1 //==- BlockFrequencyInfoImpl.h - Block Frequency Implementation --*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Shared implementation of BlockFrequency for IR and Machine Instructions. 10 // See the documentation below for BlockFrequencyInfoImpl for details. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H 15 #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H 16 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/GraphTraits.h" 21 #include "llvm/ADT/PostOrderIterator.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/SparseBitVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/ValueHandle.h" 29 #include "llvm/Support/BlockFrequency.h" 30 #include "llvm/Support/BranchProbability.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/DOTGraphTraits.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/Format.h" 35 #include "llvm/Support/ScaledNumber.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 #include <cassert> 39 #include <cstddef> 40 #include <cstdint> 41 #include <deque> 42 #include <iterator> 43 #include <limits> 44 #include <list> 45 #include <optional> 46 #include <queue> 47 #include <string> 48 #include <utility> 49 #include <vector> 50 51 #define DEBUG_TYPE "block-freq" 52 53 namespace llvm { 54 extern llvm::cl::opt<bool> CheckBFIUnknownBlockQueries; 55 56 extern llvm::cl::opt<bool> UseIterativeBFIInference; 57 extern llvm::cl::opt<unsigned> IterativeBFIMaxIterationsPerBlock; 58 extern llvm::cl::opt<double> IterativeBFIPrecision; 59 60 class BranchProbabilityInfo; 61 class Function; 62 class Loop; 63 class LoopInfo; 64 class MachineBasicBlock; 65 class MachineBranchProbabilityInfo; 66 class MachineFunction; 67 class MachineLoop; 68 class MachineLoopInfo; 69 70 namespace bfi_detail { 71 72 struct IrreducibleGraph; 73 74 // This is part of a workaround for a GCC 4.7 crash on lambdas. 75 template <class BT> struct BlockEdgesAdder; 76 77 /// Mass of a block. 78 /// 79 /// This class implements a sort of fixed-point fraction always between 0.0 and 80 /// 1.0. getMass() == std::numeric_limits<uint64_t>::max() indicates a value of 81 /// 1.0. 82 /// 83 /// Masses can be added and subtracted. Simple saturation arithmetic is used, 84 /// so arithmetic operations never overflow or underflow. 85 /// 86 /// Masses can be multiplied. Multiplication treats full mass as 1.0 and uses 87 /// an inexpensive floating-point algorithm that's off-by-one (almost, but not 88 /// quite, maximum precision). 89 /// 90 /// Masses can be scaled by \a BranchProbability at maximum precision. 91 class BlockMass { 92 uint64_t Mass = 0; 93 94 public: 95 BlockMass() = default; BlockMass(uint64_t Mass)96 explicit BlockMass(uint64_t Mass) : Mass(Mass) {} 97 getEmpty()98 static BlockMass getEmpty() { return BlockMass(); } 99 getFull()100 static BlockMass getFull() { 101 return BlockMass(std::numeric_limits<uint64_t>::max()); 102 } 103 getMass()104 uint64_t getMass() const { return Mass; } 105 isFull()106 bool isFull() const { return Mass == std::numeric_limits<uint64_t>::max(); } isEmpty()107 bool isEmpty() const { return !Mass; } 108 109 bool operator!() const { return isEmpty(); } 110 111 /// Add another mass. 112 /// 113 /// Adds another mass, saturating at \a isFull() rather than overflowing. 114 BlockMass &operator+=(BlockMass X) { 115 uint64_t Sum = Mass + X.Mass; 116 Mass = Sum < Mass ? std::numeric_limits<uint64_t>::max() : Sum; 117 return *this; 118 } 119 120 /// Subtract another mass. 121 /// 122 /// Subtracts another mass, saturating at \a isEmpty() rather than 123 /// undeflowing. 124 BlockMass &operator-=(BlockMass X) { 125 uint64_t Diff = Mass - X.Mass; 126 Mass = Diff > Mass ? 0 : Diff; 127 return *this; 128 } 129 130 BlockMass &operator*=(BranchProbability P) { 131 Mass = P.scale(Mass); 132 return *this; 133 } 134 135 bool operator==(BlockMass X) const { return Mass == X.Mass; } 136 bool operator!=(BlockMass X) const { return Mass != X.Mass; } 137 bool operator<=(BlockMass X) const { return Mass <= X.Mass; } 138 bool operator>=(BlockMass X) const { return Mass >= X.Mass; } 139 bool operator<(BlockMass X) const { return Mass < X.Mass; } 140 bool operator>(BlockMass X) const { return Mass > X.Mass; } 141 142 /// Convert to scaled number. 143 /// 144 /// Convert to \a ScaledNumber. \a isFull() gives 1.0, while \a isEmpty() 145 /// gives slightly above 0.0. 146 ScaledNumber<uint64_t> toScaled() const; 147 148 void dump() const; 149 raw_ostream &print(raw_ostream &OS) const; 150 }; 151 152 inline BlockMass operator+(BlockMass L, BlockMass R) { 153 return BlockMass(L) += R; 154 } 155 inline BlockMass operator-(BlockMass L, BlockMass R) { 156 return BlockMass(L) -= R; 157 } 158 inline BlockMass operator*(BlockMass L, BranchProbability R) { 159 return BlockMass(L) *= R; 160 } 161 inline BlockMass operator*(BranchProbability L, BlockMass R) { 162 return BlockMass(R) *= L; 163 } 164 165 inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) { 166 return X.print(OS); 167 } 168 169 } // end namespace bfi_detail 170 171 /// Base class for BlockFrequencyInfoImpl 172 /// 173 /// BlockFrequencyInfoImplBase has supporting data structures and some 174 /// algorithms for BlockFrequencyInfoImplBase. Only algorithms that depend on 175 /// the block type (or that call such algorithms) are skipped here. 176 /// 177 /// Nevertheless, the majority of the overall algorithm documentation lives with 178 /// BlockFrequencyInfoImpl. See there for details. 179 class BlockFrequencyInfoImplBase { 180 public: 181 using Scaled64 = ScaledNumber<uint64_t>; 182 using BlockMass = bfi_detail::BlockMass; 183 184 /// Representative of a block. 185 /// 186 /// This is a simple wrapper around an index into the reverse-post-order 187 /// traversal of the blocks. 188 /// 189 /// Unlike a block pointer, its order has meaning (location in the 190 /// topological sort) and it's class is the same regardless of block type. 191 struct BlockNode { 192 using IndexType = uint32_t; 193 194 IndexType Index; 195 BlockNodeBlockNode196 BlockNode() : Index(std::numeric_limits<uint32_t>::max()) {} BlockNodeBlockNode197 BlockNode(IndexType Index) : Index(Index) {} 198 199 bool operator==(const BlockNode &X) const { return Index == X.Index; } 200 bool operator!=(const BlockNode &X) const { return Index != X.Index; } 201 bool operator<=(const BlockNode &X) const { return Index <= X.Index; } 202 bool operator>=(const BlockNode &X) const { return Index >= X.Index; } 203 bool operator<(const BlockNode &X) const { return Index < X.Index; } 204 bool operator>(const BlockNode &X) const { return Index > X.Index; } 205 isValidBlockNode206 bool isValid() const { return Index <= getMaxIndex(); } 207 getMaxIndexBlockNode208 static size_t getMaxIndex() { 209 return std::numeric_limits<uint32_t>::max() - 1; 210 } 211 }; 212 213 /// Stats about a block itself. 214 struct FrequencyData { 215 Scaled64 Scaled; 216 uint64_t Integer; 217 }; 218 219 /// Data about a loop. 220 /// 221 /// Contains the data necessary to represent a loop as a pseudo-node once it's 222 /// packaged. 223 struct LoopData { 224 using ExitMap = SmallVector<std::pair<BlockNode, BlockMass>, 4>; 225 using NodeList = SmallVector<BlockNode, 4>; 226 using HeaderMassList = SmallVector<BlockMass, 1>; 227 228 LoopData *Parent; ///< The parent loop. 229 bool IsPackaged = false; ///< Whether this has been packaged. 230 uint32_t NumHeaders = 1; ///< Number of headers. 231 ExitMap Exits; ///< Successor edges (and weights). 232 NodeList Nodes; ///< Header and the members of the loop. 233 HeaderMassList BackedgeMass; ///< Mass returned to each loop header. 234 BlockMass Mass; 235 Scaled64 Scale; 236 LoopDataLoopData237 LoopData(LoopData *Parent, const BlockNode &Header) 238 : Parent(Parent), Nodes(1, Header), BackedgeMass(1) {} 239 240 template <class It1, class It2> LoopDataLoopData241 LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther, 242 It2 LastOther) 243 : Parent(Parent), Nodes(FirstHeader, LastHeader) { 244 NumHeaders = Nodes.size(); 245 Nodes.insert(Nodes.end(), FirstOther, LastOther); 246 BackedgeMass.resize(NumHeaders); 247 } 248 isHeaderLoopData249 bool isHeader(const BlockNode &Node) const { 250 if (isIrreducible()) 251 return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders, 252 Node); 253 return Node == Nodes[0]; 254 } 255 getHeaderLoopData256 BlockNode getHeader() const { return Nodes[0]; } isIrreducibleLoopData257 bool isIrreducible() const { return NumHeaders > 1; } 258 getHeaderIndexLoopData259 HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) { 260 assert(isHeader(B) && "this is only valid on loop header blocks"); 261 if (isIrreducible()) 262 return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) - 263 Nodes.begin(); 264 return 0; 265 } 266 members_beginLoopData267 NodeList::const_iterator members_begin() const { 268 return Nodes.begin() + NumHeaders; 269 } 270 members_endLoopData271 NodeList::const_iterator members_end() const { return Nodes.end(); } membersLoopData272 iterator_range<NodeList::const_iterator> members() const { 273 return make_range(members_begin(), members_end()); 274 } 275 }; 276 277 /// Index of loop information. 