1 //===- LowerMatrixIntrinsics.cpp - Lower matrix intrinsics -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Lower matrix intrinsics to vector operations.
10 //
11 // TODO:
12 // * Improve fusion:
13 // * Support more cases, e.g. multiply-add, multiply-sub, operands/results
14 // transposed.
15 // * Improve cost-modeling, e.g. choose different number of rows/columns
16 // columns for tiles, consider cost of copies on alias.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/DomTreeUpdater.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Analysis/VectorUtils.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DebugInfoMetadata.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/MatrixBuilder.h"
38 #include "llvm/IR/PatternMatch.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Alignment.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Transforms/Scalar.h"
45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
46 #include "llvm/Transforms/Utils/LoopUtils.h"
47 #include "llvm/Transforms/Utils/MatrixUtils.h"
48
49 #include <cmath>
50
51 using namespace llvm;
52 using namespace PatternMatch;
53
54 #define DEBUG_TYPE "lower-matrix-intrinsics"
55
56 static cl::opt<bool>
57 FuseMatrix("fuse-matrix", cl::init(true), cl::Hidden,
58 cl::desc("Enable/disable fusing matrix instructions."));
59 // TODO: Allow and use non-square tiles.
60 static cl::opt<unsigned> TileSize(
61 "fuse-matrix-tile-size", cl::init(4), cl::Hidden,
62 cl::desc(
63 "Tile size for matrix instruction fusion using square-shaped tiles."));
64 static cl::opt<bool> TileUseLoops("fuse-matrix-use-loops", cl::init(false),
65 cl::Hidden,
66 cl::desc("Generate loop nest for tiling."));
67 static cl::opt<bool> ForceFusion(
68 "force-fuse-matrix", cl::init(false), cl::Hidden,
69 cl::desc("Force matrix instruction fusion even if not profitable."));
70 static cl::opt<bool> AllowContractEnabled(
71 "matrix-allow-contract", cl::init(false), cl::Hidden,
72 cl::desc("Allow the use of FMAs if available and profitable. This may "
73 "result in different results, due to less rounding error."));
74
75 enum class MatrixLayoutTy { ColumnMajor, RowMajor };
76
77 static cl::opt<MatrixLayoutTy> MatrixLayout(
78 "matrix-default-layout", cl::init(MatrixLayoutTy::ColumnMajor),
79 cl::desc("Sets the default matrix layout"),
80 cl::values(clEnumValN(MatrixLayoutTy::ColumnMajor, "column-major",
81 "Use column-major layout"),
82 clEnumValN(MatrixLayoutTy::RowMajor, "row-major",
83 "Use row-major layout")));
84
85 static cl::opt<bool> PrintAfterTransposeOpt("matrix-print-after-transpose-opt",
86 cl::init(false));
87
88 /// Helper function to either return Scope, if it is a subprogram or the
89 /// attached subprogram for a local scope.
getSubprogram(DIScope * Scope)90 static DISubprogram *getSubprogram(DIScope *Scope) {
91 if (auto *Subprogram = dyn_cast<DISubprogram>(Scope))
92 return Subprogram;
93 return cast<DILocalScope>(Scope)->getSubprogram();
94 }
95
96 /// Erase \p V from \p BB and move \II forward to avoid invalidating
97 /// iterators.
eraseFromParentAndMove(Value * V,BasicBlock::reverse_iterator & II,BasicBlock & BB)98 static void eraseFromParentAndMove(Value *V, BasicBlock::reverse_iterator &II,
99 BasicBlock &BB) {
100 auto *Inst = cast<Instruction>(V);
101 // Still used, don't erase.
102 if (!Inst->use_empty())
103 return;
104 if (II != BB.rend() && Inst == &*II)
105 ++II;
106 Inst->eraseFromParent();
107 }
108
109 /// Return true if V is a splat of a value (which is used when multiplying a
110 /// matrix with a scalar).
isSplat(Value * V)111 static bool isSplat(Value *V) {
112 if (auto *SV = dyn_cast<ShuffleVectorInst>(V))
113 return SV->isZeroEltSplat();
114 return false;
115 }
116
117 /// Match any mul operation (fp or integer).
118 template <typename LTy, typename RTy>
m_AnyMul(const LTy & L,const RTy & R)119 auto m_AnyMul(const LTy &L, const RTy &R) {
120 return m_CombineOr(m_Mul(L, R), m_FMul(L, R));
121 }
122
123 /// Match any add operation (fp or integer).
124 template <typename LTy, typename RTy>
m_AnyAdd(const LTy & L,const RTy & R)125 auto m_AnyAdd(const LTy &L, const RTy &R) {
126 return m_CombineOr(m_Add(L, R), m_FAdd(L, R));
127 }
128
129 namespace {
130
131 // Given an element pointer \p BasePtr to the start of a (sub) matrix, compute
132 // the start address of vector \p VecIdx with type (\p EltType x \p NumElements)
133 // assuming \p Stride elements between start two consecutive vectors.
134 // \p Stride must be >= \p NumElements.
135 // For column-major matrixes, the function computes the address of a column
136 // vectors and \p NumElements must be set to the number of elements in a column
137 // (= number of rows of the matrix). For row-major matrixes, the function
138 // computes the address of a row vector and \p NumElements must be set to the
139 // number of elements in a column (= number of columns of the matrix).
140 //
141 // Consider a 4x4 matrix in column-mjaor layout like below
142 //
143 // 0 1 2 3
144 // 0 v_0_0 v_0_1 v_0_2 v_0_3
145 // 1 v_1_0 v_1_1 v_1_2 v_1_3
146 // 2 v_2_0 v_2_1 v_2_2 v_2_3
147 // 3 v_3_0 v_3_1 v_3_2 v_3_3
148
149 // To compute the column addresses for a 2x3 sub-matrix at row 1 and column 1,
150 // we need a pointer to the first element of the submatrix as base pointer.
151 // Then we can use computeVectorAddr to compute the addresses for the columns
152 // of the sub-matrix.
153 //
154 // Column 0: computeVectorAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..)
155 // -> just returns Base
156 // Column 1: computeVectorAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..)
157 // -> returns Base + (1 * 4)
158 // Column 2: computeVectorAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..)
159 // -> returns Base + (2 * 4)
160 //
161 // The graphic below illustrates the number of elements in a column (marked
162 // with |) and the number of skipped elements (marked with }).
163 //
164 // v_0_0 v_0_1 {v_0_2 {v_0_3
165 // Base Col 1 Col 2
166 // | | |
167 // v_1_0 |v_1_1 |v_1_2 |v_1_3
168 // v_2_0 |v_2_1 |v_2_2 |v_2_3
169 // v_3_0 {v_3_1 {v_3_2 v_3_3
170 //
computeVectorAddr(Value * BasePtr,Value * VecIdx,Value * Stride,unsigned NumElements,Type * EltType,IRBuilder<> & Builder)171 Value *computeVectorAddr(Value *BasePtr, Value *VecIdx, Value *Stride,
172 unsigned NumElements, Type *EltType,
173 IRBuilder<> &Builder) {
174
175 assert((!isa<ConstantInt>(Stride) ||
176 cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) &&
177 "Stride must be >= the number of elements in the result vector.");
178 unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
179
180 // Compute the start of the vector with index VecIdx as VecIdx * Stride.
181 Value *VecStart = Builder.CreateMul(VecIdx, Stride, "vec.start");
182
183 // Get pointer to the start of the selected vector. Skip GEP creation,
184 // if we select vector 0.
185 if (isa<ConstantInt>(VecStart) && cast<ConstantInt>(VecStart)->isZero())
186 VecStart = BasePtr;
187 else
188 VecStart = Builder.CreateGEP(EltType, BasePtr, VecStart, "vec.gep");
189
190 // Cast elementwise vector start pointer to a pointer to a vector
191 // (EltType x NumElements)*.
192 auto *VecType = FixedVectorType::get(EltType, NumElements);
193 Type *VecPtrType = PointerType::get(VecType, AS);
194 return Builder.CreatePointerCast(VecStart, VecPtrType, "vec.cast");
195 }
196
197 /// LowerMatrixIntrinsics contains the methods used to lower matrix intrinsics.
198 ///
199 /// Currently, the lowering for each matrix intrinsic is done as follows:
200 /// 1. Propagate the shape information from intrinsics to connected
201 /// instructions.
202 /// 2. Lower instructions with shape information (assuming column-major layout).
203 /// The lowering works similarly using row-major layout.
204 /// 2.1. Get column vectors for each argument. If we already lowered the
205 /// definition of an argument, use the produced column vectors directly.
206 /// If not, split the operand vector containing an embedded matrix into
207 /// a set of column vectors,
208 /// 2.2. Lower the instruction in terms of column major operations, which
209 /// yields a set of column vectors containing result matrix. Note that we
210 /// lower all instructions that have shape information. Besides the
211 /// intrinsics, this includes stores for example.
212 /// 2.3. Update uses of the lowered instruction. If we have shape information
213 /// for a user, there is nothing to do, as we will look up the result
214 /// column matrix when lowering the user. For other uses, we embed the
215 /// result matrix in a flat vector and update the use.
216 /// 2.4. Cache the result column matrix for the instruction we lowered
217 /// 3. After we lowered all instructions in a function, remove the now
218 /// obsolete instructions.
219 ///
220 class LowerMatrixIntrinsics {
221 Function &Func;
222 const DataLayout &DL;
223 const TargetTransformInfo &TTI;
224 AliasAnalysis *AA;
225 DominatorTree *DT;
226 LoopInfo *LI;
227 OptimizationRemarkEmitter *ORE;
228
229 /// Contains estimates of the number of operations (loads, stores, compute) required to lower a matrix operation.
230 struct OpInfoTy {
231 /// Number of stores emitted to generate this matrix.
232 unsigned NumStores = 0;
233 /// Number of loads emitted to generate this matrix.
234 unsigned NumLoads = 0;
235 /// Number of compute operations emitted to generate this matrix.
236 unsigned NumComputeOps = 0;
237 /// Most of the time transposes can be fused with matrix multiplies or can
238 /// be folded away via algebraic simplifications. This is the number of
239 /// transposes that we failed to make "free" via such optimizations.
240 unsigned NumExposedTransposes = 0;
241
operator +=__anon34e5a0240111::LowerMatrixIntrinsics::OpInfoTy242 OpInfoTy &operator+=(const OpInfoTy &RHS) {
243 NumStores += RHS.NumStores;
244 NumLoads += RHS.NumLoads;
245 NumComputeOps += RHS.NumComputeOps;
246 NumExposedTransposes += RHS.NumExposedTransposes;
247 return *this;
248 }
249 };
250
251 /// Wrapper class representing a matrix as a set of vectors, either in row or
252 /// column major layout. All vectors must have the same vector type.
253 class MatrixTy {
254 SmallVector<Value *, 16> Vectors;
255
256 OpInfoTy OpInfo;
257
258 bool IsColumnMajor = true;
259
260 public:
MatrixTy()261 MatrixTy() : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
MatrixTy(ArrayRef<Value * > Vectors)262 MatrixTy(ArrayRef<Value *> Vectors)
263 : Vectors(Vectors.begin(), Vectors.end()),
264 IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
MatrixTy(unsigned NumRows,unsigned NumColumns,Type * EltTy)265 MatrixTy(unsigned NumRows, unsigned NumColumns, Type *EltTy)
266 : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {
267
268 unsigned D = isColumnMajor() ? NumColumns : NumRows;
269 for (unsigned J = 0; J < D; ++J)
270 addVector(UndefValue::get(FixedVectorType::get(
271 EltTy, isColumnMajor() ? NumRows : NumColumns)));
272 }
273
getVector(unsigned i) const274 Value *getVector(unsigned i) const { return Vectors[i]; }
getColumn(unsigned i) const275 Value *getColumn(unsigned i) const {
276 assert(isColumnMajor() && "only supported for column-major matrixes");
277 return Vectors[i];
278 }
getRow(unsigned i) const279 Value *getRow(unsigned i) const {
280 assert(!isColumnMajor() && "only supported for row-major matrixes");
281 return Vectors[i];
282 }
283
setVector(unsigned i,Value * V)284 void setVector(unsigned i, Value *V) { Vectors[i] = V; }
285
getElementType() const286 Type *getElementType() const { return getVectorTy()->getElementType(); }
287
getNumVectors() const288 unsigned getNumVectors() const {
289 if (isColumnMajor())
290 return getNumColumns();
291 return getNumRows();
292 }
293
getNumColumns() const294 unsigned getNumColumns() const {
295 if (isColumnMajor())
296 return Vectors.size();
297 else {
298 assert(Vectors.size() > 0 && "Cannot call getNumRows without columns");
299 return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements();
300 }
301 }
getNumRows() const302 unsigned getNumRows() const {
303 if (isColumnMajor()) {
304 assert(Vectors.size() > 0 && "Cannot call getNumRows without columns");
305 return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements();
306 } else
307 return Vectors.size();
308 }
309
addVector(Value * V)310 void addVector(Value *V) { Vectors.push_back(V); }
getColumnTy()311 VectorType *getColumnTy() {
312 assert(isColumnMajor() && "only supported for column-major matrixes");
313 return getVectorTy();
314 }
315
getVectorTy() const316 VectorType *getVectorTy() const {
317 return cast<VectorType>(Vectors[0]->getType());
318 }
319
columns()320 iterator_range<SmallVector<Value *, 8>::iterator> columns() {
321 assert(isColumnMajor() &&
322 "columns() only supported for column-major matrixes");
323 return make_range(Vectors.begin(), Vectors.end());
324 }
325
vectors()326 iterator_range<SmallVector<Value *, 8>::iterator> vectors() {
327 return make_range(Vectors.begin(), Vectors.end());
328 }
329
330 /// Embed the vectors of the matrix into a flat vector by concatenating
331 /// them.
