1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/IR/AbstractCallSite.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/IntrinsicsAArch64.h"
35 #include "llvm/IR/IntrinsicsAMDGPU.h"
36 #include "llvm/IR/IntrinsicsARM.h"
37 #include "llvm/IR/IntrinsicsBPF.h"
38 #include "llvm/IR/IntrinsicsDirectX.h"
39 #include "llvm/IR/IntrinsicsHexagon.h"
40 #include "llvm/IR/IntrinsicsMips.h"
41 #include "llvm/IR/IntrinsicsNVPTX.h"
42 #include "llvm/IR/IntrinsicsPowerPC.h"
43 #include "llvm/IR/IntrinsicsR600.h"
44 #include "llvm/IR/IntrinsicsRISCV.h"
45 #include "llvm/IR/IntrinsicsS390.h"
46 #include "llvm/IR/IntrinsicsVE.h"
47 #include "llvm/IR/IntrinsicsWebAssembly.h"
48 #include "llvm/IR/IntrinsicsX86.h"
49 #include "llvm/IR/IntrinsicsXCore.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/SymbolTableListTraits.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Use.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/IR/ValueSymbolTable.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/ModRef.h"
66 #include <cassert>
67 #include <cstddef>
68 #include <cstdint>
69 #include <cstring>
70 #include <string>
71
72 using namespace llvm;
73 using ProfileCount = Function::ProfileCount;
74
75 // Explicit instantiations of SymbolTableListTraits since some of the methods
76 // are not in the public header file...
77 template class llvm::SymbolTableListTraits<BasicBlock>;
78
79 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
80 "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
81 cl::desc("Maximum size for the name of non-global values."));
82
83 //===----------------------------------------------------------------------===//
84 // Argument Implementation
85 //===----------------------------------------------------------------------===//
86
Argument(Type * Ty,const Twine & Name,Function * Par,unsigned ArgNo)87 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
88 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
89 setName(Name);
90 }
91
setParent(Function * parent)92 void Argument::setParent(Function *parent) {
93 Parent = parent;
94 }
95
hasNonNullAttr(bool AllowUndefOrPoison) const96 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
97 if (!getType()->isPointerTy()) return false;
98 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
99 (AllowUndefOrPoison ||
100 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
101 return true;
102 else if (getDereferenceableBytes() > 0 &&
103 !NullPointerIsDefined(getParent(),
104 getType()->getPointerAddressSpace()))
105 return true;
106 return false;
107 }
108
hasByValAttr() const109 bool Argument::hasByValAttr() const {
110 if (!getType()->isPointerTy()) return false;
111 return hasAttribute(Attribute::ByVal);
112 }
113
hasByRefAttr() const114 bool Argument::hasByRefAttr() const {
115 if (!getType()->isPointerTy())
116 return false;
117 return hasAttribute(Attribute::ByRef);
118 }
119
hasSwiftSelfAttr() const120 bool Argument::hasSwiftSelfAttr() const {
121 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
122 }
123
hasSwiftErrorAttr() const124 bool Argument::hasSwiftErrorAttr() const {
125 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
126 }
127
hasInAllocaAttr() const128 bool Argument::hasInAllocaAttr() const {
129 if (!getType()->isPointerTy()) return false;
130 return hasAttribute(Attribute::InAlloca);
131 }
132
hasPreallocatedAttr() const133 bool Argument::hasPreallocatedAttr() const {
134 if (!getType()->isPointerTy())
135 return false;
136 return hasAttribute(Attribute::Preallocated);
137 }
138
hasPassPointeeByValueCopyAttr() const139 bool Argument::hasPassPointeeByValueCopyAttr() const {
140 if (!getType()->isPointerTy()) return false;
141 AttributeList Attrs = getParent()->getAttributes();
142 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
143 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
144 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
145 }
146
hasPointeeInMemoryValueAttr() const147 bool Argument::hasPointeeInMemoryValueAttr() const {
148 if (!getType()->isPointerTy())
149 return false;
150 AttributeList Attrs = getParent()->getAttributes();
151 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
152 Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
153 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
154 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
155 Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
156 }
157
158 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
159 /// parameter type.
getMemoryParamAllocType(AttributeSet ParamAttrs)160 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
161 // FIXME: All the type carrying attributes are mutually exclusive, so there
162 // should be a single query to get the stored type that handles any of them.
