessor used with this TU. Could be nullptr if
869 /// preprocessor is not available.
870 comments::FullComment *getCommentForDecl(const Decl *D,
871 const Preprocessor *PP) const;
872
873 /// Return parsed documentation comment attached to a given declaration.
874 /// Returns nullptr if no comment is attached. Does not look at any
875 /// redeclarations of the declaration.
876 comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
877
878 comments::FullComment *cloneFullComment(comments::FullComment *FC,
879 const Decl *D) const;
880
881 private:
882 mutable comments::CommandTraits CommentCommandTraits;
883
884 /// Iterator that visits import declarations.
885 class import_iterator {
886 ImportDecl *Import = nullptr;
887
888 public:
889 using value_type = ImportDecl *;
890 using reference = ImportDecl *;
891 using pointer = ImportDecl *;
892 using difference_type = int;
893 using iterator_category = std::forward_iterator_tag;
894
895 import_iterator() = default;
import_iterator(ImportDecl * Import)896 explicit import_iterator(ImportDecl *Import) : Import(Import) {}
897
898 reference operator*() const { return Import; }
899 pointer operator->() const { return Import; }
900
901 import_iterator &operator++() {
902 Import = ASTContext::getNextLocalImport(Import);
903 return *this;
904 }
905
906 import_iterator operator++(int) {
907 import_iterator Other(*this);
908 ++(*this);
909 return Other;
910 }
911
912 friend bool operator==(import_iterator X, import_iterator Y) {
913 return X.Import == Y.Import;
914 }
915
916 friend bool operator!=(import_iterator X, import_iterator Y) {
917 return X.Import != Y.Import;
918 }
919 };
920
921 public:
getCommentCommandTraits()922 comments::CommandTraits &getCommentCommandTraits() const {
923 return CommentCommandTraits;
924 }
925
926 /// Retrieve the attributes for the given declaration.
927 AttrVec& getDeclAttrs(const Decl *D);
928
929 /// Erase the attributes corresponding to the given declaration.
930 void eraseDeclAttrs(const Decl *D);
931
932 /// If this variable is an instantiated static data member of a
933 /// class template specialization, returns the templated static data member
934 /// from which it was instantiated.
935 // FIXME: Remove ?
936 MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
937 const VarDecl *Var);
938
939 /// Note that the static data member \p Inst is an instantiation of
940 /// the static data member template \p Tmpl of a class template.
941 void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
942 TemplateSpecializationKind TSK,
943 SourceLocation PointOfInstantiation = SourceLocation());
944
945 TemplateOrSpecializationInfo
946 getTemplateOrSpecializationInfo(const VarDecl *Var);
947
948 void setTemplateOrSpecializationInfo(VarDecl *Inst,
949 TemplateOrSpecializationInfo TSI);
950
951 /// If the given using decl \p Inst is an instantiation of
952 /// another (possibly unresolved) using decl, return it.
953 NamedDecl *getInstantiatedFromUsingDecl(NamedDecl *Inst);
954
955 /// Remember that the using decl \p Inst is an instantiation
956 /// of the using decl \p Pattern of a class template.
957 void setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern);
958
959 /// If the given using-enum decl \p Inst is an instantiation of
960 /// another using-enum decl, return it.
961 UsingEnumDecl *getInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst);
962
963 /// Remember that the using enum decl \p Inst is an instantiation
964 /// of the using enum decl \p Pattern of a class template.
965 void setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst,
966 UsingEnumDecl *Pattern);
967
968 UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
969 void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
970 UsingShadowDecl *Pattern);
971
972 FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
973
974 void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
975
976 // Access to the set of methods overridden by the given C++ method.
977 using overridden_cxx_method_iterator = CXXMethodVector::const_iterator;
978 overridden_cxx_method_iterator
979 overridden_methods_begin(const CXXMethodDecl *Method) const;
980
981 overridden_cxx_method_iterator
982 overridden_methods_end(const CXXMethodDecl *Method) const;
983
984 unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
985
986 using overridden_method_range =
987 llvm::iterator_range<overridden_cxx_method_iterator>;
988
989 overridden_method_range overridden_methods(const CXXMethodDecl *Method) const;
990
991 /// Note that the given C++ \p Method overrides the given \p
992 /// Overridden method.
993 void addOverriddenMethod(const CXXMethodDecl *Method,
994 const CXXMethodDecl *Overridden);
995
996 /// Return C++ or ObjC overridden methods for the given \p Method.
997 ///
998 /// An ObjC method is considered to override any method in the class's
999 /// base classes, its protocols, or its categories' protocols, that has
1000 /// the same selector and is of the same kind (class or instance).
1001 /// A method in an implementation is not considered as overriding the same
1002 /// method in the interface or its categories.
1003 void getOverriddenMethods(
1004 const NamedDecl *Method,
1005 SmallVectorImpl<const NamedDecl *> &Overridden) const;
1006
1007 /// Notify the AST context that a new import declaration has been
1008 /// parsed or implicitly created within this translation unit.
1009 void addedLocalImportDecl(ImportDecl *Import);
1010
getNextLocalImport(ImportDecl * Import)1011 static ImportDecl *getNextLocalImport(ImportDecl *Import) {
1012 return Import->getNextLocalImport();
1013 }
1014
1015 using import_range = llvm::iterator_range<import_iterator>;
1016
local_imports()1017 import_range local_imports() const {
1018 return import_range(import_iterator(FirstLocalImport), import_iterator());
1019 }
1020
getPrimaryMergedDecl(Decl * D)1021 Decl *getPrimaryMergedDecl(Decl *D) {
1022 Decl *Result = MergedDecls.lookup(D);
1023 return Result ? Result : D;
1024 }
setPrimaryMergedDecl(Decl * D,Decl * Primary)1025 void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
1026 MergedDecls[D] = Primary;
1027 }
1028
1029 /// Note that the definition \p ND has been merged into module \p M,
1030 /// and should be visible whenever \p M is visible.
1031 void mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1032 bool NotifyListeners = true);
1033
1034 /// Clean up the merged definition list. Call this if you might have
1035 /// added duplicates into the list.
1036 void deduplicateMergedDefinitonsFor(NamedDecl *ND);
1037
1038 /// Get the additional modules in which the definition \p Def has
1039 /// been merged.
1040 ArrayRef<Module*> getModulesWithMergedDefinition(const NamedDecl *Def);
1041
1042 /// Add a declaration to the list of declarations that are initialized
1043 /// for a module. This will typically be a global variable (with internal
1044 /// linkage) that runs module initializers, such as the iostream initializer,
1045 /// or an ImportDecl nominating another module that has initializers.
1046 void addModuleInitializer(Module *M, Decl *Init);
1047
1048 void addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs);
1049
1050 /// Get the initializations to perform when importing a module, if any.
1051 ArrayRef<Decl*> getModuleInitializers(Module *M);
1052
1053 /// Set the (C++20) module we are building.
setModuleForCodeGen(Module * M)1054 void setModuleForCodeGen(Module *M) { TopLevelModule = M; }
1055
1056 /// Get module under construction, nullptr if this is not a C++20 module.
getModuleForCodeGen()1057 Module *getModuleForCodeGen() const { return TopLevelModule; }
1058
getTranslationUnitDecl()1059 TranslationUnitDecl *getTranslationUnitDecl() const {
1060 return TUDecl->getMostRecentDecl();
1061 }
addTranslationUnitDecl()1062 void addTranslationUnitDecl() {
1063 assert(!TUDecl || TUKind == TU_Incremental);
1064 TranslationUnitDecl *NewTUDecl = TranslationUnitDecl::Create(*this);
1065 if (TraversalScope.empty() || TraversalScope.back() == TUDecl)
1066 TraversalScope = {NewTUDecl};
1067 if (TUDecl)
1068 NewTUDecl->setPreviousDecl(TUDecl);
1069 TUDecl = NewTUDecl;
1070 }
1071
1072 ExternCContextDecl *getExternCContextDecl() const;
1073 BuiltinTemplateDecl *getMakeIntegerSeqDecl() const;
1074 BuiltinTemplateDecl *getTypePackElementDecl() const;
1075
1076 // Builtin Types.
1077 CanQualType VoidTy;
1078 CanQualType BoolTy;
1079 CanQualType CharTy;
1080 CanQualType WCharTy; // [C++ 3.9.1p5].
1081 CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
1082 CanQualType WIntTy; // [C99 7.24.1], integer type unchanged by default promotions.
1083 CanQualType Char8Ty; // [C++20 proposal]
1084 CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
1085 CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
1086 CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
1087 CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
1088 CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
1089 CanQualType FloatTy, DoubleTy, LongDoubleTy, Float128Ty, Ibm128Ty;
1090 CanQualType ShortAccumTy, AccumTy,
1091 LongAccumTy; // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1092 CanQualType UnsignedShortAccumTy, UnsignedAccumTy, UnsignedLongAccumTy;
1093 CanQualType ShortFractTy, FractTy, LongFractTy;
1094 CanQualType UnsignedShortFractTy, UnsignedFractTy, UnsignedLongFractTy;
1095 CanQualType SatShortAccumTy, SatAccumTy, SatLongAccumTy;
1096 CanQualType SatUnsignedShortAccumTy, SatUnsignedAccumTy,
1097 SatUnsignedLongAccumTy;
1098 CanQualType SatShortFractTy, SatFractTy, SatLongFractTy;
1099 CanQualType SatUnsignedShortFractTy, SatUnsignedFractTy,
1100 SatUnsignedLongFractTy;
1101 CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
1102 CanQualType BFloat16Ty;
1103 CanQualType Float16Ty; // C11 extension ISO/IEC TS 18661-3
1104 CanQualType VoidPtrTy, NullPtrTy;
1105 CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
1106 CanQualType BuiltinFnTy;
1107 CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
1108 CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
1109 CanQualType ObjCBuiltinBoolTy;
1110 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1111 CanQualType SingletonId;
1112 #include "clang/Basic/OpenCLImageTypes.def"
1113 CanQualType OCLSamplerTy, OCLEventTy, OCLClkEventTy;
1114 CanQualType OCLQueueTy, OCLReserveIDTy;
1115 CanQualType IncompleteMatrixIdxTy;
1116 CanQualType OMPArraySectionTy, OMPArrayShapingTy, OMPIteratorTy;
1117 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1118 CanQualType Id##Ty;
1119 #include "clang/Basic/OpenCLExtensionTypes.def"
1120 #define SVE_TYPE(Name, Id, SingletonId) \
1121 CanQualType SingletonId;
1122 #include "clang/Basic/AArch64SVEACLETypes.def"
1123 #define PPC_VECTOR_TYPE(Name, Id, Size) \
1124 CanQualType Id##Ty;
1125 #include "clang/Basic/PPCTypes.def"
1126 #define RVV_TYPE(Name, Id, SingletonId) \
1127 CanQualType SingletonId;
1128 #include "clang/Basic/RISCVVTypes.def"
1129
1130 // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
1131 mutable QualType AutoDeductTy; // Deduction against 'auto'.
1132 mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
1133
1134 // Decl used to help define __builtin_va_list for some targets.
1135 // The decl is built when constructing 'BuiltinVaListDecl'.
1136 mutable Decl *VaListTagDecl = nullptr;
1137
1138 // Implicitly-declared type 'struct _GUID'.
1139 mutable TagDecl *MSGuidTagDecl = nullptr;
1140
1141 /// Keep track of CUDA/HIP device-side variables ODR-used by host code.
1142 llvm::DenseSet<const VarDecl *> CUDADeviceVarODRUsedByHost;
1143
1144 /// Keep track of CUDA/HIP external kernels or device variables ODR-used by
1145 /// host code.
1146 llvm::DenseSet<const ValueDecl *> CUDAExternalDeviceDeclODRUsedByHost;
1147
1148 ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
1149 SelectorTable &sels, Builtin::Context &builtins,
1150 TranslationUnitKind TUKind);
1151 ASTContext(const ASTContext &) = delete;
1152 ASTContext &operator=(const ASTContext &) = delete;
1153 ~ASTContext();
1154
1155 /// Attach an external AST source to the AST context.
1156 ///
1157 /// The external AST source provides the ability to load parts of
1158 /// the abstract syntax tree as needed from some external storage,
1159 /// e.g., a precompiled header.
1160 void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
1161
1162 /// Retrieve a pointer to the external AST source associated
1163 /// with this AST context, if any.
getExternalSource()1164 ExternalASTSource *getExternalSource() const {
1165 return ExternalSource.get();
1166 }
1167
1168 /// Attach an AST mutation listener to the AST context.
1169 ///
1170 /// The AST mutation listener provides the ability to track modifications to
1171 /// the abstract syntax tree entities committed after they were initially
1172 /// created.
setASTMutationListener(ASTMutationListener * Listener)1173 void setASTMutationListener(ASTMutationListener *Listener) {
1174 this->Listener = Listener;
1175 }
1176
1177 /// Retrieve a pointer to the AST mutation listener associated
1178 /// with this AST context, if any.
getASTMutationListener()1179 ASTMutationListener *getASTMutationListener() const { return Listener; }
1180
1181 void PrintStats() const;
getTypes()1182 const SmallVectorImpl<Type *>& getTypes() const { return Types; }
1183
1184 BuiltinTemplateDecl *buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1185 const IdentifierInfo *II) const;
1186
1187 /// Create a new implicit TU-level CXXRecordDecl or RecordDecl
1188 /// declaration.
1189 RecordDecl *buildImplicitRecord(StringRef Name,
1190 RecordDecl::TagKind TK = TTK_Struct) const;
1191
1192 /// Create a new implicit TU-level typedef declaration.
1193 TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
1194
1195 /// Retrieve the declaration for the 128-bit signed integer type.
