1 //===- Module.cpp - Implement the Module class ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Module class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Module.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/Comdat.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DebugInfoMetadata.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GVMaterializer.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalIFunc.h"
32 #include "llvm/IR/GlobalValue.h"
33 #include "llvm/IR/GlobalVariable.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/ModuleSummaryIndex.h"
37 #include "llvm/IR/SymbolTableListTraits.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/TypeFinder.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/IR/ValueSymbolTable.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/CodeGen.h"
45 #include "llvm/Support/Error.h"
46 #include "llvm/Support/MemoryBuffer.h"
47 #include "llvm/Support/Path.h"
48 #include "llvm/Support/RandomNumberGenerator.h"
49 #include "llvm/Support/VersionTuple.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstdint>
53 #include <memory>
54 #include <utility>
55 #include <vector>
56 
57 using namespace llvm;
58 
59 //===----------------------------------------------------------------------===//
60 // Methods to implement the globals and functions lists.
61 //
62 
63 // Explicit instantiations of SymbolTableListTraits since some of the methods
64 // are not in the public header file.
65 template class llvm::SymbolTableListTraits<Function>;
66 template class llvm::SymbolTableListTraits<GlobalVariable>;
67 template class llvm::SymbolTableListTraits<GlobalAlias>;
68 template class llvm::SymbolTableListTraits<GlobalIFunc>;
69 
70 //===----------------------------------------------------------------------===//
71 // Primitive Module methods.
72 //
73 
Module(StringRef MID,LLVMContext & C)74 Module::Module(StringRef MID, LLVMContext &C)
75     : Context(C), ValSymTab(std::make_unique<ValueSymbolTable>()),
76       Materializer(), ModuleID(std::string(MID)),
77       SourceFileName(std::string(MID)), DL("") {
78   Context.addModule(this);
79 }
80 
~Module()81 Module::~Module() {
82   Context.removeModule(this);
83   dropAllReferences();
84   GlobalList.clear();
85   FunctionList.clear();
86   AliasList.clear();
87   IFuncList.clear();
88 }
89 
90 std::unique_ptr<RandomNumberGenerator>
createRNG(const StringRef Name) const91 Module::createRNG(const StringRef Name) const {
92   SmallString<32> Salt(Name);
93 
94   // This RNG is guaranteed to produce the same random stream only
95   // when the Module ID and thus the input filename is the same. This
96   // might be problematic if the input filename extension changes
97   // (e.g. from .c to .bc or .ll).
98   //
99   // We could store this salt in NamedMetadata, but this would make
100   // the parameter non-const. This would unfortunately make this
101   // interface unusable by any Machine passes, since they only have a
102   // const reference to their IR Module. Alternatively we can always
103   // store salt metadata from the Module constructor.
104   Salt += sys::path::filename(getModuleIdentifier());
105 
106   return std::unique_ptr<RandomNumberGenerator>(
107       new RandomNumberGenerator(Salt));
108 }
109 
110 /// getNamedValue - Return the first global value in the module with
111 /// the specified name, of arbitrary type.  This method returns null
112 /// if a global with the specified name is not found.
getNamedValue(StringRef Name) const113 GlobalValue *Module::getNamedValue(StringRef Name) const {
114   return cast_or_null<GlobalValue>(getValueSymbolTable().lookup(Name));
115 }
116 
117 /// getMDKindID - Return a unique non-zero ID for the specified metadata kind.
118 /// This ID is uniqued across modules in the current LLVMContext.
getMDKindID(StringRef Name) const119 unsigned Module::getMDKindID(StringRef Name) const {
120   return Context.getMDKindID(Name);
121 }
122 
123 /// getMDKindNames - Populate client supplied SmallVector with the name for
124 /// custom metadata IDs registered in this LLVMContext.   ID #0 is not used,
125 /// so it is filled in as an empty string.
getMDKindNames(SmallVectorImpl<StringRef> & Result) const126 void Module::getMDKindNames(SmallVectorImpl<StringRef> &Result) const {
127   return Context.getMDKindNames(Result);
128 }
129 
getOperandBundleTags(SmallVectorImpl<StringRef> & Result) const130 void Module::getOperandBundleTags(SmallVectorImpl<StringRef> &Result) const {
131   return Context.getOperandBundleTags(Result);
132 }
133 
134 //===----------------------------------------------------------------------===//
135 // Methods for easy access to the functions in the module.