163 if (Type *ByValTy = ParamAttrs.getByValType())
164 return ByValTy;
165 if (Type *ByRefTy = ParamAttrs.getByRefType())
166 return ByRefTy;
167 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
168 return PreAllocTy;
169 if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
170 return InAllocaTy;
171 if (Type *SRetTy = ParamAttrs.getStructRetType())
172 return SRetTy;
173
174 return nullptr;
175 }
176
getPassPointeeByValueCopySize(const DataLayout & DL) const177 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
178 AttributeSet ParamAttrs =
179 getParent()->getAttributes().getParamAttrs(getArgNo());
180 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
181 return DL.getTypeAllocSize(MemTy);
182 return 0;
183 }
184
getPointeeInMemoryValueType() const185 Type *Argument::getPointeeInMemoryValueType() const {
186 AttributeSet ParamAttrs =
187 getParent()->getAttributes().getParamAttrs(getArgNo());
188 return getMemoryParamAllocType(ParamAttrs);
189 }
190
getParamAlign() const191 MaybeAlign Argument::getParamAlign() const {
192 assert(getType()->isPointerTy() && "Only pointers have alignments");
193 return getParent()->getParamAlign(getArgNo());
194 }
195
getParamStackAlign() const196 MaybeAlign Argument::getParamStackAlign() const {
197 return getParent()->getParamStackAlign(getArgNo());
198 }
199
getParamByValType() const200 Type *Argument::getParamByValType() const {
201 assert(getType()->isPointerTy() && "Only pointers have byval types");
202 return getParent()->getParamByValType(getArgNo());
203 }
204
getParamStructRetType() const205 Type *Argument::getParamStructRetType() const {
206 assert(getType()->isPointerTy() && "Only pointers have sret types");
207 return getParent()->getParamStructRetType(getArgNo());
208 }
209
getParamByRefType() const210 Type *Argument::getParamByRefType() const {
211 assert(getType()->isPointerTy() && "Only pointers have byref types");
212 return getParent()->getParamByRefType(getArgNo());
213 }
214
getParamInAllocaType() const215 Type *Argument::getParamInAllocaType() const {
216 assert(getType()->isPointerTy() && "Only pointers have inalloca types");
217 return getParent()->getParamInAllocaType(getArgNo());
218 }
219
getDereferenceableBytes() const220 uint64_t Argument::getDereferenceableBytes() const {
221 assert(getType()->isPointerTy() &&
222 "Only pointers have dereferenceable bytes");
223 return getParent()->getParamDereferenceableBytes(getArgNo());
224 }
225
getDereferenceableOrNullBytes() const226 uint64_t Argument::getDereferenceableOrNullBytes() const {
227 assert(getType()->isPointerTy() &&
228 "Only pointers have dereferenceable bytes");
229 return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
230 }
231
hasNestAttr() const232 bool Argument::hasNestAttr() const {
233 if (!getType()->isPointerTy()) return false;
234 return hasAttribute(Attribute::Nest);
235 }
236
hasNoAliasAttr() const237 bool Argument::hasNoAliasAttr() const {
238 if (!getType()->isPointerTy()) return false;
239 return hasAttribute(Attribute::NoAlias);
240 }
241
hasNoCaptureAttr() const242 bool Argument::hasNoCaptureAttr() const {
243 if (!getType()->isPointerTy()) return false;
244 return hasAttribute(Attribute::NoCapture);
245 }
246
hasNoFreeAttr() const247 bool Argument::hasNoFreeAttr() const {
248 if (!getType()->isPointerTy()) return false;
249 return hasAttribute(Attribute::NoFree);
250 }
251
hasStructRetAttr() const252 bool Argument::hasStructRetAttr() const {
253 if (!getType()->isPointerTy()) return false;
254 return hasAttribute(Attribute::StructRet);
255 }
256
hasInRegAttr() const257 bool Argument::hasInRegAttr() const {
258 return hasAttribute(Attribute::InReg);
259 }
260
hasReturnedAttr() const261 bool Argument::hasReturnedAttr() const {
262 return hasAttribute(Attribute::Returned);
263 }
264
hasZExtAttr() const265 bool Argument::hasZExtAttr() const {
266 return hasAttribute(Attribute::ZExt);
267 }
268
hasSExtAttr() const269 bool Argument::hasSExtAttr() const {
270 return hasAttribute(Attribute::SExt);
271 }
272
onlyReadsMemory() const273 bool Argument::onlyReadsMemory() const {
274 AttributeList Attrs = getParent()->getAttributes();
275 return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
276 Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
277 }
278
addAttrs(AttrBuilder & B)279 void Argument::addAttrs(AttrBuilder &B) {
280 AttributeList AL = getParent()->getAttributes();
281 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
282 getParent()->setAttributes(AL);
283 }
284
addAttr(Attribute::AttrKind Kind)285 void Argument::addAttr(Attribute::AttrKind Kind) {
286 getParent()->addParamAttr(getArgNo(), Kind);
287 }
288
addAttr(Attribute Attr)289 void Argument::addAttr(Attribute Attr) {
290 getParent()->addParamAttr(getArgNo(), Attr);
291 }
292
removeAttr(Attribute::AttrKind Kind)293 void Argument::removeAttr(Attribute::AttrKind Kind) {
294 getParent()->removeParamAttr(getArgNo(), Kind);
295 }
296
removeAttrs(const AttributeMask & AM)297 void Argument::removeAttrs(const AttributeMask &AM) {
298 AttributeList AL = getParent()->getAttributes();
299 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
300 getParent()->setAttributes(AL);
301 }
302
hasAttribute(Attribute::AttrKind Kind) const303 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
304 return getParent()->hasParamAttribute(getArgNo(), Kind);
305 }
306
getAttribute(Attribute::AttrKind Kind) const307 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
308 return getParent()->getParamAttribute(getArgNo(), Kind);
309 }
310
311 //===----------------------------------------------------------------------===//
312 // Helper Methods in Function
313 //===----------------------------------------------------------------------===//
314
getContext() const315 LLVMContext &Function::getContext() const {
316 return getType()->getContext();
317 }
318
getInstructionCount() const319 unsigned Function::getInstructionCount() const {
320 unsigned NumInstrs = 0;
321 for (const BasicBlock &BB : BasicBlocks)
322 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
323 BB.instructionsWithoutDebug().end());
324 return NumInstrs;
325 }
326
Create(FunctionType * Ty,LinkageTypes Linkage,const Twine & N,Module & M)327 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
328 const Twine &N, Module &M) {
329 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
330 }
331
createWithDefaultAttr(FunctionType * Ty,LinkageTypes Linkage,unsigned AddrSpace,const Twine & N,Module * M)332 Function *Function::createWithDefaultAttr(FunctionType *Ty,
333 LinkageTypes Linkage,
334 unsigned AddrSpace, const Twine &N,
335 Module *M) {
336 auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
337 AttrBuilder B(F->getContext());
338 UWTableKind UWTable = M->getUwtable();
339 if (UWTable != UWTableKind::None)
340 B.addUWTableAttr(UWTable);
341 switch (M->getFramePointer()) {
342 case FramePointerKind::None:
343 // 0 ("none") is the default.
