1 //===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with generation of the layout of virtual tables.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/AST/VTableBuilder.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTDiagnostic.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/RecordLayout.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/Support/Format.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <algorithm>
25 #include <cstdio>
26
27 using namespace clang;
28
29 #define DUMP_OVERRIDERS 0
30
31 namespace {
32
33 /// BaseOffset - Represents an offset from a derived class to a direct or
34 /// indirect base class.
35 struct BaseOffset {
36 /// DerivedClass - The derived class.
37 const CXXRecordDecl *DerivedClass;
38
39 /// VirtualBase - If the path from the derived class to the base class
40 /// involves virtual base classes, this holds the declaration of the last
41 /// virtual base in this path (i.e. closest to the base class).
42 const CXXRecordDecl *VirtualBase;
43
44 /// NonVirtualOffset - The offset from the derived class to the base class.
45 /// (Or the offset from the virtual base class to the base class, if the
46 /// path from the derived class to the base class involves a virtual base
47 /// class.
48 CharUnits NonVirtualOffset;
49
BaseOffset__anon2cf01d430111::BaseOffset50 BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr),
51 NonVirtualOffset(CharUnits::Zero()) { }
BaseOffset__anon2cf01d430111::BaseOffset52 BaseOffset(const CXXRecordDecl *DerivedClass,
53 const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
54 : DerivedClass(DerivedClass), VirtualBase(VirtualBase),
55 NonVirtualOffset(NonVirtualOffset) { }
56
isEmpty__anon2cf01d430111::BaseOffset57 bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; }
58 };
59
60 /// FinalOverriders - Contains the final overrider member functions for all
61 /// member functions in the base subobjects of a class.
62 class FinalOverriders {
63 public:
64 /// OverriderInfo - Information about a final overrider.
65 struct OverriderInfo {
66 /// Method - The method decl of the overrider.
67 const CXXMethodDecl *Method;
68
69 /// VirtualBase - The virtual base class subobject of this overrider.
70 /// Note that this records the closest derived virtual base class subobject.
71 const CXXRecordDecl *VirtualBase;
72
73 /// Offset - the base offset of the overrider's parent in the layout class.
74 CharUnits Offset;
75
OverriderInfo__anon2cf01d430111::FinalOverriders::OverriderInfo76 OverriderInfo() : Method(nullptr), VirtualBase(nullptr),
77 Offset(CharUnits::Zero()) { }
78 };
79
80 private:
81 /// MostDerivedClass - The most derived class for which the final overriders
82 /// are stored.
83 const CXXRecordDecl *MostDerivedClass;
84
85 /// MostDerivedClassOffset - If we're building final overriders for a
86 /// construction vtable, this holds the offset from the layout class to the
87 /// most derived class.
88 const CharUnits MostDerivedClassOffset;
89
90 /// LayoutClass - The class we're using for layout information. Will be
91 /// different than the most derived class if the final overriders are for a
92 /// construction vtable.
93 const CXXRecordDecl *LayoutClass;
94
95 ASTContext &Context;
96
97 /// MostDerivedClassLayout - the AST record layout of the most derived class.
98 const ASTRecordLayout &MostDerivedClassLayout;
99
100 /// MethodBaseOffsetPairTy - Uniquely identifies a member function
101 /// in a base subobject.
102 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;
103
104 typedef llvm::DenseMap<MethodBaseOffsetPairTy,
105 OverriderInfo> OverridersMapTy;
106
107 /// OverridersMap - The final overriders for all virtual member functions of
108 /// all the base subobjects of the most derived class.
109 OverridersMapTy OverridersMap;
110
111 /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
112 /// as a record decl and a subobject number) and its offsets in the most
113 /// derived class as well as the layout class.
114 typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
115 CharUnits> SubobjectOffsetMapTy;
116
117 typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;
118
119 /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
120 /// given base.
121 void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
122 CharUnits OffsetInLayoutClass,
123 SubobjectOffsetMapTy &SubobjectOffsets,
124 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
125 SubobjectCountMapTy &SubobjectCounts);
126
127 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
128
129 /// dump - dump the final overriders for a base subobject, and all its direct
130 /// and indirect base subobjects.
131 void dump(raw_ostream &Out, BaseSubobject Base,
132 VisitedVirtualBasesSetTy& VisitedVirtualBases);
133
134 public:
135 FinalOverriders(const CXXRecordDecl *MostDerivedClass,
136 CharUnits MostDerivedClassOffset,
137 const CXXRecordDecl *LayoutClass);
138
139 /// getOverrider - Get the final overrider for the given method declaration in
140 /// the subobject with the given base offset.
getOverrider(const CXXMethodDecl * MD,CharUnits BaseOffset) const141 OverriderInfo getOverrider(const CXXMethodDecl *MD,
142 CharUnits BaseOffset) const {
143 assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
144 "Did not find overrider!");
145
146 return OverridersMap.lookup(std::make_pair(MD, BaseOffset));
147 }
148
149 /// dump - dump the final overriders.
dump()150 void dump() {
151 VisitedVirtualBasesSetTy VisitedVirtualBases;
152 dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()),
153 VisitedVirtualBases);
154 }
155
156 };
157
FinalOverriders(const CXXRecordDecl * MostDerivedClass,CharUnits MostDerivedClassOffset,const CXXRecordDecl * LayoutClass)158 FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
159 CharUnits MostDerivedClassOffset,
160 const CXXRecordDecl *LayoutClass)
161 : MostDerivedClass(MostDerivedClass),
162 MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
163 Context(MostDerivedClass->getASTContext()),
164 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {
165
166 // Compute base offsets.
167 SubobjectOffsetMapTy SubobjectOffsets;
168 SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
169 SubobjectCountMapTy SubobjectCounts;
170 ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
171 /*IsVirtual=*/false,
172 MostDerivedClassOffset,
173 SubobjectOffsets, SubobjectLayoutClassOffsets,
174 SubobjectCounts);
175
176 // Get the final overriders.
177 CXXFinalOverriderMap FinalOverriders;
178 MostDerivedClass->getFinalOverriders(FinalOverriders);
179
180 for (const auto &Overrider : FinalOverriders) {
181 const CXXMethodDecl *MD = Overrider.first;
182 const OverridingMethods &Methods = Overrider.second;
183
184 for (const auto &M : Methods) {
185 unsigned SubobjectNumber = M.first;
186 assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
187 SubobjectNumber)) &&
188 "Did not find subobject offset!");
189
190 CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(),
191 SubobjectNumber)];
192
193 assert(M.second.size() == 1 && "Final overrider is not unique!");
194 const UniqueVirtualMethod &Method = M.second.front();
195
196 const CXXRecordDecl *OverriderRD = Method.Method->getParent();
197 assert(SubobjectLayoutClassOffsets.count(
198 std::make_pair(OverriderRD, Method.Subobject))
199 && "Did not find subobject offset!");
200 CharUnits OverriderOffset =
201 SubobjectLayoutClassOffsets[std::make_pair(OverriderRD,
202 Method.Subobject)];
203
204 OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)];
205 assert(!Overrider.Method && "Overrider should not exist yet!");
206
207 Overrider.Offset = OverriderOffset;
208 Overrider.Method = Method.Method;
209 Overrider.VirtualBase = Method.InVirtualSubobject;
210 }
211 }
212
213 #if DUMP_OVERRIDERS
214 // And dump them (for now).
215 dump();
216 #endif
217 }
218
ComputeBaseOffset(const ASTContext & Context,const CXXRecordDecl * DerivedRD,const CXXBasePath & Path)219 static BaseOffset ComputeBaseOffset(const ASTContext &Context,
220 const CXXRecordDecl *DerivedRD,
221 const CXXBasePath &Path) {
222 CharUnits NonVirtualOffset = CharUnits::Zero();
223
224 unsigned NonVirtualStart = 0;
225 const CXXRecordDecl *VirtualBase = nullptr;
226
227 // First, look for the virtual base class.
228 for (int I = Path.size(), E = 0; I != E; --I) {
229 const CXXBasePathElement &Element = Path[I - 1];
230
231 if (Element.Base->isVirtual()) {
232 NonVirtualStart = I;
233 QualType VBaseType = Element.Base->getType();
234 VirtualBase = VBaseType->getAsCXXRecordDecl();
235 break;
236 }
237 }
238
239 // Now compute the non-virtual offset.
240 for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) {
241 const CXXBasePathElement &Element = Path[I];
242
243 // Check the base class offset.
244 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);
245
246 const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl();
247
248 NonVirtualOffset += Layout.getBaseClassOffset(Base);
249 }
250
251 // FIXME: This should probably use CharUnits or something. Maybe we should
252 // even change the base offsets in ASTRecordLayout to be specified in
253 // CharUnits.
254 return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);
255
256 }
257
ComputeBaseOffset(const ASTContext & Context,const CXXRecordDecl * BaseRD,const CXXRecordDecl * DerivedRD)258 static BaseOffset ComputeBaseOffset(const ASTContext &Context,
259 const CXXRecordDecl *BaseRD,
260 const CXXRecordDecl *DerivedRD) {
261 CXXBasePaths Paths(/*FindAmbiguities=*/false,
262 /*RecordPaths=*/true, /*DetectVirtual=*/false);
263
264 if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
265 llvm_unreachable("Class must be derived from the passed in base class!");
266
267 return ComputeBaseOffset(Context, DerivedRD, Paths.front());
268 }
269
270 static BaseOffset
ComputeReturnAdjustmentBaseOffset(ASTContext & Context,const CXXMethodDecl * DerivedMD,const CXXMethodDecl * BaseMD)271 ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
272 const CXXMethodDecl *DerivedMD,
273 const CXXMethodDecl *BaseMD) {
274 const auto *BaseFT = BaseMD->getType()->castAs<FunctionType>();
275 const auto *DerivedFT = DerivedMD->getType()->castAs<FunctionType>();
276
277 // Canonicalize the return types.
278 CanQualType CanDerivedReturnType =
279 Context.getCanonicalType(DerivedFT->getReturnType());
280 CanQualType CanBaseReturnType =
281 Context.getCanonicalType(BaseFT->getReturnType());
282
283 assert(CanDerivedReturnType->getTypeClass() ==
284 CanBaseReturnType->getTypeClass() &&
285 "Types must have same type class!");
286
287 if (CanDerivedReturnType == CanBaseReturnType) {
288 // No adjustment needed.
289 return BaseOffset();
290 }
291
292 if (isa<ReferenceType>(CanDerivedReturnType)) {
293 CanDerivedReturnType =
294 CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
295 CanBaseReturnType =
296 CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
297 } else if (isa<PointerType>(CanDerivedReturnType)) {
298 CanDerivedReturnType =
299 CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
300 CanBaseReturnType =
301 CanBaseReturnType->getAs<PointerType>()->getPointeeType();
302 } else {
303 llvm_unreachable("Unexpected return type!");
304 }
305
306 // We need to compare unqualified types here; consider
307 // const T *Base::foo();
308 // T *Derived::foo();
309 if (CanDerivedReturnType.getUnqualifiedType() ==
310 CanBaseReturnType.getUnqualifiedType()) {
311 // No adjustment needed.
312 return BaseOffset();
313 }
314
315 const CXXRecordDecl *DerivedRD =
316 cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl());
317
318 const CXXRecordDecl *BaseRD =
319 cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl());
320
321 return ComputeBaseOffset(Context, BaseRD, DerivedRD);
322 }
323
324 void
ComputeBaseOffsets(BaseSubobject Base,bool IsVirtual,CharUnits OffsetInLayoutClass,SubobjectOffsetMapTy & SubobjectOffsets,SubobjectOffsetMapTy & SubobjectLayoutClassOffsets,SubobjectCountMapTy & SubobjectCounts)325 FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
326 CharUnits OffsetInLayoutClass,
327 SubobjectOffsetMapTy &SubobjectOffsets,
328 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
329 SubobjectCountMapTy &SubobjectCounts) {
330 const CXXRecordDecl *RD = Base.getBase();
331
332 unsigned SubobjectNumber = 0;
333 if (!IsVirtual)
334 SubobjectNumber = ++SubobjectCounts[RD];
335
336 // Set up the subobject to offset mapping.
337 assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
338 && "Subobject offset already exists!");
339 assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
340 && "Subobject offset already exists!");
341
342 SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset();
343 SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] =
344 OffsetInLayoutClass;
345
346 // Traverse our bases.
347 for (const auto &B : RD->bases()) {
348 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
349
350 CharUnits BaseOffset;
351 CharUnits BaseOffsetInLayoutClass;
352 if (B.isVirtual()) {
353 // Check if we've visited this virtual base before.
354 if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0)))
355 continue;
356
357 const ASTRecordLayout &LayoutClassLayout =
358 Context.getASTRecordLayout(LayoutClass);
359
360 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
361 BaseOffsetInLayoutClass =
362 LayoutClassLayout.getVBaseClassOffset(BaseDecl);
363 } else {
364 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
365 CharUnits Offset = Layout.getBaseClassOffset(BaseDecl);
366
367 BaseOffset = Base.getBaseOffset() + Offset;
368 BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
369 }
370
371 ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset),
372 B.isVirtual(), BaseOffsetInLayoutClass,
373 SubobjectOffsets, SubobjectLayoutClassOffsets,
374 SubobjectCounts);
375 }
376 }
377
dump(raw_ostream & Out,BaseSubobject Base,VisitedVirtualBasesSetTy & VisitedVirtualBases)378 void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
379 VisitedVirtualBasesSetTy &VisitedVirtualBases) {
380 const CXXRecordDecl *RD = Base.getBase();
381 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
382
383 for (const auto &B : RD->bases()) {
384 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
385
386 // Ignore bases that don't have any virtual member functions.
387 if (!BaseDecl->isPolymorphic())
388 continue;
389
390 CharUnits BaseOffset;
391 if (B.isVirtual()) {
392 if (!VisitedVirtualBases.insert(BaseDecl).second) {
393 // We've visited this base before.
394 continue;
395 }
396
397 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
398 } else {
399 BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset();
400 }
401
402 dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
403 }
404
405 Out << "Final overriders for (";
406 RD->printQualifiedName(Out);
407 Out << ", ";
408 Out << Base.getBaseOffset().getQuantity() << ")\n";
409
410 // Now dump the overriders for this base subobject.
411 for (const auto *MD : RD->methods()) {
412 if (!VTableContextBase::hasVtableSlot(MD))
413 continue;
414 MD = MD->getCanonicalDecl();
415
416 OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset());
417
418 Out << " ";
419 MD->printQualifiedName(Out);
420 Out << " - (";
421 Overrider.Method->printQualifiedName(Out);
422 Out << ", " << Overrider.Offset.getQuantity() << ')';
423
424 BaseOffset Offset;
425 if (!Overrider.Method->isPure())
426 Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
427
428 if (!Offset.isEmpty()) {
429 Out << " [ret-adj: ";
430 if (Offset.VirtualBase) {
431 Offset.VirtualBase->printQualifiedName(Out);
432 Out << " vbase, ";
433 }
434
435 Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
436 }
437
438 Out << "\n";
439 }
440 }
441
442 /// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
443 struct VCallOffsetMap {
444
445 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;
446
447 /// Offsets - Keeps track of methods and their offsets.
448 // FIXME: This should be a real map and not a vector.
449 SmallVector<MethodAndOffsetPairTy, 16> Offsets;
450
451 /// MethodsCanShareVCallOffset - Returns whether two virtual member functions
452 /// can share the same vcall offset.
453 static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
454 const CXXMethodDecl *RHS);
455
456 public:
457 /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
458 /// add was successful, or false if there was already a member function with
459 /// the same signature in the map.
460 bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);
461
462 /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
463 /// vtable address point) for the given virtual member function.
464 CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);
465
466 // empty - Return whether the offset map is empty or not.
empty__anon2cf01d430111::VCallOffsetMap467 bool empty() const { return Offsets.empty(); }
468 };
469
HasSameVirtualSignature(const CXXMethodDecl * LHS,const CXXMethodDecl * RHS)470 static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
471 const CXXMethodDecl *RHS) {
472 const FunctionProtoType *LT =
473 cast<FunctionProtoType>(LHS->getType().getCanonicalType());
474 const FunctionProtoType *RT =
475 cast<FunctionProtoType>(RHS->getType().getCanonicalType());
476
477 // Fast-path matches in the canonical types.
478 if (LT == RT) return true;
479
480 // Force the signatures to match. We can't rely on the overrides
481 // list here because there isn't necessarily an inheritance
482 // relationship between the two methods.
483 if (LT->getMethodQuals() != RT->getMethodQuals())
484 return false;
485 return LT->getParamTypes() == RT->getParamTypes();
486 }
487
MethodsCanShareVCallOffset(const CXXMethodDecl * LHS,const CXXMethodDecl * RHS)488 bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
489 const CXXMethodDecl *RHS) {
490 assert(VTableContextBase::hasVtableSlot(LHS) && "LHS must be virtual!");
491 assert(VTableContextBase::hasVtableSlot(RHS) && "RHS must be virtual!");
492
493 // A destructor can share a vcall offset with another destructor.
494 if (isa<CXXDestructorDecl>(LHS))
495 return isa<CXXDestructorDecl>(RHS);
496
497 // FIXME: We need to check more things here.
498
499 // The methods must have the same name.
500 DeclarationName LHSName = LHS->getDeclName();
501 DeclarationName RHSName = RHS->getDeclName();
502 if (LHSName != RHSName)
503 return false;
504
505 // And the same signatures.
506 return HasSameVirtualSignature(LHS, RHS);
507 }
508
AddVCallOffset(const CXXMethodDecl * MD,CharUnits OffsetOffset)509 bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
510 CharUnits OffsetOffset) {
511 // Check if we can reuse an offset.
512 for (const auto &OffsetPair : Offsets) {
513 if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
514 return false;
515 }
516
517 // Add the offset.
518 Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset));
519 return true;
520 }
521
getVCallOffsetOffset(const CXXMethodDecl * MD)522 CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
523 // Look for an offset.
