1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements a class to represent arbitrary precision 11 /// integral constant values and operations on them. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_ADT_APINT_H 16 #define LLVM_ADT_APINT_H 17 18 #include "llvm/Support/Compiler.h" 19 #include "llvm/Support/MathExtras.h" 20 #include <cassert> 21 #include <climits> 22 #include <cstring> 23 #include <optional> 24 #include <utility> 25 26 namespace llvm { 27 class FoldingSetNodeID; 28 class StringRef; 29 class hash_code; 30 class raw_ostream; 31 32 template <typename T> class SmallVectorImpl; 33 template <typename T> class ArrayRef; 34 template <typename T, typename Enable> struct DenseMapInfo; 35 36 class APInt; 37 38 inline APInt operator-(APInt); 39 40 //===----------------------------------------------------------------------===// 41 // APInt Class 42 //===----------------------------------------------------------------------===// 43 44 /// Class for arbitrary precision integers. 45 /// 46 /// APInt is a functional replacement for common case unsigned integer type like 47 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width 48 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more 49 /// than 64-bits of precision. APInt provides a variety of arithmetic operators 50 /// and methods to manipulate integer values of any bit-width. It supports both 51 /// the typical integer arithmetic and comparison operations as well as bitwise 52 /// manipulation. 53 /// 54 /// The class has several invariants worth noting: 55 /// * All bit, byte, and word positions are zero-based. 56 /// * Once the bit width is set, it doesn't change except by the Truncate, 57 /// SignExtend, or ZeroExtend operations. 58 /// * All binary operators must be on APInt instances of the same bit width. 59 /// Attempting to use these operators on instances with different bit 60 /// widths will yield an assertion. 61 /// * The value is stored canonically as an unsigned value. For operations 62 /// where it makes a difference, there are both signed and unsigned variants 63 /// of the operation. For example, sdiv and udiv. However, because the bit 64 /// widths must be the same, operations such as Mul and Add produce the same 65 /// results regardless of whether the values are interpreted as signed or 66 /// not. 67 /// * In general, the class tries to follow the style of computation that LLVM 68 /// uses in its IR. This simplifies its use for LLVM. 69 /// * APInt supports zero-bit-width values, but operations that require bits 70 /// are not defined on it (e.g. you cannot ask for the sign of a zero-bit 71 /// integer). This means that operations like zero extension and logical 72 /// shifts are defined, but sign extension and ashr is not. Zero bit values 73 /// compare and hash equal to themselves, and countLeadingZeros returns 0. 74 /// 75 class [[nodiscard]] APInt { 76 public: 77 typedef uint64_t WordType; 78 79 /// This enum is used to hold the constants we needed for APInt. 80 enum : unsigned { 81 /// Byte size of a word. 82 APINT_WORD_SIZE = sizeof(WordType), 83 /// Bits in a word. 84 APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT 85 }; 86 87 enum class Rounding { 88 DOWN, 89 TOWARD_ZERO, 90 UP, 91 }; 92 93 static constexpr WordType WORDTYPE_MAX = ~WordType(0); 94 95 /// \name Constructors 96 /// @{ 97 98 /// Create a new APInt of numBits width, initialized as val. 99 /// 100 /// If isSigned is true then val is treated as if it were a signed value 101 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width 102 /// will be done. Otherwise, no sign extension occurs (high order bits beyond 103 /// the range of val are zero filled). 104 /// 105 /// \param numBits the bit width of the constructed APInt 106 /// \param val the initial value of the APInt 107 /// \param isSigned how to treat signedness of val 108 APInt(unsigned numBits, uint64_t val, bool isSigned = false) BitWidth(numBits)109 : BitWidth(numBits) { 110 if (isSingleWord()) { 111 U.VAL = val; 112 clearUnusedBits(); 113 } else { 114 initSlowCase(val, isSigned); 115 } 116 } 117 118 /// Construct an APInt of numBits width, initialized as bigVal[]. 119 /// 120 /// Note that bigVal.size() can be smaller or larger than the corresponding 121 /// bit width but any extraneous bits will be dropped. 122 /// 123 /// \param numBits the bit width of the constructed APInt 124 /// \param bigVal a sequence of words to form the initial value of the APInt 125 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal); 126 127 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but 128 /// deprecated because this constructor is prone to ambiguity with the 129 /// APInt(unsigned, uint64_t, bool) constructor. 130 /// 131 /// If this overload is ever deleted, care should be taken to prevent calls 132 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool) 133 /// constructor. 134 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]); 135 136 /// Construct an APInt from a string representation. 137 /// 138 /// This constructor interprets the string \p str in the given radix. The 139 /// interpretation stops when the first character that is not suitable for the 140 /// radix is encountered, or the end of the string. Acceptable radix values 141 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the 142 /// string to require more bits than numBits. 143 /// 144 /// \param numBits the bit width of the constructed APInt 145 /// \param str the string to be interpreted 146 /// \param radix the radix to use for the conversion 147 APInt(unsigned numBits, StringRef str, uint8_t radix); 148 149 /// Default constructor that creates an APInt with a 1-bit zero value. APInt()150 explicit APInt() { U.VAL = 0; } 151 152 /// Copy Constructor. APInt(const APInt & that)153 APInt(const APInt &that) : BitWidth(that.BitWidth) { 154 if (isSingleWord()) 155 U.VAL = that.U.VAL; 156 else 157 initSlowCase(that); 158 } 159 160 /// Move Constructor. APInt(APInt && that)161 APInt(APInt &&that) : BitWidth(that.BitWidth) { 162 memcpy(&U, &that.U, sizeof(U)); 163 that.BitWidth = 0; 164 } 165 166 /// Destructor. ~APInt()167 ~APInt() { 168 if (needsCleanup()) 169 delete[] U.pVal; 170 } 171 172 /// @} 173 /// \name Value Generators 174 /// @{ 175 176 /// Get the '0' value for the specified bit-width. getZero(unsigned numBits)177 static APInt getZero(unsigned numBits) { return APInt(numBits, 0); } 178 179 /// NOTE: This is soft-deprecated. Please use `getZero()` instead. getNullValue(unsigned numBits)180 static APInt getNullValue(unsigned numBits) { return getZero(numBits); } 181 182 /// Return an APInt zero bits wide. getZeroWidth()183 static APInt getZeroWidth() { return getZero(0); } 184 185 /// Gets maximum unsigned value of APInt for specific bit width. getMaxValue(unsigned numBits)186 static APInt getMaxValue(unsigned numBits) { return getAllOnes(numBits); } 187 188 /// Gets maximum signed value of APInt for a specific bit width. getSignedMaxValue(unsigned numBits)189 static APInt getSignedMaxValue(unsigned numBits) { 190 APInt API = getAllOnes(numBits); 191 API.clearBit(numBits - 1); 192 return API; 193 } 194 195 /// Gets minimum unsigned value of APInt for a specific bit width. getMinValue(unsigned numBits)196 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); } 197 198 /// Gets minimum signed value of APInt for a specific bit width. getSignedMinValue(unsigned numBits)199 static APInt getSignedMinValue(unsigned numBits) { 200 APInt API(numBits, 0); 201 API.setBit(numBits - 1); 202 return API; 203 } 204 205 /// Get the SignMask for a specific bit width. 206 /// 207 /// This is just a wrapper function of getSignedMinValue(), and it helps code 208 /// readability when we want to get a SignMask. getSignMask(unsigned BitWidth)209 static APInt getSignMask(unsigned BitWidth) { 210 return getSignedMinValue(BitWidth); 211 } 212 213 /// Return an APInt of a specified width with all bits set. getAllOnes(unsigned numBits)214 static APInt getAllOnes(unsigned numBits) { 215 return APInt(numBits, WORDTYPE_MAX, true); 216 } 217 218 /// NOTE: This is soft-deprecated. Please use `getAllOnes()` instead. getAllOnesValue(unsigned numBits)219 static APInt getAllOnesValue(unsigned numBits) { return getAllOnes(numBits); } 220 221 /// Return an APInt with exactly one bit set in the result. getOneBitSet(unsigned numBits,unsigned BitNo)222 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) { 223 APInt Res(numBits, 0); 224 Res.setBit(BitNo); 225 return Res; 226 } 227 228 /// Get a value with a block of bits set. 229 /// 230 /// Constructs an APInt value that has a contiguous range of bits set. The 231 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other 232 /// bits will be zero. For example, with parameters(32, 0, 16) you would get 233 /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than 234 /// \p hiBit. 235 /// 236 /// \param numBits the intended bit width of the result 237 /// \param loBit the index of the lowest bit set. 238 /// \param hiBit the index of the highest bit set. 239 /// 240 /// \returns An APInt value with the requested bits set. getBitsSet(unsigned numBits,unsigned loBit,unsigned hiBit)241 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) { 242 APInt Res(numBits, 0); 243 Res.setBits(loBit, hiBit); 244 return Res; 245 } 246 247 /// Wrap version of getBitsSet. 248 /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet. 249 /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example, 250 /// with parameters (32, 28, 4), you would get 0xF000000F. 251 /// If \p hiBit is equal to \p loBit, you would get a result with all bits 252 /// set. getBitsSetWithWrap(unsigned numBits,unsigned loBit,unsigned hiBit)253 static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit, 254 unsigned hiBit) { 255 APInt Res(numBits, 0); 256 Res.setBitsWithWrap(loBit, hiBit); 257 return Res; 258 } 259 260 /// Constructs an APInt value that has a contiguous range of bits set. The 261 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other 262 /// bits will be zero. For example, with parameters(32, 12) you would get 263 /// 0xFFFFF000. 