278 struct WorkingData { 279 BlockNode Node; ///< This node. 280 LoopData *Loop = nullptr; ///< The loop this block is inside. 281 BlockMass Mass; ///< Mass distribution from the entry block. 282 WorkingDataWorkingData283 WorkingData(const BlockNode &Node) : Node(Node) {} 284 isLoopHeaderWorkingData285 bool isLoopHeader() const { return Loop && Loop->isHeader(Node); } 286 isDoubleLoopHeaderWorkingData287 bool isDoubleLoopHeader() const { 288 return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() && 289 Loop->Parent->isHeader(Node); 290 } 291 getContainingLoopWorkingData292 LoopData *getContainingLoop() const { 293 if (!isLoopHeader()) 294 return Loop; 295 if (!isDoubleLoopHeader()) 296 return Loop->Parent; 297 return Loop->Parent->Parent; 298 } 299 300 /// Resolve a node to its representative. 301 /// 302 /// Get the node currently representing Node, which could be a containing 303 /// loop. 304 /// 305 /// This function should only be called when distributing mass. As long as 306 /// there are no irreducible edges to Node, then it will have complexity 307 /// O(1) in this context. 308 /// 309 /// In general, the complexity is O(L), where L is the number of loop 310 /// headers Node has been packaged into. Since this method is called in 311 /// the context of distributing mass, L will be the number of loop headers 312 /// an early exit edge jumps out of. getResolvedNodeWorkingData313 BlockNode getResolvedNode() const { 314 auto L = getPackagedLoop(); 315 return L ? L->getHeader() : Node; 316 } 317 getPackagedLoopWorkingData318 LoopData *getPackagedLoop() const { 319 if (!Loop || !Loop->IsPackaged) 320 return nullptr; 321 auto L = Loop; 322 while (L->Parent && L->Parent->IsPackaged) 323 L = L->Parent; 324 return L; 325 } 326 327 /// Get the appropriate mass for a node. 328 /// 329 /// Get appropriate mass for Node. If Node is a loop-header (whose loop 330 /// has been packaged), returns the mass of its pseudo-node. If it's a 331 /// node inside a packaged loop, it returns the loop's mass. getMassWorkingData332 BlockMass &getMass() { 333 if (!isAPackage()) 334 return Mass; 335 if (!isADoublePackage()) 336 return Loop->Mass; 337 return Loop->Parent->Mass; 338 } 339 340 /// Has ContainingLoop been packaged up? isPackagedWorkingData341 bool isPackaged() const { return getResolvedNode() != Node; } 342 343 /// Has Loop been packaged up? isAPackageWorkingData344 bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; } 345 346 /// Has Loop been packaged up twice? isADoublePackageWorkingData347 bool isADoublePackage() const { 348 return isDoubleLoopHeader() && Loop->Parent->IsPackaged; 349 } 350 }; 351 352 /// Unscaled probability weight. 353 /// 354 /// Probability weight for an edge in the graph (including the 355 /// successor/target node). 356 /// 357 /// All edges in the original function are 32-bit. However, exit edges from 358 /// loop packages are taken from 64-bit exit masses, so we need 64-bits of 359 /// space in general. 360 /// 361 /// In addition to the raw weight amount, Weight stores the type of the edge 362 /// in the current context (i.e., the context of the loop being processed). 363 /// Is this a local edge within the loop, an exit from the loop, or a 364 /// backedge to the loop header? 365 struct Weight { 366 enum DistType { Local, Exit, Backedge }; 367 DistType Type = Local; 368 BlockNode TargetNode; 369 uint64_t Amount = 0; 370 371 Weight() = default; WeightWeight372 Weight(DistType Type, BlockNode TargetNode, uint64_t Amount) 373 : Type(Type), TargetNode(TargetNode), Amount(Amount) {} 374 }; 375 376 /// Distribution of unscaled probability weight. 377 /// 378 /// Distribution of unscaled probability weight to a set of successors. 379 /// 380 /// This class collates the successor edge weights for later processing. 381 /// 382 /// \a DidOverflow indicates whether \a Total did overflow while adding to 383 /// the distribution. It should never overflow twice. 384 struct Distribution { 385 using WeightList = SmallVector<Weight, 4>; 386 387 WeightList Weights; ///< Individual successor weights. 388 uint64_t Total = 0; ///< Sum of all weights. 389 bool DidOverflow = false; ///< Whether \a Total did overflow. 390 391 Distribution() = default; 392 addLocalDistribution393 void addLocal(const BlockNode &Node, uint64_t Amount) { 394 add(Node, Amount, Weight::Local); 395 } 396 addExitDistribution397 void addExit(const BlockNode &Node, uint64_t Amount) { 398 add(Node, Amount, Weight::Exit); 399 } 400 addBackedgeDistribution401 void addBackedge(const BlockNode &Node, uint64_t Amount) { 402 add(Node, Amount, Weight::Backedge); 403 } 404 405 /// Normalize the distribution. 406 /// 407 /// Combines multiple edges to the same \a Weight::TargetNode and scales 408 /// down so that \a Total fits into 32-bits. 409 /// 410 /// This is linear in the size of \a Weights. For the vast majority of 411 /// cases, adjacent edge weights are combined by sorting WeightList and 412 /// combining adjacent weights. However, for very large edge lists an 413 /// auxiliary hash table is used. 414 void normalize(); 415 416 private: 417 void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type); 418 }; 419 420 /// Data about each block. This is used downstream. 421 std::vector<FrequencyData> Freqs; 422 423 /// Whether each block is an irreducible loop header. 424 /// This is used downstream. 425 SparseBitVector<> IsIrrLoopHeader; 426 427 /// Loop data: see initializeLoops(). 428 std::vector<WorkingData> Working; 429 430 /// Indexed information about loops. 431 std::list<LoopData> Loops; 432 433 /// Virtual destructor. 434 /// 435 /// Need a virtual destructor to mask the compiler warning about 436 /// getBlockName(). 437 virtual ~BlockFrequencyInfoImplBase() = default; 438 439 /// Add all edges out of a packaged loop to the distribution. 440 /// 441 /// Adds all edges from LocalLoopHead to Dist. Calls addToDist() to add each 442 /// successor edge. 443 /// 444 /// \return \c true unless there's an irreducible backedge. 445 bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop, 446 Distribution &Dist); 447 448 /// Add an edge to the distribution. 449 /// 450 /// Adds an edge to Succ to Dist. If \c LoopHead.isValid(), then whether the 451 /// edge is local/exit/backedge is in the context of LoopHead. Otherwise, 452 /// every edge should be a local edge (since all the loops are packaged up). 453 /// 454 /// \return \c true unless aborted due to an irreducible backedge. 455 bool addToDist(Distribution &Dist, const LoopData *OuterLoop, 456 const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight); 457 458 /// Analyze irreducible SCCs. 459 /// 460 /// Separate irreducible SCCs from \c G, which is an explicit graph of \c 461 /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr). 462 /// Insert them into \a Loops before \c Insert. 463 /// 464 /// \return the \c LoopData nodes representing the irreducible SCCs. 465 iterator_range<std::list<LoopData>::iterator> 466 analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop, 467 std::list<LoopData>::iterator Insert); 468 469 /// Update a loop after packaging irreducible SCCs inside of it. 470 /// 471 /// Update \c OuterLoop. Before finding irreducible control flow, it was 472 /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a 473 /// LoopData::BackedgeMass need to be reset. Also, nodes that were packaged 474 /// up need to be removed from \a OuterLoop::Nodes. 475 void updateLoopWithIrreducible(LoopData &OuterLoop); 476 477 /// Distribute mass according to a distribution. 478 /// 479 /// Distributes the mass in Source according to Dist. If LoopHead.isValid(), 480 /// backedges and exits are stored in its entry in Loops. 481 /// 482 /// Mass is distributed in parallel from two copies of the source mass. 483 void distributeMass(const BlockNode &Source, LoopData *OuterLoop, 484 Distribution &Dist); 485 486 /// Compute the loop scale for a loop. 487 void computeLoopScale(LoopData &Loop); 488 489 /// Adjust the mass of all headers in an irreducible loop. 490 /// 491 /// Initially, irreducible loops are assumed to distribute their mass 492 /// equally among its headers. This can lead to wrong frequency estimates 493 /// since some headers may be executed more frequently than others. 494 /// 495 /// This adjusts header mass distribution so it matches the weights of 496 /// the backedges going into each of the loop headers. 497 void adjustLoopHeaderMass(LoopData &Loop); 498 499 void distributeIrrLoopHeaderMass(Distribution &Dist); 500 501 /// Package up a loop. 502 void packageLoop(LoopData &Loop); 503 504 /// Unwrap loops. 