524 for (const auto &OffsetPair : Offsets) {
525 if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
526 return OffsetPair.second;
527 }
528
529 llvm_unreachable("Should always find a vcall offset offset!");
530 }
531
532 /// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
533 class VCallAndVBaseOffsetBuilder {
534 public:
535 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
536 VBaseOffsetOffsetsMapTy;
537
538 private:
539 const ItaniumVTableContext &VTables;
540
541 /// MostDerivedClass - The most derived class for which we're building vcall
542 /// and vbase offsets.
543 const CXXRecordDecl *MostDerivedClass;
544
545 /// LayoutClass - The class we're using for layout information. Will be
546 /// different than the most derived class if we're building a construction
547 /// vtable.
548 const CXXRecordDecl *LayoutClass;
549
550 /// Context - The ASTContext which we will use for layout information.
551 ASTContext &Context;
552
553 /// Components - vcall and vbase offset components
554 typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
555 VTableComponentVectorTy Components;
556
557 /// VisitedVirtualBases - Visited virtual bases.
558 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
559
560 /// VCallOffsets - Keeps track of vcall offsets.
561 VCallOffsetMap VCallOffsets;
562
563
564 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
565 /// relative to the address point.
566 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
567
568 /// FinalOverriders - The final overriders of the most derived class.
569 /// (Can be null when we're not building a vtable of the most derived class).
570 const FinalOverriders *Overriders;
571
572 /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
573 /// given base subobject.
574 void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
575 CharUnits RealBaseOffset);
576
577 /// AddVCallOffsets - Add vcall offsets for the given base subobject.
578 void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);
579
580 /// AddVBaseOffsets - Add vbase offsets for the given class.
581 void AddVBaseOffsets(const CXXRecordDecl *Base,
582 CharUnits OffsetInLayoutClass);
583
584 /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
585 /// chars, relative to the vtable address point.
586 CharUnits getCurrentOffsetOffset() const;
587
588 public:
VCallAndVBaseOffsetBuilder(const ItaniumVTableContext & VTables,const CXXRecordDecl * MostDerivedClass,const CXXRecordDecl * LayoutClass,const FinalOverriders * Overriders,BaseSubobject Base,bool BaseIsVirtual,CharUnits OffsetInLayoutClass)589 VCallAndVBaseOffsetBuilder(const ItaniumVTableContext &VTables,
590 const CXXRecordDecl *MostDerivedClass,
591 const CXXRecordDecl *LayoutClass,
592 const FinalOverriders *Overriders,
593 BaseSubobject Base, bool BaseIsVirtual,
594 CharUnits OffsetInLayoutClass)
595 : VTables(VTables), MostDerivedClass(MostDerivedClass),
596 LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
597 Overriders(Overriders) {
598
599 // Add vcall and vbase offsets.
600 AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass);
601 }
602
603 /// Methods for iterating over the components.
604 typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
components_begin() const605 const_iterator components_begin() const { return Components.rbegin(); }
components_end() const606 const_iterator components_end() const { return Components.rend(); }
607
getVCallOffsets() const608 const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
getVBaseOffsetOffsets() const609 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
610 return VBaseOffsetOffsets;
611 }
612 };
613
614 void
AddVCallAndVBaseOffsets(BaseSubobject Base,bool BaseIsVirtual,CharUnits RealBaseOffset)615 VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
616 bool BaseIsVirtual,
617 CharUnits RealBaseOffset) {
618 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());
619
620 // Itanium C++ ABI 2.5.2:
621 // ..in classes sharing a virtual table with a primary base class, the vcall
622 // and vbase offsets added by the derived class all come before the vcall
623 // and vbase offsets required by the base class, so that the latter may be
624 // laid out as required by the base class without regard to additions from
625 // the derived class(es).
626
627 // (Since we're emitting the vcall and vbase offsets in reverse order, we'll
628 // emit them for the primary base first).
629 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
630 bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
631
632 CharUnits PrimaryBaseOffset;
633
634 // Get the base offset of the primary base.
635 if (PrimaryBaseIsVirtual) {
636 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
637 "Primary vbase should have a zero offset!");
638
639 const ASTRecordLayout &MostDerivedClassLayout =
640 Context.getASTRecordLayout(MostDerivedClass);
641
642 PrimaryBaseOffset =
643 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
644 } else {
645 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
646 "Primary base should have a zero offset!");
647
648 PrimaryBaseOffset = Base.getBaseOffset();
649 }
650
651 AddVCallAndVBaseOffsets(
652 BaseSubobject(PrimaryBase,PrimaryBaseOffset),
653 PrimaryBaseIsVirtual, RealBaseOffset);
654 }
655
656 AddVBaseOffsets(Base.getBase(), RealBaseOffset);
657
658 // We only want to add vcall offsets for virtual bases.
659 if (BaseIsVirtual)
660 AddVCallOffsets(Base, RealBaseOffset);
661 }
662
getCurrentOffsetOffset() const663 CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
664 // OffsetIndex is the index of this vcall or vbase offset, relative to the
665 // vtable address point. (We subtract 3 to account for the information just
666 // above the address point, the RTTI info, the offset to top, and the
667 // vcall offset itself).
668 int64_t OffsetIndex = -(int64_t)(3 + Components.size());
669
670 // Under the relative ABI, the offset widths are 32-bit ints instead of
671 // pointer widths.
672 CharUnits OffsetWidth = Context.toCharUnitsFromBits(
673 VTables.isRelativeLayout()
674 ? 32
675 : Context.getTargetInfo().getPointerWidth(LangAS::Default));
676 CharUnits OffsetOffset = OffsetWidth * OffsetIndex;
677
678 return OffsetOffset;
679 }
680
AddVCallOffsets(BaseSubobject Base,CharUnits VBaseOffset)681 void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
682 CharUnits VBaseOffset) {
683 const CXXRecordDecl *RD = Base.getBase();
684 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
685
686 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
687
688 // Handle the primary base first.
689 // We only want to add vcall offsets if the base is non-virtual; a virtual
690 // primary base will have its vcall and vbase offsets emitted already.
691 if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) {
692 // Get the base offset of the primary base.
693 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
694 "Primary base should have a zero offset!");
695
696 AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()),
697 VBaseOffset);
698 }
699
700 // Add the vcall offsets.
701 for (const auto *MD : RD->methods()) {
702 if (!VTableContextBase::hasVtableSlot(MD))
703 continue;
704 MD = MD->getCanonicalDecl();
705
706 CharUnits OffsetOffset = getCurrentOffsetOffset();
707
708 // Don't add a vcall offset if we already have one for this member function
709 // signature.
710 if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
711 continue;
712
713 CharUnits Offset = CharUnits::Zero();
714
715 if (Overriders) {
716 // Get the final overrider.
717 FinalOverriders::OverriderInfo Overrider =
718 Overriders->getOverrider(MD, Base.getBaseOffset());
719
720 /// The vcall offset is the offset from the virtual base to the object
721 /// where the function was overridden.
722 Offset = Overrider.Offset - VBaseOffset;
723 }
724
725 Components.push_back(
726 VTableComponent::MakeVCallOffset(Offset));
727 }
728
729 // And iterate over all non-virtual bases (ignoring the primary base).
730 for (const auto &B : RD->bases()) {
731 if (B.isVirtual())
732 continue;
733
734 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
735 if (BaseDecl == PrimaryBase)
736 continue;
737
738 // Get the base offset of this base.
739 CharUnits BaseOffset = Base.getBaseOffset() +
740 Layout.getBaseClassOffset(BaseDecl);
741
742 AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset),
743 VBaseOffset);
744 }
745 }
746
747 void
AddVBaseOffsets(const CXXRecordDecl * RD,CharUnits OffsetInLayoutClass)748 VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
749 CharUnits OffsetInLayoutClass) {
750 const ASTRecordLayout &LayoutClassLayout =
751 Context.getASTRecordLayout(LayoutClass);
752
753 // Add vbase offsets.
754 for (const auto &B : RD->bases()) {
755 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
756
757 // Check if this is a virtual base that we haven't visited before.
758 if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) {
759 CharUnits Offset =
760 LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass;
761
762 // Add the vbase offset offset.
763 assert(!VBaseOffsetOffsets.count(BaseDecl) &&
764 "vbase offset offset already exists!");
765
766 CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
767 VBaseOffsetOffsets.insert(
768 std::make_pair(BaseDecl, VBaseOffsetOffset));
769
770 Components.push_back(
771 VTableComponent::MakeVBaseOffset(Offset));
772 }
773
774 // Check the base class looking for more vbase offsets.
775 AddVBaseOffsets(BaseDecl, OffsetInLayoutClass);
776 }
777 }
778
779 /// ItaniumVTableBuilder - Class for building vtable layout information.
780 class ItaniumVTableBuilder {
781 public:
782 /// PrimaryBasesSetVectorTy - A set vector of direct and indirect
783 /// primary bases.
784 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
785 PrimaryBasesSetVectorTy;
786
787 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
788 VBaseOffsetOffsetsMapTy;
789
790 typedef VTableLayout::AddressPointsMapTy AddressPointsMapTy;
791
792 typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
793
794 private:
795 /// VTables - Global vtable information.
796 ItaniumVTableContext &VTables;
797
798 /// MostDerivedClass - The most derived class for which we're building this
799 /// vtable.
800 const CXXRecordDecl *MostDerivedClass;
801
802 /// MostDerivedClassOffset - If we're building a construction vtable, this
803 /// holds the offset from the layout class to the most derived class.
804 const CharUnits MostDerivedClassOffset;
805
806 /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
807 /// base. (This only makes sense when building a construction vtable).
808 bool MostDerivedClassIsVirtual;
809
810 /// LayoutClass - The class we're using for layout information. Will be
811 /// different than the most derived class if we're building a construction
812 /// vtable.
813 const CXXRecordDecl *LayoutClass;
814
815 /// Context - The ASTContext which we will use for layout information.
816 ASTContext &Context;
817
818 /// FinalOverriders - The final overriders of the most derived class.
819 const FinalOverriders Overriders;
820
821 /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
822 /// bases in this vtable.
823 llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;
824
825 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
826 /// the most derived class.
827 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
828
829 /// Components - The components of the vtable being built.
830 SmallVector<VTableComponent, 64> Components;
831
832 /// AddressPoints - Address points for the vtable being built.
833 AddressPointsMapTy AddressPoints;
834
835 /// MethodInfo - Contains information about a method in a vtable.
836 /// (Used for computing 'this' pointer adjustment thunks.
837 struct MethodInfo {
838 /// BaseOffset - The base offset of this method.
839 const CharUnits BaseOffset;
840
841 /// BaseOffsetInLayoutClass - The base offset in the layout class of this
842 /// method.
843 const CharUnits BaseOffsetInLayoutClass;
844
845 /// VTableIndex - The index in the vtable that this method has.
846 /// (For destructors, this is the index of the complete destructor).
847 const uint64_t VTableIndex;
848
MethodInfo__anon2cf01d430111::ItaniumVTableBuilder::MethodInfo849 MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
850 uint64_t VTableIndex)
851 : BaseOffset(BaseOffset),
852 BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
853 VTableIndex(VTableIndex) { }
854
MethodInfo__anon2cf01d430111::ItaniumVTableBuilder::MethodInfo855 MethodInfo()
856 : BaseOffset(CharUnits::Zero()),
857 BaseOffsetInLayoutClass(CharUnits::Zero()),
858 VTableIndex(0) { }
859
860 MethodInfo(MethodInfo const&) = default;
861 };
862
863 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
864
865 /// MethodInfoMap - The information for all methods in the vtable we're
866 /// currently building.
867 MethodInfoMapTy MethodInfoMap;
868
869 /// MethodVTableIndices - Contains the index (relative to the vtable address
870 /// point) where the function pointer for a virtual function is stored.
871 MethodVTableIndicesTy MethodVTableIndices;
872
873 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
874
875 /// VTableThunks - The thunks by vtable index in the vtable currently being
876 /// built.
877 VTableThunksMapTy VTableThunks;
878
879 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
880 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
881
882 /// Thunks - A map that contains all the thunks needed for all methods in the
883 /// most derived class for which the vtable is currently being built.
884 ThunksMapTy Thunks;
885
886 /// AddThunk - Add a thunk for the given method.
887 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);
888
889 /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
890 /// part of the vtable we're currently building.
891 void ComputeThisAdjustments();
892
893 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
894
895 /// PrimaryVirtualBases - All known virtual bases who are a primary base of
896 /// some other base.
897 VisitedVirtualBasesSetTy PrimaryVirtualBases;
898
899 /// ComputeReturnAdjustment - Compute the return adjustment given a return
900 /// adjustment base offset.
901 ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);
902
903 /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
904 /// the 'this' pointer from the base subobject to the derived subobject.
905 BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
906 BaseSubobject Derived) const;
907
908 /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
909 /// given virtual member function, its offset in the layout class and its
910 /// final overrider.
911 ThisAdjustment
912 ComputeThisAdjustment(const CXXMethodDecl *MD,
913 CharUnits BaseOffsetInLayoutClass,
914 FinalOverriders::OverriderInfo Overrider);
915
916 /// AddMethod - Add a single virtual member function to the vtable
917 /// components vector.
918 void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);
919
920 /// IsOverriderUsed - Returns whether the overrider will ever be used in this
921 /// part of the vtable.
922 ///
923 /// Itanium C++ ABI 2.5.2:
924 ///
925 /// struct A { virtual void f(); };
926 /// struct B : virtual public A { int i; };
927 /// struct C : virtual public A { int j; };
928 /// struct D : public B, public C {};
929 ///
930 /// When B and C are declared, A is a primary base in each case, so although
931 /// vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
932 /// adjustment is required and no thunk is generated. However, inside D
933 /// objects, A is no longer a primary base of C, so if we allowed calls to
934 /// C::f() to use the copy of A's vtable in the C subobject, we would need
935 /// to adjust this from C* to B::A*, which would require a third-party
936 /// thunk. Since we require that a call to C::f() first convert to A*,
937 /// C-in-D's copy of A's vtable is never referenced, so this is not
938 /// necessary.
939 bool IsOverriderUsed(const CXXMethodDecl *Overrider,
940 CharUnits BaseOffsetInLayoutClass,
941 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
942 CharUnits FirstBaseOffsetInLayoutClass) const;
943
944
945 /// AddMethods - Add the methods of this base subobject and all its
946 /// primary bases to the vtable components vector.
947 void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
948 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
949 CharUnits FirstBaseOffsetInLayoutClass,
950 PrimaryBasesSetVectorTy &PrimaryBases);
951
952 // LayoutVTable - Layout the vtable for the given base class, including its
953 // secondary vtables and any vtables for virtual bases.
954 void LayoutVTable();
955
956 /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
957 /// given base subobject, as well as all its secondary vtables.
958 ///
959 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
960 /// or a direct or indirect base of a virtual base.
961 ///
962 /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
963 /// in the layout class.
964 void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
965 bool BaseIsMorallyVirtual,
966 bool BaseIsVirtualInLayoutClass,
967 CharUnits OffsetInLayoutClass);
968
969 /// LayoutSecondaryVTables - Layout the secondary vtables for the given base
970 /// subobject.
971 ///
972 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
973 /// or a direct or indirect base of a virtual base.
974 void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
975 CharUnits OffsetInLayoutClass);
976
977 /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
978 /// class hierarchy.
979 void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
980 CharUnits OffsetInLayoutClass,
981 VisitedVirtualBasesSetTy &VBases);
982
983 /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
984 /// given base (excluding any primary bases).
985 void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
986 VisitedVirtualBasesSetTy &VBases);
987
988 /// isBuildingConstructionVTable - Return whether this vtable builder is
989 /// building a construction vtable.
isBuildingConstructorVTable() const990 bool isBuildingConstructorVTable() const {
991 return MostDerivedClass != LayoutClass;
992 }
993
994 public:
995 /// Component indices of the first component of each of the vtables in the
996 /// vtable group.
997 SmallVector<size_t, 4> VTableIndices;
998
ItaniumVTableBuilder(ItaniumVTableContext & VTables,const CXXRecordDecl * MostDerivedClass,CharUnits MostDerivedClassOffset,bool MostDerivedClassIsVirtual,const CXXRecordDecl * LayoutClass)999 ItaniumVTableBuilder(ItaniumVTableContext &VTables,
1000 const CXXRecordDecl *MostDerivedClass,
1001 CharUnits MostDerivedClassOffset,
1002 bool MostDerivedClassIsVirtual,
1003 const CXXRecordDecl *LayoutClass)
1004 : VTables(VTables), MostDerivedClass(MostDerivedClass),
1005 MostDerivedClassOffset(MostDerivedClassOffset),
1006 MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
1007 LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
1008 Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
1009 assert(!Context.getTargetInfo().getCXXABI().isMicrosoft());
1010
1011 LayoutVTable();
1012
1013 if (Context.getLangOpts().DumpVTableLayouts)
1014 dumpLayout(llvm::outs());
1015 }
1016
getNumThunks() const1017 uint64_t getNumThunks() const {
1018 return Thunks.size();
1019 }
1020
thunks_begin() const1021 ThunksMapTy::const_iterator thunks_begin() const {
1022 return Thunks.begin();
1023 }
1024
thunks_end() const1025 ThunksMapTy::const_iterator thunks_end() const {
1026 return Thunks.end();
1027 }
1028
getVBaseOffsetOffsets() const1029 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
1030 return VBaseOffsetOffsets;
1031 }
1032
getAddressPoints() const1033 const AddressPointsMapTy &getAddressPoints() const {
1034 return AddressPoints;
1035 }
1036
vtable_indices_begin() const1037 MethodVTableIndicesTy::const_iterator vtable_indices_begin() const {
1038 return MethodVTableIndices.begin();
1039 }
1040
vtable_indices_end() const1041 MethodVTableIndicesTy::const_iterator vtable_indices_end() const {
1042 return MethodVTableIndices.end();
1043 }
1044
vtable_components() const1045 ArrayRef<VTableComponent> vtable_components() const { return Components; }
1046
address_points_begin() const1047 AddressPointsMapTy::const_iterator address_points_begin() const {
1048 return AddressPoints.begin();
1049 }
1050
address_points_end() const1051 AddressPointsMapTy::const_iterator address_points_end() const {
1052 return AddressPoints.end();
1053 }
1054
vtable_thunks_begin() const1055 VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
1056 return VTableThunks.begin();
1057 }
1058
vtable_thunks_end() const1059 VTableThunksMapTy::const_iterator vtable_thunks_end() const {
1060 return VTableThunks.end();
1061 }
1062
1063 /// dumpLayout - Dump the vtable layout.
