1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "Utils/WebAssemblyTypeUtilities.h"
17 #include "Utils/WebAssemblyUtilities.h"
18 #include "WebAssemblyMachineFunctionInfo.h"
19 #include "WebAssemblySubtarget.h"
20 #include "WebAssemblyTargetMachine.h"
21 #include "llvm/CodeGen/CallingConvLower.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAG.h"
27 #include "llvm/CodeGen/SelectionDAGNodes.h"
28 #include "llvm/IR/DiagnosticInfo.h"
29 #include "llvm/IR/DiagnosticPrinter.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/IntrinsicsWebAssembly.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetOptions.h"
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "wasm-lower"
42 
WebAssemblyTargetLowering(const TargetMachine & TM,const WebAssemblySubtarget & STI)43 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
44     const TargetMachine &TM, const WebAssemblySubtarget &STI)
45     : TargetLowering(TM), Subtarget(&STI) {
46   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
47 
48   // Booleans always contain 0 or 1.
49   setBooleanContents(ZeroOrOneBooleanContent);
50   // Except in SIMD vectors
51   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
52   // We don't know the microarchitecture here, so just reduce register pressure.
53   setSchedulingPreference(Sched::RegPressure);
54   // Tell ISel that we have a stack pointer.
55   setStackPointerRegisterToSaveRestore(
56       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
57   // Set up the register classes.
58   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
59   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
60   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
61   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
62   if (Subtarget->hasSIMD128()) {
63     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
64     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
65     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
66     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
67     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
68     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
69   }
70   if (Subtarget->hasReferenceTypes()) {
71     addRegisterClass(MVT::externref, &WebAssembly::EXTERNREFRegClass);
72     addRegisterClass(MVT::funcref, &WebAssembly::FUNCREFRegClass);
73   }
74   // Compute derived properties from the register classes.
75   computeRegisterProperties(Subtarget->getRegisterInfo());
76 
77   // Transform loads and stores to pointers in address space 1 to loads and
78   // stores to WebAssembly global variables, outside linear memory.
79   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) {
80     setOperationAction(ISD::LOAD, T, Custom);
81     setOperationAction(ISD::STORE, T, Custom);
82   }
83   if (Subtarget->hasSIMD128()) {
84     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
85                    MVT::v2f64}) {
86       setOperationAction(ISD::LOAD, T, Custom);
87       setOperationAction(ISD::STORE, T, Custom);
88     }
89   }
90   if (Subtarget->hasReferenceTypes()) {
91     for (auto T : {MVT::externref, MVT::funcref}) {
92       setOperationAction(ISD::LOAD, T, Custom);
93       setOperationAction(ISD::STORE, T, Custom);
94     }
95   }
96 
97   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
98   setOperationAction(ISD::GlobalTLSAddress, MVTPtr, Custom);
99   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
100   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
101   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
102   setOperationAction(ISD::BRIND, MVT::Other, Custom);
103 
104   // Take the default expansion for va_arg, va_copy, and va_end. There is no
105   // default action for va_start, so we do that custom.
106   setOperationAction(ISD::VASTART, MVT::Other, Custom);
107   setOperationAction(ISD::VAARG, MVT::Other, Expand);
108   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
109   setOperationAction(ISD::VAEND, MVT::Other, Expand);
110 
111   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
112     // Don't expand the floating-point types to constant pools.
113     setOperationAction(ISD::ConstantFP, T, Legal);
114     // Expand floating-point comparisons.
115     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
116                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
117       setCondCodeAction(CC, T, Expand);
118     // Expand floating-point library function operators.
119     for (auto Op :
120          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
121       setOperationAction(Op, T, Expand);
122     // Note supported floating-point library function operators that otherwise
123     // default to expand.
124     for (auto Op :
125          {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
126       setOperationAction(Op, T, Legal);
127     // Support minimum and maximum, which otherwise default to expand.
128     setOperationAction(ISD::FMINIMUM, T, Legal);
129     setOperationAction(ISD::FMAXIMUM, T, Legal);
130     // WebAssembly currently has no builtin f16 support.
131     setOperationAction(ISD::FP16_TO_FP, T, Expand);
132     setOperationAction(ISD::FP_TO_FP16, T, Expand);
133     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
134     setTruncStoreAction(T, MVT::f16, Expand);
135   }
136 
137   // Expand unavailable integer operations.
138   for (auto Op :
139        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
140         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
141         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
142     for (auto T : {MVT::i32, MVT::i64})
143       setOperationAction(Op, T, Expand);
144     if (Subtarget->hasSIMD128())
145       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
146         setOperationAction(Op, T, Expand);
147   }
148 
149   if (Subtarget->hasNontrappingFPToInt())
150     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
151       for (auto T : {MVT::i32, MVT::i64})
152         setOperationAction(Op, T, Custom);
153 
154   // SIMD-specific configuration
155   if (Subtarget->hasSIMD128()) {
156     // Hoist bitcasts out of shuffles
157     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
158 
159     // Combine extends of extract_subvectors into widening ops
160     setTargetDAGCombine(ISD::SIGN_EXTEND);
161     setTargetDAGCombine(ISD::ZERO_EXTEND);
162 
163     // Combine int_to_fp or fp_extend of extract_vectors and vice versa into
164     // conversions ops
165     setTargetDAGCombine(ISD::SINT_TO_FP);
166     setTargetDAGCombine(ISD::UINT_TO_FP);
167     setTargetDAGCombine(ISD::FP_EXTEND);
168     setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR);
169 
170     // Combine fp_to_{s,u}int_sat or fp_round of concat_vectors or vice versa
171     // into conversion ops
172     setTargetDAGCombine(ISD::FP_TO_SINT_SAT);
173     setTargetDAGCombine(ISD::FP_TO_UINT_SAT);
174     setTargetDAGCombine(ISD::FP_ROUND);
175     setTargetDAGCombine(ISD::CONCAT_VECTORS);
176 
177     // Support saturating add for i8x16 and i16x8
178     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
179       for (auto T : {MVT::v16i8, MVT::v8i16})
180         setOperationAction(Op, T, Legal);
181 
182     // Support integer abs
183     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
184       setOperationAction(ISD::ABS, T, Legal);
185 
186     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
187     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
188                    MVT::v2f64})
189       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
190 
191     // We have custom shuffle lowering to expose the shuffle mask
192     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
193                    MVT::v2f64})
194       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
195 
196     // Custom lowering since wasm shifts must have a scalar shift amount
197     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL})
198       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
199         setOperationAction(Op, T, Custom);
200 
201     // Custom lower lane accesses to expand out variable indices
202     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT})
203       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
204                      MVT::v2f64})
205         setOperationAction(Op, T, Custom);
206 
207     // There is no i8x16.mul instruction
208     setOperationAction(ISD::MUL, MVT::v16i8, Expand);
209 
210     // There is no vector conditional select instruction
211     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
212                    MVT::v2f64})
213       setOperationAction(ISD::SELECT_CC, T, Expand);
214 
215     // Expand integer operations supported for scalars but not SIMD
216     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV,
217                     ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR})
218       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
219         setOperationAction(Op, T, Expand);
220 
221     // But we do have integer min and max operations
222     for (auto Op : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
223       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
224         setOperationAction(Op, T, Legal);
225 
226     // And we have popcnt for i8x16
227     setOperationAction(ISD::CTPOP, MVT::v16i8, Legal);
228 
229     // Expand float operations supported for scalars but not SIMD
230     for (auto Op : {ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
231                     ISD::FEXP, ISD::FEXP2, ISD::FRINT})
232       for (auto T : {MVT::v4f32, MVT::v2f64})
233         setOperationAction(Op, T, Expand);
234 
235     // Unsigned comparison operations are unavailable for i64x2 vectors.
236     for (auto CC : {ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE})
237       setCondCodeAction(CC, MVT::v2i64, Custom);
238 
239     // 64x2 conversions are not in the spec
240     for (auto Op :
241          {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT})
242       for (auto T : {MVT::v2i64, MVT::v2f64})
243         setOperationAction(Op, T, Expand);
244 
245     // But saturating fp_to_int converstions are
246     for (auto Op : {ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT})
247       setOperationAction(Op, MVT::v4i32, Custom);
248   }
249 
250   // As a special case, these operators use the type to mean the type to
251   // sign-extend from.
252   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
253   if (!Subtarget->hasSignExt()) {
254     // Sign extends are legal only when extending a vector extract
255     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
256     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
257       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
258   }
259   for (auto T : MVT::integer_fixedlen_vector_valuetypes())
260     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
261 
262   // Dynamic stack allocation: use the default expansion.
263   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
264   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
265   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
266 
267   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
268   setOperationAction(ISD::FrameIndex, MVT::i64, Custom);
269   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
270 
271   // Expand these forms; we pattern-match the forms that we can handle in isel.
272   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
273     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
274       setOperationAction(Op, T, Expand);
275 
276   // We have custom switch handling.
277   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
278 
279   // WebAssembly doesn't have:
280   //  - Floating-point extending loads.
281   //  - Floating-point truncating stores.
282   //  - i1 extending loads.
283   //  - truncating SIMD stores and most extending loads
284   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
285   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
286   for (auto T : MVT::integer_valuetypes())
287     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
288       setLoadExtAction(Ext, T, MVT::i1, Promote);
289   if (Subtarget->hasSIMD128()) {
290     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
291                    MVT::v2f64}) {
292       for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
293         if (MVT(T) != MemT) {
294           setTruncStoreAction(T, MemT, Expand);
295           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
296             setLoadExtAction(Ext, T, MemT, Expand);
297         }
298       }
299     }
300     // But some vector extending loads are legal
301     for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
302       setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
303       setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
304       setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
305     }
306     setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Legal);
307   }
308 
309   // Don't do anything clever with build_pairs
310   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
311 
312   // Trap lowers to wasm unreachable
313   setOperationAction(ISD::TRAP, MVT::Other, Legal);
314   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
315 
316   // Exception handling intrinsics
317   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
318   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
319   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
320 
321   setMaxAtomicSizeInBitsSupported(64);
322 
323   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
324   // consistent with the f64 and f128 names.
325   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
326   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
327 
328   // Define the emscripten name for return address helper.
329   // TODO: when implementing other Wasm backends, make this generic or only do
330   // this on emscripten depending on what they end up doing.
331   setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
332 
333   // Always convert switches to br_tables unless there is only one case, which
334   // is equivalent to a simple branch. This reduces code size for wasm, and we
335   // defer possible jump table optimizations to the VM.
336   setMinimumJumpTableEntries(2);
337 }
338 
getPointerTy(const DataLayout & DL,uint32_t AS) const339 MVT WebAssemblyTargetLowering::getPointerTy(const DataLayout &DL,
340                                             uint32_t AS) const {
341   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
342     return MVT::externref;
343   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
344     return MVT::funcref;
345   return TargetLowering::getPointerTy(DL, AS);
346 }
347 
getPointerMemTy(const DataLayout & DL,uint32_t AS) const348 MVT WebAssemblyTargetLowering::getPointerMemTy(const DataLayout &DL,
349                                                uint32_t AS) const {
350   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_EXTERNREF)
351     return MVT::externref;
352   if (AS == WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF)
353     return MVT::funcref;
354   return TargetLowering::getPointerMemTy(DL, AS);
355 }
356 
357 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const358 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
359   // We have wasm instructions for these
360   switch (AI->getOperation()) {
361   case AtomicRMWInst::Add:
362   case AtomicRMWInst::Sub:
363   case AtomicRMWInst::And:
364   case AtomicRMWInst::Or:
365   case AtomicRMWInst::Xor:
366   case AtomicRMWInst::Xchg:
367     return AtomicExpansionKind::None;
368   default:
369     break;
370   }
371   return AtomicExpansionKind::CmpXChg;
372 }
373 
shouldScalarizeBinop(SDValue VecOp) const374 bool WebAssemblyTargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
375   // Implementation copied from X86TargetLowering.
376   unsigned Opc = VecOp.getOpcode();
377 
378   // Assume target opcodes can't be scalarized.
379   // TODO - do we have any exceptions?