136 //
137 
138 // getOrInsertFunction - Look up the specified function in the module symbol
139 // table.  If it does not exist, add a prototype for the function and return
140 // it.  This is nice because it allows most passes to get away with not handling
141 // the symbol table directly for this common task.
142 //
getOrInsertFunction(StringRef Name,FunctionType * Ty,AttributeList AttributeList)143 FunctionCallee Module::getOrInsertFunction(StringRef Name, FunctionType *Ty,
144                                            AttributeList AttributeList) {
145   // See if we have a definition for the specified function already.
146   GlobalValue *F = getNamedValue(Name);
147   if (!F) {
148     // Nope, add it
149     Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage,
150                                      DL.getProgramAddressSpace(), Name);
151     if (!New->isIntrinsic())       // Intrinsics get attrs set on construction
152       New->setAttributes(AttributeList);
153     FunctionList.push_back(New);
154     return {Ty, New}; // Return the new prototype.
155   }
156 
157   // If the function exists but has the wrong type, return a bitcast to the
158   // right type.
159   auto *PTy = PointerType::get(Ty, F->getAddressSpace());
160   if (F->getType() != PTy)
161     return {Ty, ConstantExpr::getBitCast(F, PTy)};
162 
163   // Otherwise, we just found the existing function or a prototype.
164   return {Ty, F};
165 }
166 
getOrInsertFunction(StringRef Name,FunctionType * Ty)167 FunctionCallee Module::getOrInsertFunction(StringRef Name, FunctionType *Ty) {
168   return getOrInsertFunction(Name, Ty, AttributeList());
169 }
170 
171 // getFunction - Look up the specified function in the module symbol table.
172 // If it does not exist, return null.
173 //
getFunction(StringRef Name) const174 Function *Module::getFunction(StringRef Name) const {
175   return dyn_cast_or_null<Function>(getNamedValue(Name));
176 }
177 
178 //===----------------------------------------------------------------------===//
179 // Methods for easy access to the global variables in the module.
180 //
181 
182 /// getGlobalVariable - Look up the specified global variable in the module
183 /// symbol table.  If it does not exist, return null.  The type argument
184 /// should be the underlying type of the global, i.e., it should not have
185 /// the top-level PointerType, which represents the address of the global.
186 /// If AllowLocal is set to true, this function will return types that
187 /// have an local. By default, these types are not returned.
188 ///
getGlobalVariable(StringRef Name,bool AllowLocal) const189 GlobalVariable *Module::getGlobalVariable(StringRef Name,
190                                           bool AllowLocal) const {
191   if (GlobalVariable *Result =
192       dyn_cast_or_null<GlobalVariable>(getNamedValue(Name)))
193     if (AllowLocal || !Result->hasLocalLinkage())
194       return Result;
195   return nullptr;
196 }
197 
198 /// getOrInsertGlobal - Look up the specified global in the module symbol table.
199 ///   1. If it does not exist, add a declaration of the global and return it.
200 ///   2. Else, the global exists but has the wrong type: return the function
201 ///      with a constantexpr cast to the right type.
202 ///   3. Finally, if the existing global is the correct declaration, return the
203 ///      existing global.
getOrInsertGlobal(StringRef Name,Type * Ty,function_ref<GlobalVariable * ()> CreateGlobalCallback)204 Constant *Module::getOrInsertGlobal(
205     StringRef Name, Type *Ty,
206     function_ref<GlobalVariable *()> CreateGlobalCallback) {
207   // See if we have a definition for the specified global already.
208   GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name));
209   if (!GV)
210     GV = CreateGlobalCallback();
211   assert(GV && "The CreateGlobalCallback is expected to create a global");
212 
213   // If the variable exists but has the wrong type, return a bitcast to the
214   // right type.
215   Type *GVTy = GV->getType();
216   PointerType *PTy = PointerType::get(Ty, GVTy->getPointerAddressSpace());
217   if (GVTy != PTy)
218     return ConstantExpr::getBitCast(GV, PTy);
219 
220   // Otherwise, we just found the existing function or a prototype.
