1 //===- llvm/Module.h - C++ class to represent a VM module -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// @file
10 /// Module.h This file contains the declarations for the Module class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_IR_MODULE_H
15 #define LLVM_IR_MODULE_H
16
17 #include "llvm-c/Types.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/Comdat.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalIFunc.h"
28 #include "llvm/IR/GlobalVariable.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/ProfileSummary.h"
31 #include "llvm/IR/SymbolTableListTraits.h"
32 #include "llvm/Support/CBindingWrapping.h"
33 #include "llvm/Support/CodeGen.h"
34 #include <cstddef>
35 #include <cstdint>
36 #include <iterator>
37 #include <memory>
38 #include <optional>
39 #include <string>
40 #include <vector>
41
42 namespace llvm {
43
44 class Error;
45 class FunctionType;
46 class GVMaterializer;
47 class LLVMContext;
48 class MemoryBuffer;
49 class ModuleSummaryIndex;
50 class RandomNumberGenerator;
51 class StructType;
52 class VersionTuple;
53
54 /// A Module instance is used to store all the information related to an
55 /// LLVM module. Modules are the top level container of all other LLVM
56 /// Intermediate Representation (IR) objects. Each module directly contains a
57 /// list of globals variables, a list of functions, a list of libraries (or
58 /// other modules) this module depends on, a symbol table, and various data
59 /// about the target's characteristics.
60 ///
61 /// A module maintains a GlobalList object that is used to hold all
62 /// constant references to global variables in the module. When a global
63 /// variable is destroyed, it should have no entries in the GlobalList.
64 /// The main container class for the LLVM Intermediate Representation.
65 class LLVM_EXTERNAL_VISIBILITY Module {
66 /// @name Types And Enumerations
67 /// @{
68 public:
69 /// The type for the list of global variables.
70 using GlobalListType = SymbolTableList<GlobalVariable>;
71 /// The type for the list of functions.
72 using FunctionListType = SymbolTableList<Function>;
73 /// The type for the list of aliases.
74 using AliasListType = SymbolTableList<GlobalAlias>;
75 /// The type for the list of ifuncs.
76 using IFuncListType = SymbolTableList<GlobalIFunc>;
77 /// The type for the list of named metadata.
78 using NamedMDListType = ilist<NamedMDNode>;
79 /// The type of the comdat "symbol" table.
80 using ComdatSymTabType = StringMap<Comdat>;
81 /// The type for mapping names to named metadata.
82 using NamedMDSymTabType = StringMap<NamedMDNode *>;
83
84 /// The Global Variable iterator.
85 using global_iterator = GlobalListType::iterator;
86 /// The Global Variable constant iterator.
87 using const_global_iterator = GlobalListType::const_iterator;
88
89 /// The Function iterators.
90 using iterator = FunctionListType::iterator;
91 /// The Function constant iterator
92 using const_iterator = FunctionListType::const_iterator;
93
94 /// The Function reverse iterator.
95 using reverse_iterator = FunctionListType::reverse_iterator;
96 /// The Function constant reverse iterator.
97 using const_reverse_iterator = FunctionListType::const_reverse_iterator;
98
99 /// The Global Alias iterators.
100 using alias_iterator = AliasListType::iterator;
101 /// The Global Alias constant iterator
102 using const_alias_iterator = AliasListType::const_iterator;
103
104 /// The Global IFunc iterators.
105 using ifunc_iterator = IFuncListType::iterator;
106 /// The Global IFunc constant iterator
107 using const_ifunc_iterator = IFuncListType::const_iterator;
108
109 /// The named metadata iterators.
110 using named_metadata_iterator = NamedMDListType::iterator;
111 /// The named metadata constant iterators.
112 using const_named_metadata_iterator = NamedMDListType::const_iterator;
113
114 /// This enumeration defines the supported behaviors of module flags.
115 enum ModFlagBehavior {
116 /// Emits an error if two values disagree, otherwise the resulting value is
117 /// that of the operands.
118 Error = 1,
119
120 /// Emits a warning if two values disagree. The result value will be the
121 /// operand for the flag from the first module being linked.
122 Warning = 2,
123
124 /// Adds a requirement that another module flag be present and have a
125 /// specified value after linking is performed. The value must be a metadata
126 /// pair, where the first element of the pair is the ID of the module flag
127 /// to be restricted, and the second element of the pair is the value the
128 /// module flag should be restricted to. This behavior can be used to
129 /// restrict the allowable results (via triggering of an error) of linking
130 /// IDs with the **Override** behavior.
131 Require = 3,
132
133 /// Uses the specified value, regardless of the behavior or value of the
134 /// other module. If both modules specify **Override**, but the values
135 /// differ, an error will be emitted.
136 Override = 4,
137
138 /// Appends the two values, which are required to be metadata nodes.
139 Append = 5,
140
141 /// Appends the two values, which are required to be metadata
142 /// nodes. However, duplicate entries in the second list are dropped
143 /// during the append operation.
144 AppendUnique = 6,
145
146 /// Takes the max of the two values, which are required to be integers.
147 Max = 7,
148
149 /// Takes the min of the two values, which are required to be integers.