380   if (Opc >= ISD::BUILTIN_OP_END)
381     return false;
382 
383   // If the vector op is not supported, try to convert to scalar.
384   EVT VecVT = VecOp.getValueType();
385   if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
386     return true;
387 
388   // If the vector op is supported, but the scalar op is not, the transform may
389   // not be worthwhile.
390   EVT ScalarVT = VecVT.getScalarType();
391   return isOperationLegalOrCustomOrPromote(Opc, ScalarVT);
392 }
393 
createFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo) const394 FastISel *WebAssemblyTargetLowering::createFastISel(
395     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
396   return WebAssembly::createFastISel(FuncInfo, LibInfo);
397 }
398 
getScalarShiftAmountTy(const DataLayout &,EVT VT) const399 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
400                                                       EVT VT) const {
401   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
402   if (BitWidth > 1 && BitWidth < 8)
403     BitWidth = 8;
404 
405   if (BitWidth > 64) {
406     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
407     // the count to be an i32.
408     BitWidth = 32;
409     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
410            "32-bit shift counts ought to be enough for anyone");
411   }
412 
413   MVT Result = MVT::getIntegerVT(BitWidth);
414   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
415          "Unable to represent scalar shift amount type");
416   return Result;
417 }
418 
419 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
420 // undefined result on invalid/overflow, to the WebAssembly opcode, which
421 // traps on invalid/overflow.
LowerFPToInt(MachineInstr & MI,DebugLoc DL,MachineBasicBlock * BB,const TargetInstrInfo & TII,bool IsUnsigned,bool Int64,bool Float64,unsigned LoweredOpcode)422 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
423                                        MachineBasicBlock *BB,
424                                        const TargetInstrInfo &TII,
425                                        bool IsUnsigned, bool Int64,
426                                        bool Float64, unsigned LoweredOpcode) {
427   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
428 
429   Register OutReg = MI.getOperand(0).getReg();
430   Register InReg = MI.getOperand(1).getReg();
431 
432   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
433   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
434   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
435   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
436   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
437   unsigned Eqz = WebAssembly::EQZ_I32;
438   unsigned And = WebAssembly::AND_I32;
439   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
440   int64_t Substitute = IsUnsigned ? 0 : Limit;
441   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
442   auto &Context = BB->getParent()->getFunction().getContext();
443   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
444 
445   const BasicBlock *LLVMBB = BB->getBasicBlock();
446   MachineFunction *F = BB->getParent();
447   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
448   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
449   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
450 
451   MachineFunction::iterator It = ++BB->getIterator();
452   F->insert(It, FalseMBB);
453   F->insert(It, TrueMBB);
454   F->insert(It, DoneMBB);
455 
456   // Transfer the remainder of BB and its successor edges to DoneMBB.
457   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
458   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
459 
460   BB->addSuccessor(TrueMBB);
461   BB->addSuccessor(FalseMBB);
462   TrueMBB->addSuccessor(DoneMBB);
463   FalseMBB->addSuccessor(DoneMBB);
464 
465   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
466   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
467   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
468   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
469   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
470   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
471   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
472 
473   MI.eraseFromParent();
474   // For signed numbers, we can do a single comparison to determine whether
475   // fabs(x) is within range.
476   if (IsUnsigned) {
477     Tmp0 = InReg;
478   } else {
479     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
480   }
481   BuildMI(BB, DL, TII.get(FConst), Tmp1)
482       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
483   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
484 
485   // For unsigned numbers, we have to do a separate comparison with zero.
486   if (IsUnsigned) {
487     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
488     Register SecondCmpReg =
489         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
490     Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
491     BuildMI(BB, DL, TII.get(FConst), Tmp1)
492         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
493     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
494     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
495     CmpReg = AndReg;
496   }
497 
498   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
499 
500   // Create the CFG diamond to select between doing the conversion or using
501   // the substitute value.
502   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
503   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
504   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
505   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
506   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
507       .addReg(FalseReg)
508       .addMBB(FalseMBB)
509       .addReg(TrueReg)
510       .addMBB(TrueMBB);
511 
512   return DoneMBB;
513 }
514 
515 static MachineBasicBlock *
LowerCallResults(MachineInstr & CallResults,DebugLoc DL,MachineBasicBlock * BB,const WebAssemblySubtarget * Subtarget,const TargetInstrInfo & TII)516 LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB,
517                  const WebAssemblySubtarget *Subtarget,
518                  const TargetInstrInfo &TII) {
519   MachineInstr &CallParams = *CallResults.getPrevNode();
520   assert(CallParams.getOpcode() == WebAssembly::CALL_PARAMS);
521   assert(CallResults.getOpcode() == WebAssembly::CALL_RESULTS ||
522          CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS);
523 
524   bool IsIndirect = CallParams.getOperand(0).isReg();
525   bool IsRetCall = CallResults.getOpcode() == WebAssembly::RET_CALL_RESULTS;
526 
527   bool IsFuncrefCall = false;
528   if (IsIndirect) {
529     Register Reg = CallParams.getOperand(0).getReg();
530     const MachineFunction *MF = BB->getParent();
531     const MachineRegisterInfo &MRI = MF->getRegInfo();
532     const TargetRegisterClass *TRC = MRI.getRegClass(Reg);
533     IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass);
534     assert(!IsFuncrefCall || Subtarget->hasReferenceTypes());
535   }
536 
537   unsigned CallOp;
538   if (IsIndirect && IsRetCall) {
539     CallOp = WebAssembly::RET_CALL_INDIRECT;
540   } else if (IsIndirect) {
541     CallOp = WebAssembly::CALL_INDIRECT;
542   } else if (IsRetCall) {
543     CallOp = WebAssembly::RET_CALL;
544   } else {
545     CallOp = WebAssembly::CALL;
546   }
547 
548   MachineFunction &MF = *BB->getParent();
549   const MCInstrDesc &MCID = TII.get(CallOp);
550   MachineInstrBuilder MIB(MF, MF.CreateMachineInstr(MCID, DL));
551 
552   // See if we must truncate the function pointer.
553   // CALL_INDIRECT takes an i32, but in wasm64 we represent function pointers
554   // as 64-bit for uniformity with other pointer types.
555   // See also: WebAssemblyFastISel::selectCall
556   if (IsIndirect && MF.getSubtarget<WebAssemblySubtarget>().hasAddr64()) {
557     Register Reg32 =
558         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
559     auto &FnPtr = CallParams.getOperand(0);
560     BuildMI(*BB, CallResults.getIterator(), DL,
561             TII.get(WebAssembly::I32_WRAP_I64), Reg32)
562         .addReg(FnPtr.getReg());
563     FnPtr.setReg(Reg32);
564   }
565 
566   // Move the function pointer to the end of the arguments for indirect calls
567   if (IsIndirect) {
568     auto FnPtr = CallParams.getOperand(0);
569     CallParams.RemoveOperand(0);
570 
571     // For funcrefs, call_indirect is done through __funcref_call_table and the
572     // funcref is always installed in slot 0 of the table, therefore instead of having
573     // the function pointer added at the end of the params list, a zero (the index in
574     // __funcref_call_table is added).
575     if (IsFuncrefCall) {
576       Register RegZero =
577           MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
578       MachineInstrBuilder MIBC0 =
579           BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
580 
581       BB->insert(CallResults.getIterator(), MIBC0);
582       MachineInstrBuilder(MF, CallParams).addReg(RegZero);
583     } else
584       CallParams.addOperand(FnPtr);
585   }
586 
587   for (auto Def : CallResults.defs())
588     MIB.add(Def);
589 
590   if (IsIndirect) {
591     // Placeholder for the type index.
592     MIB.addImm(0);
593     // The table into which this call_indirect indexes.
594     MCSymbolWasm *Table = IsFuncrefCall
595                               ? WebAssembly::getOrCreateFuncrefCallTableSymbol(
596                                     MF.getContext(), Subtarget)
597                               : WebAssembly::getOrCreateFunctionTableSymbol(
598                                     MF.getContext(), Subtarget);
599     if (Subtarget->hasReferenceTypes()) {
600       MIB.addSym(Table);
601     } else {
602       // For the MVP there is at most one table whose number is 0, but we can't
603       // write a table symbol or issue relocations.  Instead we just ensure the
604       // table is live and write a zero.
605       Table->setNoStrip();
606       MIB.addImm(0);
607     }
608   }
609 
610   for (auto Use : CallParams.uses())
611     MIB.add(Use);
612 
613   BB->insert(CallResults.getIterator(), MIB);
614   CallParams.eraseFromParent();
615   CallResults.eraseFromParent();
616 
617   // If this is a funcref call, to avoid hidden GC roots, we need to clear the
618   // table slot with ref.null upon call_indirect return.
619   //
620   // This generates the following code, which comes right after a call_indirect
621   // of a funcref:
622   //
623   //    i32.const 0
624   //    ref.null func
625   //    table.set __funcref_call_table
626   if (IsIndirect && IsFuncrefCall) {
627     MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
628         MF.getContext(), Subtarget);
629     Register RegZero =
630         MF.getRegInfo().createVirtualRegister(&WebAssembly::I32RegClass);
631     MachineInstr *Const0 =
632         BuildMI(MF, DL, TII.get(WebAssembly::CONST_I32), RegZero).addImm(0);
633     BB->insertAfter(MIB.getInstr()->getIterator(), Const0);
634 
635     Register RegFuncref =
636         MF.getRegInfo().createVirtualRegister(&WebAssembly::FUNCREFRegClass);
637     MachineInstr *RefNull =
638         BuildMI(MF, DL, TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref)
639             .addImm(static_cast<int32_t>(WebAssembly::HeapType::Funcref));
640     BB->insertAfter(Const0->getIterator(), RefNull);
641 
642     MachineInstr *TableSet =
643         BuildMI(MF, DL, TII.get(WebAssembly::TABLE_SET_FUNCREF))
644             .addSym(Table)
645             .addReg(RegZero)
646             .addReg(RegFuncref);
647     BB->insertAfter(RefNull->getIterator(), TableSet);
648   }
649 
650   return BB;
651 }
652 
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const653 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
654     MachineInstr &MI, MachineBasicBlock *BB) const {
655   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
656   DebugLoc DL = MI.getDebugLoc();
657 
658   switch (MI.getOpcode()) {
659   default:
660     llvm_unreachable("Unexpected instr type to insert");
661   case WebAssembly::FP_TO_SINT_I32_F32:
662     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
663                         WebAssembly::I32_TRUNC_S_F32);
664   case WebAssembly::FP_TO_UINT_I32_F32:
665     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
666                         WebAssembly::I32_TRUNC_U_F32);
667   case WebAssembly::FP_TO_SINT_I64_F32:
668     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
669                         WebAssembly::I64_TRUNC_S_F32);
670   case WebAssembly::FP_TO_UINT_I64_F32:
671     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
672                         WebAssembly::I64_TRUNC_U_F32);
673   case WebAssembly::FP_TO_SINT_I32_F64:
674     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
675                         WebAssembly::I32_TRUNC_S_F64);
676   case WebAssembly::FP_TO_UINT_I32_F64:
677     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
678                         WebAssembly::I32_TRUNC_U_F64);
679   case WebAssembly::FP_TO_SINT_I64_F64:
680     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
681                         WebAssembly::I64_TRUNC_S_F64);
682   case WebAssembly::FP_TO_UINT_I64_F64:
683     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
684                         WebAssembly::I64_TRUNC_U_F64);
685   case WebAssembly::CALL_RESULTS:
686   case WebAssembly::RET_CALL_RESULTS:
687     return LowerCallResults(MI, DL, BB, Subtarget, TII);
688   }
689 }
690 
691 const char *
getTargetNodeName(unsigned Opcode) const692 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
693   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
694   case WebAssemblyISD::FIRST_NUMBER:
695   case WebAssemblyISD::FIRST_MEM_OPCODE:
696     break;
697 #define HANDLE_NODETYPE(NODE)                                                  \
698   case WebAssemblyISD::NODE:                                                   \
699     return "WebAssemblyISD::" #NODE;
700 #define HANDLE_MEM_NODETYPE(NODE) HANDLE_NODETYPE(NODE)
701 #include "WebAssemblyISD.def"
702 #undef HANDLE_MEM_NODETYPE
703 #undef HANDLE_NODETYPE
704   }
705   return nullptr;
706 }
707 
708 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const709 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
710     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
711   // First, see if this is a constraint that directly corresponds to a
712   // WebAssembly register class.