221   return GV;
222 }
223 
224 // Overload to construct a global variable using its constructor's defaults.
getOrInsertGlobal(StringRef Name,Type * Ty)225 Constant *Module::getOrInsertGlobal(StringRef Name, Type *Ty) {
226   return getOrInsertGlobal(Name, Ty, [&] {
227     return new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage,
228                               nullptr, Name);
229   });
230 }
231 
232 //===----------------------------------------------------------------------===//
233 // Methods for easy access to the global variables in the module.
234 //
235 
236 // getNamedAlias - Look up the specified global in the module symbol table.
237 // If it does not exist, return null.
238 //
getNamedAlias(StringRef Name) const239 GlobalAlias *Module::getNamedAlias(StringRef Name) const {
240   return dyn_cast_or_null<GlobalAlias>(getNamedValue(Name));
241 }
242 
getNamedIFunc(StringRef Name) const243 GlobalIFunc *Module::getNamedIFunc(StringRef Name) const {
244   return dyn_cast_or_null<GlobalIFunc>(getNamedValue(Name));
245 }
246 
247 /// getNamedMetadata - Return the first NamedMDNode in the module with the
248 /// specified name. This method returns null if a NamedMDNode with the
249 /// specified name is not found.
getNamedMetadata(const Twine & Name) const250 NamedMDNode *Module::getNamedMetadata(const Twine &Name) const {
251   SmallString<256> NameData;
252   StringRef NameRef = Name.toStringRef(NameData);
253   return NamedMDSymTab.lookup(NameRef);
254 }
255 
256 /// getOrInsertNamedMetadata - Return the first named MDNode in the module
257 /// with the specified name. This method returns a new NamedMDNode if a
258 /// NamedMDNode with the specified name is not found.
getOrInsertNamedMetadata(StringRef Name)259 NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) {
260   NamedMDNode *&NMD = NamedMDSymTab[Name];
261   if (!NMD) {
262     NMD = new NamedMDNode(Name);
263     NMD->setParent(this);
264     NamedMDList.push_back(NMD);
265   }
266   return NMD;
267 }
268 
269 /// eraseNamedMetadata - Remove the given NamedMDNode from this module and
270 /// delete it.
eraseNamedMetadata(NamedMDNode * NMD)271 void Module::eraseNamedMetadata(NamedMDNode *NMD) {
272   NamedMDSymTab.erase(NMD->getName());
273   NamedMDList.erase(NMD->getIterator());
274 }
275 
isValidModFlagBehavior(Metadata * MD,ModFlagBehavior & MFB)276 bool Module::isValidModFlagBehavior(Metadata *MD, ModFlagBehavior &MFB) {
277   if (ConstantInt *Behavior = mdconst::dyn_extract_or_null<ConstantInt>(MD)) {
278     uint64_t Val = Behavior->getLimitedValue();
279     if (Val >= ModFlagBehaviorFirstVal && Val <= ModFlagBehaviorLastVal) {
280       MFB = static_cast<ModFlagBehavior>(Val);
281       return true;
282     }
283   }
284   return false;
285 }
286 
isValidModuleFlag(const MDNode & ModFlag,ModFlagBehavior & MFB,MDString * & Key,Metadata * & Val)287 bool Module::isValidModuleFlag(const MDNode &ModFlag, ModFlagBehavior &MFB,
288                                MDString *&Key, Metadata *&Val) {
289   if (ModFlag.getNumOperands() < 3)
290     return false;
291   if (!isValidModFlagBehavior(ModFlag.getOperand(0), MFB))
292     return false;
293   MDString *K = dyn_cast_or_null<MDString>(ModFlag.getOperand(1));
294   if (!K)
295     return false;
296   Key = K;
297   Val = ModFlag.getOperand(2);
298   return true;
299 }
300 
301 /// getModuleFlagsMetadata - Returns the module flags in the provided vector.
302 void Module::
getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> & Flags) const303 getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const {
304   const NamedMDNode *ModFlags = getModuleFlagsMetadata();
305   if (!ModFlags) return;
306 
307   for (const MDNode *Flag : ModFlags->operands()) {
308     ModFlagBehavior MFB;
309     MDString *Key = nullptr;
310     Metadata *Val = nullptr;
311     if (isValidModuleFlag(*Flag, MFB, Key, Val)) {
312       // Check the operands of the MDNode before accessing the operands.
313       // The verifier will actually catch these failures.