150 Min = 8,
151
152 // Markers:
153 ModFlagBehaviorFirstVal = Error,
154 ModFlagBehaviorLastVal = Min
155 };
156
157 /// Checks if Metadata represents a valid ModFlagBehavior, and stores the
158 /// converted result in MFB.
159 static bool isValidModFlagBehavior(Metadata *MD, ModFlagBehavior &MFB);
160
161 /// Check if the given module flag metadata represents a valid module flag,
162 /// and store the flag behavior, the key string and the value metadata.
163 static bool isValidModuleFlag(const MDNode &ModFlag, ModFlagBehavior &MFB,
164 MDString *&Key, Metadata *&Val);
165
166 struct ModuleFlagEntry {
167 ModFlagBehavior Behavior;
168 MDString *Key;
169 Metadata *Val;
170
ModuleFlagEntryModuleFlagEntry171 ModuleFlagEntry(ModFlagBehavior B, MDString *K, Metadata *V)
172 : Behavior(B), Key(K), Val(V) {}
173 };
174
175 /// @}
176 /// @name Member Variables
177 /// @{
178 private:
179 LLVMContext &Context; ///< The LLVMContext from which types and
180 ///< constants are allocated.
181 GlobalListType GlobalList; ///< The Global Variables in the module
182 FunctionListType FunctionList; ///< The Functions in the module
183 AliasListType AliasList; ///< The Aliases in the module
184 IFuncListType IFuncList; ///< The IFuncs in the module
185 NamedMDListType NamedMDList; ///< The named metadata in the module
186 std::string GlobalScopeAsm; ///< Inline Asm at global scope.
187 std::unique_ptr<ValueSymbolTable> ValSymTab; ///< Symbol table for values
188 ComdatSymTabType ComdatSymTab; ///< Symbol table for COMDATs
189 std::unique_ptr<MemoryBuffer>
190 OwnedMemoryBuffer; ///< Memory buffer directly owned by this
191 ///< module, for legacy clients only.
192 std::unique_ptr<GVMaterializer>
193 Materializer; ///< Used to materialize GlobalValues
194 std::string ModuleID; ///< Human readable identifier for the module
195 std::string SourceFileName; ///< Original source file name for module,
196 ///< recorded in bitcode.
197 std::string TargetTriple; ///< Platform target triple Module compiled on
198 ///< Format: (arch)(sub)-(vendor)-(sys0-(abi)
199 NamedMDSymTabType NamedMDSymTab; ///< NamedMDNode names.
200 DataLayout DL; ///< DataLayout associated with the module
201 StringMap<unsigned>
202 CurrentIntrinsicIds; ///< Keep track of the current unique id count for
203 ///< the specified intrinsic basename.
204 DenseMap<std::pair<Intrinsic::ID, const FunctionType *>, unsigned>
205 UniquedIntrinsicNames; ///< Keep track of uniqued names of intrinsics
206 ///< based on unnamed types. The combination of
207 ///< ID and FunctionType maps to the extension that
208 ///< is used to make the intrinsic name unique.
209
210 friend class Constant;
211
212 /// @}
213 /// @name Constructors
214 /// @{
215 public:
216 /// The Module constructor. Note that there is no default constructor. You
217 /// must provide a name for the module upon construction.
218 explicit Module(StringRef ModuleID, LLVMContext& C);
219 /// The module destructor. This will dropAllReferences.
220 ~Module();
221
222 /// @}
223 /// @name Module Level Accessors
224 /// @{
225
226 /// Get the module identifier which is, essentially, the name of the module.
227 /// @returns the module identifier as a string
getModuleIdentifier()228 const std::string &getModuleIdentifier() const { return ModuleID; }
229
230 /// Returns the number of non-debug IR instructions in the module.
231 /// This is equivalent to the sum of the IR instruction counts of each
232 /// function contained in the module.
233 unsigned getInstructionCount() const;
234
235 /// Get the module's original source file name. When compiling from
236 /// bitcode, this is taken from a bitcode record where it was recorded.
237 /// For other compiles it is the same as the ModuleID, which would
238 /// contain the source file name.
getSourceFileName()239 const std::string &getSourceFileName() const { return SourceFileName; }
240
241 /// Get a short "name" for the module.
242 ///
243 /// This is useful for debugging or logging. It is essentially a convenience
244 /// wrapper around getModuleIdentifier().
getName()245 StringRef getName() const { return ModuleID; }
246
247 /// Get the data layout string for the module's target platform. This is
248 /// equivalent to getDataLayout()->getStringRepresentation().
getDataLayoutStr()249 const std::string &getDataLayoutStr() const {
250 return DL.getStringRepresentation();
251 }
252
253 /// Get the data layout for the module's target platform.
254 const DataLayout &getDataLayout() const;
255
256 /// Get the target triple which is a string describing the target host.
257 /// @returns a string containing the target triple.
getTargetTriple()258 const std::string &getTargetTriple() const { return TargetTriple; }
259
260 /// Get the global data context.
261 /// @returns LLVMContext - a container for LLVM's global information
getContext()262 LLVMContext &getContext() const { return Context; }
263
264 /// Get any module-scope inline assembly blocks.