505 void unwrapLoops(); 506 507 /// Finalize frequency metrics. 508 /// 509 /// Calculates final frequencies and cleans up no-longer-needed data 510 /// structures. 511 void finalizeMetrics(); 512 513 /// Clear all memory. 514 void clear(); 515 516 virtual std::string getBlockName(const BlockNode &Node) const; 517 std::string getLoopName(const LoopData &Loop) const; 518 print(raw_ostream & OS)519 virtual raw_ostream &print(raw_ostream &OS) const { return OS; } dump()520 void dump() const { print(dbgs()); } 521 522 Scaled64 getFloatingBlockFreq(const BlockNode &Node) const; 523 524 BlockFrequency getBlockFreq(const BlockNode &Node) const; 525 std::optional<uint64_t> 526 getBlockProfileCount(const Function &F, const BlockNode &Node, 527 bool AllowSynthetic = false) const; 528 std::optional<uint64_t> 529 getProfileCountFromFreq(const Function &F, uint64_t Freq, 530 bool AllowSynthetic = false) const; 531 bool isIrrLoopHeader(const BlockNode &Node); 532 533 void setBlockFreq(const BlockNode &Node, uint64_t Freq); 534 535 raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const; 536 raw_ostream &printBlockFreq(raw_ostream &OS, 537 const BlockFrequency &Freq) const; 538 getEntryFreq()539 uint64_t getEntryFreq() const { 540 assert(!Freqs.empty()); 541 return Freqs[0].Integer; 542 } 543 }; 544 545 namespace bfi_detail { 546 547 template <class BlockT> struct TypeMap {}; 548 template <> struct TypeMap<BasicBlock> { 549 using BlockT = BasicBlock; 550 using BlockKeyT = AssertingVH<const BasicBlock>; 551 using FunctionT = Function; 552 using BranchProbabilityInfoT = BranchProbabilityInfo; 553 using LoopT = Loop; 554 using LoopInfoT = LoopInfo; 555 }; 556 template <> struct TypeMap<MachineBasicBlock> { 557 using BlockT = MachineBasicBlock; 558 using BlockKeyT = const MachineBasicBlock *; 559 using FunctionT = MachineFunction; 560 using BranchProbabilityInfoT = MachineBranchProbabilityInfo; 561 using LoopT = MachineLoop; 562 using LoopInfoT = MachineLoopInfo; 563 }; 564 565 template <class BlockT, class BFIImplT> 566 class BFICallbackVH; 567 568 /// Get the name of a MachineBasicBlock. 569 /// 570 /// Get the name of a MachineBasicBlock. It's templated so that including from 571 /// CodeGen is unnecessary (that would be a layering issue). 572 /// 573 /// This is used mainly for debug output. The name is similar to 574 /// MachineBasicBlock::getFullName(), but skips the name of the function. 575 template <class BlockT> std::string getBlockName(const BlockT *BB) { 576 assert(BB && "Unexpected nullptr"); 577 auto MachineName = "BB" + Twine(BB->getNumber()); 578 if (BB->getBasicBlock()) 579 return (MachineName + "[" + BB->getName() + "]").str(); 580 return MachineName.str(); 581 } 582 /// Get the name of a BasicBlock. 583 template <> inline std::string getBlockName(const BasicBlock *BB) { 584 assert(BB && "Unexpected nullptr"); 585 return BB->getName().str(); 586 } 587 588 /// Graph of irreducible control flow. 589 /// 590 /// This graph is used for determining the SCCs in a loop (or top-level 591 /// function) that has irreducible control flow. 592 /// 593 /// During the block frequency algorithm, the local graphs are defined in a 594 /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock 595 /// graphs for most edges, but getting others from \a LoopData::ExitMap. The 596 /// latter only has successor information. 597 /// 598 /// \a IrreducibleGraph makes this graph explicit. It's in a form that can use 599 /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator), 600 /// and it explicitly lists predecessors and successors. The initialization 601 /// that relies on \c MachineBasicBlock is defined in the header. 602 struct IrreducibleGraph { 603 using BFIBase = BlockFrequencyInfoImplBase; 604 605 BFIBase &BFI; 606 607 using BlockNode = BFIBase::BlockNode; 608 struct IrrNode { 609 BlockNode Node; 610 unsigned NumIn = 0; 611 std::deque<const IrrNode *> Edges; 612 613 IrrNode(const BlockNode &Node) : Node(Node) {} 614 615 using iterator = std::deque<const IrrNode *>::const_iterator; 616 617 iterator pred_begin() const { return Edges.begin(); } 618 iterator succ_begin() const { return Edges.begin() + NumIn; } 619 iterator pred_end() const { return succ_begin(); } 620 iterator succ_end() const { return Edges.end(); } 621 }; 622 BlockNode Start; 623 const IrrNode *StartIrr = nullptr; 624 std::vector<IrrNode> Nodes; 625 SmallDenseMap<uint32_t, IrrNode *, 4> Lookup; 626 627 /// Construct an explicit graph containing irreducible control flow. 628 /// 629 /// Construct an explicit graph of the control flow in \c OuterLoop (or the 630 /// top-level function, if \c OuterLoop is \c nullptr). Uses \c 631 /// addBlockEdges to add block successors that have not been packaged into 632 /// loops. 633 /// 634 /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected 635 /// user of this. 636 template <class BlockEdgesAdder> 637 IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop, 638 BlockEdgesAdder addBlockEdges) : BFI(BFI) { 639 initialize(OuterLoop, addBlockEdges); 640 } 641 642 template <class BlockEdgesAdder> 643 void initialize(const BFIBase::LoopData *OuterLoop, 644 BlockEdgesAdder addBlockEdges); 645 void addNodesInLoop(const BFIBase::LoopData &OuterLoop); 646 void addNodesInFunction(); 647 648 void addNode(const BlockNode &Node) { 649 Nodes.emplace_back(Node); 650 BFI.Working[Node.Index].getMass() = BlockMass::getEmpty(); 651 } 652 653 void indexNodes(); 654 template <class BlockEdgesAdder> 655 void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop, 656 BlockEdgesAdder addBlockEdges); 657 void addEdge(IrrNode &Irr, const BlockNode &Succ, 658 const BFIBase::LoopData *OuterLoop); 659 }; 660 661 template <class BlockEdgesAdder> 662 void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop, 663 BlockEdgesAdder addBlockEdges) { 664 if (OuterLoop) { 665 addNodesInLoop(*OuterLoop); 666 for (auto N : OuterLoop->Nodes) 667 addEdges(N, OuterLoop, addBlockEdges); 668 } else { 669 addNodesInFunction(); 670 for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index) 671 addEdges(Index, OuterLoop, addBlockEdges); 672 } 673 StartIrr = Lookup[Start.Index]; 674 } 675 676 template <class BlockEdgesAdder> 677 void IrreducibleGraph::addEdges(const BlockNode &Node, 678 const BFIBase::LoopData *OuterLoop, 679 BlockEdgesAdder addBlockEdges) { 680 auto L = Lookup.find(Node.Index); 681 if (L == Lookup.end()) 682 return; 683 IrrNode &Irr = *L->second; 684 const auto &Working = BFI.Working[Node.Index]; 685 686 if (Working.isAPackage()) 687 for (const auto &I : Working.Loop->Exits) 688 addEdge(Irr, I.first, OuterLoop); 689 else 690 addBlockEdges(*this, Irr, OuterLoop); 691 } 692 693 } // end namespace bfi_detail 694 695 /// Shared implementation for block frequency analysis. 696 /// 697 /// This is a shared implementation of BlockFrequencyInfo and 698 /// MachineBlockFrequencyInfo, and calculates the relative frequencies of 699 /// blocks. 700 /// 701 /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block, 702 /// which is called the header. A given loop, L, can have sub-loops, which are 703 /// loops within the subgraph of L that exclude its header. (A "trivial" SCC 704 /// consists of a single block that does not have a self-edge.) 705 /// 706 /// In addition to loops, this algorithm has limited support for irreducible 707 /// SCCs, which are SCCs with multiple entry blocks. Irreducible SCCs are 708 /// discovered on the fly, and modelled as loops with multiple headers. 709 /// 710 /// The headers of irreducible sub-SCCs consist of its entry blocks and all 711 /// nodes that are targets of a backedge within it (excluding backedges within 712 /// true sub-loops). Block frequency calculations act as if a block is 713 /// inserted that intercepts all the edges to the headers. All backedges and 714 /// entries point to this block. Its successors are the headers, which split 715 /// the frequency evenly. 716 /// 717 /// This algorithm leverages BlockMass and ScaledNumber to maintain precision, 718 /// separates mass distribution from loop scaling, and dithers to eliminate 719 /// probability mass loss. 720 /// 721 /// The implementation is split between BlockFrequencyInfoImpl, which knows the 722 /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and 723 /// BlockFrequencyInfoImplBase, which doesn't. The base class uses \a 724 /// BlockNode, a wrapper around a uint32_t. BlockNode is numbered from 0 in 725 /// reverse-post order. This gives two advantages: it's easy to compare the 726 /// relative ordering of two nodes, and maps keyed on BlockT can be represented 727 /// by vectors. 728 /// 729 /// This algorithm is O(V+E), unless there is irreducible control flow, in 730 /// which case it's O(V*E) in the worst case. 731 /// 732 /// These are the main stages: 733 /// 734 /// 0. Reverse post-order traversal (\a initializeRPOT()). 