embedInVector(IRBuilder<> & Builder) const332 Value *embedInVector(IRBuilder<> &Builder) const {
333 return Vectors.size() == 1 ? Vectors[0]
334 : concatenateVectors(Builder, Vectors);
335 }
336
addNumLoads(unsigned N)337 MatrixTy &addNumLoads(unsigned N) {
338 OpInfo.NumLoads += N;
339 return *this;
340 }
341
setNumLoads(unsigned N)342 void setNumLoads(unsigned N) { OpInfo.NumLoads = N; }
343
addNumStores(unsigned N)344 MatrixTy &addNumStores(unsigned N) {
345 OpInfo.NumStores += N;
346 return *this;
347 }
348
addNumExposedTransposes(unsigned N)349 MatrixTy &addNumExposedTransposes(unsigned N) {
350 OpInfo.NumExposedTransposes += N;
351 return *this;
352 }
353
addNumComputeOps(unsigned N)354 MatrixTy &addNumComputeOps(unsigned N) {
355 OpInfo.NumComputeOps += N;
356 return *this;
357 }
358
getNumStores() const359 unsigned getNumStores() const { return OpInfo.NumStores; }
getNumLoads() const360 unsigned getNumLoads() const { return OpInfo.NumLoads; }
getNumComputeOps() const361 unsigned getNumComputeOps() const { return OpInfo.NumComputeOps; }
362
getOpInfo() const363 const OpInfoTy &getOpInfo() const { return OpInfo; }
364
isColumnMajor() const365 bool isColumnMajor() const { return IsColumnMajor; }
366
getStride() const367 unsigned getStride() const {
368 if (isColumnMajor())
369 return getNumRows();
370 return getNumColumns();
371 }
372
373 /// Extract a vector of \p NumElts starting at index (\p I, \p J). If the
374 /// matrix is column-major, the result vector is extracted from a column
375 /// vector, otherwise from a row vector.
extractVector(unsigned I,unsigned J,unsigned NumElts,IRBuilder<> & Builder) const376 Value *extractVector(unsigned I, unsigned J, unsigned NumElts,
377 IRBuilder<> &Builder) const {
378 Value *Vec = isColumnMajor() ? getColumn(J) : getRow(I);
379 assert(cast<FixedVectorType>(Vec->getType())->getNumElements() >=
380 NumElts &&
381 "Extracted vector will contain poison values");
382 return Builder.CreateShuffleVector(
383 Vec, createSequentialMask(isColumnMajor() ? I : J, NumElts, 0),
384 "block");
385 }
386 };
387
388 struct ShapeInfo {
389 unsigned NumRows;
390 unsigned NumColumns;
391
392 bool IsColumnMajor;
393
ShapeInfo__anon34e5a0240111::LowerMatrixIntrinsics::ShapeInfo394 ShapeInfo(unsigned NumRows = 0, unsigned NumColumns = 0)
395 : NumRows(NumRows), NumColumns(NumColumns),
396 IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {}
397
ShapeInfo__anon34e5a0240111::LowerMatrixIntrinsics::ShapeInfo398 ShapeInfo(Value *NumRows, Value *NumColumns)
399 : ShapeInfo(cast<ConstantInt>(NumRows)->getZExtValue(),
400 cast<ConstantInt>(NumColumns)->getZExtValue()) {}
401
operator ==__anon34e5a0240111::LowerMatrixIntrinsics::ShapeInfo402 bool operator==(const ShapeInfo &other) {
403 return NumRows == other.NumRows && NumColumns == other.NumColumns;
404 }
operator !=__anon34e5a0240111::LowerMatrixIntrinsics::ShapeInfo405 bool operator!=(const ShapeInfo &other) { return !(*this == other); }
406
407 /// Returns true if shape-information is defined, meaning both dimensions
408 /// are != 0.
operator bool__anon34e5a0240111::LowerMatrixIntrinsics::ShapeInfo409 operator bool() const {
410 assert(NumRows == 0 || NumColumns != 0);
411 return NumRows != 0;
412 }
413
getStride__anon34e5a0240111::LowerMatrixIntrinsics::ShapeInfo414 unsigned getStride() const {
415 if (IsColumnMajor)
416 return NumRows;
417 return NumColumns;
418 }
419
getNumVectors__anon34e5a0240111::LowerMatrixIntrinsics::ShapeInfo420 unsigned getNumVectors() const {
421 if (IsColumnMajor)
422 return NumColumns;
423 return NumRows;
424 }
425
426 /// Returns the transposed shape.
t__anon34e5a0240111::LowerMatrixIntrinsics::ShapeInfo427 ShapeInfo t() const { return ShapeInfo(NumColumns, NumRows); }
428 };
429
430 /// Maps instructions to their shape information. The shape information
431 /// describes the shape to be used while lowering. This matches the shape of
432 /// the result value of the instruction, with the only exceptions being store
433 /// instructions and the matrix_column_major_store intrinsics. For those, the
434 /// shape information indicates that those instructions should be lowered
435 /// using shape information as well. A ValueMap is used so that when
436 /// sub-passes like optimizeTransposes performs RAUW the map stays
437 /// up-to-date.
438 ValueMap<Value *, ShapeInfo> ShapeMap;
439
440 /// List of instructions to remove. While lowering, we are not replacing all
441 /// users of a lowered instruction, if shape information is available and
442 /// those need to be removed after we finished lowering.
443 SmallVector<Instruction *, 16> ToRemove;
444
445 /// Map from instructions to their produced column matrix.
446 MapVector<Value *, MatrixTy> Inst2ColumnMatrix;
447
448 private:
getFastMathFlags(Instruction * Inst)449 static FastMathFlags getFastMathFlags(Instruction *Inst) {
450 FastMathFlags FMF;
451
452 if (isa<FPMathOperator>(*Inst))
453 FMF = Inst->getFastMathFlags();
454
455 FMF.setAllowContract(AllowContractEnabled || FMF.allowContract());
456
457 return FMF;
458 }
459
460 public:
LowerMatrixIntrinsics(Function & F,TargetTransformInfo & TTI,AliasAnalysis * AA,DominatorTree * DT,LoopInfo * LI,OptimizationRemarkEmitter * ORE)461 LowerMatrixIntrinsics(Function &F, TargetTransformInfo &TTI,
462 AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
463 OptimizationRemarkEmitter *ORE)
464 : Func(F), DL(F.getParent()->getDataLayout()), TTI(TTI), AA(AA), DT(DT),
465 LI(LI), ORE(ORE) {}
466
getNumOps(Type * VT)467 unsigned getNumOps(Type *VT) {
468 assert(isa<VectorType>(VT) && "Expected vector type");
469 return getNumOps(VT->getScalarType(),
470 cast<FixedVectorType>(VT)->getNumElements());
471 }
472
473 /// Is this the minimal version executed in the backend pipelines.
isMinimal() const474 bool isMinimal() const {
475 return !DT;
476 }
477
478 /// Return the estimated number of vector ops required for an operation on
479 /// \p VT * N.
getNumOps(Type * ST,unsigned N)480 unsigned getNumOps(Type *ST, unsigned N) {
481 return std::ceil((ST->getPrimitiveSizeInBits() * N).getFixedValue() /
482 double(TTI.getRegisterBitWidth(
483 TargetTransformInfo::RGK_FixedWidthVector)
484 .getFixedValue()));
485 }
486
487 /// Return the set of vectors that a matrix value is lowered to.
488 ///
489 /// If we lowered \p MatrixVal, just return the cache result matrix. Otherwise
490 /// split the flat vector \p MatrixVal containing a matrix with shape \p SI
491 /// into vectors.
getMatrix(Value * MatrixVal,const ShapeInfo & SI,IRBuilder<> & Builder)492 MatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI,
493 IRBuilder<> &Builder) {
494 VectorType *VType = dyn_cast<VectorType>(MatrixVal->getType());
495 assert(VType && "MatrixVal must be a vector type");
496 assert(cast<FixedVectorType>(VType)->getNumElements() ==
497 SI.NumRows * SI.NumColumns &&
498 "The vector size must match the number of matrix elements");
499
500 // Check if we lowered MatrixVal using shape information. In that case,
501 // return the existing matrix, if it matches the requested shape
502 // information. If there is a mis-match, embed the result in a flat
503 // vector and split it later.
504 auto Found = Inst2ColumnMatrix.find(MatrixVal);
505 if (Found != Inst2ColumnMatrix.end()) {
506 MatrixTy &M = Found->second;
507 // Return the found matrix, if its shape matches the requested shape
508 // information
509 if (SI.NumRows == M.getNumRows() && SI.NumColumns == M.getNumColumns())
510 return M;
511
512 MatrixVal = M.embedInVector(Builder);
513 }
514
515 // Otherwise split MatrixVal.
516 SmallVector<Value *, 16> SplitVecs;
517 for (unsigned MaskStart = 0;
518 MaskStart < cast<FixedVectorType>(VType)->getNumElements();
519 MaskStart += SI.getStride()) {
520 Value *V = Builder.CreateShuffleVector(
521 MatrixVal, createSequentialMask(MaskStart, SI.getStride(), 0),
522 "split");
523 SplitVecs.push_back(V);
524 }
525
526 return {SplitVecs};
527 }
528
529 /// If \p V already has a known shape return false. Otherwise set the shape
530 /// for instructions that support it.
setShapeInfo(Value * V,ShapeInfo Shape)531 bool setShapeInfo(Value *V, ShapeInfo Shape) {
532 assert(Shape && "Shape not set");
533 if (isa<UndefValue>(V) || !supportsShapeInfo(V))
534 return false;
535
536 auto SIter = ShapeMap.find(V);
537 if (SIter != ShapeMap.end()) {
538 LLVM_DEBUG(dbgs() << " not overriding existing shape: "
539 << SIter->second.NumRows << " "
540 << SIter->second.NumColumns << " for " << *V << "\n");
541 return false;
542 }
543
544 ShapeMap.insert({V, Shape});
545 LLVM_DEBUG(dbgs() << " " << Shape.NumRows << " x " << Shape.NumColumns
546 << " for " << *V << "\n");
547 return true;
548 }
549
isUniformShape(Value * V)550 bool isUniformShape(Value *V) {
551 Instruction *I = dyn_cast<Instruction>(V);
552 if (!I)
553 return true;
554
555 switch (I->getOpcode()) {
556 case Instruction::FAdd:
557 case Instruction::FSub:
558 case Instruction::FMul: // Scalar multiply.
559 case Instruction::FNeg:
560 case Instruction::Add:
561 case Instruction::Mul:
562 case Instruction::Sub:
563 return true;
564 default:
565 return false;
566 }
567 }
568
569 /// Returns true if shape information can be used for \p V. The supported
570 /// instructions must match the instructions that can be lowered by this pass.
supportsShapeInfo(Value * V)571 bool supportsShapeInfo(Value *V) {
572 Instruction *Inst = dyn_cast<Instruction>(V);
573 if (!Inst)
574 return false;
575
576 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
577 if (II)
578 switch (II->getIntrinsicID()) {
579 case Intrinsic::matrix_multiply:
580 case Intrinsic::matrix_transpose:
581 case Intrinsic::matrix_column_major_load:
582 case Intrinsic::matrix_column_major_store:
583 return true;
584 default:
585 return false;
586 }
587 return isUniformShape(V) || isa<StoreInst>(V) || isa<LoadInst>(V);
588 }
589
590 /// Propagate the shape information of instructions to their users.
591 /// The work list contains instructions for which we can compute the shape,
592 /// either based on the information provided by matrix intrinsics or known
593 /// shapes of operands.
594 SmallVector<Instruction *, 32>
propagateShapeForward(SmallVectorImpl<Instruction * > & WorkList)595 propagateShapeForward(SmallVectorImpl<Instruction *> &WorkList) {
596 SmallVector<Instruction *, 32> NewWorkList;
597 // Pop an element for which we guaranteed to have at least one of the
598 // operand shapes. Add the shape for this and then add users to the work
599 // list.
600 LLVM_DEBUG(dbgs() << "Forward-propagate shapes:\n");
601 while (!WorkList.empty()) {
602 Instruction *Inst = WorkList.pop_back_val();
603
604 // New entry, set the value and insert operands
605 bool Propagate = false;
606
607 Value *MatrixA;
608 Value *MatrixB;
609 Value *M;
610 Value *N;
611 Value *K;
612 if (match(Inst, m_Intrinsic<Intrinsic::matrix_multiply>(
613 m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
614 m_Value(N), m_Value(K)))) {
615 Propagate = setShapeInfo(Inst, {M, K});
616 } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_transpose>(
617 m_Value(MatrixA), m_Value(M), m_Value(N)))) {
618 // Flip dimensions.
619 Propagate = setShapeInfo(Inst, {N, M});
620 } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_store>(
621 m_Value(MatrixA), m_Value(), m_Value(),
622 m_Value(), m_Value(M), m_Value(N)))) {
623 Propagate = setShapeInfo(Inst, {N, M});
624 } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_load>(
625 m_Value(), m_Value(), m_Value(), m_Value(M),
626 m_Value(N)))) {
627 Propagate = setShapeInfo(Inst, {M, N});
628 } else if (match(Inst, m_Store(m_Value(MatrixA), m_Value()))) {
629 auto OpShape = ShapeMap.find(MatrixA);
630 if (OpShape != ShapeMap.end())
631 setShapeInfo(Inst, OpShape->second);
632 continue;
633 } else if (isUniformShape(Inst)) {
634 // Find the first operand that has a known shape and use that.
635 for (auto &Op : Inst->operands()) {
636 auto OpShape = ShapeMap.find(Op.get());
637 if (OpShape != ShapeMap.end()) {
638 Propagate |= setShapeInfo(Inst, OpShape->second);
639 break;
640 }
641 }
642 }
643
644 if (Propagate) {
645 NewWorkList.push_back(Inst);
646 for (auto *User : Inst->users())
647 if (ShapeMap.count(User) == 0)
648 WorkList.push_back(cast<Instruction>(User));
649 }
650 }
651
652 return NewWorkList;
653 }
654
655 /// Propagate the shape to operands of instructions with shape information.
656 /// \p Worklist contains the instruction for which we already know the shape.
657 SmallVector<Instruction *, 32>
propagateShapeBackward(SmallVectorImpl<Instruction * > & WorkList)658 propagateShapeBackward(SmallVectorImpl<Instruction *> &WorkList) {
659 SmallVector<Instruction *, 32> NewWorkList;
660
661 auto pushInstruction = [](Value *V,
662 SmallVectorImpl<Instruction *> &WorkList) {
663 Instruction *I = dyn_cast<Instruction>(V);
664 if (I)
665 WorkList.push_back(I);
666 };
667 // Pop an element with known shape. Traverse the operands, if their shape
668 // derives from the result shape and is unknown, add it and add them to the
669 // worklist.
670 LLVM_DEBUG(dbgs() << "Backward-propagate shapes:\n");
671 while (!WorkList.empty()) {
672 Value *V = WorkList.pop_back_val();
673
674 size_t BeforeProcessingV = WorkList.size();
675 if (!isa<Instruction>(V))
676 continue;
677
678 Value *MatrixA;
679 Value *MatrixB;
680 Value *M;
681 Value *N;
682 Value *K;
683 if (match(V, m_Intrinsic<Intrinsic::matrix_multiply>(
684 m_Value(MatrixA), m_Value(MatrixB), m_Value(M),
685 m_Value(N), m_Value(K)))) {
686 if (setShapeInfo(MatrixA, {M, N}))
687 pushInstruction(MatrixA, WorkList);
688
689 if (setShapeInfo(MatrixB, {N, K}))
690 pushInstruction(MatrixB, WorkList);
691
692 } else if (match(V, m_Intrinsic<Intrinsic::matrix_transpose>(
693 m_Value(MatrixA), m_Value(M), m_Value(N)))) {
694 // Flip dimensions.