314       Flags.push_back(ModuleFlagEntry(MFB, Key, Val));
315     }
316   }
317 }
318 
319 /// Return the corresponding value if Key appears in module flags, otherwise
320 /// return null.
getModuleFlag(StringRef Key) const321 Metadata *Module::getModuleFlag(StringRef Key) const {
322   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
323   getModuleFlagsMetadata(ModuleFlags);
324   for (const ModuleFlagEntry &MFE : ModuleFlags) {
325     if (Key == MFE.Key->getString())
326       return MFE.Val;
327   }
328   return nullptr;
329 }
330 
331 /// getModuleFlagsMetadata - Returns the NamedMDNode in the module that
332 /// represents module-level flags. This method returns null if there are no
333 /// module-level flags.
getModuleFlagsMetadata() const334 NamedMDNode *Module::getModuleFlagsMetadata() const {
335   return getNamedMetadata("llvm.module.flags");
336 }
337 
338 /// getOrInsertModuleFlagsMetadata - Returns the NamedMDNode in the module that
339 /// represents module-level flags. If module-level flags aren't found, it
340 /// creates the named metadata that contains them.
getOrInsertModuleFlagsMetadata()341 NamedMDNode *Module::getOrInsertModuleFlagsMetadata() {
342   return getOrInsertNamedMetadata("llvm.module.flags");
343 }
344 
345 /// addModuleFlag - Add a module-level flag to the module-level flags
346 /// metadata. It will create the module-level flags named metadata if it doesn't
347 /// already exist.
addModuleFlag(ModFlagBehavior Behavior,StringRef Key,Metadata * Val)348 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
349                            Metadata *Val) {
350   Type *Int32Ty = Type::getInt32Ty(Context);
351   Metadata *Ops[3] = {
352       ConstantAsMetadata::get(ConstantInt::get(Int32Ty, Behavior)),
353       MDString::get(Context, Key), Val};
354   getOrInsertModuleFlagsMetadata()->addOperand(MDNode::get(Context, Ops));
355 }
addModuleFlag(ModFlagBehavior Behavior,StringRef Key,Constant * Val)356 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
357                            Constant *Val) {
358   addModuleFlag(Behavior, Key, ConstantAsMetadata::get(Val));
359 }
addModuleFlag(ModFlagBehavior Behavior,StringRef Key,uint32_t Val)360 void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key,
361                            uint32_t Val) {
362   Type *Int32Ty = Type::getInt32Ty(Context);
363   addModuleFlag(Behavior, Key, ConstantInt::get(Int32Ty, Val));
364 }
addModuleFlag(MDNode * Node)365 void Module::addModuleFlag(MDNode *Node) {
366   assert(Node->getNumOperands() == 3 &&
367          "Invalid number of operands for module flag!");
368   assert(mdconst::hasa<ConstantInt>(Node->getOperand(0)) &&
369          isa<MDString>(Node->getOperand(1)) &&
370          "Invalid operand types for module flag!");
371   getOrInsertModuleFlagsMetadata()->addOperand(Node);
372 }
373 
setModuleFlag(ModFlagBehavior Behavior,StringRef Key,Metadata * Val)374 void Module::setModuleFlag(ModFlagBehavior Behavior, StringRef Key,
375                            Metadata *Val) {
376   NamedMDNode *ModFlags = getOrInsertModuleFlagsMetadata();
377   // Replace the flag if it already exists.