265 /// @returns a string containing the module-scope inline assembly blocks.
getModuleInlineAsm()266 const std::string &getModuleInlineAsm() const { return GlobalScopeAsm; }
267
268 /// Get a RandomNumberGenerator salted for use with this module. The
269 /// RNG can be seeded via -rng-seed=<uint64> and is salted with the
270 /// ModuleID and the provided pass salt. The returned RNG should not
271 /// be shared across threads or passes.
272 ///
273 /// A unique RNG per pass ensures a reproducible random stream even
274 /// when other randomness consuming passes are added or removed. In
275 /// addition, the random stream will be reproducible across LLVM
276 /// versions when the pass does not change.
277 std::unique_ptr<RandomNumberGenerator> createRNG(const StringRef Name) const;
278
279 /// Return true if size-info optimization remark is enabled, false
280 /// otherwise.
shouldEmitInstrCountChangedRemark()281 bool shouldEmitInstrCountChangedRemark() {
282 return getContext().getDiagHandlerPtr()->isAnalysisRemarkEnabled(
283 "size-info");
284 }
285
286 /// @}
287 /// @name Module Level Mutators
288 /// @{
289
290 /// Set the module identifier.
setModuleIdentifier(StringRef ID)291 void setModuleIdentifier(StringRef ID) { ModuleID = std::string(ID); }
292
293 /// Set the module's original source file name.
setSourceFileName(StringRef Name)294 void setSourceFileName(StringRef Name) { SourceFileName = std::string(Name); }
295
296 /// Set the data layout
297 void setDataLayout(StringRef Desc);
298 void setDataLayout(const DataLayout &Other);
299
300 /// Set the target triple.
setTargetTriple(StringRef T)301 void setTargetTriple(StringRef T) { TargetTriple = std::string(T); }
302
303 /// Set the module-scope inline assembly blocks.
304 /// A trailing newline is added if the input doesn't have one.
setModuleInlineAsm(StringRef Asm)305 void setModuleInlineAsm(StringRef Asm) {
306 GlobalScopeAsm = std::string(Asm);
307 if (!GlobalScopeAsm.empty() && GlobalScopeAsm.back() != '\n')
308 GlobalScopeAsm += '\n';
309 }
310
311 /// Append to the module-scope inline assembly blocks.
312 /// A trailing newline is added if the input doesn't have one.
appendModuleInlineAsm(StringRef Asm)313 void appendModuleInlineAsm(StringRef Asm) {
314 GlobalScopeAsm += Asm;
315 if (!GlobalScopeAsm.empty() && GlobalScopeAsm.back() != '\n')
316 GlobalScopeAsm += '\n';
317 }
318
319 /// @}
320 /// @name Generic Value Accessors
321 /// @{
322
323 /// Return the global value in the module with the specified name, of
324 /// arbitrary type. This method returns null if a global with the specified
325 /// name is not found.
326 GlobalValue *getNamedValue(StringRef Name) const;
327
328 /// Return the number of global values in the module.
329 unsigned getNumNamedValues() const;
330
331 /// Return a unique non-zero ID for the specified metadata kind. This ID is
332 /// uniqued across modules in the current LLVMContext.
333 unsigned getMDKindID(StringRef Name) const;
334
335 /// Populate client supplied SmallVector with the name for custom metadata IDs
336 /// registered in this LLVMContext.
337 void getMDKindNames(SmallVectorImpl<StringRef> &Result) const;
338
339 /// Populate client supplied SmallVector with the bundle tags registered in
340 /// this LLVMContext. The bundle tags are ordered by increasing bundle IDs.
341 /// \see LLVMContext::getOperandBundleTagID
342 void getOperandBundleTags(SmallVectorImpl<StringRef> &Result) const;
343
344 std::vector<StructType *> getIdentifiedStructTypes() const;
345
346 /// Return a unique name for an intrinsic whose mangling is based on an
347 /// unnamed type. The Proto represents the function prototype.
348 std::string getUniqueIntrinsicName(StringRef BaseName, Intrinsic::ID Id,
349 const FunctionType *Proto);
350
351 /// @}
352 /// @name Function Accessors
353 /// @{
354
355 /// Look up the specified function in the module symbol table. Four
356 /// possibilities:
357 /// 1. If it does not exist, add a prototype for the function and return it.
358 /// 2. Otherwise, if the existing function has the correct prototype, return
359 /// the existing function.
360 /// 3. Finally, the function exists but has the wrong prototype: return the
361 /// function with a constantexpr cast to the right prototype.
362 ///
363 /// In all cases, the returned value is a FunctionCallee wrapper around the
364 /// 'FunctionType *T' passed in, as well as a 'Value*' either of the Function or
365 /// the bitcast to the function.
366 ///
367 /// Note: For library calls getOrInsertLibFunc() should be used instead.
368 FunctionCallee getOrInsertFunction(StringRef Name, FunctionType *T,
369 AttributeList AttributeList);
370
371 FunctionCallee getOrInsertFunction(StringRef Name, FunctionType *T);
372
373 /// Look up the specified function in the module symbol table. If it does not
374 /// exist, add a prototype for the function and return it. This function
375 /// guarantees to return a constant of pointer to the specified function type
376 /// or a ConstantExpr BitCast of that type if the named function has a
377 /// different type. This version of the method takes a list of
378 /// function arguments, which makes it easier for clients to use.