695 if (setShapeInfo(MatrixA, {M, N}))
696 pushInstruction(MatrixA, WorkList);
697 } else if (match(V, m_Intrinsic<Intrinsic::matrix_column_major_store>(
698 m_Value(MatrixA), m_Value(), m_Value(), m_Value(),
699 m_Value(M), m_Value(N)))) {
700 if (setShapeInfo(MatrixA, {M, N})) {
701 pushInstruction(MatrixA, WorkList);
702 }
703 } else if (isa<LoadInst>(V) ||
704 match(V, m_Intrinsic<Intrinsic::matrix_column_major_load>())) {
705 // Nothing to do, no matrix input.
706 } else if (isa<StoreInst>(V)) {
707 // Nothing to do. We forward-propagated to this so we would just
708 // backward propagate to an instruction with an already known shape.
709 } else if (isUniformShape(V)) {
710 // Propagate to all operands.
711 ShapeInfo Shape = ShapeMap[V];
712 for (Use &U : cast<Instruction>(V)->operands()) {
713 if (setShapeInfo(U.get(), Shape))
714 pushInstruction(U.get(), WorkList);
715 }
716 }
717 // After we discovered new shape info for new instructions in the
718 // worklist, we use their users as seeds for the next round of forward
719 // propagation.
720 for (size_t I = BeforeProcessingV; I != WorkList.size(); I++)
721 for (User *U : WorkList[I]->users())
722 if (isa<Instruction>(U) && V != U)
723 NewWorkList.push_back(cast<Instruction>(U));
724 }
725 return NewWorkList;
726 }
727
728 /// (Op0 op Op1)^T -> Op0^T op Op1^T
729 /// Transpose \p Op0 and \p Op1 of shape \p Shape0 and \p Shape1, then use
730 /// them on both sides of \p Operation.
distributeTransposes(Value * Op0,ShapeInfo Shape0,Value * Op1,ShapeInfo Shape1,MatrixBuilder & Builder,function_ref<Instruction * (Value *,ShapeInfo,Value *,ShapeInfo)> Operation)731 Instruction *distributeTransposes(
732 Value *Op0, ShapeInfo Shape0, Value *Op1, ShapeInfo Shape1,
733 MatrixBuilder &Builder,
734 function_ref<Instruction *(Value *, ShapeInfo, Value *, ShapeInfo)>
735 Operation) {
736 Value *T0 = Builder.CreateMatrixTranspose(
737 Op0, Shape0.NumRows, Shape0.NumColumns, Op0->getName() + "_t");
738 // We are being run after shape prop, add shape for newly created
739 // instructions so that we lower them later.
740 setShapeInfo(T0, Shape0.t());
741 Value *T1 = Builder.CreateMatrixTranspose(
742 Op1, Shape1.NumRows, Shape1.NumColumns, Op1->getName() + "_t");
743 setShapeInfo(T1, Shape1.t());
744 return Operation(T0, Shape0.t(), T1, Shape1.t());
745 }
746
updateShapeAndReplaceAllUsesWith(Instruction & Old,Value * New)747 void updateShapeAndReplaceAllUsesWith(Instruction &Old, Value *New) {
748 // We need to remove Old from the ShapeMap otherwise RAUW will replace it
749 // with New. We should only add New it it supportsShapeInfo so we insert
750 // it conditionally instead.
751 auto S = ShapeMap.find(&Old);
752 if (S != ShapeMap.end()) {
753 ShapeMap.erase(S);
754 if (supportsShapeInfo(New))
755 ShapeMap.insert({New, S->second});
756 }
757 Old.replaceAllUsesWith(New);
758 }
759
760 /// Sink a top-level transpose inside matmuls and adds.
761 /// This creates and erases instructions as needed, and returns the newly
762 /// created instruction while updating the iterator to avoid invalidation. If
763 /// this returns nullptr, no new instruction was created.
sinkTranspose(Instruction & I,BasicBlock::reverse_iterator & II)764 Instruction *sinkTranspose(Instruction &I, BasicBlock::reverse_iterator &II) {
765 BasicBlock &BB = *I.getParent();
766 IRBuilder<> IB(&I);
767 MatrixBuilder Builder(IB);
768
769 Value *TA, *TAMA, *TAMB;
770 ConstantInt *R, *K, *C;
771 if (!match(&I, m_Intrinsic<Intrinsic::matrix_transpose>(
772 m_Value(TA), m_ConstantInt(R), m_ConstantInt(C))))
773 return nullptr;
774
775 // Transpose of a transpose is a nop
776 Value *TATA;
777 if (match(TA, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(TATA)))) {
778 updateShapeAndReplaceAllUsesWith(I, TATA);
779 eraseFromParentAndMove(&I, II, BB);
780 eraseFromParentAndMove(TA, II, BB);
781 return nullptr;
782 }
783
784 // k^T -> k
785 if (isSplat(TA)) {
786 updateShapeAndReplaceAllUsesWith(I, TA);
787 eraseFromParentAndMove(&I, II, BB);
788 return nullptr;
789 }
790
791 // (A * B)^t -> B^t * A^t
792 // RxK KxC CxK KxR
793 if (match(TA, m_Intrinsic<Intrinsic::matrix_multiply>(
794 m_Value(TAMA), m_Value(TAMB), m_ConstantInt(R),
795 m_ConstantInt(K), m_ConstantInt(C)))) {
796 auto NewInst = distributeTransposes(
797 TAMB, {K, C}, TAMA, {R, K}, Builder,
798 [&](Value *T0, ShapeInfo Shape0, Value *T1, ShapeInfo Shape1) {
799 return Builder.CreateMatrixMultiply(T0, T1, Shape0.NumRows,
800 Shape0.NumColumns,
801 Shape1.NumColumns, "mmul");
802 });
803 updateShapeAndReplaceAllUsesWith(I, NewInst);
804 eraseFromParentAndMove(&I, II, BB);
805 eraseFromParentAndMove(TA, II, BB);
806 return NewInst;
807 }
808
809 // Same as above, but with a mul, which occurs when multiplied
810 // with a scalar.
811 // (A * k)^t -> A^t * k
812 // R x C RxC
813 if (match(TA, m_AnyMul(m_Value(TAMA), m_Value(TAMB))) &&
814 (isSplat(TAMA) || isSplat(TAMB))) {
815 IRBuilder<> LocalBuilder(&I);
816 // We know that the transposed operand is of shape RxC.
817 // An when multiplied with a scalar, the shape is preserved.
818 auto NewInst = distributeTransposes(
819 TAMA, {R, C}, TAMB, {R, C}, Builder,
820 [&](Value *T0, ShapeInfo Shape0, Value *T1, ShapeInfo Shape1) {
821 bool IsFP = I.getType()->isFPOrFPVectorTy();
822 auto *Mul = IsFP ? LocalBuilder.CreateFMul(T0, T1, "mmul")
823 : LocalBuilder.CreateMul(T0, T1, "mmul");
824 auto *Result = cast<Instruction>(Mul);
825 setShapeInfo(Result, Shape0);
826 return Result;
827 });
828 updateShapeAndReplaceAllUsesWith(I, NewInst);
829 eraseFromParentAndMove(&I, II, BB);
830 eraseFromParentAndMove(TA, II, BB);
831 return NewInst;
832 }
833
834 // (A + B)^t -> A^t + B^t
835 // RxC RxC CxR CxR
836 if (match(TA, m_AnyAdd(m_Value(TAMA), m_Value(TAMB)))) {
837 IRBuilder<> LocalBuilder(&I);
838 auto NewInst = distributeTransposes(
839 TAMA, {R, C}, TAMB, {R, C}, Builder,
840 [&](Value *T0, ShapeInfo Shape0, Value *T1, ShapeInfo Shape1) {
841 auto *FAdd =
842 cast<Instruction>(LocalBuilder.CreateFAdd(T0, T1, "mfadd"));
843 setShapeInfo(FAdd, Shape0);
844 return FAdd;
845 });
846 updateShapeAndReplaceAllUsesWith(I, NewInst);
847 eraseFromParentAndMove(&I, II, BB);
848 eraseFromParentAndMove(TA, II, BB);
849 return NewInst;
850 }
851
852 return nullptr;
853 }
854
liftTranspose(Instruction & I)855 void liftTranspose(Instruction &I) {
856 // Erase dead Instructions after lifting transposes from binops.
857 auto CleanupBinOp = [](Instruction &T, Value *A, Value *B) {
858 if (T.use_empty())
859 T.eraseFromParent();
860 if (A->use_empty())
861 cast<Instruction>(A)->eraseFromParent();
862 if (A != B && B->use_empty())
863 cast<Instruction>(B)->eraseFromParent();
864 };
865
866 Value *A, *B, *AT, *BT;
867 ConstantInt *R, *K, *C;
868 // A^t * B ^t -> (B * A)^t
869 if (match(&I, m_Intrinsic<Intrinsic::matrix_multiply>(
870 m_Value(A), m_Value(B), m_ConstantInt(R),
871 m_ConstantInt(K), m_ConstantInt(C))) &&
872 match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(AT))) &&
873 match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value((BT))))) {
874 IRBuilder<> IB(&I);
875 MatrixBuilder Builder(IB);
876 Value *M = Builder.CreateMatrixMultiply(
877 BT, AT, C->getZExtValue(), K->getZExtValue(), R->getZExtValue());
878 setShapeInfo(M, {C, R});
879 Instruction *NewInst = Builder.CreateMatrixTranspose(M, C->getZExtValue(),
880 R->getZExtValue());
881 updateShapeAndReplaceAllUsesWith(I, NewInst);
882 CleanupBinOp(I, A, B);
883 }
884 // A^t + B ^t -> (A + B)^t
885 else if (match(&I, m_FAdd(m_Value(A), m_Value(B))) &&
886 match(A, m_Intrinsic<Intrinsic::matrix_transpose>(
887 m_Value(AT), m_ConstantInt(R), m_ConstantInt(C))) &&
888 match(B, m_Intrinsic<Intrinsic::matrix_transpose>(
889 m_Value(BT), m_ConstantInt(R), m_ConstantInt(C)))) {
890 IRBuilder<> Builder(&I);
891 Value *Add = cast<Instruction>(Builder.CreateFAdd(AT, BT, "mfadd"));
892 setShapeInfo(Add, {C, R});
893 MatrixBuilder MBuilder(Builder);
894 Instruction *NewInst = MBuilder.CreateMatrixTranspose(
895 Add, C->getZExtValue(), R->getZExtValue(), "mfadd_t");
896 updateShapeAndReplaceAllUsesWith(I, NewInst);
897 CleanupBinOp(I, A, B);
898 }
899 }
900
901 /// Try moving transposes in order to fold them away or into multiplies.
optimizeTransposes()902 void optimizeTransposes() {
903 // First sink all transposes inside matmuls and adds, hoping that we end up
904 // with NN, NT or TN variants.
905 for (BasicBlock &BB : reverse(Func)) {
906 for (auto II = BB.rbegin(); II != BB.rend();) {
907 Instruction &I = *II;
908 // We may remove II. By default continue on the next/prev instruction.
909 ++II;
910 if (Instruction *NewInst = sinkTranspose(I, II))
911 II = std::next(BasicBlock::reverse_iterator(NewInst));
912 }
913 }
914
915 // If we have a TT matmul or a TT add, lift the transpose. We may be able
916 // to fold into consuming multiply or add.
917 for (BasicBlock &BB : Func) {
918 for (Instruction &I : llvm::make_early_inc_range(BB)) {
919 liftTranspose(I);
920 }
921 }
922 }
923
Visit()924 bool Visit() {
925 SmallVector<Instruction *, 32> WorkList;
926
927 // Initially only the shape of matrix intrinsics is known.
928 // Initialize the work list with ops carrying shape information.
929 for (BasicBlock &BB : Func)
930 for (Instruction &Inst : BB) {
931 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst);
932 if (!II)
933 continue;
934
935 switch (II->getIntrinsicID()) {
936 case Intrinsic::matrix_multiply:
937 case Intrinsic::matrix_transpose:
938 case Intrinsic::matrix_column_major_load:
939 case Intrinsic::matrix_column_major_store:
940 WorkList.push_back(&Inst);
941 break;
942 default:
943 break;
944 }
945 }
946
947 // Avoid unnecessary work if there are no matrix intrinsics in the function.
948 if (WorkList.empty())
949 return false;
950
951 // Propagate shapes until nothing changes any longer.
952 while (!WorkList.empty()) {
953 WorkList = propagateShapeForward(WorkList);
954 WorkList = propagateShapeBackward(WorkList);
955 }
956
957 if (!isMinimal()) {
958 optimizeTransposes();
959 if (PrintAfterTransposeOpt) {
960 dbgs() << "Dump after matrix transpose optimization:\n";
961 Func.print(dbgs());
962 }
963 }
964
965 bool Changed = false;
966 SmallVector<CallInst *, 16> MaybeFusableInsts;
967 SmallVector<Instruction *, 16> MatrixInsts;
968
969 // First, collect all instructions with shape information and candidates for
970 // fusion (currently only matrix multiplies).
971 ReversePostOrderTraversal<Function *> RPOT(&Func);
972 for (auto *BB : RPOT)
973 for (Instruction &I : *BB) {
974 if (ShapeMap.find(&I) == ShapeMap.end())
975 continue;
976 if (match(&I, m_Intrinsic<Intrinsic::matrix_multiply>()))
977 MaybeFusableInsts.push_back(cast<CallInst>(&I));
978 MatrixInsts.push_back(&I);
979 }
980
981 // Second, try to fuse candidates.
982 SmallPtrSet<Instruction *, 16> FusedInsts;
983 for (CallInst *CI : MaybeFusableInsts)
984 LowerMatrixMultiplyFused(CI, FusedInsts);
985 Changed = !FusedInsts.empty();
986
987 // Third, lower remaining instructions with shape information.