264 /// 265 /// \param numBits the intended bit width of the result 266 /// \param loBit the index of the lowest bit to set. 267 /// 268 /// \returns An APInt value with the requested bits set. getBitsSetFrom(unsigned numBits,unsigned loBit)269 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) { 270 APInt Res(numBits, 0); 271 Res.setBitsFrom(loBit); 272 return Res; 273 } 274 275 /// Constructs an APInt value that has the top hiBitsSet bits set. 276 /// 277 /// \param numBits the bitwidth of the result 278 /// \param hiBitsSet the number of high-order bits set in the result. getHighBitsSet(unsigned numBits,unsigned hiBitsSet)279 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) { 280 APInt Res(numBits, 0); 281 Res.setHighBits(hiBitsSet); 282 return Res; 283 } 284 285 /// Constructs an APInt value that has the bottom loBitsSet bits set. 286 /// 287 /// \param numBits the bitwidth of the result 288 /// \param loBitsSet the number of low-order bits set in the result. getLowBitsSet(unsigned numBits,unsigned loBitsSet)289 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) { 290 APInt Res(numBits, 0); 291 Res.setLowBits(loBitsSet); 292 return Res; 293 } 294 295 /// Return a value containing V broadcasted over NewLen bits. 296 static APInt getSplat(unsigned NewLen, const APInt &V); 297 298 /// @} 299 /// \name Value Tests 300 /// @{ 301 302 /// Determine if this APInt just has one word to store value. 303 /// 304 /// \returns true if the number of bits <= 64, false otherwise. isSingleWord()305 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } 306 307 /// Determine sign of this APInt. 308 /// 309 /// This tests the high bit of this APInt to determine if it is set. 310 /// 311 /// \returns true if this APInt is negative, false otherwise isNegative()312 bool isNegative() const { return (*this)[BitWidth - 1]; } 313 314 /// Determine if this APInt Value is non-negative (>= 0) 315 /// 316 /// This tests the high bit of the APInt to determine if it is unset. isNonNegative()317 bool isNonNegative() const { return !isNegative(); } 318 319 /// Determine if sign bit of this APInt is set. 320 /// 321 /// This tests the high bit of this APInt to determine if it is set. 322 /// 323 /// \returns true if this APInt has its sign bit set, false otherwise. isSignBitSet()324 bool isSignBitSet() const { return (*this)[BitWidth - 1]; } 325 326 /// Determine if sign bit of this APInt is clear. 327 /// 328 /// This tests the high bit of this APInt to determine if it is clear. 329 /// 330 /// \returns true if this APInt has its sign bit clear, false otherwise. isSignBitClear()331 bool isSignBitClear() const { return !isSignBitSet(); } 332 333 /// Determine if this APInt Value is positive. 334 /// 335 /// This tests if the value of this APInt is positive (> 0). Note 336 /// that 0 is not a positive value. 337 /// 338 /// \returns true if this APInt is positive. isStrictlyPositive()339 bool isStrictlyPositive() const { return isNonNegative() && !isZero(); } 340 341 /// Determine if this APInt Value is non-positive (<= 0). 342 /// 343 /// \returns true if this APInt is non-positive. isNonPositive()344 bool isNonPositive() const { return !isStrictlyPositive(); } 345 346 /// Determine if this APInt Value only has the specified bit set. 347 /// 348 /// \returns true if this APInt only has the specified bit set. isOneBitSet(unsigned BitNo)349 bool isOneBitSet(unsigned BitNo) const { 350 return (*this)[BitNo] && countPopulation() == 1; 351 } 352 353 /// Determine if all bits are set. This is true for zero-width values. isAllOnes()354 bool isAllOnes() const { 355 if (BitWidth == 0) 356 return true; 357 if (isSingleWord()) 358 return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth); 359 return countTrailingOnesSlowCase() == BitWidth; 360 } 361 362 /// NOTE: This is soft-deprecated. Please use `isAllOnes()` instead. isAllOnesValue()363 bool isAllOnesValue() const { return isAllOnes(); } 364 365 /// Determine if this value is zero, i.e. all bits are clear. isZero()366 bool isZero() const { 367 if (isSingleWord()) 368 return U.VAL == 0; 369 return countLeadingZerosSlowCase() == BitWidth; 370 } 371 372 /// NOTE: This is soft-deprecated. Please use `isZero()` instead. isNullValue()373 bool isNullValue() const { return isZero(); } 374 375 /// Determine if this is a value of 1. 376 /// 377 /// This checks to see if the value of this APInt is one. isOne()378 bool isOne() const { 379 if (isSingleWord()) 380 return U.VAL == 1; 381 return countLeadingZerosSlowCase() == BitWidth - 1; 382 } 383 384 /// NOTE: This is soft-deprecated. Please use `isOne()` instead. isOneValue()385 bool isOneValue() const { return isOne(); } 386 387 /// Determine if this is the largest unsigned value. 388 /// 389 /// This checks to see if the value of this APInt is the maximum unsigned 390 /// value for the APInt's bit width. isMaxValue()391 bool isMaxValue() const { return isAllOnes(); } 392 393 /// Determine if this is the largest signed value. 394 /// 395 /// This checks to see if the value of this APInt is the maximum signed 396 /// value for the APInt's bit width. isMaxSignedValue()397 bool isMaxSignedValue() const { 398 if (isSingleWord()) { 399 assert(BitWidth && "zero width values not allowed"); 400 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1); 401 } 402 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1; 403 } 404 405 /// Determine if this is the smallest unsigned value. 406 /// 407 /// This checks to see if the value of this APInt is the minimum unsigned 408 /// value for the APInt's bit width. isMinValue()409 bool isMinValue() const { return isZero(); } 410 411 /// Determine if this is the smallest signed value. 412 /// 413 /// This checks to see if the value of this APInt is the minimum signed 414 /// value for the APInt's bit width. isMinSignedValue()415 bool isMinSignedValue() const { 416 if (isSingleWord()) { 417 assert(BitWidth && "zero width values not allowed"); 418 return U.VAL == (WordType(1) << (BitWidth - 1)); 419 } 420 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1; 421 } 422 423 /// Check if this APInt has an N-bits unsigned integer value. isIntN(unsigned N)424 bool isIntN(unsigned N) const { return getActiveBits() <= N; } 425 426 /// Check if this APInt has an N-bits signed integer value. isSignedIntN(unsigned N)427 bool isSignedIntN(unsigned N) const { return getSignificantBits() <= N; } 428 429 /// Check if this APInt's value is a power of two greater than zero. 430 /// 431 /// \returns true if the argument APInt value is a power of two > 0. isPowerOf2()432 bool isPowerOf2() const { 433 if (isSingleWord()) { 434 assert(BitWidth && "zero width values not allowed"); 435 return isPowerOf2_64(U.VAL); 436 } 437 return countPopulationSlowCase() == 1; 438 } 439 440 /// Check if this APInt's negated value is a power of two greater than zero. isNegatedPowerOf2()441 bool isNegatedPowerOf2() const { 442 assert(BitWidth && "zero width values not allowed"); 443 if (isNonNegative()) 444 return false; 445 // NegatedPowerOf2 - shifted mask in the top bits. 446 unsigned LO = countLeadingOnes(); 447 unsigned TZ = countTrailingZeros(); 448 return (LO + TZ) == BitWidth; 449 } 450 451 /// Check if the APInt's value is returned by getSignMask. 452 /// 453 /// \returns true if this is the value returned by getSignMask. isSignMask()454 bool isSignMask() const { return isMinSignedValue(); } 455 456 /// Convert APInt to a boolean value. 457 /// 458 /// This converts the APInt to a boolean value as a test against zero. getBoolValue()459 bool getBoolValue() const { return !isZero(); } 460 461 /// If this value is smaller than the specified limit, return it, otherwise 462 /// return the limit value. This causes the value to saturate to the limit. 463 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const { 464 return ugt(Limit) ? Limit : getZExtValue(); 465 } 466 467 /// Check if the APInt consists of a repeated bit pattern. 468 /// 469 /// e.g. 0x01010101 satisfies isSplat(8). 470 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit 471 /// width without remainder. 472 bool isSplat(unsigned SplatSizeInBits) const; 473 474 /// \returns true if this APInt value is a sequence of \param numBits ones 475 /// starting at the least significant bit with the remainder zero. isMask(unsigned numBits)476 bool isMask(unsigned numBits) const { 477 assert(numBits != 0 && "numBits must be non-zero"); 478 assert(numBits <= BitWidth && "numBits out of range"); 479 if (isSingleWord()) 480 return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits)); 481 unsigned Ones = countTrailingOnesSlowCase(); 482 return (numBits == Ones) && 483 ((Ones + countLeadingZerosSlowCase()) == BitWidth); 484 } 485 486 /// \returns true if this APInt is a non-empty sequence of ones starting at 487 /// the least significant bit with the remainder zero. 488 /// Ex. isMask(0x0000FFFFU) == true. isMask()489 bool isMask() const { 490 if (isSingleWord()) 491 return isMask_64(U.VAL); 492 unsigned Ones = countTrailingOnesSlowCase(); 493 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth); 494 } 495 496 /// Return true if this APInt value contains a non-empty sequence of ones with 497 /// the remainder zero. isShiftedMask()498 bool isShiftedMask() const { 499 if (isSingleWord()) 500 return isShiftedMask_64(U.VAL); 501 unsigned Ones = countPopulationSlowCase(); 502 unsigned LeadZ = countLeadingZerosSlowCase(); 503 return (Ones + LeadZ + countTrailingZeros()) == BitWidth; 504 } 505 506 /// Return true if this APInt value contains a non-empty sequence of ones with 507 /// the remainder zero. If true, \p MaskIdx will specify the index of the 508 /// lowest set bit and \p MaskLen is updated to specify the length of the 509 /// mask, else neither are updated. isShiftedMask(unsigned & MaskIdx,unsigned & MaskLen)510 bool isShiftedMask(unsigned &MaskIdx, unsigned &MaskLen) const { 511 if (isSingleWord()) 512 return isShiftedMask_64(U.VAL, MaskIdx, MaskLen); 513 unsigned Ones = countPopulationSlowCase(); 514 unsigned LeadZ = countLeadingZerosSlowCase(); 515 unsigned TrailZ = countTrailingZerosSlowCase(); 516 if ((Ones + LeadZ + TrailZ) != BitWidth) 517 return false; 518 MaskLen = Ones; 519 MaskIdx = TrailZ; 520 return true; 521 } 522 523 /// Compute an APInt containing numBits highbits from this APInt. 524 /// 525 /// Get an APInt with the same BitWidth as this APInt, just zero mask the low 526 /// bits and right shift to the least significant bit. 527 /// 528 /// \returns the high "numBits" bits of this APInt. 529 APInt getHiBits(unsigned numBits) const; 530 531 /// Compute an APInt containing numBits lowbits from this APInt. 532 /// 533 /// Get an APInt with the same BitWidth as this APInt, just zero mask the high 534 /// bits. 535 /// 536 /// \returns the low "numBits" bits of this APInt. 537 APInt getLoBits(unsigned numBits) const; 538 539 /// Determine if two APInts have the same value, after zero-extending 540 /// one of them (if needed!) to ensure that the bit-widths match. isSameValue(const APInt & I1,const APInt & I2)541 static bool isSameValue(const APInt &I1, const APInt &I2) { 542 if (I1.getBitWidth() == I2.getBitWidth()) 543 return I1 == I2; 544 545 if (I1.getBitWidth() > I2.getBitWidth()) 546 return I1 == I2.zext(I1.getBitWidth()); 547 548 return I1.zext(I2.getBitWidth()) == I2; 549 } 550 551 /// Overload to compute a hash_code for an APInt value. 