735 /// 736 /// Run a single post-order traversal and save it (in reverse) in RPOT. 737 /// All other stages make use of this ordering. Save a lookup from BlockT 738 /// to BlockNode (the index into RPOT) in Nodes. 739 /// 740 /// 1. Loop initialization (\a initializeLoops()). 741 /// 742 /// Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of 743 /// the algorithm. In particular, store the immediate members of each loop 744 /// in reverse post-order. 745 /// 746 /// 2. Calculate mass and scale in loops (\a computeMassInLoops()). 747 /// 748 /// For each loop (bottom-up), distribute mass through the DAG resulting 749 /// from ignoring backedges and treating sub-loops as a single pseudo-node. 750 /// Track the backedge mass distributed to the loop header, and use it to 751 /// calculate the loop scale (number of loop iterations). Immediate 752 /// members that represent sub-loops will already have been visited and 753 /// packaged into a pseudo-node. 754 /// 755 /// Distributing mass in a loop is a reverse-post-order traversal through 756 /// the loop. Start by assigning full mass to the Loop header. For each 757 /// node in the loop: 758 /// 759 /// - Fetch and categorize the weight distribution for its successors. 760 /// If this is a packaged-subloop, the weight distribution is stored 761 /// in \a LoopData::Exits. Otherwise, fetch it from 762 /// BranchProbabilityInfo. 763 /// 764 /// - Each successor is categorized as \a Weight::Local, a local edge 765 /// within the current loop, \a Weight::Backedge, a backedge to the 766 /// loop header, or \a Weight::Exit, any successor outside the loop. 767 /// The weight, the successor, and its category are stored in \a 768 /// Distribution. There can be multiple edges to each successor. 769 /// 770 /// - If there's a backedge to a non-header, there's an irreducible SCC. 771 /// The usual flow is temporarily aborted. \a 772 /// computeIrreducibleMass() finds the irreducible SCCs within the 773 /// loop, packages them up, and restarts the flow. 774 /// 775 /// - Normalize the distribution: scale weights down so that their sum 776 /// is 32-bits, and coalesce multiple edges to the same node. 777 /// 778 /// - Distribute the mass accordingly, dithering to minimize mass loss, 779 /// as described in \a distributeMass(). 780 /// 781 /// In the case of irreducible loops, instead of a single loop header, 782 /// there will be several. The computation of backedge masses is similar 783 /// but instead of having a single backedge mass, there will be one 784 /// backedge per loop header. In these cases, each backedge will carry 785 /// a mass proportional to the edge weights along the corresponding 786 /// path. 787 /// 788 /// At the end of propagation, the full mass assigned to the loop will be 789 /// distributed among the loop headers proportionally according to the 790 /// mass flowing through their backedges. 791 /// 792 /// Finally, calculate the loop scale from the accumulated backedge mass. 793 /// 794 /// 3. Distribute mass in the function (\a computeMassInFunction()). 795 /// 796 /// Finally, distribute mass through the DAG resulting from packaging all 797 /// loops in the function. This uses the same algorithm as distributing 798 /// mass in a loop, except that there are no exit or backedge edges. 799 /// 800 /// 4. Unpackage loops (\a unwrapLoops()). 801 /// 802 /// Initialize each block's frequency to a floating point representation of 803 /// its mass. 804 /// 805 /// Visit loops top-down, scaling the frequencies of its immediate members 806 /// by the loop's pseudo-node's frequency. 807 /// 808 /// 5. Convert frequencies to a 64-bit range (\a finalizeMetrics()). 809 /// 810 /// Using the min and max frequencies as a guide, translate floating point 811 /// frequencies to an appropriate range in uint64_t. 812 /// 813 /// It has some known flaws. 814 /// 815 /// - The model of irreducible control flow is a rough approximation. 816 /// 817 /// Modelling irreducible control flow exactly involves setting up and 818 /// solving a group of infinite geometric series. Such precision is 819 /// unlikely to be worthwhile, since most of our algorithms give up on 820 /// irreducible control flow anyway. 821 /// 822 /// Nevertheless, we might find that we need to get closer. Here's a sort 823 /// of TODO list for the model with diminishing returns, to be completed as 824 /// necessary. 825 /// 826 /// - The headers for the \a LoopData representing an irreducible SCC 827 /// include non-entry blocks. When these extra blocks exist, they 828 /// indicate a self-contained irreducible sub-SCC. We could treat them 829 /// as sub-loops, rather than arbitrarily shoving the problematic 830 /// blocks into the headers of the main irreducible SCC. 831 /// 832 /// - Entry frequencies are assumed to be evenly split between the 833 /// headers of a given irreducible SCC, which is the only option if we 834 /// need to compute mass in the SCC before its parent loop. Instead, 835 /// we could partially compute mass in the parent loop, and stop when 836 /// we get to the SCC. Here, we have the correct ratio of entry 837 /// masses, which we can use to adjust their relative frequencies. 838 /// Compute mass in the SCC, and then continue propagation in the 839 /// parent. 840 /// 841 /// - We can propagate mass iteratively through the SCC, for some fixed 842 /// number of iterations. Each iteration starts by assigning the entry 843 /// blocks their backedge mass from the prior iteration. The final 844 /// mass for each block (and each exit, and the total backedge mass 845 /// used for computing loop scale) is the sum of all iterations. 846 /// (Running this until fixed point would "solve" the geometric 847 /// series by simulation.) 848 template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase { 849 // This is part of a workaround for a GCC 4.7 crash on lambdas. 850 friend struct bfi_detail::BlockEdgesAdder<BT>; 851 852 using BlockT = typename bfi_detail::TypeMap<BT>::BlockT; 853 using BlockKeyT = typename bfi_detail::TypeMap<BT>::BlockKeyT; 854 using FunctionT = typename bfi_detail::TypeMap<BT>::FunctionT; 855 using BranchProbabilityInfoT = 856 typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT; 857 using LoopT = typename bfi_detail::TypeMap<BT>::LoopT; 858 using LoopInfoT = typename bfi_detail::TypeMap<BT>::LoopInfoT; 859 using Successor = GraphTraits<const BlockT *>; 860 using Predecessor = GraphTraits<Inverse<const BlockT *>>; 861 using BFICallbackVH = 862 bfi_detail::BFICallbackVH<BlockT, BlockFrequencyInfoImpl>; 863 864 const BranchProbabilityInfoT *BPI = nullptr; 865 const LoopInfoT *LI = nullptr; 866 const FunctionT *F = nullptr; 867 868 // All blocks in reverse postorder. 869 std::vector<const BlockT *> RPOT; 870 DenseMap<BlockKeyT, std::pair<BlockNode, BFICallbackVH>> Nodes; 871 872 using rpot_iterator = typename std::vector<const BlockT *>::const_iterator; 873 874 rpot_iterator rpot_begin() const { return RPOT.begin(); } 875 rpot_iterator rpot_end() const { return RPOT.end(); } 876 877 size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); } 878 879 BlockNode getNode(const rpot_iterator &I) const { 880 return BlockNode(getIndex(I)); 881 } 882 883 BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB).first; } 884 885 const BlockT *getBlock(const BlockNode &Node) const { 886 assert(Node.Index < RPOT.size()); 887 return RPOT[Node.Index]; 888 } 889 890 /// Run (and save) a post-order traversal. 891 /// 892 /// Saves a reverse post-order traversal of all the nodes in \a F. 893 void initializeRPOT(); 894 895 /// Initialize loop data. 896 /// 897 /// Build up \a Loops using \a LoopInfo. \a LoopInfo gives us a mapping from 898 /// each block to the deepest loop it's in, but we need the inverse. For each 899 /// loop, we store in reverse post-order its "immediate" members, defined as 900 /// the header, the headers of immediate sub-loops, and all other blocks in 901 /// the loop that are not in sub-loops. 902 void initializeLoops(); 903 904 /// Propagate to a block's successors. 905 /// 906 /// In the context of distributing mass through \c OuterLoop, divide the mass 907 /// currently assigned to \c Node between its successors. 908 /// 909 /// \return \c true unless there's an irreducible backedge. 910 bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node); 911 912 /// Compute mass in a particular loop. 913 /// 914 /// Assign mass to \c Loop's header, and then for each block in \c Loop in 915 /// reverse post-order, distribute mass to its successors. Only visits nodes 916 /// that have not been packaged into sub-loops. 917 /// 918 /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop. 919 /// \return \c true unless there's an irreducible backedge. 