344 break;
345 case FramePointerKind::NonLeaf:
346 B.addAttribute("frame-pointer", "non-leaf");
347 break;
348 case FramePointerKind::All:
349 B.addAttribute("frame-pointer", "all");
350 break;
351 }
352 if (M->getModuleFlag("function_return_thunk_extern"))
353 B.addAttribute(Attribute::FnRetThunkExtern);
354 F->addFnAttrs(B);
355 return F;
356 }
357
removeFromParent()358 void Function::removeFromParent() {
359 getParent()->getFunctionList().remove(getIterator());
360 }
361
eraseFromParent()362 void Function::eraseFromParent() {
363 getParent()->getFunctionList().erase(getIterator());
364 }
365
splice(Function::iterator ToIt,Function * FromF,Function::iterator FromBeginIt,Function::iterator FromEndIt)366 void Function::splice(Function::iterator ToIt, Function *FromF,
367 Function::iterator FromBeginIt,
368 Function::iterator FromEndIt) {
369 #ifdef EXPENSIVE_CHECKS
370 // Check that FromBeginIt is before FromEndIt.
371 auto FromFEnd = FromF->end();
372 for (auto It = FromBeginIt; It != FromEndIt; ++It)
373 assert(It != FromFEnd && "FromBeginIt not before FromEndIt!");
374 #endif // EXPENSIVE_CHECKS
375 BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt);
376 }
377
erase(Function::iterator FromIt,Function::iterator ToIt)378 Function::iterator Function::erase(Function::iterator FromIt,
379 Function::iterator ToIt) {
380 return BasicBlocks.erase(FromIt, ToIt);
381 }
382
383 //===----------------------------------------------------------------------===//
384 // Function Implementation
385 //===----------------------------------------------------------------------===//
386
computeAddrSpace(unsigned AddrSpace,Module * M)387 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
388 // If AS == -1 and we are passed a valid module pointer we place the function
389 // in the program address space. Otherwise we default to AS0.
390 if (AddrSpace == static_cast<unsigned>(-1))
391 return M ? M->getDataLayout().getProgramAddressSpace() : 0;
392 return AddrSpace;
393 }
394
Function(FunctionType * Ty,LinkageTypes Linkage,unsigned AddrSpace,const Twine & name,Module * ParentModule)395 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
396 const Twine &name, Module *ParentModule)
397 : GlobalObject(Ty, Value::FunctionVal,
398 OperandTraits<Function>::op_begin(this), 0, Linkage, name,
399 computeAddrSpace(AddrSpace, ParentModule)),
400 NumArgs(Ty->getNumParams()) {
401 assert(FunctionType::isValidReturnType(getReturnType()) &&
402 "invalid return type");
403 setGlobalObjectSubClassData(0);
404
405 // We only need a symbol table for a function if the context keeps value names
406 if (!getContext().shouldDiscardValueNames())
407 SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
408
409 // If the function has arguments, mark them as lazily built.
410 if (Ty->getNumParams())
411 setValueSubclassData(1); // Set the "has lazy arguments" bit.
412
413 if (ParentModule)
414 ParentModule->getFunctionList().push_back(this);
415
416 HasLLVMReservedName = getName().startswith("llvm.");
417 // Ensure intrinsics have the right parameter attributes.
418 // Note, the IntID field will have been set in Value::setName if this function
419 // name is a valid intrinsic ID.
420 if (IntID)
421 setAttributes(Intrinsic::getAttributes(getContext(), IntID));
422 }
423
~Function()424 Function::~Function() {
425 dropAllReferences(); // After this it is safe to delete instructions.
426
427 // Delete all of the method arguments and unlink from symbol table...