552 friend hash_code hash_value(const APInt &Arg); 553 554 /// This function returns a pointer to the internal storage of the APInt. 555 /// This is useful for writing out the APInt in binary form without any 556 /// conversions. getRawData()557 const uint64_t *getRawData() const { 558 if (isSingleWord()) 559 return &U.VAL; 560 return &U.pVal[0]; 561 } 562 563 /// @} 564 /// \name Unary Operators 565 /// @{ 566 567 /// Postfix increment operator. Increment *this by 1. 568 /// 569 /// \returns a new APInt value representing the original value of *this. 570 APInt operator++(int) { 571 APInt API(*this); 572 ++(*this); 573 return API; 574 } 575 576 /// Prefix increment operator. 577 /// 578 /// \returns *this incremented by one 579 APInt &operator++(); 580 581 /// Postfix decrement operator. Decrement *this by 1. 582 /// 583 /// \returns a new APInt value representing the original value of *this. 584 APInt operator--(int) { 585 APInt API(*this); 586 --(*this); 587 return API; 588 } 589 590 /// Prefix decrement operator. 591 /// 592 /// \returns *this decremented by one. 593 APInt &operator--(); 594 595 /// Logical negation operation on this APInt returns true if zero, like normal 596 /// integers. 597 bool operator!() const { return isZero(); } 598 599 /// @} 600 /// \name Assignment Operators 601 /// @{ 602 603 /// Copy assignment operator. 604 /// 605 /// \returns *this after assignment of RHS. 606 APInt &operator=(const APInt &RHS) { 607 // The common case (both source or dest being inline) doesn't require 608 // allocation or deallocation. 609 if (isSingleWord() && RHS.isSingleWord()) { 610 U.VAL = RHS.U.VAL; 611 BitWidth = RHS.BitWidth; 612 return *this; 613 } 614 615 assignSlowCase(RHS); 616 return *this; 617 } 618 619 /// Move assignment operator. 620 APInt &operator=(APInt &&that) { 621 #ifdef EXPENSIVE_CHECKS 622 // Some std::shuffle implementations still do self-assignment. 623 if (this == &that) 624 return *this; 625 #endif 626 assert(this != &that && "Self-move not supported"); 627 if (!isSingleWord()) 628 delete[] U.pVal; 629 630 // Use memcpy so that type based alias analysis sees both VAL and pVal 631 // as modified. 632 memcpy(&U, &that.U, sizeof(U)); 633 634 BitWidth = that.BitWidth; 635 that.BitWidth = 0; 636 return *this; 637 } 638 639 /// Assignment operator. 640 /// 641 /// The RHS value is assigned to *this. If the significant bits in RHS exceed 642 /// the bit width, the excess bits are truncated. If the bit width is larger 643 /// than 64, the value is zero filled in the unspecified high order bits. 644 /// 645 /// \returns *this after assignment of RHS value. 646 APInt &operator=(uint64_t RHS) { 647 if (isSingleWord()) { 648 U.VAL = RHS; 649 return clearUnusedBits(); 650 } 651 U.pVal[0] = RHS; 652 memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); 653 return *this; 654 } 655 656 /// Bitwise AND assignment operator. 657 /// 658 /// Performs a bitwise AND operation on this APInt and RHS. The result is 659 /// assigned to *this. 660 /// 661 /// \returns *this after ANDing with RHS. 662 APInt &operator&=(const APInt &RHS) { 663 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 664 if (isSingleWord()) 665 U.VAL &= RHS.U.VAL; 666 else 667 andAssignSlowCase(RHS); 668 return *this; 669 } 670 671 /// Bitwise AND assignment operator. 672 /// 673 /// Performs a bitwise AND operation on this APInt and RHS. RHS is 674 /// logically zero-extended or truncated to match the bit-width of 675 /// the LHS. 676 APInt &operator&=(uint64_t RHS) { 677 if (isSingleWord()) { 678 U.VAL &= RHS; 679 return *this; 680 } 681 U.pVal[0] &= RHS; 682 memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); 683 return *this; 684 } 685 686 /// Bitwise OR assignment operator. 687 /// 688 /// Performs a bitwise OR operation on this APInt and RHS. The result is 689 /// assigned *this; 690 /// 691 /// \returns *this after ORing with RHS. 692 APInt &operator|=(const APInt &RHS) { 693 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 694 if (isSingleWord()) 695 U.VAL |= RHS.U.VAL; 696 else 697 orAssignSlowCase(RHS); 698 return *this; 699 } 700 701 /// Bitwise OR assignment operator. 702 /// 703 /// Performs a bitwise OR operation on this APInt and RHS. RHS is 704 /// logically zero-extended or truncated to match the bit-width of 705 /// the LHS. 706 APInt &operator|=(uint64_t RHS) { 707 if (isSingleWord()) { 708 U.VAL |= RHS; 709 return clearUnusedBits(); 710 } 711 U.pVal[0] |= RHS; 712 return *this; 713 } 714 715 /// Bitwise XOR assignment operator. 716 /// 717 /// Performs a bitwise XOR operation on this APInt and RHS. The result is 718 /// assigned to *this. 719 /// 720 /// \returns *this after XORing with RHS. 721 APInt &operator^=(const APInt &RHS) { 722 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 723 if (isSingleWord()) 724 U.VAL ^= RHS.U.VAL; 725 else 726 xorAssignSlowCase(RHS); 727 return *this; 728 } 729 730 /// Bitwise XOR assignment operator. 731 /// 732 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is 733 /// logically zero-extended or truncated to match the bit-width of 734 /// the LHS. 735 APInt &operator^=(uint64_t RHS) { 736 if (isSingleWord()) { 737 U.VAL ^= RHS; 738 return clearUnusedBits(); 739 } 740 U.pVal[0] ^= RHS; 741 return *this; 742 } 743 744 /// Multiplication assignment operator. 745 /// 746 /// Multiplies this APInt by RHS and assigns the result to *this. 747 /// 748 /// \returns *this 749 APInt &operator*=(const APInt &RHS); 750 APInt &operator*=(uint64_t RHS); 751 752 /// Addition assignment operator. 753 /// 754 /// Adds RHS to *this and assigns the result to *this. 755 /// 756 /// \returns *this 757 APInt &operator+=(const APInt &RHS); 758 APInt &operator+=(uint64_t RHS); 759 760 /// Subtraction assignment operator. 761 /// 762 /// Subtracts RHS from *this and assigns the result to *this. 763 /// 764 /// \returns *this 765 APInt &operator-=(const APInt &RHS); 766 APInt &operator-=(uint64_t RHS); 767 768 /// Left-shift assignment function. 769 /// 770 /// Shifts *this left by shiftAmt and assigns the result to *this. 771 /// 772 /// \returns *this after shifting left by ShiftAmt 773 APInt &operator<<=(unsigned ShiftAmt) { 774 assert(ShiftAmt <= BitWidth && "Invalid shift amount"); 775 if (isSingleWord()) { 776 if (ShiftAmt == BitWidth) 777 U.VAL = 0; 778 else 779 U.VAL <<= ShiftAmt; 780 return clearUnusedBits(); 781 } 782 shlSlowCase(ShiftAmt); 783 return *this; 784 } 785 786 /// Left-shift assignment function. 787 /// 788 /// Shifts *this left by shiftAmt and assigns the result to *this. 789 /// 790 /// \returns *this after shifting left by ShiftAmt 791 APInt &operator<<=(const APInt &ShiftAmt); 792 793 /// @} 794 /// \name Binary Operators 795 /// @{ 796 797 /// Multiplication operator. 798 /// 799 /// Multiplies this APInt by RHS and returns the result. 800 APInt operator*(const APInt &RHS) const; 801 802 /// Left logical shift operator. 803 /// 804 /// Shifts this APInt left by \p Bits and returns the result. 805 APInt operator<<(unsigned Bits) const { return shl(Bits); } 806 807 /// Left logical shift operator. 808 /// 809 /// Shifts this APInt left by \p Bits and returns the result. 810 APInt operator<<(const APInt &Bits) const { return shl(Bits); } 811 812 /// Arithmetic right-shift function. 813 /// 814 /// Arithmetic right-shift this APInt by shiftAmt. ashr(unsigned ShiftAmt)815 APInt ashr(unsigned ShiftAmt) const { 816 APInt R(*this); 817 R.ashrInPlace(ShiftAmt); 818 return R; 819 } 820 821 /// Arithmetic right-shift this APInt by ShiftAmt in place. ashrInPlace(unsigned ShiftAmt)822 void ashrInPlace(unsigned ShiftAmt) { 823 assert(ShiftAmt <= BitWidth && "Invalid shift amount"); 824 if (isSingleWord()) { 825 int64_t SExtVAL = SignExtend64(U.VAL, BitWidth); 826 if (ShiftAmt == BitWidth) 827 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit. 828 else 829 U.VAL = SExtVAL >> ShiftAmt; 830 clearUnusedBits(); 831 return; 832 } 833 ashrSlowCase(ShiftAmt); 834 } 835 836 /// Logical right-shift function. 837 /// 838 /// Logical right-shift this APInt by shiftAmt. lshr(unsigned shiftAmt)839 APInt lshr(unsigned shiftAmt) const { 840 APInt R(*this); 841 R.lshrInPlace(shiftAmt); 842 return R; 843 } 844 845 /// Logical right-shift this APInt by ShiftAmt in place. lshrInPlace(unsigned ShiftAmt)846 void lshrInPlace(unsigned ShiftAmt) { 847 assert(ShiftAmt <= BitWidth && "Invalid shift amount"); 848 if (isSingleWord()) { 849 if (ShiftAmt == BitWidth) 850 U.VAL = 0; 851 else 852 U.VAL >>= ShiftAmt; 853 return; 854 } 855 lshrSlowCase(ShiftAmt); 856 } 857 858 /// Left-shift function. 859 /// 860 /// Left-shift this APInt by shiftAmt. shl(unsigned shiftAmt)861 APInt shl(unsigned shiftAmt) const { 862 APInt R(*this); 863 R <<= shiftAmt; 864 return R; 865 } 866 867 /// relative logical shift right relativeLShr(int RelativeShift)868 APInt relativeLShr(int RelativeShift) const { 869 return RelativeShift > 0 ? lshr(RelativeShift) : shl(-RelativeShift); 870 } 871 872 /// relative logical shift left relativeLShl(int RelativeShift)873 APInt relativeLShl(int RelativeShift) const { 874 return relativeLShr(-RelativeShift); 875 } 876 877 /// relative arithmetic shift right relativeAShr(int RelativeShift)878 APInt relativeAShr(int RelativeShift) const { 879 return RelativeShift > 0 ? ashr(RelativeShift) : shl(-RelativeShift); 880 } 881 882 /// relative arithmetic shift left relativeAShl(int RelativeShift)883 APInt relativeAShl(int RelativeShift) const { 884 return relativeAShr(-RelativeShift); 885 } 886 887 /// Rotate left by rotateAmt. 888 APInt rotl(unsigned rotateAmt) const; 889 890 /// Rotate right by rotateAmt. 891 APInt rotr(unsigned rotateAmt) const; 892 893 /// Arithmetic right-shift function. 894 /// 895 /// Arithmetic right-shift this APInt by shiftAmt. ashr(const APInt & ShiftAmt)896 APInt ashr(const APInt &ShiftAmt) const { 897 APInt R(*this); 898 R.ashrInPlace(ShiftAmt); 899 return R; 900 } 901 902 /// Arithmetic right-shift this APInt by shiftAmt in place. 903 void ashrInPlace(const APInt &shiftAmt); 904 905 /// Logical right-shift function. 906 /// 907 /// Logical right-shift this APInt by shiftAmt. lshr(const APInt & ShiftAmt)908 APInt lshr(const APInt &ShiftAmt) const { 909 APInt R(*this); 910 R.lshrInPlace(ShiftAmt); 911 return R; 912 } 913 914 /// Logical right-shift this APInt by ShiftAmt in place. 915 void lshrInPlace(const APInt &ShiftAmt); 916 917 /// Left-shift function. 