988 for (Instruction *Inst : MatrixInsts) {
989 if (FusedInsts.count(Inst))
990 continue;
991
992 IRBuilder<> Builder(Inst);
993
994 if (CallInst *CInst = dyn_cast<CallInst>(Inst))
995 Changed |= VisitCallInst(CInst);
996
997 Value *Op1;
998 Value *Op2;
999 if (auto *BinOp = dyn_cast<BinaryOperator>(Inst))
1000 Changed |= VisitBinaryOperator(BinOp);
1001 if (auto *UnOp = dyn_cast<UnaryOperator>(Inst))
1002 Changed |= VisitUnaryOperator(UnOp);
1003 if (match(Inst, m_Load(m_Value(Op1))))
1004 Changed |= VisitLoad(cast<LoadInst>(Inst), Op1, Builder);
1005 else if (match(Inst, m_Store(m_Value(Op1), m_Value(Op2))))
1006 Changed |= VisitStore(cast<StoreInst>(Inst), Op1, Op2, Builder);
1007 }
1008
1009 if (ORE) {
1010 RemarkGenerator RemarkGen(Inst2ColumnMatrix, *ORE, Func);
1011 RemarkGen.emitRemarks();
1012 }
1013
1014 // Delete the instructions backwards, as it has a reduced likelihood of
1015 // having to update as many def-use and use-def chains.
1016 //
1017 // Because we add to ToRemove during fusion we can't guarantee that defs
1018 // are before uses. Change uses to poison temporarily as these should get
1019 // removed as well.
1020 //
1021 // For verification, we keep track of where we changed uses to poison in
1022 // PoisonedInsts and then check that we in fact remove them.
1023 SmallSet<Instruction *, 16> PoisonedInsts;
1024 for (auto *Inst : reverse(ToRemove)) {
1025 for (Use &U : llvm::make_early_inc_range(Inst->uses())) {
1026 if (auto *Poisoned = dyn_cast<Instruction>(U.getUser()))
1027 PoisonedInsts.insert(Poisoned);
1028 U.set(PoisonValue::get(Inst->getType()));
1029 }
1030 Inst->eraseFromParent();
1031 PoisonedInsts.erase(Inst);
1032 }
1033 if (!PoisonedInsts.empty()) {
1034 // If we didn't remove all poisoned instructions, it's a hard error.
1035 dbgs() << "Poisoned but present instructions:\n";
1036 for (auto *I : PoisonedInsts)
1037 dbgs() << *I << "\n";
1038 llvm_unreachable("Poisoned but instruction not removed");
1039 }
1040
1041 return Changed;
1042 }
1043
1044 /// Turns \p BasePtr into an elementwise pointer to \p EltType.
createElementPtr(Value * BasePtr,Type * EltType,IRBuilder<> & Builder)1045 Value *createElementPtr(Value *BasePtr, Type *EltType, IRBuilder<> &Builder) {
1046 unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace();
1047 Type *EltPtrType = PointerType::get(EltType, AS);
1048 return Builder.CreatePointerCast(BasePtr, EltPtrType);
1049 }
1050
1051 /// Replace intrinsic calls
VisitCallInst(CallInst * Inst)1052 bool VisitCallInst(CallInst *Inst) {
1053 if (!Inst->getCalledFunction() || !Inst->getCalledFunction()->isIntrinsic())
1054 return false;
1055
1056 switch (Inst->getCalledFunction()->getIntrinsicID()) {
1057 case Intrinsic::matrix_multiply:
1058 LowerMultiply(Inst);
1059 break;
1060 case Intrinsic::matrix_transpose:
1061 LowerTranspose(Inst);
1062 break;
1063 case Intrinsic::matrix_column_major_load:
1064 LowerColumnMajorLoad(Inst);
1065 break;
1066 case Intrinsic::matrix_column_major_store:
1067 LowerColumnMajorStore(Inst);
1068 break;
1069 default:
1070 return false;
1071 }
1072 return true;
1073 }
1074
1075 /// Compute the alignment for a column/row \p Idx with \p Stride between them.
1076 /// The address at \p Idx == 0 has alignment \p A. If \p Stride is a
1077 /// ConstantInt, reduce the initial alignment based on the byte offset. For
1078 /// non-ConstantInt strides, return the common alignment of the initial
1079 /// alignment and the element size in bytes.
getAlignForIndex(unsigned Idx,Value * Stride,Type * ElementTy,MaybeAlign A) const1080 Align getAlignForIndex(unsigned Idx, Value *Stride, Type *ElementTy,
1081 MaybeAlign A) const {
1082 Align InitialAlign = DL.getValueOrABITypeAlignment(A, ElementTy);
1083 if (Idx == 0)
1084 return InitialAlign;
1085
1086 TypeSize ElementSizeInBits = DL.getTypeSizeInBits(ElementTy);
1087 if (auto *ConstStride = dyn_cast<ConstantInt>(Stride)) {
1088 uint64_t StrideInBytes =
1089 ConstStride->getZExtValue() * ElementSizeInBits / 8;
1090 return commonAlignment(InitialAlign, Idx * StrideInBytes);
1091 }
1092 return commonAlignment(InitialAlign, ElementSizeInBits / 8);
1093 }
1094
1095 /// Load a matrix with \p Shape starting at \p Ptr and using \p Stride between
1096 /// vectors.
loadMatrix(Type * Ty,Value * Ptr,MaybeAlign MAlign,Value * Stride,bool IsVolatile,ShapeInfo Shape,IRBuilder<> & Builder)1097 MatrixTy loadMatrix(Type *Ty, Value *Ptr, MaybeAlign MAlign, Value *Stride,
1098 bool IsVolatile, ShapeInfo Shape, IRBuilder<> &Builder) {
1099 auto *VType = cast<VectorType>(Ty);
1100 Type *EltTy = VType->getElementType();
1101 Type *VecTy = FixedVectorType::get(EltTy, Shape.getStride());
1102 Value *EltPtr = createElementPtr(Ptr, EltTy, Builder);
1103 MatrixTy Result;
1104 for (unsigned I = 0, E = Shape.getNumVectors(); I < E; ++I) {
1105 Value *GEP = computeVectorAddr(
1106 EltPtr, Builder.getIntN(Stride->getType()->getScalarSizeInBits(), I),
1107 Stride, Shape.getStride(), EltTy, Builder);
1108 Value *Vector = Builder.CreateAlignedLoad(
1109 VecTy, GEP, getAlignForIndex(I, Stride, EltTy, MAlign),
1110 IsVolatile, "col.load");
1111
1112 Result.addVector(Vector);
1113 }
1114 return Result.addNumLoads(getNumOps(Result.getVectorTy()) *
1115 Result.getNumVectors());
1116 }
1117
1118 /// Loads a sub-matrix with shape \p ResultShape from a \p R x \p C matrix,
1119 /// starting at \p MatrixPtr[I][J].
loadMatrix(Value * MatrixPtr,MaybeAlign Align,bool IsVolatile,ShapeInfo MatrixShape,Value * I,Value * J,ShapeInfo ResultShape,Type * EltTy,IRBuilder<> & Builder)1120 MatrixTy loadMatrix(Value *MatrixPtr, MaybeAlign Align, bool IsVolatile,
1121 ShapeInfo MatrixShape, Value *I, Value *J,
1122 ShapeInfo ResultShape, Type *EltTy,
1123 IRBuilder<> &Builder) {
1124
1125 Value *Offset = Builder.CreateAdd(
1126 Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I);
1127
1128 unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
1129 Value *EltPtr =
1130 Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS));
1131 Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset);
1132 auto *TileTy = FixedVectorType::get(EltTy, ResultShape.NumRows *
1133 ResultShape.NumColumns);
1134 Type *TilePtrTy = PointerType::get(TileTy, AS);
1135 Value *TilePtr =
1136 Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");
1137
1138 return loadMatrix(TileTy, TilePtr, Align,
1139 Builder.getInt64(MatrixShape.getStride()), IsVolatile,
1140 ResultShape, Builder);
1141 }
1142
1143 /// Lower a load instruction with shape information.
LowerLoad(Instruction * Inst,Value * Ptr,MaybeAlign Align,Value * Stride,bool IsVolatile,ShapeInfo Shape)1144 void LowerLoad(Instruction *Inst, Value *Ptr, MaybeAlign Align, Value *Stride,
1145 bool IsVolatile, ShapeInfo Shape) {
1146 IRBuilder<> Builder(Inst);
1147 finalizeLowering(Inst,
1148 loadMatrix(Inst->getType(), Ptr, Align, Stride, IsVolatile,
1149 Shape, Builder),
1150 Builder);
1151 }
1152
1153 /// Lowers llvm.matrix.column.major.load.
1154 ///
1155 /// The intrinsic loads a matrix from memory using a stride between columns.
LowerColumnMajorLoad(CallInst * Inst)1156 void LowerColumnMajorLoad(CallInst *Inst) {
1157 assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
1158 "Intrinsic only supports column-major layout!");
1159 Value *Ptr = Inst->getArgOperand(0);
1160 Value *Stride = Inst->getArgOperand(1);
1161 LowerLoad(Inst, Ptr, Inst->getParamAlign(0), Stride,
1162 cast<ConstantInt>(Inst->getArgOperand(2))->isOne(),
1163 {Inst->getArgOperand(3), Inst->getArgOperand(4)});
1164 }
1165
1166 /// Stores a sub-matrix \p StoreVal into the \p R x \p C matrix starting at \p
1167 /// MatrixPtr[I][J].
storeMatrix(const MatrixTy & StoreVal,Value * MatrixPtr,MaybeAlign MAlign,bool IsVolatile,ShapeInfo MatrixShape,Value * I,Value * J,Type * EltTy,IRBuilder<> & Builder)1168 void storeMatrix(const MatrixTy &StoreVal, Value *MatrixPtr,
1169 MaybeAlign MAlign, bool IsVolatile, ShapeInfo MatrixShape,
1170 Value *I, Value *J, Type *EltTy, IRBuilder<> &Builder) {
1171 Value *Offset = Builder.CreateAdd(
1172 Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I);
1173
1174 unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace();
1175 Value *EltPtr =
1176 Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS));
1177 Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset);
1178 auto *TileTy = FixedVectorType::get(EltTy, StoreVal.getNumRows() *
1179 StoreVal.getNumColumns());
1180 Type *TilePtrTy = PointerType::get(TileTy, AS);
1181 Value *TilePtr =
1182 Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast");
1183
1184 storeMatrix(TileTy, StoreVal, TilePtr, MAlign,
1185 Builder.getInt64(MatrixShape.getStride()), IsVolatile, Builder);
1186 }
1187
1188 /// Store matrix \p StoreVal starting at \p Ptr and using \p Stride between
1189 /// vectors.
storeMatrix(Type * Ty,MatrixTy StoreVal,Value * Ptr,MaybeAlign MAlign,Value * Stride,bool IsVolatile,IRBuilder<> & Builder)1190 MatrixTy storeMatrix(Type *Ty, MatrixTy StoreVal, Value *Ptr,
1191 MaybeAlign MAlign, Value *Stride, bool IsVolatile,
1192 IRBuilder<> &Builder) {
1193 auto VType = cast<VectorType>(Ty);
1194 Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder);
1195 for (auto Vec : enumerate(StoreVal.vectors())) {
1196 Value *GEP = computeVectorAddr(
1197 EltPtr,
1198 Builder.getIntN(Stride->getType()->getScalarSizeInBits(),
1199 Vec.index()),
1200 Stride, StoreVal.getStride(), VType->getElementType(), Builder);
1201 Builder.CreateAlignedStore(Vec.value(), GEP,
1202 getAlignForIndex(Vec.index(), Stride,
1203 VType->getElementType(),
1204 MAlign),
1205 IsVolatile);
1206 }
1207 return MatrixTy().addNumStores(getNumOps(StoreVal.getVectorTy()) *
1208 StoreVal.getNumVectors());
1209 }
1210
1211 /// Lower a store instruction with shape information.
LowerStore(Instruction * Inst,Value * Matrix,Value * Ptr,MaybeAlign A,Value * Stride,bool IsVolatile,ShapeInfo Shape)1212 void LowerStore(Instruction *Inst, Value *Matrix, Value *Ptr, MaybeAlign A,
1213 Value *Stride, bool IsVolatile, ShapeInfo Shape) {
1214 IRBuilder<> Builder(Inst);
1215 auto StoreVal = getMatrix(Matrix, Shape, Builder);
1216 finalizeLowering(Inst,
1217 storeMatrix(Matrix->getType(), StoreVal, Ptr, A, Stride,
1218 IsVolatile, Builder),
1219 Builder);
1220 }
1221
1222 /// Lowers llvm.matrix.column.major.store.
1223 ///
1224 /// The intrinsic store a matrix back memory using a stride between columns.
LowerColumnMajorStore(CallInst * Inst)1225 void LowerColumnMajorStore(CallInst *Inst) {
1226 assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
1227 "Intrinsic only supports column-major layout!");
1228 Value *Matrix = Inst->getArgOperand(0);
1229 Value *Ptr = Inst->getArgOperand(1);
1230 Value *Stride = Inst->getArgOperand(2);
1231 LowerStore(Inst, Matrix, Ptr, Inst->getParamAlign(1), Stride,
1232 cast<ConstantInt>(Inst->getArgOperand(3))->isOne(),
1233 {Inst->getArgOperand(4), Inst->getArgOperand(5)});
1234 }
1235
1236 // Set elements I..I+NumElts-1 to Block
insertVector(Value * Col,unsigned I,Value * Block,IRBuilder<> & Builder)1237 Value *insertVector(Value *Col, unsigned I, Value *Block,
1238 IRBuilder<> &Builder) {
1239
1240 // First, bring Block to the same size as Col
1241 unsigned BlockNumElts =
1242 cast<FixedVectorType>(Block->getType())->getNumElements();
1243 unsigned NumElts = cast<FixedVectorType>(Col->getType())->getNumElements();
1244 assert(NumElts >= BlockNumElts && "Too few elements for current block");
1245
1246 Block = Builder.CreateShuffleVector(
1247 Block, createSequentialMask(0, BlockNumElts, NumElts - BlockNumElts));
1248
1249 // If Col is 7 long and I is 2 and BlockNumElts is 2 the mask is: 0, 1, 7,
1250 // 8, 4, 5, 6
1251 SmallVector<int, 16> Mask;
1252 unsigned i;
1253 for (i = 0; i < I; i++)
1254 Mask.push_back(i);
1255
1256 unsigned VecNumElts =
1257 cast<FixedVectorType>(Col->getType())->getNumElements();
1258 for (; i < I + BlockNumElts; i++)
1259 Mask.push_back(i - I + VecNumElts);
1260
1261 for (; i < VecNumElts; i++)
1262 Mask.push_back(i);
1263
1264 return Builder.CreateShuffleVector(Col, Block, Mask);
1265 }
1266
createMulAdd(Value * Sum,Value * A,Value * B,bool UseFPOp,IRBuilder<> & Builder,bool AllowContraction,unsigned & NumComputeOps)1267 Value *createMulAdd(Value *Sum, Value *A, Value *B, bool UseFPOp,
1268 IRBuilder<> &Builder, bool AllowContraction,
1269 unsigned &NumComputeOps) {
1270 NumComputeOps += getNumOps(A->getType());
1271 if (!Sum)
1272 return UseFPOp ? Builder.CreateFMul(A, B) : Builder.CreateMul(A, B);
1273
1274 if (UseFPOp) {
1275 if (AllowContraction) {
1276 // Use fmuladd for floating point operations and let the backend decide
1277 // if that's profitable.