378   for (unsigned I = 0, E = ModFlags->getNumOperands(); I != E; ++I) {
379     MDNode *Flag = ModFlags->getOperand(I);
380     ModFlagBehavior MFB;
381     MDString *K = nullptr;
382     Metadata *V = nullptr;
383     if (isValidModuleFlag(*Flag, MFB, K, V) && K->getString() == Key) {
384       Flag->replaceOperandWith(2, Val);
385       return;
386     }
387   }
388   addModuleFlag(Behavior, Key, Val);
389 }
390 
setDataLayout(StringRef Desc)391 void Module::setDataLayout(StringRef Desc) {
392   DL.reset(Desc);
393 }
394 
setDataLayout(const DataLayout & Other)395 void Module::setDataLayout(const DataLayout &Other) { DL = Other; }
396 
getDataLayout() const397 const DataLayout &Module::getDataLayout() const { return DL; }
398 
operator *() const399 DICompileUnit *Module::debug_compile_units_iterator::operator*() const {
400   return cast<DICompileUnit>(CUs->getOperand(Idx));
401 }
operator ->() const402 DICompileUnit *Module::debug_compile_units_iterator::operator->() const {
403   return cast<DICompileUnit>(CUs->getOperand(Idx));
404 }
405 
SkipNoDebugCUs()406 void Module::debug_compile_units_iterator::SkipNoDebugCUs() {
407   while (CUs && (Idx < CUs->getNumOperands()) &&
408          ((*this)->getEmissionKind() == DICompileUnit::NoDebug))
409     ++Idx;
410 }
411 
global_objects()412 iterator_range<Module::global_object_iterator> Module::global_objects() {
413   return concat<GlobalObject>(functions(), globals());
414 }
415 iterator_range<Module::const_global_object_iterator>
global_objects() const416 Module::global_objects() const {
417   return concat<const GlobalObject>(functions(), globals());
418 }
419 
global_values()420 iterator_range<Module::global_value_iterator> Module::global_values() {
421   return concat<GlobalValue>(functions(), globals(), aliases(), ifuncs());
422 }
423 iterator_range<Module::const_global_value_iterator>
global_values() const424 Module::global_values() const {
425   return concat<const GlobalValue>(functions(), globals(), aliases(), ifuncs());
426 }
427 
428 //===----------------------------------------------------------------------===//
429 // Methods to control the materialization of GlobalValues in the Module.
430 //
setMaterializer(GVMaterializer * GVM)431 void Module::setMaterializer(GVMaterializer *GVM) {
432   assert(!Materializer &&
433          "Module already has a GVMaterializer.  Call materializeAll"
434          " to clear it out before setting another one.");
435   Materializer.reset(GVM);
436 }
437 
materialize(GlobalValue * GV)438 Error Module::materialize(GlobalValue *GV) {
439   if (!Materializer)
440     return Error::success();
441 
442   return Materializer->materialize(GV);
443 }
444 
materializeAll()445 Error Module::materializeAll() {
446   if (!Materializer)
447     return Error::success();
448   std::unique_ptr<GVMaterializer> M = std::move(Materializer);
449   return M->materializeModule();
450 }
451 
materializeMetadata()452 Error Module::materializeMetadata() {
453   if (!Materializer)
454     return Error::success();
455   return Materializer->materializeMetadata();
456 }
457 
458 //===----------------------------------------------------------------------===//
459 // Other module related stuff.
460 //
461 
getIdentifiedStructTypes() const462 std::vector<StructType *> Module::getIdentifiedStructTypes() const {
463   // If we have a materializer, it is possible that some unread function
464   // uses a type that is currently not visible to a TypeFinder, so ask
465   // the materializer which types it created.
466   if (Materializer)
467     return Materializer->getIdentifiedStructTypes();
468 
469   std::vector<StructType *> Ret;
470   TypeFinder SrcStructTypes;
471   SrcStructTypes.run(*this, true);
472   Ret.assign(SrcStructTypes.begin(), SrcStructTypes.end());
473   return Ret;
474 }
475 
getUniqueIntrinsicName(StringRef BaseName,Intrinsic::ID Id,const FunctionType * Proto)476 std::string Module::getUniqueIntrinsicName(StringRef BaseName, Intrinsic::ID Id,
477                                            const FunctionType *Proto) {
478   auto Encode = [&BaseName](unsigned Suffix) {
479     return (Twine(BaseName) + "." + Twine(Suffix)).str();
480   };
481 
482   {
483     // fast path - the prototype is already known
484     auto UinItInserted = UniquedIntrinsicNames.insert({{Id, Proto}, 0});
485     if (!UinItInserted.second)
486       return Encode(UinItInserted.first->second);
487   }
488 
489   // Not known yet. A new entry was created with index 0. Check if there already
490   // exists a matching declaration, or select a new entry.
491 
492   // Start looking for names with the current known maximum count (or 0).
493   auto NiidItInserted = CurrentIntrinsicIds.insert({BaseName, 0});
494   unsigned Count = NiidItInserted.first->second;
495 
496   // This might be slow if a whole population of intrinsics already existed, but
497   // we cache the values for later usage.
498   std::string NewName;
499   while (true) {
500     NewName = Encode(Count);
501     GlobalValue *F = getNamedValue(NewName);
502     if (!F) {
503       // Reserve this entry for the new proto
504       UniquedIntrinsicNames[{Id, Proto}] = Count;
505       break;
506     }
507 
508     // A declaration with this name already exists. Remember it.