1196 TypedefDecl *getInt128Decl() const;
1197
1198 /// Retrieve the declaration for the 128-bit unsigned integer type.
1199 TypedefDecl *getUInt128Decl() const;
1200
1201 //===--------------------------------------------------------------------===//
1202 // Type Constructors
1203 //===--------------------------------------------------------------------===//
1204
1205 private:
1206 /// Return a type with extended qualifiers.
1207 QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
1208
1209 QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
1210
1211 QualType getPipeType(QualType T, bool ReadOnly) const;
1212
1213 public:
1214 /// Return the uniqued reference to the type for an address space
1215 /// qualified type with the specified type and address space.
1216 ///
1217 /// The resulting type has a union of the qualifiers from T and the address
1218 /// space. If T already has an address space specifier, it is silently
1219 /// replaced.
1220 QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const;
1221
1222 /// Remove any existing address space on the type and returns the type
1223 /// with qualifiers intact (or that's the idea anyway)
1224 ///
1225 /// The return type should be T with all prior qualifiers minus the address
1226 /// space.
1227 QualType removeAddrSpaceQualType(QualType T) const;
1228
1229 /// Apply Objective-C protocol qualifiers to the given type.
1230 /// \param allowOnPointerType specifies if we can apply protocol
1231 /// qualifiers on ObjCObjectPointerType. It can be set to true when
1232 /// constructing the canonical type of a Objective-C type parameter.
1233 QualType applyObjCProtocolQualifiers(QualType type,
1234 ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
1235 bool allowOnPointerType = false) const;
1236
1237 /// Return the uniqued reference to the type for an Objective-C
1238 /// gc-qualified type.
1239 ///
1240 /// The resulting type has a union of the qualifiers from T and the gc
1241 /// attribute.
1242 QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
1243
1244 /// Remove the existing address space on the type if it is a pointer size
1245 /// address space and return the type with qualifiers intact.
1246 QualType removePtrSizeAddrSpace(QualType T) const;
1247
1248 /// Return the uniqued reference to the type for a \c restrict
1249 /// qualified type.
1250 ///
1251 /// The resulting type has a union of the qualifiers from \p T and
1252 /// \c restrict.
getRestrictType(QualType T)1253 QualType getRestrictType(QualType T) const {
1254 return T.withFastQualifiers(Qualifiers::Restrict);
1255 }
1256
1257 /// Return the uniqued reference to the type for a \c volatile
1258 /// qualified type.
1259 ///
1260 /// The resulting type has a union of the qualifiers from \p T and
1261 /// \c volatile.
getVolatileType(QualType T)1262 QualType getVolatileType(QualType T) const {
1263 return T.withFastQualifiers(Qualifiers::Volatile);
1264 }
1265
1266 /// Return the uniqued reference to the type for a \c const
1267 /// qualified type.
1268 ///
1269 /// The resulting type has a union of the qualifiers from \p T and \c const.
1270 ///
1271 /// It can be reasonably expected that this will always be equivalent to
1272 /// calling T.withConst().
getConstType(QualType T)1273 QualType getConstType(QualType T) const { return T.withConst(); }
1274
1275 /// Change the ExtInfo on a function type.
1276 const FunctionType *adjustFunctionType(const FunctionType *Fn,
1277 FunctionType::ExtInfo EInfo);
1278
1279 /// Adjust the given function result type.
1280 CanQualType getCanonicalFunctionResultType(QualType ResultType) const;
1281
1282 /// Change the result type of a function type once it is deduced.
1283 void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
1284
1285 /// Get a function type and produce the equivalent function type with the
1286 /// specified exception specification. Type sugar that can be present on a
1287 /// declaration of a function with an exception specification is permitted
1288 /// and preserved. Other type sugar (for instance, typedefs) is not.
1289 QualType getFunctionTypeWithExceptionSpec(
1290 QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) const;
1291
1292 /// Determine whether two function types are the same, ignoring
1293 /// exception specifications in cases where they're part of the type.
1294 bool hasSameFunctionTypeIgnoringExceptionSpec(QualType T, QualType U) const;
1295
1296 /// Change the exception specification on a function once it is
1297 /// delay-parsed, instantiated, or computed.
1298 void adjustExceptionSpec(FunctionDecl *FD,
1299 const FunctionProtoType::ExceptionSpecInfo &ESI,
1300 bool AsWritten = false);
1301
1302 /// Get a function type and produce the equivalent function type where
1303 /// pointer size address spaces in the return type and parameter tyeps are
1304 /// replaced with the default address space.
1305 QualType getFunctionTypeWithoutPtrSizes(QualType T);
1306
1307 /// Determine whether two function types are the same, ignoring pointer sizes
1308 /// in the return type and parameter types.
1309 bool hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U);
1310
1311 /// Return the uniqued reference to the type for a complex
1312 /// number with the specified element type.
1313 QualType getComplexType(QualType T) const;
getComplexType(CanQualType T)1314 CanQualType getComplexType(CanQualType T) const {
1315 return CanQualType::CreateUnsafe(getComplexType((QualType) T));
1316 }
1317
1318 /// Return the uniqued reference to the type for a pointer to
1319 /// the specified type.
1320 QualType getPointerType(QualType T) const;
getPointerType(CanQualType T)1321 CanQualType getPointerType(CanQualType T) const {
1322 return CanQualType::CreateUnsafe(getPointerType((QualType) T));
1323 }
1324
1325 /// Return the uniqued reference to a type adjusted from the original
1326 /// type to a new type.
1327 QualType getAdjustedType(QualType Orig, QualType New) const;
getAdjustedType(CanQualType Orig,CanQualType New)1328 CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
1329 return CanQualType::CreateUnsafe(
1330 getAdjustedType((QualType)Orig, (QualType)New));
1331 }
1332
1333 /// Return the uniqued reference to the decayed version of the given
1334 /// type. Can only be called on array and function types which decay to
1335 /// pointer types.
1336 QualType getDecayedType(QualType T) const;
getDecayedType(CanQualType T)1337 CanQualType getDecayedType(CanQualType T) const {
1338 return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
1339 }
1340 /// Return the uniqued reference to a specified decay from the original
1341 /// type to the decayed type.
1342 QualType getDecayedType(QualType Orig, QualType Decayed) const;
1343
1344 /// Return the uniqued reference to the atomic type for the specified
1345 /// type.
1346 QualType getAtomicType(QualType T) const;
1347
1348 /// Return the uniqued reference to the type for a block of the
1349 /// specified type.
1350 QualType getBlockPointerType(QualType T) const;
1351
1352 /// Gets the struct used to keep track of the descriptor for pointer to
1353 /// blocks.
1354 QualType getBlockDescriptorType() const;
1355
1356 /// Return a read_only pipe type for the specified type.
1357 QualType getReadPipeType(QualType T) const;
1358
1359 /// Return a write_only pipe type for the specified type.
1360 QualType getWritePipeType(QualType T) const;
1361
1362 /// Return a bit-precise integer type with the specified signedness and bit
1363 /// count.
1364 QualType getBitIntType(bool Unsigned, unsigned NumBits) const;
1365
1366 /// Return a dependent bit-precise integer type with the specified signedness
1367 /// and bit count.
1368 QualType getDependentBitIntType(bool Unsigned, Expr *BitsExpr) const;
1369
1370 /// Gets the struct used to keep track of the extended descriptor for
1371 /// pointer to blocks.
1372 QualType getBlockDescriptorExtendedType() const;
1373
1374 /// Map an AST Type to an OpenCLTypeKind enum value.
1375 OpenCLTypeKind getOpenCLTypeKind(const Type *T) const;
1376
1377 /// Get address space for OpenCL type.
1378 LangAS getOpenCLTypeAddrSpace(const Type *T) const;
1379
1380 /// Returns default address space based on OpenCL version and enabled features
getDefaultOpenCLPointeeAddrSpace()1381 inline LangAS getDefaultOpenCLPointeeAddrSpace() {
1382 return LangOpts.OpenCLGenericAddressSpace ? LangAS::opencl_generic
1383 : LangAS::opencl_private;
1384 }
1385
setcudaConfigureCallDecl(FunctionDecl * FD)1386 void setcudaConfigureCallDecl(FunctionDecl *FD) {
1387 cudaConfigureCallDecl = FD;
1388 }
1389
getcudaConfigureCallDecl()1390 FunctionDecl *getcudaConfigureCallDecl() {
1391 return cudaConfigureCallDecl;
1392 }
1393
1394 /// Returns true iff we need copy/dispose helpers for the given type.
1395 bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
1396
1397 /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout
1398 /// is set to false in this case. If HasByrefExtendedLayout returns true,
1399 /// byref variable has extended lifetime.
1400 bool getByrefLifetime(QualType Ty,
1401 Qualifiers::ObjCLifetime &Lifetime,
1402 bool &HasByrefExtendedLayout) const;
1403
1404 /// Return the uniqued reference to the type for an lvalue reference
1405 /// to the specified type.
1406 QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
1407 const;
1408
1409 /// Return the uniqued reference to the type for an rvalue reference
1410 /// to the specified type.
1411 QualType getRValueReferenceType(QualType T) const;
1412
1413 /// Return the uniqued reference to the type for a member pointer to
1414 /// the specified type in the specified class.
1415 ///
1416 /// The class \p Cls is a \c Type because it could be a dependent name.
1417 QualType getMemberPointerType(QualType T, const Type *Cls) const;
1418
1419 /// Return a non-unique reference to the type for a variable array of
1420 /// the specified element type.
1421 QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
1422 ArrayType::ArraySizeModifier ASM,
1423 unsigned IndexTypeQuals,
1424 SourceRange Brackets) const;
1425
1426 /// Return a non-unique reference to the type for a dependently-sized
1427 /// array of the specified element type.
1428 ///
1429 /// FIXME: We will need these to be uniqued, or at least comparable, at some
1430 /// point.
1431 QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1432 ArrayType::ArraySizeModifier ASM,
1433 unsigned IndexTypeQuals,
1434 SourceRange Brackets) const;
1435
1436 /// Return a unique reference to the type for an incomplete array of
1437 /// the specified element type.
1438 QualType getIncompleteArrayType(QualType EltTy,
1439 ArrayType::ArraySizeModifier ASM,
1440 unsigned IndexTypeQuals) const;
1441
1442 /// Return the unique reference to the type for a constant array of
1443 /// the specified element type.
1444 QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
1445 const Expr *SizeExpr,
1446 ArrayType::ArraySizeModifier ASM,
1447 unsigned IndexTypeQuals) const;
1448
1449 /// Return a type for a constant array for a string literal of the
1450 /// specified element type and length.
1451 QualType getStringLiteralArrayType(QualType EltTy, unsigned Length) const;
1452
1453 /// Returns a vla type where known sizes are replaced with [*].
1454 QualType getVariableArrayDecayedType(QualType Ty) const;
1455
1456 // Convenience struct to return information about a builtin vector type.
1457 struct BuiltinVectorTypeInfo {
1458 QualType ElementType;
1459 llvm::ElementCount EC;
1460 unsigned NumVectors;
BuiltinVectorTypeInfoBuiltinVectorTypeInfo1461 BuiltinVectorTypeInfo(QualType ElementType, llvm::ElementCount EC,
1462 unsigned NumVectors)
1463 : ElementType(ElementType), EC(EC), NumVectors(NumVectors) {}
1464 };
1465
1466 /// Returns the element type, element count and number of vectors
1467 /// (in case of tuple) for a builtin vector type.
1468 BuiltinVectorTypeInfo
1469 getBuiltinVectorTypeInfo(const BuiltinType *VecTy) const;
1470
1471 /// Return the unique reference to a scalable vector type of the specified
1472 /// element type and scalable number of elements.
1473 ///
1474 /// \pre \p EltTy must be a built-in type.
1475 QualType getScalableVectorType(QualType EltTy, unsigned NumElts) const;
1476
1477 /// Return the unique reference to a vector type of the specified
1478 /// element type and size.
1479 ///
1480 /// \pre \p VectorType must be a built-in type.
1481 QualType getVectorType(QualType VectorType, unsigned NumElts,
1482 VectorType::VectorKind VecKind) const;
1483 /// Return the unique reference to the type for a dependently sized vector of
1484 /// the specified element type.
1485 QualType getDependentVectorType(QualType VectorType, Expr *SizeExpr,
1486 SourceLocation AttrLoc,
1487 VectorType::VectorKind VecKind) const;
1488
1489 /// Return the unique reference to an extended vector type
1490 /// of the specified element type and size.
1491 ///
1492 /// \pre \p VectorType must be a built-in type.
1493 QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
1494
1495 /// \pre Return a non-unique reference to the type for a dependently-sized
1496 /// vector of the specified element type.
1497 ///
1498 /// FIXME: We will need these to be uniqued, or at least comparable, at some
1499 /// point.
1500 QualType getDependentSizedExtVectorType(QualType VectorType,
1501 Expr *SizeExpr,
1502 SourceLocation AttrLoc) const;
1503
1504 /// Return the unique reference to the matrix type of the specified element
1505 /// type and size
1506 ///
1507 /// \pre \p ElementType must be a valid matrix element type (see
1508 /// MatrixType::isValidElementType).
1509 QualType getConstantMatrixType(QualType ElementType, unsigned NumRows,
1510 unsigned NumColumns) const;
1511
1512 /// Return the unique reference to the matrix type of the specified element
1513 /// type and size
1514 QualType getDependentSizedMatrixType(QualType ElementType, Expr *RowExpr,
1515 Expr *ColumnExpr,
1516 SourceLocation AttrLoc) const;
1517
1518 QualType getDependentAddressSpaceType(QualType PointeeType,
1519 Expr *AddrSpaceExpr,
1520 SourceLocation AttrLoc) const;
1521
1522 /// Return a K&R style C function type like 'int()'.