428 if (Arguments)
429 clearArguments();
430
431 // Remove the function from the on-the-side GC table.
432 clearGC();
433 }
434
BuildLazyArguments() const435 void Function::BuildLazyArguments() const {
436 // Create the arguments vector, all arguments start out unnamed.
437 auto *FT = getFunctionType();
438 if (NumArgs > 0) {
439 Arguments = std::allocator<Argument>().allocate(NumArgs);
440 for (unsigned i = 0, e = NumArgs; i != e; ++i) {
441 Type *ArgTy = FT->getParamType(i);
442 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
443 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
444 }
445 }
446
447 // Clear the lazy arguments bit.
448 unsigned SDC = getSubclassDataFromValue();
449 SDC &= ~(1 << 0);
450 const_cast<Function*>(this)->setValueSubclassData(SDC);
451 assert(!hasLazyArguments());
452 }
453
makeArgArray(Argument * Args,size_t Count)454 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
455 return MutableArrayRef<Argument>(Args, Count);
456 }
457
isConstrainedFPIntrinsic() const458 bool Function::isConstrainedFPIntrinsic() const {
459 switch (getIntrinsicID()) {
460 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
461 case Intrinsic::INTRINSIC:
462 #include "llvm/IR/ConstrainedOps.def"
463 return true;
464 #undef INSTRUCTION
465 default:
466 return false;
467 }
468 }
469
clearArguments()470 void Function::clearArguments() {
471 for (Argument &A : makeArgArray(Arguments, NumArgs)) {
472 A.setName("");
473 A.~Argument();
474 }
475 std::allocator<Argument>().deallocate(Arguments, NumArgs);
476 Arguments = nullptr;
477 }
478
stealArgumentListFrom(Function & Src)479 void Function::stealArgumentListFrom(Function &Src) {
480 assert(isDeclaration() && "Expected no references to current arguments");
481
482 // Drop the current arguments, if any, and set the lazy argument bit.
483 if (!hasLazyArguments()) {
484 assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
485 [](const Argument &A) { return A.use_empty(); }) &&
486 "Expected arguments to be unused in declaration");
487 clearArguments();
488 setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
489 }
490
491 // Nothing to steal if Src has lazy arguments.
492 if (Src.hasLazyArguments())
493 return;
494
495 // Steal arguments from Src, and fix the lazy argument bits.
496 assert(arg_size() == Src.arg_size());
497 Arguments = Src.Arguments;
498 Src.Arguments = nullptr;
499 for (Argument &A : makeArgArray(Arguments, NumArgs)) {
500 // FIXME: This does the work of transferNodesFromList inefficiently.
501 SmallString<128> Name;
502 if (A.hasName())
503 Name = A.getName();
504 if (!Name.empty())
505 A.setName("");
506 A.setParent(this);
507 if (!Name.empty())
508 A.setName(Name);
509 }
510
511 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
512 assert(!hasLazyArguments());
513 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
514 }
515
516 // dropAllReferences() - This function causes all the subinstructions to "let
517 // go" of all references that they are maintaining. This allows one to
518 // 'delete' a whole class at a time, even though there may be circular
519 // references... first all references are dropped, and all use counts go to
520 // zero. Then everything is deleted for real. Note that no operations are
521 // valid on an object that has "dropped all references", except operator
522 // delete.
523 //
dropAllReferences()524 void Function::dropAllReferences() {
525 setIsMaterializable(false);
526
527 for (BasicBlock &BB : *this)
528 BB.dropAllReferences();
529
530 // Delete all basic blocks. They are now unused, except possibly by
531 // blockaddresses, but BasicBlock's destructor takes care of those.
532 while (!BasicBlocks.empty())
533 BasicBlocks.begin()->eraseFromParent();
534
535 // Drop uses of any optional data (real or placeholder).
536 if (getNumOperands()) {
537 User::dropAllReferences();
538 setNumHungOffUseOperands(0);
539 setValueSubclassData(getSubclassDataFromValue() & ~0xe);
540 }
541
542 // Metadata is stored in a side-table.