1278 Function *FMulAdd = Intrinsic::getDeclaration(
1279 Func.getParent(), Intrinsic::fmuladd, A->getType());
1280 return Builder.CreateCall(FMulAdd, {A, B, Sum});
1281 }
1282 NumComputeOps += getNumOps(A->getType());
1283 Value *Mul = Builder.CreateFMul(A, B);
1284 return Builder.CreateFAdd(Sum, Mul);
1285 }
1286
1287 NumComputeOps += getNumOps(A->getType());
1288 Value *Mul = Builder.CreateMul(A, B);
1289 return Builder.CreateAdd(Sum, Mul);
1290 }
1291
1292 /// Cache \p Matrix as result of \p Inst and update the uses of \p Inst. For
1293 /// users with shape information, there's nothing to do: they will use the
1294 /// cached value when they are lowered. For other users, \p Matrix is
1295 /// flattened and the uses are updated to use it. Also marks \p Inst for
1296 /// deletion.
finalizeLowering(Instruction * Inst,MatrixTy Matrix,IRBuilder<> & Builder)1297 void finalizeLowering(Instruction *Inst, MatrixTy Matrix,
1298 IRBuilder<> &Builder) {
1299 auto inserted = Inst2ColumnMatrix.insert(std::make_pair(Inst, Matrix));
1300 (void)inserted;
1301 assert(inserted.second && "multiple matrix lowering mapping");
1302
1303 ToRemove.push_back(Inst);
1304 Value *Flattened = nullptr;
1305 for (Use &U : llvm::make_early_inc_range(Inst->uses())) {
1306 if (ShapeMap.find(U.getUser()) == ShapeMap.end()) {
1307 if (!Flattened)
1308 Flattened = Matrix.embedInVector(Builder);
1309 U.set(Flattened);
1310 }
1311 }
1312 }
1313
1314 /// Compute \p Result += \p A * \p B for input matrices with left-associating
1315 /// addition.
1316 ///
1317 /// We can fold a transpose into the operand that is used to extract scalars.
1318 /// This is the first operands with row-major and the second with
1319 /// column-major. If \p IsScalarMatrixTransposed we assume the appropriate
1320 /// operand is transposed.
emitMatrixMultiply(MatrixTy & Result,const MatrixTy & A,const MatrixTy & B,IRBuilder<> & Builder,bool IsTiled,bool IsScalarMatrixTransposed,FastMathFlags FMF)1321 void emitMatrixMultiply(MatrixTy &Result, const MatrixTy &A,
1322 const MatrixTy &B, IRBuilder<> &Builder, bool IsTiled,
1323 bool IsScalarMatrixTransposed, FastMathFlags FMF) {
1324 const unsigned VF = std::max<unsigned>(
1325 TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
1326 .getFixedValue() /
1327 Result.getElementType()->getPrimitiveSizeInBits().getFixedValue(),
1328 1U);
1329 unsigned R = Result.getNumRows();
1330 unsigned C = Result.getNumColumns();
1331 unsigned M = A.getNumColumns();
1332
1333 bool IsFP = Result.getElementType()->isFloatingPointTy();
1334 assert(A.isColumnMajor() == B.isColumnMajor() &&
1335 Result.isColumnMajor() == A.isColumnMajor() &&
1336 "operands must agree on matrix layout");
1337 unsigned NumComputeOps = 0;
1338
1339 Builder.setFastMathFlags(FMF);
1340
1341 if (A.isColumnMajor()) {
1342 // Multiply columns from the first operand with scalars from the second
1343 // operand. Then move along the K axes and accumulate the columns. With
1344 // this the adds can be vectorized without reassociation.
1345 for (unsigned J = 0; J < C; ++J) {
1346 unsigned BlockSize = VF;
1347 // If Result is zero, we don't need to accumulate in the K==0 iteration.
1348 bool isSumZero = isa<ConstantAggregateZero>(Result.getColumn(J));
1349
1350 for (unsigned I = 0; I < R; I += BlockSize) {
1351 // Gradually lower the vectorization factor to cover the remainder.
1352 while (I + BlockSize > R)
1353 BlockSize /= 2;
1354
1355 Value *Sum = IsTiled ? Result.extractVector(I, J, BlockSize, Builder)
1356 : nullptr;
1357 for (unsigned K = 0; K < M; ++K) {
1358 Value *L = A.extractVector(I, K, BlockSize, Builder);
1359 Value *RH = Builder.CreateExtractElement(
1360 B.getColumn(IsScalarMatrixTransposed ? K : J),
1361 IsScalarMatrixTransposed ? J : K);
1362 Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat");
1363 Sum =
1364 createMulAdd(isSumZero && K == 0 ? nullptr : Sum, L, Splat,
1365 IsFP, Builder, FMF.allowContract(), NumComputeOps);
1366 }
1367 Result.setVector(J,
1368 insertVector(Result.getVector(J), I, Sum, Builder));
1369 }
1370 }
1371 } else {
1372 // Multiply rows from the second operand with scalars from the first
1373 // operand. Then move along the K axes and accumulate the rows. With this
1374 // the adds can be vectorized without reassociation.
1375 for (unsigned I = 0; I < R; ++I) {
1376 unsigned BlockSize = VF;
1377 bool isSumZero = isa<ConstantAggregateZero>(Result.getRow(I));
1378 for (unsigned J = 0; J < C; J += BlockSize) {
1379 // Gradually lower the vectorization factor to cover the remainder.
1380 while (J + BlockSize > C)
1381 BlockSize /= 2;
1382
1383 Value *Sum = nullptr;
1384 for (unsigned K = 0; K < M; ++K) {
1385 Value *R = B.extractVector(K, J, BlockSize, Builder);
1386 Value *LH = Builder.CreateExtractElement(
1387 A.getVector(IsScalarMatrixTransposed ? K : I),
1388 IsScalarMatrixTransposed ? I : K);
1389 Value *Splat = Builder.CreateVectorSplat(BlockSize, LH, "splat");
1390 Sum =
1391 createMulAdd(isSumZero && K == 0 ? nullptr : Sum, Splat, R,
1392 IsFP, Builder, FMF.allowContract(), NumComputeOps);
1393 }
1394 Result.setVector(I,
1395 insertVector(Result.getVector(I), J, Sum, Builder));
1396 }
1397 }
1398 }
1399 Result.addNumComputeOps(NumComputeOps);
1400 }
1401
1402 /// Ensure that the memory in \p Load does not alias \p Store by potentially
1403 /// copying it to a new location. This new or otherwise the original location
1404 /// is returned.
getNonAliasingPointer(LoadInst * Load,StoreInst * Store,CallInst * MatMul)1405 Value *getNonAliasingPointer(LoadInst *Load, StoreInst *Store,
1406 CallInst *MatMul) {
1407 MemoryLocation StoreLoc = MemoryLocation::get(Store);
1408 MemoryLocation LoadLoc = MemoryLocation::get(Load);
1409
1410 // If we can statically determine noalias we're good.
1411 if (AA->isNoAlias(LoadLoc, StoreLoc))
1412 return Load->getPointerOperand();
1413
1414 // Create code to check if the memory locations of the Load and Store
1415 // overlap and if they do, copy Load's operand to a new buffer.
1416
1417 // First, create new blocks for 2n part of the check and the copy.
1418 BasicBlock *Check0 = MatMul->getParent();
1419 // FIXME: Use lazy DTU and update SplitBlock to accept a DTU instead of a
1420 // DT. Manually collect dominator tree updates, to avoid unnecessary work,
1421 // as we adjust Check0 and Check1's branches.
1422 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
1423 for (BasicBlock *Succ : successors(Check0))
1424 DTUpdates.push_back({DT->Delete, Check0, Succ});
1425
1426 BasicBlock *Check1 =
1427 SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1428 nullptr, "alias_cont");
1429 BasicBlock *Copy =
1430 SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1431 nullptr, "copy");
1432 BasicBlock *Fusion =
1433 SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI,
1434 nullptr, "no_alias");
1435
1436 // Check if the loaded memory location begins before the end of the store
1437 // location. If the condition holds, they might overlap, otherwise they are
1438 // guaranteed to not overlap.
1439 IRBuilder<> Builder(MatMul);
1440 Check0->getTerminator()->eraseFromParent();
1441 Builder.SetInsertPoint(Check0);
1442 Type *IntPtrTy = Builder.getIntPtrTy(Load->getModule()->getDataLayout());
1443 Value *StoreBegin = Builder.CreatePtrToInt(
1444 const_cast<Value *>(StoreLoc.Ptr), IntPtrTy, "store.begin");
1445 Value *StoreEnd = Builder.CreateAdd(
1446 StoreBegin, ConstantInt::get(IntPtrTy, StoreLoc.Size.getValue()),
1447 "store.end", true, true);
1448 Value *LoadBegin = Builder.CreatePtrToInt(const_cast<Value *>(LoadLoc.Ptr),
1449 IntPtrTy, "load.begin");
1450 Builder.CreateCondBr(Builder.CreateICmpULT(LoadBegin, StoreEnd), Check1,
1451 Fusion);
1452
1453 // Check if the store begins before the end of the load location. If the
1454 // condition holds, they alias, otherwise they are guaranteed to not
1455 // overlap.
1456 Check1->getTerminator()->eraseFromParent();
1457 Builder.SetInsertPoint(Check1, Check1->begin());
1458 Value *LoadEnd = Builder.CreateAdd(
1459 LoadBegin, ConstantInt::get(IntPtrTy, LoadLoc.Size.getValue()),
1460 "load.end", true, true);
1461 Builder.CreateCondBr(Builder.CreateICmpULT(StoreBegin, LoadEnd), Copy,
1462 Fusion);
1463
1464 // Copy load operand to new alloca.
1465 Builder.SetInsertPoint(Copy, Copy->begin());
1466 auto *VT = cast<FixedVectorType>(Load->getType());
1467 // Use an array type for the alloca, to avoid potentially huge alignment
1468 // requirements for large vector types.
1469 auto *ArrayTy = ArrayType::get(VT->getElementType(), VT->getNumElements());
1470 AllocaInst *Alloca =
1471 Builder.CreateAlloca(ArrayTy, Load->getPointerAddressSpace());
1472 Value *BC = Builder.CreateBitCast(Alloca, VT->getPointerTo());
1473
1474 Builder.CreateMemCpy(BC, Alloca->getAlign(), Load->getPointerOperand(),
1475 Load->getAlign(), LoadLoc.Size.getValue());
1476 Builder.SetInsertPoint(Fusion, Fusion->begin());
1477 PHINode *PHI = Builder.CreatePHI(Load->getPointerOperandType(), 3);
1478 PHI->addIncoming(Load->getPointerOperand(), Check0);
1479 PHI->addIncoming(Load->getPointerOperand(), Check1);
1480 PHI->addIncoming(BC, Copy);
1481
1482 // Adjust DT.
1483 DTUpdates.push_back({DT->Insert, Check0, Check1});
1484 DTUpdates.push_back({DT->Insert, Check0, Fusion});
1485 DTUpdates.push_back({DT->Insert, Check1, Copy});
1486 DTUpdates.push_back({DT->Insert, Check1, Fusion});
1487 DT->applyUpdates(DTUpdates);
1488 return PHI;
1489 }
1490
isFusionProfitable(CallInst * MatMul)1491 bool isFusionProfitable(CallInst *MatMul) {
1492 if (ForceFusion)
1493 return true;
1494
1495 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1496 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1497
1498 const unsigned R = LShape.NumRows;
1499 const unsigned C = RShape.NumColumns;
1500 const unsigned M = LShape.NumColumns;
1501 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1502
1503 const unsigned VF = std::max<unsigned>(
1504 TTI.getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
1505 .getFixedValue() /
1506 EltType->getPrimitiveSizeInBits().getFixedValue(),
1507 1U);
1508
1509 // Cost model for tiling
1510 //
1511 // For tiling to be beneficial, we need reuse either along the R or
1512 // the C axis. We vectorize along the R axis so that means at least
1513 // 3 elements.
1514 // TODO: Also consider cost of copying if operands alias.
1515 if (R <= VF && C == 1)
1516 return false;
1517 // Then we need enough elements to exceed the number of vector
1518 // registers we have. Note that this is an oversimplification since
1519 // fusing also takes some extra loads which may exceed the number of
1520 // reloads necessary.
1521 unsigned Op0Regs = (R + VF - 1) / VF * M;
1522 unsigned Op1Regs = (M + VF - 1) / VF * C;
1523 return Op0Regs + Op1Regs >
1524 TTI.getNumberOfRegisters(TTI.getRegisterClassForType(true));
1525 }
1526
getZeroMatrix(Type * EltType,unsigned R,unsigned C)1527 MatrixTy getZeroMatrix(Type *EltType, unsigned R, unsigned C) {
1528 MatrixTy Res;
1529 auto *ColumType = FixedVectorType::get(EltType, R);
1530 for (unsigned I = 0; I < C; ++I)
1531 Res.addVector(ConstantAggregateZero::get(ColumType));
1532 return Res;
1533 }
1534
createTiledLoops(CallInst * MatMul,Value * LPtr,ShapeInfo LShape,Value * RPtr,ShapeInfo RShape,StoreInst * Store)1535 void createTiledLoops(CallInst *MatMul, Value *LPtr, ShapeInfo LShape,
1536 Value *RPtr, ShapeInfo RShape, StoreInst *Store) {
1537 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1538
1539 // Create the main tiling loop nest.