1523 QualType getFunctionNoProtoType(QualType ResultTy,
1524 const FunctionType::ExtInfo &Info) const;
1525
getFunctionNoProtoType(QualType ResultTy)1526 QualType getFunctionNoProtoType(QualType ResultTy) const {
1527 return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
1528 }
1529
1530 /// Return a normal function type with a typed argument list.
getFunctionType(QualType ResultTy,ArrayRef<QualType> Args,const FunctionProtoType::ExtProtoInfo & EPI)1531 QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
1532 const FunctionProtoType::ExtProtoInfo &EPI) const {
1533 return getFunctionTypeInternal(ResultTy, Args, EPI, false);
1534 }
1535
1536 QualType adjustStringLiteralBaseType(QualType StrLTy) const;
1537
1538 private:
1539 /// Return a normal function type with a typed argument list.
1540 QualType getFunctionTypeInternal(QualType ResultTy, ArrayRef<QualType> Args,
1541 const FunctionProtoType::ExtProtoInfo &EPI,
1542 bool OnlyWantCanonical) const;
1543 QualType
1544 getAutoTypeInternal(QualType DeducedType, AutoTypeKeyword Keyword,
1545 bool IsDependent, bool IsPack = false,
1546 ConceptDecl *TypeConstraintConcept = nullptr,
1547 ArrayRef<TemplateArgument> TypeConstraintArgs = {},
1548 bool IsCanon = false) const;
1549
1550 public:
1551 /// Return the unique reference to the type for the specified type
1552 /// declaration.
1553 QualType getTypeDeclType(const TypeDecl *Decl,
1554 const TypeDecl *PrevDecl = nullptr) const {
1555 assert(Decl && "Passed null for Decl param");
1556 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1557
1558 if (PrevDecl) {
1559 assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
1560 Decl->TypeForDecl = PrevDecl->TypeForDecl;
1561 return QualType(PrevDecl->TypeForDecl, 0);
1562 }
1563
1564 return getTypeDeclTypeSlow(Decl);
1565 }
1566
1567 QualType getUsingType(const UsingShadowDecl *Found,
1568 QualType Underlying) const;
1569
1570 /// Return the unique reference to the type for the specified
1571 /// typedef-name decl.
1572 QualType getTypedefType(const TypedefNameDecl *Decl,
1573 QualType Underlying = QualType()) const;
1574
1575 QualType getRecordType(const RecordDecl *Decl) const;
1576
1577 QualType getEnumType(const EnumDecl *Decl) const;
1578
1579 QualType
1580 getUnresolvedUsingType(const UnresolvedUsingTypenameDecl *Decl) const;
1581
1582 QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1583
1584 QualType getAttributedType(attr::Kind attrKind, QualType modifiedType,
1585 QualType equivalentType) const;
1586
1587 QualType getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
1588 QualType Wrapped);
1589
1590 QualType
1591 getSubstTemplateTypeParmType(QualType Replacement, Decl *AssociatedDecl,
1592 unsigned Index,
1593 std::optional<unsigned> PackIndex) const;
1594 QualType getSubstTemplateTypeParmPackType(Decl *AssociatedDecl,
1595 unsigned Index, bool Final,
1596 const TemplateArgument &ArgPack);
1597
1598 QualType
1599 getTemplateTypeParmType(unsigned Depth, unsigned Index,
1600 bool ParameterPack,
1601 TemplateTypeParmDecl *ParmDecl = nullptr) const;
1602
1603 QualType getTemplateSpecializationType(TemplateName T,
1604 ArrayRef<TemplateArgument> Args,
1605 QualType Canon = QualType()) const;
1606
1607 QualType
1608 getCanonicalTemplateSpecializationType(TemplateName T,
1609 ArrayRef<TemplateArgument> Args) const;
1610
1611 QualType getTemplateSpecializationType(TemplateName T,
1612 ArrayRef<TemplateArgumentLoc> Args,
1613 QualType Canon = QualType()) const;
1614
1615 TypeSourceInfo *
1616 getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1617 const TemplateArgumentListInfo &Args,
1618 QualType Canon = QualType()) const;
1619
1620 QualType getParenType(QualType NamedType) const;
1621
1622 QualType getMacroQualifiedType(QualType UnderlyingTy,
1623 const IdentifierInfo *MacroII) const;
1624
1625 QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1626 NestedNameSpecifier *NNS, QualType NamedType,
1627 TagDecl *OwnedTagDecl = nullptr) const;
1628 QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1629 NestedNameSpecifier *NNS,
1630 const IdentifierInfo *Name,
1631 QualType Canon = QualType()) const;
1632
1633 QualType getDependentTemplateSpecializationType(
1634 ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
1635 const IdentifierInfo *Name, ArrayRef<TemplateArgumentLoc> Args) const;
1636 QualType getDependentTemplateSpecializationType(
1637 ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
1638 const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args) const;
1639
1640 TemplateArgument getInjectedTemplateArg(NamedDecl *ParamDecl);
1641
1642 /// Get a template argument list with one argument per template parameter
1643 /// in a template parameter list, such as for the injected class name of
1644 /// a class template.
1645 void getInjectedTemplateArgs(const TemplateParameterList *Params,
1646 SmallVectorImpl<TemplateArgument> &Args);
1647
1648 /// Form a pack expansion type with the given pattern.
1649 /// \param NumExpansions The number of expansions for the pack, if known.
1650 /// \param ExpectPackInType If \c false, we should not expect \p Pattern to
1651 /// contain an unexpanded pack. This only makes sense if the pack
1652 /// expansion is used in a context where the arity is inferred from
1653 /// elsewhere, such as if the pattern contains a placeholder type or
1654 /// if this is the canonical type of another pack expansion type.
1655 QualType getPackExpansionType(QualType Pattern,
1656 std::optional<unsigned> NumExpansions,
1657 bool ExpectPackInType = true);
1658
1659 QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1660 ObjCInterfaceDecl *PrevDecl = nullptr) const;
1661
1662 /// Legacy interface: cannot provide type arguments or __kindof.
1663 QualType getObjCObjectType(QualType Base,
1664 ObjCProtocolDecl * const *Protocols,
1665 unsigned NumProtocols) const;
1666
1667 QualType getObjCObjectType(QualType Base,
1668 ArrayRef<QualType> typeArgs,
1669 ArrayRef<ObjCProtocolDecl *> protocols,
1670 bool isKindOf) const;
1671
1672 QualType getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1673 ArrayRef<ObjCProtocolDecl *> protocols) const;
1674 void adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
1675 ObjCTypeParamDecl *New) const;
1676
1677 bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
1678
1679 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
1680 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
1681 /// of protocols.
1682 bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
1683 ObjCInterfaceDecl *IDecl);
1684
1685 /// Return a ObjCObjectPointerType type for the given ObjCObjectType.
1686 QualType getObjCObjectPointerType(QualType OIT) const;
1687
1688 /// C2x feature and GCC extension.
1689 QualType getTypeOfExprType(Expr *E, TypeOfKind Kind) const;
1690 QualType getTypeOfType(QualType QT, TypeOfKind Kind) const;
1691
1692 QualType getReferenceQualifiedType(const Expr *e) const;
1693
1694 /// C++11 decltype.
1695 QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1696
1697 /// Unary type transforms
1698 QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1699 UnaryTransformType::UTTKind UKind) const;
1700
1701 /// C++11 deduced auto type.
1702 QualType getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
1703 bool IsDependent, bool IsPack = false,
1704 ConceptDecl *TypeConstraintConcept = nullptr,
1705 ArrayRef<TemplateArgument> TypeConstraintArgs ={}) const;
1706
1707 /// C++11 deduction pattern for 'auto' type.
1708 QualType getAutoDeductType() const;
1709
1710 /// C++11 deduction pattern for 'auto &&' type.
1711 QualType getAutoRRefDeductType() const;
1712
1713 /// C++17 deduced class template specialization type.
1714 QualType getDeducedTemplateSpecializationType(TemplateName Template,
1715 QualType DeducedType,
1716 bool IsDependent) const;
1717
1718 /// Return the unique reference to the type for the specified TagDecl
1719 /// (struct/union/class/enum) decl.
1720 QualType getTagDeclType(const TagDecl *Decl) const;
1721
1722 /// Return the unique type for "size_t" (C99 7.17), defined in
1723 /// <stddef.h>.
1724 ///
1725 /// The sizeof operator requires this (C99 6.5.3.4p4).
1726 CanQualType getSizeType() const;
1727
1728 /// Return the unique signed counterpart of
1729 /// the integer type corresponding to size_t.
1730 CanQualType getSignedSizeType() const;
1731
1732 /// Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1733 /// <stdint.h>.
1734 CanQualType getIntMaxType() const;
1735
1736 /// Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1737 /// <stdint.h>.
1738 CanQualType getUIntMaxType() const;
1739
1740 /// Return the unique wchar_t type available in C++ (and available as
1741 /// __wchar_t as a Microsoft extension).
getWCharType()1742 QualType getWCharType() const { return WCharTy; }
1743
1744 /// Return the type of wide characters. In C++, this returns the
1745 /// unique wchar_t type. In C99, this returns a type compatible with the type
1746 /// defined in <stddef.h> as defined by the target.
getWideCharType()1747 QualType getWideCharType() const { return WideCharTy; }
1748
1749 /// Return the type of "signed wchar_t".
1750 ///
1751 /// Used when in C++, as a GCC extension.
1752 QualType getSignedWCharType() const;
1753
1754 /// Return the type of "unsigned wchar_t".
1755 ///
1756 /// Used when in C++, as a GCC extension.
1757 QualType getUnsignedWCharType() const;
1758
1759 /// In C99, this returns a type compatible with the type
1760 /// defined in <stddef.h> as defined by the target.
getWIntType()1761 QualType getWIntType() const { return WIntTy; }
1762
1763 /// Return a type compatible with "intptr_t" (C99 7.18.1.4),
1764 /// as defined by the target.
1765 QualType getIntPtrType() const;
1766
1767 /// Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1768 /// as defined by the target.
1769 QualType getUIntPtrType() const;
1770
1771 /// Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1772 /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1773 QualType getPointerDiffType() const;
1774
1775 /// Return the unique unsigned counterpart of "ptrdiff_t"
1776 /// integer type. The standard (C11 7.21.6.1p7) refers to this type
1777 /// in the definition of %tu format specifier.
1778 QualType getUnsignedPointerDiffType() const;
1779
1780 /// Return the unique type for "pid_t" defined in
1781 /// <sys/types.h>. We need this to compute the correct type for vfork().
1782 QualType getProcessIDType() const;
1783
1784 /// Return the C structure type used to represent constant CFStrings.
1785 QualType getCFConstantStringType() const;
1786
1787 /// Returns the C struct type for objc_super
1788 QualType getObjCSuperType() const;
setObjCSuperType(QualType ST)1789 void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1790
1791 /// Get the structure type used to representation CFStrings, or NULL
1792 /// if it hasn't yet been built.
getRawCFConstantStringType()1793 QualType getRawCFConstantStringType() const {
1794 if (CFConstantStringTypeDecl)
1795 return getTypedefType(CFConstantStringTypeDecl);
1796 return QualType();
1797 }
1798 void setCFConstantStringType(QualType T);
1799 TypedefDecl *getCFConstantStringDecl() const;
1800 RecordDecl *getCFConstantStringTagDecl() const;
1801
1802 // This setter/getter represents the ObjC type for an NSConstantString.
1803 void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
getObjCConstantStringInterface()1804 QualType getObjCConstantStringInterface() const {
1805 return ObjCConstantStringType;
1806 }
1807
getObjCNSStringType()1808 QualType getObjCNSStringType() const {
1809 return ObjCNSStringType;
1810 }
1811
setObjCNSStringType(QualType T)1812 void setObjCNSStringType(QualType T) {
1813 ObjCNSStringType = T;
1814 }
1815
1816 /// Retrieve the type that \c id has been defined to, which may be
1817 /// different from the built-in \c id if \c id has been typedef'd.
getObjCIdRedefinitionType()1818 QualType getObjCIdRedefinitionType() const {
1819 if (ObjCIdRedefinitionType.isNull())
1820 return getObjCIdType();
1821 return ObjCIdRedefinitionType;
1822 }
1823
1824 /// Set the user-written type that redefines \c id.
setObjCIdRedefinitionType(QualType RedefType)1825 void setObjCIdRedefinitionType(QualType RedefType) {
1826 ObjCIdRedefinitionType = RedefType;
1827 }
1828
1829 /// Retrieve the type that \c Class has been defined to, which may be
1830 /// different from the built-in \c Class if \c Class has been typedef'd.
getObjCClassRedefinitionType()1831 QualType getObjCClassRedefinitionType() const {
1832 if (ObjCClassRedefinitionType.isNull())
1833 return getObjCClassType();
1834 return ObjCClassRedefinitionType;
1835 }
1836
1837 /// Set the user-written type that redefines 'SEL'.
setObjCClassRedefinitionType(QualType RedefType)1838 void setObjCClassRedefinitionType(QualType RedefType) {
1839 ObjCClassRedefinitionType = RedefType;
1840 }
1841
1842 /// Retrieve the type that 'SEL' has been defined to, which may be
1843 /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
getObjCSelRedefinitionType()1844 QualType getObjCSelRedefinitionType() const {
1845 if (ObjCSelRedefinitionType.isNull())
1846 return getObjCSelType();
1847 return ObjCSelRedefinitionType;
1848 }
1849
1850 /// Set the user-written type that redefines 'SEL'.
setObjCSelRedefinitionType(QualType RedefType)1851 void setObjCSelRedefinitionType(QualType RedefType) {
1852 ObjCSelRedefinitionType = RedefType;
1853 }
1854
1855 /// Retrieve the identifier 'NSObject'.
getNSObjectName()1856 IdentifierInfo *getNSObjectName() const {
1857 if (!NSObjectName) {
1858 NSObjectName = &Idents.get("NSObject");
1859 }
1860
1861 return NSObjectName;
1862 }
1863
1864 /// Retrieve the identifier 'NSCopying'.
getNSCopyingName()1865 IdentifierInfo *getNSCopyingName() {
1866 if (!NSCopyingName) {
1867 NSCopyingName = &Idents.get("NSCopying");
1868 }
1869
1870 return NSCopyingName;
1871 }
1872
1873 CanQualType getNSUIntegerType() const;
1874
1875 CanQualType getNSIntegerType() const;
1876
1877 /// Retrieve the identifier 'bool'.
getBoolName()1878 IdentifierInfo *getBoolName() const {
1879 if (!BoolName)
1880 BoolName = &Idents.get("bool");
1881 return BoolName;
1882 }
1883
getMakeIntegerSeqName()1884 IdentifierInfo *getMakeIntegerSeqName() const {
1885 if (!MakeIntegerSeqName)
1886 MakeIntegerSeqName = &Idents.get("__make_integer_seq");
1887 return MakeIntegerSeqName;
1888 }
1889
getTypePackElementName()1890 IdentifierInfo *getTypePackElementName() const {
1891 if (!TypePackElementName)
1892 TypePackElementName = &Idents.get("__type_pack_element");
1893 return TypePackElementName;
1894 }
1895
1896 /// Retrieve the Objective-C "instancetype" type, if already known;
1897 /// otherwise, returns a NULL type;
getObjCInstanceType()1898 QualType getObjCInstanceType() {
1899 return getTypeDeclType(getObjCInstanceTypeDecl());
1900 }
1901
1902 /// Retrieve the typedef declaration corresponding to the Objective-C
1903 /// "instancetype" type.