713   if (Constraint.size() == 1) {
714     switch (Constraint[0]) {
715     case 'r':
716       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
717       if (Subtarget->hasSIMD128() && VT.isVector()) {
718         if (VT.getSizeInBits() == 128)
719           return std::make_pair(0U, &WebAssembly::V128RegClass);
720       }
721       if (VT.isInteger() && !VT.isVector()) {
722         if (VT.getSizeInBits() <= 32)
723           return std::make_pair(0U, &WebAssembly::I32RegClass);
724         if (VT.getSizeInBits() <= 64)
725           return std::make_pair(0U, &WebAssembly::I64RegClass);
726       }
727       if (VT.isFloatingPoint() && !VT.isVector()) {
728         switch (VT.getSizeInBits()) {
729         case 32:
730           return std::make_pair(0U, &WebAssembly::F32RegClass);
731         case 64:
732           return std::make_pair(0U, &WebAssembly::F64RegClass);
733         default:
734           break;
735         }
736       }
737       break;
738     default:
739       break;
740     }
741   }
742 
743   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
744 }
745 
isCheapToSpeculateCttz() const746 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
747   // Assume ctz is a relatively cheap operation.
748   return true;
749 }
750 
isCheapToSpeculateCtlz() const751 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
752   // Assume clz is a relatively cheap operation.
753   return true;
754 }
755 
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const756 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
757                                                       const AddrMode &AM,
758                                                       Type *Ty, unsigned AS,
759                                                       Instruction *I) const {
760   // WebAssembly offsets are added as unsigned without wrapping. The
761   // isLegalAddressingMode gives us no way to determine if wrapping could be
762   // happening, so we approximate this by accepting only non-negative offsets.
763   if (AM.BaseOffs < 0)
764     return false;
765 
766   // WebAssembly has no scale register operands.
767   if (AM.Scale != 0)
768     return false;
769 
770   // Everything else is legal.
771   return true;
772 }
773 
allowsMisalignedMemoryAccesses(EVT,unsigned,Align,MachineMemOperand::Flags,bool * Fast) const774 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
775     EVT /*VT*/, unsigned /*AddrSpace*/, Align /*Align*/,
776     MachineMemOperand::Flags /*Flags*/, bool *Fast) const {
777   // WebAssembly supports unaligned accesses, though it should be declared
778   // with the p2align attribute on loads and stores which do so, and there
779   // may be a performance impact. We tell LLVM they're "fast" because
780   // for the kinds of things that LLVM uses this for (merging adjacent stores
781   // of constants, etc.), WebAssembly implementations will either want the
782   // unaligned access or they'll split anyway.
783   if (Fast)
784     *Fast = true;
785   return true;
786 }
787 
isIntDivCheap(EVT VT,AttributeList Attr) const788 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
789                                               AttributeList Attr) const {
790   // The current thinking is that wasm engines will perform this optimization,
791   // so we can save on code size.
792   return true;
793 }
794 
isVectorLoadExtDesirable(SDValue ExtVal) const795 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
796   EVT ExtT = ExtVal.getValueType();
797   EVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getValueType(0);
798   return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
799          (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
800          (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
801 }
802 
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const803 bool WebAssemblyTargetLowering::isOffsetFoldingLegal(
804     const GlobalAddressSDNode *GA) const {
805   // Wasm doesn't support function addresses with offsets
806   const GlobalValue *GV = GA->getGlobal();
807   return isa<Function>(GV) ? false : TargetLowering::isOffsetFoldingLegal(GA);
808 }
809 
getSetCCResultType(const DataLayout & DL,LLVMContext & C,EVT VT) const810 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
811                                                   LLVMContext &C,
812                                                   EVT VT) const {
813   if (VT.isVector())
814     return VT.changeVectorElementTypeToInteger();
815 
816   // So far, all branch instructions in Wasm take an I32 condition.
817   // The default TargetLowering::getSetCCResultType returns the pointer size,
818   // which would be useful to reduce instruction counts when testing
819   // against 64-bit pointers/values if at some point Wasm supports that.
820   return EVT::getIntegerVT(C, 32);
821 }
822 
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const823 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
824                                                    const CallInst &I,
825                                                    MachineFunction &MF,
826                                                    unsigned Intrinsic) const {
827   switch (Intrinsic) {
828   case Intrinsic::wasm_memory_atomic_notify:
829     Info.opc = ISD::INTRINSIC_W_CHAIN;
830     Info.memVT = MVT::i32;
831     Info.ptrVal = I.getArgOperand(0);
832     Info.offset = 0;
833     Info.align = Align(4);
834     // atomic.notify instruction does not really load the memory specified with
835     // this argument, but MachineMemOperand should either be load or store, so
836     // we set this to a load.
837     // FIXME Volatile isn't really correct, but currently all LLVM atomic
838     // instructions are treated as volatiles in the backend, so we should be
839     // consistent. The same applies for wasm_atomic_wait intrinsics too.
840     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
841     return true;
842   case Intrinsic::wasm_memory_atomic_wait32:
843     Info.opc = ISD::INTRINSIC_W_CHAIN;
844     Info.memVT = MVT::i32;
845     Info.ptrVal = I.getArgOperand(0);
846     Info.offset = 0;
847     Info.align = Align(4);
848     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
849     return true;
850   case Intrinsic::wasm_memory_atomic_wait64:
851     Info.opc = ISD::INTRINSIC_W_CHAIN;
852     Info.memVT = MVT::i64;
853     Info.ptrVal = I.getArgOperand(0);
854     Info.offset = 0;
855     Info.align = Align(8);
856     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
857     return true;
858   default:
859     return false;
860   }
861 }
862 
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const863 void WebAssemblyTargetLowering::computeKnownBitsForTargetNode(
864     const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
865     const SelectionDAG &DAG, unsigned Depth) const {
866   switch (Op.getOpcode()) {
867   default:
868     break;
869   case ISD::INTRINSIC_WO_CHAIN: {
870     unsigned IntNo = Op.getConstantOperandVal(0);
871     switch (IntNo) {
872     default:
873       break;
874     case Intrinsic::wasm_bitmask: {
875       unsigned BitWidth = Known.getBitWidth();
876       EVT VT = Op.getOperand(1).getSimpleValueType();
877       unsigned PossibleBits = VT.getVectorNumElements();
878       APInt ZeroMask = APInt::getHighBitsSet(BitWidth, BitWidth - PossibleBits);
879       Known.Zero |= ZeroMask;
880       break;
881     }
882     }
883   }
884   }
885 }
886 
887 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT) const888 WebAssemblyTargetLowering::getPreferredVectorAction(MVT VT) const {
889   if (VT.isFixedLengthVector()) {
890     MVT EltVT = VT.getVectorElementType();
891     // We have legal vector types with these lane types, so widening the
892     // vector would let us use some of the lanes directly without having to
893     // extend or truncate values.
894     if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
895         EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64)
896       return TypeWidenVector;
897   }
898 
899   return TargetLoweringBase::getPreferredVectorAction(VT);
900 }
901 
902 //===----------------------------------------------------------------------===//
903 // WebAssembly Lowering private implementation.
904 //===----------------------------------------------------------------------===//
905 
906 //===----------------------------------------------------------------------===//
907 // Lowering Code
908 //===----------------------------------------------------------------------===//
909 
fail(const SDLoc & DL,SelectionDAG & DAG,const char * Msg)910 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
911   MachineFunction &MF = DAG.getMachineFunction();
912   DAG.getContext()->diagnose(
913       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
914 }
915 
916 // Test whether the given calling convention is supported.
callingConvSupported(CallingConv::ID CallConv)917 static bool callingConvSupported(CallingConv::ID CallConv) {
918   // We currently support the language-independent target-independent
919   // conventions. We don't yet have a way to annotate calls with properties like
920   // "cold", and we don't have any call-clobbered registers, so these are mostly
921   // all handled the same.
922   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
923          CallConv == CallingConv::Cold ||
924          CallConv == CallingConv::PreserveMost ||
925          CallConv == CallingConv::PreserveAll ||
926          CallConv == CallingConv::CXX_FAST_TLS ||
927          CallConv == CallingConv::WASM_EmscriptenInvoke ||
928          CallConv == CallingConv::Swift;
929 }
930 
931 SDValue
LowerCall(CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const932 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
933                                      SmallVectorImpl<SDValue> &InVals) const {
934   SelectionDAG &DAG = CLI.DAG;
935   SDLoc DL = CLI.DL;
936   SDValue Chain = CLI.Chain;
937   SDValue Callee = CLI.Callee;
938   MachineFunction &MF = DAG.getMachineFunction();
939   auto Layout = MF.getDataLayout();
940 
941   CallingConv::ID CallConv = CLI.CallConv;
942   if (!callingConvSupported(CallConv))
943     fail(DL, DAG,
944          "WebAssembly doesn't support language-specific or target-specific "
945          "calling conventions yet");
946   if (CLI.IsPatchPoint)
947     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
948 
949   if (CLI.IsTailCall) {
950     auto NoTail = [&](const char *Msg) {
951       if (CLI.CB && CLI.CB->isMustTailCall())
952         fail(DL, DAG, Msg);
953       CLI.IsTailCall = false;
954     };
955 
956     if (!Subtarget->hasTailCall())
957       NoTail("WebAssembly 'tail-call' feature not enabled");
958 
959     // Varargs calls cannot be tail calls because the buffer is on the stack
960     if (CLI.IsVarArg)
961       NoTail("WebAssembly does not support varargs tail calls");
962 
963     // Do not tail call unless caller and callee return types match
964     const Function &F = MF.getFunction();
965     const TargetMachine &TM = getTargetMachine();
966     Type *RetTy = F.getReturnType();
967     SmallVector<MVT, 4> CallerRetTys;
968     SmallVector<MVT, 4> CalleeRetTys;
969     computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
970     computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
971     bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
972                       std::equal(CallerRetTys.begin(), CallerRetTys.end(),
973                                  CalleeRetTys.begin());
974     if (!TypesMatch)
975       NoTail("WebAssembly tail call requires caller and callee return types to "
976              "match");
977 
978     // If pointers to local stack values are passed, we cannot tail call
979     if (CLI.CB) {
980       for (auto &Arg : CLI.CB->args()) {
981         Value *Val = Arg.get();
982         // Trace the value back through pointer operations
983         while (true) {
984           Value *Src = Val->stripPointerCastsAndAliases();
985           if (auto *GEP = dyn_cast<GetElementPtrInst>(Src))
986             Src = GEP->getPointerOperand();
987           if (Val == Src)
988             break;
989           Val = Src;
990         }
991         if (isa<AllocaInst>(Val)) {
992           NoTail(
993               "WebAssembly does not support tail calling with stack arguments");
994           break;
995         }
996       }
997     }
998   }
999 
1000   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1001   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1002   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1003 
1004   // The generic code may have added an sret argument. If we're lowering an
1005   // invoke function, the ABI requires that the function pointer be the first
1006   // argument, so we may have to swap the arguments.
1007   if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
1008       Outs[0].Flags.isSRet()) {
1009     std::swap(Outs[0], Outs[1]);
1010     std::swap(OutVals[0], OutVals[1]);
1011   }
1012 
1013   bool HasSwiftSelfArg = false;
1014   bool HasSwiftErrorArg = false;
1015   unsigned NumFixedArgs = 0;
1016   for (unsigned I = 0; I < Outs.size(); ++I) {
1017     const ISD::OutputArg &Out = Outs[I];
1018     SDValue &OutVal = OutVals[I];
1019     HasSwiftSelfArg |= Out.Flags.isSwiftSelf();
1020     HasSwiftErrorArg |= Out.Flags.isSwiftError();
1021     if (Out.Flags.isNest())
1022       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1023     if (Out.Flags.isInAlloca())
1024       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1025     if (Out.Flags.isInConsecutiveRegs())
1026       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1027     if (Out.Flags.isInConsecutiveRegsLast())
1028       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1029     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
1030       auto &MFI = MF.getFrameInfo();
1031       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
1032                                      Out.Flags.getNonZeroByValAlign(),
1033                                      /*isSS=*/false);
1034       SDValue SizeNode =
1035           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
1036       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1037       Chain = DAG.getMemcpy(
1038           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getNonZeroByValAlign(),
1039           /*isVolatile*/ false, /*AlwaysInline=*/false,
1040           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
1041       OutVal = FINode;
1042     }
1043     // Count the number of fixed args *after* legalization.