379 template <typename... ArgsTy>
getOrInsertFunction(StringRef Name,AttributeList AttributeList,Type * RetTy,ArgsTy...Args)380 FunctionCallee getOrInsertFunction(StringRef Name,
381 AttributeList AttributeList, Type *RetTy,
382 ArgsTy... Args) {
383 SmallVector<Type*, sizeof...(ArgsTy)> ArgTys{Args...};
384 return getOrInsertFunction(Name,
385 FunctionType::get(RetTy, ArgTys, false),
386 AttributeList);
387 }
388
389 /// Same as above, but without the attributes.
390 template <typename... ArgsTy>
getOrInsertFunction(StringRef Name,Type * RetTy,ArgsTy...Args)391 FunctionCallee getOrInsertFunction(StringRef Name, Type *RetTy,
392 ArgsTy... Args) {
393 return getOrInsertFunction(Name, AttributeList{}, RetTy, Args...);
394 }
395
396 // Avoid an incorrect ordering that'd otherwise compile incorrectly.
397 template <typename... ArgsTy>
398 FunctionCallee
399 getOrInsertFunction(StringRef Name, AttributeList AttributeList,
400 FunctionType *Invalid, ArgsTy... Args) = delete;
401
402 /// Look up the specified function in the module symbol table. If it does not
403 /// exist, return null.
404 Function *getFunction(StringRef Name) const;
405
406 /// @}
407 /// @name Global Variable Accessors
408 /// @{
409
410 /// Look up the specified global variable in the module symbol table. If it
411 /// does not exist, return null. If AllowInternal is set to true, this
412 /// function will return types that have InternalLinkage. By default, these
413 /// types are not returned.
getGlobalVariable(StringRef Name)414 GlobalVariable *getGlobalVariable(StringRef Name) const {
415 return getGlobalVariable(Name, false);
416 }
417
418 GlobalVariable *getGlobalVariable(StringRef Name, bool AllowInternal) const;
419
420 GlobalVariable *getGlobalVariable(StringRef Name,
421 bool AllowInternal = false) {
422 return static_cast<const Module *>(this)->getGlobalVariable(Name,
423 AllowInternal);
424 }
425
426 /// Return the global variable in the module with the specified name, of
427 /// arbitrary type. This method returns null if a global with the specified
428 /// name is not found.
getNamedGlobal(StringRef Name)429 const GlobalVariable *getNamedGlobal(StringRef Name) const {
430 return getGlobalVariable(Name, true);
431 }
getNamedGlobal(StringRef Name)432 GlobalVariable *getNamedGlobal(StringRef Name) {
433 return const_cast<GlobalVariable *>(
434 static_cast<const Module *>(this)->getNamedGlobal(Name));
435 }
436
437 /// Look up the specified global in the module symbol table.
438 /// If it does not exist, invoke a callback to create a declaration of the
439 /// global and return it. The global is constantexpr casted to the expected
440 /// type if necessary.
441 Constant *
442 getOrInsertGlobal(StringRef Name, Type *Ty,
443 function_ref<GlobalVariable *()> CreateGlobalCallback);
444
445 /// Look up the specified global in the module symbol table. If required, this
446 /// overload constructs the global variable using its constructor's defaults.
447 Constant *getOrInsertGlobal(StringRef Name, Type *Ty);
448
449 /// @}
450 /// @name Global Alias Accessors
451 /// @{
452
453 /// Return the global alias in the module with the specified name, of
454 /// arbitrary type. This method returns null if a global with the specified
455 /// name is not found.
456 GlobalAlias *getNamedAlias(StringRef Name) const;
457
458 /// @}
459 /// @name Global IFunc Accessors
460 /// @{
461
462 /// Return the global ifunc in the module with the specified name, of
463 /// arbitrary type. This method returns null if a global with the specified
464 /// name is not found.
465 GlobalIFunc *getNamedIFunc(StringRef Name) const;
466
467 /// @}
468 /// @name Named Metadata Accessors
469 /// @{
470
471 /// Return the first NamedMDNode in the module with the specified name. This
472 /// method returns null if a NamedMDNode with the specified name is not found.
473 NamedMDNode *getNamedMetadata(const Twine &Name) const;
474
475 /// Return the named MDNode in the module with the specified name. This method
476 /// returns a new NamedMDNode if a NamedMDNode with the specified name is not
477 /// found.
478 NamedMDNode *getOrInsertNamedMetadata(StringRef Name);
479
480 /// Remove the given NamedMDNode from this module and delete it.
481 void eraseNamedMetadata(NamedMDNode *NMD);
482
483 /// @}
484 /// @name Comdat Accessors
485 /// @{
486
487 /// Return the Comdat in the module with the specified name. It is created
488 /// if it didn't already exist.
489 Comdat *getOrInsertComdat(StringRef Name);
490
491 /// @}
492 /// @name Module Flags Accessors
493 /// @{
494
495 /// Returns the module flags in the provided vector.
496 void getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const;
497
498 /// Return the corresponding value if Key appears in module flags, otherwise
499 /// return null.
500 Metadata *getModuleFlag(StringRef Key) const;
501
502 /// Returns the NamedMDNode in the module that represents module-level flags.