509     FunctionType *FT = dyn_cast<FunctionType>(F->getType()->getElementType());
510     auto UinItInserted = UniquedIntrinsicNames.insert({{Id, FT}, Count});
511     if (FT == Proto) {
512       // It was a declaration for our prototype. This entry was allocated in the
513       // beginning. Update the count to match the existing declaration.
514       UinItInserted.first->second = Count;
515       break;
516     }
517 
518     ++Count;
519   }
520 
521   NiidItInserted.first->second = Count + 1;
522 
523   return NewName;
524 }
525 
526 // dropAllReferences() - This function causes all the subelements to "let go"
527 // of all references that they are maintaining.  This allows one to 'delete' a
528 // whole module at a time, even though there may be circular references... first
529 // all references are dropped, and all use counts go to zero.  Then everything
530 // is deleted for real.  Note that no operations are valid on an object that
531 // has "dropped all references", except operator delete.
532 //
dropAllReferences()533 void Module::dropAllReferences() {
534   for (Function &F : *this)
535     F.dropAllReferences();
536 
537   for (GlobalVariable &GV : globals())
538     GV.dropAllReferences();
539 
540   for (GlobalAlias &GA : aliases())
541     GA.dropAllReferences();
542 
543   for (GlobalIFunc &GIF : ifuncs())
544     GIF.dropAllReferences();
545 }
546 
getNumberRegisterParameters() const547 unsigned Module::getNumberRegisterParameters() const {
548   auto *Val =
549       cast_or_null<ConstantAsMetadata>(getModuleFlag("NumRegisterParameters"));
550   if (!Val)
551     return 0;
552   return cast<ConstantInt>(Val->getValue())->getZExtValue();
553 }
554 
getDwarfVersion() const555 unsigned Module::getDwarfVersion() const {
556   auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Dwarf Version"));
557   if (!Val)
558     return 0;
559   return cast<ConstantInt>(Val->getValue())->getZExtValue();
560 }
561 
isDwarf64() const562 bool Module::isDwarf64() const {
563   auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("DWARF64"));
564   return Val && cast<ConstantInt>(Val->getValue())->isOne();
565 }
566 
getCodeViewFlag() const567 unsigned Module::getCodeViewFlag() const {
568   auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("CodeView"));
569   if (!Val)
570     return 0;
571   return cast<ConstantInt>(Val->getValue())->getZExtValue();
572 }
573 
getInstructionCount() const574 unsigned Module::getInstructionCount() const {
575   unsigned NumInstrs = 0;
576   for (const Function &F : FunctionList)
577     NumInstrs += F.getInstructionCount();
578   return NumInstrs;
579 }
580 
getOrInsertComdat(StringRef Name)581 Comdat *Module::getOrInsertComdat(StringRef Name) {
582   auto &Entry = *ComdatSymTab.insert(std::make_pair(Name, Comdat())).first;
583   Entry.second.Name = &Entry;
584   return &Entry.second;
585 }
586 
getPICLevel() const587 PICLevel::Level Module::getPICLevel() const {
588   auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIC Level"));
589 
590   if (!Val)
591     return PICLevel::NotPIC;
592 
593   return static_cast<PICLevel::Level>(
594       cast<ConstantInt>(Val->getValue())->getZExtValue());
595 }
596 
setPICLevel(PICLevel::Level PL)597 void Module::setPICLevel(PICLevel::Level PL) {
598   addModuleFlag(ModFlagBehavior::Max, "PIC Level", PL);
599 }
600 
getPIELevel() const601 PIELevel::Level Module::getPIELevel() const {
602   auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIE Level"));
603 
604   if (!Val)
605     return PIELevel::Default;
606 
607   return static_cast<PIELevel::Level>(
608       cast<ConstantInt>(Val->getValue())->getZExtValue());
609 }
610 
setPIELevel(PIELevel::Level PL)611 void Module::setPIELevel(PIELevel::Level PL) {
612   addModuleFlag(ModFlagBehavior::Max, "PIE Level", PL);
613 }
614 
getCodeModel() const615 Optional<CodeModel::Model> Module::getCodeModel() const {
616   auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Code Model"));
617 
618   if (!Val)
619     return None;
620 
621   return static_cast<CodeModel::Model>(
622       cast<ConstantInt>(Val->getValue())->getZExtValue());
623 }
624 
setCodeModel(CodeModel::Model CL)625 void Module::setCodeModel(CodeModel::Model CL) {
626   // Linking object files with different code models is undefined behavior
627   // because the compiler would have to generate additional code (to span
628   // longer jumps) if a larger code model is used with a smaller one.