918 /// 919 /// Left-shift this APInt by shiftAmt. shl(const APInt & ShiftAmt)920 APInt shl(const APInt &ShiftAmt) const { 921 APInt R(*this); 922 R <<= ShiftAmt; 923 return R; 924 } 925 926 /// Rotate left by rotateAmt. 927 APInt rotl(const APInt &rotateAmt) const; 928 929 /// Rotate right by rotateAmt. 930 APInt rotr(const APInt &rotateAmt) const; 931 932 /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is 933 /// equivalent to: 934 /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth) concat(const APInt & NewLSB)935 APInt concat(const APInt &NewLSB) const { 936 /// If the result will be small, then both the merged values are small. 937 unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth(); 938 if (NewWidth <= APINT_BITS_PER_WORD) 939 return APInt(NewWidth, (U.VAL << NewLSB.getBitWidth()) | NewLSB.U.VAL); 940 return concatSlowCase(NewLSB); 941 } 942 943 /// Unsigned division operation. 944 /// 945 /// Perform an unsigned divide operation on this APInt by RHS. Both this and 946 /// RHS are treated as unsigned quantities for purposes of this division. 947 /// 948 /// \returns a new APInt value containing the division result, rounded towards 949 /// zero. 950 APInt udiv(const APInt &RHS) const; 951 APInt udiv(uint64_t RHS) const; 952 953 /// Signed division function for APInt. 954 /// 955 /// Signed divide this APInt by APInt RHS. 956 /// 957 /// The result is rounded towards zero. 958 APInt sdiv(const APInt &RHS) const; 959 APInt sdiv(int64_t RHS) const; 960 961 /// Unsigned remainder operation. 962 /// 963 /// Perform an unsigned remainder operation on this APInt with RHS being the 964 /// divisor. Both this and RHS are treated as unsigned quantities for purposes 965 /// of this operation. 966 /// 967 /// \returns a new APInt value containing the remainder result 968 APInt urem(const APInt &RHS) const; 969 uint64_t urem(uint64_t RHS) const; 970 971 /// Function for signed remainder operation. 972 /// 973 /// Signed remainder operation on APInt. 974 /// 975 /// Note that this is a true remainder operation and not a modulo operation 976 /// because the sign follows the sign of the dividend which is *this. 977 APInt srem(const APInt &RHS) const; 978 int64_t srem(int64_t RHS) const; 979 980 /// Dual division/remainder interface. 981 /// 982 /// Sometimes it is convenient to divide two APInt values and obtain both the 983 /// quotient and remainder. This function does both operations in the same 984 /// computation making it a little more efficient. The pair of input arguments 985 /// may overlap with the pair of output arguments. It is safe to call 986 /// udivrem(X, Y, X, Y), for example. 987 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, 988 APInt &Remainder); 989 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, 990 uint64_t &Remainder); 991 992 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, 993 APInt &Remainder); 994 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient, 995 int64_t &Remainder); 996 997 // Operations that return overflow indicators. 998 APInt sadd_ov(const APInt &RHS, bool &Overflow) const; 999 APInt uadd_ov(const APInt &RHS, bool &Overflow) const; 1000 APInt ssub_ov(const APInt &RHS, bool &Overflow) const; 1001 APInt usub_ov(const APInt &RHS, bool &Overflow) const; 1002 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const; 1003 APInt smul_ov(const APInt &RHS, bool &Overflow) const; 1004 APInt umul_ov(const APInt &RHS, bool &Overflow) const; 1005 APInt sshl_ov(const APInt &Amt, bool &Overflow) const; 1006 APInt ushl_ov(const APInt &Amt, bool &Overflow) const; 1007 1008 // Operations that saturate 1009 APInt sadd_sat(const APInt &RHS) const; 1010 APInt uadd_sat(const APInt &RHS) const; 1011 APInt ssub_sat(const APInt &RHS) const; 1012 APInt usub_sat(const APInt &RHS) const; 1013 APInt smul_sat(const APInt &RHS) const; 1014 APInt umul_sat(const APInt &RHS) const; 1015 APInt sshl_sat(const APInt &RHS) const; 1016 APInt ushl_sat(const APInt &RHS) const; 1017 1018 /// Array-indexing support. 1019 /// 1020 /// \returns the bit value at bitPosition 1021 bool operator[](unsigned bitPosition) const { 1022 assert(bitPosition < getBitWidth() && "Bit position out of bounds!"); 1023 return (maskBit(bitPosition) & getWord(bitPosition)) != 0; 1024 } 1025 1026 /// @} 1027 /// \name Comparison Operators 1028 /// @{ 1029 1030 /// Equality operator. 1031 /// 1032 /// Compares this APInt with RHS for the validity of the equality 1033 /// relationship. 1034 bool operator==(const APInt &RHS) const { 1035 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"); 1036 if (isSingleWord()) 1037 return U.VAL == RHS.U.VAL; 1038 return equalSlowCase(RHS); 1039 } 1040 1041 /// Equality operator. 1042 /// 1043 /// Compares this APInt with a uint64_t for the validity of the equality 1044 /// relationship. 1045 /// 1046 /// \returns true if *this == Val 1047 bool operator==(uint64_t Val) const { 1048 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val; 1049 } 1050 1051 /// Equality comparison. 1052 /// 1053 /// Compares this APInt with RHS for the validity of the equality 1054 /// relationship. 1055 /// 1056 /// \returns true if *this == Val eq(const APInt & RHS)1057 bool eq(const APInt &RHS) const { return (*this) == RHS; } 1058 1059 /// Inequality operator. 1060 /// 1061 /// Compares this APInt with RHS for the validity of the inequality 1062 /// relationship. 1063 /// 1064 /// \returns true if *this != Val 1065 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); } 1066 1067 /// Inequality operator. 1068 /// 1069 /// Compares this APInt with a uint64_t for the validity of the inequality 1070 /// relationship. 1071 /// 1072 /// \returns true if *this != Val 1073 bool operator!=(uint64_t Val) const { return !((*this) == Val); } 1074 1075 /// Inequality comparison 1076 /// 1077 /// Compares this APInt with RHS for the validity of the inequality 1078 /// relationship. 1079 /// 1080 /// \returns true if *this != Val ne(const APInt & RHS)1081 bool ne(const APInt &RHS) const { return !((*this) == RHS); } 1082 1083 /// Unsigned less than comparison 1084 /// 1085 /// Regards both *this and RHS as unsigned quantities and compares them for 1086 /// the validity of the less-than relationship. 1087 /// 1088 /// \returns true if *this < RHS when both are considered unsigned. ult(const APInt & RHS)1089 bool ult(const APInt &RHS) const { return compare(RHS) < 0; } 1090 1091 /// Unsigned less than comparison 1092 /// 1093 /// Regards both *this as an unsigned quantity and compares it with RHS for 1094 /// the validity of the less-than relationship. 1095 /// 1096 /// \returns true if *this < RHS when considered unsigned. ult(uint64_t RHS)1097 bool ult(uint64_t RHS) const { 1098 // Only need to check active bits if not a single word. 1099 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS; 1100 } 1101 1102 /// Signed less than comparison 1103 /// 1104 /// Regards both *this and RHS as signed quantities and compares them for 1105 /// validity of the less-than relationship. 1106 /// 1107 /// \returns true if *this < RHS when both are considered signed. slt(const APInt & RHS)1108 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; } 1109 1110 /// Signed less than comparison 1111 /// 1112 /// Regards both *this as a signed quantity and compares it with RHS for 1113 /// the validity of the less-than relationship. 1114 /// 1115 /// \returns true if *this < RHS when considered signed. slt(int64_t RHS)1116 bool slt(int64_t RHS) const { 1117 return (!isSingleWord() && getSignificantBits() > 64) 1118 ? isNegative() 1119 : getSExtValue() < RHS; 1120 } 1121 1122 /// Unsigned less or equal comparison 1123 /// 1124 /// Regards both *this and RHS as unsigned quantities and compares them for 1125 /// validity of the less-or-equal relationship. 1126 /// 1127 /// \returns true if *this <= RHS when both are considered unsigned. ule(const APInt & RHS)1128 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; } 1129 1130 /// Unsigned less or equal comparison 1131 /// 1132 /// Regards both *this as an unsigned quantity and compares it with RHS for 1133 /// the validity of the less-or-equal relationship. 1134 /// 1135 /// \returns true if *this <= RHS when considered unsigned. ule(uint64_t RHS)1136 bool ule(uint64_t RHS) const { return !ugt(RHS); } 1137 1138 /// Signed less or equal comparison 1139 /// 1140 /// Regards both *this and RHS as signed quantities and compares them for 1141 /// validity of the less-or-equal relationship. 1142 /// 1143 /// \returns true if *this <= RHS when both are considered signed. sle(const APInt & RHS)1144 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; } 1145 1146 /// Signed less or equal comparison 1147 /// 1148 /// Regards both *this as a signed quantity and compares it with RHS for the 1149 /// validity of the less-or-equal relationship. 1150 /// 1151 /// \returns true if *this <= RHS when considered signed. sle(uint64_t RHS)1152 bool sle(uint64_t RHS) const { return !sgt(RHS); } 1153 1154 /// Unsigned greater than comparison 1155 /// 1156 /// Regards both *this and RHS as unsigned quantities and compares them for 1157 /// the validity of the greater-than relationship. 1158 /// 1159 /// \returns true if *this > RHS when both are considered unsigned. ugt(const APInt & RHS)1160 bool ugt(const APInt &RHS) const { return !ule(RHS); } 1161 1162 /// Unsigned greater than comparison 1163 /// 1164 /// Regards both *this as an unsigned quantity and compares it with RHS for 1165 /// the validity of the greater-than relationship. 1166 /// 1167 /// \returns true if *this > RHS when considered unsigned. ugt(uint64_t RHS)1168 bool ugt(uint64_t RHS) const { 1169 // Only need to check active bits if not a single word. 1170 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS; 1171 } 1172 1173 /// Signed greater than comparison 1174 /// 1175 /// Regards both *this and RHS as signed quantities and compares them for the 1176 /// validity of the greater-than relationship. 1177 /// 1178 /// \returns true if *this > RHS when both are considered signed. sgt(const APInt & RHS)1179 bool sgt(const APInt &RHS) const { return !sle(RHS); } 1180 1181 /// Signed greater than comparison 1182 /// 1183 /// Regards both *this as a signed quantity and compares it with RHS for 1184 /// the validity of the greater-than relationship. 1185 /// 1186 /// \returns true if *this > RHS when considered signed. sgt(int64_t RHS)1187 bool sgt(int64_t RHS) const { 1188 return (!isSingleWord() && getSignificantBits() > 64) 1189 ? !isNegative() 1190 : getSExtValue() > RHS; 1191 } 1192 1193 /// Unsigned greater or equal comparison 1194 /// 1195 /// Regards both *this and RHS as unsigned quantities and compares them for 1196 /// validity of the greater-or-equal relationship. 