1044     NumFixedArgs += Out.IsFixed;
1045   }
1046 
1047   bool IsVarArg = CLI.IsVarArg;
1048   auto PtrVT = getPointerTy(Layout);
1049 
1050   // For swiftcc, emit additional swiftself and swifterror arguments
1051   // if there aren't. These additional arguments are also added for callee
1052   // signature They are necessary to match callee and caller signature for
1053   // indirect call.
1054   if (CallConv == CallingConv::Swift) {
1055     if (!HasSwiftSelfArg) {
1056       NumFixedArgs++;
1057       ISD::OutputArg Arg;
1058       Arg.Flags.setSwiftSelf();
1059       CLI.Outs.push_back(Arg);
1060       SDValue ArgVal = DAG.getUNDEF(PtrVT);
1061       CLI.OutVals.push_back(ArgVal);
1062     }
1063     if (!HasSwiftErrorArg) {
1064       NumFixedArgs++;
1065       ISD::OutputArg Arg;
1066       Arg.Flags.setSwiftError();
1067       CLI.Outs.push_back(Arg);
1068       SDValue ArgVal = DAG.getUNDEF(PtrVT);
1069       CLI.OutVals.push_back(ArgVal);
1070     }
1071   }
1072 
1073   // Analyze operands of the call, assigning locations to each operand.
1074   SmallVector<CCValAssign, 16> ArgLocs;
1075   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1076 
1077   if (IsVarArg) {
1078     // Outgoing non-fixed arguments are placed in a buffer. First
1079     // compute their offsets and the total amount of buffer space needed.
1080     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
1081       const ISD::OutputArg &Out = Outs[I];
1082       SDValue &Arg = OutVals[I];
1083       EVT VT = Arg.getValueType();
1084       assert(VT != MVT::iPTR && "Legalized args should be concrete");
1085       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
1086       Align Alignment =
1087           std::max(Out.Flags.getNonZeroOrigAlign(), Layout.getABITypeAlign(Ty));
1088       unsigned Offset =
1089           CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
1090       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
1091                                         Offset, VT.getSimpleVT(),
1092                                         CCValAssign::Full));
1093     }
1094   }
1095 
1096   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
1097 
1098   SDValue FINode;
1099   if (IsVarArg && NumBytes) {
1100     // For non-fixed arguments, next emit stores to store the argument values
1101     // to the stack buffer at the offsets computed above.
1102     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
1103                                                  Layout.getStackAlignment(),
1104                                                  /*isSS=*/false);
1105     unsigned ValNo = 0;
1106     SmallVector<SDValue, 8> Chains;
1107     for (SDValue Arg : drop_begin(OutVals, NumFixedArgs)) {
1108       assert(ArgLocs[ValNo].getValNo() == ValNo &&
1109              "ArgLocs should remain in order and only hold varargs args");
1110       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
1111       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
1112       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
1113                                 DAG.getConstant(Offset, DL, PtrVT));
1114       Chains.push_back(
1115           DAG.getStore(Chain, DL, Arg, Add,
1116                        MachinePointerInfo::getFixedStack(MF, FI, Offset)));
1117     }
1118     if (!Chains.empty())
1119       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
1120   } else if (IsVarArg) {
1121     FINode = DAG.getIntPtrConstant(0, DL);
1122   }
1123 
1124   if (Callee->getOpcode() == ISD::GlobalAddress) {
1125     // If the callee is a GlobalAddress node (quite common, every direct call
1126     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
1127     // doesn't at MO_GOT which is not needed for direct calls.
1128     GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
1129     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
1130                                         getPointerTy(DAG.getDataLayout()),
1131                                         GA->getOffset());
1132     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
1133                          getPointerTy(DAG.getDataLayout()), Callee);
1134   }
1135 
1136   // Compute the operands for the CALLn node.
1137   SmallVector<SDValue, 16> Ops;
1138   Ops.push_back(Chain);
1139   Ops.push_back(Callee);
1140 
1141   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
1142   // isn't reliable.
1143   Ops.append(OutVals.begin(),
1144              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
1145   // Add a pointer to the vararg buffer.
1146   if (IsVarArg)
1147     Ops.push_back(FINode);
1148 
1149   SmallVector<EVT, 8> InTys;
1150   for (const auto &In : Ins) {
1151     assert(!In.Flags.isByVal() && "byval is not valid for return values");
1152     assert(!In.Flags.isNest() && "nest is not valid for return values");
1153     if (In.Flags.isInAlloca())
1154       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
1155     if (In.Flags.isInConsecutiveRegs())
1156       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
1157     if (In.Flags.isInConsecutiveRegsLast())
1158       fail(DL, DAG,
1159            "WebAssembly hasn't implemented cons regs last return values");
1160     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1161     // registers.
1162     InTys.push_back(In.VT);
1163   }
1164 
1165   // Lastly, if this is a call to a funcref we need to add an instruction
1166   // table.set to the chain and transform the call.
1167   if (CLI.CB &&
1168       WebAssembly::isFuncrefType(CLI.CB->getCalledOperand()->getType())) {
1169     // In the absence of function references proposal where a funcref call is
1170     // lowered to call_ref, using reference types we generate a table.set to set
1171     // the funcref to a special table used solely for this purpose, followed by
1172     // a call_indirect. Here we just generate the table set, and return the
1173     // SDValue of the table.set so that LowerCall can finalize the lowering by
1174     // generating the call_indirect.
1175     SDValue Chain = Ops[0];
1176 
1177     MCSymbolWasm *Table = WebAssembly::getOrCreateFuncrefCallTableSymbol(
1178         MF.getContext(), Subtarget);
1179     SDValue Sym = DAG.getMCSymbol(Table, PtrVT);
1180     SDValue TableSlot = DAG.getConstant(0, DL, MVT::i32);
1181     SDValue TableSetOps[] = {Chain, Sym, TableSlot, Callee};
1182     SDValue TableSet = DAG.getMemIntrinsicNode(
1183         WebAssemblyISD::TABLE_SET, DL, DAG.getVTList(MVT::Other), TableSetOps,
1184         MVT::funcref,
1185         // Machine Mem Operand args
1186         MachinePointerInfo(
1187             WebAssembly::WasmAddressSpace::WASM_ADDRESS_SPACE_FUNCREF),
1188         CLI.CB->getCalledOperand()->getPointerAlignment(DAG.getDataLayout()),
1189         MachineMemOperand::MOStore);
1190 
1191     Ops[0] = TableSet; // The new chain is the TableSet itself
1192   }
1193 
1194   if (CLI.IsTailCall) {
1195     // ret_calls do not return values to the current frame
1196     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1197     return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
1198   }
1199 
1200   InTys.push_back(MVT::Other);
1201   SDVTList InTyList = DAG.getVTList(InTys);
1202   SDValue Res = DAG.getNode(WebAssemblyISD::CALL, DL, InTyList, Ops);
1203 
1204   for (size_t I = 0; I < Ins.size(); ++I)
1205     InVals.push_back(Res.getValue(I));
1206 
1207   // Return the chain
1208   return Res.getValue(Ins.size());
1209 }
1210 
CanLowerReturn(CallingConv::ID,MachineFunction &,bool,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext &) const1211 bool WebAssemblyTargetLowering::CanLowerReturn(
1212     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
1213     const SmallVectorImpl<ISD::OutputArg> &Outs,
1214     LLVMContext & /*Context*/) const {
1215   // WebAssembly can only handle returning tuples with multivalue enabled
1216   return Subtarget->hasMultivalue() || Outs.size() <= 1;
1217 }
1218 
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const1219 SDValue WebAssemblyTargetLowering::LowerReturn(
1220     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
1221     const SmallVectorImpl<ISD::OutputArg> &Outs,
1222     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
1223     SelectionDAG &DAG) const {
1224   assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
1225          "MVP WebAssembly can only return up to one value");
1226   if (!callingConvSupported(CallConv))
1227     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1228 
1229   SmallVector<SDValue, 4> RetOps(1, Chain);
1230   RetOps.append(OutVals.begin(), OutVals.end());
1231   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
1232 
1233   // Record the number and types of the return values.
1234   for (const ISD::OutputArg &Out : Outs) {
1235     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
1236     assert(!Out.Flags.isNest() && "nest is not valid for return values");
1237     assert(Out.IsFixed && "non-fixed return value is not valid");
1238     if (Out.Flags.isInAlloca())
1239       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
1240     if (Out.Flags.isInConsecutiveRegs())
1241       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
1242     if (Out.Flags.isInConsecutiveRegsLast())
1243       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
1244   }
1245 
1246   return Chain;
1247 }
1248 
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool IsVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1249 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1250     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1251     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1252     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1253   if (!callingConvSupported(CallConv))
1254     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
1255 
1256   MachineFunction &MF = DAG.getMachineFunction();
1257   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
1258 
1259   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
1260   // of the incoming values before they're represented by virtual registers.
1261   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
1262 
1263   bool HasSwiftErrorArg = false;
1264   bool HasSwiftSelfArg = false;
1265   for (const ISD::InputArg &In : Ins) {
1266     HasSwiftSelfArg |= In.Flags.isSwiftSelf();
1267     HasSwiftErrorArg |= In.Flags.isSwiftError();
1268     if (In.Flags.isInAlloca())
1269       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
1270     if (In.Flags.isNest())
1271       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
1272     if (In.Flags.isInConsecutiveRegs())
1273       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
1274     if (In.Flags.isInConsecutiveRegsLast())
1275       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
1276     // Ignore In.getNonZeroOrigAlign() because all our arguments are passed in
1277     // registers.
1278     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
1279                                            DAG.getTargetConstant(InVals.size(),
1280                                                                  DL, MVT::i32))
1281                              : DAG.getUNDEF(In.VT));
1282 
1283     // Record the number and types of arguments.
1284     MFI->addParam(In.VT);
1285   }
1286 
1287   // For swiftcc, emit additional swiftself and swifterror arguments
1288   // if there aren't. These additional arguments are also added for callee
1289   // signature They are necessary to match callee and caller signature for
1290   // indirect call.
1291   auto PtrVT = getPointerTy(MF.getDataLayout());
1292   if (CallConv == CallingConv::Swift) {
1293     if (!HasSwiftSelfArg) {
1294       MFI->addParam(PtrVT);
1295     }
1296     if (!HasSwiftErrorArg) {
1297       MFI->addParam(PtrVT);
1298     }
1299   }
1300   // Varargs are copied into a buffer allocated by the caller, and a pointer to
1301   // the buffer is passed as an argument.
1302   if (IsVarArg) {
1303     MVT PtrVT = getPointerTy(MF.getDataLayout());
1304     Register VarargVreg =
1305         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
1306     MFI->setVarargBufferVreg(VarargVreg);
1307     Chain = DAG.getCopyToReg(
1308         Chain, DL, VarargVreg,
1309         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
1310                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
1311     MFI->addParam(PtrVT);
1312   }
1313 
1314   // Record the number and types of arguments and results.
1315   SmallVector<MVT, 4> Params;
1316   SmallVector<MVT, 4> Results;
1317   computeSignatureVTs(MF.getFunction().getFunctionType(), &MF.getFunction(),
1318                       MF.getFunction(), DAG.getTarget(), Params, Results);
1319   for (MVT VT : Results)
1320     MFI->addResult(VT);
1321   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
1322   // the param logic here with ComputeSignatureVTs
1323   assert(MFI->getParams().size() == Params.size() &&
1324          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1325                     Params.begin()));
1326 
1327   return Chain;
1328 }
1329 
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const1330 void WebAssemblyTargetLowering::ReplaceNodeResults(
1331     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
1332   switch (N->getOpcode()) {
1333   case ISD::SIGN_EXTEND_INREG:
1334     // Do not add any results, signifying that N should not be custom lowered
1335     // after all. This happens because simd128 turns on custom lowering for
1336     // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
1337     // illegal type.