503 /// This method returns null if there are no module-level flags.
504 NamedMDNode *getModuleFlagsMetadata() const;
505
506 /// Returns the NamedMDNode in the module that represents module-level flags.
507 /// If module-level flags aren't found, it creates the named metadata that
508 /// contains them.
509 NamedMDNode *getOrInsertModuleFlagsMetadata();
510
511 /// Add a module-level flag to the module-level flags metadata. It will create
512 /// the module-level flags named metadata if it doesn't already exist.
513 void addModuleFlag(ModFlagBehavior Behavior, StringRef Key, Metadata *Val);
514 void addModuleFlag(ModFlagBehavior Behavior, StringRef Key, Constant *Val);
515 void addModuleFlag(ModFlagBehavior Behavior, StringRef Key, uint32_t Val);
516 void addModuleFlag(MDNode *Node);
517 /// Like addModuleFlag but replaces the old module flag if it already exists.
518 void setModuleFlag(ModFlagBehavior Behavior, StringRef Key, Metadata *Val);
519
520 /// @}
521 /// @name Materialization
522 /// @{
523
524 /// Sets the GVMaterializer to GVM. This module must not yet have a
525 /// Materializer. To reset the materializer for a module that already has one,
526 /// call materializeAll first. Destroying this module will destroy
527 /// its materializer without materializing any more GlobalValues. Without
528 /// destroying the Module, there is no way to detach or destroy a materializer
529 /// without materializing all the GVs it controls, to avoid leaving orphan
530 /// unmaterialized GVs.
531 void setMaterializer(GVMaterializer *GVM);
532 /// Retrieves the GVMaterializer, if any, for this Module.
getMaterializer()533 GVMaterializer *getMaterializer() const { return Materializer.get(); }
isMaterialized()534 bool isMaterialized() const { return !getMaterializer(); }
535
536 /// Make sure the GlobalValue is fully read.
537 llvm::Error materialize(GlobalValue *GV);
538
539 /// Make sure all GlobalValues in this Module are fully read and clear the
540 /// Materializer.
541 llvm::Error materializeAll();
542
543 llvm::Error materializeMetadata();
544
545 /// @}
546 /// @name Direct access to the globals list, functions list, and symbol table
547 /// @{
548
549 /// Get the Module's list of global variables (constant).
getGlobalList()550 const GlobalListType &getGlobalList() const { return GlobalList; }
551 /// Get the Module's list of global variables.
getGlobalList()552 GlobalListType &getGlobalList() { return GlobalList; }
553
getSublistAccess(GlobalVariable *)554 static GlobalListType Module::*getSublistAccess(GlobalVariable*) {
555 return &Module::GlobalList;
556 }
557
558 /// Get the Module's list of functions (constant).
getFunctionList()559 const FunctionListType &getFunctionList() const { return FunctionList; }
560 /// Get the Module's list of functions.
getFunctionList()561 FunctionListType &getFunctionList() { return FunctionList; }
getSublistAccess(Function *)562 static FunctionListType Module::*getSublistAccess(Function*) {
563 return &Module::FunctionList;
564 }
565
566 /// Get the Module's list of aliases (constant).
getAliasList()567 const AliasListType &getAliasList() const { return AliasList; }
568 /// Get the Module's list of aliases.
getAliasList()569 AliasListType &getAliasList() { return AliasList; }
570
getSublistAccess(GlobalAlias *)571 static AliasListType Module::*getSublistAccess(GlobalAlias*) {
572 return &Module::AliasList;
573 }
574
575 /// Get the Module's list of ifuncs (constant).
getIFuncList()576 const IFuncListType &getIFuncList() const { return IFuncList; }
577 /// Get the Module's list of ifuncs.
getIFuncList()578 IFuncListType &getIFuncList() { return IFuncList; }
579
getSublistAccess(GlobalIFunc *)580 static IFuncListType Module::*getSublistAccess(GlobalIFunc*) {
581 return &Module::IFuncList;
582 }
583
584 /// Get the Module's list of named metadata (constant).
getNamedMDList()585 const NamedMDListType &getNamedMDList() const { return NamedMDList; }
586 /// Get the Module's list of named metadata.
getNamedMDList()587 NamedMDListType &getNamedMDList() { return NamedMDList; }
588
getSublistAccess(NamedMDNode *)589 static NamedMDListType Module::*getSublistAccess(NamedMDNode*) {
590 return &Module::NamedMDList;
591 }
592
593 /// Get the symbol table of global variable and function identifiers
getValueSymbolTable()594 const ValueSymbolTable &getValueSymbolTable() const { return *ValSymTab; }
595 /// Get the Module's symbol table of global variable and function identifiers.
getValueSymbolTable()596 ValueSymbolTable &getValueSymbolTable() { return *ValSymTab; }
597
598 /// Get the Module's symbol table for COMDATs (constant).
getComdatSymbolTable()599 const ComdatSymTabType &getComdatSymbolTable() const { return ComdatSymTab; }
600 /// Get the Module's symbol table for COMDATs.