1064 void dumpLayout(raw_ostream&);
1065 };
1066
AddThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk)1067 void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD,
1068 const ThunkInfo &Thunk) {
1069 assert(!isBuildingConstructorVTable() &&
1070 "Can't add thunks for construction vtable");
1071
1072 SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD];
1073
1074 // Check if we have this thunk already.
1075 if (llvm::is_contained(ThunksVector, Thunk))
1076 return;
1077
1078 ThunksVector.push_back(Thunk);
1079 }
1080
1081 typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;
1082
1083 /// Visit all the methods overridden by the given method recursively,
1084 /// in a depth-first pre-order. The Visitor's visitor method returns a bool
1085 /// indicating whether to continue the recursion for the given overridden
1086 /// method (i.e. returning false stops the iteration).
1087 template <class VisitorTy>
1088 static void
visitAllOverriddenMethods(const CXXMethodDecl * MD,VisitorTy & Visitor)1089 visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
1090 assert(VTableContextBase::hasVtableSlot(MD) && "Method is not virtual!");
1091
1092 for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
1093 if (!Visitor(OverriddenMD))
1094 continue;
1095 visitAllOverriddenMethods(OverriddenMD, Visitor);
1096 }
1097 }
1098
1099 /// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
1100 /// the overridden methods that the function decl overrides.
1101 static void
ComputeAllOverriddenMethods(const CXXMethodDecl * MD,OverriddenMethodsSetTy & OverriddenMethods)1102 ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
1103 OverriddenMethodsSetTy& OverriddenMethods) {
1104 auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) {
1105 // Don't recurse on this method if we've already collected it.
1106 return OverriddenMethods.insert(MD).second;
1107 };
1108 visitAllOverriddenMethods(MD, OverriddenMethodsCollector);
1109 }
1110
ComputeThisAdjustments()1111 void ItaniumVTableBuilder::ComputeThisAdjustments() {
1112 // Now go through the method info map and see if any of the methods need
1113 // 'this' pointer adjustments.
1114 for (const auto &MI : MethodInfoMap) {
1115 const CXXMethodDecl *MD = MI.first;
1116 const MethodInfo &MethodInfo = MI.second;
1117
1118 // Ignore adjustments for unused function pointers.
1119 uint64_t VTableIndex = MethodInfo.VTableIndex;
1120 if (Components[VTableIndex].getKind() ==
1121 VTableComponent::CK_UnusedFunctionPointer)
1122 continue;
1123
1124 // Get the final overrider for this method.
1125 FinalOverriders::OverriderInfo Overrider =
1126 Overriders.getOverrider(MD, MethodInfo.BaseOffset);
1127
1128 // Check if we need an adjustment at all.
1129 if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
1130 // When a return thunk is needed by a derived class that overrides a
1131 // virtual base, gcc uses a virtual 'this' adjustment as well.
1132 // While the thunk itself might be needed by vtables in subclasses or
1133 // in construction vtables, there doesn't seem to be a reason for using
1134 // the thunk in this vtable. Still, we do so to match gcc.
1135 if (VTableThunks.lookup(VTableIndex).Return.isEmpty())
1136 continue;
1137 }
1138
1139 ThisAdjustment ThisAdjustment =
1140 ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider);
1141
1142 if (ThisAdjustment.isEmpty())
1143 continue;
1144
1145 // Add it.
1146 VTableThunks[VTableIndex].This = ThisAdjustment;
1147
1148 if (isa<CXXDestructorDecl>(MD)) {
1149 // Add an adjustment for the deleting destructor as well.
1150 VTableThunks[VTableIndex + 1].This = ThisAdjustment;
1151 }
1152 }
1153
1154 /// Clear the method info map.
1155 MethodInfoMap.clear();
1156
1157 if (isBuildingConstructorVTable()) {
1158 // We don't need to store thunk information for construction vtables.
1159 return;
1160 }
1161
1162 for (const auto &TI : VTableThunks) {
1163 const VTableComponent &Component = Components[TI.first];
1164 const ThunkInfo &Thunk = TI.second;
1165 const CXXMethodDecl *MD;
1166
1167 switch (Component.getKind()) {
1168 default:
1169 llvm_unreachable("Unexpected vtable component kind!");
1170 case VTableComponent::CK_FunctionPointer:
1171 MD = Component.getFunctionDecl();
1172 break;
1173 case VTableComponent::CK_CompleteDtorPointer:
1174 MD = Component.getDestructorDecl();
1175 break;
1176 case VTableComponent::CK_DeletingDtorPointer:
1177 // We've already added the thunk when we saw the complete dtor pointer.
1178 continue;
1179 }
1180
1181 if (MD->getParent() == MostDerivedClass)
1182 AddThunk(MD, Thunk);
1183 }
1184 }
1185
1186 ReturnAdjustment
ComputeReturnAdjustment(BaseOffset Offset)1187 ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
1188 ReturnAdjustment Adjustment;
1189
1190 if (!Offset.isEmpty()) {
1191 if (Offset.VirtualBase) {
1192 // Get the virtual base offset offset.
1193 if (Offset.DerivedClass == MostDerivedClass) {
1194 // We can get the offset offset directly from our map.
1195 Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1196 VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity();
1197 } else {
1198 Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1199 VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass,
1200 Offset.VirtualBase).getQuantity();
1201 }
1202 }
1203
1204 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1205 }
1206
1207 return Adjustment;
1208 }
1209
ComputeThisAdjustmentBaseOffset(BaseSubobject Base,BaseSubobject Derived) const1210 BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset(
1211 BaseSubobject Base, BaseSubobject Derived) const {
1212 const CXXRecordDecl *BaseRD = Base.getBase();
1213 const CXXRecordDecl *DerivedRD = Derived.getBase();
1214
1215 CXXBasePaths Paths(/*FindAmbiguities=*/true,
1216 /*RecordPaths=*/true, /*DetectVirtual=*/true);
1217
1218 if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
1219 llvm_unreachable("Class must be derived from the passed in base class!");
1220
1221 // We have to go through all the paths, and see which one leads us to the
1222 // right base subobject.
1223 for (const CXXBasePath &Path : Paths) {
1224 BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path);
1225
1226 CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;
1227
1228 if (Offset.VirtualBase) {
1229 // If we have a virtual base class, the non-virtual offset is relative
1230 // to the virtual base class offset.
1231 const ASTRecordLayout &LayoutClassLayout =
1232 Context.getASTRecordLayout(LayoutClass);
1233
1234 /// Get the virtual base offset, relative to the most derived class
1235 /// layout.
1236 OffsetToBaseSubobject +=
1237 LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase);
1238 } else {
1239 // Otherwise, the non-virtual offset is relative to the derived class
1240 // offset.
1241 OffsetToBaseSubobject += Derived.getBaseOffset();
1242 }
1243
1244 // Check if this path gives us the right base subobject.
1245 if (OffsetToBaseSubobject == Base.getBaseOffset()) {
1246 // Since we're going from the base class _to_ the derived class, we'll
1247 // invert the non-virtual offset here.
1248 Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
1249 return Offset;
1250 }
1251 }
1252
1253 return BaseOffset();
1254 }
1255
ComputeThisAdjustment(const CXXMethodDecl * MD,CharUnits BaseOffsetInLayoutClass,FinalOverriders::OverriderInfo Overrider)1256 ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment(
1257 const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass,
1258 FinalOverriders::OverriderInfo Overrider) {
1259 // Ignore adjustments for pure virtual member functions.
1260 if (Overrider.Method->isPure())
1261 return ThisAdjustment();
1262
1263 BaseSubobject OverriddenBaseSubobject(MD->getParent(),
1264 BaseOffsetInLayoutClass);
1265
1266 BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
1267 Overrider.Offset);
1268
1269 // Compute the adjustment offset.
1270 BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject,
1271 OverriderBaseSubobject);
1272 if (Offset.isEmpty())
1273 return ThisAdjustment();
1274
1275 ThisAdjustment Adjustment;
1276
1277 if (Offset.VirtualBase) {
1278 // Get the vcall offset map for this virtual base.
1279 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];
1280
1281 if (VCallOffsets.empty()) {
1282 // We don't have vcall offsets for this virtual base, go ahead and
1283 // build them.
1284 VCallAndVBaseOffsetBuilder Builder(
1285 VTables, MostDerivedClass, MostDerivedClass,
1286 /*Overriders=*/nullptr,
1287 BaseSubobject(Offset.VirtualBase, CharUnits::Zero()),
1288 /*BaseIsVirtual=*/true,
1289 /*OffsetInLayoutClass=*/
1290 CharUnits::Zero());
1291
1292 VCallOffsets = Builder.getVCallOffsets();
1293 }
1294
1295 Adjustment.Virtual.Itanium.VCallOffsetOffset =
1296 VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
1297 }
1298
1299 // Set the non-virtual part of the adjustment.
1300 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1301
1302 return Adjustment;
1303 }
1304
AddMethod(const CXXMethodDecl * MD,ReturnAdjustment ReturnAdjustment)1305 void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD,
1306 ReturnAdjustment ReturnAdjustment) {
1307 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1308 assert(ReturnAdjustment.isEmpty() &&
1309 "Destructor can't have return adjustment!");
1310
1311 // Add both the complete destructor and the deleting destructor.
1312 Components.push_back(VTableComponent::MakeCompleteDtor(DD));
1313 Components.push_back(VTableComponent::MakeDeletingDtor(DD));
1314 } else {
1315 // Add the return adjustment if necessary.
1316 if (!ReturnAdjustment.isEmpty())
1317 VTableThunks[Components.size()].Return = ReturnAdjustment;
1318
1319 // Add the function.
1320 Components.push_back(VTableComponent::MakeFunction(MD));
1321 }
1322 }
1323
1324 /// OverridesIndirectMethodInBase - Return whether the given member function
1325 /// overrides any methods in the set of given bases.
1326 /// Unlike OverridesMethodInBase, this checks "overriders of overriders".
1327 /// For example, if we have:
1328 ///
1329 /// struct A { virtual void f(); }
1330 /// struct B : A { virtual void f(); }
1331 /// struct C : B { virtual void f(); }
1332 ///
1333 /// OverridesIndirectMethodInBase will return true if given C::f as the method
1334 /// and { A } as the set of bases.
OverridesIndirectMethodInBases(const CXXMethodDecl * MD,ItaniumVTableBuilder::PrimaryBasesSetVectorTy & Bases)1335 static bool OverridesIndirectMethodInBases(
1336 const CXXMethodDecl *MD,
1337 ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) {
1338 if (Bases.count(MD->getParent()))
1339 return true;
1340
1341 for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
1342 // Check "indirect overriders".
1343 if (OverridesIndirectMethodInBases(OverriddenMD, Bases))
1344 return true;
1345 }
1346
1347 return false;
1348 }
1349
IsOverriderUsed(const CXXMethodDecl * Overrider,CharUnits BaseOffsetInLayoutClass,const CXXRecordDecl * FirstBaseInPrimaryBaseChain,CharUnits FirstBaseOffsetInLayoutClass) const1350 bool ItaniumVTableBuilder::IsOverriderUsed(
1351 const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass,
1352 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1353 CharUnits FirstBaseOffsetInLayoutClass) const {
1354 // If the base and the first base in the primary base chain have the same
1355 // offsets, then this overrider will be used.
1356 if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
1357 return true;
1358
1359 // We know now that Base (or a direct or indirect base of it) is a primary
1360 // base in part of the class hierarchy, but not a primary base in the most
1361 // derived class.
1362
1363 // If the overrider is the first base in the primary base chain, we know
1364 // that the overrider will be used.
1365 if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
1366 return true;
1367
1368 ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
1369
1370 const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
1371 PrimaryBases.insert(RD);
1372
1373 // Now traverse the base chain, starting with the first base, until we find
1374 // the base that is no longer a primary base.
1375 while (true) {
1376 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1377 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1378
1379 if (!PrimaryBase)
1380 break;
1381
1382 if (Layout.isPrimaryBaseVirtual()) {
1383 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1384 "Primary base should always be at offset 0!");
1385
1386 const ASTRecordLayout &LayoutClassLayout =
1387 Context.getASTRecordLayout(LayoutClass);
1388
1389 // Now check if this is the primary base that is not a primary base in the
1390 // most derived class.
1391 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1392 FirstBaseOffsetInLayoutClass) {
1393 // We found it, stop walking the chain.
1394 break;
1395 }
1396 } else {
1397 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1398 "Primary base should always be at offset 0!");
1399 }
1400
1401 if (!PrimaryBases.insert(PrimaryBase))
1402 llvm_unreachable("Found a duplicate primary base!");
1403
1404 RD = PrimaryBase;
1405 }
1406
1407 // If the final overrider is an override of one of the primary bases,
1408 // then we know that it will be used.
1409 return OverridesIndirectMethodInBases(Overrider, PrimaryBases);
1410 }
1411
1412 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy;
1413
1414 /// FindNearestOverriddenMethod - Given a method, returns the overridden method
1415 /// from the nearest base. Returns null if no method was found.
1416 /// The Bases are expected to be sorted in a base-to-derived order.
1417 static const CXXMethodDecl *
FindNearestOverriddenMethod(const CXXMethodDecl * MD,BasesSetVectorTy & Bases)1418 FindNearestOverriddenMethod(const CXXMethodDecl *MD,
1419 BasesSetVectorTy &Bases) {
1420 OverriddenMethodsSetTy OverriddenMethods;
1421 ComputeAllOverriddenMethods(MD, OverriddenMethods);
1422
1423 for (const CXXRecordDecl *PrimaryBase : llvm::reverse(Bases)) {
1424 // Now check the overridden methods.
1425 for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) {
1426 // We found our overridden method.
1427 if (OverriddenMD->getParent() == PrimaryBase)
1428 return OverriddenMD;
1429 }
1430 }
1431
1432 return nullptr;
1433 }
1434
AddMethods(BaseSubobject Base,CharUnits BaseOffsetInLayoutClass,const CXXRecordDecl * FirstBaseInPrimaryBaseChain,CharUnits FirstBaseOffsetInLayoutClass,PrimaryBasesSetVectorTy & PrimaryBases)1435 void ItaniumVTableBuilder::AddMethods(
1436 BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
1437 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1438 CharUnits FirstBaseOffsetInLayoutClass,
1439 PrimaryBasesSetVectorTy &PrimaryBases) {
1440 // Itanium C++ ABI 2.5.2:
1441 // The order of the virtual function pointers in a virtual table is the
1442 // order of declaration of the corresponding member functions in the class.
1443 //
1444 // There is an entry for any virtual function declared in a class,
1445 // whether it is a new function or overrides a base class function,
1446 // unless it overrides a function from the primary base, and conversion
1447 // between their return types does not require an adjustment.
1448
1449 const CXXRecordDecl *RD = Base.getBase();
1450 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1451
1452 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1453 CharUnits PrimaryBaseOffset;
1454 CharUnits PrimaryBaseOffsetInLayoutClass;
1455 if (Layout.isPrimaryBaseVirtual()) {
1456 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1457 "Primary vbase should have a zero offset!");
1458
1459 const ASTRecordLayout &MostDerivedClassLayout =
1460 Context.getASTRecordLayout(MostDerivedClass);
1461
1462 PrimaryBaseOffset =
1463 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
1464
1465 const ASTRecordLayout &LayoutClassLayout =
1466 Context.getASTRecordLayout(LayoutClass);
1467
1468 PrimaryBaseOffsetInLayoutClass =
1469 LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1470 } else {
1471 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1472 "Primary base should have a zero offset!");
1473
1474 PrimaryBaseOffset = Base.getBaseOffset();
1475 PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
1476 }
1477
1478 AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset),
1479 PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
1480 FirstBaseOffsetInLayoutClass, PrimaryBases);
1481
1482 if (!PrimaryBases.insert(PrimaryBase))
1483 llvm_unreachable("Found a duplicate primary base!");
1484 }
1485
1486 typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy;
1487 NewVirtualFunctionsTy NewVirtualFunctions;
1488
1489 llvm::SmallVector<const CXXMethodDecl*, 4> NewImplicitVirtualFunctions;
1490
1491 // Now go through all virtual member functions and add them.
1492 for (const auto *MD : RD->methods()) {
1493 if (!ItaniumVTableContext::hasVtableSlot(MD))
1494 continue;
1495 MD = MD->getCanonicalDecl();
1496
1497 // Get the final overrider.
1498 FinalOverriders::OverriderInfo Overrider =
1499 Overriders.getOverrider(MD, Base.getBaseOffset());
1500
1501 // Check if this virtual member function overrides a method in a primary
1502 // base. If this is the case, and the return type doesn't require adjustment
1503 // then we can just use the member function from the primary base.
1504 if (const CXXMethodDecl *OverriddenMD =
1505 FindNearestOverriddenMethod(MD, PrimaryBases)) {
1506 if (ComputeReturnAdjustmentBaseOffset(Context, MD,
1507 OverriddenMD).isEmpty()) {
1508 // Replace the method info of the overridden method with our own
1509 // method.
1510 assert(MethodInfoMap.count(OverriddenMD) &&
1511 "Did not find the overridden method!");
1512 MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];
1513
1514 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1515 OverriddenMethodInfo.VTableIndex);
1516
1517 assert(!MethodInfoMap.count(MD) &&
1518 "Should not have method info for this method yet!");
1519
1520 MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1521 MethodInfoMap.erase(OverriddenMD);
1522
1523 // If the overridden method exists in a virtual base class or a direct
1524 // or indirect base class of a virtual base class, we need to emit a
1525 // thunk if we ever have a class hierarchy where the base class is not
1526 // a primary base in the complete object.
1527 if (!isBuildingConstructorVTable() && OverriddenMD != MD) {
1528 // Compute the this adjustment.