1338     break;
1339   default:
1340     llvm_unreachable(
1341         "ReplaceNodeResults not implemented for this op for WebAssembly!");
1342   }
1343 }
1344 
1345 //===----------------------------------------------------------------------===//
1346 //  Custom lowering hooks.
1347 //===----------------------------------------------------------------------===//
1348 
LowerOperation(SDValue Op,SelectionDAG & DAG) const1349 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
1350                                                   SelectionDAG &DAG) const {
1351   SDLoc DL(Op);
1352   switch (Op.getOpcode()) {
1353   default:
1354     llvm_unreachable("unimplemented operation lowering");
1355     return SDValue();
1356   case ISD::FrameIndex:
1357     return LowerFrameIndex(Op, DAG);
1358   case ISD::GlobalAddress:
1359     return LowerGlobalAddress(Op, DAG);
1360   case ISD::GlobalTLSAddress:
1361     return LowerGlobalTLSAddress(Op, DAG);
1362   case ISD::ExternalSymbol:
1363     return LowerExternalSymbol(Op, DAG);
1364   case ISD::JumpTable:
1365     return LowerJumpTable(Op, DAG);
1366   case ISD::BR_JT:
1367     return LowerBR_JT(Op, DAG);
1368   case ISD::VASTART:
1369     return LowerVASTART(Op, DAG);
1370   case ISD::BlockAddress:
1371   case ISD::BRIND:
1372     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
1373     return SDValue();
1374   case ISD::RETURNADDR:
1375     return LowerRETURNADDR(Op, DAG);
1376   case ISD::FRAMEADDR:
1377     return LowerFRAMEADDR(Op, DAG);
1378   case ISD::CopyToReg:
1379     return LowerCopyToReg(Op, DAG);
1380   case ISD::EXTRACT_VECTOR_ELT:
1381   case ISD::INSERT_VECTOR_ELT:
1382     return LowerAccessVectorElement(Op, DAG);
1383   case ISD::INTRINSIC_VOID:
1384   case ISD::INTRINSIC_WO_CHAIN:
1385   case ISD::INTRINSIC_W_CHAIN:
1386     return LowerIntrinsic(Op, DAG);
1387   case ISD::SIGN_EXTEND_INREG:
1388     return LowerSIGN_EXTEND_INREG(Op, DAG);
1389   case ISD::BUILD_VECTOR:
1390     return LowerBUILD_VECTOR(Op, DAG);
1391   case ISD::VECTOR_SHUFFLE:
1392     return LowerVECTOR_SHUFFLE(Op, DAG);
1393   case ISD::SETCC:
1394     return LowerSETCC(Op, DAG);
1395   case ISD::SHL:
1396   case ISD::SRA:
1397   case ISD::SRL:
1398     return LowerShift(Op, DAG);
1399   case ISD::FP_TO_SINT_SAT:
1400   case ISD::FP_TO_UINT_SAT:
1401     return LowerFP_TO_INT_SAT(Op, DAG);
1402   case ISD::LOAD:
1403     return LowerLoad(Op, DAG);
1404   case ISD::STORE:
1405     return LowerStore(Op, DAG);
1406   }
1407 }
1408 
IsWebAssemblyGlobal(SDValue Op)1409 static bool IsWebAssemblyGlobal(SDValue Op) {
1410   if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op))
1411     return WebAssembly::isWasmVarAddressSpace(GA->getAddressSpace());
1412 
1413   return false;
1414 }
1415 
IsWebAssemblyLocal(SDValue Op,SelectionDAG & DAG)1416 static Optional<unsigned> IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG) {
1417   const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op);
1418   if (!FI)
1419     return None;
1420 
1421   auto &MF = DAG.getMachineFunction();
1422   return WebAssemblyFrameLowering::getLocalForStackObject(MF, FI->getIndex());
1423 }
1424 
LowerStore(SDValue Op,SelectionDAG & DAG) const1425 SDValue WebAssemblyTargetLowering::LowerStore(SDValue Op,
1426                                               SelectionDAG &DAG) const {
1427   SDLoc DL(Op);
1428   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
1429   const SDValue &Value = SN->getValue();
1430   const SDValue &Base = SN->getBasePtr();
1431   const SDValue &Offset = SN->getOffset();
1432 
1433   if (IsWebAssemblyGlobal(Base)) {
1434     if (!Offset->isUndef())
1435       report_fatal_error("unexpected offset when storing to webassembly global",
1436                          false);
1437 
1438     SDVTList Tys = DAG.getVTList(MVT::Other);
1439     SDValue Ops[] = {SN->getChain(), Value, Base};
1440     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_SET, DL, Tys, Ops,
1441                                    SN->getMemoryVT(), SN->getMemOperand());
1442   }
1443 
1444   if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1445     if (!Offset->isUndef())
1446       report_fatal_error("unexpected offset when storing to webassembly local",
1447                          false);
1448 
1449     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1450     SDVTList Tys = DAG.getVTList(MVT::Other); // The chain.
1451     SDValue Ops[] = {SN->getChain(), Idx, Value};
1452     return DAG.getNode(WebAssemblyISD::LOCAL_SET, DL, Tys, Ops);
1453   }
1454 
1455   return Op;
1456 }
1457 
LowerLoad(SDValue Op,SelectionDAG & DAG) const1458 SDValue WebAssemblyTargetLowering::LowerLoad(SDValue Op,
1459                                              SelectionDAG &DAG) const {
1460   SDLoc DL(Op);
1461   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
1462   const SDValue &Base = LN->getBasePtr();
1463   const SDValue &Offset = LN->getOffset();
1464 
1465   if (IsWebAssemblyGlobal(Base)) {
1466     if (!Offset->isUndef())
1467       report_fatal_error(
1468           "unexpected offset when loading from webassembly global", false);
1469 
1470     SDVTList Tys = DAG.getVTList(LN->getValueType(0), MVT::Other);
1471     SDValue Ops[] = {LN->getChain(), Base};
1472     return DAG.getMemIntrinsicNode(WebAssemblyISD::GLOBAL_GET, DL, Tys, Ops,
1473                                    LN->getMemoryVT(), LN->getMemOperand());
1474   }
1475 
1476   if (Optional<unsigned> Local = IsWebAssemblyLocal(Base, DAG)) {
1477     if (!Offset->isUndef())
1478       report_fatal_error(
1479           "unexpected offset when loading from webassembly local", false);
1480 
1481     SDValue Idx = DAG.getTargetConstant(*Local, Base, MVT::i32);
1482     EVT LocalVT = LN->getValueType(0);
1483     SDValue LocalGet = DAG.getNode(WebAssemblyISD::LOCAL_GET, DL, LocalVT,
1484                                    {LN->getChain(), Idx});
1485     SDValue Result = DAG.getMergeValues({LocalGet, LN->getChain()}, DL);
1486     assert(Result->getNumValues() == 2 && "Loads must carry a chain!");
1487     return Result;
1488   }
1489 
1490   return Op;
1491 }
1492 
LowerCopyToReg(SDValue Op,SelectionDAG & DAG) const1493 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1494                                                   SelectionDAG &DAG) const {
1495   SDValue Src = Op.getOperand(2);
1496   if (isa<FrameIndexSDNode>(Src.getNode())) {
1497     // CopyToReg nodes don't support FrameIndex operands. Other targets select
1498     // the FI to some LEA-like instruction, but since we don't have that, we
1499     // need to insert some kind of instruction that can take an FI operand and
1500     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1501     // local.copy between Op and its FI operand.
1502     SDValue Chain = Op.getOperand(0);
1503     SDLoc DL(Op);
1504     unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1505     EVT VT = Src.getValueType();
1506     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1507                                                    : WebAssembly::COPY_I64,
1508                                     DL, VT, Src),
1509                  0);
1510     return Op.getNode()->getNumValues() == 1
1511                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1512                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1513                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
1514                                                            : SDValue());
1515   }
1516   return SDValue();
1517 }
1518 
LowerFrameIndex(SDValue Op,SelectionDAG & DAG) const1519 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1520                                                    SelectionDAG &DAG) const {
1521   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1522   return DAG.getTargetFrameIndex(FI, Op.getValueType());
1523 }
1524 
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const1525 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1526                                                    SelectionDAG &DAG) const {
1527   SDLoc DL(Op);
1528 
1529   if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1530     fail(DL, DAG,
1531          "Non-Emscripten WebAssembly hasn't implemented "
1532          "__builtin_return_address");
1533     return SDValue();
1534   }
1535 
1536   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1537     return SDValue();
1538 
1539   unsigned Depth = Op.getConstantOperandVal(0);
1540   MakeLibCallOptions CallOptions;
1541   return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1542                      {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1543       .first;
1544 }
1545 
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const1546 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1547                                                   SelectionDAG &DAG) const {
1548   // Non-zero depths are not supported by WebAssembly currently. Use the
1549   // legalizer's default expansion, which is to return 0 (what this function is
1550   // documented to do).
1551   if (Op.getConstantOperandVal(0) > 0)
1552     return SDValue();
1553 
1554   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1555   EVT VT = Op.getValueType();
1556   Register FP =
1557       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1558   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1559 }
1560 
1561 SDValue
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const1562 WebAssemblyTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1563                                                  SelectionDAG &DAG) const {
1564   SDLoc DL(Op);
1565   const auto *GA = cast<GlobalAddressSDNode>(Op);
1566 
1567   MachineFunction &MF = DAG.getMachineFunction();
1568   if (!MF.getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
1569     report_fatal_error("cannot use thread-local storage without bulk memory",
1570                        false);
1571 
1572   const GlobalValue *GV = GA->getGlobal();
1573 
1574   // Currently Emscripten does not support dynamic linking with threads.
1575   // Therefore, if we have thread-local storage, only the local-exec model
1576   // is possible.
1577   // TODO: remove this and implement proper TLS models once Emscripten
1578   // supports dynamic linking with threads.