1197 /// 1198 /// \returns true if *this >= RHS when both are considered unsigned. uge(const APInt & RHS)1199 bool uge(const APInt &RHS) const { return !ult(RHS); } 1200 1201 /// Unsigned greater or equal comparison 1202 /// 1203 /// Regards both *this as an unsigned quantity and compares it with RHS for 1204 /// the validity of the greater-or-equal relationship. 1205 /// 1206 /// \returns true if *this >= RHS when considered unsigned. uge(uint64_t RHS)1207 bool uge(uint64_t RHS) const { return !ult(RHS); } 1208 1209 /// Signed greater or equal comparison 1210 /// 1211 /// Regards both *this and RHS as signed quantities and compares them for 1212 /// validity of the greater-or-equal relationship. 1213 /// 1214 /// \returns true if *this >= RHS when both are considered signed. sge(const APInt & RHS)1215 bool sge(const APInt &RHS) const { return !slt(RHS); } 1216 1217 /// Signed greater or equal comparison 1218 /// 1219 /// Regards both *this as a signed quantity and compares it with RHS for 1220 /// the validity of the greater-or-equal relationship. 1221 /// 1222 /// \returns true if *this >= RHS when considered signed. sge(int64_t RHS)1223 bool sge(int64_t RHS) const { return !slt(RHS); } 1224 1225 /// This operation tests if there are any pairs of corresponding bits 1226 /// between this APInt and RHS that are both set. intersects(const APInt & RHS)1227 bool intersects(const APInt &RHS) const { 1228 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1229 if (isSingleWord()) 1230 return (U.VAL & RHS.U.VAL) != 0; 1231 return intersectsSlowCase(RHS); 1232 } 1233 1234 /// This operation checks that all bits set in this APInt are also set in RHS. isSubsetOf(const APInt & RHS)1235 bool isSubsetOf(const APInt &RHS) const { 1236 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1237 if (isSingleWord()) 1238 return (U.VAL & ~RHS.U.VAL) == 0; 1239 return isSubsetOfSlowCase(RHS); 1240 } 1241 1242 /// @} 1243 /// \name Resizing Operators 1244 /// @{ 1245 1246 /// Truncate to new width. 1247 /// 1248 /// Truncate the APInt to a specified width. It is an error to specify a width 1249 /// that is greater than the current width. 1250 APInt trunc(unsigned width) const; 1251 1252 /// Truncate to new width with unsigned saturation. 1253 /// 1254 /// If the APInt, treated as unsigned integer, can be losslessly truncated to 1255 /// the new bitwidth, then return truncated APInt. Else, return max value. 1256 APInt truncUSat(unsigned width) const; 1257 1258 /// Truncate to new width with signed saturation. 1259 /// 1260 /// If this APInt, treated as signed integer, can be losslessly truncated to 1261 /// the new bitwidth, then return truncated APInt. Else, return either 1262 /// signed min value if the APInt was negative, or signed max value. 1263 APInt truncSSat(unsigned width) const; 1264 1265 /// Sign extend to a new width. 1266 /// 1267 /// This operation sign extends the APInt to a new width. If the high order 1268 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. 1269 /// It is an error to specify a width that is less than the 1270 /// current width. 1271 APInt sext(unsigned width) const; 1272 1273 /// Zero extend to a new width. 1274 /// 1275 /// This operation zero extends the APInt to a new width. The high order bits 1276 /// are filled with 0 bits. It is an error to specify a width that is less 1277 /// than the current width. 1278 APInt zext(unsigned width) const; 1279 1280 /// Sign extend or truncate to width 1281 /// 1282 /// Make this APInt have the bit width given by \p width. The value is sign 1283 /// extended, truncated, or left alone to make it that width. 1284 APInt sextOrTrunc(unsigned width) const; 1285 1286 /// Zero extend or truncate to width 1287 /// 1288 /// Make this APInt have the bit width given by \p width. The value is zero 1289 /// extended, truncated, or left alone to make it that width. 1290 APInt zextOrTrunc(unsigned width) const; 1291 1292 /// @} 1293 /// \name Bit Manipulation Operators 1294 /// @{ 1295 1296 /// Set every bit to 1. setAllBits()1297 void setAllBits() { 1298 if (isSingleWord()) 1299 U.VAL = WORDTYPE_MAX; 1300 else 1301 // Set all the bits in all the words. 1302 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE); 1303 // Clear the unused ones 1304 clearUnusedBits(); 1305 } 1306 1307 /// Set the given bit to 1 whose position is given as "bitPosition". setBit(unsigned BitPosition)1308 void setBit(unsigned BitPosition) { 1309 assert(BitPosition < BitWidth && "BitPosition out of range"); 1310 WordType Mask = maskBit(BitPosition); 1311 if (isSingleWord()) 1312 U.VAL |= Mask; 1313 else 1314 U.pVal[whichWord(BitPosition)] |= Mask; 1315 } 1316 1317 /// Set the sign bit to 1. setSignBit()1318 void setSignBit() { setBit(BitWidth - 1); } 1319 1320 /// Set a given bit to a given value. setBitVal(unsigned BitPosition,bool BitValue)1321 void setBitVal(unsigned BitPosition, bool BitValue) { 1322 if (BitValue) 1323 setBit(BitPosition); 1324 else 1325 clearBit(BitPosition); 1326 } 1327 1328 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. 1329 /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls 1330 /// setBits when \p loBit < \p hiBit. 1331 /// For \p loBit == \p hiBit wrap case, set every bit to 1. setBitsWithWrap(unsigned loBit,unsigned hiBit)1332 void setBitsWithWrap(unsigned loBit, unsigned hiBit) { 1333 assert(hiBit <= BitWidth && "hiBit out of range"); 1334 assert(loBit <= BitWidth && "loBit out of range"); 1335 if (loBit < hiBit) { 1336 setBits(loBit, hiBit); 1337 return; 1338 } 1339 setLowBits(hiBit); 1340 setHighBits(BitWidth - loBit); 1341 } 1342 1343 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. 1344 /// This function handles case when \p loBit <= \p hiBit. setBits(unsigned loBit,unsigned hiBit)1345 void setBits(unsigned loBit, unsigned hiBit) { 1346 assert(hiBit <= BitWidth && "hiBit out of range"); 1347 assert(loBit <= BitWidth && "loBit out of range"); 1348 assert(loBit <= hiBit && "loBit greater than hiBit"); 1349 if (loBit == hiBit) 1350 return; 1351 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) { 1352 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit)); 1353 mask <<= loBit; 1354 if (isSingleWord()) 1355 U.VAL |= mask; 1356 else 1357 U.pVal[0] |= mask; 1358 } else { 1359 setBitsSlowCase(loBit, hiBit); 1360 } 1361 } 1362 1363 /// Set the top bits starting from loBit. setBitsFrom(unsigned loBit)1364 void setBitsFrom(unsigned loBit) { return setBits(loBit, BitWidth); } 1365 1366 /// Set the bottom loBits bits. setLowBits(unsigned loBits)1367 void setLowBits(unsigned loBits) { return setBits(0, loBits); } 1368 1369 /// Set the top hiBits bits. setHighBits(unsigned hiBits)1370 void setHighBits(unsigned hiBits) { 1371 return setBits(BitWidth - hiBits, BitWidth); 1372 } 1373 1374 /// Set every bit to 0. clearAllBits()1375 void clearAllBits() { 1376 if (isSingleWord()) 1377 U.VAL = 0; 1378 else 1379 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE); 1380 } 1381 1382 /// Set a given bit to 0. 1383 /// 1384 /// Set the given bit to 0 whose position is given as "bitPosition". clearBit(unsigned BitPosition)1385 void clearBit(unsigned BitPosition) { 1386 assert(BitPosition < BitWidth && "BitPosition out of range"); 1387 WordType Mask = ~maskBit(BitPosition); 1388 if (isSingleWord()) 1389 U.VAL &= Mask; 1390 else 1391 U.pVal[whichWord(BitPosition)] &= Mask; 1392 } 1393 1394 /// Set bottom loBits bits to 0. clearLowBits(unsigned loBits)1395 void clearLowBits(unsigned loBits) { 1396 assert(loBits <= BitWidth && "More bits than bitwidth"); 1397 APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits); 1398 *this &= Keep; 1399 } 1400 1401 /// Set the sign bit to 0. clearSignBit()1402 void clearSignBit() { clearBit(BitWidth - 1); } 1403 1404 /// Toggle every bit to its opposite value. flipAllBits()1405 void flipAllBits() { 1406 if (isSingleWord()) { 1407 U.VAL ^= WORDTYPE_MAX; 1408 clearUnusedBits(); 1409 } else { 1410 flipAllBitsSlowCase(); 1411 } 1412 } 1413 1414 /// Toggles a given bit to its opposite value. 1415 /// 1416 /// Toggle a given bit to its opposite value whose position is given 1417 /// as "bitPosition". 1418 void flipBit(unsigned bitPosition); 1419 1420 /// Negate this APInt in place. negate()1421 void negate() { 1422 flipAllBits(); 1423 ++(*this); 1424 } 1425 1426 /// Insert the bits from a smaller APInt starting at bitPosition. 1427 void insertBits(const APInt &SubBits, unsigned bitPosition); 1428 void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits); 1429 1430 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits). 1431 APInt extractBits(unsigned numBits, unsigned bitPosition) const; 1432 uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const; 1433 1434 /// @} 1435 /// \name Value Characterization Functions 1436 /// @{ 1437 1438 /// Return the number of bits in the APInt. getBitWidth()1439 unsigned getBitWidth() const { return BitWidth; } 1440 1441 /// Get the number of words. 1442 /// 1443 /// Here one word's bitwidth equals to that of uint64_t. 1444 /// 1445 /// \returns the number of words to hold the integer value of this APInt. getNumWords()1446 unsigned getNumWords() const { return getNumWords(BitWidth); } 1447 1448 /// Get the number of words. 1449 /// 1450 /// *NOTE* Here one word's bitwidth equals to that of uint64_t. 1451 /// 1452 /// \returns the number of words to hold the integer value with a given bit 1453 /// width. getNumWords(unsigned BitWidth)1454 static unsigned getNumWords(unsigned BitWidth) { 1455 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; 1456 } 1457 1458 /// Compute the number of active bits in the value 1459 /// 1460 /// This function returns the number of active bits which is defined as the 1461 /// bit width minus the number of leading zeros. This is used in several 1462 /// computations to see how "wide" the value is. getActiveBits()1463 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); } 1464 1465 /// Compute the number of active words in the value of this APInt. 