629   // Therefore we will treat attempts to mix code models as an error.
630   addModuleFlag(ModFlagBehavior::Error, "Code Model", CL);
631 }
632 
setProfileSummary(Metadata * M,ProfileSummary::Kind Kind)633 void Module::setProfileSummary(Metadata *M, ProfileSummary::Kind Kind) {
634   if (Kind == ProfileSummary::PSK_CSInstr)
635     setModuleFlag(ModFlagBehavior::Error, "CSProfileSummary", M);
636   else
637     setModuleFlag(ModFlagBehavior::Error, "ProfileSummary", M);
638 }
639 
getProfileSummary(bool IsCS) const640 Metadata *Module::getProfileSummary(bool IsCS) const {
641   return (IsCS ? getModuleFlag("CSProfileSummary")
642                : getModuleFlag("ProfileSummary"));
643 }
644 
getSemanticInterposition() const645 bool Module::getSemanticInterposition() const {
646   Metadata *MF = getModuleFlag("SemanticInterposition");
647 
648   auto *Val = cast_or_null<ConstantAsMetadata>(MF);
649   if (!Val)
650     return false;
651 
652   return cast<ConstantInt>(Val->getValue())->getZExtValue();
653 }
654 
setSemanticInterposition(bool SI)655 void Module::setSemanticInterposition(bool SI) {
656   addModuleFlag(ModFlagBehavior::Error, "SemanticInterposition", SI);
657 }
658 
setOwnedMemoryBuffer(std::unique_ptr<MemoryBuffer> MB)659 void Module::setOwnedMemoryBuffer(std::unique_ptr<MemoryBuffer> MB) {
660   OwnedMemoryBuffer = std::move(MB);
661 }
662 
getRtLibUseGOT() const663 bool Module::getRtLibUseGOT() const {
664   auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("RtLibUseGOT"));
665   return Val && (cast<ConstantInt>(Val->getValue())->getZExtValue() > 0);
666 }
667 
setRtLibUseGOT()668 void Module::setRtLibUseGOT() {
669   addModuleFlag(ModFlagBehavior::Max, "RtLibUseGOT", 1);
670 }
671 
getUwtable() const672 bool Module::getUwtable() const {
673   auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("uwtable"));
674   return Val && (cast<ConstantInt>(Val->getValue())->getZExtValue() > 0);
675 }
676 
setUwtable()677 void Module::setUwtable() { addModuleFlag(ModFlagBehavior::Max, "uwtable", 1); }
678 
getFramePointer() const679 FramePointerKind Module::getFramePointer() const {
680   auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("frame-pointer"));
681   return static_cast<FramePointerKind>(
682       Val ? cast<ConstantInt>(Val->getValue())->getZExtValue() : 0);
683 }
684 
setFramePointer(FramePointerKind Kind)685 void Module::setFramePointer(FramePointerKind Kind) {
686   addModuleFlag(ModFlagBehavior::Max, "frame-pointer", static_cast<int>(Kind));
687 }
688 
getStackProtectorGuard() const689 StringRef Module::getStackProtectorGuard() const {
690   Metadata *MD = getModuleFlag("stack-protector-guard");
691   if (auto *MDS = dyn_cast_or_null<MDString>(MD))
692     return MDS->getString();
693   return {};
694 }
695 
setStackProtectorGuard(StringRef Kind)696 void Module::setStackProtectorGuard(StringRef Kind) {
697   MDString *ID = MDString::get(getContext(), Kind);
698   addModuleFlag(ModFlagBehavior::Error, "stack-protector-guard", ID);
699 }
700 
getStackProtectorGuardReg() const701 StringRef Module::getStackProtectorGuardReg() const {
702   Metadata *MD = getModuleFlag("stack-protector-guard-reg");
703   if (auto *MDS = dyn_cast_or_null<MDString>(MD))
704     return MDS->getString();
705   return {};
706 }
707 
setStackProtectorGuardReg(StringRef Reg)708 void Module::setStackProtectorGuardReg(StringRef Reg) {
709   MDString *ID = MDString::get(getContext(), Reg);
710   addModuleFlag(ModFlagBehavior::Error, "stack-protector-guard-reg", ID);
711 }
712 
getStackProtectorGuardOffset() const713 int Module::getStackProtectorGuardOffset() const {
714   Metadata *MD = getModuleFlag("stack-protector-guard-offset");
715   if (auto *CI = mdconst::dyn_extract_or_null<ConstantInt>(MD))
716     return CI->getSExtValue();
717   return INT_MAX;
718 }
719 
setStackProtectorGuardOffset(int Offset)720 void Module::setStackProtectorGuardOffset(int Offset) {
721   addModuleFlag(ModFlagBehavior::Error, "stack-protector-guard-offset", Offset);
722 }
723 
setSDKVersion(const VersionTuple & V)724 void Module::setSDKVersion(const VersionTuple &V) {
725   SmallVector<unsigned, 3> Entries;
726   Entries.push_back(V.getMajor());
727   if (auto Minor = V.getMinor()) {
728     Entries.push_back(*Minor);
729     if (auto Subminor = V.getSubminor())
730       Entries.push_back(*Subminor);
731     // Ignore the 'build' component as it can't be represented in the object
732     // file.