1579   if (GV->getThreadLocalMode() != GlobalValue::LocalExecTLSModel &&
1580       !Subtarget->getTargetTriple().isOSEmscripten()) {
1581     report_fatal_error("only -ftls-model=local-exec is supported for now on "
1582                        "non-Emscripten OSes: variable " +
1583                            GV->getName(),
1584                        false);
1585   }
1586 
1587   auto model = GV->getThreadLocalMode();
1588 
1589   // Unsupported TLS modes
1590   assert(model != GlobalValue::NotThreadLocal);
1591   assert(model != GlobalValue::InitialExecTLSModel);
1592 
1593   if (model == GlobalValue::LocalExecTLSModel ||
1594       model == GlobalValue::LocalDynamicTLSModel ||
1595       (model == GlobalValue::GeneralDynamicTLSModel &&
1596        getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV))) {
1597     // For DSO-local TLS variables we use offset from __tls_base
1598 
1599     MVT PtrVT = getPointerTy(DAG.getDataLayout());
1600     auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
1601                                        : WebAssembly::GLOBAL_GET_I32;
1602     const char *BaseName = MF.createExternalSymbolName("__tls_base");
1603 
1604     SDValue BaseAddr(
1605         DAG.getMachineNode(GlobalGet, DL, PtrVT,
1606                            DAG.getTargetExternalSymbol(BaseName, PtrVT)),
1607         0);
1608 
1609     SDValue TLSOffset = DAG.getTargetGlobalAddress(
1610         GV, DL, PtrVT, GA->getOffset(), WebAssemblyII::MO_TLS_BASE_REL);
1611     SDValue SymOffset =
1612         DAG.getNode(WebAssemblyISD::WrapperREL, DL, PtrVT, TLSOffset);
1613 
1614     return DAG.getNode(ISD::ADD, DL, PtrVT, BaseAddr, SymOffset);
1615   }
1616 
1617   assert(model == GlobalValue::GeneralDynamicTLSModel);
1618 
1619   EVT VT = Op.getValueType();
1620   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1621                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1622                                                 GA->getOffset(),
1623                                                 WebAssemblyII::MO_GOT_TLS));
1624 }
1625 
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const1626 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1627                                                       SelectionDAG &DAG) const {
1628   SDLoc DL(Op);
1629   const auto *GA = cast<GlobalAddressSDNode>(Op);
1630   EVT VT = Op.getValueType();
1631   assert(GA->getTargetFlags() == 0 &&
1632          "Unexpected target flags on generic GlobalAddressSDNode");
1633   if (!WebAssembly::isValidAddressSpace(GA->getAddressSpace()))
1634     fail(DL, DAG, "Invalid address space for WebAssembly target");
1635 
1636   unsigned OperandFlags = 0;
1637   if (isPositionIndependent()) {
1638     const GlobalValue *GV = GA->getGlobal();
1639     if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1640       MachineFunction &MF = DAG.getMachineFunction();
1641       MVT PtrVT = getPointerTy(MF.getDataLayout());
1642       const char *BaseName;
1643       if (GV->getValueType()->isFunctionTy()) {
1644         BaseName = MF.createExternalSymbolName("__table_base");
1645         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1646       }
1647       else {
1648         BaseName = MF.createExternalSymbolName("__memory_base");
1649         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1650       }
1651       SDValue BaseAddr =
1652           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1653                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1654 
1655       SDValue SymAddr = DAG.getNode(
1656           WebAssemblyISD::WrapperREL, DL, VT,
1657           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1658                                      OperandFlags));
1659 
1660       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1661     }
1662     OperandFlags = WebAssemblyII::MO_GOT;
1663   }
1664 
1665   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1666                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1667                                                 GA->getOffset(), OperandFlags));
1668 }
1669 
1670 SDValue
LowerExternalSymbol(SDValue Op,SelectionDAG & DAG) const1671 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1672                                                SelectionDAG &DAG) const {
1673   SDLoc DL(Op);
1674   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1675   EVT VT = Op.getValueType();
1676   assert(ES->getTargetFlags() == 0 &&
1677          "Unexpected target flags on generic ExternalSymbolSDNode");
1678   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1679                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1680 }
1681 
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const1682 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1683                                                   SelectionDAG &DAG) const {
1684   // There's no need for a Wrapper node because we always incorporate a jump
1685   // table operand into a BR_TABLE instruction, rather than ever
1686   // materializing it in a register.
1687   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1688   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1689                                 JT->getTargetFlags());
1690 }
1691 
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const1692 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1693                                               SelectionDAG &DAG) const {
1694   SDLoc DL(Op);
1695   SDValue Chain = Op.getOperand(0);
1696   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1697   SDValue Index = Op.getOperand(2);
1698   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1699 
1700   SmallVector<SDValue, 8> Ops;
1701   Ops.push_back(Chain);
1702   Ops.push_back(Index);
1703 
1704   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1705   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1706 
1707   // Add an operand for each case.
1708   for (auto MBB : MBBs)
1709     Ops.push_back(DAG.getBasicBlock(MBB));
1710 
1711   // Add the first MBB as a dummy default target for now. This will be replaced
1712   // with the proper default target (and the preceding range check eliminated)
1713   // if possible by WebAssemblyFixBrTableDefaults.
1714   Ops.push_back(DAG.getBasicBlock(*MBBs.begin()));
1715   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1716 }
1717 
LowerVASTART(SDValue Op,SelectionDAG & DAG) const1718 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1719                                                 SelectionDAG &DAG) const {
1720   SDLoc DL(Op);
1721   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1722 
1723   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1724   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1725 
1726   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1727                                     MFI->getVarargBufferVreg(), PtrVT);
1728   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1729                       MachinePointerInfo(SV));
1730 }
1731 
LowerIntrinsic(SDValue Op,SelectionDAG & DAG) const1732 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1733                                                   SelectionDAG &DAG) const {
1734   MachineFunction &MF = DAG.getMachineFunction();
1735   unsigned IntNo;
1736   switch (Op.getOpcode()) {
1737   case ISD::INTRINSIC_VOID:
1738   case ISD::INTRINSIC_W_CHAIN:
1739     IntNo = Op.getConstantOperandVal(1);
1740     break;
1741   case ISD::INTRINSIC_WO_CHAIN:
1742     IntNo = Op.getConstantOperandVal(0);
1743     break;
1744   default:
1745     llvm_unreachable("Invalid intrinsic");
1746   }
1747   SDLoc DL(Op);
1748 
1749   switch (IntNo) {
1750   default:
1751     return SDValue(); // Don't custom lower most intrinsics.
1752 
1753   case Intrinsic::wasm_lsda: {
1754     EVT VT = Op.getValueType();
1755     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1756     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1757     auto &Context = MF.getMMI().getContext();
1758     MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
1759                                             Twine(MF.getFunctionNumber()));
1760     return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1761                        DAG.getMCSymbol(S, PtrVT));
1762   }
1763 
1764   case Intrinsic::wasm_shuffle: {
1765     // Drop in-chain and replace undefs, but otherwise pass through unchanged
1766     SDValue Ops[18];
1767     size_t OpIdx = 0;
1768     Ops[OpIdx++] = Op.getOperand(1);
1769     Ops[OpIdx++] = Op.getOperand(2);
1770     while (OpIdx < 18) {
1771       const SDValue &MaskIdx = Op.getOperand(OpIdx + 1);
1772       if (MaskIdx.isUndef() ||
1773           cast<ConstantSDNode>(MaskIdx.getNode())->getZExtValue() >= 32) {
1774         Ops[OpIdx++] = DAG.getConstant(0, DL, MVT::i32);
1775       } else {
1776         Ops[OpIdx++] = MaskIdx;
1777       }
1778     }
1779     return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1780   }
1781   }
1782 }
1783 
1784 SDValue
LowerSIGN_EXTEND_INREG(SDValue Op,SelectionDAG & DAG) const1785 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1786                                                   SelectionDAG &DAG) const {
1787   SDLoc DL(Op);
1788   // If sign extension operations are disabled, allow sext_inreg only if operand
1789   // is a vector extract of an i8 or i16 lane. SIMD does not depend on sign
1790   // extension operations, but allowing sext_inreg in this context lets us have
1791   // simple patterns to select extract_lane_s instructions. Expanding sext_inreg
1792   // everywhere would be simpler in this file, but would necessitate large and
1793   // brittle patterns to undo the expansion and select extract_lane_s
1794   // instructions.
1795   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1796   if (Op.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1797     return SDValue();
1798 
1799   const SDValue &Extract = Op.getOperand(0);
1800   MVT VecT = Extract.getOperand(0).getSimpleValueType();
1801   if (VecT.getVectorElementType().getSizeInBits() > 32)
1802     return SDValue();
1803   MVT ExtractedLaneT =
1804       cast<VTSDNode>(Op.getOperand(1).getNode())->getVT().getSimpleVT();
1805   MVT ExtractedVecT =
1806       MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1807   if (ExtractedVecT == VecT)
1808     return Op;
1809 
1810   // Bitcast vector to appropriate type to ensure ISel pattern coverage
1811   const SDNode *Index = Extract.getOperand(1).getNode();
1812   if (!isa<ConstantSDNode>(Index))
1813     return SDValue();
1814   unsigned IndexVal = cast<ConstantSDNode>(Index)->getZExtValue();
1815   unsigned Scale =
1816       ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1817   assert(Scale > 1);
1818   SDValue NewIndex =
1819       DAG.getConstant(IndexVal * Scale, DL, Index->getValueType(0));
1820   SDValue NewExtract = DAG.getNode(
1821       ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1822       DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1823   return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), NewExtract,
1824                      Op.getOperand(1));
1825 }
1826 
LowerConvertLow(SDValue Op,SelectionDAG & DAG)1827 static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG) {
1828   SDLoc DL(Op);
1829   if (Op.getValueType() != MVT::v2f64)
1830     return SDValue();
1831 
1832   auto GetConvertedLane = [](SDValue Op, unsigned &Opcode, SDValue &SrcVec,
1833                              unsigned &Index) -> bool {
1834     switch (Op.getOpcode()) {
1835     case ISD::SINT_TO_FP:
1836       Opcode = WebAssemblyISD::CONVERT_LOW_S;
1837       break;
1838     case ISD::UINT_TO_FP:
1839       Opcode = WebAssemblyISD::CONVERT_LOW_U;
1840       break;
1841     case ISD::FP_EXTEND:
1842       Opcode = WebAssemblyISD::PROMOTE_LOW;
1843       break;
1844     default:
1845       return false;
1846     }
1847 
1848     auto ExtractVector = Op.getOperand(0);
1849     if (ExtractVector.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1850       return false;
1851 
1852     if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode()))
1853       return false;
1854 
1855     SrcVec = ExtractVector.getOperand(0);
1856     Index = ExtractVector.getConstantOperandVal(1);
1857     return true;
1858   };
1859 
1860   unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex;
1861   SDValue LHSSrcVec, RHSSrcVec;
1862   if (!GetConvertedLane(Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) ||
1863       !GetConvertedLane(Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex))
1864     return SDValue();
1865 
1866   if (LHSOpcode != RHSOpcode)
1867     return SDValue();
1868 
1869   MVT ExpectedSrcVT;
1870   switch (LHSOpcode) {
1871   case WebAssemblyISD::CONVERT_LOW_S:
1872   case WebAssemblyISD::CONVERT_LOW_U:
1873     ExpectedSrcVT = MVT::v4i32;
1874     break;
1875   case WebAssemblyISD::PROMOTE_LOW:
1876     ExpectedSrcVT = MVT::v4f32;
1877     break;
1878   }
1879   if (LHSSrcVec.getValueType() != ExpectedSrcVT)
1880     return SDValue();
1881 
1882   auto Src = LHSSrcVec;
1883   if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) {
1884     // Shuffle the source vector so that the converted lanes are the low lanes.
1885     Src = DAG.getVectorShuffle(
1886         ExpectedSrcVT, DL, LHSSrcVec, RHSSrcVec,
1887         {static_cast<int>(LHSIndex), static_cast<int>(RHSIndex) + 4, -1, -1});
1888   }
1889   return DAG.getNode(LHSOpcode, DL, MVT::v2f64, Src);
1890 }
1891 
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const1892 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1893                                                      SelectionDAG &DAG) const {
1894   if (auto ConvertLow = LowerConvertLow(Op, DAG))
1895     return ConvertLow;
1896 
1897   SDLoc DL(Op);
1898   const EVT VecT = Op.getValueType();
1899   const EVT LaneT = Op.getOperand(0).getValueType();
1900   const size_t Lanes = Op.getNumOperands();
1901   bool CanSwizzle = VecT == MVT::v16i8;
1902 
1903   // BUILD_VECTORs are lowered to the instruction that initializes the highest
1904   // possible number of lanes at once followed by a sequence of replace_lane
1905   // instructions to individually initialize any remaining lanes.
1906 
1907   // TODO: Tune this. For example, lanewise swizzling is very expensive, so
1908   // swizzled lanes should be given greater weight.
1909 
1910   // TODO: Investigate looping rather than always extracting/replacing specific
1911   // lanes to fill gaps.
1912 
1913   auto IsConstant = [](const SDValue &V) {
1914     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1915   };
1916 
1917   // Returns the source vector and index vector pair if they exist. Checks for:
1918   //   (extract_vector_elt
1919   //     $src,
1920   //     (sign_extend_inreg (extract_vector_elt $indices, $i))
1921   //   )
1922   auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
1923     auto Bail = std::make_pair(SDValue(), SDValue());
1924     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1925       return Bail;
1926     const SDValue &SwizzleSrc = Lane->getOperand(0);
1927     const SDValue &IndexExt = Lane->getOperand(1);
1928     if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
1929       return Bail;
1930     const SDValue &Index = IndexExt->getOperand(0);
1931     if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1932       return Bail;
1933     const SDValue &SwizzleIndices = Index->getOperand(0);
1934     if (SwizzleSrc.getValueType() != MVT::v16i8 ||
1935         SwizzleIndices.getValueType() != MVT::v16i8 ||
1936         Index->getOperand(1)->getOpcode() != ISD::Constant ||
1937         Index->getConstantOperandVal(1) != I)
1938       return Bail;
1939     return std::make_pair(SwizzleSrc, SwizzleIndices);
1940   };
1941 
1942   // If the lane is extracted from another vector at a constant index, return
1943   // that vector. The source vector must not have more lanes than the dest
1944   // because the shufflevector indices are in terms of the destination lanes and
1945   // would not be able to address the smaller individual source lanes.