1904 TypedefDecl *getObjCInstanceTypeDecl();
1905
1906 /// Set the type for the C FILE type.
setFILEDecl(TypeDecl * FILEDecl)1907 void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1908
1909 /// Retrieve the C FILE type.
getFILEType()1910 QualType getFILEType() const {
1911 if (FILEDecl)
1912 return getTypeDeclType(FILEDecl);
1913 return QualType();
1914 }
1915
1916 /// Set the type for the C jmp_buf type.
setjmp_bufDecl(TypeDecl * jmp_bufDecl)1917 void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1918 this->jmp_bufDecl = jmp_bufDecl;
1919 }
1920
1921 /// Retrieve the C jmp_buf type.
getjmp_bufType()1922 QualType getjmp_bufType() const {
1923 if (jmp_bufDecl)
1924 return getTypeDeclType(jmp_bufDecl);
1925 return QualType();
1926 }
1927
1928 /// Set the type for the C sigjmp_buf type.
setsigjmp_bufDecl(TypeDecl * sigjmp_bufDecl)1929 void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1930 this->sigjmp_bufDecl = sigjmp_bufDecl;
1931 }
1932
1933 /// Retrieve the C sigjmp_buf type.
getsigjmp_bufType()1934 QualType getsigjmp_bufType() const {
1935 if (sigjmp_bufDecl)
1936 return getTypeDeclType(sigjmp_bufDecl);
1937 return QualType();
1938 }
1939
1940 /// Set the type for the C ucontext_t type.
setucontext_tDecl(TypeDecl * ucontext_tDecl)1941 void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1942 this->ucontext_tDecl = ucontext_tDecl;
1943 }
1944
1945 /// Retrieve the C ucontext_t type.
getucontext_tType()1946 QualType getucontext_tType() const {
1947 if (ucontext_tDecl)
1948 return getTypeDeclType(ucontext_tDecl);
1949 return QualType();
1950 }
1951
1952 /// The result type of logical operations, '<', '>', '!=', etc.
getLogicalOperationType()1953 QualType getLogicalOperationType() const {
1954 return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1955 }
1956
1957 /// Emit the Objective-CC type encoding for the given type \p T into
1958 /// \p S.
1959 ///
1960 /// If \p Field is specified then record field names are also encoded.
1961 void getObjCEncodingForType(QualType T, std::string &S,
1962 const FieldDecl *Field=nullptr,
1963 QualType *NotEncodedT=nullptr) const;
1964
1965 /// Emit the Objective-C property type encoding for the given
1966 /// type \p T into \p S.
1967 void getObjCEncodingForPropertyType(QualType T, std::string &S) const;
1968
1969 void getLegacyIntegralTypeEncoding(QualType &t) const;
1970
1971 /// Put the string version of the type qualifiers \p QT into \p S.
1972 void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1973 std::string &S) const;
1974
1975 /// Emit the encoded type for the function \p Decl into \p S.
1976 ///
1977 /// This is in the same format as Objective-C method encodings.
1978 ///
1979 /// \returns true if an error occurred (e.g., because one of the parameter
1980 /// types is incomplete), false otherwise.
1981 std::string getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const;
1982
1983 /// Emit the encoded type for the method declaration \p Decl into
1984 /// \p S.
1985 std::string getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
1986 bool Extended = false) const;
1987
1988 /// Return the encoded type for this block declaration.
1989 std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1990
1991 /// getObjCEncodingForPropertyDecl - Return the encoded type for
1992 /// this method declaration. If non-NULL, Container must be either
1993 /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1994 /// only be NULL when getting encodings for protocol properties.
1995 std::string getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1996 const Decl *Container) const;
1997
1998 bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1999 ObjCProtocolDecl *rProto) const;
2000
2001 ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
2002 const ObjCPropertyDecl *PD,
2003 const Decl *Container) const;
2004
2005 /// Return the size of type \p T for Objective-C encoding purpose,
2006 /// in characters.
2007 CharUnits getObjCEncodingTypeSize(QualType T) const;
2008
2009 /// Retrieve the typedef corresponding to the predefined \c id type
2010 /// in Objective-C.
2011 TypedefDecl *getObjCIdDecl() const;
2012
2013 /// Represents the Objective-CC \c id type.
2014 ///
2015 /// This is set up lazily, by Sema. \c id is always a (typedef for a)
2016 /// pointer type, a pointer to a struct.
getObjCIdType()2017 QualType getObjCIdType() const {
2018 return getTypeDeclType(getObjCIdDecl());
2019 }
2020
2021 /// Retrieve the typedef corresponding to the predefined 'SEL' type
2022 /// in Objective-C.
2023 TypedefDecl *getObjCSelDecl() const;
2024
2025 /// Retrieve the type that corresponds to the predefined Objective-C
2026 /// 'SEL' type.
getObjCSelType()2027 QualType getObjCSelType() const {
2028 return getTypeDeclType(getObjCSelDecl());
2029 }
2030
2031 /// Retrieve the typedef declaration corresponding to the predefined
2032 /// Objective-C 'Class' type.
2033 TypedefDecl *getObjCClassDecl() const;
2034
2035 /// Represents the Objective-C \c Class type.
2036 ///
2037 /// This is set up lazily, by Sema. \c Class is always a (typedef for a)
2038 /// pointer type, a pointer to a struct.
getObjCClassType()2039 QualType getObjCClassType() const {
2040 return getTypeDeclType(getObjCClassDecl());
2041 }
2042
2043 /// Retrieve the Objective-C class declaration corresponding to
2044 /// the predefined \c Protocol class.
2045 ObjCInterfaceDecl *getObjCProtocolDecl() const;
2046
2047 /// Retrieve declaration of 'BOOL' typedef
getBOOLDecl()2048 TypedefDecl *getBOOLDecl() const {
2049 return BOOLDecl;
2050 }
2051
2052 /// Save declaration of 'BOOL' typedef
setBOOLDecl(TypedefDecl * TD)2053 void setBOOLDecl(TypedefDecl *TD) {
2054 BOOLDecl = TD;
2055 }
2056
2057 /// type of 'BOOL' type.
getBOOLType()2058 QualType getBOOLType() const {
2059 return getTypeDeclType(getBOOLDecl());
2060 }
2061
2062 /// Retrieve the type of the Objective-C \c Protocol class.
getObjCProtoType()2063 QualType getObjCProtoType() const {
2064 return getObjCInterfaceType(getObjCProtocolDecl());
2065 }
2066
2067 /// Retrieve the C type declaration corresponding to the predefined
2068 /// \c __builtin_va_list type.
2069 TypedefDecl *getBuiltinVaListDecl() const;
2070
2071 /// Retrieve the type of the \c __builtin_va_list type.
getBuiltinVaListType()2072 QualType getBuiltinVaListType() const {
2073 return getTypeDeclType(getBuiltinVaListDecl());
2074 }
2075
2076 /// Retrieve the C type declaration corresponding to the predefined
2077 /// \c __va_list_tag type used to help define the \c __builtin_va_list type
2078 /// for some targets.
2079 Decl *getVaListTagDecl() const;
2080
2081 /// Retrieve the C type declaration corresponding to the predefined
2082 /// \c __builtin_ms_va_list type.
2083 TypedefDecl *getBuiltinMSVaListDecl() const;
2084
2085 /// Retrieve the type of the \c __builtin_ms_va_list type.
getBuiltinMSVaListType()2086 QualType getBuiltinMSVaListType() const {
2087 return getTypeDeclType(getBuiltinMSVaListDecl());
2088 }
2089
2090 /// Retrieve the implicitly-predeclared 'struct _GUID' declaration.
getMSGuidTagDecl()2091 TagDecl *getMSGuidTagDecl() const { return MSGuidTagDecl; }
2092
2093 /// Retrieve the implicitly-predeclared 'struct _GUID' type.
getMSGuidType()2094 QualType getMSGuidType() const {
2095 assert(MSGuidTagDecl && "asked for GUID type but MS extensions disabled");
2096 return getTagDeclType(MSGuidTagDecl);
2097 }
2098
2099 /// Return whether a declaration to a builtin is allowed to be
2100 /// overloaded/redeclared.
2101 bool canBuiltinBeRedeclared(const FunctionDecl *) const;
2102
2103 /// Return a type with additional \c const, \c volatile, or
2104 /// \c restrict qualifiers.
getCVRQualifiedType(QualType T,unsigned CVR)2105 QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
2106 return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
2107 }
2108
2109 /// Un-split a SplitQualType.
getQualifiedType(SplitQualType split)2110 QualType getQualifiedType(SplitQualType split) const {
2111 return getQualifiedType(split.Ty, split.Quals);
2112 }
2113
2114 /// Return a type with additional qualifiers.
getQualifiedType(QualType T,Qualifiers Qs)2115 QualType getQualifiedType(QualType T, Qualifiers Qs) const {
2116 if (!Qs.hasNonFastQualifiers())
2117 return T.withFastQualifiers(Qs.getFastQualifiers());
2118 QualifierCollector Qc(Qs);
2119 const Type *Ptr = Qc.strip(T);
2120 return getExtQualType(Ptr, Qc);
2121 }
2122
2123 /// Return a type with additional qualifiers.
getQualifiedType(const Type * T,Qualifiers Qs)2124 QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
2125 if (!Qs.hasNonFastQualifiers())
2126 return QualType(T, Qs.getFastQualifiers());
2127 return getExtQualType(T, Qs);
2128 }
2129
2130 /// Return a type with the given lifetime qualifier.
2131 ///
2132 /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
getLifetimeQualifiedType(QualType type,Qualifiers::ObjCLifetime lifetime)2133 QualType getLifetimeQualifiedType(QualType type,
2134 Qualifiers::ObjCLifetime lifetime) {
2135 assert(type.getObjCLifetime() == Qualifiers::OCL_None);
2136 assert(lifetime != Qualifiers::OCL_None);
2137
2138 Qualifiers qs;
2139 qs.addObjCLifetime(lifetime);
2140 return getQualifiedType(type, qs);
2141 }
2142
2143 /// getUnqualifiedObjCPointerType - Returns version of
2144 /// Objective-C pointer type with lifetime qualifier removed.
getUnqualifiedObjCPointerType(QualType type)2145 QualType getUnqualifiedObjCPointerType(QualType type) const {
2146 if (!type.getTypePtr()->isObjCObjectPointerType() ||
2147 !type.getQualifiers().hasObjCLifetime())
2148 return type;
2149 Qualifiers Qs = type.getQualifiers();
2150 Qs.removeObjCLifetime();
2151 return getQualifiedType(type.getUnqualifiedType(), Qs);
2152 }
2153
2154 unsigned char getFixedPointScale(QualType Ty) const;
2155 unsigned char getFixedPointIBits(QualType Ty) const;
2156 llvm::FixedPointSemantics getFixedPointSemantics(QualType Ty) const;
2157 llvm::APFixedPoint getFixedPointMax(QualType Ty) const;
2158 llvm::APFixedPoint getFixedPointMin(QualType Ty) const;
2159
2160 DeclarationNameInfo getNameForTemplate(TemplateName Name,
2161 SourceLocation NameLoc) const;
2162
2163 TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
2164 UnresolvedSetIterator End) const;
2165 TemplateName getAssumedTemplateName(DeclarationName Name) const;
2166
2167 TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
2168 bool TemplateKeyword,
2169 TemplateName Template) const;
2170
2171 TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2172 const IdentifierInfo *Name) const;
2173 TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2174 OverloadedOperatorKind Operator) const;
2175 TemplateName
2176 getSubstTemplateTemplateParm(TemplateName replacement, Decl *AssociatedDecl,
2177 unsigned Index,
2178 std::optional<unsigned> PackIndex) const;
2179 TemplateName getSubstTemplateTemplateParmPack(const TemplateArgument &ArgPack,
2180 Decl *AssociatedDecl,
2181 unsigned Index,
2182 bool Final) const;
2183
2184 enum GetBuiltinTypeError {
2185 /// No error
2186 GE_None,
2187
2188 /// Missing a type
2189 GE_Missing_type,
2190
2191 /// Missing a type from <stdio.h>
2192 GE_Missing_stdio,
2193
2194 /// Missing a type from <setjmp.h>
2195 GE_Missing_setjmp,
2196
2197 /// Missing a type from <ucontext.h>
2198 GE_Missing_ucontext
2199 };
2200
2201 QualType DecodeTypeStr(const char *&Str, const ASTContext &Context,
2202 ASTContext::GetBuiltinTypeError &Error,
2203 bool &RequireICE, bool AllowTypeModifiers) const;
2204
2205 /// Return the type for the specified builtin.