1529 ThisAdjustment ThisAdjustment =
1530 ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass,
1531 Overrider);
1532
1533 if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset &&
1534 Overrider.Method->getParent() == MostDerivedClass) {
1535
1536 // There's no return adjustment from OverriddenMD and MD,
1537 // but that doesn't mean there isn't one between MD and
1538 // the final overrider.
1539 BaseOffset ReturnAdjustmentOffset =
1540 ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
1541 ReturnAdjustment ReturnAdjustment =
1542 ComputeReturnAdjustment(ReturnAdjustmentOffset);
1543
1544 // This is a virtual thunk for the most derived class, add it.
1545 AddThunk(Overrider.Method,
1546 ThunkInfo(ThisAdjustment, ReturnAdjustment));
1547 }
1548 }
1549
1550 continue;
1551 }
1552 }
1553
1554 if (MD->isImplicit())
1555 NewImplicitVirtualFunctions.push_back(MD);
1556 else
1557 NewVirtualFunctions.push_back(MD);
1558 }
1559
1560 std::stable_sort(
1561 NewImplicitVirtualFunctions.begin(), NewImplicitVirtualFunctions.end(),
1562 [](const CXXMethodDecl *A, const CXXMethodDecl *B) {
1563 if (A->isCopyAssignmentOperator() != B->isCopyAssignmentOperator())
1564 return A->isCopyAssignmentOperator();
1565 if (A->isMoveAssignmentOperator() != B->isMoveAssignmentOperator())
1566 return A->isMoveAssignmentOperator();
1567 if (isa<CXXDestructorDecl>(A) != isa<CXXDestructorDecl>(B))
1568 return isa<CXXDestructorDecl>(A);
1569 assert(A->getOverloadedOperator() == OO_EqualEqual &&
1570 B->getOverloadedOperator() == OO_EqualEqual &&
1571 "unexpected or duplicate implicit virtual function");
1572 // We rely on Sema to have declared the operator== members in the
1573 // same order as the corresponding operator<=> members.
1574 return false;
1575 });
1576 NewVirtualFunctions.append(NewImplicitVirtualFunctions.begin(),
1577 NewImplicitVirtualFunctions.end());
1578
1579 for (const CXXMethodDecl *MD : NewVirtualFunctions) {
1580 // Get the final overrider.
1581 FinalOverriders::OverriderInfo Overrider =
1582 Overriders.getOverrider(MD, Base.getBaseOffset());
1583
1584 // Insert the method info for this method.
1585 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1586 Components.size());
1587
1588 assert(!MethodInfoMap.count(MD) &&
1589 "Should not have method info for this method yet!");
1590 MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1591
1592 // Check if this overrider is going to be used.
1593 const CXXMethodDecl *OverriderMD = Overrider.Method;
1594 if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass,
1595 FirstBaseInPrimaryBaseChain,
1596 FirstBaseOffsetInLayoutClass)) {
1597 Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD));
1598 continue;
1599 }
1600
1601 // Check if this overrider needs a return adjustment.
1602 // We don't want to do this for pure virtual member functions.
1603 BaseOffset ReturnAdjustmentOffset;
1604 if (!OverriderMD->isPure()) {
1605 ReturnAdjustmentOffset =
1606 ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
1607 }
1608
1609 ReturnAdjustment ReturnAdjustment =
1610 ComputeReturnAdjustment(ReturnAdjustmentOffset);
1611
1612 AddMethod(Overrider.Method, ReturnAdjustment);
1613 }
1614 }
1615
LayoutVTable()1616 void ItaniumVTableBuilder::LayoutVTable() {
1617 LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass,
1618 CharUnits::Zero()),
1619 /*BaseIsMorallyVirtual=*/false,
1620 MostDerivedClassIsVirtual,
1621 MostDerivedClassOffset);
1622
1623 VisitedVirtualBasesSetTy VBases;
1624
1625 // Determine the primary virtual bases.
1626 DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset,
1627 VBases);
1628 VBases.clear();
1629
1630 LayoutVTablesForVirtualBases(MostDerivedClass, VBases);
1631
1632 // -fapple-kext adds an extra entry at end of vtbl.
1633 bool IsAppleKext = Context.getLangOpts().AppleKext;
1634 if (IsAppleKext)
1635 Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero()));
1636 }
1637
LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,bool BaseIsMorallyVirtual,bool BaseIsVirtualInLayoutClass,CharUnits OffsetInLayoutClass)1638 void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables(
1639 BaseSubobject Base, bool BaseIsMorallyVirtual,
1640 bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) {
1641 assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");
1642
1643 unsigned VTableIndex = Components.size();
1644 VTableIndices.push_back(VTableIndex);
1645
1646 // Add vcall and vbase offsets for this vtable.
1647 VCallAndVBaseOffsetBuilder Builder(
1648 VTables, MostDerivedClass, LayoutClass, &Overriders, Base,
1649 BaseIsVirtualInLayoutClass, OffsetInLayoutClass);
1650 Components.append(Builder.components_begin(), Builder.components_end());
1651
1652 // Check if we need to add these vcall offsets.
1653 if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) {
1654 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];
1655
1656 if (VCallOffsets.empty())
1657 VCallOffsets = Builder.getVCallOffsets();
1658 }
1659
1660 // If we're laying out the most derived class we want to keep track of the
1661 // virtual base class offset offsets.
1662 if (Base.getBase() == MostDerivedClass)
1663 VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();
1664
1665 // Add the offset to top.
1666 CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
1667 Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop));
1668
1669 // Next, add the RTTI.
1670 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
1671
1672 uint64_t AddressPoint = Components.size();
1673
1674 // Now go through all virtual member functions and add them.
1675 PrimaryBasesSetVectorTy PrimaryBases;
1676 AddMethods(Base, OffsetInLayoutClass,
1677 Base.getBase(), OffsetInLayoutClass,
1678 PrimaryBases);
1679
1680 const CXXRecordDecl *RD = Base.getBase();
1681 if (RD == MostDerivedClass) {
1682 assert(MethodVTableIndices.empty());
1683 for (const auto &I : MethodInfoMap) {
1684 const CXXMethodDecl *MD = I.first;
1685 const MethodInfo &MI = I.second;
1686 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1687 MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)]
1688 = MI.VTableIndex - AddressPoint;
1689 MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
1690 = MI.VTableIndex + 1 - AddressPoint;
1691 } else {
1692 MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint;
1693 }
1694 }
1695 }
1696
1697 // Compute 'this' pointer adjustments.
1698 ComputeThisAdjustments();
1699
1700 // Add all address points.
1701 while (true) {
1702 AddressPoints.insert(
1703 std::make_pair(BaseSubobject(RD, OffsetInLayoutClass),
1704 VTableLayout::AddressPointLocation{
1705 unsigned(VTableIndices.size() - 1),
1706 unsigned(AddressPoint - VTableIndex)}));
1707
1708 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1709 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1710
1711 if (!PrimaryBase)
1712 break;
1713
1714 if (Layout.isPrimaryBaseVirtual()) {
1715 // Check if this virtual primary base is a primary base in the layout
1716 // class. If it's not, we don't want to add it.
1717 const ASTRecordLayout &LayoutClassLayout =
1718 Context.getASTRecordLayout(LayoutClass);
1719
1720 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1721 OffsetInLayoutClass) {
1722 // We don't want to add this class (or any of its primary bases).
1723 break;
1724 }
1725 }
1726
1727 RD = PrimaryBase;
1728 }
1729
1730 // Layout secondary vtables.
1731 LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
1732 }
1733
1734 void
LayoutSecondaryVTables(BaseSubobject Base,bool BaseIsMorallyVirtual,CharUnits OffsetInLayoutClass)1735 ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
1736 bool BaseIsMorallyVirtual,
1737 CharUnits OffsetInLayoutClass) {
1738 // Itanium C++ ABI 2.5.2:
1739 // Following the primary virtual table of a derived class are secondary
1740 // virtual tables for each of its proper base classes, except any primary
1741 // base(s) with which it shares its primary virtual table.
1742
1743 const CXXRecordDecl *RD = Base.getBase();
1744 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1745 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1746
1747 for (const auto &B : RD->bases()) {
1748 // Ignore virtual bases, we'll emit them later.
1749 if (B.isVirtual())
1750 continue;
1751
1752 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1753
1754 // Ignore bases that don't have a vtable.
1755 if (!BaseDecl->isDynamicClass())
1756 continue;
1757
1758 if (isBuildingConstructorVTable()) {
1759 // Itanium C++ ABI 2.6.4:
1760 // Some of the base class subobjects may not need construction virtual
1761 // tables, which will therefore not be present in the construction
1762 // virtual table group, even though the subobject virtual tables are
1763 // present in the main virtual table group for the complete object.
1764 if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases())
1765 continue;
1766 }
1767
1768 // Get the base offset of this base.
1769 CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl);
1770 CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;
1771
1772 CharUnits BaseOffsetInLayoutClass =
1773 OffsetInLayoutClass + RelativeBaseOffset;
1774
1775 // Don't emit a secondary vtable for a primary base. We might however want
1776 // to emit secondary vtables for other bases of this base.
1777 if (BaseDecl == PrimaryBase) {
1778 LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset),
1779 BaseIsMorallyVirtual, BaseOffsetInLayoutClass);
1780 continue;
1781 }
1782
1783 // Layout the primary vtable (and any secondary vtables) for this base.
1784 LayoutPrimaryAndSecondaryVTables(
1785 BaseSubobject(BaseDecl, BaseOffset),
1786 BaseIsMorallyVirtual,
1787 /*BaseIsVirtualInLayoutClass=*/false,
1788 BaseOffsetInLayoutClass);
1789 }
1790 }
1791
DeterminePrimaryVirtualBases(const CXXRecordDecl * RD,CharUnits OffsetInLayoutClass,VisitedVirtualBasesSetTy & VBases)1792 void ItaniumVTableBuilder::DeterminePrimaryVirtualBases(
1793 const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass,
1794 VisitedVirtualBasesSetTy &VBases) {
1795 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1796
1797 // Check if this base has a primary base.
1798 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1799
1800 // Check if it's virtual.
1801 if (Layout.isPrimaryBaseVirtual()) {
1802 bool IsPrimaryVirtualBase = true;
1803
1804 if (isBuildingConstructorVTable()) {
1805 // Check if the base is actually a primary base in the class we use for
1806 // layout.
1807 const ASTRecordLayout &LayoutClassLayout =
1808 Context.getASTRecordLayout(LayoutClass);
1809
1810 CharUnits PrimaryBaseOffsetInLayoutClass =
1811 LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1812
1813 // We know that the base is not a primary base in the layout class if
1814 // the base offsets are different.
1815 if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
1816 IsPrimaryVirtualBase = false;
1817 }
1818
1819 if (IsPrimaryVirtualBase)
1820 PrimaryVirtualBases.insert(PrimaryBase);
1821 }
1822 }
1823
1824 // Traverse bases, looking for more primary virtual bases.
1825 for (const auto &B : RD->bases()) {
1826 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1827
1828 CharUnits BaseOffsetInLayoutClass;
1829
1830 if (B.isVirtual()) {
1831 if (!VBases.insert(BaseDecl).second)
1832 continue;
1833
1834 const ASTRecordLayout &LayoutClassLayout =
1835 Context.getASTRecordLayout(LayoutClass);
1836
1837 BaseOffsetInLayoutClass =
1838 LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1839 } else {
1840 BaseOffsetInLayoutClass =
1841 OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl);
1842 }
1843
1844 DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases);
1845 }
1846 }
1847
LayoutVTablesForVirtualBases(const CXXRecordDecl * RD,VisitedVirtualBasesSetTy & VBases)1848 void ItaniumVTableBuilder::LayoutVTablesForVirtualBases(
1849 const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) {
1850 // Itanium C++ ABI 2.5.2:
1851 // Then come the virtual base virtual tables, also in inheritance graph
1852 // order, and again excluding primary bases (which share virtual tables with
1853 // the classes for which they are primary).
1854 for (const auto &B : RD->bases()) {
1855 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1856
1857 // Check if this base needs a vtable. (If it's virtual, not a primary base
1858 // of some other class, and we haven't visited it before).
1859 if (B.isVirtual() && BaseDecl->isDynamicClass() &&
1860 !PrimaryVirtualBases.count(BaseDecl) &&
1861 VBases.insert(BaseDecl).second) {
1862 const ASTRecordLayout &MostDerivedClassLayout =
1863 Context.getASTRecordLayout(MostDerivedClass);
1864 CharUnits BaseOffset =
1865 MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
1866
1867 const ASTRecordLayout &LayoutClassLayout =
1868 Context.getASTRecordLayout(LayoutClass);
1869 CharUnits BaseOffsetInLayoutClass =
1870 LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1871
1872 LayoutPrimaryAndSecondaryVTables(
1873 BaseSubobject(BaseDecl, BaseOffset),
1874 /*BaseIsMorallyVirtual=*/true,
1875 /*BaseIsVirtualInLayoutClass=*/true,
1876 BaseOffsetInLayoutClass);
1877 }
1878
1879 // We only need to check the base for virtual base vtables if it actually
1880 // has virtual bases.
1881 if (BaseDecl->getNumVBases())
1882 LayoutVTablesForVirtualBases(BaseDecl, VBases);
1883 }
1884 }
1885
1886 /// dumpLayout - Dump the vtable layout.
dumpLayout(raw_ostream & Out)1887 void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) {
1888 // FIXME: write more tests that actually use the dumpLayout output to prevent
1889 // ItaniumVTableBuilder regressions.
1890
1891 if (isBuildingConstructorVTable()) {
1892 Out << "Construction vtable for ('";
1893 MostDerivedClass->printQualifiedName(Out);
1894 Out << "', ";
1895 Out << MostDerivedClassOffset.getQuantity() << ") in '";
1896 LayoutClass->printQualifiedName(Out);
1897 } else {
1898 Out << "Vtable for '";
1899 MostDerivedClass->printQualifiedName(Out);
1900 }
1901 Out << "' (" << Components.size() << " entries).\n";
1902
1903 // Iterate through the address points and insert them into a new map where
1904 // they are keyed by the index and not the base object.
1905 // Since an address point can be shared by multiple subobjects, we use an
1906 // STL multimap.
1907 std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
1908 for (const auto &AP : AddressPoints) {
1909 const BaseSubobject &Base = AP.first;
1910 uint64_t Index =
1911 VTableIndices[AP.second.VTableIndex] + AP.second.AddressPointIndex;
1912
1913 AddressPointsByIndex.insert(std::make_pair(Index, Base));
1914 }
1915
1916 for (unsigned I = 0, E = Components.size(); I != E; ++I) {
1917 uint64_t Index = I;
1918
1919 Out << llvm::format("%4d | ", I);
1920
1921 const VTableComponent &Component = Components[I];
1922
1923 // Dump the component.
1924 switch (Component.getKind()) {
1925
1926 case VTableComponent::CK_VCallOffset:
1927 Out << "vcall_offset ("
1928 << Component.getVCallOffset().getQuantity()
1929 << ")";
1930 break;
1931
1932 case VTableComponent::CK_VBaseOffset:
1933 Out << "vbase_offset ("
1934 << Component.getVBaseOffset().getQuantity()
1935 << ")";
1936 break;
1937
1938 case VTableComponent::CK_OffsetToTop:
1939 Out << "offset_to_top ("
1940 << Component.getOffsetToTop().getQuantity()
1941 << ")";
1942 break;
1943
1944 case VTableComponent::CK_RTTI:
1945 Component.getRTTIDecl()->printQualifiedName(Out);
1946 Out << " RTTI";
1947 break;
1948
1949 case VTableComponent::CK_FunctionPointer: {
1950 const CXXMethodDecl *MD = Component.getFunctionDecl();
1951
1952 std::string Str =
1953 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
1954 MD);
1955 Out << Str;
1956 if (MD->isPure())
1957 Out << " [pure]";
1958
1959 if (MD->isDeleted())
1960 Out << " [deleted]";
1961
1962 ThunkInfo Thunk = VTableThunks.lookup(I);
1963 if (!Thunk.isEmpty()) {
1964 // If this function pointer has a return adjustment, dump it.
1965 if (!Thunk.Return.isEmpty()) {
1966 Out << "\n [return adjustment: ";
1967 Out << Thunk.Return.NonVirtual << " non-virtual";
1968
1969 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
1970 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
1971 Out << " vbase offset offset";
1972 }
1973
1974 Out << ']';
1975 }
1976
1977 // If this function pointer has a 'this' pointer adjustment, dump it.
1978 if (!Thunk.This.isEmpty()) {
1979 Out << "\n [this adjustment: ";
1980 Out << Thunk.This.NonVirtual << " non-virtual";
1981
1982 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
1983 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
1984 Out << " vcall offset offset";
1985 }
1986
1987 Out << ']';
1988 }
1989 }
1990
1991 break;
1992 }
1993
1994 case VTableComponent::CK_CompleteDtorPointer:
1995 case VTableComponent::CK_DeletingDtorPointer: {
1996 bool IsComplete =
1997 Component.getKind() == VTableComponent::CK_CompleteDtorPointer;
1998
1999 const CXXDestructorDecl *DD = Component.getDestructorDecl();
2000
2001 DD->printQualifiedName(Out);
2002 if (IsComplete)
2003 Out << "() [complete]";
2004 else
2005 Out << "() [deleting]";
2006
2007 if (DD->isPure())
2008 Out << " [pure]";
2009
2010 ThunkInfo Thunk = VTableThunks.lookup(I);
2011 if (!Thunk.isEmpty()) {
2012 // If this destructor has a 'this' pointer adjustment, dump it.
2013 if (!Thunk.This.isEmpty()) {
2014 Out << "\n [this adjustment: ";
2015 Out << Thunk.This.NonVirtual << " non-virtual";
2016
2017 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2018 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2019 Out << " vcall offset offset";
2020 }
2021
2022 Out << ']';
2023 }
2024 }
2025
2026 break;
2027 }
2028
2029 case VTableComponent::CK_UnusedFunctionPointer: {
2030 const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();
2031
2032 std::string Str =
2033 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2034 MD);
2035 Out << "[unused] " << Str;
2036 if (MD->isPure())
2037 Out << " [pure]";
2038 }
2039
2040 }
2041
2042 Out << '\n';
2043
2044 // Dump the next address point.