1946   auto GetShuffleSrc = [&](const SDValue &Lane) {
1947     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1948       return SDValue();
1949     if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode()))
1950       return SDValue();
1951     if (Lane->getOperand(0).getValueType().getVectorNumElements() >
1952         VecT.getVectorNumElements())
1953       return SDValue();
1954     return Lane->getOperand(0);
1955   };
1956 
1957   using ValueEntry = std::pair<SDValue, size_t>;
1958   SmallVector<ValueEntry, 16> SplatValueCounts;
1959 
1960   using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
1961   SmallVector<SwizzleEntry, 16> SwizzleCounts;
1962 
1963   using ShuffleEntry = std::pair<SDValue, size_t>;
1964   SmallVector<ShuffleEntry, 16> ShuffleCounts;
1965 
1966   auto AddCount = [](auto &Counts, const auto &Val) {
1967     auto CountIt =
1968         llvm::find_if(Counts, [&Val](auto E) { return E.first == Val; });
1969     if (CountIt == Counts.end()) {
1970       Counts.emplace_back(Val, 1);
1971     } else {
1972       CountIt->second++;
1973     }
1974   };
1975 
1976   auto GetMostCommon = [](auto &Counts) {
1977     auto CommonIt =
1978         std::max_element(Counts.begin(), Counts.end(),
1979                          [](auto A, auto B) { return A.second < B.second; });
1980     assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
1981     return *CommonIt;
1982   };
1983 
1984   size_t NumConstantLanes = 0;
1985 
1986   // Count eligible lanes for each type of vector creation op
1987   for (size_t I = 0; I < Lanes; ++I) {
1988     const SDValue &Lane = Op->getOperand(I);
1989     if (Lane.isUndef())
1990       continue;
1991 
1992     AddCount(SplatValueCounts, Lane);
1993 
1994     if (IsConstant(Lane))
1995       NumConstantLanes++;
1996     if (auto ShuffleSrc = GetShuffleSrc(Lane))
1997       AddCount(ShuffleCounts, ShuffleSrc);
1998     if (CanSwizzle) {
1999       auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
2000       if (SwizzleSrcs.first)
2001         AddCount(SwizzleCounts, SwizzleSrcs);
2002     }
2003   }
2004 
2005   SDValue SplatValue;
2006   size_t NumSplatLanes;
2007   std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
2008 
2009   SDValue SwizzleSrc;
2010   SDValue SwizzleIndices;
2011   size_t NumSwizzleLanes = 0;
2012   if (SwizzleCounts.size())
2013     std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
2014                           NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
2015 
2016   // Shuffles can draw from up to two vectors, so find the two most common
2017   // sources.
2018   SDValue ShuffleSrc1, ShuffleSrc2;
2019   size_t NumShuffleLanes = 0;
2020   if (ShuffleCounts.size()) {
2021     std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts);
2022     ShuffleCounts.erase(std::remove_if(ShuffleCounts.begin(),
2023                                        ShuffleCounts.end(),
2024                                        [&](const auto &Pair) {
2025                                          return Pair.first == ShuffleSrc1;
2026                                        }),
2027                         ShuffleCounts.end());
2028   }
2029   if (ShuffleCounts.size()) {
2030     size_t AdditionalShuffleLanes;
2031     std::tie(ShuffleSrc2, AdditionalShuffleLanes) =
2032         GetMostCommon(ShuffleCounts);
2033     NumShuffleLanes += AdditionalShuffleLanes;
2034   }
2035 
2036   // Predicate returning true if the lane is properly initialized by the
2037   // original instruction
2038   std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
2039   SDValue Result;
2040   // Prefer swizzles over shuffles over vector consts over splats
2041   if (NumSwizzleLanes >= NumShuffleLanes &&
2042       NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) {
2043     Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
2044                          SwizzleIndices);
2045     auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
2046     IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
2047       return Swizzled == GetSwizzleSrcs(I, Lane);
2048     };
2049   } else if (NumShuffleLanes >= NumConstantLanes &&
2050              NumShuffleLanes >= NumSplatLanes) {
2051     size_t DestLaneSize = VecT.getVectorElementType().getFixedSizeInBits() / 8;
2052     size_t DestLaneCount = VecT.getVectorNumElements();
2053     size_t Scale1 = 1;
2054     size_t Scale2 = 1;
2055     SDValue Src1 = ShuffleSrc1;
2056     SDValue Src2 = ShuffleSrc2 ? ShuffleSrc2 : DAG.getUNDEF(VecT);
2057     if (Src1.getValueType() != VecT) {
2058       size_t LaneSize =
2059           Src1.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
2060       assert(LaneSize > DestLaneSize);
2061       Scale1 = LaneSize / DestLaneSize;
2062       Src1 = DAG.getBitcast(VecT, Src1);
2063     }
2064     if (Src2.getValueType() != VecT) {
2065       size_t LaneSize =
2066           Src2.getValueType().getVectorElementType().getFixedSizeInBits() / 8;
2067       assert(LaneSize > DestLaneSize);
2068       Scale2 = LaneSize / DestLaneSize;
2069       Src2 = DAG.getBitcast(VecT, Src2);
2070     }
2071 
2072     int Mask[16];
2073     assert(DestLaneCount <= 16);
2074     for (size_t I = 0; I < DestLaneCount; ++I) {
2075       const SDValue &Lane = Op->getOperand(I);
2076       SDValue Src = GetShuffleSrc(Lane);
2077       if (Src == ShuffleSrc1) {
2078         Mask[I] = Lane->getConstantOperandVal(1) * Scale1;
2079       } else if (Src && Src == ShuffleSrc2) {
2080         Mask[I] = DestLaneCount + Lane->getConstantOperandVal(1) * Scale2;
2081       } else {
2082         Mask[I] = -1;
2083       }
2084     }
2085     ArrayRef<int> MaskRef(Mask, DestLaneCount);
2086     Result = DAG.getVectorShuffle(VecT, DL, Src1, Src2, MaskRef);
2087     IsLaneConstructed = [&](size_t, const SDValue &Lane) {
2088       auto Src = GetShuffleSrc(Lane);
2089       return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2);
2090     };
2091   } else if (NumConstantLanes >= NumSplatLanes) {
2092     SmallVector<SDValue, 16> ConstLanes;
2093     for (const SDValue &Lane : Op->op_values()) {
2094       if (IsConstant(Lane)) {
2095         // Values may need to be fixed so that they will sign extend to be
2096         // within the expected range during ISel. Check whether the value is in
2097         // bounds based on the lane bit width and if it is out of bounds, lop
2098         // off the extra bits and subtract 2^n to reflect giving the high bit
2099         // value -2^(n-1) rather than +2^(n-1). Skip the i64 case because it
2100         // cannot possibly be out of range.
2101         auto *Const = dyn_cast<ConstantSDNode>(Lane.getNode());
2102         int64_t Val = Const ? Const->getSExtValue() : 0;
2103         uint64_t LaneBits = 128 / Lanes;
2104         assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) &&
2105                "Unexpected out of bounds negative value");
2106         if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) {
2107           auto NewVal = ((uint64_t)Val % (1ll << LaneBits)) - (1ll << LaneBits);
2108           ConstLanes.push_back(DAG.getConstant(NewVal, SDLoc(Lane), LaneT));
2109         } else {
2110           ConstLanes.push_back(Lane);
2111         }
2112       } else if (LaneT.isFloatingPoint()) {
2113         ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
2114       } else {
2115         ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
2116       }
2117     }
2118     Result = DAG.getBuildVector(VecT, DL, ConstLanes);
2119     IsLaneConstructed = [&IsConstant](size_t _, const SDValue &Lane) {
2120       return IsConstant(Lane);
2121     };
2122   } else {
2123     // Use a splat, but possibly a load_splat
2124     LoadSDNode *SplattedLoad;
2125     if ((SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) &&
2126         SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) {
2127       Result = DAG.getMemIntrinsicNode(
2128           WebAssemblyISD::LOAD_SPLAT, DL, DAG.getVTList(VecT),
2129           {SplattedLoad->getChain(), SplattedLoad->getBasePtr(),
2130            SplattedLoad->getOffset()},
2131           SplattedLoad->getMemoryVT(), SplattedLoad->getMemOperand());
2132     } else {
2133       Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
2134     }
2135     IsLaneConstructed = [&SplatValue](size_t _, const SDValue &Lane) {
2136       return Lane == SplatValue;
2137     };
2138   }
2139 
2140   assert(Result);
2141   assert(IsLaneConstructed);
2142 
2143   // Add replace_lane instructions for any unhandled values
2144   for (size_t I = 0; I < Lanes; ++I) {
2145     const SDValue &Lane = Op->getOperand(I);
2146     if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
2147       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
2148                            DAG.getConstant(I, DL, MVT::i32));
2149   }
2150 
2151   return Result;
2152 }
2153 
2154 SDValue
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const2155 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
2156                                                SelectionDAG &DAG) const {
2157   SDLoc DL(Op);
2158   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
2159   MVT VecType = Op.getOperand(0).getSimpleValueType();
2160   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
2161   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
2162 
2163   // Space for two vector args and sixteen mask indices
2164   SDValue Ops[18];
2165   size_t OpIdx = 0;
2166   Ops[OpIdx++] = Op.getOperand(0);
2167   Ops[OpIdx++] = Op.getOperand(1);
2168 
2169   // Expand mask indices to byte indices and materialize them as operands
2170   for (int M : Mask) {
2171     for (size_t J = 0; J < LaneBytes; ++J) {
2172       // Lower undefs (represented by -1 in mask) to zero
2173       uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
2174       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
2175     }
2176   }
2177 
2178   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
2179 }
2180 
LowerSETCC(SDValue Op,SelectionDAG & DAG) const2181 SDValue WebAssemblyTargetLowering::LowerSETCC(SDValue Op,
2182                                               SelectionDAG &DAG) const {
2183   SDLoc DL(Op);
2184   // The legalizer does not know how to expand the unsupported comparison modes
2185   // of i64x2 vectors, so we manually unroll them here.