1466 /// 1467 /// This is used in conjunction with getActiveData to extract the raw value of 1468 /// the APInt. getActiveWords()1469 unsigned getActiveWords() const { 1470 unsigned numActiveBits = getActiveBits(); 1471 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1; 1472 } 1473 1474 /// Get the minimum bit size for this signed APInt 1475 /// 1476 /// Computes the minimum bit width for this APInt while considering it to be a 1477 /// signed (and probably negative) value. If the value is not negative, this 1478 /// function returns the same value as getActiveBits()+1. Otherwise, it 1479 /// returns the smallest bit width that will retain the negative value. For 1480 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so 1481 /// for -1, this function will always return 1. getSignificantBits()1482 unsigned getSignificantBits() const { 1483 return BitWidth - getNumSignBits() + 1; 1484 } 1485 1486 /// NOTE: This is soft-deprecated. Please use `getSignificantBits()` instead. getMinSignedBits()1487 unsigned getMinSignedBits() const { return getSignificantBits(); } 1488 1489 /// Get zero extended value 1490 /// 1491 /// This method attempts to return the value of this APInt as a zero extended 1492 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a 1493 /// uint64_t. Otherwise an assertion will result. getZExtValue()1494 uint64_t getZExtValue() const { 1495 if (isSingleWord()) 1496 return U.VAL; 1497 assert(getActiveBits() <= 64 && "Too many bits for uint64_t"); 1498 return U.pVal[0]; 1499 } 1500 1501 /// Get zero extended value if possible 1502 /// 1503 /// This method attempts to return the value of this APInt as a zero extended 1504 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a 1505 /// uint64_t. Otherwise no value is returned. tryZExtValue()1506 std::optional<uint64_t> tryZExtValue() const { 1507 return (getActiveBits() <= 64) ? std::optional<uint64_t>(getZExtValue()) 1508 : std::nullopt; 1509 }; 1510 1511 /// Get sign extended value 1512 /// 1513 /// This method attempts to return the value of this APInt as a sign extended 1514 /// int64_t. The bit width must be <= 64 or the value must fit within an 1515 /// int64_t. Otherwise an assertion will result. getSExtValue()1516 int64_t getSExtValue() const { 1517 if (isSingleWord()) 1518 return SignExtend64(U.VAL, BitWidth); 1519 assert(getSignificantBits() <= 64 && "Too many bits for int64_t"); 1520 return int64_t(U.pVal[0]); 1521 } 1522 1523 /// Get sign extended value if possible 1524 /// 1525 /// This method attempts to return the value of this APInt as a sign extended 1526 /// int64_t. The bitwidth must be <= 64 or the value must fit within an 1527 /// int64_t. Otherwise no value is returned. trySExtValue()1528 std::optional<int64_t> trySExtValue() const { 1529 return (getSignificantBits() <= 64) ? std::optional<int64_t>(getSExtValue()) 1530 : std::nullopt; 1531 }; 1532 1533 /// Get bits required for string value. 1534 /// 1535 /// This method determines how many bits are required to hold the APInt 1536 /// equivalent of the string given by \p str. 1537 static unsigned getBitsNeeded(StringRef str, uint8_t radix); 1538 1539 /// Get the bits that are sufficient to represent the string value. This may 1540 /// over estimate the amount of bits required, but it does not require 1541 /// parsing the value in the string. 1542 static unsigned getSufficientBitsNeeded(StringRef Str, uint8_t Radix); 1543 1544 /// The APInt version of the countLeadingZeros functions in 1545 /// MathExtras.h. 1546 /// 1547 /// It counts the number of zeros from the most significant bit to the first 1548 /// one bit. 1549 /// 1550 /// \returns BitWidth if the value is zero, otherwise returns the number of 1551 /// zeros from the most significant bit to the first one bits. countLeadingZeros()1552 unsigned countLeadingZeros() const { 1553 if (isSingleWord()) { 1554 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth; 1555 return llvm::countLeadingZeros(U.VAL) - unusedBits; 1556 } 1557 return countLeadingZerosSlowCase(); 1558 } 1559 1560 /// Count the number of leading one bits. 1561 /// 1562 /// This function is an APInt version of the countLeadingOnes 1563 /// functions in MathExtras.h. It counts the number of ones from the most 1564 /// significant bit to the first zero bit. 1565 /// 1566 /// \returns 0 if the high order bit is not set, otherwise returns the number 1567 /// of 1 bits from the most significant to the least countLeadingOnes()1568 unsigned countLeadingOnes() const { 1569 if (isSingleWord()) { 1570 if (LLVM_UNLIKELY(BitWidth == 0)) 1571 return 0; 1572 return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth)); 1573 } 1574 return countLeadingOnesSlowCase(); 1575 } 1576 1577 /// Computes the number of leading bits of this APInt that are equal to its 1578 /// sign bit. getNumSignBits()1579 unsigned getNumSignBits() const { 1580 return isNegative() ? countLeadingOnes() : countLeadingZeros(); 1581 } 1582 1583 /// Count the number of trailing zero bits. 1584 /// 1585 /// This function is an APInt version of the countTrailingZeros 1586 /// functions in MathExtras.h. It counts the number of zeros from the least 1587 /// significant bit to the first set bit. 1588 /// 1589 /// \returns BitWidth if the value is zero, otherwise returns the number of 1590 /// zeros from the least significant bit to the first one bit. countTrailingZeros()1591 unsigned countTrailingZeros() const { 1592 if (isSingleWord()) { 1593 unsigned TrailingZeros = llvm::countTrailingZeros(U.VAL); 1594 return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros); 1595 } 1596 return countTrailingZerosSlowCase(); 1597 } 1598 1599 /// Count the number of trailing one bits. 1600 /// 1601 /// This function is an APInt version of the countTrailingOnes 1602 /// functions in MathExtras.h. It counts the number of ones from the least 1603 /// significant bit to the first zero bit. 1604 /// 1605 /// \returns BitWidth if the value is all ones, otherwise returns the number 1606 /// of ones from the least significant bit to the first zero bit. countTrailingOnes()1607 unsigned countTrailingOnes() const { 1608 if (isSingleWord()) 1609 return llvm::countTrailingOnes(U.VAL); 1610 return countTrailingOnesSlowCase(); 1611 } 1612 1613 /// Count the number of bits set. 1614 /// 1615 /// This function is an APInt version of the countPopulation functions 1616 /// in MathExtras.h. It counts the number of 1 bits in the APInt value. 1617 /// 1618 /// \returns 0 if the value is zero, otherwise returns the number of set bits. countPopulation()1619 unsigned countPopulation() const { 1620 if (isSingleWord()) 1621 return llvm::popcount(U.VAL); 1622 return countPopulationSlowCase(); 1623 } 1624 1625 /// @} 1626 /// \name Conversion Functions 1627 /// @{ 1628 void print(raw_ostream &OS, bool isSigned) const; 1629 1630 /// Converts an APInt to a string and append it to Str. Str is commonly a 1631 /// SmallString. 1632 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, 1633 bool formatAsCLiteral = false) const; 1634 1635 /// Considers the APInt to be unsigned and converts it into a string in the 1636 /// radix given. The radix can be 2, 8, 10 16, or 36. 1637 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { 1638 toString(Str, Radix, false, false); 1639 } 1640 1641 /// Considers the APInt to be signed and converts it into a string in the 1642 /// radix given. The radix can be 2, 8, 10, 16, or 36. 1643 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { 1644 toString(Str, Radix, true, false); 1645 } 1646 1647 /// \returns a byte-swapped representation of this APInt Value. 1648 APInt byteSwap() const; 1649 1650 /// \returns the value with the bit representation reversed of this APInt 1651 /// Value. 1652 APInt reverseBits() const; 1653 1654 /// Converts this APInt to a double value. 1655 double roundToDouble(bool isSigned) const; 1656 1657 /// Converts this unsigned APInt to a double value. roundToDouble()1658 double roundToDouble() const { return roundToDouble(false); } 1659 1660 /// Converts this signed APInt to a double value. signedRoundToDouble()1661 double signedRoundToDouble() const { return roundToDouble(true); } 1662 1663 /// Converts APInt bits to a double 1664 /// 1665 /// The conversion does not do a translation from integer to double, it just 1666 /// re-interprets the bits as a double. Note that it is valid to do this on 1667 /// any bit width. Exactly 64 bits will be translated. bitsToDouble()1668 double bitsToDouble() const { return BitsToDouble(getWord(0)); } 1669 1670 /// Converts APInt bits to a float 1671 /// 1672 /// The conversion does not do a translation from integer to float, it just 1673 /// re-interprets the bits as a float. Note that it is valid to do this on 1674 /// any bit width. Exactly 32 bits will be translated. bitsToFloat()1675 float bitsToFloat() const { 1676 return BitsToFloat(static_cast<uint32_t>(getWord(0))); 1677 } 1678 1679 /// Converts a double to APInt bits. 1680 /// 1681 /// The conversion does not do a translation from double to integer, it just 1682 /// re-interprets the bits of the double. doubleToBits(double V)1683 static APInt doubleToBits(double V) { 1684 return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V)); 1685 } 1686 1687 /// Converts a float to APInt bits. 1688 /// 1689 /// The conversion does not do a translation from float to integer, it just 1690 /// re-interprets the bits of the float. floatToBits(float V)1691 static APInt floatToBits(float V) { 1692 return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V)); 1693 } 1694 1695 /// @} 1696 /// \name Mathematics Operations 1697 /// @{ 1698 1699 /// \returns the floor log base 2 of this APInt. logBase2()1700 unsigned logBase2() const { return getActiveBits() - 1; } 1701 1702 /// \returns the ceil log base 2 of this APInt. ceilLogBase2()1703 unsigned ceilLogBase2() const { 1704 APInt temp(*this); 1705 --temp; 1706 return temp.getActiveBits(); 1707 } 1708 1709 /// \returns the nearest log base 2 of this APInt. Ties round up. 1710 /// 1711 /// NOTE: When we have a BitWidth of 1, we define: 1712 /// 1713 /// log2(0) = UINT32_MAX 1714 /// log2(1) = 0 1715 /// 1716 /// to get around any mathematical concerns resulting from 1717 /// referencing 2 in a space where 2 does no exist. 1718 unsigned nearestLogBase2() const; 1719 1720 /// \returns the log base 2 of this APInt if its an exact power of two, -1 1721 /// otherwise exactLogBase2()1722 int32_t exactLogBase2() const { 1723 if (!isPowerOf2()) 1724 return -1; 1725 return logBase2(); 1726 } 1727 1728 /// Compute the square root. 1729 APInt sqrt() const; 1730 1731 /// Get the absolute value. If *this is < 0 then return -(*this), otherwise 1732 /// *this. Note that the "most negative" signed number (e.g. -128 for 8 bit 1733 /// wide APInt) is unchanged due to how negation works. abs()1734 APInt abs() const { 1735 if (isNegative()) 1736 return -(*this); 1737 return *this; 1738 } 1739 1740 /// \returns the multiplicative inverse for a given modulo. 1741 APInt multiplicativeInverse(const APInt &modulo) const; 1742 1743 /// @} 1744 /// \name Building-block Operations for APInt and APFloat 1745 /// @{ 1746 1747 // These building block operations operate on a representation of arbitrary 1748 // precision, two's-complement, bignum integer values. They should be 1749 // sufficient to implement APInt and APFloat bignum requirements. Inputs are 1750 // generally a pointer to the base of an array of integer parts, representing 1751 // an unsigned bignum, and a count of how many parts there are. 1752 1753 /// Sets the least significant part of a bignum to the input value, and zeroes 1754 /// out higher parts. 