1540 TileInfo TI(LShape.NumRows, RShape.NumColumns, LShape.NumColumns, TileSize);
1541 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
1542 Instruction *InsertI = cast<Instruction>(MatMul);
1543 BasicBlock *Start = InsertI->getParent();
1544 BasicBlock *End =
1545 SplitBlock(InsertI->getParent(), InsertI, DT, LI, nullptr, "continue");
1546 IRBuilder<> Builder(MatMul);
1547 BasicBlock *InnerBody = TI.CreateTiledLoops(Start, End, Builder, DTU, *LI);
1548
1549 Type *TileVecTy =
1550 FixedVectorType::get(MatMul->getType()->getScalarType(), TileSize);
1551 MatrixTy TileResult;
1552 // Insert in the inner loop header.
1553 Builder.SetInsertPoint(TI.KLoop.Header->getTerminator());
1554 // Create PHI nodes for the result columns to accumulate across iterations.
1555 SmallVector<PHINode *, 4> ColumnPhis;
1556 for (unsigned I = 0; I < TileSize; I++) {
1557 auto *Phi = Builder.CreatePHI(TileVecTy, 2, "result.vec." + Twine(I));
1558 Phi->addIncoming(ConstantAggregateZero::get(TileVecTy),
1559 TI.RowLoop.Header->getSingleSuccessor());
1560 TileResult.addVector(Phi);
1561 ColumnPhis.push_back(Phi);
1562 }
1563
1564 // Insert in the inner loop body, which computes
1565 // Res += Load(CurrentRow, K) * Load(K, CurrentColumn)
1566 Builder.SetInsertPoint(InnerBody->getTerminator());
1567 // Load tiles of the operands.
1568 MatrixTy A =
1569 loadMatrix(LPtr, {}, false, LShape, TI.RowLoop.Index, TI.KLoop.Index,
1570 {TileSize, TileSize}, EltType, Builder);
1571 MatrixTy B =
1572 loadMatrix(RPtr, {}, false, RShape, TI.KLoop.Index, TI.ColumnLoop.Index,
1573 {TileSize, TileSize}, EltType, Builder);
1574 emitMatrixMultiply(TileResult, A, B, Builder, true, false,
1575 getFastMathFlags(MatMul));
1576 // Store result after the inner loop is done.
1577 Builder.SetInsertPoint(TI.RowLoop.Latch->getTerminator());
1578 storeMatrix(TileResult, Store->getPointerOperand(), Store->getAlign(),
1579 Store->isVolatile(), {LShape.NumRows, RShape.NumColumns},
1580 TI.RowLoop.Index, TI.ColumnLoop.Index, EltType, Builder);
1581
1582 for (unsigned I = 0; I < TileResult.getNumVectors(); I++)
1583 ColumnPhis[I]->addIncoming(TileResult.getVector(I), TI.KLoop.Latch);
1584
1585 // Force unrolling of a few iterations of the inner loop, to make sure there
1586 // is enough work per iteration.
1587 // FIXME: The unroller should make this decision directly instead, but
1588 // currently the cost-model is not up to the task.
1589 unsigned InnerLoopUnrollCount = std::min(10u, LShape.NumColumns / TileSize);
1590 addStringMetadataToLoop(LI->getLoopFor(TI.KLoop.Header),
1591 "llvm.loop.unroll.count", InnerLoopUnrollCount);
1592 }
1593
emitSIMDTiling(CallInst * MatMul,LoadInst * LoadOp0,LoadInst * LoadOp1,StoreInst * Store,SmallPtrSetImpl<Instruction * > & FusedInsts)1594 void emitSIMDTiling(CallInst *MatMul, LoadInst *LoadOp0, LoadInst *LoadOp1,
1595 StoreInst *Store,
1596 SmallPtrSetImpl<Instruction *> &FusedInsts) {
1597 assert(MatrixLayout == MatrixLayoutTy::ColumnMajor &&
1598 "Tiling only supported for column-major matrixes at the moment!");
1599 if (!isFusionProfitable(MatMul))
1600 return;
1601
1602 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1603 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1604
1605 const unsigned R = LShape.NumRows;
1606 const unsigned C = RShape.NumColumns;
1607 const unsigned M = LShape.NumColumns;
1608 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1609
1610 Value *APtr = getNonAliasingPointer(LoadOp0, Store, MatMul);
1611 Value *BPtr = getNonAliasingPointer(LoadOp1, Store, MatMul);
1612 Value *CPtr = Store->getPointerOperand();
1613
1614 if (TileUseLoops && (R % TileSize == 0 && C % TileSize == 0))
1615 createTiledLoops(MatMul, APtr, LShape, BPtr, RShape, Store);
1616 else {
1617 IRBuilder<> Builder(Store);
1618 for (unsigned J = 0; J < C; J += TileSize)
1619 for (unsigned I = 0; I < R; I += TileSize) {
1620 const unsigned TileR = std::min(R - I, unsigned(TileSize));
1621 const unsigned TileC = std::min(C - J, unsigned(TileSize));
1622 MatrixTy Res = getZeroMatrix(EltType, TileR, TileC);
1623
1624 for (unsigned K = 0; K < M; K += TileSize) {
1625 const unsigned TileM = std::min(M - K, unsigned(TileSize));
1626 MatrixTy A =
1627 loadMatrix(APtr, LoadOp0->getAlign(), LoadOp0->isVolatile(),
1628 LShape, Builder.getInt64(I), Builder.getInt64(K),
1629 {TileR, TileM}, EltType, Builder);
1630 MatrixTy B =
1631 loadMatrix(BPtr, LoadOp1->getAlign(), LoadOp1->isVolatile(),
1632 RShape, Builder.getInt64(K), Builder.getInt64(J),
1633 {TileM, TileC}, EltType, Builder);
1634 emitMatrixMultiply(Res, A, B, Builder, true, false,
1635 getFastMathFlags(MatMul));
1636 }
1637 storeMatrix(Res, CPtr, Store->getAlign(), Store->isVolatile(), {R, M},
1638 Builder.getInt64(I), Builder.getInt64(J), EltType,
1639 Builder);
1640 }
1641 }
1642
1643 // Mark eliminated instructions as fused and remove them.
1644 FusedInsts.insert(Store);
1645 FusedInsts.insert(MatMul);
1646 Store->eraseFromParent();
1647 MatMul->eraseFromParent();
1648 if (LoadOp0->hasNUses(0)) {
1649 FusedInsts.insert(LoadOp0);
1650 LoadOp0->eraseFromParent();
1651 }
1652 if (LoadOp1 != LoadOp0 && LoadOp1->hasNUses(0)) {
1653 FusedInsts.insert(LoadOp1);
1654 LoadOp1->eraseFromParent();
1655 }
1656 }
1657
1658 /// Try to lower matrix multiply chains by fusing operations.
1659 ///
1660 /// Call finalizeLowering on lowered instructions. Instructions that are
1661 /// completely eliminated by fusion are added to \p FusedInsts.
LowerMatrixMultiplyFused(CallInst * MatMul,SmallPtrSetImpl<Instruction * > & FusedInsts)1662 void LowerMatrixMultiplyFused(CallInst *MatMul,
1663 SmallPtrSetImpl<Instruction *> &FusedInsts) {
1664 if (!FuseMatrix || !DT)
1665 return;
1666
1667 assert(AA && LI && "Analyses should be available");
1668
1669 Value *A = MatMul->getArgOperand(0);
1670 Value *B = MatMul->getArgOperand(1);
1671
1672 // We can fold the transpose into the operand that is used to fetch scalars.
1673 Value *T;
1674 if (MatrixLayout == MatrixLayoutTy::ColumnMajor
1675 ? match(B, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T)))
1676 : match(A, m_Intrinsic<Intrinsic::matrix_transpose>(m_Value(T)))) {
1677 IRBuilder<> Builder(MatMul);
1678 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1679 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1680 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1681 const unsigned R = LShape.NumRows;
1682 const unsigned M = LShape.NumColumns;
1683 const unsigned C = RShape.NumColumns;
1684
1685 MatrixTy MA;
1686 MatrixTy MB;
1687
1688 Value *Transpose;
1689 if (MatrixLayout == MatrixLayoutTy::ColumnMajor) {
1690 MA = getMatrix(A, ShapeInfo(R, M), Builder);
1691 MB = getMatrix(T, ShapeInfo(C, M), Builder);
1692 Transpose = B;
1693 } else {
1694 MA = getMatrix(T, ShapeInfo(R, M), Builder);
1695 MB = getMatrix(B, ShapeInfo(C, M), Builder);
1696 Transpose = A;
1697 }
1698
1699 // Initialize the output
1700 MatrixTy Result(R, C, EltType);
1701
1702 emitMatrixMultiply(Result, MA, MB, Builder, false, true,
1703 getFastMathFlags(MatMul));
1704
1705 FusedInsts.insert(MatMul);
1706 if (Transpose->hasOneUse()) {
1707 FusedInsts.insert(cast<Instruction>(Transpose));
1708 ToRemove.push_back(cast<Instruction>(Transpose));
1709 // TODO: add a fake entry for the folded instruction so that this is
1710 // included in the expression in the remark.
1711 Inst2ColumnMatrix[Transpose] = MatrixTy(M, C, EltType);
1712 }
1713 finalizeLowering(MatMul, Result, Builder);
1714 return;
1715 }
1716
1717 if (!MatMul->hasOneUse() || MatrixLayout != MatrixLayoutTy::ColumnMajor)
1718 return;
1719
1720 // Lower {ld, ld} -> matmul -> st chains. No need to call finalizeLowering
1721 // since the single store user will be lowered as part of this.
1722 auto *LoadOp0 = dyn_cast<LoadInst>(A);
1723 auto *LoadOp1 = dyn_cast<LoadInst>(B);
1724 auto *Store = dyn_cast<StoreInst>(*MatMul->user_begin());
1725 if (LoadOp0 && LoadOp1 && Store) {
1726 // The store address must dominate the MatMul instruction, otherwise
1727 // we create invalid IR.
1728 SetVector<Value *> WorkList;
1729 WorkList.insert(Store->getOperand(1));
1730 SmallVector<Instruction *> ToHoist;
1731 for (unsigned I = 0; I != WorkList.size(); ++I) {
1732 Value *Current = WorkList[I];
1733 auto *CurrI = dyn_cast<Instruction>(Current);
1734 if (!CurrI)
1735 continue;
1736 if (isa<PHINode>(CurrI))
1737 return;
1738 if (DT->dominates(CurrI, MatMul))
1739 continue;
1740 if (CurrI->mayHaveSideEffects() || CurrI->mayReadFromMemory())
1741 return;
1742 ToHoist.push_back(CurrI);
1743 WorkList.insert(CurrI->op_begin(), CurrI->op_end());
1744 }
1745
1746 sort(ToHoist, [this](Instruction *A, Instruction *B) {
1747 return DT->dominates(A, B);
1748 });
1749 for (Instruction *I : ToHoist)
1750 I->moveBefore(MatMul);
1751
1752 emitSIMDTiling(MatMul, LoadOp0, LoadOp1, Store, FusedInsts);
1753 return;
1754 }
1755 }
1756
1757 /// Lowers llvm.matrix.multiply.
LowerMultiply(CallInst * MatMul)1758 void LowerMultiply(CallInst *MatMul) {
1759 IRBuilder<> Builder(MatMul);
1760 auto *EltType = cast<VectorType>(MatMul->getType())->getElementType();
1761 ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3));
1762 ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4));
1763
1764 const MatrixTy &Lhs = getMatrix(MatMul->getArgOperand(0), LShape, Builder);
1765 const MatrixTy &Rhs = getMatrix(MatMul->getArgOperand(1), RShape, Builder);
1766 assert(Lhs.getElementType() == Rhs.getElementType() &&
1767 "Matrix multiply argument element types do not match.");
1768
1769 const unsigned R = LShape.NumRows;
1770 const unsigned C = RShape.NumColumns;
1771 assert(LShape.NumColumns == RShape.NumRows);
1772
1773 // Initialize the output
1774 MatrixTy Result(R, C, EltType);
1775 assert(Lhs.getElementType() == Result.getElementType() &&
1776 "Matrix multiply result element type does not match arguments.");
1777
1778 emitMatrixMultiply(Result, Lhs, Rhs, Builder, false, false,
1779 getFastMathFlags(MatMul));
1780 finalizeLowering(MatMul, Result, Builder);
1781 }
1782
1783 /// Lowers llvm.matrix.transpose.
LowerTranspose(CallInst * Inst)1784 void LowerTranspose(CallInst *Inst) {
1785 MatrixTy Result;
1786 IRBuilder<> Builder(Inst);
1787 Value *InputVal = Inst->getArgOperand(0);
1788 VectorType *VectorTy = cast<VectorType>(InputVal->getType());
1789 ShapeInfo ArgShape(Inst->getArgOperand(1), Inst->getArgOperand(2));
1790 MatrixTy InputMatrix = getMatrix(InputVal, ArgShape, Builder);
1791
1792 const unsigned NewNumVecs =
1793 InputMatrix.isColumnMajor() ? ArgShape.NumRows : ArgShape.NumColumns;
1794 const unsigned NewNumElts =
1795 InputMatrix.isColumnMajor() ? ArgShape.NumColumns : ArgShape.NumRows;
1796
1797 for (unsigned I = 0; I < NewNumVecs; ++I) {
1798 // Build a single result vector. First initialize it.
1799 Value *ResultVector = PoisonValue::get(
1800 FixedVectorType::get(VectorTy->getElementType(), NewNumElts));
1801 // Go through the old elements and insert it into the resulting vector.
1802 for (auto J : enumerate(InputMatrix.vectors())) {
1803 Value *Elt = Builder.CreateExtractElement(J.value(), I);
1804 // Row and column indices are transposed.
1805 ResultVector =
1806 Builder.CreateInsertElement(ResultVector, Elt, J.index());
1807 }
1808 Result.addVector(ResultVector);
1809 }
1810
1811 // TODO: Improve estimate of operations needed for transposes. Currently we
1812 // just count the insertelement/extractelement instructions, but do not
1813 // account for later simplifications/combines.
1814 finalizeLowering(
1815 Inst,
1816 Result.addNumComputeOps(2 * ArgShape.NumRows * ArgShape.NumColumns)
1817 .addNumExposedTransposes(1),
1818 Builder);
1819 }
1820
1821 /// Lower load instructions, if shape information is available.