543 clearMetadata();
544 }
545
addAttributeAtIndex(unsigned i,Attribute Attr)546 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
547 AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
548 }
549
addFnAttr(Attribute::AttrKind Kind)550 void Function::addFnAttr(Attribute::AttrKind Kind) {
551 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
552 }
553
addFnAttr(StringRef Kind,StringRef Val)554 void Function::addFnAttr(StringRef Kind, StringRef Val) {
555 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
556 }
557
addFnAttr(Attribute Attr)558 void Function::addFnAttr(Attribute Attr) {
559 AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
560 }
561
addFnAttrs(const AttrBuilder & Attrs)562 void Function::addFnAttrs(const AttrBuilder &Attrs) {
563 AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
564 }
565
addRetAttr(Attribute::AttrKind Kind)566 void Function::addRetAttr(Attribute::AttrKind Kind) {
567 AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
568 }
569
addRetAttr(Attribute Attr)570 void Function::addRetAttr(Attribute Attr) {
571 AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
572 }
573
addRetAttrs(const AttrBuilder & Attrs)574 void Function::addRetAttrs(const AttrBuilder &Attrs) {
575 AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
576 }
577
addParamAttr(unsigned ArgNo,Attribute::AttrKind Kind)578 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
579 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
580 }
581
addParamAttr(unsigned ArgNo,Attribute Attr)582 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
583 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
584 }
585
addParamAttrs(unsigned ArgNo,const AttrBuilder & Attrs)586 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
587 AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
588 }
589
removeAttributeAtIndex(unsigned i,Attribute::AttrKind Kind)590 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
591 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
592 }
593
removeAttributeAtIndex(unsigned i,StringRef Kind)594 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
595 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
596 }
597
removeFnAttr(Attribute::AttrKind Kind)598 void Function::removeFnAttr(Attribute::AttrKind Kind) {
599 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
600 }
601
removeFnAttr(StringRef Kind)602 void Function::removeFnAttr(StringRef Kind) {
603 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
604 }
605
removeFnAttrs(const AttributeMask & AM)606 void Function::removeFnAttrs(const AttributeMask &AM) {
607 AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
608 }
609
removeRetAttr(Attribute::AttrKind Kind)610 void Function::removeRetAttr(Attribute::AttrKind Kind) {
611 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
612 }
613
removeRetAttr(StringRef Kind)614 void Function::removeRetAttr(StringRef Kind) {
615 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
616 }
617
removeRetAttrs(const AttributeMask & Attrs)618 void Function::removeRetAttrs(const AttributeMask &Attrs) {
619 AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
620 }
621
removeParamAttr(unsigned ArgNo,Attribute::AttrKind Kind)622 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
623 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
624 }
625
removeParamAttr(unsigned ArgNo,StringRef Kind)626 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
627 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
628 }
629
removeParamAttrs(unsigned ArgNo,const AttributeMask & Attrs)630 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
631 AttributeSets =
632 AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
633 }
634
addDereferenceableParamAttr(unsigned ArgNo,uint64_t Bytes)635 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
636 AttributeSets =
637 AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
638 }
639
hasFnAttribute(Attribute::AttrKind Kind) const640 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
641 return AttributeSets.hasFnAttr(Kind);
642 }
643
hasFnAttribute(StringRef Kind) const644 bool Function::hasFnAttribute(StringRef Kind) const {
645 return AttributeSets.hasFnAttr(Kind);
646 }
647
hasRetAttribute(Attribute::AttrKind Kind) const648 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
649 return AttributeSets.hasRetAttr(Kind);
650 }
651
hasParamAttribute(unsigned ArgNo,Attribute::AttrKind Kind) const652 bool Function::hasParamAttribute(unsigned ArgNo,
653 Attribute::AttrKind Kind) const {
654 return AttributeSets.hasParamAttr(ArgNo, Kind);
655 }
656
getAttributeAtIndex(unsigned i,Attribute::AttrKind Kind) const657 Attribute Function::getAttributeAtIndex(unsigned i,
658 Attribute::AttrKind Kind) const {
659 return AttributeSets.getAttributeAtIndex(i, Kind);
660 }
661
getAttributeAtIndex(unsigned i,StringRef Kind) const662 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
663 return AttributeSets.getAttributeAtIndex(i, Kind);
664 }
665
getFnAttribute(Attribute::AttrKind Kind) const666 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
667 return AttributeSets.getFnAttr(Kind);
668 }
669
getFnAttribute(StringRef Kind) const670 Attribute Function::getFnAttribute(StringRef Kind) const {
671 return AttributeSets.getFnAttr(Kind);
672 }
673
getFnAttributeAsParsedInteger(StringRef Name,uint64_t Default) const674 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name,
675 uint64_t Default) const {
676 Attribute A = getFnAttribute(Name);
677 uint64_t Result = Default;
678 if (A.isStringAttribute()) {
679 StringRef Str = A.getValueAsString();
680 if (Str.getAsInteger(0, Result))
681 getContext().emitError("cannot parse integer attribute " + Name);
682 }
683
684 return Result;
685 }
686
687 /// gets the specified attribute from the list of attributes.
getParamAttribute(unsigned ArgNo,Attribute::AttrKind Kind) const688 Attribute Function::getParamAttribute(unsigned ArgNo,
689 Attribute::AttrKind Kind) const {
690 return AttributeSets.getParamAttr(ArgNo, Kind);
691 }
692
addDereferenceableOrNullParamAttr(unsigned ArgNo,uint64_t Bytes)693 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
694 uint64_t Bytes) {
695 AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
696 ArgNo, Bytes);
697 }
698
getDenormalMode(const fltSemantics & FPType) const699 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
700 if (&FPType == &APFloat::IEEEsingle()) {
701 Attribute Attr = getFnAttribute("denormal-fp-math-f32");
702 StringRef Val = Attr.getValueAsString();
703 if (!Val.empty())
704 return parseDenormalFPAttribute(Val);
705
706 // If the f32 variant of the attribute isn't specified, try to use the
707 // generic one.