2045 uint64_t NextIndex = Index + 1;
2046 if (AddressPointsByIndex.count(NextIndex)) {
2047 if (AddressPointsByIndex.count(NextIndex) == 1) {
2048 const BaseSubobject &Base =
2049 AddressPointsByIndex.find(NextIndex)->second;
2050
2051 Out << " -- (";
2052 Base.getBase()->printQualifiedName(Out);
2053 Out << ", " << Base.getBaseOffset().getQuantity();
2054 Out << ") vtable address --\n";
2055 } else {
2056 CharUnits BaseOffset =
2057 AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset();
2058
2059 // We store the class names in a set to get a stable order.
2060 std::set<std::string> ClassNames;
2061 for (const auto &I :
2062 llvm::make_range(AddressPointsByIndex.equal_range(NextIndex))) {
2063 assert(I.second.getBaseOffset() == BaseOffset &&
2064 "Invalid base offset!");
2065 const CXXRecordDecl *RD = I.second.getBase();
2066 ClassNames.insert(RD->getQualifiedNameAsString());
2067 }
2068
2069 for (const std::string &Name : ClassNames) {
2070 Out << " -- (" << Name;
2071 Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
2072 }
2073 }
2074 }
2075 }
2076
2077 Out << '\n';
2078
2079 if (isBuildingConstructorVTable())
2080 return;
2081
2082 if (MostDerivedClass->getNumVBases()) {
2083 // We store the virtual base class names and their offsets in a map to get
2084 // a stable order.
2085
2086 std::map<std::string, CharUnits> ClassNamesAndOffsets;
2087 for (const auto &I : VBaseOffsetOffsets) {
2088 std::string ClassName = I.first->getQualifiedNameAsString();
2089 CharUnits OffsetOffset = I.second;
2090 ClassNamesAndOffsets.insert(std::make_pair(ClassName, OffsetOffset));
2091 }
2092
2093 Out << "Virtual base offset offsets for '";
2094 MostDerivedClass->printQualifiedName(Out);
2095 Out << "' (";
2096 Out << ClassNamesAndOffsets.size();
2097 Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n";
2098
2099 for (const auto &I : ClassNamesAndOffsets)
2100 Out << " " << I.first << " | " << I.second.getQuantity() << '\n';
2101
2102 Out << "\n";
2103 }
2104
2105 if (!Thunks.empty()) {
2106 // We store the method names in a map to get a stable order.
2107 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
2108
2109 for (const auto &I : Thunks) {
2110 const CXXMethodDecl *MD = I.first;
2111 std::string MethodName =
2112 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2113 MD);
2114
2115 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
2116 }
2117
2118 for (const auto &I : MethodNamesAndDecls) {
2119 const std::string &MethodName = I.first;
2120 const CXXMethodDecl *MD = I.second;
2121
2122 ThunkInfoVectorTy ThunksVector = Thunks[MD];
2123 llvm::sort(ThunksVector, [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
2124 assert(LHS.Method == nullptr && RHS.Method == nullptr);
2125 return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
2126 });
2127
2128 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
2129 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
2130
2131 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
2132 const ThunkInfo &Thunk = ThunksVector[I];
2133
2134 Out << llvm::format("%4d | ", I);
2135
2136 // If this function pointer has a return pointer adjustment, dump it.
2137 if (!Thunk.Return.isEmpty()) {
2138 Out << "return adjustment: " << Thunk.Return.NonVirtual;
2139 Out << " non-virtual";
2140 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
2141 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
2142 Out << " vbase offset offset";
2143 }
2144
2145 if (!Thunk.This.isEmpty())
2146 Out << "\n ";
2147 }
2148
2149 // If this function pointer has a 'this' pointer adjustment, dump it.
2150 if (!Thunk.This.isEmpty()) {
2151 Out << "this adjustment: ";
2152 Out << Thunk.This.NonVirtual << " non-virtual";
2153
2154 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2155 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2156 Out << " vcall offset offset";
2157 }
2158 }
2159
2160 Out << '\n';
2161 }
2162
2163 Out << '\n';
2164 }
2165 }
2166
2167 // Compute the vtable indices for all the member functions.
2168 // Store them in a map keyed by the index so we'll get a sorted table.
2169 std::map<uint64_t, std::string> IndicesMap;
2170
2171 for (const auto *MD : MostDerivedClass->methods()) {
2172 // We only want virtual member functions.
2173 if (!ItaniumVTableContext::hasVtableSlot(MD))
2174 continue;
2175 MD = MD->getCanonicalDecl();
2176
2177 std::string MethodName =
2178 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2179 MD);
2180
2181 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2182 GlobalDecl GD(DD, Dtor_Complete);
2183 assert(MethodVTableIndices.count(GD));
2184 uint64_t VTableIndex = MethodVTableIndices[GD];
2185 IndicesMap[VTableIndex] = MethodName + " [complete]";
2186 IndicesMap[VTableIndex + 1] = MethodName + " [deleting]";
2187 } else {
2188 assert(MethodVTableIndices.count(MD));
2189 IndicesMap[MethodVTableIndices[MD]] = MethodName;
2190 }
2191 }
2192
2193 // Print the vtable indices for all the member functions.
2194 if (!IndicesMap.empty()) {
2195 Out << "VTable indices for '";
2196 MostDerivedClass->printQualifiedName(Out);
2197 Out << "' (" << IndicesMap.size() << " entries).\n";
2198
2199 for (const auto &I : IndicesMap) {
2200 uint64_t VTableIndex = I.first;
2201 const std::string &MethodName = I.second;
2202
2203 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName
2204 << '\n';
2205 }
2206 }
2207
2208 Out << '\n';
2209 }
2210 }
2211
2212 static VTableLayout::AddressPointsIndexMapTy
MakeAddressPointIndices(const VTableLayout::AddressPointsMapTy & addressPoints,unsigned numVTables)2213 MakeAddressPointIndices(const VTableLayout::AddressPointsMapTy &addressPoints,
2214 unsigned numVTables) {
2215 VTableLayout::AddressPointsIndexMapTy indexMap(numVTables);
2216
2217 for (auto it = addressPoints.begin(); it != addressPoints.end(); ++it) {
2218 const auto &addressPointLoc = it->second;
2219 unsigned vtableIndex = addressPointLoc.VTableIndex;
2220 unsigned addressPoint = addressPointLoc.AddressPointIndex;
2221 if (indexMap[vtableIndex]) {
2222 // Multiple BaseSubobjects can map to the same AddressPointLocation, but
2223 // every vtable index should have a unique address point.
2224 assert(indexMap[vtableIndex] == addressPoint &&
2225 "Every vtable index should have a unique address point. Found a "
2226 "vtable that has two different address points.");
2227 } else {
2228 indexMap[vtableIndex] = addressPoint;
2229 }
2230 }
2231
2232 // Note that by this point, not all the address may be initialized if the
2233 // AddressPoints map is empty. This is ok if the map isn't needed. See
2234 // MicrosoftVTableContext::computeVTableRelatedInformation() which uses an
2235 // emprt map.
2236 return indexMap;
2237 }
2238
VTableLayout(ArrayRef<size_t> VTableIndices,ArrayRef<VTableComponent> VTableComponents,ArrayRef<VTableThunkTy> VTableThunks,const AddressPointsMapTy & AddressPoints)2239 VTableLayout::VTableLayout(ArrayRef<size_t> VTableIndices,
2240 ArrayRef<VTableComponent> VTableComponents,
2241 ArrayRef<VTableThunkTy> VTableThunks,
2242 const AddressPointsMapTy &AddressPoints)
2243 : VTableComponents(VTableComponents), VTableThunks(VTableThunks),
2244 AddressPoints(AddressPoints), AddressPointIndices(MakeAddressPointIndices(
2245 AddressPoints, VTableIndices.size())) {
2246 if (VTableIndices.size() <= 1)
2247 assert(VTableIndices.size() == 1 && VTableIndices[0] == 0);
2248 else
2249 this->VTableIndices = OwningArrayRef<size_t>(VTableIndices);
2250
2251 llvm::sort(this->VTableThunks, [](const VTableLayout::VTableThunkTy &LHS,
2252 const VTableLayout::VTableThunkTy &RHS) {
2253 assert((LHS.first != RHS.first || LHS.second == RHS.second) &&
2254 "Different thunks should have unique indices!");
2255 return LHS.first < RHS.first;
2256 });
2257 }
2258
~VTableLayout()2259 VTableLayout::~VTableLayout() { }
2260
hasVtableSlot(const CXXMethodDecl * MD)2261 bool VTableContextBase::hasVtableSlot(const CXXMethodDecl *MD) {
2262 return MD->isVirtual() && !MD->isConsteval();
2263 }
2264
ItaniumVTableContext(ASTContext & Context,VTableComponentLayout ComponentLayout)2265 ItaniumVTableContext::ItaniumVTableContext(
2266 ASTContext &Context, VTableComponentLayout ComponentLayout)
2267 : VTableContextBase(/*MS=*/false), ComponentLayout(ComponentLayout) {}
2268
~ItaniumVTableContext()2269 ItaniumVTableContext::~ItaniumVTableContext() {}
2270
getMethodVTableIndex(GlobalDecl GD)2271 uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) {
2272 GD = GD.getCanonicalDecl();
2273 MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD);
2274 if (I != MethodVTableIndices.end())
2275 return I->second;
2276
2277 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
2278
2279 computeVTableRelatedInformation(RD);
2280
2281 I = MethodVTableIndices.find(GD);
2282 assert(I != MethodVTableIndices.end() && "Did not find index!");
2283 return I->second;
2284 }
2285
2286 CharUnits
getVirtualBaseOffsetOffset(const CXXRecordDecl * RD,const CXXRecordDecl * VBase)2287 ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
2288 const CXXRecordDecl *VBase) {
2289 ClassPairTy ClassPair(RD, VBase);
2290
2291 VirtualBaseClassOffsetOffsetsMapTy::iterator I =
2292 VirtualBaseClassOffsetOffsets.find(ClassPair);
2293 if (I != VirtualBaseClassOffsetOffsets.end())
2294 return I->second;
2295
2296 VCallAndVBaseOffsetBuilder Builder(*this, RD, RD, /*Overriders=*/nullptr,
2297 BaseSubobject(RD, CharUnits::Zero()),
2298 /*BaseIsVirtual=*/false,
2299 /*OffsetInLayoutClass=*/CharUnits::Zero());
2300
2301 for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2302 // Insert all types.
2303 ClassPairTy ClassPair(RD, I.first);
2304
2305 VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
2306 }
2307
2308 I = VirtualBaseClassOffsetOffsets.find(ClassPair);
2309 assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");
2310
2311 return I->second;
2312 }
2313
2314 static std::unique_ptr<VTableLayout>
CreateVTableLayout(const ItaniumVTableBuilder & Builder)2315 CreateVTableLayout(const ItaniumVTableBuilder &Builder) {
2316 SmallVector<VTableLayout::VTableThunkTy, 1>
2317 VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
2318
2319 return std::make_unique<VTableLayout>(
2320 Builder.VTableIndices, Builder.vtable_components(), VTableThunks,
2321 Builder.getAddressPoints());
2322 }
2323
2324 void
computeVTableRelatedInformation(const CXXRecordDecl * RD)2325 ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) {
2326 std::unique_ptr<const VTableLayout> &Entry = VTableLayouts[RD];
2327
2328 // Check if we've computed this information before.
2329 if (Entry)
2330 return;
2331
2332 ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(),
2333 /*MostDerivedClassIsVirtual=*/false, RD);
2334 Entry = CreateVTableLayout(Builder);
2335
2336 MethodVTableIndices.insert(Builder.vtable_indices_begin(),
2337 Builder.vtable_indices_end());
2338
2339 // Add the known thunks.
2340 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
2341
2342 // If we don't have the vbase information for this class, insert it.
2343 // getVirtualBaseOffsetOffset will compute it separately without computing
2344 // the rest of the vtable related information.
2345 if (!RD->getNumVBases())
2346 return;
2347
2348 const CXXRecordDecl *VBase =
2349 RD->vbases_begin()->getType()->getAsCXXRecordDecl();
2350
2351 if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase)))
2352 return;
2353
2354 for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2355 // Insert all types.
2356 ClassPairTy ClassPair(RD, I.first);
2357
2358 VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
2359 }
2360 }
2361
2362 std::unique_ptr<VTableLayout>
createConstructionVTableLayout(const CXXRecordDecl * MostDerivedClass,CharUnits MostDerivedClassOffset,bool MostDerivedClassIsVirtual,const CXXRecordDecl * LayoutClass)2363 ItaniumVTableContext::createConstructionVTableLayout(
2364 const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
2365 bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) {
2366 ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset,
2367 MostDerivedClassIsVirtual, LayoutClass);
2368 return CreateVTableLayout(Builder);
2369 }
2370
2371 namespace {
2372
2373 // Vtables in the Microsoft ABI are different from the Itanium ABI.
2374 //
2375 // The main differences are:
2376 // 1. Separate vftable and vbtable.
2377 //
2378 // 2. Each subobject with a vfptr gets its own vftable rather than an address
2379 // point in a single vtable shared between all the subobjects.
2380 // Each vftable is represented by a separate section and virtual calls
2381 // must be done using the vftable which has a slot for the function to be
2382 // called.
2383 //
2384 // 3. Virtual method definitions expect their 'this' parameter to point to the
2385 // first vfptr whose table provides a compatible overridden method. In many
2386 // cases, this permits the original vf-table entry to directly call
2387 // the method instead of passing through a thunk.
2388 // See example before VFTableBuilder::ComputeThisOffset below.
2389 //
2390 // A compatible overridden method is one which does not have a non-trivial
2391 // covariant-return adjustment.
2392 //
2393 // The first vfptr is the one with the lowest offset in the complete-object
2394 // layout of the defining class, and the method definition will subtract
2395 // that constant offset from the parameter value to get the real 'this'
2396 // value. Therefore, if the offset isn't really constant (e.g. if a virtual
2397 // function defined in a virtual base is overridden in a more derived
2398 // virtual base and these bases have a reverse order in the complete
2399 // object), the vf-table may require a this-adjustment thunk.
2400 //
2401 // 4. vftables do not contain new entries for overrides that merely require
2402 // this-adjustment. Together with #3, this keeps vf-tables smaller and
2403 // eliminates the need for this-adjustment thunks in many cases, at the cost
2404 // of often requiring redundant work to adjust the "this" pointer.
2405 //
2406 // 5. Instead of VTT and constructor vtables, vbtables and vtordisps are used.
2407 // Vtordisps are emitted into the class layout if a class has
2408 // a) a user-defined ctor/dtor
2409 // and
2410 // b) a method overriding a method in a virtual base.
2411 //
2412 // To get a better understanding of this code,
2413 // you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp
2414
2415 class VFTableBuilder {
2416 public:
2417 typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
2418 MethodVFTableLocationsTy;
2419
2420 typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator>
2421 method_locations_range;
2422
2423 private:
2424 /// VTables - Global vtable information.
2425 MicrosoftVTableContext &VTables;
2426
2427 /// Context - The ASTContext which we will use for layout information.
2428 ASTContext &Context;
2429
2430 /// MostDerivedClass - The most derived class for which we're building this
2431 /// vtable.
2432 const CXXRecordDecl *MostDerivedClass;
2433
2434 const ASTRecordLayout &MostDerivedClassLayout;
2435
2436 const VPtrInfo &WhichVFPtr;
2437
2438 /// FinalOverriders - The final overriders of the most derived class.
2439 const FinalOverriders Overriders;
2440
2441 /// Components - The components of the vftable being built.
2442 SmallVector<VTableComponent, 64> Components;
2443
2444 MethodVFTableLocationsTy MethodVFTableLocations;
2445
2446 /// Does this class have an RTTI component?
2447 bool HasRTTIComponent = false;
2448
2449 /// MethodInfo - Contains information about a method in a vtable.
2450 /// (Used for computing 'this' pointer adjustment thunks.
2451 struct MethodInfo {
2452 /// VBTableIndex - The nonzero index in the vbtable that
2453 /// this method's base has, or zero.
2454 const uint64_t VBTableIndex;
2455
2456 /// VFTableIndex - The index in the vftable that this method has.
2457 const uint64_t VFTableIndex;
2458
2459 /// Shadowed - Indicates if this vftable slot is shadowed by
2460 /// a slot for a covariant-return override. If so, it shouldn't be printed
2461 /// or used for vcalls in the most derived class.
2462 bool Shadowed;
2463
2464 /// UsesExtraSlot - Indicates if this vftable slot was created because
2465 /// any of the overridden slots required a return adjusting thunk.
2466 bool UsesExtraSlot;
2467
MethodInfo__anon2cf01d430611::VFTableBuilder::MethodInfo2468 MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex,
2469 bool UsesExtraSlot = false)
2470 : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex),
2471 Shadowed(false), UsesExtraSlot(UsesExtraSlot) {}
2472
MethodInfo__anon2cf01d430611::VFTableBuilder::MethodInfo2473 MethodInfo()
2474 : VBTableIndex(0), VFTableIndex(0), Shadowed(false),
2475 UsesExtraSlot(false) {}
2476 };
2477
2478 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
2479
2480 /// MethodInfoMap - The information for all methods in the vftable we're
2481 /// currently building.
2482 MethodInfoMapTy MethodInfoMap;
2483
2484 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
2485
2486 /// VTableThunks - The thunks by vftable index in the vftable currently being
2487 /// built.
2488 VTableThunksMapTy VTableThunks;
2489
2490 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
2491 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
2492
2493 /// Thunks - A map that contains all the thunks needed for all methods in the
2494 /// most derived class for which the vftable is currently being built.
2495 ThunksMapTy Thunks;
2496
2497 /// AddThunk - Add a thunk for the given method.
AddThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk)2498 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
2499 SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];
2500
2501 // Check if we have this thunk already.
2502 if (llvm::is_contained(ThunksVector, Thunk))
2503 return;
2504
2505 ThunksVector.push_back(Thunk);
2506 }
2507
2508 /// ComputeThisOffset - Returns the 'this' argument offset for the given
2509 /// method, relative to the beginning of the MostDerivedClass.