2206 ///
2207 /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
2208 /// arguments to the builtin that are required to be integer constant
2209 /// expressions.
2210 QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
2211 unsigned *IntegerConstantArgs = nullptr) const;
2212
2213 /// Types and expressions required to build C++2a three-way comparisons
2214 /// using operator<=>, including the values return by builtin <=> operators.
2215 ComparisonCategories CompCategories;
2216
2217 private:
2218 CanQualType getFromTargetType(unsigned Type) const;
2219 TypeInfo getTypeInfoImpl(const Type *T) const;
2220
2221 //===--------------------------------------------------------------------===//
2222 // Type Predicates.
2223 //===--------------------------------------------------------------------===//
2224
2225 public:
2226 /// Return one of the GCNone, Weak or Strong Objective-C garbage
2227 /// collection attributes.
2228 Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
2229
2230 /// Return true if the given vector types are of the same unqualified
2231 /// type or if they are equivalent to the same GCC vector type.
2232 ///
2233 /// \note This ignores whether they are target-specific (AltiVec or Neon)
2234 /// types.
2235 bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
2236
2237 /// Return true if the given types are an SVE builtin and a VectorType that
2238 /// is a fixed-length representation of the SVE builtin for a specific
2239 /// vector-length.
2240 bool areCompatibleSveTypes(QualType FirstType, QualType SecondType);
2241
2242 /// Return true if the given vector types are lax-compatible SVE vector types,
2243 /// false otherwise.
2244 bool areLaxCompatibleSveTypes(QualType FirstType, QualType SecondType);
2245
2246 /// Return true if the type has been explicitly qualified with ObjC ownership.
2247 /// A type may be implicitly qualified with ownership under ObjC ARC, and in
2248 /// some cases the compiler treats these differently.
2249 bool hasDirectOwnershipQualifier(QualType Ty) const;
2250
2251 /// Return true if this is an \c NSObject object with its \c NSObject
2252 /// attribute set.
isObjCNSObjectType(QualType Ty)2253 static bool isObjCNSObjectType(QualType Ty) {
2254 return Ty->isObjCNSObjectType();
2255 }
2256
2257 //===--------------------------------------------------------------------===//
2258 // Type Sizing and Analysis
2259 //===--------------------------------------------------------------------===//
2260
2261 /// Return the APFloat 'semantics' for the specified scalar floating
2262 /// point type.
2263 const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
2264
2265 /// Get the size and alignment of the specified complete type in bits.
2266 TypeInfo getTypeInfo(const Type *T) const;
getTypeInfo(QualType T)2267 TypeInfo getTypeInfo(QualType T) const { return getTypeInfo(T.getTypePtr()); }
2268
2269 /// Get default simd alignment of the specified complete type in bits.
2270 unsigned getOpenMPDefaultSimdAlign(QualType T) const;
2271
2272 /// Return the size of the specified (complete) type \p T, in bits.
getTypeSize(QualType T)2273 uint64_t getTypeSize(QualType T) const { return getTypeInfo(T).Width; }
getTypeSize(const Type * T)2274 uint64_t getTypeSize(const Type *T) const { return getTypeInfo(T).Width; }
2275
2276 /// Return the size of the character type, in bits.
getCharWidth()2277 uint64_t getCharWidth() const {
2278 return getTypeSize(CharTy);
2279 }
2280
2281 /// Convert a size in bits to a size in characters.
2282 CharUnits toCharUnitsFromBits(int64_t BitSize) const;
2283
2284 /// Convert a size in characters to a size in bits.
2285 int64_t toBits(CharUnits CharSize) const;
2286
2287 /// Return the size of the specified (complete) type \p T, in
2288 /// characters.
2289 CharUnits getTypeSizeInChars(QualType T) const;
2290 CharUnits getTypeSizeInChars(const Type *T) const;
2291
getTypeSizeInCharsIfKnown(QualType Ty)2292 std::optional<CharUnits> getTypeSizeInCharsIfKnown(QualType Ty) const {
2293 if (Ty->isIncompleteType() || Ty->isDependentType())
2294 return std::nullopt;
2295 return getTypeSizeInChars(Ty);
2296 }
2297
getTypeSizeInCharsIfKnown(const Type * Ty)2298 std::optional<CharUnits> getTypeSizeInCharsIfKnown(const Type *Ty) const {
2299 return getTypeSizeInCharsIfKnown(QualType(Ty, 0));
2300 }
2301
2302 /// Return the ABI-specified alignment of a (complete) type \p T, in
2303 /// bits.
getTypeAlign(QualType T)2304 unsigned getTypeAlign(QualType T) const { return getTypeInfo(T).Align; }
getTypeAlign(const Type * T)2305 unsigned getTypeAlign(const Type *T) const { return getTypeInfo(T).Align; }
2306
2307 /// Return the ABI-specified natural alignment of a (complete) type \p T,
2308 /// before alignment adjustments, in bits.
2309 ///
2310 /// This alignment is curently used only by ARM and AArch64 when passing
2311 /// arguments of a composite type.
getTypeUnadjustedAlign(QualType T)2312 unsigned getTypeUnadjustedAlign(QualType T) const {
2313 return getTypeUnadjustedAlign(T.getTypePtr());
2314 }
2315 unsigned getTypeUnadjustedAlign(const Type *T) const;
2316
2317 /// Return the alignment of a type, in bits, or 0 if
2318 /// the type is incomplete and we cannot determine the alignment (for
2319 /// example, from alignment attributes). The returned alignment is the
2320 /// Preferred alignment if NeedsPreferredAlignment is true, otherwise is the
2321 /// ABI alignment.
2322 unsigned getTypeAlignIfKnown(QualType T,
2323 bool NeedsPreferredAlignment = false) const;
2324
2325 /// Return the ABI-specified alignment of a (complete) type \p T, in
2326 /// characters.
2327 CharUnits getTypeAlignInChars(QualType T) const;
2328 CharUnits getTypeAlignInChars(const Type *T) const;
2329
2330 /// Return the PreferredAlignment of a (complete) type \p T, in
2331 /// characters.
getPreferredTypeAlignInChars(QualType T)2332 CharUnits getPreferredTypeAlignInChars(QualType T) const {
2333 return toCharUnitsFromBits(getPreferredTypeAlign(T));
2334 }
2335
2336 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a type,
2337 /// in characters, before alignment adjustments. This method does not work on
2338 /// incomplete types.
2339 CharUnits getTypeUnadjustedAlignInChars(QualType T) const;
2340 CharUnits getTypeUnadjustedAlignInChars(const Type *T) const;
2341
2342 // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
2343 // type is a record, its data size is returned.
2344 TypeInfoChars getTypeInfoDataSizeInChars(QualType T) const;
2345
2346 TypeInfoChars getTypeInfoInChars(const Type *T) const;
2347 TypeInfoChars getTypeInfoInChars(QualType T) const;
2348
2349 /// Determine if the alignment the type has was required using an
2350 /// alignment attribute.
2351 bool isAlignmentRequired(const Type *T) const;
2352 bool isAlignmentRequired(QualType T) const;
2353
2354 /// More type predicates useful for type checking/promotion
2355 bool isPromotableIntegerType(QualType T) const; // C99 6.3.1.1p2
2356
2357 /// Return the "preferred" alignment of the specified type \p T for
2358 /// the current target, in bits.
2359 ///
2360 /// This can be different than the ABI alignment in cases where it is
2361 /// beneficial for performance or backwards compatibility preserving to
2362 /// overalign a data type. (Note: despite the name, the preferred alignment
2363 /// is ABI-impacting, and not an optimization.)
getPreferredTypeAlign(QualType T)2364 unsigned getPreferredTypeAlign(QualType T) const {
2365 return getPreferredTypeAlign(T.getTypePtr());
2366 }
2367 unsigned getPreferredTypeAlign(const Type *T) const;
2368
2369 /// Return the default alignment for __attribute__((aligned)) on
2370 /// this target, to be used if no alignment value is specified.
2371 unsigned getTargetDefaultAlignForAttributeAligned() const;
2372
2373 /// Return the alignment in bits that should be given to a
2374 /// global variable with type \p T.
2375 unsigned getAlignOfGlobalVar(QualType T) const;
2376
2377 /// Return the alignment in characters that should be given to a
2378 /// global variable with type \p T.
2379 CharUnits getAlignOfGlobalVarInChars(QualType T) const;
2380
2381 /// Return a conservative estimate of the alignment of the specified
2382 /// decl \p D.
2383 ///
2384 /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
2385 /// alignment.
2386 ///
2387 /// If \p ForAlignof, references are treated like their underlying type
2388 /// and large arrays don't get any special treatment. If not \p ForAlignof
2389 /// it computes the value expected by CodeGen: references are treated like
2390 /// pointers and large arrays get extra alignment.
2391 CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
2392
2393 /// Return the alignment (in bytes) of the thrown exception object. This is
2394 /// only meaningful for targets that allocate C++ exceptions in a system
2395 /// runtime, such as those using the Itanium C++ ABI.
2396 CharUnits getExnObjectAlignment() const;
2397
2398 /// Get or compute information about the layout of the specified
2399 /// record (struct/union/class) \p D, which indicates its size and field
2400 /// position information.
2401 const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
2402
2403 /// Get or compute information about the layout of the specified
2404 /// Objective-C interface.
2405 const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
2406 const;
2407
2408 void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
2409 bool Simple = false) const;
2410
2411 /// Get or compute information about the layout of the specified
2412 /// Objective-C implementation.
2413 ///
2414 /// This may differ from the interface if synthesized ivars are present.
2415 const ASTRecordLayout &
2416 getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
2417
2418 /// Get our current best idea for the key function of the
2419 /// given record decl, or nullptr if there isn't one.
2420 ///
2421 /// The key function is, according to the Itanium C++ ABI section 5.2.3:
2422 /// ...the first non-pure virtual function that is not inline at the
2423 /// point of class definition.
2424 ///
2425 /// Other ABIs use the same idea. However, the ARM C++ ABI ignores
2426 /// virtual functions that are defined 'inline', which means that
2427 /// the result of this computation can change.
2428 const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
2429
2430 /// Observe that the given method cannot be a key function.
2431 /// Checks the key-function cache for the method's class and clears it
2432 /// if matches the given declaration.
2433 ///
2434 /// This is used in ABIs where out-of-line definitions marked
2435 /// inline are not considered to be key functions.
2436 ///
2437 /// \param method should be the declaration from the class definition
2438 void setNonKeyFunction(const CXXMethodDecl *method);
2439
2440 /// Loading virtual member pointers using the virtual inheritance model
2441 /// always results in an adjustment using the vbtable even if the index is
2442 /// zero.
2443 ///
2444 /// This is usually OK because the first slot in the vbtable points
2445 /// backwards to the top of the MDC. However, the MDC might be reusing a
2446 /// vbptr from an nv-base. In this case, the first slot in the vbtable
2447 /// points to the start of the nv-base which introduced the vbptr and *not*
2448 /// the MDC. Modify the NonVirtualBaseAdjustment to account for this.
2449 CharUnits getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const;
2450
2451 /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
2452 uint64_t getFieldOffset(const ValueDecl *FD) const;
2453
2454 /// Get the offset of an ObjCIvarDecl in bits.
2455 uint64_t lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
2456 const ObjCImplementationDecl *ID,
2457 const ObjCIvarDecl *Ivar) const;
2458
2459 /// Find the 'this' offset for the member path in a pointer-to-member
2460 /// APValue.
2461 CharUnits getMemberPointerPathAdjustment(const APValue &MP) const;
2462
2463 bool isNearlyEmpty(const CXXRecordDecl *RD) const;
2464
2465 VTableContextBase *getVTableContext();
2466
2467 /// If \p T is null pointer, assume the target in ASTContext.
2468 MangleContext *createMangleContext(const TargetInfo *T = nullptr);
2469
2470 /// Creates a device mangle context to correctly mangle lambdas in a mixed
2471 /// architecture compile by setting the lambda mangling number source to the
2472 /// DeviceLambdaManglingNumber. Currently this asserts that the TargetInfo
2473 /// (from the AuxTargetInfo) is a an itanium target.
2474 MangleContext *createDeviceMangleContext(const TargetInfo &T);
2475
2476 void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
2477 SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
2478
2479 unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
2480 void CollectInheritedProtocols(const Decl *CDecl,
2481 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
2482
2483 /// Return true if the specified type has unique object representations
2484 /// according to (C++17 [meta.unary.prop]p9)
2485 bool hasUniqueObjectRepresentations(QualType Ty) const;
2486
2487 //===--------------------------------------------------------------------===//
2488 // Type Operators
2489 //===--------------------------------------------------------------------===//
2490
2491 /// Return the canonical (structural) type corresponding to the
2492 /// specified potentially non-canonical type \p T.