2186   assert(Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
2187   SmallVector<SDValue, 2> LHS, RHS;
2188   DAG.ExtractVectorElements(Op->getOperand(0), LHS);
2189   DAG.ExtractVectorElements(Op->getOperand(1), RHS);
2190   const SDValue &CC = Op->getOperand(2);
2191   auto MakeLane = [&](unsigned I) {
2192     return DAG.getNode(ISD::SELECT_CC, DL, MVT::i64, LHS[I], RHS[I],
2193                        DAG.getConstant(uint64_t(-1), DL, MVT::i64),
2194                        DAG.getConstant(uint64_t(0), DL, MVT::i64), CC);
2195   };
2196   return DAG.getBuildVector(Op->getValueType(0), DL,
2197                             {MakeLane(0), MakeLane(1)});
2198 }
2199 
2200 SDValue
LowerAccessVectorElement(SDValue Op,SelectionDAG & DAG) const2201 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
2202                                                     SelectionDAG &DAG) const {
2203   // Allow constant lane indices, expand variable lane indices
2204   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
2205   if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
2206     return Op;
2207   else
2208     // Perform default expansion
2209     return SDValue();
2210 }
2211 
unrollVectorShift(SDValue Op,SelectionDAG & DAG)2212 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
2213   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
2214   // 32-bit and 64-bit unrolled shifts will have proper semantics
2215   if (LaneT.bitsGE(MVT::i32))
2216     return DAG.UnrollVectorOp(Op.getNode());
2217   // Otherwise mask the shift value to get proper semantics from 32-bit shift
2218   SDLoc DL(Op);
2219   size_t NumLanes = Op.getSimpleValueType().getVectorNumElements();
2220   SDValue Mask = DAG.getConstant(LaneT.getSizeInBits() - 1, DL, MVT::i32);
2221   unsigned ShiftOpcode = Op.getOpcode();
2222   SmallVector<SDValue, 16> ShiftedElements;
2223   DAG.ExtractVectorElements(Op.getOperand(0), ShiftedElements, 0, 0, MVT::i32);
2224   SmallVector<SDValue, 16> ShiftElements;
2225   DAG.ExtractVectorElements(Op.getOperand(1), ShiftElements, 0, 0, MVT::i32);
2226   SmallVector<SDValue, 16> UnrolledOps;
2227   for (size_t i = 0; i < NumLanes; ++i) {
2228     SDValue MaskedShiftValue =
2229         DAG.getNode(ISD::AND, DL, MVT::i32, ShiftElements[i], Mask);
2230     SDValue ShiftedValue = ShiftedElements[i];
2231     if (ShiftOpcode == ISD::SRA)
2232       ShiftedValue = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32,
2233                                  ShiftedValue, DAG.getValueType(LaneT));
2234     UnrolledOps.push_back(
2235         DAG.getNode(ShiftOpcode, DL, MVT::i32, ShiftedValue, MaskedShiftValue));
2236   }
2237   return DAG.getBuildVector(Op.getValueType(), DL, UnrolledOps);
2238 }
2239 
LowerShift(SDValue Op,SelectionDAG & DAG) const2240 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
2241                                               SelectionDAG &DAG) const {
2242   SDLoc DL(Op);
2243 
2244   // Only manually lower vector shifts
2245   assert(Op.getSimpleValueType().isVector());
2246 
2247   auto ShiftVal = DAG.getSplatValue(Op.getOperand(1));
2248   if (!ShiftVal)
2249     return unrollVectorShift(Op, DAG);
2250 
2251   // Use anyext because none of the high bits can affect the shift
2252   ShiftVal = DAG.getAnyExtOrTrunc(ShiftVal, DL, MVT::i32);
2253 
2254   unsigned Opcode;
2255   switch (Op.getOpcode()) {
2256   case ISD::SHL:
2257     Opcode = WebAssemblyISD::VEC_SHL;
2258     break;
2259   case ISD::SRA:
2260     Opcode = WebAssemblyISD::VEC_SHR_S;
2261     break;
2262   case ISD::SRL:
2263     Opcode = WebAssemblyISD::VEC_SHR_U;
2264     break;
2265   default:
2266     llvm_unreachable("unexpected opcode");
2267   }
2268 
2269   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), ShiftVal);
2270 }
2271 
LowerFP_TO_INT_SAT(SDValue Op,SelectionDAG & DAG) const2272 SDValue WebAssemblyTargetLowering::LowerFP_TO_INT_SAT(SDValue Op,
2273                                                       SelectionDAG &DAG) const {
2274   SDLoc DL(Op);
2275   EVT ResT = Op.getValueType();
2276   EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2277 
2278   if ((ResT == MVT::i32 || ResT == MVT::i64) &&
2279       (SatVT == MVT::i32 || SatVT == MVT::i64))
2280     return Op;
2281 
2282   if (ResT == MVT::v4i32 && SatVT == MVT::i32)
2283     return Op;
2284 
2285   return SDValue();
2286 }
2287 
2288 //===----------------------------------------------------------------------===//
2289 //   Custom DAG combine hooks
2290 //===----------------------------------------------------------------------===//
2291 static SDValue
performVECTOR_SHUFFLECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)2292 performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2293   auto &DAG = DCI.DAG;
2294   auto Shuffle = cast<ShuffleVectorSDNode>(N);
2295 
2296   // Hoist vector bitcasts that don't change the number of lanes out of unary
2297   // shuffles, where they are less likely to get in the way of other combines.
2298   // (shuffle (vNxT1 (bitcast (vNxT0 x))), undef, mask) ->
2299   //  (vNxT1 (bitcast (vNxT0 (shuffle x, undef, mask))))
2300   SDValue Bitcast = N->getOperand(0);
2301   if (Bitcast.getOpcode() != ISD::BITCAST)
2302     return SDValue();
2303   if (!N->getOperand(1).isUndef())
2304     return SDValue();
2305   SDValue CastOp = Bitcast.getOperand(0);
2306   MVT SrcType = CastOp.getSimpleValueType();
2307   MVT DstType = Bitcast.getSimpleValueType();
2308   if (!SrcType.is128BitVector() ||
2309       SrcType.getVectorNumElements() != DstType.getVectorNumElements())
2310     return SDValue();
2311   SDValue NewShuffle = DAG.getVectorShuffle(
2312       SrcType, SDLoc(N), CastOp, DAG.getUNDEF(SrcType), Shuffle->getMask());
2313   return DAG.getBitcast(DstType, NewShuffle);
2314 }
2315 
2316 static SDValue
performVectorExtendCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)2317 performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2318   auto &DAG = DCI.DAG;
2319   assert(N->getOpcode() == ISD::SIGN_EXTEND ||
2320          N->getOpcode() == ISD::ZERO_EXTEND);
2321 
2322   // Combine ({s,z}ext (extract_subvector src, i)) into a widening operation if
2323   // possible before the extract_subvector can be expanded.
2324   auto Extract = N->getOperand(0);
2325   if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
2326     return SDValue();
2327   auto Source = Extract.getOperand(0);
2328   auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
2329   if (IndexNode == nullptr)
2330     return SDValue();
2331   auto Index = IndexNode->getZExtValue();
2332 
2333   // Only v8i8, v4i16, and v2i32 extracts can be widened, and only if the
2334   // extracted subvector is the low or high half of its source.
2335   EVT ResVT = N->getValueType(0);
2336   if (ResVT == MVT::v8i16) {
2337     if (Extract.getValueType() != MVT::v8i8 ||
2338         Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
2339       return SDValue();
2340   } else if (ResVT == MVT::v4i32) {
2341     if (Extract.getValueType() != MVT::v4i16 ||
2342         Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
2343       return SDValue();
2344   } else if (ResVT == MVT::v2i64) {
2345     if (Extract.getValueType() != MVT::v2i32 ||
2346         Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2))
2347       return SDValue();
2348   } else {
2349     return SDValue();
2350   }
2351 
2352   bool IsSext = N->getOpcode() == ISD::SIGN_EXTEND;
2353   bool IsLow = Index == 0;
2354 
2355   unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S
2356                                 : WebAssemblyISD::EXTEND_HIGH_S)
2357                        : (IsLow ? WebAssemblyISD::EXTEND_LOW_U
2358                                 : WebAssemblyISD::EXTEND_HIGH_U);
2359 
2360   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2361 }
2362 
2363 static SDValue
performVectorTruncZeroCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)2364 performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
2365   auto &DAG = DCI.DAG;
2366 
2367   auto GetWasmConversionOp = [](unsigned Op) {
2368     switch (Op) {
2369     case ISD::FP_TO_SINT_SAT:
2370       return WebAssemblyISD::TRUNC_SAT_ZERO_S;
2371     case ISD::FP_TO_UINT_SAT:
2372       return WebAssemblyISD::TRUNC_SAT_ZERO_U;
2373     case ISD::FP_ROUND:
2374       return WebAssemblyISD::DEMOTE_ZERO;
2375     }
2376     llvm_unreachable("unexpected op");
2377   };
2378 
2379   auto IsZeroSplat = [](SDValue SplatVal) {
2380     auto *Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode());
2381     APInt SplatValue, SplatUndef;
2382     unsigned SplatBitSize;
2383     bool HasAnyUndefs;
2384     return Splat &&
2385            Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2386                                   HasAnyUndefs) &&
2387            SplatValue == 0;
2388   };
2389 
2390   if (N->getOpcode() == ISD::CONCAT_VECTORS) {
2391     // Combine this:
2392     //
2393     //   (concat_vectors (v2i32 (fp_to_{s,u}int_sat $x, 32)), (v2i32 (splat 0)))
2394     //
2395     // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2396     //
2397     // Or this:
2398     //
2399     //   (concat_vectors (v2f32 (fp_round (v2f64 $x))), (v2f32 (splat 0)))
2400     //
2401     // into (f32x4.demote_zero_f64x2 $x).
2402     EVT ResVT;
2403     EVT ExpectedConversionType;
2404     auto Conversion = N->getOperand(0);
2405     auto ConversionOp = Conversion.getOpcode();
2406     switch (ConversionOp) {
2407     case ISD::FP_TO_SINT_SAT:
2408     case ISD::FP_TO_UINT_SAT:
2409       ResVT = MVT::v4i32;
2410       ExpectedConversionType = MVT::v2i32;
2411       break;
2412     case ISD::FP_ROUND:
2413       ResVT = MVT::v4f32;
2414       ExpectedConversionType = MVT::v2f32;
2415       break;
2416     default:
2417       return SDValue();
2418     }
2419 
2420     if (N->getValueType(0) != ResVT)
2421       return SDValue();
2422 
2423     if (Conversion.getValueType() != ExpectedConversionType)
2424       return SDValue();
2425 
2426     auto Source = Conversion.getOperand(0);
2427     if (Source.getValueType() != MVT::v2f64)
2428       return SDValue();
2429 
2430     if (!IsZeroSplat(N->getOperand(1)) ||
2431         N->getOperand(1).getValueType() != ExpectedConversionType)
2432       return SDValue();
2433 
2434     unsigned Op = GetWasmConversionOp(ConversionOp);
2435     return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2436   }
2437 
2438   // Combine this:
2439   //
2440   //   (fp_to_{s,u}int_sat (concat_vectors $x, (v2f64 (splat 0))), 32)
2441   //
2442   // into (i32x4.trunc_sat_f64x2_zero_{s,u} $x).
2443   //
2444   // Or this:
2445   //
2446   //   (v4f32 (fp_round (concat_vectors $x, (v2f64 (splat 0)))))
2447   //
2448   // into (f32x4.demote_zero_f64x2 $x).
2449   EVT ResVT;
2450   auto ConversionOp = N->getOpcode();
2451   switch (ConversionOp) {
2452   case ISD::FP_TO_SINT_SAT:
2453   case ISD::FP_TO_UINT_SAT:
2454     ResVT = MVT::v4i32;
2455     break;
2456   case ISD::FP_ROUND:
2457     ResVT = MVT::v4f32;
2458     break;
2459   default:
2460     llvm_unreachable("unexpected op");
2461   }
2462 
2463   if (N->getValueType(0) != ResVT)
2464     return SDValue();
2465 
2466   auto Concat = N->getOperand(0);
2467   if (Concat.getValueType() != MVT::v4f64)
2468     return SDValue();
2469 
2470   auto Source = Concat.getOperand(0);
2471   if (Source.getValueType() != MVT::v2f64)
2472     return SDValue();
2473 
2474   if (!IsZeroSplat(Concat.getOperand(1)) ||
2475       Concat.getOperand(1).getValueType() != MVT::v2f64)
2476     return SDValue();
2477 
2478   unsigned Op = GetWasmConversionOp(ConversionOp);
2479   return DAG.getNode(Op, SDLoc(N), ResVT, Source);
2480 }
2481 
2482 SDValue
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const2483 WebAssemblyTargetLowering::PerformDAGCombine(SDNode *N,
2484                                              DAGCombinerInfo &DCI) const {
2485   switch (N->getOpcode()) {
2486   default:
2487     return SDValue();
2488   case ISD::VECTOR_SHUFFLE:
2489     return performVECTOR_SHUFFLECombine(N, DCI);
2490   case ISD::SIGN_EXTEND:
2491   case ISD::ZERO_EXTEND:
2492     return performVectorExtendCombine(N, DCI);
2493   case ISD::FP_TO_SINT_SAT:
2494   case ISD::FP_TO_UINT_SAT:
2495   case ISD::FP_ROUND:
2496   case ISD::CONCAT_VECTORS:
2497     return performVectorTruncZeroCombine(N, DCI);
2498   }
2499 }
2500