2510 CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider);
2511
2512 void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,
2513 CharUnits ThisOffset, ThisAdjustment &TA);
2514
2515 /// AddMethod - Add a single virtual member function to the vftable
2516 /// components vector.
AddMethod(const CXXMethodDecl * MD,ThunkInfo TI)2517 void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) {
2518 if (!TI.isEmpty()) {
2519 VTableThunks[Components.size()] = TI;
2520 AddThunk(MD, TI);
2521 }
2522 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2523 assert(TI.Return.isEmpty() &&
2524 "Destructor can't have return adjustment!");
2525 Components.push_back(VTableComponent::MakeDeletingDtor(DD));
2526 } else {
2527 Components.push_back(VTableComponent::MakeFunction(MD));
2528 }
2529 }
2530
2531 /// AddMethods - Add the methods of this base subobject and the relevant
2532 /// subbases to the vftable we're currently laying out.
2533 void AddMethods(BaseSubobject Base, unsigned BaseDepth,
2534 const CXXRecordDecl *LastVBase,
2535 BasesSetVectorTy &VisitedBases);
2536
LayoutVFTable()2537 void LayoutVFTable() {
2538 // RTTI data goes before all other entries.
2539 if (HasRTTIComponent)
2540 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
2541
2542 BasesSetVectorTy VisitedBases;
2543 AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr,
2544 VisitedBases);
2545 // Note that it is possible for the vftable to contain only an RTTI
2546 // pointer, if all virtual functions are constewval.
2547 assert(!Components.empty() && "vftable can't be empty");
2548
2549 assert(MethodVFTableLocations.empty());
2550 for (const auto &I : MethodInfoMap) {
2551 const CXXMethodDecl *MD = I.first;
2552 const MethodInfo &MI = I.second;
2553 assert(MD == MD->getCanonicalDecl());
2554
2555 // Skip the methods that the MostDerivedClass didn't override
2556 // and the entries shadowed by return adjusting thunks.
2557 if (MD->getParent() != MostDerivedClass || MI.Shadowed)
2558 continue;
2559 MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(),
2560 WhichVFPtr.NonVirtualOffset, MI.VFTableIndex);
2561 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2562 MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc;
2563 } else {
2564 MethodVFTableLocations[MD] = Loc;
2565 }
2566 }
2567 }
2568
2569 public:
VFTableBuilder(MicrosoftVTableContext & VTables,const CXXRecordDecl * MostDerivedClass,const VPtrInfo & Which)2570 VFTableBuilder(MicrosoftVTableContext &VTables,
2571 const CXXRecordDecl *MostDerivedClass, const VPtrInfo &Which)
2572 : VTables(VTables),
2573 Context(MostDerivedClass->getASTContext()),
2574 MostDerivedClass(MostDerivedClass),
2575 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)),
2576 WhichVFPtr(Which),
2577 Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) {
2578 // Provide the RTTI component if RTTIData is enabled. If the vftable would
2579 // be available externally, we should not provide the RTTI componenent. It
2580 // is currently impossible to get available externally vftables with either
2581 // dllimport or extern template instantiations, but eventually we may add a
2582 // flag to support additional devirtualization that needs this.
2583 if (Context.getLangOpts().RTTIData)
2584 HasRTTIComponent = true;
2585
2586 LayoutVFTable();
2587
2588 if (Context.getLangOpts().DumpVTableLayouts)
2589 dumpLayout(llvm::outs());
2590 }
2591
getNumThunks() const2592 uint64_t getNumThunks() const { return Thunks.size(); }
2593
thunks_begin() const2594 ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); }
2595
thunks_end() const2596 ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); }
2597
vtable_locations() const2598 method_locations_range vtable_locations() const {
2599 return method_locations_range(MethodVFTableLocations.begin(),
2600 MethodVFTableLocations.end());
2601 }
2602
vtable_components() const2603 ArrayRef<VTableComponent> vtable_components() const { return Components; }
2604
vtable_thunks_begin() const2605 VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
2606 return VTableThunks.begin();
2607 }
2608
vtable_thunks_end() const2609 VTableThunksMapTy::const_iterator vtable_thunks_end() const {
2610 return VTableThunks.end();
2611 }
2612
2613 void dumpLayout(raw_ostream &);
2614 };
2615
2616 } // end namespace
2617
2618 // Let's study one class hierarchy as an example:
2619 // struct A {
2620 // virtual void f();
2621 // int x;
2622 // };
2623 //
2624 // struct B : virtual A {
2625 // virtual void f();
2626 // };
2627 //
2628 // Record layouts:
2629 // struct A:
2630 // 0 | (A vftable pointer)
2631 // 4 | int x
2632 //
2633 // struct B:
2634 // 0 | (B vbtable pointer)
2635 // 4 | struct A (virtual base)
2636 // 4 | (A vftable pointer)
2637 // 8 | int x
2638 //
2639 // Let's assume we have a pointer to the A part of an object of dynamic type B:
2640 // B b;
2641 // A *a = (A*)&b;
2642 // a->f();
2643 //
2644 // In this hierarchy, f() belongs to the vftable of A, so B::f() expects
2645 // "this" parameter to point at the A subobject, which is B+4.
2646 // In the B::f() prologue, it adjusts "this" back to B by subtracting 4,
2647 // performed as a *static* adjustment.
2648 //
2649 // Interesting thing happens when we alter the relative placement of A and B
2650 // subobjects in a class:
2651 // struct C : virtual B { };
2652 //
2653 // C c;
2654 // A *a = (A*)&c;
2655 // a->f();
2656 //
2657 // Respective record layout is:
2658 // 0 | (C vbtable pointer)
2659 // 4 | struct A (virtual base)
2660 // 4 | (A vftable pointer)
2661 // 8 | int x
2662 // 12 | struct B (virtual base)
2663 // 12 | (B vbtable pointer)
2664 //
2665 // The final overrider of f() in class C is still B::f(), so B+4 should be
2666 // passed as "this" to that code. However, "a" points at B-8, so the respective
2667 // vftable entry should hold a thunk that adds 12 to the "this" argument before
2668 // performing a tail call to B::f().
2669 //
2670 // With this example in mind, we can now calculate the 'this' argument offset
2671 // for the given method, relative to the beginning of the MostDerivedClass.
2672 CharUnits
ComputeThisOffset(FinalOverriders::OverriderInfo Overrider)2673 VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) {
2674 BasesSetVectorTy Bases;
2675
2676 {
2677 // Find the set of least derived bases that define the given method.
2678 OverriddenMethodsSetTy VisitedOverriddenMethods;
2679 auto InitialOverriddenDefinitionCollector = [&](
2680 const CXXMethodDecl *OverriddenMD) {
2681 if (OverriddenMD->size_overridden_methods() == 0)
2682 Bases.insert(OverriddenMD->getParent());
2683 // Don't recurse on this method if we've already collected it.
2684 return VisitedOverriddenMethods.insert(OverriddenMD).second;
2685 };
2686 visitAllOverriddenMethods(Overrider.Method,
2687 InitialOverriddenDefinitionCollector);
2688 }
2689
2690 // If there are no overrides then 'this' is located
2691 // in the base that defines the method.
2692 if (Bases.size() == 0)
2693 return Overrider.Offset;
2694
2695 CXXBasePaths Paths;
2696 Overrider.Method->getParent()->lookupInBases(
2697 [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) {
2698 return Bases.count(Specifier->getType()->getAsCXXRecordDecl());
2699 },
2700 Paths);
2701
2702 // This will hold the smallest this offset among overridees of MD.
2703 // This implies that an offset of a non-virtual base will dominate an offset
2704 // of a virtual base to potentially reduce the number of thunks required
2705 // in the derived classes that inherit this method.
2706 CharUnits Ret;
2707 bool First = true;
2708
2709 const ASTRecordLayout &OverriderRDLayout =
2710 Context.getASTRecordLayout(Overrider.Method->getParent());
2711 for (const CXXBasePath &Path : Paths) {
2712 CharUnits ThisOffset = Overrider.Offset;
2713 CharUnits LastVBaseOffset;
2714
2715 // For each path from the overrider to the parents of the overridden
2716 // methods, traverse the path, calculating the this offset in the most
2717 // derived class.
2718 for (const CXXBasePathElement &Element : Path) {
2719 QualType CurTy = Element.Base->getType();
2720 const CXXRecordDecl *PrevRD = Element.Class,
2721 *CurRD = CurTy->getAsCXXRecordDecl();
2722 const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD);
2723
2724 if (Element.Base->isVirtual()) {
2725 // The interesting things begin when you have virtual inheritance.
2726 // The final overrider will use a static adjustment equal to the offset
2727 // of the vbase in the final overrider class.
2728 // For example, if the final overrider is in a vbase B of the most
2729 // derived class and it overrides a method of the B's own vbase A,
2730 // it uses A* as "this". In its prologue, it can cast A* to B* with
2731 // a static offset. This offset is used regardless of the actual
2732 // offset of A from B in the most derived class, requiring an
2733 // this-adjusting thunk in the vftable if A and B are laid out
2734 // differently in the most derived class.
2735 LastVBaseOffset = ThisOffset =
2736 Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD);
2737 } else {
2738 ThisOffset += Layout.getBaseClassOffset(CurRD);
2739 }
2740 }
2741
2742 if (isa<CXXDestructorDecl>(Overrider.Method)) {
2743 if (LastVBaseOffset.isZero()) {
2744 // If a "Base" class has at least one non-virtual base with a virtual
2745 // destructor, the "Base" virtual destructor will take the address
2746 // of the "Base" subobject as the "this" argument.
2747 ThisOffset = Overrider.Offset;
2748 } else {
2749 // A virtual destructor of a virtual base takes the address of the
2750 // virtual base subobject as the "this" argument.
2751 ThisOffset = LastVBaseOffset;
2752 }
2753 }
2754
2755 if (Ret > ThisOffset || First) {
2756 First = false;
2757 Ret = ThisOffset;
2758 }
2759 }
2760
2761 assert(!First && "Method not found in the given subobject?");
2762 return Ret;
2763 }
2764
2765 // Things are getting even more complex when the "this" adjustment has to
2766 // use a dynamic offset instead of a static one, or even two dynamic offsets.
2767 // This is sometimes required when a virtual call happens in the middle of
2768 // a non-most-derived class construction or destruction.
2769 //
2770 // Let's take a look at the following example:
2771 // struct A {
2772 // virtual void f();
2773 // };
2774 //
2775 // void foo(A *a) { a->f(); } // Knows nothing about siblings of A.
2776 //
2777 // struct B : virtual A {
2778 // virtual void f();
2779 // B() {
2780 // foo(this);
2781 // }
2782 // };
2783 //
2784 // struct C : virtual B {
2785 // virtual void f();
2786 // };
2787 //
2788 // Record layouts for these classes are:
2789 // struct A
2790 // 0 | (A vftable pointer)
2791 //
2792 // struct B
2793 // 0 | (B vbtable pointer)
2794 // 4 | (vtordisp for vbase A)
2795 // 8 | struct A (virtual base)
2796 // 8 | (A vftable pointer)
2797 //
2798 // struct C
2799 // 0 | (C vbtable pointer)
2800 // 4 | (vtordisp for vbase A)
2801 // 8 | struct A (virtual base) // A precedes B!
2802 // 8 | (A vftable pointer)
2803 // 12 | struct B (virtual base)
2804 // 12 | (B vbtable pointer)
2805 //
2806 // When one creates an object of type C, the C constructor:
2807 // - initializes all the vbptrs, then
2808 // - calls the A subobject constructor
2809 // (initializes A's vfptr with an address of A vftable), then
2810 // - calls the B subobject constructor
2811 // (initializes A's vfptr with an address of B vftable and vtordisp for A),
2812 // that in turn calls foo(), then
2813 // - initializes A's vfptr with an address of C vftable and zeroes out the
2814 // vtordisp
2815 // FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable
2816 // without vtordisp thunks?
2817 // FIXME: how are vtordisp handled in the presence of nooverride/final?
2818 //
2819 // When foo() is called, an object with a layout of class C has a vftable
2820 // referencing B::f() that assumes a B layout, so the "this" adjustments are
2821 // incorrect, unless an extra adjustment is done. This adjustment is called
2822 // "vtordisp adjustment". Vtordisp basically holds the difference between the
2823 // actual location of a vbase in the layout class and the location assumed by
2824 // the vftable of the class being constructed/destructed. Vtordisp is only
2825 // needed if "this" escapes a
2826 // structor (or we can't prove otherwise).
2827 // [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an
2828 // estimation of a dynamic adjustment]
2829 //
2830 // foo() gets a pointer to the A vbase and doesn't know anything about B or C,
2831 // so it just passes that pointer as "this" in a virtual call.
2832 // If there was no vtordisp, that would just dispatch to B::f().
2833 // However, B::f() assumes B+8 is passed as "this",
2834 // yet the pointer foo() passes along is B-4 (i.e. C+8).
2835 // An extra adjustment is needed, so we emit a thunk into the B vftable.
2836 // This vtordisp thunk subtracts the value of vtordisp
2837 // from the "this" argument (-12) before making a tailcall to B::f().
2838 //
2839 // Let's consider an even more complex example:
2840 // struct D : virtual B, virtual C {
2841 // D() {
2842 // foo(this);
2843 // }
2844 // };
2845 //
2846 // struct D
2847 // 0 | (D vbtable pointer)
2848 // 4 | (vtordisp for vbase A)
2849 // 8 | struct A (virtual base) // A precedes both B and C!
2850 // 8 | (A vftable pointer)
2851 // 12 | struct B (virtual base) // B precedes C!
2852 // 12 | (B vbtable pointer)
2853 // 16 | struct C (virtual base)
2854 // 16 | (C vbtable pointer)
2855 //
2856 // When D::D() calls foo(), we find ourselves in a thunk that should tailcall
2857 // to C::f(), which assumes C+8 as its "this" parameter. This time, foo()
2858 // passes along A, which is C-8. The A vtordisp holds
2859 // "D.vbptr[index_of_A] - offset_of_A_in_D"
2860 // and we statically know offset_of_A_in_D, so can get a pointer to D.
2861 // When we know it, we can make an extra vbtable lookup to locate the C vbase
2862 // and one extra static adjustment to calculate the expected value of C+8.
CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,CharUnits ThisOffset,ThisAdjustment & TA)2863 void VFTableBuilder::CalculateVtordispAdjustment(
2864 FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset,
2865 ThisAdjustment &TA) {
2866 const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap =
2867 MostDerivedClassLayout.getVBaseOffsetsMap();
2868 const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry =
2869 VBaseMap.find(WhichVFPtr.getVBaseWithVPtr());
2870 assert(VBaseMapEntry != VBaseMap.end());
2871
2872 // If there's no vtordisp or the final overrider is defined in the same vbase
2873 // as the initial declaration, we don't need any vtordisp adjustment.
2874 if (!VBaseMapEntry->second.hasVtorDisp() ||
2875 Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr())
2876 return;
2877
2878 // OK, now we know we need to use a vtordisp thunk.
2879 // The implicit vtordisp field is located right before the vbase.
2880 CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset;
2881 TA.Virtual.Microsoft.VtordispOffset =
2882 (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4;
2883
2884 // A simple vtordisp thunk will suffice if the final overrider is defined
2885 // in either the most derived class or its non-virtual base.
2886 if (Overrider.Method->getParent() == MostDerivedClass ||
2887 !Overrider.VirtualBase)
2888 return;
2889
2890 // Otherwise, we need to do use the dynamic offset of the final overrider
2891 // in order to get "this" adjustment right.
2892 TA.Virtual.Microsoft.VBPtrOffset =
2893 (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset -
2894 MostDerivedClassLayout.getVBPtrOffset()).getQuantity();
2895 TA.Virtual.Microsoft.VBOffsetOffset =
2896 Context.getTypeSizeInChars(Context.IntTy).getQuantity() *
2897 VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase);
2898
2899 TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity();
2900 }
2901
GroupNewVirtualOverloads(const CXXRecordDecl * RD,SmallVector<const CXXMethodDecl *,10> & VirtualMethods)2902 static void GroupNewVirtualOverloads(
2903 const CXXRecordDecl *RD,
2904 SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) {
2905 // Put the virtual methods into VirtualMethods in the proper order:
2906 // 1) Group overloads by declaration name. New groups are added to the
2907 // vftable in the order of their first declarations in this class
2908 // (including overrides, non-virtual methods and any other named decl that
2909 // might be nested within the class).
2910 // 2) In each group, new overloads appear in the reverse order of declaration.
2911 typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup;
2912 SmallVector<MethodGroup, 10> Groups;
2913 typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy;
2914 VisitedGroupIndicesTy VisitedGroupIndices;
2915 for (const auto *D : RD->decls()) {
2916 const auto *ND = dyn_cast<NamedDecl>(D);
2917 if (!ND)
2918 continue;
2919 VisitedGroupIndicesTy::iterator J;
2920 bool Inserted;
2921 std::tie(J, Inserted) = VisitedGroupIndices.insert(
2922 std::make_pair(ND->getDeclName(), Groups.size()));
2923 if (Inserted)
2924 Groups.push_back(MethodGroup());
2925 if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
2926 if (MicrosoftVTableContext::hasVtableSlot(MD))
2927 Groups[J->second].push_back(MD->getCanonicalDecl());
2928 }
2929
2930 for (const MethodGroup &Group : Groups)
2931 VirtualMethods.append(Group.rbegin(), Group.rend());
2932 }
2933
isDirectVBase(const CXXRecordDecl * Base,const CXXRecordDecl * RD)2934 static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) {
2935 for (const auto &B : RD->bases()) {
2936 if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base)
2937 return true;
2938 }
2939 return false;
2940 }
2941
AddMethods(BaseSubobject Base,unsigned BaseDepth,const CXXRecordDecl * LastVBase,BasesSetVectorTy & VisitedBases)2942 void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth,
2943 const CXXRecordDecl *LastVBase,
2944 BasesSetVectorTy &VisitedBases) {
2945 const CXXRecordDecl *RD = Base.getBase();
2946 if (!RD->isPolymorphic())
2947 return;
2948
2949 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2950
2951 // See if this class expands a vftable of the base we look at, which is either
2952 // the one defined by the vfptr base path or the primary base of the current
2953 // class.