920 bool computeMassInLoop(LoopData &Loop); 921 922 /// Try to compute mass in the top-level function. 923 /// 924 /// Assign mass to the entry block, and then for each block in reverse 925 /// post-order, distribute mass to its successors. Skips nodes that have 926 /// been packaged into loops. 927 /// 928 /// \pre \a computeMassInLoops() has been called. 929 /// \return \c true unless there's an irreducible backedge. 930 bool tryToComputeMassInFunction(); 931 932 /// Compute mass in (and package up) irreducible SCCs. 933 /// 934 /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front 935 /// of \c Insert), and call \a computeMassInLoop() on each of them. 936 /// 937 /// If \c OuterLoop is \c nullptr, it refers to the top-level function. 938 /// 939 /// \pre \a computeMassInLoop() has been called for each subloop of \c 940 /// OuterLoop. 941 /// \pre \c Insert points at the last loop successfully processed by \a 942 /// computeMassInLoop(). 943 /// \pre \c OuterLoop has irreducible SCCs. 944 void computeIrreducibleMass(LoopData *OuterLoop, 945 std::list<LoopData>::iterator Insert); 946 947 /// Compute mass in all loops. 948 /// 949 /// For each loop bottom-up, call \a computeMassInLoop(). 950 /// 951 /// \a computeMassInLoop() aborts (and returns \c false) on loops that 952 /// contain a irreducible sub-SCCs. Use \a computeIrreducibleMass() and then 953 /// re-enter \a computeMassInLoop(). 954 /// 955 /// \post \a computeMassInLoop() has returned \c true for every loop. 956 void computeMassInLoops(); 957 958 /// Compute mass in the top-level function. 959 /// 960 /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to 961 /// compute mass in the top-level function. 962 /// 963 /// \post \a tryToComputeMassInFunction() has returned \c true. 964 void computeMassInFunction(); 965 966 std::string getBlockName(const BlockNode &Node) const override { 967 return bfi_detail::getBlockName(getBlock(Node)); 968 } 969 970 /// The current implementation for computing relative block frequencies does 971 /// not handle correctly control-flow graphs containing irreducible loops. To 972 /// resolve the problem, we apply a post-processing step, which iteratively 973 /// updates block frequencies based on the frequencies of their predesessors. 974 /// This corresponds to finding the stationary point of the Markov chain by 975 /// an iterative method aka "PageRank computation". 976 /// The algorithm takes at most O(|E| * IterativeBFIMaxIterations) steps but 977 /// typically converges faster. 978 /// 979 /// Decide whether we want to apply iterative inference for a given function. 980 bool needIterativeInference() const; 981 982 /// Apply an iterative post-processing to infer correct counts for irr loops. 983 void applyIterativeInference(); 984 985 using ProbMatrixType = std::vector<std::vector<std::pair<size_t, Scaled64>>>; 986 987 /// Run iterative inference for a probability matrix and initial frequencies. 988 void iterativeInference(const ProbMatrixType &ProbMatrix, 989 std::vector<Scaled64> &Freq) const; 990 991 /// Find all blocks to apply inference on, that is, reachable from the entry 992 /// and backward reachable from exists along edges with positive probability. 993 void findReachableBlocks(std::vector<const BlockT *> &Blocks) const; 994 995 /// Build a matrix of probabilities with transitions (edges) between the 996 /// blocks: ProbMatrix[I] holds pairs (J, P), where Pr[J -> I | J] = P 997 void initTransitionProbabilities( 998 const std::vector<const BlockT *> &Blocks, 999 const DenseMap<const BlockT *, size_t> &BlockIndex, 1000 ProbMatrixType &ProbMatrix) const; 1001 1002 #ifndef NDEBUG 1003 /// Compute the discrepancy between current block frequencies and the 1004 /// probability matrix. 1005 Scaled64 discrepancy(const ProbMatrixType &ProbMatrix, 1006 const std::vector<Scaled64> &Freq) const; 1007 #endif 1008 1009 public: 1010 BlockFrequencyInfoImpl() = default; 1011 1012 const FunctionT *getFunction() const { return F; } 1013 1014 void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI, 1015 const LoopInfoT &LI); 1016 1017 using BlockFrequencyInfoImplBase::getEntryFreq; 1018 1019 BlockFrequency getBlockFreq(const BlockT *BB) const { 1020 return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB)); 1021 } 1022 1023 std::optional<uint64_t> 1024 getBlockProfileCount(const Function &F, const BlockT *BB, 1025 bool AllowSynthetic = false) const { 1026 return BlockFrequencyInfoImplBase::getBlockProfileCount(F, getNode(BB), 1027 AllowSynthetic); 1028 } 1029 1030 std::optional<uint64_t> 1031 getProfileCountFromFreq(const Function &F, uint64_t Freq, 1032 bool AllowSynthetic = false) const { 1033 return BlockFrequencyInfoImplBase::getProfileCountFromFreq(F, Freq, 1034 AllowSynthetic); 1035 } 1036 1037 bool isIrrLoopHeader(const BlockT *BB) { 1038 return BlockFrequencyInfoImplBase::isIrrLoopHeader(getNode(BB)); 1039 } 1040 1041 void setBlockFreq(const BlockT *BB, uint64_t Freq); 1042 1043 void forgetBlock(const BlockT *BB) { 1044 // We don't erase corresponding items from `Freqs`, `RPOT` and other to 1045 // avoid invalidating indices. Doing so would have saved some memory, but 1046 // it's not worth it. 1047 Nodes.erase(BB); 1048 } 1049 1050 Scaled64 getFloatingBlockFreq(const BlockT *BB) const { 1051 return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB)); 1052 } 1053 1054 const BranchProbabilityInfoT &getBPI() const { return *BPI; } 1055 1056 /// Print the frequencies for the current function. 1057 /// 1058 /// Prints the frequencies for the blocks in the current function. 1059 /// 1060 /// Blocks are printed in the natural iteration order of the function, rather 1061 /// than reverse post-order. This provides two advantages: writing -analyze 1062 /// tests is easier (since blocks come out in source order), and even 1063 /// unreachable blocks are printed. 1064 /// 1065 /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so 1066 /// we need to override it here. 1067 raw_ostream &print(raw_ostream &OS) const override; 1068 1069 using BlockFrequencyInfoImplBase::dump; 1070 using BlockFrequencyInfoImplBase::printBlockFreq; 1071 1072 raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const { 1073 return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB)); 1074 } 1075 1076 void verifyMatch(BlockFrequencyInfoImpl<BT> &Other) const; 1077 }; 1078 1079 namespace bfi_detail { 1080 1081 template <class BFIImplT> 1082 class BFICallbackVH<BasicBlock, BFIImplT> : public CallbackVH { 1083 BFIImplT *BFIImpl; 1084 1085 public: 1086 BFICallbackVH() = default; 1087 1088 BFICallbackVH(const BasicBlock *BB, BFIImplT *BFIImpl) 1089 : CallbackVH(BB), BFIImpl(BFIImpl) {} 1090 1091 virtual ~BFICallbackVH() = default; 1092 1093 void deleted() override { 1094 BFIImpl->forgetBlock(cast<BasicBlock>(getValPtr())); 1095 } 1096 }; 1097 1098 /// Dummy implementation since MachineBasicBlocks aren't Values, so ValueHandles 1099 /// don't apply to them. 1100 template <class BFIImplT> 1101 class BFICallbackVH<MachineBasicBlock, BFIImplT> { 1102 public: 1103 BFICallbackVH() = default; 1104 BFICallbackVH(const MachineBasicBlock *, BFIImplT *) {} 1105 }; 1106 1107 } // end namespace bfi_detail 1108 1109 template <class BT> 1110 void BlockFrequencyInfoImpl<BT>::calculate(const FunctionT &F, 1111 const BranchProbabilityInfoT &BPI, 1112 const LoopInfoT &LI) { 1113 // Save the parameters. 1114 this->BPI = &BPI; 1115 this->LI = &LI; 1116 this->F = &F; 1117 1118 // Clean up left-over data structures. 1119 BlockFrequencyInfoImplBase::clear(); 1120 RPOT.clear(); 1121 Nodes.clear(); 1122 1123 // Initialize. 1124 LLVM_DEBUG(dbgs() << "\nblock-frequency: " << F.getName() 1125 << "\n=================" 1126 << std::string(F.getName().size(), '=') << "\n"); 1127 initializeRPOT(); 1128 initializeLoops(); 1129 1130 // Visit loops in post-order to find the local mass distribution, and then do 1131 // the full function. 1132 computeMassInLoops(); 1133 computeMassInFunction(); 1134 unwrapLoops(); 1135 // Apply a post-processing step improving computed frequencies for functions 1136 // with irreducible loops. 1137 if (needIterativeInference()) 1138 applyIterativeInference(); 1139 finalizeMetrics(); 1140 1141 if (CheckBFIUnknownBlockQueries) { 1142 // To detect BFI queries for unknown blocks, add entries for unreachable 1143 // blocks, if any. This is to distinguish between known/existing unreachable 1144 // blocks and unknown blocks. 1145 for (const BlockT &BB : F) 1146 if (!Nodes.count(&BB)) 1147 setBlockFreq(&BB, 0); 1148 } 1149 } 1150 1151 template <class BT> 1152 void BlockFrequencyInfoImpl<BT>::setBlockFreq(const BlockT *BB, uint64_t Freq) { 1153 if (Nodes.count(BB)) 1154 BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq); 1155 else { 1156 // If BB is a newly added block after BFI is done, we need to create a new 1157 // BlockNode for it assigned with a new index. The index can be determined 1158 // by the size of Freqs. 