1755 static void tcSet(WordType *, WordType, unsigned); 1756 1757 /// Assign one bignum to another. 1758 static void tcAssign(WordType *, const WordType *, unsigned); 1759 1760 /// Returns true if a bignum is zero, false otherwise. 1761 static bool tcIsZero(const WordType *, unsigned); 1762 1763 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based. 1764 static int tcExtractBit(const WordType *, unsigned bit); 1765 1766 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to 1767 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least 1768 /// significant bit of DST. All high bits above srcBITS in DST are 1769 /// zero-filled. 1770 static void tcExtract(WordType *, unsigned dstCount, const WordType *, 1771 unsigned srcBits, unsigned srcLSB); 1772 1773 /// Set the given bit of a bignum. Zero-based. 1774 static void tcSetBit(WordType *, unsigned bit); 1775 1776 /// Clear the given bit of a bignum. Zero-based. 1777 static void tcClearBit(WordType *, unsigned bit); 1778 1779 /// Returns the bit number of the least or most significant set bit of a 1780 /// number. If the input number has no bits set -1U is returned. 1781 static unsigned tcLSB(const WordType *, unsigned n); 1782 static unsigned tcMSB(const WordType *parts, unsigned n); 1783 1784 /// Negate a bignum in-place. 1785 static void tcNegate(WordType *, unsigned); 1786 1787 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag. 1788 static WordType tcAdd(WordType *, const WordType *, WordType carry, unsigned); 1789 /// DST += RHS. Returns the carry flag. 1790 static WordType tcAddPart(WordType *, WordType, unsigned); 1791 1792 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag. 1793 static WordType tcSubtract(WordType *, const WordType *, WordType carry, 1794 unsigned); 1795 /// DST -= RHS. Returns the carry flag. 1796 static WordType tcSubtractPart(WordType *, WordType, unsigned); 1797 1798 /// DST += SRC * MULTIPLIER + PART if add is true 1799 /// DST = SRC * MULTIPLIER + PART if add is false 1800 /// 1801 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must 1802 /// start at the same point, i.e. DST == SRC. 1803 /// 1804 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned. 1805 /// Otherwise DST is filled with the least significant DSTPARTS parts of the 1806 /// result, and if all of the omitted higher parts were zero return zero, 1807 /// otherwise overflow occurred and return one. 1808 static int tcMultiplyPart(WordType *dst, const WordType *src, 1809 WordType multiplier, WordType carry, 1810 unsigned srcParts, unsigned dstParts, bool add); 1811 1812 /// DST = LHS * RHS, where DST has the same width as the operands and is 1813 /// filled with the least significant parts of the result. Returns one if 1814 /// overflow occurred, otherwise zero. DST must be disjoint from both 1815 /// operands. 1816 static int tcMultiply(WordType *, const WordType *, const WordType *, 1817 unsigned); 1818 1819 /// DST = LHS * RHS, where DST has width the sum of the widths of the 1820 /// operands. No overflow occurs. DST must be disjoint from both operands. 1821 static void tcFullMultiply(WordType *, const WordType *, const WordType *, 1822 unsigned, unsigned); 1823 1824 /// If RHS is zero LHS and REMAINDER are left unchanged, return one. 1825 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set 1826 /// REMAINDER to the remainder, return zero. i.e. 1827 /// 1828 /// OLD_LHS = RHS * LHS + REMAINDER 1829 /// 1830 /// SCRATCH is a bignum of the same size as the operands and result for use by 1831 /// the routine; its contents need not be initialized and are destroyed. LHS, 1832 /// REMAINDER and SCRATCH must be distinct. 1833 static int tcDivide(WordType *lhs, const WordType *rhs, WordType *remainder, 1834 WordType *scratch, unsigned parts); 1835 1836 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no 1837 /// restrictions on Count. 1838 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count); 1839 1840 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no 1841 /// restrictions on Count. 1842 static void tcShiftRight(WordType *, unsigned Words, unsigned Count); 1843 1844 /// Comparison (unsigned) of two bignums. 1845 static int tcCompare(const WordType *, const WordType *, unsigned); 1846 1847 /// Increment a bignum in-place. Return the carry flag. tcIncrement(WordType * dst,unsigned parts)1848 static WordType tcIncrement(WordType *dst, unsigned parts) { 1849 return tcAddPart(dst, 1, parts); 1850 } 1851 1852 /// Decrement a bignum in-place. Return the borrow flag. tcDecrement(WordType * dst,unsigned parts)1853 static WordType tcDecrement(WordType *dst, unsigned parts) { 1854 return tcSubtractPart(dst, 1, parts); 1855 } 1856 1857 /// Used to insert APInt objects, or objects that contain APInt objects, into 1858 /// FoldingSets. 1859 void Profile(FoldingSetNodeID &id) const; 1860 1861 /// debug method 1862 void dump() const; 1863 1864 /// Returns whether this instance allocated memory. needsCleanup()1865 bool needsCleanup() const { return !isSingleWord(); } 1866 1867 private: 1868 /// This union is used to store the integer value. When the 1869 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. 1870 union { 1871 uint64_t VAL; ///< Used to store the <= 64 bits integer value. 1872 uint64_t *pVal; ///< Used to store the >64 bits integer value. 1873 } U; 1874 1875 unsigned BitWidth = 1; ///< The number of bits in this APInt. 1876 1877 friend struct DenseMapInfo<APInt, void>; 1878 friend class APSInt; 1879 1880 /// This constructor is used only internally for speed of construction of 1881 /// temporaries. It is unsafe since it takes ownership of the pointer, so it 1882 /// is not public. 1883 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { U.pVal = val; } 1884 1885 /// Determine which word a bit is in. 1886 /// 1887 /// \returns the word position for the specified bit position. 1888 static unsigned whichWord(unsigned bitPosition) { 1889 return bitPosition / APINT_BITS_PER_WORD; 1890 } 1891 1892 /// Determine which bit in a word the specified bit position is in. 1893 static unsigned whichBit(unsigned bitPosition) { 1894 return bitPosition % APINT_BITS_PER_WORD; 1895 } 1896 1897 /// Get a single bit mask. 1898 /// 1899 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set 1900 /// This method generates and returns a uint64_t (word) mask for a single 1901 /// bit at a specific bit position. This is used to mask the bit in the 1902 /// corresponding word. 1903 static uint64_t maskBit(unsigned bitPosition) { 1904 return 1ULL << whichBit(bitPosition); 1905 } 1906 1907 /// Clear unused high order bits 1908 /// 1909 /// This method is used internally to clear the top "N" bits in the high order 1910 /// word that are not used by the APInt. This is needed after the most 1911 /// significant word is assigned a value to ensure that those bits are 1912 /// zero'd out. 1913 APInt &clearUnusedBits() { 1914 // Compute how many bits are used in the final word. 1915 unsigned WordBits = ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1; 1916 1917 // Mask out the high bits. 1918 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits); 1919 if (LLVM_UNLIKELY(BitWidth == 0)) 1920 mask = 0; 1921 1922 if (isSingleWord()) 1923 U.VAL &= mask; 1924 else 1925 U.pVal[getNumWords() - 1] &= mask; 1926 return *this; 1927 } 1928 1929 /// Get the word corresponding to a bit position 1930 /// \returns the corresponding word for the specified bit position. 1931 uint64_t getWord(unsigned bitPosition) const { 1932 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)]; 1933 } 1934 1935 /// Utility method to change the bit width of this APInt to new bit width, 1936 /// allocating and/or deallocating as necessary. There is no guarantee on the 1937 /// value of any bits upon return. Caller should populate the bits after. 1938 void reallocate(unsigned NewBitWidth); 1939 1940 /// Convert a char array into an APInt 1941 /// 1942 /// \param radix 2, 8, 10, 16, or 36 1943 /// Converts a string into a number. The string must be non-empty 1944 /// and well-formed as a number of the given base. The bit-width 1945 /// must be sufficient to hold the result. 1946 /// 1947 /// This is used by the constructors that take string arguments. 1948 /// 1949 /// StringRef::getAsInteger is superficially similar but (1) does 1950 /// not assume that the string is well-formed and (2) grows the 1951 /// result to hold the input. 1952 void fromString(unsigned numBits, StringRef str, uint8_t radix); 1953 1954 /// An internal division function for dividing APInts. 1955 /// 1956 /// This is used by the toString method to divide by the radix. It simply 1957 /// provides a more convenient form of divide for internal use since KnuthDiv 1958 /// has specific constraints on its inputs. If those constraints are not met 1959 /// then it provides a simpler form of divide. 1960 static void divide(const WordType *LHS, unsigned lhsWords, 1961 const WordType *RHS, unsigned rhsWords, WordType *Quotient, 1962 WordType *Remainder); 1963 1964 /// out-of-line slow case for inline constructor 1965 void initSlowCase(uint64_t val, bool isSigned); 1966 1967 /// shared code between two array constructors 1968 void initFromArray(ArrayRef<uint64_t> array); 1969 1970 /// out-of-line slow case for inline copy constructor 1971 void initSlowCase(const APInt &that); 1972 1973 /// out-of-line slow case for shl 1974 void shlSlowCase(unsigned ShiftAmt); 1975 1976 /// out-of-line slow case for lshr. 1977 void lshrSlowCase(unsigned ShiftAmt); 1978 1979 /// out-of-line slow case for ashr. 1980 void ashrSlowCase(unsigned ShiftAmt); 1981 1982 /// out-of-line slow case for operator= 1983 void assignSlowCase(const APInt &RHS); 1984 1985 /// out-of-line slow case for operator== 1986 bool equalSlowCase(const APInt &RHS) const LLVM_READONLY; 1987 1988 /// out-of-line slow case for countLeadingZeros 1989 unsigned countLeadingZerosSlowCase() const LLVM_READONLY; 1990 1991 /// out-of-line slow case for countLeadingOnes. 1992 unsigned countLeadingOnesSlowCase() const LLVM_READONLY; 1993 1994 /// out-of-line slow case for countTrailingZeros. 1995 unsigned countTrailingZerosSlowCase() const LLVM_READONLY; 1996 1997 /// out-of-line slow case for countTrailingOnes 1998 unsigned countTrailingOnesSlowCase() const LLVM_READONLY; 1999 2000 /// out-of-line slow case for countPopulation 2001 unsigned countPopulationSlowCase() const LLVM_READONLY; 2002 2003 /// out-of-line slow case for intersects. 