getComdatSymbolTable()601 ComdatSymTabType &getComdatSymbolTable() { return ComdatSymTab; }
602
603 /// @}
604 /// @name Global Variable Iteration
605 /// @{
606
global_begin()607 global_iterator global_begin() { return GlobalList.begin(); }
global_begin()608 const_global_iterator global_begin() const { return GlobalList.begin(); }
global_end()609 global_iterator global_end () { return GlobalList.end(); }
global_end()610 const_global_iterator global_end () const { return GlobalList.end(); }
global_size()611 size_t global_size () const { return GlobalList.size(); }
global_empty()612 bool global_empty() const { return GlobalList.empty(); }
613
globals()614 iterator_range<global_iterator> globals() {
615 return make_range(global_begin(), global_end());
616 }
globals()617 iterator_range<const_global_iterator> globals() const {
618 return make_range(global_begin(), global_end());
619 }
620
621 /// @}
622 /// @name Function Iteration
623 /// @{
624
begin()625 iterator begin() { return FunctionList.begin(); }
begin()626 const_iterator begin() const { return FunctionList.begin(); }
end()627 iterator end () { return FunctionList.end(); }
end()628 const_iterator end () const { return FunctionList.end(); }
rbegin()629 reverse_iterator rbegin() { return FunctionList.rbegin(); }
rbegin()630 const_reverse_iterator rbegin() const{ return FunctionList.rbegin(); }
rend()631 reverse_iterator rend() { return FunctionList.rend(); }
rend()632 const_reverse_iterator rend() const { return FunctionList.rend(); }
size()633 size_t size() const { return FunctionList.size(); }
empty()634 bool empty() const { return FunctionList.empty(); }
635
functions()636 iterator_range<iterator> functions() {
637 return make_range(begin(), end());
638 }
functions()639 iterator_range<const_iterator> functions() const {
640 return make_range(begin(), end());
641 }
642
643 /// @}
644 /// @name Alias Iteration
645 /// @{
646
alias_begin()647 alias_iterator alias_begin() { return AliasList.begin(); }
alias_begin()648 const_alias_iterator alias_begin() const { return AliasList.begin(); }
alias_end()649 alias_iterator alias_end () { return AliasList.end(); }
alias_end()650 const_alias_iterator alias_end () const { return AliasList.end(); }
alias_size()651 size_t alias_size () const { return AliasList.size(); }
alias_empty()652 bool alias_empty() const { return AliasList.empty(); }
653
aliases()654 iterator_range<alias_iterator> aliases() {
655 return make_range(alias_begin(), alias_end());
656 }
aliases()657 iterator_range<const_alias_iterator> aliases() const {
658 return make_range(alias_begin(), alias_end());
659 }
660
661 /// @}
662 /// @name IFunc Iteration
663 /// @{
664
ifunc_begin()665 ifunc_iterator ifunc_begin() { return IFuncList.begin(); }
ifunc_begin()666 const_ifunc_iterator ifunc_begin() const { return IFuncList.begin(); }
ifunc_end()667 ifunc_iterator ifunc_end () { return IFuncList.end(); }
ifunc_end()668 const_ifunc_iterator ifunc_end () const { return IFuncList.end(); }
ifunc_size()669 size_t ifunc_size () const { return IFuncList.size(); }
ifunc_empty()670 bool ifunc_empty() const { return IFuncList.empty(); }
671
ifuncs()672 iterator_range<ifunc_iterator> ifuncs() {
673 return make_range(ifunc_begin(), ifunc_end());
674 }
ifuncs()675 iterator_range<const_ifunc_iterator> ifuncs() const {
676 return make_range(ifunc_begin(), ifunc_end());
677 }
678
679 /// @}
680 /// @name Convenience iterators
681 /// @{
682
683 using global_object_iterator =
684 concat_iterator<GlobalObject, iterator, global_iterator>;
685 using const_global_object_iterator =
686 concat_iterator<const GlobalObject, const_iterator,
687 const_global_iterator>;
688
689 iterator_range<global_object_iterator> global_objects();
690 iterator_range<const_global_object_iterator> global_objects() const;
691
692 using global_value_iterator =
693 concat_iterator<GlobalValue, iterator, global_iterator, alias_iterator,
694 ifunc_iterator>;
695 using const_global_value_iterator =
696 concat_iterator<const GlobalValue, const_iterator, const_global_iterator,
697 const_alias_iterator, const_ifunc_iterator>;
698
699 iterator_range<global_value_iterator> global_values();
700 iterator_range<const_global_value_iterator> global_values() const;
701
702 /// @}
703 /// @name Named Metadata Iteration
704 /// @{
705
named_metadata_begin()706 named_metadata_iterator named_metadata_begin() { return NamedMDList.begin(); }
named_metadata_begin()707 const_named_metadata_iterator named_metadata_begin() const {
708 return NamedMDList.begin();
709 }
710
named_metadata_end()711 named_metadata_iterator named_metadata_end() { return NamedMDList.end(); }
named_metadata_end()712 const_named_metadata_iterator named_metadata_end() const {
713 return NamedMDList.end();
714 }
715
named_metadata_size()716 size_t named_metadata_size() const { return NamedMDList.size(); }
named_metadata_empty()717 bool named_metadata_empty() const { return NamedMDList.empty(); }
718
named_metadata()719 iterator_range<named_metadata_iterator> named_metadata() {
720 return make_range(named_metadata_begin(), named_metadata_end());
721 }
named_metadata()722 iterator_range<const_named_metadata_iterator> named_metadata() const {
723 return make_range(named_metadata_begin(), named_metadata_end());
724 }
725
726 /// An iterator for DICompileUnits that skips those marked NoDebug.