VisitLoad(LoadInst * Inst,Value * Ptr,IRBuilder<> & Builder)1822 bool VisitLoad(LoadInst *Inst, Value *Ptr, IRBuilder<> &Builder) {
1823 auto I = ShapeMap.find(Inst);
1824 if (I == ShapeMap.end())
1825 return false;
1826
1827 LowerLoad(Inst, Ptr, Inst->getAlign(),
1828 Builder.getInt64(I->second.getStride()), Inst->isVolatile(),
1829 I->second);
1830 return true;
1831 }
1832
VisitStore(StoreInst * Inst,Value * StoredVal,Value * Ptr,IRBuilder<> & Builder)1833 bool VisitStore(StoreInst *Inst, Value *StoredVal, Value *Ptr,
1834 IRBuilder<> &Builder) {
1835 auto I = ShapeMap.find(StoredVal);
1836 if (I == ShapeMap.end())
1837 return false;
1838
1839 LowerStore(Inst, StoredVal, Ptr, Inst->getAlign(),
1840 Builder.getInt64(I->second.getStride()), Inst->isVolatile(),
1841 I->second);
1842 return true;
1843 }
1844
1845 /// Lower binary operators, if shape information is available.
VisitBinaryOperator(BinaryOperator * Inst)1846 bool VisitBinaryOperator(BinaryOperator *Inst) {
1847 auto I = ShapeMap.find(Inst);
1848 if (I == ShapeMap.end())
1849 return false;
1850
1851 Value *Lhs = Inst->getOperand(0);
1852 Value *Rhs = Inst->getOperand(1);
1853
1854 IRBuilder<> Builder(Inst);
1855 ShapeInfo &Shape = I->second;
1856
1857 MatrixTy Result;
1858 MatrixTy A = getMatrix(Lhs, Shape, Builder);
1859 MatrixTy B = getMatrix(Rhs, Shape, Builder);
1860 assert(A.isColumnMajor() == B.isColumnMajor() &&
1861 Result.isColumnMajor() == A.isColumnMajor() &&
1862 "operands must agree on matrix layout");
1863
1864 Builder.setFastMathFlags(getFastMathFlags(Inst));
1865
1866 // Helper to perform binary op on vectors.
1867 auto BuildVectorOp = [&Builder, Inst](Value *LHS, Value *RHS) {
1868 switch (Inst->getOpcode()) {
1869 case Instruction::Add:
1870 return Builder.CreateAdd(LHS, RHS);
1871 case Instruction::Mul:
1872 return Builder.CreateMul(LHS, RHS);
1873 case Instruction::Sub:
1874 return Builder.CreateSub(LHS, RHS);
1875 case Instruction::FAdd:
1876 return Builder.CreateFAdd(LHS, RHS);
1877 case Instruction::FMul:
1878 return Builder.CreateFMul(LHS, RHS);
1879 case Instruction::FSub:
1880 return Builder.CreateFSub(LHS, RHS);
1881 default:
1882 llvm_unreachable("Unsupported binary operator for matrix");
1883 }
1884 };
1885
1886 for (unsigned I = 0; I < Shape.getNumVectors(); ++I)
1887 Result.addVector(BuildVectorOp(A.getVector(I), B.getVector(I)));
1888
1889 finalizeLowering(Inst,
1890 Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
1891 Result.getNumVectors()),
1892 Builder);
1893 return true;
1894 }
1895
1896 /// Lower unary operators, if shape information is available.
VisitUnaryOperator(UnaryOperator * Inst)1897 bool VisitUnaryOperator(UnaryOperator *Inst) {
1898 auto I = ShapeMap.find(Inst);
1899 if (I == ShapeMap.end())
1900 return false;
1901
1902 Value *Op = Inst->getOperand(0);
1903
1904 IRBuilder<> Builder(Inst);
1905 ShapeInfo &Shape = I->second;
1906
1907 MatrixTy Result;
1908 MatrixTy M = getMatrix(Op, Shape, Builder);
1909
1910 Builder.setFastMathFlags(getFastMathFlags(Inst));
1911
1912 // Helper to perform unary op on vectors.
1913 auto BuildVectorOp = [&Builder, Inst](Value *Op) {
1914 switch (Inst->getOpcode()) {
1915 case Instruction::FNeg:
1916 return Builder.CreateFNeg(Op);
1917 default:
1918 llvm_unreachable("Unsupported unary operator for matrix");
1919 }
1920 };
1921
1922 for (unsigned I = 0; I < Shape.getNumVectors(); ++I)
1923 Result.addVector(BuildVectorOp(M.getVector(I)));
1924
1925 finalizeLowering(Inst,
1926 Result.addNumComputeOps(getNumOps(Result.getVectorTy()) *
1927 Result.getNumVectors()),
1928 Builder);
1929 return true;
1930 }
1931
1932 /// Helper to linearize a matrix expression tree into a string. Currently
1933 /// matrix expressions are linarized by starting at an expression leaf and
1934 /// linearizing bottom up.
1935 struct ExprLinearizer {
1936 unsigned LengthToBreak = 100;
1937 std::string Str;
1938 raw_string_ostream Stream;
1939 unsigned LineLength = 0;
1940 const DataLayout &DL;
1941
1942 /// Mapping from instructions to matrixes. It is used to identify
1943 /// matrix instructions.
1944 const MapVector<Value *, MatrixTy> &Inst2Matrix;
1945
1946 /// Mapping from values to the leaves of all expressions that the value is
1947 /// part of.
1948 const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared;
1949
1950 /// Set of matrix expressions in the scope of a given DISubprogram.
1951 const SmallSetVector<Value *, 32> &ExprsInSubprogram;
1952
1953 /// Leaf node of the expression to linearize.
1954 Value *Leaf;
1955
1956 /// Used to keep track of sub-expressions that get reused while linearizing
1957 /// the expression. Re-used sub-expressions are marked as (reused).
1958 SmallPtrSet<Value *, 8> ReusedExprs;
1959
ExprLinearizer__anon34e5a0240111::LowerMatrixIntrinsics::ExprLinearizer1960 ExprLinearizer(const DataLayout &DL,
1961 const MapVector<Value *, MatrixTy> &Inst2Matrix,
1962 const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
1963 const SmallSetVector<Value *, 32> &ExprsInSubprogram,
1964 Value *Leaf)
1965 : Stream(Str), DL(DL), Inst2Matrix(Inst2Matrix), Shared(Shared),
1966 ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {}
1967
indent__anon34e5a0240111::LowerMatrixIntrinsics::ExprLinearizer1968 void indent(unsigned N) {
1969 LineLength += N;
1970 for (unsigned i = 0; i < N; i++)
1971 Stream << " ";
1972 }
1973
lineBreak__anon34e5a0240111::LowerMatrixIntrinsics::ExprLinearizer1974 void lineBreak() {
1975 Stream << "\n";
1976 LineLength = 0;
1977 }
1978
maybeIndent__anon34e5a0240111::LowerMatrixIntrinsics::ExprLinearizer1979 void maybeIndent(unsigned Indent) {
1980 if (LineLength >= LengthToBreak)
1981 lineBreak();
1982
1983 if (LineLength == 0)
1984 indent(Indent);
1985 }
1986
write__anon34e5a0240111::LowerMatrixIntrinsics::ExprLinearizer1987 void write(StringRef S) {
1988 LineLength += S.size();
1989 Stream << S;
1990 }
1991
getUnderlyingObjectThroughLoads__anon34e5a0240111::LowerMatrixIntrinsics::ExprLinearizer1992 Value *getUnderlyingObjectThroughLoads(Value *V) {
1993 if (Value *Ptr = getPointerOperand(V))
1994 return getUnderlyingObjectThroughLoads(Ptr);
1995 else if (V->getType()->isPointerTy())
1996 return getUnderlyingObject(V);
1997 return V;
1998 }
1999
2000 /// Returns true if \p V is a matrix value in the given subprogram.
isMatrix__anon34e5a0240111::LowerMatrixIntrinsics::ExprLinearizer2001 bool isMatrix(Value *V) const { return ExprsInSubprogram.count(V); }
2002
2003 /// If \p V is a matrix value, print its shape as as NumRows x NumColumns to
2004 /// \p SS.
prettyPrintMatrixType__anon34e5a0240111::LowerMatrixIntrinsics::ExprLinearizer2005 void prettyPrintMatrixType(Value *V, raw_string_ostream &SS) {
2006 auto M = Inst2Matrix.find(V);
2007 if (M == Inst2Matrix.end())
2008 SS << "unknown";
2009 else {
2010 SS << M->second.getNumRows();
2011 SS << "x";
2012 SS << M->second.getNumColumns();
2013 }
2014 }
2015
2016 /// Write the called function name. Handles calls to llvm.matrix.*
2017 /// specially: we write the name, followed by the dimensions of the input
2018 /// matrixes, followed by the scalar type name.
writeFnName__anon34e5a0240111::LowerMatrixIntrinsics::ExprLinearizer2019 void writeFnName(CallInst *CI) {
2020 if (!CI->getCalledFunction())
2021 write("<no called fn>");
2022 else {
2023 StringRef Name = CI->getCalledFunction()->getName();
2024 if (!Name.startswith("llvm.matrix")) {
2025 write(Name);
2026 return;
2027 }
2028 auto *II = cast<IntrinsicInst>(CI);
2029 write(Intrinsic::getBaseName(II->getIntrinsicID())
2030 .drop_front(StringRef("llvm.matrix.").size()));
2031 write(".");
2032 std::string Tmp;
2033 raw_string_ostream SS(Tmp);
2034
2035 switch (II->getIntrinsicID()) {
2036 case Intrinsic::matrix_multiply:
2037 prettyPrintMatrixType(II->getOperand(0), SS);
2038 SS << ".";
2039 prettyPrintMatrixType(II->getOperand(1), SS);
2040 SS << "." << *II->getType()->getScalarType();
2041 break;
2042 case Intrinsic::matrix_transpose:
2043 prettyPrintMatrixType(II->getOperand(0), SS);
2044 SS << "." << *II->getType()->getScalarType();
2045 break;
2046 case Intrinsic::matrix_column_major_load:
2047 prettyPrintMatrixType(II, SS);
2048 SS << "." << *II->getType()->getScalarType();
2049 break;
2050 case Intrinsic::matrix_column_major_store:
2051 prettyPrintMatrixType(II->getOperand(0), SS);
2052 SS << "." << *II->getOperand(0)->getType()->getScalarType();
2053 break;
2054 default:
2055 llvm_unreachable("Unhandled case");
2056 }
2057 SS.flush();
2058 write(Tmp);
2059 }
2060 }
2061
getNumShapeArgs__anon34e5a0240111::LowerMatrixIntrinsics::ExprLinearizer2062 unsigned getNumShapeArgs(CallInst *CI) const {
2063 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
2064 switch (II->getIntrinsicID()) {
2065 case Intrinsic::matrix_multiply:
2066 return 3;
2067 case Intrinsic::matrix_transpose:
2068 return 2;
2069 case Intrinsic::matrix_column_major_load:
2070 case Intrinsic::matrix_column_major_store:
2071 return 3;
2072 default:
2073 return 0;
2074 }
2075 }
2076 return 0;
2077 }
2078
2079 /// Special printing for values: for pointers, we print if they refer to an
2080 /// (function) external address or a stack address, for other values we
2081 /// either print the constant or "scalar"/"matrix" for other values.
write__anon34e5a0240111::LowerMatrixIntrinsics::ExprLinearizer2082 void write(Value *V) {
2083 V = getUnderlyingObjectThroughLoads(V);
2084 if (V->getType()->isPointerTy()) {
2085 if (isa<AllocaInst>(V)) {
2086 Stream << "stack addr";
2087 LineLength += StringRef("stack addr").size();
2088 } else {
2089 Stream << "addr";
2090 LineLength += StringRef("addr").size();
2091 }
2092 if (!V->getName().empty()) {
2093 Stream << " %" << V->getName() << "";
2094 LineLength += V->getName().size() + 2;
2095 }
2096 return;
2097 }
2098
2099 std::string Tmp;
2100 raw_string_ostream TmpStream(Tmp);
2101
2102 if (auto *CI = dyn_cast<ConstantInt>(V))
2103 TmpStream << CI->getValue();
2104 else if (isa<Constant>(V))
2105 TmpStream << "constant";
2106 else {
2107 if (isMatrix(V))
2108 TmpStream << "matrix";
2109 else
2110 TmpStream << "scalar";
2111 }
2112 TmpStream.flush();
2113 Tmp = std::string(StringRef(Tmp).trim());
2114 LineLength += Tmp.size();
2115 Stream << Tmp;
2116 }
2117
2118 /// Linearize expression \p Expr starting at an indentation of \p Indent.
2119 /// Expressions that are re-used multiple times are prefixed with (reused)
2120 /// at the re-used root instruction.
linearizeExpr__anon34e5a0240111::LowerMatrixIntrinsics::ExprLinearizer2121 void linearizeExpr(Value *Expr, unsigned Indent, bool ParentReused,
2122 bool ParentShared) {
2123 auto *I = cast<Instruction>(Expr);
2124 maybeIndent(Indent);
2125 SmallVector<Value *, 8> Ops;
2126
2127 // Is Expr shared with other expression leaves?
2128 bool ExprShared = false;
2129
2130 // Deal with shared subtrees. Mark them as shared, if required.
2131 if (!ParentShared) {
2132 auto SI = Shared.find(Expr);
2133 assert(SI != Shared.end() && SI->second.count(Leaf));
2134
2135 for (Value *S : SI->second) {
2136 if (S == Leaf)
2137 continue;
2138 DebugLoc DL = cast<Instruction>(S)->getDebugLoc();
2139 write("shared with remark at line " + std::to_string(DL.getLine()) +
2140 " column " + std::to_string(DL.getCol()) + " (");
2141 }
2142 ExprShared = SI->second.size() > 1;
2143 }
2144
2145 bool Reused = !ReusedExprs.insert(Expr).second;
2146 if (Reused && !ParentReused)
2147 write("(reused) ");
2148
2149 if (auto *CI = dyn_cast<CallInst>(I)) {
2150 writeFnName(CI);
2151
2152 Ops.append(CI->arg_begin(), CI->arg_end() - getNumShapeArgs(CI));
2153 } else if (isa<BitCastInst>(Expr)) {
2154 // Special case bitcasts, which are used to materialize matrixes from
2155 // non-matrix ops.
2156 write("matrix");
2157 return;
2158 } else {
2159 Ops.append(I->value_op_begin(), I->value_op_end());
2160 write(std::string(I->getOpcodeName()));
2161 }
2162
2163 write(std::string("("));
2164
2165 unsigned NumOpsToBreak = 1;
2166 if (match(Expr, m_Intrinsic<Intrinsic::matrix_column_major_load>()))
2167 NumOpsToBreak = 2;
2168
2169 for (Value *Op : Ops) {
2170 if (Ops.size() > NumOpsToBreak)
2171 lineBreak();
2172
2173 maybeIndent(Indent + 1);
2174 if (isMatrix(Op))
2175 linearizeExpr(Op, Indent + 1, Reused, ExprShared);
2176 else
2177 write(Op);
2178 if (Op != Ops.back())
2179 write(", ");
2180 }
2181
2182 write(")");
2183 }
2184
getResult__anon34e5a0240111::LowerMatrixIntrinsics::ExprLinearizer2185 const std::string &getResult() {
2186 Stream.flush();
2187 return Str;
2188 }
2189 };
2190
2191 /// Generate remarks for matrix operations in a function. To generate remarks
2192 /// for matrix expressions, the following approach is used:
2193 /// 1. Use the inlined-at debug information to group matrix operations to the
2194 /// DISubprograms they are contained in.