708 }
709
710 Attribute Attr = getFnAttribute("denormal-fp-math");
711 return parseDenormalFPAttribute(Attr.getValueAsString());
712 }
713
getGC() const714 const std::string &Function::getGC() const {
715 assert(hasGC() && "Function has no collector");
716 return getContext().getGC(*this);
717 }
718
setGC(std::string Str)719 void Function::setGC(std::string Str) {
720 setValueSubclassDataBit(14, !Str.empty());
721 getContext().setGC(*this, std::move(Str));
722 }
723
clearGC()724 void Function::clearGC() {
725 if (!hasGC())
726 return;
727 getContext().deleteGC(*this);
728 setValueSubclassDataBit(14, false);
729 }
730
hasStackProtectorFnAttr() const731 bool Function::hasStackProtectorFnAttr() const {
732 return hasFnAttribute(Attribute::StackProtect) ||
733 hasFnAttribute(Attribute::StackProtectStrong) ||
734 hasFnAttribute(Attribute::StackProtectReq);
735 }
736
737 /// Copy all additional attributes (those not needed to create a Function) from
738 /// the Function Src to this one.
copyAttributesFrom(const Function * Src)739 void Function::copyAttributesFrom(const Function *Src) {
740 GlobalObject::copyAttributesFrom(Src);
741 setCallingConv(Src->getCallingConv());
742 setAttributes(Src->getAttributes());
743 if (Src->hasGC())
744 setGC(Src->getGC());
745 else
746 clearGC();
747 if (Src->hasPersonalityFn())
748 setPersonalityFn(Src->getPersonalityFn());
749 if (Src->hasPrefixData())
750 setPrefixData(Src->getPrefixData());
751 if (Src->hasPrologueData())
752 setPrologueData(Src->getPrologueData());
753 }
754
getMemoryEffects() const755 MemoryEffects Function::getMemoryEffects() const {
756 return getAttributes().getMemoryEffects();
757 }
setMemoryEffects(MemoryEffects ME)758 void Function::setMemoryEffects(MemoryEffects ME) {
759 addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME));
760 }
761
762 /// Determine if the function does not access memory.
doesNotAccessMemory() const763 bool Function::doesNotAccessMemory() const {
764 return getMemoryEffects().doesNotAccessMemory();
765 }
setDoesNotAccessMemory()766 void Function::setDoesNotAccessMemory() {
767 setMemoryEffects(MemoryEffects::none());
768 }
769
770 /// Determine if the function does not access or only reads memory.
onlyReadsMemory() const771 bool Function::onlyReadsMemory() const {
772 return getMemoryEffects().onlyReadsMemory();
773 }
setOnlyReadsMemory()774 void Function::setOnlyReadsMemory() {
775 setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly());
776 }
777
778 /// Determine if the function does not access or only writes memory.
onlyWritesMemory() const779 bool Function::onlyWritesMemory() const {
780 return getMemoryEffects().onlyWritesMemory();
781 }
setOnlyWritesMemory()782 void Function::setOnlyWritesMemory() {
783 setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly());
784 }
785
786 /// Determine if the call can access memmory only using pointers based
787 /// on its arguments.
onlyAccessesArgMemory() const788 bool Function::onlyAccessesArgMemory() const {
789 return getMemoryEffects().onlyAccessesArgPointees();
790 }
setOnlyAccessesArgMemory()791 void Function::setOnlyAccessesArgMemory() {
792 setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly());
793 }
794
795 /// Determine if the function may only access memory that is
796 /// inaccessible from the IR.
onlyAccessesInaccessibleMemory() const797 bool Function::onlyAccessesInaccessibleMemory() const {
798 return getMemoryEffects().onlyAccessesInaccessibleMem();
799 }
setOnlyAccessesInaccessibleMemory()800 void Function::setOnlyAccessesInaccessibleMemory() {
801 setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly());
802 }
803
804 /// Determine if the function may only access memory that is
805 /// either inaccessible from the IR or pointed to by its arguments.
onlyAccessesInaccessibleMemOrArgMem() const806 bool Function::onlyAccessesInaccessibleMemOrArgMem() const {
807 return getMemoryEffects().onlyAccessesInaccessibleOrArgMem();
808 }
setOnlyAccessesInaccessibleMemOrArgMem()809 void Function::setOnlyAccessesInaccessibleMemOrArgMem() {
810 setMemoryEffects(getMemoryEffects() &
811 MemoryEffects::inaccessibleOrArgMemOnly());
812 }
813
814 /// Table of string intrinsic names indexed by enum value.
815 static const char * const IntrinsicNameTable[] = {
816 "not_intrinsic",
817 #define GET_INTRINSIC_NAME_TABLE
818 #include "llvm/IR/IntrinsicImpl.inc"
819 #undef GET_INTRINSIC_NAME_TABLE
820 };
821
822 /// Table of per-target intrinsic name tables.