733   }
734   addModuleFlag(ModFlagBehavior::Warning, "SDK Version",
735                 ConstantDataArray::get(Context, Entries));
736 }
737 
getSDKVersion() const738 VersionTuple Module::getSDKVersion() const {
739   auto *CM = dyn_cast_or_null<ConstantAsMetadata>(getModuleFlag("SDK Version"));
740   if (!CM)
741     return {};
742   auto *Arr = dyn_cast_or_null<ConstantDataArray>(CM->getValue());
743   if (!Arr)
744     return {};
745   auto getVersionComponent = [&](unsigned Index) -> Optional<unsigned> {
746     if (Index >= Arr->getNumElements())
747       return None;
748     return (unsigned)Arr->getElementAsInteger(Index);
749   };
750   auto Major = getVersionComponent(0);
751   if (!Major)
752     return {};
753   VersionTuple Result = VersionTuple(*Major);
754   if (auto Minor = getVersionComponent(1)) {
755     Result = VersionTuple(*Major, *Minor);
756     if (auto Subminor = getVersionComponent(2)) {
757       Result = VersionTuple(*Major, *Minor, *Subminor);
758     }
759   }
760   return Result;
761 }
762 
collectUsedGlobalVariables(const Module & M,SmallVectorImpl<GlobalValue * > & Vec,bool CompilerUsed)763 GlobalVariable *llvm::collectUsedGlobalVariables(
764     const Module &M, SmallVectorImpl<GlobalValue *> &Vec, bool CompilerUsed) {
765   const char *Name = CompilerUsed ? "llvm.compiler.used" : "llvm.used";
766   GlobalVariable *GV = M.getGlobalVariable(Name);
767   if (!GV || !GV->hasInitializer())
768     return GV;
769 
770   const ConstantArray *Init = cast<ConstantArray>(GV->getInitializer());
771   for (Value *Op : Init->operands()) {
772     GlobalValue *G = cast<GlobalValue>(Op->stripPointerCasts());
773     Vec.push_back(G);
774   }
775   return GV;
776 }
777 
setPartialSampleProfileRatio(const ModuleSummaryIndex & Index)778 void Module::setPartialSampleProfileRatio(const ModuleSummaryIndex &Index) {
779   if (auto *SummaryMD = getProfileSummary(/*IsCS*/ false)) {
780     std::unique_ptr<ProfileSummary> ProfileSummary(
781         ProfileSummary::getFromMD(SummaryMD));
782     if (ProfileSummary) {
783       if (ProfileSummary->getKind() != ProfileSummary::PSK_Sample ||
784           !ProfileSummary->isPartialProfile())
785         return;
786       uint64_t BlockCount = Index.getBlockCount();
787       uint32_t NumCounts = ProfileSummary->getNumCounts();
788       if (!NumCounts)
789         return;
790       double Ratio = (double)BlockCount / NumCounts;
791       ProfileSummary->setPartialProfileRatio(Ratio);
792       setProfileSummary(ProfileSummary->getMD(getContext()),
793                         ProfileSummary::PSK_Sample);
794     }
795   }
796 }
797