1159 BlockNode NewNode(Freqs.size()); 1160 Nodes[BB] = {NewNode, BFICallbackVH(BB, this)}; 1161 Freqs.emplace_back(); 1162 BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq); 1163 } 1164 } 1165 1166 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() { 1167 const BlockT *Entry = &F->front(); 1168 RPOT.reserve(F->size()); 1169 std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT)); 1170 std::reverse(RPOT.begin(), RPOT.end()); 1171 1172 assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() && 1173 "More nodes in function than Block Frequency Info supports"); 1174 1175 LLVM_DEBUG(dbgs() << "reverse-post-order-traversal\n"); 1176 for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) { 1177 BlockNode Node = getNode(I); 1178 LLVM_DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node) 1179 << "\n"); 1180 Nodes[*I] = {Node, BFICallbackVH(*I, this)}; 1181 } 1182 1183 Working.reserve(RPOT.size()); 1184 for (size_t Index = 0; Index < RPOT.size(); ++Index) 1185 Working.emplace_back(Index); 1186 Freqs.resize(RPOT.size()); 1187 } 1188 1189 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() { 1190 LLVM_DEBUG(dbgs() << "loop-detection\n"); 1191 if (LI->empty()) 1192 return; 1193 1194 // Visit loops top down and assign them an index. 1195 std::deque<std::pair<const LoopT *, LoopData *>> Q; 1196 for (const LoopT *L : *LI) 1197 Q.emplace_back(L, nullptr); 1198 while (!Q.empty()) { 1199 const LoopT *Loop = Q.front().first; 1200 LoopData *Parent = Q.front().second; 1201 Q.pop_front(); 1202 1203 BlockNode Header = getNode(Loop->getHeader()); 1204 assert(Header.isValid()); 1205 1206 Loops.emplace_back(Parent, Header); 1207 Working[Header.Index].Loop = &Loops.back(); 1208 LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n"); 1209 1210 for (const LoopT *L : *Loop) 1211 Q.emplace_back(L, &Loops.back()); 1212 } 1213 1214 // Visit nodes in reverse post-order and add them to their deepest containing 1215 // loop. 1216 for (size_t Index = 0; Index < RPOT.size(); ++Index) { 1217 // Loop headers have already been mostly mapped. 1218 if (Working[Index].isLoopHeader()) { 1219 LoopData *ContainingLoop = Working[Index].getContainingLoop(); 1220 if (ContainingLoop) 1221 ContainingLoop->Nodes.push_back(Index); 1222 continue; 1223 } 1224 1225 const LoopT *Loop = LI->getLoopFor(RPOT[Index]); 1226 if (!Loop) 1227 continue; 1228 1229 // Add this node to its containing loop's member list. 1230 BlockNode Header = getNode(Loop->getHeader()); 1231 assert(Header.isValid()); 1232 const auto &HeaderData = Working[Header.Index]; 1233 assert(HeaderData.isLoopHeader()); 1234 1235 Working[Index].Loop = HeaderData.Loop; 1236 HeaderData.Loop->Nodes.push_back(Index); 1237 LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) 1238 << ": member = " << getBlockName(Index) << "\n"); 1239 } 1240 } 1241 1242 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() { 1243 // Visit loops with the deepest first, and the top-level loops last. 1244 for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) { 1245 if (computeMassInLoop(*L)) 1246 continue; 1247 auto Next = std::next(L); 1248 computeIrreducibleMass(&*L, L.base()); 1249 L = std::prev(Next); 1250 if (computeMassInLoop(*L)) 1251 continue; 1252 llvm_unreachable("unhandled irreducible control flow"); 1253 } 1254 } 1255 1256 template <class BT> 1257 bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) { 1258 // Compute mass in loop. 1259 LLVM_DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n"); 1260 1261 if (Loop.isIrreducible()) { 1262 LLVM_DEBUG(dbgs() << "isIrreducible = true\n"); 1263 Distribution Dist; 1264 unsigned NumHeadersWithWeight = 0; 1265 std::optional<uint64_t> MinHeaderWeight; 1266 DenseSet<uint32_t> HeadersWithoutWeight; 1267 HeadersWithoutWeight.reserve(Loop.NumHeaders); 1268 for (uint32_t H = 0; H < Loop.NumHeaders; ++H) { 1269 auto &HeaderNode = Loop.Nodes[H]; 1270 const BlockT *Block = getBlock(HeaderNode); 1271 IsIrrLoopHeader.set(Loop.Nodes[H].Index); 1272 std::optional<uint64_t> HeaderWeight = Block->getIrrLoopHeaderWeight(); 1273 if (!HeaderWeight) { 1274 LLVM_DEBUG(dbgs() << "Missing irr loop header metadata on " 1275 << getBlockName(HeaderNode) << "\n"); 1276 HeadersWithoutWeight.insert(H); 1277 continue; 1278 } 1279 LLVM_DEBUG(dbgs() << getBlockName(HeaderNode) 1280 << " has irr loop header weight " << *HeaderWeight 1281 << "\n"); 1282 NumHeadersWithWeight++; 1283 uint64_t HeaderWeightValue = *HeaderWeight; 1284 if (!MinHeaderWeight || HeaderWeightValue < MinHeaderWeight) 1285 MinHeaderWeight = HeaderWeightValue; 1286 if (HeaderWeightValue) { 1287 Dist.addLocal(HeaderNode, HeaderWeightValue); 1288 } 1289 } 1290 // As a heuristic, if some headers don't have a weight, give them the 1291 // minimum weight seen (not to disrupt the existing trends too much by 1292 // using a weight that's in the general range of the other headers' weights, 1293 // and the minimum seems to perform better than the average.) 1294 // FIXME: better update in the passes that drop the header weight. 1295 // If no headers have a weight, give them even weight (use weight 1). 1296 if (!MinHeaderWeight) 1297 MinHeaderWeight = 1; 1298 for (uint32_t H : HeadersWithoutWeight) { 1299 auto &HeaderNode = Loop.Nodes[H]; 1300 assert(!getBlock(HeaderNode)->getIrrLoopHeaderWeight() && 1301 "Shouldn't have a weight metadata"); 1302 uint64_t MinWeight = *MinHeaderWeight; 1303 LLVM_DEBUG(dbgs() << "Giving weight " << MinWeight << " to " 1304 << getBlockName(HeaderNode) << "\n"); 1305 if (MinWeight) 1306 Dist.addLocal(HeaderNode, MinWeight); 1307 } 1308 distributeIrrLoopHeaderMass(Dist); 1309 for (const BlockNode &M : Loop.Nodes) 1310 if (!propagateMassToSuccessors(&Loop, M)) 1311 llvm_unreachable("unhandled irreducible control flow"); 1312 if (NumHeadersWithWeight == 0) 1313 // No headers have a metadata. Adjust header mass. 1314 adjustLoopHeaderMass(Loop); 1315 } else { 1316 Working[Loop.getHeader().Index].getMass() = BlockMass::getFull(); 1317 if (!propagateMassToSuccessors(&Loop, Loop.getHeader())) 1318 llvm_unreachable("irreducible control flow to loop header!?"); 1319 for (const BlockNode &M : Loop.members()) 1320 if (!propagateMassToSuccessors(&Loop, M)) 1321 // Irreducible backedge. 1322 return false; 1323 } 1324 1325 computeLoopScale(Loop); 1326 packageLoop(Loop); 1327 return true; 1328 } 1329 1330 template <class BT> 1331 bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() { 1332 // Compute mass in function. 1333 LLVM_DEBUG(dbgs() << "compute-mass-in-function\n"); 1334 assert(!Working.empty() && "no blocks in function"); 1335 assert(!Working[0].isLoopHeader() && "entry block is a loop header"); 1336 1337 Working[0].getMass() = BlockMass::getFull(); 1338 for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) { 1339 // Check for nodes that have been packaged. 1340 BlockNode Node = getNode(I); 1341 if (Working[Node.Index].isPackaged()) 1342 continue; 1343 1344 if (!propagateMassToSuccessors(nullptr, Node)) 1345 return false; 1346 } 1347 return true; 1348 } 1349 1350 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() { 1351 if (tryToComputeMassInFunction()) 1352 return; 1353 computeIrreducibleMass(nullptr, Loops.begin()); 1354 if (tryToComputeMassInFunction()) 1355 return; 1356 llvm_unreachable("unhandled irreducible control flow"); 1357 } 1358 1359 template <class BT> 1360 bool BlockFrequencyInfoImpl<BT>::needIterativeInference() const { 1361 if (!UseIterativeBFIInference) 1362 return false; 1363 if (!F->getFunction().hasProfileData()) 1364 return false; 1365 // Apply iterative inference only if the function contains irreducible loops; 1366 // otherwise, computed block frequencies are reasonably correct. 1367 for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) { 1368 if (L->isIrreducible()) 1369 return true; 1370 } 1371 return false; 1372 } 1373 1374 template <class BT> void BlockFrequencyInfoImpl<BT>::applyIterativeInference() { 1375 // Extract blocks for processing: a block is considered for inference iff it 1376 // can be reached from the entry by edges with a positive probability. 