823 #define GET_INTRINSIC_TARGET_DATA
824 #include "llvm/IR/IntrinsicImpl.inc"
825 #undef GET_INTRINSIC_TARGET_DATA
826
isTargetIntrinsic(Intrinsic::ID IID)827 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
828 return IID > TargetInfos[0].Count;
829 }
830
isTargetIntrinsic() const831 bool Function::isTargetIntrinsic() const {
832 return isTargetIntrinsic(IntID);
833 }
834
835 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
836 /// target as \c Name, or the generic table if \c Name is not target specific.
837 ///
838 /// Returns the relevant slice of \c IntrinsicNameTable
findTargetSubtable(StringRef Name)839 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
840 assert(Name.startswith("llvm."));
841
842 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
843 // Drop "llvm." and take the first dotted component. That will be the target
844 // if this is target specific.
845 StringRef Target = Name.drop_front(5).split('.').first;
846 auto It = partition_point(
847 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
848 // We've either found the target or just fall back to the generic set, which
849 // is always first.
850 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
851 return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
852 }
853
854 /// This does the actual lookup of an intrinsic ID which
855 /// matches the given function name.
lookupIntrinsicID(StringRef Name)856 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
857 ArrayRef<const char *> NameTable = findTargetSubtable(Name);
858 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
859 if (Idx == -1)
860 return Intrinsic::not_intrinsic;
861
862 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
863 // an index into a sub-table.
864 int Adjust = NameTable.data() - IntrinsicNameTable;
865 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
866
867 // If the intrinsic is not overloaded, require an exact match. If it is
868 // overloaded, require either exact or prefix match.
869 const auto MatchSize = strlen(NameTable[Idx]);
870 assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
871 bool IsExactMatch = Name.size() == MatchSize;
872 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
873 : Intrinsic::not_intrinsic;
874 }
875
recalculateIntrinsicID()876 void Function::recalculateIntrinsicID() {
877 StringRef Name = getName();
878 if (!Name.startswith("llvm.")) {
879 HasLLVMReservedName = false;
880 IntID = Intrinsic::not_intrinsic;
881 return;
882 }
883 HasLLVMReservedName = true;
884 IntID = lookupIntrinsicID(Name);
885 }
886
887 /// Returns a stable mangling for the type specified for use in the name
888 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling
889 /// of named types is simply their name. Manglings for unnamed types consist
890 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
891 /// combined with the mangling of their component types. A vararg function
892 /// type will have a suffix of 'vararg'. Since function types can contain
893 /// other function types, we close a function type mangling with suffix 'f'
894 /// which can't be confused with it's prefix. This ensures we don't have
895 /// collisions between two unrelated function types. Otherwise, you might
896 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
897 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
898 /// indicating that extra care must be taken to ensure a unique name.
getMangledTypeStr(Type * Ty,bool & HasUnnamedType)899 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
900 std::string Result;
901 if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
902 Result += "p" + utostr(PTyp->getAddressSpace());
903 // Opaque pointer doesn't have pointee type information, so we just mangle
904 // address space for opaque pointer.
905 if (!PTyp->isOpaque())
906 Result += getMangledTypeStr(PTyp->getNonOpaquePointerElementType(),
907 HasUnnamedType);
908 } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
909 Result += "a" + utostr(ATyp->getNumElements()) +
910 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
911 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
912 if (!STyp->isLiteral()) {
913 Result += "s_";
914 if (STyp->hasName())
915 Result += STyp->getName();
916 else
917 HasUnnamedType = true;
918 } else {
919 Result += "sl_";
920 for (auto *Elem : STyp->elements())
921 Result += getMangledTypeStr(Elem, HasUnnamedType);
922 }
923 // Ensure nested structs are distinguishable.
924 Result += "s";
925 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
926 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
927 for (size_t i = 0; i < FT->getNumParams(); i++)
928 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
929 if (FT->isVarArg())
930 Result += "vararg";
931 // Ensure nested function types are distinguishable.
932 Result += "f";
933 } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
934 ElementCount EC = VTy->getElementCount();
935 if (EC.isScalable())
936 Result += "nx";
937 Result += "v" + utostr(EC.getKnownMinValue()) +
938 getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
939 } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) {
940 Result += "t";
941 Result += TETy->getName();
942 for (Type *ParamTy : TETy->type_params())
943 Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType);
944 for (unsigned IntParam : TETy->int_params())
945 Result += "_" + utostr(IntParam);
946 // Ensure nested target extension types are distinguishable.