2954 const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase;
2955 CharUnits NextBaseOffset;
2956 if (BaseDepth < WhichVFPtr.PathToIntroducingObject.size()) {
2957 NextBase = WhichVFPtr.PathToIntroducingObject[BaseDepth];
2958 if (isDirectVBase(NextBase, RD)) {
2959 NextLastVBase = NextBase;
2960 NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase);
2961 } else {
2962 NextBaseOffset =
2963 Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase);
2964 }
2965 } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
2966 assert(!Layout.isPrimaryBaseVirtual() &&
2967 "No primary virtual bases in this ABI");
2968 NextBase = PrimaryBase;
2969 NextBaseOffset = Base.getBaseOffset();
2970 }
2971
2972 if (NextBase) {
2973 AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1,
2974 NextLastVBase, VisitedBases);
2975 if (!VisitedBases.insert(NextBase))
2976 llvm_unreachable("Found a duplicate primary base!");
2977 }
2978
2979 SmallVector<const CXXMethodDecl*, 10> VirtualMethods;
2980 // Put virtual methods in the proper order.
2981 GroupNewVirtualOverloads(RD, VirtualMethods);
2982
2983 // Now go through all virtual member functions and add them to the current
2984 // vftable. This is done by
2985 // - replacing overridden methods in their existing slots, as long as they
2986 // don't require return adjustment; calculating This adjustment if needed.
2987 // - adding new slots for methods of the current base not present in any
2988 // sub-bases;
2989 // - adding new slots for methods that require Return adjustment.
2990 // We keep track of the methods visited in the sub-bases in MethodInfoMap.
2991 for (const CXXMethodDecl *MD : VirtualMethods) {
2992 FinalOverriders::OverriderInfo FinalOverrider =
2993 Overriders.getOverrider(MD, Base.getBaseOffset());
2994 const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method;
2995 const CXXMethodDecl *OverriddenMD =
2996 FindNearestOverriddenMethod(MD, VisitedBases);
2997
2998 ThisAdjustment ThisAdjustmentOffset;
2999 bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false;
3000 CharUnits ThisOffset = ComputeThisOffset(FinalOverrider);
3001 ThisAdjustmentOffset.NonVirtual =
3002 (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity();
3003 if ((OverriddenMD || FinalOverriderMD != MD) &&
3004 WhichVFPtr.getVBaseWithVPtr())
3005 CalculateVtordispAdjustment(FinalOverrider, ThisOffset,
3006 ThisAdjustmentOffset);
3007
3008 unsigned VBIndex =
3009 LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0;
3010
3011 if (OverriddenMD) {
3012 // If MD overrides anything in this vftable, we need to update the
3013 // entries.
3014 MethodInfoMapTy::iterator OverriddenMDIterator =
3015 MethodInfoMap.find(OverriddenMD);
3016
3017 // If the overridden method went to a different vftable, skip it.
3018 if (OverriddenMDIterator == MethodInfoMap.end())
3019 continue;
3020
3021 MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second;
3022
3023 VBIndex = OverriddenMethodInfo.VBTableIndex;
3024
3025 // Let's check if the overrider requires any return adjustments.
3026 // We must create a new slot if the MD's return type is not trivially
3027 // convertible to the OverriddenMD's one.
3028 // Once a chain of method overrides adds a return adjusting vftable slot,
3029 // all subsequent overrides will also use an extra method slot.
3030 ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset(
3031 Context, MD, OverriddenMD).isEmpty() ||
3032 OverriddenMethodInfo.UsesExtraSlot;
3033
3034 if (!ReturnAdjustingThunk) {
3035 // No return adjustment needed - just replace the overridden method info
3036 // with the current info.
3037 MethodInfo MI(VBIndex, OverriddenMethodInfo.VFTableIndex);
3038 MethodInfoMap.erase(OverriddenMDIterator);
3039
3040 assert(!MethodInfoMap.count(MD) &&
3041 "Should not have method info for this method yet!");
3042 MethodInfoMap.insert(std::make_pair(MD, MI));
3043 continue;
3044 }
3045
3046 // In case we need a return adjustment, we'll add a new slot for
3047 // the overrider. Mark the overridden method as shadowed by the new slot.
3048 OverriddenMethodInfo.Shadowed = true;
3049
3050 // Force a special name mangling for a return-adjusting thunk
3051 // unless the method is the final overrider without this adjustment.
3052 ForceReturnAdjustmentMangling =
3053 !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty());
3054 } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC ||
3055 MD->size_overridden_methods()) {
3056 // Skip methods that don't belong to the vftable of the current class,
3057 // e.g. each method that wasn't seen in any of the visited sub-bases
3058 // but overrides multiple methods of other sub-bases.
3059 continue;
3060 }
3061
3062 // If we got here, MD is a method not seen in any of the sub-bases or
3063 // it requires return adjustment. Insert the method info for this method.
3064 MethodInfo MI(VBIndex,
3065 HasRTTIComponent ? Components.size() - 1 : Components.size(),
3066 ReturnAdjustingThunk);
3067
3068 assert(!MethodInfoMap.count(MD) &&
3069 "Should not have method info for this method yet!");
3070 MethodInfoMap.insert(std::make_pair(MD, MI));
3071
3072 // Check if this overrider needs a return adjustment.
3073 // We don't want to do this for pure virtual member functions.
3074 BaseOffset ReturnAdjustmentOffset;
3075 ReturnAdjustment ReturnAdjustment;
3076 if (!FinalOverriderMD->isPure()) {
3077 ReturnAdjustmentOffset =
3078 ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD);
3079 }
3080 if (!ReturnAdjustmentOffset.isEmpty()) {
3081 ForceReturnAdjustmentMangling = true;
3082 ReturnAdjustment.NonVirtual =
3083 ReturnAdjustmentOffset.NonVirtualOffset.getQuantity();
3084 if (ReturnAdjustmentOffset.VirtualBase) {
3085 const ASTRecordLayout &DerivedLayout =
3086 Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass);
3087 ReturnAdjustment.Virtual.Microsoft.VBPtrOffset =
3088 DerivedLayout.getVBPtrOffset().getQuantity();
3089 ReturnAdjustment.Virtual.Microsoft.VBIndex =
3090 VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass,
3091 ReturnAdjustmentOffset.VirtualBase);
3092 }
3093 }
3094
3095 AddMethod(FinalOverriderMD,
3096 ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment,
3097 ForceReturnAdjustmentMangling ? MD : nullptr));
3098 }
3099 }
3100
PrintBasePath(const VPtrInfo::BasePath & Path,raw_ostream & Out)3101 static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) {
3102 for (const CXXRecordDecl *Elem : llvm::reverse(Path)) {
3103 Out << "'";
3104 Elem->printQualifiedName(Out);
3105 Out << "' in ";
3106 }
3107 }
3108
dumpMicrosoftThunkAdjustment(const ThunkInfo & TI,raw_ostream & Out,bool ContinueFirstLine)3109 static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out,
3110 bool ContinueFirstLine) {
3111 const ReturnAdjustment &R = TI.Return;
3112 bool Multiline = false;
3113 const char *LinePrefix = "\n ";
3114 if (!R.isEmpty() || TI.Method) {
3115 if (!ContinueFirstLine)
3116 Out << LinePrefix;
3117 Out << "[return adjustment (to type '"
3118 << TI.Method->getReturnType().getCanonicalType() << "'): ";
3119 if (R.Virtual.Microsoft.VBPtrOffset)
3120 Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", ";
3121 if (R.Virtual.Microsoft.VBIndex)
3122 Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", ";
3123 Out << R.NonVirtual << " non-virtual]";
3124 Multiline = true;
3125 }
3126
3127 const ThisAdjustment &T = TI.This;
3128 if (!T.isEmpty()) {
3129 if (Multiline || !ContinueFirstLine)
3130 Out << LinePrefix;
3131 Out << "[this adjustment: ";
3132 if (!TI.This.Virtual.isEmpty()) {
3133 assert(T.Virtual.Microsoft.VtordispOffset < 0);
3134 Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", ";
3135 if (T.Virtual.Microsoft.VBPtrOffset) {
3136 Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset
3137 << " to the left,";
3138 assert(T.Virtual.Microsoft.VBOffsetOffset > 0);
3139 Out << LinePrefix << " vboffset at "
3140 << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, ";
3141 }
3142 }
3143 Out << T.NonVirtual << " non-virtual]";
3144 }
3145 }
3146
dumpLayout(raw_ostream & Out)3147 void VFTableBuilder::dumpLayout(raw_ostream &Out) {
3148 Out << "VFTable for ";
3149 PrintBasePath(WhichVFPtr.PathToIntroducingObject, Out);
3150 Out << "'";
3151 MostDerivedClass->printQualifiedName(Out);
3152 Out << "' (" << Components.size()
3153 << (Components.size() == 1 ? " entry" : " entries") << ").\n";
3154
3155 for (unsigned I = 0, E = Components.size(); I != E; ++I) {
3156 Out << llvm::format("%4d | ", I);
3157
3158 const VTableComponent &Component = Components[I];
3159
3160 // Dump the component.
3161 switch (Component.getKind()) {
3162 case VTableComponent::CK_RTTI:
3163 Component.getRTTIDecl()->printQualifiedName(Out);
3164 Out << " RTTI";
3165 break;
3166
3167 case VTableComponent::CK_FunctionPointer: {
3168 const CXXMethodDecl *MD = Component.getFunctionDecl();
3169
3170 // FIXME: Figure out how to print the real thunk type, since they can
3171 // differ in the return type.
3172 std::string Str = PredefinedExpr::ComputeName(
3173 PredefinedExpr::PrettyFunctionNoVirtual, MD);
3174 Out << Str;
3175 if (MD->isPure())
3176 Out << " [pure]";
3177
3178 if (MD->isDeleted())
3179 Out << " [deleted]";
3180
3181 ThunkInfo Thunk = VTableThunks.lookup(I);
3182 if (!Thunk.isEmpty())
3183 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3184
3185 break;
3186 }
3187
3188 case VTableComponent::CK_DeletingDtorPointer: {
3189 const CXXDestructorDecl *DD = Component.getDestructorDecl();
3190
3191 DD->printQualifiedName(Out);
3192 Out << "() [scalar deleting]";
3193
3194 if (DD->isPure())
3195 Out << " [pure]";
3196
3197 ThunkInfo Thunk = VTableThunks.lookup(I);
3198 if (!Thunk.isEmpty()) {
3199 assert(Thunk.Return.isEmpty() &&
3200 "No return adjustment needed for destructors!");
3201 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3202 }
3203
3204 break;
3205 }
3206
3207 default:
3208 DiagnosticsEngine &Diags = Context.getDiagnostics();
3209 unsigned DiagID = Diags.getCustomDiagID(
3210 DiagnosticsEngine::Error,
3211 "Unexpected vftable component type %0 for component number %1");
3212 Diags.Report(MostDerivedClass->getLocation(), DiagID)
3213 << I << Component.getKind();
3214 }
3215
3216 Out << '\n';
3217 }
3218
3219 Out << '\n';
3220
3221 if (!Thunks.empty()) {
3222 // We store the method names in a map to get a stable order.
3223 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
3224
3225 for (const auto &I : Thunks) {
3226 const CXXMethodDecl *MD = I.first;
3227 std::string MethodName = PredefinedExpr::ComputeName(
3228 PredefinedExpr::PrettyFunctionNoVirtual, MD);
3229
3230 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
3231 }
3232
3233 for (const auto &MethodNameAndDecl : MethodNamesAndDecls) {
3234 const std::string &MethodName = MethodNameAndDecl.first;
3235 const CXXMethodDecl *MD = MethodNameAndDecl.second;
3236
3237 ThunkInfoVectorTy ThunksVector = Thunks[MD];
3238 llvm::stable_sort(ThunksVector, [](const ThunkInfo &LHS,
3239 const ThunkInfo &RHS) {
3240 // Keep different thunks with the same adjustments in the order they
3241 // were put into the vector.
3242 return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
3243 });
3244
3245 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
3246 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
3247
3248 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
3249 const ThunkInfo &Thunk = ThunksVector[I];
3250
3251 Out << llvm::format("%4d | ", I);
3252 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true);
3253 Out << '\n';
3254 }
3255
3256 Out << '\n';
3257 }
3258 }
3259
3260 Out.flush();
3261 }
3262
setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *,4> & A,ArrayRef<const CXXRecordDecl * > B)3263 static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A,
3264 ArrayRef<const CXXRecordDecl *> B) {
3265 for (const CXXRecordDecl *Decl : B) {
3266 if (A.count(Decl))
3267 return true;
3268 }
3269 return false;
3270 }
3271
3272 static bool rebucketPaths(VPtrInfoVector &Paths);
3273
3274 /// Produces MSVC-compatible vbtable data. The symbols produced by this
3275 /// algorithm match those produced by MSVC 2012 and newer, which is different
3276 /// from MSVC 2010.
3277 ///
3278 /// MSVC 2012 appears to minimize the vbtable names using the following
3279 /// algorithm. First, walk the class hierarchy in the usual order, depth first,
3280 /// left to right, to find all of the subobjects which contain a vbptr field.
3281 /// Visiting each class node yields a list of inheritance paths to vbptrs. Each
3282 /// record with a vbptr creates an initially empty path.
3283 ///
3284 /// To combine paths from child nodes, the paths are compared to check for
3285 /// ambiguity. Paths are "ambiguous" if multiple paths have the same set of
3286 /// components in the same order. Each group of ambiguous paths is extended by
3287 /// appending the class of the base from which it came. If the current class
3288 /// node produced an ambiguous path, its path is extended with the current class.
3289 /// After extending paths, MSVC again checks for ambiguity, and extends any
3290 /// ambiguous path which wasn't already extended. Because each node yields an
3291 /// unambiguous set of paths, MSVC doesn't need to extend any path more than once
3292 /// to produce an unambiguous set of paths.
3293 ///
3294 /// TODO: Presumably vftables use the same algorithm.
computeVTablePaths(bool ForVBTables,const CXXRecordDecl * RD,VPtrInfoVector & Paths)3295 void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables,
3296 const CXXRecordDecl *RD,
3297 VPtrInfoVector &Paths) {
3298 assert(Paths.empty());
3299 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3300
3301 // Base case: this subobject has its own vptr.
3302 if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr())
3303 Paths.push_back(std::make_unique<VPtrInfo>(RD));
3304
3305 // Recursive case: get all the vbtables from our bases and remove anything
3306 // that shares a virtual base.
3307 llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
3308 for (const auto &B : RD->bases()) {
3309 const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
3310 if (B.isVirtual() && VBasesSeen.count(Base))
3311 continue;
3312
3313 if (!Base->isDynamicClass())
3314 continue;
3315
3316 const VPtrInfoVector &BasePaths =
3317 ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base);
3318
3319 for (const std::unique_ptr<VPtrInfo> &BaseInfo : BasePaths) {
3320 // Don't include the path if it goes through a virtual base that we've
3321 // already included.
3322 if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases))
3323 continue;
3324
3325 // Copy the path and adjust it as necessary.
3326 auto P = std::make_unique<VPtrInfo>(*BaseInfo);
3327
3328 // We mangle Base into the path if the path would've been ambiguous and it
3329 // wasn't already extended with Base.
3330 if (P->MangledPath.empty() || P->MangledPath.back() != Base)
3331 P->NextBaseToMangle = Base;
3332
3333 // Keep track of which vtable the derived class is going to extend with
3334 // new methods or bases. We append to either the vftable of our primary
3335 // base, or the first non-virtual base that has a vbtable.
3336 if (P->ObjectWithVPtr == Base &&
3337 Base == (ForVBTables ? Layout.getBaseSharingVBPtr()
3338 : Layout.getPrimaryBase()))
3339 P->ObjectWithVPtr = RD;
3340
3341 // Keep track of the full adjustment from the MDC to this vtable. The
3342 // adjustment is captured by an optional vbase and a non-virtual offset.
3343 if (B.isVirtual())
3344 P->ContainingVBases.push_back(Base);
3345 else if (P->ContainingVBases.empty())
3346 P->NonVirtualOffset += Layout.getBaseClassOffset(Base);
3347
3348 // Update the full offset in the MDC.
3349 P->FullOffsetInMDC = P->NonVirtualOffset;
3350 if (const CXXRecordDecl *VB = P->getVBaseWithVPtr())
3351 P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB);
3352
3353 Paths.push_back(std::move(P));
3354 }
3355
3356 if (B.isVirtual())
3357 VBasesSeen.insert(Base);
3358
3359 // After visiting any direct base, we've transitively visited all of its
3360 // morally virtual bases.
3361 for (const auto &VB : Base->vbases())
3362 VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl());
3363 }
3364
3365 // Sort the paths into buckets, and if any of them are ambiguous, extend all
3366 // paths in ambiguous buckets.
3367 bool Changed = true;
3368 while (Changed)
3369 Changed = rebucketPaths(Paths);
3370 }
3371
extendPath(VPtrInfo & P)3372 static bool extendPath(VPtrInfo &P) {
3373 if (P.NextBaseToMangle) {
3374 P.MangledPath.push_back(P.NextBaseToMangle);
3375 P.NextBaseToMangle = nullptr;// Prevent the path from being extended twice.
3376 return true;
3377 }
3378 return false;
3379 }
3380
rebucketPaths(VPtrInfoVector & Paths)3381 static bool rebucketPaths(VPtrInfoVector &Paths) {
3382 // What we're essentially doing here is bucketing together ambiguous paths.
3383 // Any bucket with more than one path in it gets extended by NextBase, which
3384 // is usually the direct base of the inherited the vbptr. This code uses a
3385 // sorted vector to implement a multiset to form the buckets. Note that the
3386 // ordering is based on pointers, but it doesn't change our output order. The
3387 // current algorithm is designed to match MSVC 2012's names.