727 class debug_compile_units_iterator {
728 NamedMDNode *CUs;
729 unsigned Idx;
730
731 void SkipNoDebugCUs();
732
733 public:
734 using iterator_category = std::input_iterator_tag;
735 using value_type = DICompileUnit *;
736 using difference_type = std::ptrdiff_t;
737 using pointer = value_type *;
738 using reference = value_type &;
739
debug_compile_units_iterator(NamedMDNode * CUs,unsigned Idx)740 explicit debug_compile_units_iterator(NamedMDNode *CUs, unsigned Idx)
741 : CUs(CUs), Idx(Idx) {
742 SkipNoDebugCUs();
743 }
744
745 debug_compile_units_iterator &operator++() {
746 ++Idx;
747 SkipNoDebugCUs();
748 return *this;
749 }
750
751 debug_compile_units_iterator operator++(int) {
752 debug_compile_units_iterator T(*this);
753 ++Idx;
754 return T;
755 }
756
757 bool operator==(const debug_compile_units_iterator &I) const {
758 return Idx == I.Idx;
759 }
760
761 bool operator!=(const debug_compile_units_iterator &I) const {
762 return Idx != I.Idx;
763 }
764
765 DICompileUnit *operator*() const;
766 DICompileUnit *operator->() const;
767 };
768
debug_compile_units_begin()769 debug_compile_units_iterator debug_compile_units_begin() const {
770 auto *CUs = getNamedMetadata("llvm.dbg.cu");
771 return debug_compile_units_iterator(CUs, 0);
772 }
773
debug_compile_units_end()774 debug_compile_units_iterator debug_compile_units_end() const {
775 auto *CUs = getNamedMetadata("llvm.dbg.cu");
776 return debug_compile_units_iterator(CUs, CUs ? CUs->getNumOperands() : 0);
777 }
778
779 /// Return an iterator for all DICompileUnits listed in this Module's
780 /// llvm.dbg.cu named metadata node and aren't explicitly marked as
781 /// NoDebug.
debug_compile_units()782 iterator_range<debug_compile_units_iterator> debug_compile_units() const {
783 auto *CUs = getNamedMetadata("llvm.dbg.cu");
784 return make_range(
785 debug_compile_units_iterator(CUs, 0),
786 debug_compile_units_iterator(CUs, CUs ? CUs->getNumOperands() : 0));
787 }
788 /// @}
789
790 /// Destroy ConstantArrays in LLVMContext if they are not used.
791 /// ConstantArrays constructed during linking can cause quadratic memory
792 /// explosion. Releasing all unused constants can cause a 20% LTO compile-time
793 /// slowdown for a large application.
794 ///
795 /// NOTE: Constants are currently owned by LLVMContext. This can then only
796 /// be called where all uses of the LLVMContext are understood.
797 void dropTriviallyDeadConstantArrays();
798
799 /// @name Utility functions for printing and dumping Module objects
800 /// @{
801
802 /// Print the module to an output stream with an optional
803 /// AssemblyAnnotationWriter. If \c ShouldPreserveUseListOrder, then include
804 /// uselistorder directives so that use-lists can be recreated when reading
805 /// the assembly.
806 void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW,
807 bool ShouldPreserveUseListOrder = false,
808 bool IsForDebug = false) const;
809
810 /// Dump the module to stderr (for debugging).
811 void dump() const;
812
813 /// This function causes all the subinstructions to "let go" of all references
814 /// that they are maintaining. This allows one to 'delete' a whole class at
815 /// a time, even though there may be circular references... first all
816 /// references are dropped, and all use counts go to zero. Then everything
817 /// is delete'd for real. Note that no operations are valid on an object
818 /// that has "dropped all references", except operator delete.
819 void dropAllReferences();
820
821 /// @}
822 /// @name Utility functions for querying Debug information.
823 /// @{
824
825 /// Returns the Number of Register ParametersDwarf Version by checking
826 /// module flags.
827 unsigned getNumberRegisterParameters() const;
828
829 /// Returns the Dwarf Version by checking module flags.
830 unsigned getDwarfVersion() const;
831
832 /// Returns the DWARF format by checking module flags.
833 bool isDwarf64() const;
834
835 /// Returns the CodeView Version by checking module flags.
836 /// Returns zero if not present in module.
837 unsigned getCodeViewFlag() const;
838
839 /// @}
840 /// @name Utility functions for querying and setting PIC level
841 /// @{
842
843 /// Returns the PIC level (small or large model)
844 PICLevel::Level getPICLevel() const;
845
846 /// Set the PIC level (small or large model)
847 void setPICLevel(PICLevel::Level PL);
848 /// @}
849
850 /// @}
851 /// @name Utility functions for querying and setting PIE level
852 /// @{
853
854 /// Returns the PIE level (small or large model)
855 PIELevel::Level getPIELevel() const;
856
857 /// Set the PIE level (small or large model)
858 void setPIELevel(PIELevel::Level PL);
859 /// @}
860
861 /// @}
862 /// @name Utility function for querying and setting code model
863 /// @{
864
865 /// Returns the code model (tiny, small, kernel, medium or large model)
866 std::optional<CodeModel::Model> getCodeModel() const;
867
868 /// Set the code model (tiny, small, kernel, medium or large)
869 void setCodeModel(CodeModel::Model CL);
870 /// @}
871
872 /// @name Utility functions for querying and setting PGO summary
873 /// @{
874
875 /// Attach profile summary metadata to this module.