1377 // Non-processed blocks are assigned with the zero frequency and are ignored 1378 // in the computation 1379 std::vector<const BlockT *> ReachableBlocks; 1380 findReachableBlocks(ReachableBlocks); 1381 if (ReachableBlocks.empty()) 1382 return; 1383 1384 // The map is used to to index successors/predecessors of reachable blocks in 1385 // the ReachableBlocks vector 1386 DenseMap<const BlockT *, size_t> BlockIndex; 1387 // Extract initial frequencies for the reachable blocks 1388 auto Freq = std::vector<Scaled64>(ReachableBlocks.size()); 1389 Scaled64 SumFreq; 1390 for (size_t I = 0; I < ReachableBlocks.size(); I++) { 1391 const BlockT *BB = ReachableBlocks[I]; 1392 BlockIndex[BB] = I; 1393 Freq[I] = getFloatingBlockFreq(BB); 1394 SumFreq += Freq[I]; 1395 } 1396 assert(!SumFreq.isZero() && "empty initial block frequencies"); 1397 1398 LLVM_DEBUG(dbgs() << "Applying iterative inference for " << F->getName() 1399 << " with " << ReachableBlocks.size() << " blocks\n"); 1400 1401 // Normalizing frequencies so they sum up to 1.0 1402 for (auto &Value : Freq) { 1403 Value /= SumFreq; 1404 } 1405 1406 // Setting up edge probabilities using sparse matrix representation: 1407 // ProbMatrix[I] holds a vector of pairs (J, P) where Pr[J -> I | J] = P 1408 ProbMatrixType ProbMatrix; 1409 initTransitionProbabilities(ReachableBlocks, BlockIndex, ProbMatrix); 1410 1411 // Run the propagation 1412 iterativeInference(ProbMatrix, Freq); 1413 1414 // Assign computed frequency values 1415 for (const BlockT &BB : *F) { 1416 auto Node = getNode(&BB); 1417 if (!Node.isValid()) 1418 continue; 1419 if (BlockIndex.count(&BB)) { 1420 Freqs[Node.Index].Scaled = Freq[BlockIndex[&BB]]; 1421 } else { 1422 Freqs[Node.Index].Scaled = Scaled64::getZero(); 1423 } 1424 } 1425 } 1426 1427 template <class BT> 1428 void BlockFrequencyInfoImpl<BT>::iterativeInference( 1429 const ProbMatrixType &ProbMatrix, std::vector<Scaled64> &Freq) const { 1430 assert(0.0 < IterativeBFIPrecision && IterativeBFIPrecision < 1.0 && 1431 "incorrectly specified precision"); 1432 // Convert double precision to Scaled64 1433 const auto Precision = 1434 Scaled64::getInverse(static_cast<uint64_t>(1.0 / IterativeBFIPrecision)); 1435 const size_t MaxIterations = IterativeBFIMaxIterationsPerBlock * Freq.size(); 1436 1437 #ifndef NDEBUG 1438 LLVM_DEBUG(dbgs() << " Initial discrepancy = " 1439 << discrepancy(ProbMatrix, Freq).toString() << "\n"); 1440 #endif 1441 1442 // Successors[I] holds unique sucessors of the I-th block 1443 auto Successors = std::vector<std::vector<size_t>>(Freq.size()); 1444 for (size_t I = 0; I < Freq.size(); I++) { 1445 for (const auto &Jump : ProbMatrix[I]) { 1446 Successors[Jump.first].push_back(I); 1447 } 1448 } 1449 1450 // To speedup computation, we maintain a set of "active" blocks whose 1451 // frequencies need to be updated based on the incoming edges. 1452 // The set is dynamic and changes after every update. Initially all blocks 1453 // with a positive frequency are active 1454 auto IsActive = BitVector(Freq.size(), false); 1455 std::queue<size_t> ActiveSet; 1456 for (size_t I = 0; I < Freq.size(); I++) { 1457 if (Freq[I] > 0) { 1458 ActiveSet.push(I); 1459 IsActive[I] = true; 1460 } 1461 } 1462 1463 // Iterate over the blocks propagating frequencies 1464 size_t It = 0; 1465 while (It++ < MaxIterations && !ActiveSet.empty()) { 1466 size_t I = ActiveSet.front(); 1467 ActiveSet.pop(); 1468 IsActive[I] = false; 1469 1470 // Compute a new frequency for the block: NewFreq := Freq \times ProbMatrix. 1471 // A special care is taken for self-edges that needs to be scaled by 1472 // (1.0 - SelfProb), where SelfProb is the sum of probabilities on the edges 1473 Scaled64 NewFreq; 1474 Scaled64 OneMinusSelfProb = Scaled64::getOne(); 1475 for (const auto &Jump : ProbMatrix[I]) { 1476 if (Jump.first == I) { 1477 OneMinusSelfProb -= Jump.second; 1478 } else { 1479 NewFreq += Freq[Jump.first] * Jump.second; 1480 } 1481 } 1482 if (OneMinusSelfProb != Scaled64::getOne()) 1483 NewFreq /= OneMinusSelfProb; 1484 1485 // If the block's frequency has changed enough, then 1486 // make sure the block and its successors are in the active set 1487 auto Change = Freq[I] >= NewFreq ? Freq[I] - NewFreq : NewFreq - Freq[I]; 1488 if (Change > Precision) { 1489 ActiveSet.push(I); 1490 IsActive[I] = true; 1491 for (size_t Succ : Successors[I]) { 1492 if (!IsActive[Succ]) { 1493 ActiveSet.push(Succ); 1494 IsActive[Succ] = true; 1495 } 1496 } 1497 } 1498 1499 // Update the frequency for the block 1500 Freq[I] = NewFreq; 1501 } 1502 1503 LLVM_DEBUG(dbgs() << " Completed " << It << " inference iterations" 1504 << format(" (%0.0f per block)", double(It) / Freq.size()) 1505 << "\n"); 1506 #ifndef NDEBUG 1507 LLVM_DEBUG(dbgs() << " Final discrepancy = " 1508 << discrepancy(ProbMatrix, Freq).toString() << "\n"); 1509 #endif 1510 } 1511 1512 template <class BT> 1513 void BlockFrequencyInfoImpl<BT>::findReachableBlocks( 1514 std::vector<const BlockT *> &Blocks) const { 1515 // Find all blocks to apply inference on, that is, reachable from the entry 1516 // along edges with non-zero probablities 1517 std::queue<const BlockT *> Queue; 1518 SmallPtrSet<const BlockT *, 8> Reachable; 1519 const BlockT *Entry = &F->front(); 1520 Queue.push(Entry); 1521 Reachable.insert(Entry); 1522 while (!Queue.empty()) { 1523 const BlockT *SrcBB = Queue.front(); 1524 Queue.pop(); 1525 for (const BlockT *DstBB : children<const BlockT *>(SrcBB)) { 1526 auto EP = BPI->getEdgeProbability(SrcBB, DstBB); 1527 if (EP.isZero()) 1528 continue; 1529 if (Reachable.insert(DstBB).second) 1530 Queue.push(DstBB); 1531 } 1532 } 1533 1534 // Find all blocks to apply inference on, that is, backward reachable from 1535 // the entry along (backward) edges with non-zero probablities 1536 SmallPtrSet<const BlockT *, 8> InverseReachable; 1537 for (const BlockT &BB : *F) { 1538 // An exit block is a block without any successors 1539 bool HasSucc = GraphTraits<const BlockT *>::child_begin(&BB) != 1540 GraphTraits<const BlockT *>::child_end(&BB); 1541 if (!HasSucc && Reachable.count(&BB)) { 1542 Queue.push(&BB); 1543 InverseReachable.insert(&BB); 1544 } 1545 } 1546 while (!Queue.empty()) { 1547 const BlockT *SrcBB = Queue.front(); 1548 Queue.pop(); 1549 for (const BlockT *DstBB : children<Inverse<const BlockT *>>(SrcBB)) { 1550 auto EP = BPI->getEdgeProbability(DstBB, SrcBB); 1551 if (EP.isZero()) 1552 continue; 1553 if (InverseReachable.insert(DstBB).second) 1554 Queue.push(DstBB); 1555 } 1556 } 1557 1558 // Collect the result 1559 Blocks.reserve(F->size()); 1560 for (const BlockT &BB : *F) { 1561 if (Reachable.count(&BB) && InverseReachable.count(&BB)) { 1562 Blocks.push_back(&BB); 1563 } 1564 } 1565 } 1566 1567 template <class BT> 1568 void BlockFrequencyInfoImpl<BT>::initTransitionProbabilities( 1569 const std::vector<const BlockT *> &Blocks, 1570 const DenseMap<const BlockT *, size_t> &BlockIndex, 1571 ProbMatrixType &ProbMatrix) const { 1572 const size_t NumBlocks = Blocks.size(); 1573 auto Succs = std::vector<std::vector<std::pair<size_t, Scaled64>>>(NumBlocks); 1574 auto SumProb = std::vector<Scaled64>(NumBlocks); 1575 1576 // Find unique successors and corresponding probabilities for every block 1577 for (size_t Src = 0; Src < NumBlocks; Src++) { 1578 const BlockT *BB = Blocks[Src]; 1579 SmallPtrSet<const BlockT *, 2> UniqueSuccs; 1580 for (const auto SI : children<const BlockT *>(BB)) { 1581 // Ignore cold blocks 1582 if (BlockIndex.find(SI) == BlockIndex.end()) 1583 continue; 1584 // Ignore parallel edges between BB and SI blocks 1585 if (!UniqueSuccs.insert(SI).second) 1586 continue; 1587 // Ignore jumps with zero probability 1588 auto EP = BPI->getEdgeProbability(BB, SI); 1589 if (EP.isZero()) 1590 continue; 1591 1592 auto EdgeProb = 1593 Scaled64::getFraction(EP.getNumerator(), EP.getDenominator()); 1594 size_t Dst = BlockIndex.find(SI)->second; 1595 Succs[Src].push_back(std::make_pair(Dst, EdgeProb)); 1596 SumProb[Src] += EdgeProb; 1597 } 1598 } 1599 1600 // Add transitions for every jump with positive branch probability 1601 ProbMatrix = ProbMatrixType(NumBlocks); 1602 for (size_t Src = 0; Src < NumBlocks; Src++) { 1603 // Ignore blocks w/o successors 1604 if (Succs[Src].empty()) 1605 continue; 1606 1607 assert(!SumProb[Src].isZero() && "Zero sum probability of non-exit block"); 1608 for (auto &Jump : Succs[Src]) { 1609 size_t Dst = Jump.first; 1610 Scaled64 Prob = Jump.second; 1611 ProbMatrix[Dst].push_back(std::make_pair(Src, Prob / SumProb[Src])); 1612 } 1613 } 1614 1615 // Add transitions from sinks to the source 1616 size_t EntryIdx = BlockIndex.find(&F->front())->second; 1617 for (size_t Src = 0; Src < NumBlocks; Src++) { 1618 if (Succs[Src].empty()) { 1619 ProbMatrix[EntryIdx].push_back(std::make_pair(Src, Scaled64::getOne())); 1620 } 1621 } 1622 } 1623 1624 #ifndef NDEBUG 1625 template <class BT> 1626 BlockFrequencyInfoImplBase::Scaled64 BlockFrequencyInfoImpl<BT>::discrepancy( 1627 const ProbMatrixType &ProbMatrix, const std::vector<Scaled64> &Freq) const { 1628 assert(Freq[0] > 0 && "Incorrectly computed frequency of the entry block"); 1629 Scaled64 Discrepancy; 1630 for (size_t I = 0; I < ProbMatrix.size(); I++) { 1631 Scaled64 Sum; 1632 for (const auto &Jump : ProbMatrix[I]) { 1633 Sum += Freq[Jump.first] * Jump.second; 1634 } 1635 Discrepancy += Freq[I] >= Sum ? Freq[I] - Sum : Sum - Freq[I]; 1636 } 1637 // Normalizing by the frequency of the entry block 1638 return Discrepancy / Freq[0]; 1639 } 1640 #endif 1641 1642 /// \note This should be a lambda, but that crashes GCC 4.7. 