2493 ///
2494 /// The non-canonical version of a type may have many "decorated" versions of
2495 /// types. Decorators can include typedefs, 'typeof' operators, etc. The
2496 /// returned type is guaranteed to be free of any of these, allowing two
2497 /// canonical types to be compared for exact equality with a simple pointer
2498 /// comparison.
getCanonicalType(QualType T)2499 CanQualType getCanonicalType(QualType T) const {
2500 return CanQualType::CreateUnsafe(T.getCanonicalType());
2501 }
2502
getCanonicalType(const Type * T)2503 const Type *getCanonicalType(const Type *T) const {
2504 return T->getCanonicalTypeInternal().getTypePtr();
2505 }
2506
2507 /// Return the canonical parameter type corresponding to the specific
2508 /// potentially non-canonical one.
2509 ///
2510 /// Qualifiers are stripped off, functions are turned into function
2511 /// pointers, and arrays decay one level into pointers.
2512 CanQualType getCanonicalParamType(QualType T) const;
2513
2514 /// Determine whether the given types \p T1 and \p T2 are equivalent.
hasSameType(QualType T1,QualType T2)2515 bool hasSameType(QualType T1, QualType T2) const {
2516 return getCanonicalType(T1) == getCanonicalType(T2);
2517 }
hasSameType(const Type * T1,const Type * T2)2518 bool hasSameType(const Type *T1, const Type *T2) const {
2519 return getCanonicalType(T1) == getCanonicalType(T2);
2520 }
2521
2522 /// Determine whether the given expressions \p X and \p Y are equivalent.
2523 bool hasSameExpr(const Expr *X, const Expr *Y) const;
2524
2525 /// Return this type as a completely-unqualified array type,
2526 /// capturing the qualifiers in \p Quals.
2527 ///
2528 /// This will remove the minimal amount of sugaring from the types, similar
2529 /// to the behavior of QualType::getUnqualifiedType().
2530 ///
2531 /// \param T is the qualified type, which may be an ArrayType
2532 ///
2533 /// \param Quals will receive the full set of qualifiers that were
2534 /// applied to the array.
2535 ///
2536 /// \returns if this is an array type, the completely unqualified array type
2537 /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
2538 QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
2539
2540 /// Determine whether the given types are equivalent after
2541 /// cvr-qualifiers have been removed.
hasSameUnqualifiedType(QualType T1,QualType T2)2542 bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
2543 return getCanonicalType(T1).getTypePtr() ==
2544 getCanonicalType(T2).getTypePtr();
2545 }
2546
hasSameNullabilityTypeQualifier(QualType SubT,QualType SuperT,bool IsParam)2547 bool hasSameNullabilityTypeQualifier(QualType SubT, QualType SuperT,
2548 bool IsParam) const {
2549 auto SubTnullability = SubT->getNullability();
2550 auto SuperTnullability = SuperT->getNullability();
2551 if (SubTnullability.has_value() == SuperTnullability.has_value()) {
2552 // Neither has nullability; return true
2553 if (!SubTnullability)
2554 return true;
2555 // Both have nullability qualifier.
2556 if (*SubTnullability == *SuperTnullability ||
2557 *SubTnullability == NullabilityKind::Unspecified ||
2558 *SuperTnullability == NullabilityKind::Unspecified)
2559 return true;
2560
2561 if (IsParam) {
2562 // Ok for the superclass method parameter to be "nonnull" and the subclass
2563 // method parameter to be "nullable"
2564 return (*SuperTnullability == NullabilityKind::NonNull &&
2565 *SubTnullability == NullabilityKind::Nullable);
2566 }
2567 // For the return type, it's okay for the superclass method to specify
2568 // "nullable" and the subclass method specify "nonnull"
2569 return (*SuperTnullability == NullabilityKind::Nullable &&
2570 *SubTnullability == NullabilityKind::NonNull);
2571 }
2572 return true;
2573 }
2574
2575 bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
2576 const ObjCMethodDecl *MethodImp);
2577
2578 bool UnwrapSimilarTypes(QualType &T1, QualType &T2,
2579 bool AllowPiMismatch = true);
2580 void UnwrapSimilarArrayTypes(QualType &T1, QualType &T2,
2581 bool AllowPiMismatch = true);
2582
2583 /// Determine if two types are similar, according to the C++ rules. That is,
2584 /// determine if they are the same other than qualifiers on the initial
2585 /// sequence of pointer / pointer-to-member / array (and in Clang, object
2586 /// pointer) types and their element types.
2587 ///
2588 /// Clang offers a number of qualifiers in addition to the C++ qualifiers;
2589 /// those qualifiers are also ignored in the 'similarity' check.
2590 bool hasSimilarType(QualType T1, QualType T2);
2591
2592 /// Determine if two types are similar, ignoring only CVR qualifiers.
2593 bool hasCvrSimilarType(QualType T1, QualType T2);
2594
2595 /// Retrieves the "canonical" nested name specifier for a
2596 /// given nested name specifier.
2597 ///
2598 /// The canonical nested name specifier is a nested name specifier
2599 /// that uniquely identifies a type or namespace within the type
2600 /// system. For example, given:
2601 ///
2602 /// \code
2603 /// namespace N {
2604 /// struct S {
2605 /// template<typename T> struct X { typename T* type; };
2606 /// };
2607 /// }
2608 ///
2609 /// template<typename T> struct Y {
2610 /// typename N::S::X<T>::type member;
2611 /// };
2612 /// \endcode
2613 ///
2614 /// Here, the nested-name-specifier for N::S::X<T>:: will be
2615 /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
2616 /// by declarations in the type system and the canonical type for
2617 /// the template type parameter 'T' is template-param-0-0.
2618 NestedNameSpecifier *
2619 getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
2620
2621 /// Retrieves the default calling convention for the current target.
2622 CallingConv getDefaultCallingConvention(bool IsVariadic,
2623 bool IsCXXMethod,
2624 bool IsBuiltin = false) const;
2625
2626 /// Retrieves the "canonical" template name that refers to a
2627 /// given template.
2628 ///
2629 /// The canonical template name is the simplest expression that can
2630 /// be used to refer to a given template. For most templates, this
2631 /// expression is just the template declaration itself. For example,
2632 /// the template std::vector can be referred to via a variety of
2633 /// names---std::vector, \::std::vector, vector (if vector is in
2634 /// scope), etc.---but all of these names map down to the same
2635 /// TemplateDecl, which is used to form the canonical template name.
2636 ///
2637 /// Dependent template names are more interesting. Here, the
2638 /// template name could be something like T::template apply or
2639 /// std::allocator<T>::template rebind, where the nested name
2640 /// specifier itself is dependent. In this case, the canonical
2641 /// template name uses the shortest form of the dependent
2642 /// nested-name-specifier, which itself contains all canonical
2643 /// types, values, and templates.
2644 TemplateName getCanonicalTemplateName(const TemplateName &Name) const;
2645
2646 /// Determine whether the given template names refer to the same
2647 /// template.
2648 bool hasSameTemplateName(const TemplateName &X, const TemplateName &Y) const;
2649
2650 /// Determine whether two Friend functions are different because constraints
2651 /// that refer to an enclosing template, according to [temp.friend] p9.
2652 bool FriendsDifferByConstraints(const FunctionDecl *X,
2653 const FunctionDecl *Y) const;
2654
2655 /// Determine whether the two declarations refer to the same entity.
2656 bool isSameEntity(const NamedDecl *X, const NamedDecl *Y) const;
2657
2658 /// Determine whether two template parameter lists are similar enough
2659 /// that they may be used in declarations of the same template.
2660 bool isSameTemplateParameterList(const TemplateParameterList *X,
2661 const TemplateParameterList *Y) const;
2662
2663 /// Determine whether two template parameters are similar enough
2664 /// that they may be used in declarations of the same template.
2665 bool isSameTemplateParameter(const NamedDecl *X, const NamedDecl *Y) const;
2666
2667 /// Determine whether two 'requires' expressions are similar enough that they
2668 /// may be used in re-declarations.
2669 ///
2670 /// Use of 'requires' isn't mandatory, works with constraints expressed in
2671 /// other ways too.
2672 bool isSameConstraintExpr(const Expr *XCE, const Expr *YCE) const;
2673
2674 /// Determine whether two type contraint are similar enough that they could
2675 /// used in declarations of the same template.
2676 bool isSameTypeConstraint(const TypeConstraint *XTC,
2677 const TypeConstraint *YTC) const;
2678
2679 /// Determine whether two default template arguments are similar enough
2680 /// that they may be used in declarations of the same template.
2681 bool isSameDefaultTemplateArgument(const NamedDecl *X,
2682 const NamedDecl *Y) const;
2683
2684 /// Retrieve the "canonical" template argument.
2685 ///
2686 /// The canonical template argument is the simplest template argument
2687 /// (which may be a type, value, expression, or declaration) that
2688 /// expresses the value of the argument.
2689 TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
2690 const;
2691
2692 /// Type Query functions. If the type is an instance of the specified class,
2693 /// return the Type pointer for the underlying maximally pretty type. This
2694 /// is a member of ASTContext because this may need to do some amount of
2695 /// canonicalization, e.g. to move type qualifiers into the element type.
2696 const ArrayType *getAsArrayType(QualType T) const;
getAsConstantArrayType(QualType T)2697 const ConstantArrayType *getAsConstantArrayType(QualType T) const {
2698 return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
2699 }
getAsVariableArrayType(QualType T)2700 const VariableArrayType *getAsVariableArrayType(QualType T) const {
2701 return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
2702 }
getAsIncompleteArrayType(QualType T)2703 const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
2704 return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
2705 }
getAsDependentSizedArrayType(QualType T)2706 const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
2707 const {
2708 return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
2709 }
2710
2711 /// Return the innermost element type of an array type.
2712 ///
2713 /// For example, will return "int" for int[m][n]
2714 QualType getBaseElementType(const ArrayType *VAT) const;
2715
2716 /// Return the innermost element type of a type (which needn't
2717 /// actually be an array type).
2718 QualType getBaseElementType(QualType QT) const;
2719
2720 /// Return number of constant array elements.
2721 uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
2722
2723 /// Return number of elements initialized in an ArrayInitLoopExpr.
2724 uint64_t
2725 getArrayInitLoopExprElementCount(const ArrayInitLoopExpr *AILE) const;
2726
2727 /// Perform adjustment on the parameter type of a function.
2728 ///
2729 /// This routine adjusts the given parameter type @p T to the actual
2730 /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
2731 /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
2732 QualType getAdjustedParameterType(QualType T) const;
2733
2734 /// Retrieve the parameter type as adjusted for use in the signature
2735 /// of a function, decaying array and function types and removing top-level
2736 /// cv-qualifiers.
2737 QualType getSignatureParameterType(QualType T) const;
2738
2739 QualType getExceptionObjectType(QualType T) const;
2740
2741 /// Return the properly qualified result of decaying the specified
2742 /// array type to a pointer.
2743 ///
2744 /// This operation is non-trivial when handling typedefs etc. The canonical
2745 /// type of \p T must be an array type, this returns a pointer to a properly
2746 /// qualified element of the array.
2747 ///
2748 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2749 QualType getArrayDecayedType(QualType T) const;
2750
2751 /// Return the type that \p PromotableType will promote to: C99
2752 /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
2753 QualType getPromotedIntegerType(QualType PromotableType) const;
2754
2755 /// Recurses in pointer/array types until it finds an Objective-C
2756 /// retainable type and returns its ownership.
2757 Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
2758
2759 /// Whether this is a promotable bitfield reference according
2760 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2761 ///
2762 /// \returns the type this bit-field will promote to, or NULL if no
2763 /// promotion occurs.
2764 QualType isPromotableBitField(Expr *E) const;
2765
2766 /// Return the highest ranked integer type, see C99 6.3.1.8p1.
2767 ///
2768 /// If \p LHS > \p RHS, returns 1. If \p LHS == \p RHS, returns 0. If
2769 /// \p LHS < \p RHS, return -1.
2770 int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
2771
2772 /// Compare the rank of the two specified floating point types,
2773 /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
2774 ///
2775 /// If \p LHS > \p RHS, returns 1. If \p LHS == \p RHS, returns 0. If
2776 /// \p LHS < \p RHS, return -1.
2777 int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
2778
2779 /// Compare the rank of two floating point types as above, but compare equal
2780 /// if both types have the same floating-point semantics on the target (i.e.
2781 /// long double and double on AArch64 will return 0).
2782 int getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const;
2783
2784 unsigned getTargetAddressSpace(LangAS AS) const;
2785
2786 LangAS getLangASForBuiltinAddressSpace(unsigned AS) const;
2787
2788 /// Get target-dependent integer value for null pointer which is used for
2789 /// constant folding.
2790 uint64_t getTargetNullPointerValue(QualType QT) const;
2791
addressSpaceMapManglingFor(LangAS AS)2792 bool addressSpaceMapManglingFor(LangAS AS) const {
2793 return AddrSpaceMapMangling || isTargetAddressSpace(AS);
2794 }
2795
2796 // Merges two exception specifications, such that the resulting
2797 // exception spec is the union of both. For example, if either
2798 // of them can throw something, the result can throw it as well.
2799 FunctionProtoType::ExceptionSpecInfo
2800 mergeExceptionSpecs(FunctionProtoType::ExceptionSpecInfo ESI1,
2801 FunctionProtoType::ExceptionSpecInfo ESI2,
2802 SmallVectorImpl<QualType> &ExceptionTypeStorage,
2803 bool AcceptDependent);
2804
2805 // For two "same" types, return a type which has
2806 // the common sugar between them. If Unqualified is true,
2807 // both types need only be the same unqualified type.
2808 // The result will drop the qualifiers which do not occur
2809 // in both types.