876 void setProfileSummary(Metadata *M, ProfileSummary::Kind Kind);
877
878 /// Returns profile summary metadata. When IsCS is true, use the context
879 /// sensitive profile summary.
880 Metadata *getProfileSummary(bool IsCS) const;
881 /// @}
882
883 /// Returns whether semantic interposition is to be respected.
884 bool getSemanticInterposition() const;
885
886 /// Set whether semantic interposition is to be respected.
887 void setSemanticInterposition(bool);
888
889 /// Returns true if PLT should be avoided for RTLib calls.
890 bool getRtLibUseGOT() const;
891
892 /// Set that PLT should be avoid for RTLib calls.
893 void setRtLibUseGOT();
894
895 /// Get/set whether synthesized functions should get the uwtable attribute.
896 UWTableKind getUwtable() const;
897 void setUwtable(UWTableKind Kind);
898
899 /// Get/set whether synthesized functions should get the "frame-pointer"
900 /// attribute.
901 FramePointerKind getFramePointer() const;
902 void setFramePointer(FramePointerKind Kind);
903
904 /// Get/set what kind of stack protector guard to use.
905 StringRef getStackProtectorGuard() const;
906 void setStackProtectorGuard(StringRef Kind);
907
908 /// Get/set which register to use as the stack protector guard register. The
909 /// empty string is equivalent to "global". Other values may be "tls" or
910 /// "sysreg".
911 StringRef getStackProtectorGuardReg() const;
912 void setStackProtectorGuardReg(StringRef Reg);
913
914 /// Get/set a symbol to use as the stack protector guard.
915 StringRef getStackProtectorGuardSymbol() const;
916 void setStackProtectorGuardSymbol(StringRef Symbol);
917
918 /// Get/set what offset from the stack protector to use.
919 int getStackProtectorGuardOffset() const;
920 void setStackProtectorGuardOffset(int Offset);
921
922 /// Get/set the stack alignment overridden from the default.
923 unsigned getOverrideStackAlignment() const;
924 void setOverrideStackAlignment(unsigned Align);
925
926 /// @name Utility functions for querying and setting the build SDK version
927 /// @{
928
929 /// Attach a build SDK version metadata to this module.
930 void setSDKVersion(const VersionTuple &V);
931
932 /// Get the build SDK version metadata.
933 ///
934 /// An empty version is returned if no such metadata is attached.
935 VersionTuple getSDKVersion() const;
936 /// @}
937
938 /// Take ownership of the given memory buffer.
939 void setOwnedMemoryBuffer(std::unique_ptr<MemoryBuffer> MB);
940
941 /// Set the partial sample profile ratio in the profile summary module flag,
942 /// if applicable.
943 void setPartialSampleProfileRatio(const ModuleSummaryIndex &Index);
944
945 /// Get the target variant triple which is a string describing a variant of
946 /// the target host platform. For example, Mac Catalyst can be a variant
947 /// target triple for a macOS target.
948 /// @returns a string containing the target variant triple.
949 StringRef getDarwinTargetVariantTriple() const;
950
951 /// Set the target variant triple which is a string describing a variant of
952 /// the target host platform.
953 void setDarwinTargetVariantTriple(StringRef T);
954
955 /// Get the target variant version build SDK version metadata.
956 ///
957 /// An empty version is returned if no such metadata is attached.
958 VersionTuple getDarwinTargetVariantSDKVersion() const;
959
960 /// Set the target variant version build SDK version metadata.
961 void setDarwinTargetVariantSDKVersion(VersionTuple Version);
962 };
963
964 /// Given "llvm.used" or "llvm.compiler.used" as a global name, collect the
965 /// initializer elements of that global in a SmallVector and return the global
966 /// itself.
967 GlobalVariable *collectUsedGlobalVariables(const Module &M,
968 SmallVectorImpl<GlobalValue *> &Vec,
969 bool CompilerUsed);
970
971 /// An raw_ostream inserter for modules.
972 inline raw_ostream &operator<<(raw_ostream &O, const Module &M) {
973 M.print(O, nullptr);
974 return O;
975 }
976
977 // Create wrappers for C Binding types (see CBindingWrapping.h).
DEFINE_SIMPLE_CONVERSION_FUNCTIONS(Module,LLVMModuleRef)978 DEFINE_SIMPLE_CONVERSION_FUNCTIONS(Module, LLVMModuleRef)
979
980 /* LLVMModuleProviderRef exists for historical reasons, but now just holds a
981 * Module.
982 */
983 inline Module *unwrap(LLVMModuleProviderRef MP) {
984 return reinterpret_cast<Module*>(MP);
985 }
986
987 } // end namespace llvm
988
989 #endif // LLVM_IR_MODULE_H
990