1643 namespace bfi_detail { 1644 1645 template <class BT> struct BlockEdgesAdder { 1646 using BlockT = BT; 1647 using LoopData = BlockFrequencyInfoImplBase::LoopData; 1648 using Successor = GraphTraits<const BlockT *>; 1649 1650 const BlockFrequencyInfoImpl<BT> &BFI; 1651 1652 explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI) 1653 : BFI(BFI) {} 1654 1655 void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr, 1656 const LoopData *OuterLoop) { 1657 const BlockT *BB = BFI.RPOT[Irr.Node.Index]; 1658 for (const auto Succ : children<const BlockT *>(BB)) 1659 G.addEdge(Irr, BFI.getNode(Succ), OuterLoop); 1660 } 1661 }; 1662 1663 } // end namespace bfi_detail 1664 1665 template <class BT> 1666 void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass( 1667 LoopData *OuterLoop, std::list<LoopData>::iterator Insert) { 1668 LLVM_DEBUG(dbgs() << "analyze-irreducible-in-"; 1669 if (OuterLoop) dbgs() 1670 << "loop: " << getLoopName(*OuterLoop) << "\n"; 1671 else dbgs() << "function\n"); 1672 1673 using namespace bfi_detail; 1674 1675 // Ideally, addBlockEdges() would be declared here as a lambda, but that 1676 // crashes GCC 4.7. 1677 BlockEdgesAdder<BT> addBlockEdges(*this); 1678 IrreducibleGraph G(*this, OuterLoop, addBlockEdges); 1679 1680 for (auto &L : analyzeIrreducible(G, OuterLoop, Insert)) 1681 computeMassInLoop(L); 1682 1683 if (!OuterLoop) 1684 return; 1685 updateLoopWithIrreducible(*OuterLoop); 1686 } 1687 1688 // A helper function that converts a branch probability into weight. 1689 inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) { 1690 return Prob.getNumerator(); 1691 } 1692 1693 template <class BT> 1694 bool 1695 BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop, 1696 const BlockNode &Node) { 1697 LLVM_DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n"); 1698 // Calculate probability for successors. 1699 Distribution Dist; 1700 if (auto *Loop = Working[Node.Index].getPackagedLoop()) { 1701 assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop"); 1702 if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist)) 1703 // Irreducible backedge. 1704 return false; 1705 } else { 1706 const BlockT *BB = getBlock(Node); 1707 for (auto SI = GraphTraits<const BlockT *>::child_begin(BB), 1708 SE = GraphTraits<const BlockT *>::child_end(BB); 1709 SI != SE; ++SI) 1710 if (!addToDist( 1711 Dist, OuterLoop, Node, getNode(*SI), 1712 getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI)))) 1713 // Irreducible backedge. 1714 return false; 1715 } 1716 1717 // Distribute mass to successors, saving exit and backedge data in the 1718 // loop header. 1719 distributeMass(Node, OuterLoop, Dist); 1720 return true; 1721 } 1722 1723 template <class BT> 1724 raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const { 1725 if (!F) 1726 return OS; 1727 OS << "block-frequency-info: " << F->getName() << "\n"; 1728 for (const BlockT &BB : *F) { 1729 OS << " - " << bfi_detail::getBlockName(&BB) << ": float = "; 1730 getFloatingBlockFreq(&BB).print(OS, 5) 1731 << ", int = " << getBlockFreq(&BB).getFrequency(); 1732 if (std::optional<uint64_t> ProfileCount = 1733 BlockFrequencyInfoImplBase::getBlockProfileCount( 1734 F->getFunction(), getNode(&BB))) 1735 OS << ", count = " << *ProfileCount; 1736 if (std::optional<uint64_t> IrrLoopHeaderWeight = 1737 BB.getIrrLoopHeaderWeight()) 1738 OS << ", irr_loop_header_weight = " << *IrrLoopHeaderWeight; 1739 OS << "\n"; 1740 } 1741 1742 // Add an extra newline for readability. 1743 OS << "\n"; 1744 return OS; 1745 } 1746 1747 template <class BT> 1748 void BlockFrequencyInfoImpl<BT>::verifyMatch( 1749 BlockFrequencyInfoImpl<BT> &Other) const { 1750 bool Match = true; 1751 DenseMap<const BlockT *, BlockNode> ValidNodes; 1752 DenseMap<const BlockT *, BlockNode> OtherValidNodes; 1753 for (auto &Entry : Nodes) { 1754 const BlockT *BB = Entry.first; 1755 if (BB) { 1756 ValidNodes[BB] = Entry.second.first; 1757 } 1758 } 1759 for (auto &Entry : Other.Nodes) { 1760 const BlockT *BB = Entry.first; 1761 if (BB) { 1762 OtherValidNodes[BB] = Entry.second.first; 1763 } 1764 } 1765 unsigned NumValidNodes = ValidNodes.size(); 1766 unsigned NumOtherValidNodes = OtherValidNodes.size(); 1767 if (NumValidNodes != NumOtherValidNodes) { 1768 Match = false; 1769 dbgs() << "Number of blocks mismatch: " << NumValidNodes << " vs " 1770 << NumOtherValidNodes << "\n"; 1771 } else { 1772 for (auto &Entry : ValidNodes) { 1773 const BlockT *BB = Entry.first; 1774 BlockNode Node = Entry.second; 1775 if (OtherValidNodes.count(BB)) { 1776 BlockNode OtherNode = OtherValidNodes[BB]; 1777 const auto &Freq = Freqs[Node.Index]; 1778 const auto &OtherFreq = Other.Freqs[OtherNode.Index]; 1779 if (Freq.Integer != OtherFreq.Integer) { 1780 Match = false; 1781 dbgs() << "Freq mismatch: " << bfi_detail::getBlockName(BB) << " " 1782 << Freq.Integer << " vs " << OtherFreq.Integer << "\n"; 1783 } 1784 } else { 1785 Match = false; 1786 dbgs() << "Block " << bfi_detail::getBlockName(BB) << " index " 1787 << Node.Index << " does not exist in Other.\n"; 1788 } 1789 } 1790 // If there's a valid node in OtherValidNodes that's not in ValidNodes, 1791 // either the above num check or the check on OtherValidNodes will fail. 1792 } 1793 if (!Match) { 1794 dbgs() << "This\n"; 1795 print(dbgs()); 1796 dbgs() << "Other\n"; 1797 Other.print(dbgs()); 1798 } 1799 assert(Match && "BFI mismatch"); 1800 } 1801 1802 // Graph trait base class for block frequency information graph 1803 // viewer. 1804 1805 enum GVDAGType { GVDT_None, GVDT_Fraction, GVDT_Integer, GVDT_Count }; 1806 1807 template <class BlockFrequencyInfoT, class BranchProbabilityInfoT> 1808 struct BFIDOTGraphTraitsBase : public DefaultDOTGraphTraits { 1809 using GTraits = GraphTraits<BlockFrequencyInfoT *>; 1810 using NodeRef = typename GTraits::NodeRef; 1811 using EdgeIter = typename GTraits::ChildIteratorType; 1812 using NodeIter = typename GTraits::nodes_iterator; 1813 1814 uint64_t MaxFrequency = 0; 1815 1816 explicit BFIDOTGraphTraitsBase(bool isSimple = false) 1817 : DefaultDOTGraphTraits(isSimple) {} 1818 1819 static StringRef getGraphName(const BlockFrequencyInfoT *G) { 1820 return G->getFunction()->getName(); 1821 } 1822 1823 std::string getNodeAttributes(NodeRef Node, const BlockFrequencyInfoT *Graph, 1824 unsigned HotPercentThreshold = 0) { 1825 std::string Result; 1826 if (!HotPercentThreshold) 1827 return Result; 1828 1829 // Compute MaxFrequency on the fly: 1830 if (!MaxFrequency) { 1831 for (NodeIter I = GTraits::nodes_begin(Graph), 1832 E = GTraits::nodes_end(Graph); 1833 I != E; ++I) { 1834 NodeRef N = *I; 1835 MaxFrequency = 1836 std::max(MaxFrequency, Graph->getBlockFreq(N).getFrequency()); 1837 } 1838 } 1839 BlockFrequency Freq = Graph->getBlockFreq(Node); 1840 BlockFrequency HotFreq = 1841 (BlockFrequency(MaxFrequency) * 1842 BranchProbability::getBranchProbability(HotPercentThreshold, 100)); 1843 1844 if (Freq < HotFreq) 1845 return Result; 1846 1847 raw_string_ostream OS(Result); 1848 OS << "color=\"red\""; 1849 OS.flush(); 1850 return Result; 1851 } 1852 1853 std::string getNodeLabel(NodeRef Node, const BlockFrequencyInfoT *Graph, 1854 GVDAGType GType, int layout_order = -1) { 1855 std::string Result; 1856 raw_string_ostream OS(Result); 1857 1858 if (layout_order != -1) 1859 OS << Node->getName() << "[" << layout_order << "] : "; 1860 else 1861 OS << Node->getName() << " : "; 1862 switch (GType) { 1863 case GVDT_Fraction: 1864 Graph->printBlockFreq(OS, Node); 1865 break; 1866 case GVDT_Integer: 1867 OS << Graph->getBlockFreq(Node).getFrequency(); 1868 break; 1869 case GVDT_Count: { 1870 auto Count = Graph->getBlockProfileCount(Node); 1871 if (Count) 1872 OS << *Count; 1873 else 1874 OS << "Unknown"; 1875 break; 1876 } 1877 case GVDT_None: 1878 llvm_unreachable("If we are not supposed to render a graph we should " 1879 "never reach this point."); 1880 } 1881 return Result; 1882 } 1883 1884 std::string getEdgeAttributes(NodeRef Node, EdgeIter EI, 1885 const BlockFrequencyInfoT *BFI, 1886 const BranchProbabilityInfoT *BPI, 1887 unsigned HotPercentThreshold = 0) { 1888 std::string Str; 1889 if (!BPI) 1890 return Str; 1891 1892 BranchProbability BP = BPI->getEdgeProbability(Node, EI); 1893 uint32_t N = BP.getNumerator(); 1894 uint32_t D = BP.getDenominator(); 1895 double Percent = 100.0 * N / D; 1896 raw_string_ostream OS(Str); 1897 OS << format("label=\"%.1f%%\"", Percent); 1898 1899 if (HotPercentThreshold) { 1900 BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP; 1901 BlockFrequency HotFreq = BlockFrequency(MaxFrequency) * 1902 BranchProbability(HotPercentThreshold, 100); 1903 1904 if (EFreq >= HotFreq) { 1905 OS << ",color=\"red\""; 1906 } 1907 } 1908 1909 OS.flush(); 1910 return Str; 1911 } 1912 }; 1913 1914 } // end namespace llvm 1915 1916 #undef DEBUG_TYPE 1917 1918 #endif // LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H 1919