2004 bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY; 2005 2006 /// out-of-line slow case for isSubsetOf. 2007 bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY; 2008 2009 /// out-of-line slow case for setBits. 2010 void setBitsSlowCase(unsigned loBit, unsigned hiBit); 2011 2012 /// out-of-line slow case for flipAllBits. 2013 void flipAllBitsSlowCase(); 2014 2015 /// out-of-line slow case for concat. 2016 APInt concatSlowCase(const APInt &NewLSB) const; 2017 2018 /// out-of-line slow case for operator&=. 2019 void andAssignSlowCase(const APInt &RHS); 2020 2021 /// out-of-line slow case for operator|=. 2022 void orAssignSlowCase(const APInt &RHS); 2023 2024 /// out-of-line slow case for operator^=. 2025 void xorAssignSlowCase(const APInt &RHS); 2026 2027 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal 2028 /// to, or greater than RHS. 2029 int compare(const APInt &RHS) const LLVM_READONLY; 2030 2031 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal 2032 /// to, or greater than RHS. 2033 int compareSigned(const APInt &RHS) const LLVM_READONLY; 2034 2035 /// @} 2036 }; 2037 2038 inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; } 2039 2040 inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; } 2041 2042 /// Unary bitwise complement operator. 2043 /// 2044 /// \returns an APInt that is the bitwise complement of \p v. 2045 inline APInt operator~(APInt v) { 2046 v.flipAllBits(); 2047 return v; 2048 } 2049 2050 inline APInt operator&(APInt a, const APInt &b) { 2051 a &= b; 2052 return a; 2053 } 2054 2055 inline APInt operator&(const APInt &a, APInt &&b) { 2056 b &= a; 2057 return std::move(b); 2058 } 2059 2060 inline APInt operator&(APInt a, uint64_t RHS) { 2061 a &= RHS; 2062 return a; 2063 } 2064 2065 inline APInt operator&(uint64_t LHS, APInt b) { 2066 b &= LHS; 2067 return b; 2068 } 2069 2070 inline APInt operator|(APInt a, const APInt &b) { 2071 a |= b; 2072 return a; 2073 } 2074 2075 inline APInt operator|(const APInt &a, APInt &&b) { 2076 b |= a; 2077 return std::move(b); 2078 } 2079 2080 inline APInt operator|(APInt a, uint64_t RHS) { 2081 a |= RHS; 2082 return a; 2083 } 2084 2085 inline APInt operator|(uint64_t LHS, APInt b) { 2086 b |= LHS; 2087 return b; 2088 } 2089 2090 inline APInt operator^(APInt a, const APInt &b) { 2091 a ^= b; 2092 return a; 2093 } 2094 2095 inline APInt operator^(const APInt &a, APInt &&b) { 2096 b ^= a; 2097 return std::move(b); 2098 } 2099 2100 inline APInt operator^(APInt a, uint64_t RHS) { 2101 a ^= RHS; 2102 return a; 2103 } 2104 2105 inline APInt operator^(uint64_t LHS, APInt b) { 2106 b ^= LHS; 2107 return b; 2108 } 2109 2110 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { 2111 I.print(OS, true); 2112 return OS; 2113 } 2114 2115 inline APInt operator-(APInt v) { 2116 v.negate(); 2117 return v; 2118 } 2119 2120 inline APInt operator+(APInt a, const APInt &b) { 2121 a += b; 2122 return a; 2123 } 2124 2125 inline APInt operator+(const APInt &a, APInt &&b) { 2126 b += a; 2127 return std::move(b); 2128 } 2129 2130 inline APInt operator+(APInt a, uint64_t RHS) { 2131 a += RHS; 2132 return a; 2133 } 2134 2135 inline APInt operator+(uint64_t LHS, APInt b) { 2136 b += LHS; 2137 return b; 2138 } 2139 2140 inline APInt operator-(APInt a, const APInt &b) { 2141 a -= b; 2142 return a; 2143 } 2144 2145 inline APInt operator-(const APInt &a, APInt &&b) { 2146 b.negate(); 2147 b += a; 2148 return std::move(b); 2149 } 2150 2151 inline APInt operator-(APInt a, uint64_t RHS) { 2152 a -= RHS; 2153 return a; 2154 } 2155 2156 inline APInt operator-(uint64_t LHS, APInt b) { 2157 b.negate(); 2158 b += LHS; 2159 return b; 2160 } 2161 2162 inline APInt operator*(APInt a, uint64_t RHS) { 2163 a *= RHS; 2164 return a; 2165 } 2166 2167 inline APInt operator*(uint64_t LHS, APInt b) { 2168 b *= LHS; 2169 return b; 2170 } 2171 2172 namespace APIntOps { 2173 2174 /// Determine the smaller of two APInts considered to be signed. 2175 inline const APInt &smin(const APInt &A, const APInt &B) { 2176 return A.slt(B) ? A : B; 2177 } 2178 2179 /// Determine the larger of two APInts considered to be signed. 2180 inline const APInt &smax(const APInt &A, const APInt &B) { 2181 return A.sgt(B) ? A : B; 2182 } 2183 2184 /// Determine the smaller of two APInts considered to be unsigned. 2185 inline const APInt &umin(const APInt &A, const APInt &B) { 2186 return A.ult(B) ? A : B; 2187 } 2188 2189 /// Determine the larger of two APInts considered to be unsigned. 2190 inline const APInt &umax(const APInt &A, const APInt &B) { 2191 return A.ugt(B) ? A : B; 2192 } 2193 2194 /// Compute GCD of two unsigned APInt values. 2195 /// 2196 /// This function returns the greatest common divisor of the two APInt values 2197 /// using Stein's algorithm. 2198 /// 2199 /// \returns the greatest common divisor of A and B. 2200 APInt GreatestCommonDivisor(APInt A, APInt B); 2201 2202 /// Converts the given APInt to a double value. 2203 /// 2204 /// Treats the APInt as an unsigned value for conversion purposes. 2205 inline double RoundAPIntToDouble(const APInt &APIVal) { 2206 return APIVal.roundToDouble(); 2207 } 2208 2209 /// Converts the given APInt to a double value. 2210 /// 2211 /// Treats the APInt as a signed value for conversion purposes. 2212 inline double RoundSignedAPIntToDouble(const APInt &APIVal) { 2213 return APIVal.signedRoundToDouble(); 2214 } 2215 2216 /// Converts the given APInt to a float value. 2217 inline float RoundAPIntToFloat(const APInt &APIVal) { 2218 return float(RoundAPIntToDouble(APIVal)); 2219 } 2220 2221 /// Converts the given APInt to a float value. 2222 /// 2223 /// Treats the APInt as a signed value for conversion purposes. 2224 inline float RoundSignedAPIntToFloat(const APInt &APIVal) { 2225 return float(APIVal.signedRoundToDouble()); 2226 } 2227 2228 /// Converts the given double value into a APInt. 2229 /// 2230 /// This function convert a double value to an APInt value. 2231 APInt RoundDoubleToAPInt(double Double, unsigned width); 2232 2233 /// Converts a float value into a APInt. 2234 /// 2235 /// Converts a float value into an APInt value. 2236 inline APInt RoundFloatToAPInt(float Float, unsigned width) { 2237 return RoundDoubleToAPInt(double(Float), width); 2238 } 2239 2240 /// Return A unsign-divided by B, rounded by the given rounding mode. 2241 APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM); 2242 2243 /// Return A sign-divided by B, rounded by the given rounding mode. 2244 APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM); 2245 2246 /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range 2247 /// (e.g. 32 for i32). 2248 /// This function finds the smallest number n, such that 2249 /// (a) n >= 0 and q(n) = 0, or 2250 /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all 2251 /// integers, belong to two different intervals [Rk, Rk+R), 2252 /// where R = 2^BW, and k is an integer. 2253 /// The idea here is to find when q(n) "overflows" 2^BW, while at the 2254 /// same time "allowing" subtraction. In unsigned modulo arithmetic a 2255 /// subtraction (treated as addition of negated numbers) would always 2256 /// count as an overflow, but here we want to allow values to decrease 2257 /// and increase as long as they are within the same interval. 2258 /// Specifically, adding of two negative numbers should not cause an 2259 /// overflow (as long as the magnitude does not exceed the bit width). 2260 /// On the other hand, given a positive number, adding a negative 2261 /// number to it can give a negative result, which would cause the 2262 /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is 2263 /// treated as a special case of an overflow. 2264 /// 2265 /// This function returns std::nullopt if after finding k that minimizes the 2266 /// positive solution to q(n) = kR, both solutions are contained between 2267 /// two consecutive integers. 2268 /// 2269 /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation 2270 /// in arithmetic modulo 2^BW, and treating the values as signed) by the 2271 /// virtue of *signed* overflow. This function will *not* find such an n, 2272 /// however it may find a value of n satisfying the inequalities due to 2273 /// an *unsigned* overflow (if the values are treated as unsigned). 2274 /// To find a solution for a signed overflow, treat it as a problem of 2275 /// finding an unsigned overflow with a range with of BW-1. 2276 /// 2277 /// The returned value may have a different bit width from the input 2278 /// coefficients. 2279 std::optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, 2280 unsigned RangeWidth); 2281 2282 /// Compare two values, and if they are different, return the position of the 2283 /// most significant bit that is different in the values. 2284 std::optional<unsigned> GetMostSignificantDifferentBit(const APInt &A, 2285 const APInt &B); 2286 2287 /// Splat/Merge neighboring bits to widen/narrow the bitmask represented 2288 /// by \param A to \param NewBitWidth bits. 2289 /// 2290 /// MatchAnyBits: (Default) 2291 /// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011 2292 /// e.g. ScaleBitMask(0b00011011, 4) -> 0b0111 2293 /// 2294 /// MatchAllBits: 2295 /// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011 2296 /// e.g. ScaleBitMask(0b00011011, 4) -> 0b0001 2297 /// A.getBitwidth() or NewBitWidth must be a whole multiples of the other. 2298 APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, 2299 bool MatchAllBits = false); 2300 } // namespace APIntOps 2301 2302 // See friend declaration above. This additional declaration is required in 2303 // order to compile LLVM with IBM xlC compiler. 2304 hash_code hash_value(const APInt &Arg); 2305 2306 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 2307 /// with the integer held in IntVal. 2308 void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes); 2309 2310 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 2311 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 2312 void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes); 2313 2314 /// Provide DenseMapInfo for APInt. 2315 template <> struct DenseMapInfo<APInt, void> { 2316 static inline APInt getEmptyKey() { 2317 APInt V(nullptr, 0); 2318 V.U.VAL = ~0ULL; 2319 return V; 2320 } 2321 2322 static inline APInt getTombstoneKey() { 2323 APInt V(nullptr, 0); 2324 V.U.VAL = ~1ULL; 2325 return V; 2326 } 2327 2328 static unsigned getHashValue(const APInt &Key); 2329 2330 static bool isEqual(const APInt &LHS, const APInt &RHS) { 2331 return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS; 2332 } 2333 }; 2334 2335 } // namespace llvm 2336 2337 #endif 2338