2810 QualType getCommonSugaredType(QualType X, QualType Y,
2811 bool Unqualified = false);
2812
2813 private:
2814 // Helper for integer ordering
2815 unsigned getIntegerRank(const Type *T) const;
2816
2817 public:
2818 //===--------------------------------------------------------------------===//
2819 // Type Compatibility Predicates
2820 //===--------------------------------------------------------------------===//
2821
2822 /// Compatibility predicates used to check assignment expressions.
2823 bool typesAreCompatible(QualType T1, QualType T2,
2824 bool CompareUnqualified = false); // C99 6.2.7p1
2825
2826 bool propertyTypesAreCompatible(QualType, QualType);
2827 bool typesAreBlockPointerCompatible(QualType, QualType);
2828
isObjCIdType(QualType T)2829 bool isObjCIdType(QualType T) const {
2830 if (const auto *ET = dyn_cast<ElaboratedType>(T))
2831 T = ET->getNamedType();
2832 return T == getObjCIdType();
2833 }
2834
isObjCClassType(QualType T)2835 bool isObjCClassType(QualType T) const {
2836 if (const auto *ET = dyn_cast<ElaboratedType>(T))
2837 T = ET->getNamedType();
2838 return T == getObjCClassType();
2839 }
2840
isObjCSelType(QualType T)2841 bool isObjCSelType(QualType T) const {
2842 if (const auto *ET = dyn_cast<ElaboratedType>(T))
2843 T = ET->getNamedType();
2844 return T == getObjCSelType();
2845 }
2846
2847 bool ObjCQualifiedIdTypesAreCompatible(const ObjCObjectPointerType *LHS,
2848 const ObjCObjectPointerType *RHS,
2849 bool ForCompare);
2850
2851 bool ObjCQualifiedClassTypesAreCompatible(const ObjCObjectPointerType *LHS,
2852 const ObjCObjectPointerType *RHS);
2853
2854 // Check the safety of assignment from LHS to RHS
2855 bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
2856 const ObjCObjectPointerType *RHSOPT);
2857 bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
2858 const ObjCObjectType *RHS);
2859 bool canAssignObjCInterfacesInBlockPointer(
2860 const ObjCObjectPointerType *LHSOPT,
2861 const ObjCObjectPointerType *RHSOPT,
2862 bool BlockReturnType);
2863 bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
2864 QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
2865 const ObjCObjectPointerType *RHSOPT);
2866 bool canBindObjCObjectType(QualType To, QualType From);
2867
2868 // Functions for calculating composite types
2869 QualType mergeTypes(QualType, QualType, bool OfBlockPointer = false,
2870 bool Unqualified = false, bool BlockReturnType = false,
2871 bool IsConditionalOperator = false);
2872 QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer = false,
2873 bool Unqualified = false, bool AllowCXX = false,
2874 bool IsConditionalOperator = false);
2875 QualType mergeFunctionParameterTypes(QualType, QualType,
2876 bool OfBlockPointer = false,
2877 bool Unqualified = false);
2878 QualType mergeTransparentUnionType(QualType, QualType,
2879 bool OfBlockPointer=false,
2880 bool Unqualified = false);
2881
2882 QualType mergeObjCGCQualifiers(QualType, QualType);
2883
2884 /// This function merges the ExtParameterInfo lists of two functions. It
2885 /// returns true if the lists are compatible. The merged list is returned in
2886 /// NewParamInfos.
2887 ///
2888 /// \param FirstFnType The type of the first function.
2889 ///
2890 /// \param SecondFnType The type of the second function.
2891 ///
2892 /// \param CanUseFirst This flag is set to true if the first function's
2893 /// ExtParameterInfo list can be used as the composite list of
2894 /// ExtParameterInfo.
2895 ///
2896 /// \param CanUseSecond This flag is set to true if the second function's
2897 /// ExtParameterInfo list can be used as the composite list of
2898 /// ExtParameterInfo.
2899 ///
2900 /// \param NewParamInfos The composite list of ExtParameterInfo. The list is
2901 /// empty if none of the flags are set.
2902 ///
2903 bool mergeExtParameterInfo(
2904 const FunctionProtoType *FirstFnType,
2905 const FunctionProtoType *SecondFnType,
2906 bool &CanUseFirst, bool &CanUseSecond,
2907 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos);
2908
2909 void ResetObjCLayout(const ObjCContainerDecl *CD);
2910
2911 //===--------------------------------------------------------------------===//
2912 // Integer Predicates
2913 //===--------------------------------------------------------------------===//
2914
2915 // The width of an integer, as defined in C99 6.2.6.2. This is the number
2916 // of bits in an integer type excluding any padding bits.
2917 unsigned getIntWidth(QualType T) const;
2918
2919 // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2920 // unsigned integer type. This method takes a signed type, and returns the
2921 // corresponding unsigned integer type.
2922 // With the introduction of fixed point types in ISO N1169, this method also
2923 // accepts fixed point types and returns the corresponding unsigned type for
2924 // a given fixed point type.
2925 QualType getCorrespondingUnsignedType(QualType T) const;
2926
2927 // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2928 // unsigned integer type. This method takes an unsigned type, and returns the
2929 // corresponding signed integer type.
2930 // With the introduction of fixed point types in ISO N1169, this method also
2931 // accepts fixed point types and returns the corresponding signed type for
2932 // a given fixed point type.
2933 QualType getCorrespondingSignedType(QualType T) const;
2934
2935 // Per ISO N1169, this method accepts fixed point types and returns the
2936 // corresponding saturated type for a given fixed point type.
2937 QualType getCorrespondingSaturatedType(QualType Ty) const;
2938
2939 // This method accepts fixed point types and returns the corresponding signed
2940 // type. Unlike getCorrespondingUnsignedType(), this only accepts unsigned
2941 // fixed point types because there are unsigned integer types like bool and
2942 // char8_t that don't have signed equivalents.
2943 QualType getCorrespondingSignedFixedPointType(QualType Ty) const;
2944
2945 //===--------------------------------------------------------------------===//
2946 // Integer Values
2947 //===--------------------------------------------------------------------===//
2948
2949 /// Make an APSInt of the appropriate width and signedness for the
2950 /// given \p Value and integer \p Type.
MakeIntValue(uint64_t Value,QualType Type)2951 llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
2952 // If Type is a signed integer type larger than 64 bits, we need to be sure
2953 // to sign extend Res appropriately.
2954 llvm::APSInt Res(64, !Type->isSignedIntegerOrEnumerationType());
2955 Res = Value;
2956 unsigned Width = getIntWidth(Type);
2957 if (Width != Res.getBitWidth())
2958 return Res.extOrTrunc(Width);
2959 return Res;
2960 }
2961
2962 bool isSentinelNullExpr(const Expr *E);
2963
2964 /// Get the implementation of the ObjCInterfaceDecl \p D, or nullptr if
2965 /// none exists.
2966 ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
2967
2968 /// Get the implementation of the ObjCCategoryDecl \p D, or nullptr if
2969 /// none exists.
2970 ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
2971
2972 /// Return true if there is at least one \@implementation in the TU.
AnyObjCImplementation()2973 bool AnyObjCImplementation() {
2974 return !ObjCImpls.empty();
2975 }
2976
2977 /// Set the implementation of ObjCInterfaceDecl.
2978 void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2979 ObjCImplementationDecl *ImplD);
2980
2981 /// Set the implementation of ObjCCategoryDecl.
2982 void setObjCImplementation(ObjCCategoryDecl *CatD,
2983 ObjCCategoryImplDecl *ImplD);
2984
2985 /// Get the duplicate declaration of a ObjCMethod in the same
2986 /// interface, or null if none exists.
2987 const ObjCMethodDecl *
2988 getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const;
2989
2990 void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2991 const ObjCMethodDecl *Redecl);
2992
2993 /// Returns the Objective-C interface that \p ND belongs to if it is
2994 /// an Objective-C method/property/ivar etc. that is part of an interface,
2995 /// otherwise returns null.
2996 const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2997
2998 /// Set the copy initialization expression of a block var decl. \p CanThrow
2999 /// indicates whether the copy expression can throw or not.
3000 void setBlockVarCopyInit(const VarDecl* VD, Expr *CopyExpr, bool CanThrow);
3001
3002 /// Get the copy initialization expression of the VarDecl \p VD, or
3003 /// nullptr if none exists.
3004 BlockVarCopyInit getBlockVarCopyInit(const VarDecl* VD) const;
3005
3006 /// Allocate an uninitialized TypeSourceInfo.
3007 ///
3008 /// The caller should initialize the memory held by TypeSourceInfo using
3009 /// the TypeLoc wrappers.
3010 ///
3011 /// \param T the type that will be the basis for type source info. This type
3012 /// should refer to how the declarator was written in source code, not to
3013 /// what type semantic analysis resolved the declarator to.
3014 ///
3015 /// \param Size the size of the type info to create, or 0 if the size
3016 /// should be calculated based on the type.
3017 TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
3018
3019 /// Allocate a TypeSourceInfo where all locations have been
3020 /// initialized to a given location, which defaults to the empty
3021 /// location.
3022 TypeSourceInfo *
3023 getTrivialTypeSourceInfo(QualType T,
3024 SourceLocation Loc = SourceLocation()) const;
3025
3026 /// Add a deallocation callback that will be invoked when the
3027 /// ASTContext is destroyed.
3028 ///
3029 /// \param Callback A callback function that will be invoked on destruction.
3030 ///
3031 /// \param Data Pointer data that will be provided to the callback function
3032 /// when it is called.
3033 void AddDeallocation(void (*Callback)(void *), void *Data) const;
3034
3035 /// If T isn't trivially destructible, calls AddDeallocation to register it
3036 /// for destruction.
addDestruction(T * Ptr)3037 template <typename T> void addDestruction(T *Ptr) const {
3038 if (!std::is_trivially_destructible<T>::value) {
3039 auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
3040 AddDeallocation(DestroyPtr, Ptr);
3041 }
3042 }
3043
3044 GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
3045 GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
3046
3047 /// Determines if the decl can be CodeGen'ed or deserialized from PCH
3048 /// lazily, only when used; this is only relevant for function or file scoped
3049 /// var definitions.
3050 ///
3051 /// \returns true if the function/var must be CodeGen'ed/deserialized even if
3052 /// it is not used.
3053 bool DeclMustBeEmitted(const Decl *D);
3054
3055 /// Visits all versions of a multiversioned function with the passed
3056 /// predicate.
3057 void forEachMultiversionedFunctionVersion(
3058 const FunctionDecl *FD,
3059 llvm::function_ref<void(FunctionDecl *)> Pred) const;
3060
3061 const CXXConstructorDecl *
3062 getCopyConstructorForExceptionObject(CXXRecordDecl *RD);
3063
3064 void addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
3065 CXXConstructorDecl *CD);
3066
3067 void addTypedefNameForUnnamedTagDecl(TagDecl *TD, TypedefNameDecl *TND);
3068
3069 TypedefNameDecl *getTypedefNameForUnnamedTagDecl(const TagDecl *TD);
3070
3071 void addDeclaratorForUnnamedTagDecl(TagDecl *TD, DeclaratorDecl *DD);
3072
3073 DeclaratorDecl *getDeclaratorForUnnamedTagDecl(const TagDecl *TD);
3074
3075 void setManglingNumber(const NamedDecl *ND, unsigned Number);
3076 unsigned getManglingNumber(const NamedDecl *ND,
3077 bool ForAuxTarget = false) const;
3078
3079 void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
3080 unsigned getStaticLocalNumber(const VarDecl *VD) const;
3081
3082 /// Retrieve the context for computing mangling numbers in the given
3083 /// DeclContext.
3084 MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
3085 enum NeedExtraManglingDecl_t { NeedExtraManglingDecl };
3086 MangleNumberingContext &getManglingNumberContext(NeedExtraManglingDecl_t,
3087 const Decl *D);
3088
3089 std::unique_ptr<MangleNumberingContext> createMangleNumberingContext() const;
3090
3091 /// Used by ParmVarDecl to store on the side the
3092 /// index of the parameter when it exceeds the size of the normal bitfield.
3093 void setParameterIndex(const ParmVarDecl *D, unsigned index);
3094
3095 /// Used by ParmVarDecl to retrieve on the side the
3096 /// index of the parameter when it exceeds the size of the normal bitfield.
3097 unsigned getParameterIndex(const ParmVarDecl *D) const;
3098
3099 /// Return a string representing the human readable name for the specified
3100 /// function declaration or file name. Used by SourceLocExpr and
3101 /// PredefinedExpr to cache evaluated results.
3102 StringLiteral *getPredefinedStringLiteralFromCache(StringRef Key) const;
3103
3104 /// Return a declaration for the global GUID object representing the given
3105 /// GUID value.
3106 MSGuidDecl *getMSGuidDecl(MSGuidDeclParts Parts) const;
3107
3108 /// Return a declaration for a uniquified anonymous global constant
3109 /// corresponding to a given APValue.
3110 UnnamedGlobalConstantDecl *
3111 getUnnamedGlobalConstantDecl(QualType Ty, const APValue &Value) const;
3112
3113 /// Return the template parameter object of the given type with the given
3114 /// value.
3115 TemplateParamObjectDecl *getTemplateParamObjectDecl(QualType T,
3116 const APValue &V) const;
3117
3118 /// Parses the target attributes passed in, and returns only the ones that are
3119 /// valid feature names.
3120 ParsedTargetAttr filterFunctionTargetAttrs(const TargetAttr *TD) const;
3121
3122 std::vector<std::string>
3123 filterFunctionTargetVersionAttrs(const TargetVersionAttr *TV) const;
3124
3125 void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
3126 const FunctionDecl *) const;
3127 void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
3128 GlobalDecl GD) const;
3129
3130 //===--------------------------------------------------------------------===//
3131 // Statistics
3132 //===--------------------------------------------------------------------===//
3133
3134 /// The number of implicitly-declared default constructors.