3388 llvm::SmallVector<std::reference_wrapper<VPtrInfo>, 2> PathsSorted(
3389 llvm::make_pointee_range(Paths));
3390 llvm::sort(PathsSorted, [](const VPtrInfo &LHS, const VPtrInfo &RHS) {
3391 return LHS.MangledPath < RHS.MangledPath;
3392 });
3393 bool Changed = false;
3394 for (size_t I = 0, E = PathsSorted.size(); I != E;) {
3395 // Scan forward to find the end of the bucket.
3396 size_t BucketStart = I;
3397 do {
3398 ++I;
3399 } while (I != E &&
3400 PathsSorted[BucketStart].get().MangledPath ==
3401 PathsSorted[I].get().MangledPath);
3402
3403 // If this bucket has multiple paths, extend them all.
3404 if (I - BucketStart > 1) {
3405 for (size_t II = BucketStart; II != I; ++II)
3406 Changed |= extendPath(PathsSorted[II]);
3407 assert(Changed && "no paths were extended to fix ambiguity");
3408 }
3409 }
3410 return Changed;
3411 }
3412
~MicrosoftVTableContext()3413 MicrosoftVTableContext::~MicrosoftVTableContext() {}
3414
3415 namespace {
3416 typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>,
3417 llvm::DenseSet<BaseSubobject>> FullPathTy;
3418 }
3419
3420 // This recursive function finds all paths from a subobject centered at
3421 // (RD, Offset) to the subobject located at IntroducingObject.
findPathsToSubobject(ASTContext & Context,const ASTRecordLayout & MostDerivedLayout,const CXXRecordDecl * RD,CharUnits Offset,BaseSubobject IntroducingObject,FullPathTy & FullPath,std::list<FullPathTy> & Paths)3422 static void findPathsToSubobject(ASTContext &Context,
3423 const ASTRecordLayout &MostDerivedLayout,
3424 const CXXRecordDecl *RD, CharUnits Offset,
3425 BaseSubobject IntroducingObject,
3426 FullPathTy &FullPath,
3427 std::list<FullPathTy> &Paths) {
3428 if (BaseSubobject(RD, Offset) == IntroducingObject) {
3429 Paths.push_back(FullPath);
3430 return;
3431 }
3432
3433 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3434
3435 for (const CXXBaseSpecifier &BS : RD->bases()) {
3436 const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl();
3437 CharUnits NewOffset = BS.isVirtual()
3438 ? MostDerivedLayout.getVBaseClassOffset(Base)
3439 : Offset + Layout.getBaseClassOffset(Base);
3440 FullPath.insert(BaseSubobject(Base, NewOffset));
3441 findPathsToSubobject(Context, MostDerivedLayout, Base, NewOffset,
3442 IntroducingObject, FullPath, Paths);
3443 FullPath.pop_back();
3444 }
3445 }
3446
3447 // Return the paths which are not subsets of other paths.
removeRedundantPaths(std::list<FullPathTy> & FullPaths)3448 static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) {
3449 FullPaths.remove_if([&](const FullPathTy &SpecificPath) {
3450 for (const FullPathTy &OtherPath : FullPaths) {
3451 if (&SpecificPath == &OtherPath)
3452 continue;
3453 if (llvm::all_of(SpecificPath, [&](const BaseSubobject &BSO) {
3454 return OtherPath.contains(BSO);
3455 })) {
3456 return true;
3457 }
3458 }
3459 return false;
3460 });
3461 }
3462
getOffsetOfFullPath(ASTContext & Context,const CXXRecordDecl * RD,const FullPathTy & FullPath)3463 static CharUnits getOffsetOfFullPath(ASTContext &Context,
3464 const CXXRecordDecl *RD,
3465 const FullPathTy &FullPath) {
3466 const ASTRecordLayout &MostDerivedLayout =
3467 Context.getASTRecordLayout(RD);
3468 CharUnits Offset = CharUnits::fromQuantity(-1);
3469 for (const BaseSubobject &BSO : FullPath) {
3470 const CXXRecordDecl *Base = BSO.getBase();
3471 // The first entry in the path is always the most derived record, skip it.
3472 if (Base == RD) {
3473 assert(Offset.getQuantity() == -1);
3474 Offset = CharUnits::Zero();
3475 continue;
3476 }
3477 assert(Offset.getQuantity() != -1);
3478 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3479 // While we know which base has to be traversed, we don't know if that base
3480 // was a virtual base.
3481 const CXXBaseSpecifier *BaseBS = std::find_if(
3482 RD->bases_begin(), RD->bases_end(), [&](const CXXBaseSpecifier &BS) {
3483 return BS.getType()->getAsCXXRecordDecl() == Base;
3484 });
3485 Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(Base)
3486 : Offset + Layout.getBaseClassOffset(Base);
3487 RD = Base;
3488 }
3489 return Offset;
3490 }
3491
3492 // We want to select the path which introduces the most covariant overrides. If
3493 // two paths introduce overrides which the other path doesn't contain, issue a
3494 // diagnostic.
selectBestPath(ASTContext & Context,const CXXRecordDecl * RD,const VPtrInfo & Info,std::list<FullPathTy> & FullPaths)3495 static const FullPathTy *selectBestPath(ASTContext &Context,
3496 const CXXRecordDecl *RD,
3497 const VPtrInfo &Info,
3498 std::list<FullPathTy> &FullPaths) {
3499 // Handle some easy cases first.
3500 if (FullPaths.empty())
3501 return nullptr;
3502 if (FullPaths.size() == 1)
3503 return &FullPaths.front();
3504
3505 const FullPathTy *BestPath = nullptr;
3506 typedef std::set<const CXXMethodDecl *> OverriderSetTy;
3507 OverriderSetTy LastOverrides;
3508 for (const FullPathTy &SpecificPath : FullPaths) {
3509 assert(!SpecificPath.empty());
3510 OverriderSetTy CurrentOverrides;
3511 const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase();
3512 // Find the distance from the start of the path to the subobject with the
3513 // VPtr.
3514 CharUnits BaseOffset =
3515 getOffsetOfFullPath(Context, TopLevelRD, SpecificPath);
3516 FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD);
3517 for (const CXXMethodDecl *MD : Info.IntroducingObject->methods()) {
3518 if (!MicrosoftVTableContext::hasVtableSlot(MD))
3519 continue;
3520 FinalOverriders::OverriderInfo OI =
3521 Overriders.getOverrider(MD->getCanonicalDecl(), BaseOffset);
3522 const CXXMethodDecl *OverridingMethod = OI.Method;
3523 // Only overriders which have a return adjustment introduce problematic
3524 // thunks.
3525 if (ComputeReturnAdjustmentBaseOffset(Context, OverridingMethod, MD)
3526 .isEmpty())
3527 continue;
3528 // It's possible that the overrider isn't in this path. If so, skip it
3529 // because this path didn't introduce it.
3530 const CXXRecordDecl *OverridingParent = OverridingMethod->getParent();
3531 if (llvm::none_of(SpecificPath, [&](const BaseSubobject &BSO) {
3532 return BSO.getBase() == OverridingParent;
3533 }))
3534 continue;
3535 CurrentOverrides.insert(OverridingMethod);
3536 }
3537 OverriderSetTy NewOverrides =
3538 llvm::set_difference(CurrentOverrides, LastOverrides);
3539 if (NewOverrides.empty())
3540 continue;
3541 OverriderSetTy MissingOverrides =
3542 llvm::set_difference(LastOverrides, CurrentOverrides);
3543 if (MissingOverrides.empty()) {
3544 // This path is a strict improvement over the last path, let's use it.
3545 BestPath = &SpecificPath;
3546 std::swap(CurrentOverrides, LastOverrides);
3547 } else {
3548 // This path introduces an overrider with a conflicting covariant thunk.
3549 DiagnosticsEngine &Diags = Context.getDiagnostics();
3550 const CXXMethodDecl *CovariantMD = *NewOverrides.begin();
3551 const CXXMethodDecl *ConflictMD = *MissingOverrides.begin();
3552 Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component)
3553 << RD;
3554 Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk)
3555 << CovariantMD;
3556 Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk)
3557 << ConflictMD;
3558 }
3559 }
3560 // Go with the path that introduced the most covariant overrides. If there is
3561 // no such path, pick the first path.
3562 return BestPath ? BestPath : &FullPaths.front();
3563 }
3564
computeFullPathsForVFTables(ASTContext & Context,const CXXRecordDecl * RD,VPtrInfoVector & Paths)3565 static void computeFullPathsForVFTables(ASTContext &Context,
3566 const CXXRecordDecl *RD,
3567 VPtrInfoVector &Paths) {
3568 const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD);
3569 FullPathTy FullPath;
3570 std::list<FullPathTy> FullPaths;
3571 for (const std::unique_ptr<VPtrInfo>& Info : Paths) {
3572 findPathsToSubobject(
3573 Context, MostDerivedLayout, RD, CharUnits::Zero(),
3574 BaseSubobject(Info->IntroducingObject, Info->FullOffsetInMDC), FullPath,
3575 FullPaths);
3576 FullPath.clear();
3577 removeRedundantPaths(FullPaths);
3578 Info->PathToIntroducingObject.clear();
3579 if (const FullPathTy *BestPath =
3580 selectBestPath(Context, RD, *Info, FullPaths))
3581 for (const BaseSubobject &BSO : *BestPath)
3582 Info->PathToIntroducingObject.push_back(BSO.getBase());
3583 FullPaths.clear();
3584 }
3585 }
3586
vfptrIsEarlierInMDC(const ASTRecordLayout & Layout,const MethodVFTableLocation & LHS,const MethodVFTableLocation & RHS)3587 static bool vfptrIsEarlierInMDC(const ASTRecordLayout &Layout,
3588 const MethodVFTableLocation &LHS,
3589 const MethodVFTableLocation &RHS) {
3590 CharUnits L = LHS.VFPtrOffset;
3591 CharUnits R = RHS.VFPtrOffset;
3592 if (LHS.VBase)
3593 L += Layout.getVBaseClassOffset(LHS.VBase);
3594 if (RHS.VBase)
3595 R += Layout.getVBaseClassOffset(RHS.VBase);
3596 return L < R;
3597 }
3598
computeVTableRelatedInformation(const CXXRecordDecl * RD)3599 void MicrosoftVTableContext::computeVTableRelatedInformation(
3600 const CXXRecordDecl *RD) {
3601 assert(RD->isDynamicClass());
3602
3603 // Check if we've computed this information before.
3604 if (VFPtrLocations.count(RD))
3605 return;
3606
3607 const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap;
3608
3609 {
3610 auto VFPtrs = std::make_unique<VPtrInfoVector>();
3611 computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs);
3612 computeFullPathsForVFTables(Context, RD, *VFPtrs);
3613 VFPtrLocations[RD] = std::move(VFPtrs);
3614 }
3615
3616 MethodVFTableLocationsTy NewMethodLocations;
3617 for (const std::unique_ptr<VPtrInfo> &VFPtr : *VFPtrLocations[RD]) {
3618 VFTableBuilder Builder(*this, RD, *VFPtr);
3619
3620 VFTableIdTy id(RD, VFPtr->FullOffsetInMDC);
3621 assert(VFTableLayouts.count(id) == 0);
3622 SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks(
3623 Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
3624 VFTableLayouts[id] = std::make_unique<VTableLayout>(
3625 ArrayRef<size_t>{0}, Builder.vtable_components(), VTableThunks,
3626 EmptyAddressPointsMap);
3627 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
3628
3629 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3630 for (const auto &Loc : Builder.vtable_locations()) {
3631 auto Insert = NewMethodLocations.insert(Loc);
3632 if (!Insert.second) {
3633 const MethodVFTableLocation &NewLoc = Loc.second;
3634 MethodVFTableLocation &OldLoc = Insert.first->second;
3635 if (vfptrIsEarlierInMDC(Layout, NewLoc, OldLoc))
3636 OldLoc = NewLoc;
3637 }
3638 }
3639 }
3640
3641 MethodVFTableLocations.insert(NewMethodLocations.begin(),
3642 NewMethodLocations.end());
3643 if (Context.getLangOpts().DumpVTableLayouts)
3644 dumpMethodLocations(RD, NewMethodLocations, llvm::outs());
3645 }
3646
dumpMethodLocations(const CXXRecordDecl * RD,const MethodVFTableLocationsTy & NewMethods,raw_ostream & Out)3647 void MicrosoftVTableContext::dumpMethodLocations(
3648 const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods,
3649 raw_ostream &Out) {
3650 // Compute the vtable indices for all the member functions.
3651 // Store them in a map keyed by the location so we'll get a sorted table.
3652 std::map<MethodVFTableLocation, std::string> IndicesMap;
3653 bool HasNonzeroOffset = false;
3654
3655 for (const auto &I : NewMethods) {
3656 const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I.first.getDecl());
3657 assert(hasVtableSlot(MD));
3658
3659 std::string MethodName = PredefinedExpr::ComputeName(
3660 PredefinedExpr::PrettyFunctionNoVirtual, MD);
3661
3662 if (isa<CXXDestructorDecl>(MD)) {
3663 IndicesMap[I.second] = MethodName + " [scalar deleting]";
3664 } else {
3665 IndicesMap[I.second] = MethodName;
3666 }
3667
3668 if (!I.second.VFPtrOffset.isZero() || I.second.VBTableIndex != 0)
3669 HasNonzeroOffset = true;
3670 }
3671
3672 // Print the vtable indices for all the member functions.
3673 if (!IndicesMap.empty()) {
3674 Out << "VFTable indices for ";
3675 Out << "'";
3676 RD->printQualifiedName(Out);
3677 Out << "' (" << IndicesMap.size()
3678 << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n";
3679
3680 CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1);
3681 uint64_t LastVBIndex = 0;
3682 for (const auto &I : IndicesMap) {
3683 CharUnits VFPtrOffset = I.first.VFPtrOffset;
3684 uint64_t VBIndex = I.first.VBTableIndex;
3685 if (HasNonzeroOffset &&
3686 (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) {
3687 assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset);
3688 Out << " -- accessible via ";
3689 if (VBIndex)
3690 Out << "vbtable index " << VBIndex << ", ";
3691 Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n";
3692 LastVFPtrOffset = VFPtrOffset;
3693 LastVBIndex = VBIndex;
3694 }
3695
3696 uint64_t VTableIndex = I.first.Index;
3697 const std::string &MethodName = I.second;
3698 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n';
3699 }
3700 Out << '\n';
3701 }
3702
3703 Out.flush();
3704 }
3705
computeVBTableRelatedInformation(const CXXRecordDecl * RD)3706 const VirtualBaseInfo &MicrosoftVTableContext::computeVBTableRelatedInformation(
3707 const CXXRecordDecl *RD) {
3708 VirtualBaseInfo *VBI;
3709
3710 {
3711 // Get or create a VBI for RD. Don't hold a reference to the DenseMap cell,
3712 // as it may be modified and rehashed under us.
3713 std::unique_ptr<VirtualBaseInfo> &Entry = VBaseInfo[RD];
3714 if (Entry)
3715 return *Entry;
3716 Entry = std::make_unique<VirtualBaseInfo>();
3717 VBI = Entry.get();
3718 }
3719
3720 computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths);
3721
3722 // First, see if the Derived class shared the vbptr with a non-virtual base.
3723 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3724 if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) {
3725 // If the Derived class shares the vbptr with a non-virtual base, the shared
3726 // virtual bases come first so that the layout is the same.
3727 const VirtualBaseInfo &BaseInfo =
3728 computeVBTableRelatedInformation(VBPtrBase);
3729 VBI->VBTableIndices.insert(BaseInfo.VBTableIndices.begin(),
3730 BaseInfo.VBTableIndices.end());
3731 }
3732
3733 // New vbases are added to the end of the vbtable.
3734 // Skip the self entry and vbases visited in the non-virtual base, if any.
3735 unsigned VBTableIndex = 1 + VBI->VBTableIndices.size();
3736 for (const auto &VB : RD->vbases()) {
3737 const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl();
3738 if (!VBI->VBTableIndices.count(CurVBase))
3739 VBI->VBTableIndices[CurVBase] = VBTableIndex++;
3740 }
3741
3742 return *VBI;
3743 }
3744
getVBTableIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * VBase)3745 unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived,
3746 const CXXRecordDecl *VBase) {
3747 const VirtualBaseInfo &VBInfo = computeVBTableRelatedInformation(Derived);
3748 assert(VBInfo.VBTableIndices.count(VBase));
3749 return VBInfo.VBTableIndices.find(VBase)->second;
3750 }
3751
3752 const VPtrInfoVector &
enumerateVBTables(const CXXRecordDecl * RD)3753 MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) {
3754 return computeVBTableRelatedInformation(RD).VBPtrPaths;
3755 }
3756
3757 const VPtrInfoVector &
getVFPtrOffsets(const CXXRecordDecl * RD)3758 MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) {
3759 computeVTableRelatedInformation(RD);
3760
3761 assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations");
3762 return *VFPtrLocations[RD];
3763 }
3764
3765 const VTableLayout &
getVFTableLayout(const CXXRecordDecl * RD,CharUnits VFPtrOffset)3766 MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD,
3767 CharUnits VFPtrOffset) {
3768 computeVTableRelatedInformation(RD);
3769
3770 VFTableIdTy id(RD, VFPtrOffset);
3771 assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset");
3772 return *VFTableLayouts[id];
3773 }
3774
3775 MethodVFTableLocation
getMethodVFTableLocation(GlobalDecl GD)3776 MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) {
3777 assert(hasVtableSlot(cast<CXXMethodDecl>(GD.getDecl())) &&
3778 "Only use this method for virtual methods or dtors");
3779 if (isa<CXXDestructorDecl>(GD.getDecl()))
3780 assert(GD.getDtorType() == Dtor_Deleting);
3781
3782 GD = GD.getCanonicalDecl();
3783
3784 MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD);
3785 if (I != MethodVFTableLocations.end())
3786 return I->second;
3787
3788 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
3789
3790 computeVTableRelatedInformation(RD);
3791
3792 I = MethodVFTableLocations.find(GD);
3793 assert(I != MethodVFTableLocations.end() && "Did not find index!");
3794 return I->second;
3795 }
3796