2195 /// 2. Collect leaves of matrix expressions (done in
2196 /// RemarkGenerator::getExpressionLeaves) for each subprogram - expression
2197 // mapping. Leaves are lowered matrix instructions without other matrix
2198 // users (like stores) in the current subprogram.
2199 /// 3. For each leaf, create a remark containing a linearizied version of the
2200 /// matrix expression. The expression is linearized by a recursive
2201 /// bottom-up traversal of the matrix operands, starting at a leaf. Note
2202 /// that multiple leaves can share sub-expressions. Shared subexpressions
2203 /// are explicitly marked as shared().
2204 struct RemarkGenerator {
2205 const MapVector<Value *, MatrixTy> &Inst2Matrix;
2206 OptimizationRemarkEmitter &ORE;
2207 Function &Func;
2208 const DataLayout &DL;
2209
RemarkGenerator__anon34e5a0240111::LowerMatrixIntrinsics::RemarkGenerator2210 RemarkGenerator(const MapVector<Value *, MatrixTy> &Inst2Matrix,
2211 OptimizationRemarkEmitter &ORE, Function &Func)
2212 : Inst2Matrix(Inst2Matrix), ORE(ORE), Func(Func),
2213 DL(Func.getParent()->getDataLayout()) {}
2214
2215 /// Return all leaves of the expressions in \p ExprsInSubprogram. Those are
2216 /// instructions in Inst2Matrix returning void or without any users in
2217 /// \p ExprsInSubprogram. Currently that should only include stores.
2218 SmallVector<Value *, 4>
getExpressionLeaves__anon34e5a0240111::LowerMatrixIntrinsics::RemarkGenerator2219 getExpressionLeaves(const SmallSetVector<Value *, 32> &ExprsInSubprogram) {
2220 SmallVector<Value *, 4> Leaves;
2221 for (auto *Expr : ExprsInSubprogram)
2222 if (Expr->getType()->isVoidTy() ||
2223 !any_of(Expr->users(), [&ExprsInSubprogram](User *U) {
2224 return ExprsInSubprogram.count(U);
2225 }))
2226 Leaves.push_back(Expr);
2227 return Leaves;
2228 }
2229
2230 /// Recursively traverse expression \p V starting at \p Leaf and add \p Leaf
2231 /// to all visited expressions in \p Shared. Limit the matrix operations to
2232 /// the ones in \p ExprsInSubprogram.
collectSharedInfo__anon34e5a0240111::LowerMatrixIntrinsics::RemarkGenerator2233 void collectSharedInfo(Value *Leaf, Value *V,
2234 const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2235 DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) {
2236
2237 if (!ExprsInSubprogram.count(V))
2238 return;
2239
2240 auto I = Shared.insert({V, {}});
2241 I.first->second.insert(Leaf);
2242
2243 for (Value *Op : cast<Instruction>(V)->operand_values())
2244 collectSharedInfo(Leaf, Op, ExprsInSubprogram, Shared);
2245 }
2246
2247 /// Calculate the number of exclusive and shared op counts for expression
2248 /// starting at \p V. Expressions used multiple times are counted once.
2249 /// Limit the matrix operations to the ones in \p ExprsInSubprogram.
2250 std::pair<OpInfoTy, OpInfoTy>
sumOpInfos__anon34e5a0240111::LowerMatrixIntrinsics::RemarkGenerator2251 sumOpInfos(Value *Root, SmallPtrSetImpl<Value *> &ReusedExprs,
2252 const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2253 DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) const {
2254 if (!ExprsInSubprogram.count(Root))
2255 return {};
2256
2257 // Already counted this expression. Stop.
2258 if (!ReusedExprs.insert(Root).second)
2259 return {};
2260
2261 OpInfoTy SharedCount;
2262 OpInfoTy Count;
2263
2264 auto I = Shared.find(Root);
2265 auto CM = Inst2Matrix.find(Root);
2266 if (I->second.size() == 1)
2267 Count = CM->second.getOpInfo();
2268 else
2269 SharedCount = CM->second.getOpInfo();
2270
2271 for (Value *Op : cast<Instruction>(Root)->operand_values()) {
2272 auto C = sumOpInfos(Op, ReusedExprs, ExprsInSubprogram, Shared);
2273 Count += C.first;
2274 SharedCount += C.second;
2275 }
2276 return {Count, SharedCount};
2277 }
2278
emitRemarks__anon34e5a0240111::LowerMatrixIntrinsics::RemarkGenerator2279 void emitRemarks() {
2280 if (!ORE.allowExtraAnalysis(DEBUG_TYPE))
2281 return;
2282
2283 // Map matrix operations to their containting subprograms, by traversing
2284 // the inlinedAt chain. If the function does not have a DISubprogram, we
2285 // only map them to the containing function.
2286 MapVector<DISubprogram *, SmallVector<Value *, 8>> Subprog2Exprs;
2287 for (const auto &KV : Inst2Matrix) {
2288 if (Func.getSubprogram()) {
2289 auto *I = cast<Instruction>(KV.first);
2290 DILocation *Context = I->getDebugLoc();
2291 while (Context) {
2292 auto I =
2293 Subprog2Exprs.insert({getSubprogram(Context->getScope()), {}});
2294 I.first->second.push_back(KV.first);
2295 Context = DebugLoc(Context).getInlinedAt();
2296 }
2297 } else {
2298 auto I = Subprog2Exprs.insert({nullptr, {}});
2299 I.first->second.push_back(KV.first);
2300 }
2301 }
2302 for (auto &KV : Subprog2Exprs) {
2303 SmallSetVector<Value *, 32> ExprsInSubprogram(KV.second.begin(),
2304 KV.second.end());
2305 auto Leaves = getExpressionLeaves(ExprsInSubprogram);
2306
2307 DenseMap<Value *, SmallPtrSet<Value *, 2>> Shared;
2308 for (Value *Leaf : Leaves)
2309 collectSharedInfo(Leaf, Leaf, ExprsInSubprogram, Shared);
2310
2311 // Generate remarks for each leaf.
2312 for (auto *L : Leaves) {
2313
2314 DebugLoc Loc = cast<Instruction>(L)->getDebugLoc();
2315 DILocation *Context = cast<Instruction>(L)->getDebugLoc();
2316 while (Context) {
2317 if (getSubprogram(Context->getScope()) == KV.first) {
2318 Loc = Context;
2319 break;
2320 }
2321 Context = DebugLoc(Context).getInlinedAt();
2322 }
2323
2324 SmallPtrSet<Value *, 8> ReusedExprs;
2325 OpInfoTy Counts, SharedCounts;
2326 std::tie(Counts, SharedCounts) =
2327 sumOpInfos(L, ReusedExprs, ExprsInSubprogram, Shared);
2328
2329 OptimizationRemark Rem(DEBUG_TYPE, "matrix-lowered", Loc,
2330 cast<Instruction>(L)->getParent());
2331
2332 Rem << "Lowered with ";
2333 Rem << ore::NV("NumStores", Counts.NumStores) << " stores, "
2334 << ore::NV("NumLoads", Counts.NumLoads) << " loads, "
2335 << ore::NV("NumComputeOps", Counts.NumComputeOps)
2336 << " compute ops, "
2337 << ore::NV("NumExposedTransposes", Counts.NumExposedTransposes)
2338 << " exposed transposes";
2339
2340 if (SharedCounts.NumStores > 0 || SharedCounts.NumLoads > 0 ||
2341 SharedCounts.NumComputeOps > 0) {
2342 Rem << ",\nadditionally "
2343 << ore::NV("NumStores", SharedCounts.NumStores) << " stores, "
2344 << ore::NV("NumLoads", SharedCounts.NumLoads) << " loads, "
2345 << ore::NV("NumFPOps", SharedCounts.NumComputeOps)
2346 << " compute ops"
2347 << " are shared with other expressions";
2348 }
2349
2350 Rem << ("\n" + linearize(L, Shared, ExprsInSubprogram, DL));
2351 ORE.emit(Rem);
2352 }
2353 }
2354 }
2355
2356 std::string
linearize__anon34e5a0240111::LowerMatrixIntrinsics::RemarkGenerator2357 linearize(Value *L,
2358 const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared,
2359 const SmallSetVector<Value *, 32> &ExprsInSubprogram,
2360 const DataLayout &DL) {
2361 ExprLinearizer Lin(DL, Inst2Matrix, Shared, ExprsInSubprogram, L);
2362 Lin.linearizeExpr(L, 0, false, false);
2363 return Lin.getResult();
2364 }
2365 };
2366 };
2367 } // namespace
2368
run(Function & F,FunctionAnalysisManager & AM)2369 PreservedAnalyses LowerMatrixIntrinsicsPass::run(Function &F,
2370 FunctionAnalysisManager &AM) {
2371 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
2372 OptimizationRemarkEmitter *ORE = nullptr;
2373 AAResults *AA = nullptr;
2374 DominatorTree *DT = nullptr;
2375 LoopInfo *LI = nullptr;
2376
2377 if (!Minimal) {
2378 ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
2379 AA = &AM.getResult<AAManager>(F);
2380 DT = &AM.getResult<DominatorTreeAnalysis>(F);
2381 LI = &AM.getResult<LoopAnalysis>(F);
2382 }
2383
2384 LowerMatrixIntrinsics LMT(F, TTI, AA, DT, LI, ORE);
2385 if (LMT.Visit()) {
2386 PreservedAnalyses PA;
2387 if (!Minimal) {
2388 PA.preserve<LoopAnalysis>();
2389 PA.preserve<DominatorTreeAnalysis>();
2390 }
2391 return PA;
2392 }
2393 return PreservedAnalyses::all();
2394 }
2395
printPipeline(raw_ostream & OS,function_ref<StringRef (StringRef)> MapClassName2PassName)2396 void LowerMatrixIntrinsicsPass::printPipeline(
2397 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
2398 static_cast<PassInfoMixin<LowerMatrixIntrinsicsPass> *>(this)->printPipeline(
2399 OS, MapClassName2PassName);
2400 OS << "<";
2401 if (Minimal)
2402 OS << "minimal";
2403 OS << ">";
2404 }
2405
2406 namespace {
2407
2408 class LowerMatrixIntrinsicsLegacyPass : public FunctionPass {
2409 public:
2410 static char ID;
2411
LowerMatrixIntrinsicsLegacyPass()2412 LowerMatrixIntrinsicsLegacyPass() : FunctionPass(ID) {
2413 initializeLowerMatrixIntrinsicsLegacyPassPass(
2414 *PassRegistry::getPassRegistry());
2415 }
2416
runOnFunction(Function & F)2417 bool runOnFunction(Function &F) override {
2418 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2419 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2420 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2421 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2422 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2423 LowerMatrixIntrinsics LMT(F, TTI, &AA, &DT, &LI, &ORE);
2424 bool C = LMT.Visit();
2425 return C;
2426 }
2427
getAnalysisUsage(AnalysisUsage & AU) const2428 void getAnalysisUsage(AnalysisUsage &AU) const override {
2429 AU.addRequired<TargetTransformInfoWrapperPass>();
2430 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2431 AU.addRequired<AAResultsWrapperPass>();
2432 AU.addRequired<DominatorTreeWrapperPass>();
2433 AU.addPreserved<DominatorTreeWrapperPass>();
2434 AU.addRequired<LoopInfoWrapperPass>();
2435 AU.addPreserved<LoopInfoWrapperPass>();
2436 }
2437 };
2438 } // namespace
2439
2440 static const char pass_name[] = "Lower the matrix intrinsics";
2441 char LowerMatrixIntrinsicsLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsLegacyPass,DEBUG_TYPE,pass_name,false,false)2442 INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name,
2443 false, false)
2444 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
2445 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2446 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2447 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2448 INITIALIZE_PASS_END(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name,
2449 false, false)
2450
2451 Pass *llvm::createLowerMatrixIntrinsicsPass() {
2452 return new LowerMatrixIntrinsicsLegacyPass();
2453 }
2454
2455 namespace {
2456
2457 /// A lightweight version of the matrix lowering pass that only requires TTI.
2458 /// Advanced features that require DT, AA or ORE like tiling are disabled. This
2459 /// is used to lower matrix intrinsics if the main lowering pass is not run, for
2460 /// example with -O0.
2461 class LowerMatrixIntrinsicsMinimalLegacyPass : public FunctionPass {
2462 public:
2463 static char ID;
2464
LowerMatrixIntrinsicsMinimalLegacyPass()2465 LowerMatrixIntrinsicsMinimalLegacyPass() : FunctionPass(ID) {
2466 initializeLowerMatrixIntrinsicsMinimalLegacyPassPass(
2467 *PassRegistry::getPassRegistry());
2468 }
2469
runOnFunction(Function & F)2470 bool runOnFunction(Function &F) override {
2471 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2472 LowerMatrixIntrinsics LMT(F, TTI, nullptr, nullptr, nullptr, nullptr);
2473 bool C = LMT.Visit();
2474 return C;
2475 }
2476
getAnalysisUsage(AnalysisUsage & AU) const2477 void getAnalysisUsage(AnalysisUsage &AU) const override {
2478 AU.addRequired<TargetTransformInfoWrapperPass>();
2479 AU.setPreservesCFG();
2480 }
2481 };
2482 } // namespace
2483
2484 static const char pass_name_minimal[] = "Lower the matrix intrinsics (minimal)";
2485 char LowerMatrixIntrinsicsMinimalLegacyPass::ID = 0;
2486 INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsMinimalLegacyPass,
2487 "lower-matrix-intrinsics-minimal", pass_name_minimal,
2488 false, false)
2489 INITIALIZE_PASS_END(LowerMatrixIntrinsicsMinimalLegacyPass,
2490 "lower-matrix-intrinsics-minimal", pass_name_minimal, false,
2491 false)
2492
createLowerMatrixIntrinsicsMinimalPass()2493 Pass *llvm::createLowerMatrixIntrinsicsMinimalPass() {
2494 return new LowerMatrixIntrinsicsMinimalLegacyPass();
2495 }
2496