3135 unsigned NumImplicitDefaultConstructors = 0;
3136
3137 /// The number of implicitly-declared default constructors for
3138 /// which declarations were built.
3139 unsigned NumImplicitDefaultConstructorsDeclared = 0;
3140
3141 /// The number of implicitly-declared copy constructors.
3142 unsigned NumImplicitCopyConstructors = 0;
3143
3144 /// The number of implicitly-declared copy constructors for
3145 /// which declarations were built.
3146 unsigned NumImplicitCopyConstructorsDeclared = 0;
3147
3148 /// The number of implicitly-declared move constructors.
3149 unsigned NumImplicitMoveConstructors = 0;
3150
3151 /// The number of implicitly-declared move constructors for
3152 /// which declarations were built.
3153 unsigned NumImplicitMoveConstructorsDeclared = 0;
3154
3155 /// The number of implicitly-declared copy assignment operators.
3156 unsigned NumImplicitCopyAssignmentOperators = 0;
3157
3158 /// The number of implicitly-declared copy assignment operators for
3159 /// which declarations were built.
3160 unsigned NumImplicitCopyAssignmentOperatorsDeclared = 0;
3161
3162 /// The number of implicitly-declared move assignment operators.
3163 unsigned NumImplicitMoveAssignmentOperators = 0;
3164
3165 /// The number of implicitly-declared move assignment operators for
3166 /// which declarations were built.
3167 unsigned NumImplicitMoveAssignmentOperatorsDeclared = 0;
3168
3169 /// The number of implicitly-declared destructors.
3170 unsigned NumImplicitDestructors = 0;
3171
3172 /// The number of implicitly-declared destructors for which
3173 /// declarations were built.
3174 unsigned NumImplicitDestructorsDeclared = 0;
3175
3176 public:
3177 /// Initialize built-in types.
3178 ///
3179 /// This routine may only be invoked once for a given ASTContext object.
3180 /// It is normally invoked after ASTContext construction.
3181 ///
3182 /// \param Target The target
3183 void InitBuiltinTypes(const TargetInfo &Target,
3184 const TargetInfo *AuxTarget = nullptr);
3185
3186 private:
3187 void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
3188
3189 class ObjCEncOptions {
3190 unsigned Bits;
3191
ObjCEncOptions(unsigned Bits)3192 ObjCEncOptions(unsigned Bits) : Bits(Bits) {}
3193
3194 public:
ObjCEncOptions()3195 ObjCEncOptions() : Bits(0) {}
ObjCEncOptions(const ObjCEncOptions & RHS)3196 ObjCEncOptions(const ObjCEncOptions &RHS) : Bits(RHS.Bits) {}
3197
3198 #define OPT_LIST(V) \
3199 V(ExpandPointedToStructures, 0) \
3200 V(ExpandStructures, 1) \
3201 V(IsOutermostType, 2) \
3202 V(EncodingProperty, 3) \
3203 V(IsStructField, 4) \
3204 V(EncodeBlockParameters, 5) \
3205 V(EncodeClassNames, 6) \
3206
3207 #define V(N,I) ObjCEncOptions& set##N() { Bits |= 1 << I; return *this; }
3208 OPT_LIST(V)
3209 #undef V
3210
3211 #define V(N,I) bool N() const { return Bits & 1 << I; }
OPT_LIST(V)3212 OPT_LIST(V)
3213 #undef V
3214
3215 #undef OPT_LIST
3216
3217 [[nodiscard]] ObjCEncOptions keepingOnly(ObjCEncOptions Mask) const {
3218 return Bits & Mask.Bits;
3219 }
3220
forComponentType()3221 [[nodiscard]] ObjCEncOptions forComponentType() const {
3222 ObjCEncOptions Mask = ObjCEncOptions()
3223 .setIsOutermostType()
3224 .setIsStructField();
3225 return Bits & ~Mask.Bits;
3226 }
3227 };
3228
3229 // Return the Objective-C type encoding for a given type.
3230 void getObjCEncodingForTypeImpl(QualType t, std::string &S,
3231 ObjCEncOptions Options,
3232 const FieldDecl *Field,
3233 QualType *NotEncodedT = nullptr) const;
3234
3235 // Adds the encoding of the structure's members.
3236 void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
3237 const FieldDecl *Field,
3238 bool includeVBases = true,
3239 QualType *NotEncodedT=nullptr) const;
3240
3241 public:
3242 // Adds the encoding of a method parameter or return type.
3243 void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
3244 QualType T, std::string& S,
3245 bool Extended) const;
3246
3247 /// Returns true if this is an inline-initialized static data member
3248 /// which is treated as a definition for MSVC compatibility.
3249 bool isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const;
3250
3251 enum class InlineVariableDefinitionKind {
3252 /// Not an inline variable.
3253 None,
3254
3255 /// Weak definition of inline variable.
3256 Weak,
3257
3258 /// Weak for now, might become strong later in this TU.
3259 WeakUnknown,
3260
3261 /// Strong definition.
3262 Strong
3263 };
3264
3265 /// Determine whether a definition of this inline variable should
3266 /// be treated as a weak or strong definition. For compatibility with
3267 /// C++14 and before, for a constexpr static data member, if there is an
3268 /// out-of-line declaration of the member, we may promote it from weak to
3269 /// strong.
3270 InlineVariableDefinitionKind
3271 getInlineVariableDefinitionKind(const VarDecl *VD) const;
3272
3273 private:
3274 friend class DeclarationNameTable;
3275 friend class DeclContext;
3276
3277 const ASTRecordLayout &
3278 getObjCLayout(const ObjCInterfaceDecl *D,
3279 const ObjCImplementationDecl *Impl) const;
3280
3281 /// A set of deallocations that should be performed when the
3282 /// ASTContext is destroyed.
3283 // FIXME: We really should have a better mechanism in the ASTContext to
3284 // manage running destructors for types which do variable sized allocation
3285 // within the AST. In some places we thread the AST bump pointer allocator
3286 // into the datastructures which avoids this mess during deallocation but is
3287 // wasteful of memory, and here we require a lot of error prone book keeping
3288 // in order to track and run destructors while we're tearing things down.
3289 using DeallocationFunctionsAndArguments =
3290 llvm::SmallVector<std::pair<void (*)(void *), void *>, 16>;
3291 mutable DeallocationFunctionsAndArguments Deallocations;
3292
3293 // FIXME: This currently contains the set of StoredDeclMaps used
3294 // by DeclContext objects. This probably should not be in ASTContext,
3295 // but we include it here so that ASTContext can quickly deallocate them.
3296 llvm::PointerIntPair<StoredDeclsMap *, 1> LastSDM;
3297
3298 std::vector<Decl *> TraversalScope;
3299
3300 std::unique_ptr<VTableContextBase> VTContext;
3301
3302 void ReleaseDeclContextMaps();
3303
3304 public:
3305 enum PragmaSectionFlag : unsigned {
3306 PSF_None = 0,
3307 PSF_Read = 0x1,
3308 PSF_Write = 0x2,
3309 PSF_Execute = 0x4,
3310 PSF_Implicit = 0x8,
3311 PSF_ZeroInit = 0x10,
3312 PSF_Invalid = 0x80000000U,
3313 };
3314
3315 struct SectionInfo {
3316 NamedDecl *Decl;
3317 SourceLocation PragmaSectionLocation;
3318 int SectionFlags;
3319
3320 SectionInfo() = default;
SectionInfoSectionInfo3321 SectionInfo(NamedDecl *Decl, SourceLocation PragmaSectionLocation,
3322 int SectionFlags)
3323 : Decl(Decl), PragmaSectionLocation(PragmaSectionLocation),
3324 SectionFlags(SectionFlags) {}
3325 };
3326
3327 llvm::StringMap<SectionInfo> SectionInfos;
3328
3329 /// Return a new OMPTraitInfo object owned by this context.
3330 OMPTraitInfo &getNewOMPTraitInfo();
3331
3332 /// Whether a C++ static variable or CUDA/HIP kernel may be externalized.
3333 bool mayExternalize(const Decl *D) const;
3334
3335 /// Whether a C++ static variable or CUDA/HIP kernel should be externalized.
3336 bool shouldExternalize(const Decl *D) const;
3337
3338 StringRef getCUIDHash() const;
3339
3340 private:
3341 /// All OMPTraitInfo objects live in this collection, one per
3342 /// `pragma omp [begin] declare variant` directive.
3343 SmallVector<std::unique_ptr<OMPTraitInfo>, 4> OMPTraitInfoVector;
3344 };
3345
3346 /// Insertion operator for diagnostics.
3347 const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
3348 const ASTContext::SectionInfo &Section);
3349
3350 /// Utility function for constructing a nullary selector.
GetNullarySelector(StringRef name,ASTContext & Ctx)3351 inline Selector GetNullarySelector(StringRef name, ASTContext &Ctx) {
3352 IdentifierInfo* II = &Ctx.Idents.get(name);
3353 return Ctx.Selectors.getSelector(0, &II);
3354 }
3355
3356 /// Utility function for constructing an unary selector.
GetUnarySelector(StringRef name,ASTContext & Ctx)3357 inline Selector GetUnarySelector(StringRef name, ASTContext &Ctx) {
3358 IdentifierInfo* II = &Ctx.Idents.get(name);
3359 return Ctx.Selectors.getSelector(1, &II);
3360 }
3361
3362 } // namespace clang
3363
3364 // operator new and delete aren't allowed inside namespaces.
3365
3366 /// Placement new for using the ASTContext's allocator.
3367 ///
3368 /// This placement form of operator new uses the ASTContext's allocator for
3369 /// obtaining memory.
3370 ///
3371 /// IMPORTANT: These are also declared in clang/AST/ASTContextAllocate.h!
3372 /// Any changes here need to also be made there.
3373 ///
3374 /// We intentionally avoid using a nothrow specification here so that the calls
3375 /// to this operator will not perform a null check on the result -- the
3376 /// underlying allocator never returns null pointers.
3377 ///
3378 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3379 /// @code
3380 /// // Default alignment (8)
3381 /// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
3382 /// // Specific alignment
3383 /// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
3384 /// @endcode
3385 /// Memory allocated through this placement new operator does not need to be
3386 /// explicitly freed, as ASTContext will free all of this memory when it gets
3387 /// destroyed. Please note that you cannot use delete on the pointer.
3388 ///
3389 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3390 /// @param C The ASTContext that provides the allocator.
3391 /// @param Alignment The alignment of the allocated memory (if the underlying
3392 /// allocator supports it).
3393 /// @return The allocated memory. Could be nullptr.
new(size_t Bytes,const clang::ASTContext & C,size_t Alignment)3394 inline void *operator new(size_t Bytes, const clang::ASTContext &C,
3395 size_t Alignment /* = 8 */) {
3396 return C.Allocate(Bytes, Alignment);
3397 }
3398
3399 /// Placement delete companion to the new above.
3400 ///
3401 /// This operator is just a companion to the new above. There is no way of
3402 /// invoking it directly; see the new operator for more details. This operator
3403 /// is called implicitly by the compiler if a placement new expression using
3404 /// the ASTContext throws in the object constructor.
delete(void * Ptr,const clang::ASTContext & C,size_t)3405 inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
3406 C.Deallocate(Ptr);
3407 }
3408
3409 /// This placement form of operator new[] uses the ASTContext's allocator for
3410 /// obtaining memory.
3411 ///
3412 /// We intentionally avoid using a nothrow specification here so that the calls
3413 /// to this operator will not perform a null check on the result -- the
3414 /// underlying allocator never returns null pointers.
3415 ///
3416 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3417 /// @code
3418 /// // Default alignment (8)
3419 /// char *data = new (Context) char[10];
3420 /// // Specific alignment
3421 /// char *data = new (Context, 4) char[10];
3422 /// @endcode
3423 /// Memory allocated through this placement new[] operator does not need to be
3424 /// explicitly freed, as ASTContext will free all of this memory when it gets
3425 /// destroyed. Please note that you cannot use delete on the pointer.
3426 ///
3427 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3428 /// @param C The ASTContext that provides the allocator.
3429 /// @param Alignment The alignment of the allocated memory (if the underlying
3430 /// allocator supports it).
3431 /// @return The allocated memory. Could be nullptr.
3432 inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
3433 size_t Alignment /* = 8 */) {
3434 return C.Allocate(Bytes, Alignment);
3435 }
3436
3437 /// Placement delete[] companion to the new[] above.
3438 ///
3439 /// This operator is just a companion to the new[] above. There is no way of
3440 /// invoking it directly; see the new[] operator for more details. This operator
3441 /// is called implicitly by the compiler if a placement new[] expression using
3442 /// the ASTContext throws in the object constructor.
3443 inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
3444 C.Deallocate(Ptr);
3445 }
3446
3447 /// Create the representation of a LazyGenerationalUpdatePtr.
3448 template <typename Owner, typename T,
3449 void (clang::ExternalASTSource::*Update)(Owner)>
3450 typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
makeValue(const clang::ASTContext & Ctx,T Value)3451 clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
3452 const clang::ASTContext &Ctx, T Value) {
3453 // Note, this is implemented here so that ExternalASTSource.h doesn't need to
3454 // include ASTContext.h. We explicitly instantiate it for all relevant types
3455 // in ASTContext.cpp.
3456 if (auto *Source = Ctx.getExternalSource())
3457 return new (Ctx) LazyData(Source, Value);
3458 return Value;
3459 }
3460
3461 #endif // LLVM_CLANG_AST_ASTCONTEXT_H
3462