947 Result += "t";
948 } else if (Ty) {
949 switch (Ty->getTypeID()) {
950 default: llvm_unreachable("Unhandled type");
951 case Type::VoidTyID: Result += "isVoid"; break;
952 case Type::MetadataTyID: Result += "Metadata"; break;
953 case Type::HalfTyID: Result += "f16"; break;
954 case Type::BFloatTyID: Result += "bf16"; break;
955 case Type::FloatTyID: Result += "f32"; break;
956 case Type::DoubleTyID: Result += "f64"; break;
957 case Type::X86_FP80TyID: Result += "f80"; break;
958 case Type::FP128TyID: Result += "f128"; break;
959 case Type::PPC_FP128TyID: Result += "ppcf128"; break;
960 case Type::X86_MMXTyID: Result += "x86mmx"; break;
961 case Type::X86_AMXTyID: Result += "x86amx"; break;
962 case Type::IntegerTyID:
963 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
964 break;
965 }
966 }
967 return Result;
968 }
969
getBaseName(ID id)970 StringRef Intrinsic::getBaseName(ID id) {
971 assert(id < num_intrinsics && "Invalid intrinsic ID!");
972 return IntrinsicNameTable[id];
973 }
974
getName(ID id)975 StringRef Intrinsic::getName(ID id) {
976 assert(id < num_intrinsics && "Invalid intrinsic ID!");
977 assert(!Intrinsic::isOverloaded(id) &&
978 "This version of getName does not support overloading");
979 return getBaseName(id);
980 }
981
getIntrinsicNameImpl(Intrinsic::ID Id,ArrayRef<Type * > Tys,Module * M,FunctionType * FT,bool EarlyModuleCheck)982 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
983 Module *M, FunctionType *FT,
984 bool EarlyModuleCheck) {
985
986 assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
987 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
988 "This version of getName is for overloaded intrinsics only");
989 (void)EarlyModuleCheck;
990 assert((!EarlyModuleCheck || M ||
991 !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
992 "Intrinsic overloading on pointer types need to provide a Module");
993 bool HasUnnamedType = false;
994 std::string Result(Intrinsic::getBaseName(Id));
995 for (Type *Ty : Tys)
996 Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
997 if (HasUnnamedType) {
998 assert(M && "unnamed types need a module");
999 if (!FT)
1000 FT = Intrinsic::getType(M->getContext(), Id, Tys);
1001 else
1002 assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
1003 "Provided FunctionType must match arguments");
1004 return M->getUniqueIntrinsicName(Result, Id, FT);
1005 }
1006 return Result;
1007 }
1008
getName(ID Id,ArrayRef<Type * > Tys,Module * M,FunctionType * FT)1009 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
1010 FunctionType *FT) {
1011 assert(M && "We need to have a Module");
1012 return getIntrinsicNameImpl(Id, Tys, M, FT, true);
1013 }
1014
getNameNoUnnamedTypes(ID Id,ArrayRef<Type * > Tys)1015 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
1016 return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
1017 }
1018
1019 /// IIT_Info - These are enumerators that describe the entries returned by the
1020 /// getIntrinsicInfoTableEntries function.
1021 ///
1022 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
1023 enum IIT_Info {
1024 // Common values should be encoded with 0-15.
1025 IIT_Done = 0,
1026 IIT_I1 = 1,
1027 IIT_I8 = 2,
1028 IIT_I16 = 3,
1029 IIT_I32 = 4,
1030 IIT_I64 = 5,
1031 IIT_F16 = 6,
1032 IIT_F32 = 7,
1033 IIT_F64 = 8,
1034 IIT_V2 = 9,
1035 IIT_V4 = 10,
1036 IIT_V8 = 11,
1037 IIT_V16 = 12,
1038 IIT_V32 = 13,
1039 IIT_PTR = 14,
1040 IIT_ARG = 15,
1041
1042 // Values from 16+ are only encodable with the inefficient encoding.
1043 IIT_V64 = 16,
1044 IIT_MMX = 17,
1045 IIT_TOKEN = 18,
1046 IIT_METADATA = 19,
1047 IIT_EMPTYSTRUCT = 20,
1048 IIT_STRUCT2 = 21,
1049 IIT_STRUCT3 = 22,
1050 IIT_STRUCT4 = 23,
1051 IIT_STRUCT5 = 24,
1052 IIT_EXTEND_ARG = 25,
1053 IIT_TRUNC_ARG = 26,
1054 IIT_ANYPTR = 27,
1055 IIT_V1 = 28,
1056 IIT_VARARG = 29,
1057 IIT_HALF_VEC_ARG = 30,
1058 IIT_SAME_VEC_WIDTH_ARG = 31,
1059 IIT_PTR_TO_ARG = 32,
1060 IIT_PTR_TO_ELT = 33,
1061 IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
1062 IIT_I128 = 35,
1063 IIT_V512 = 36,
1064 IIT_V1024 = 37,
1065 IIT_STRUCT6 = 38,
1066 IIT_STRUCT7 = 39,
1067 IIT_STRUCT8 = 40,
1068 IIT_F128 = 41,
1069 IIT_VEC_ELEMENT = 42,
1070 IIT_SCALABLE_VEC = 43,
1071 IIT_SUBDIVIDE2_ARG = 44,
1072 IIT_SUBDIVIDE4_ARG = 45,
1073 IIT_VEC_OF_BITCASTS_TO_INT = 46,
1074 IIT_V128 = 47,
1075 IIT_BF16 = 48,
1076 IIT_STRUCT9 = 49,
1077 IIT_V256 = 50,
1078 IIT_AMX = 51,
1079 IIT_PPCF128 = 52,
1080 IIT_V3 = 53,
1081 IIT_EXTERNREF = 54,
1082 IIT_FUNCREF = 55,
1083 IIT_ANYPTR_TO_ELT = 56,
1084 IIT_I2 = 57,
1085 IIT_I4 = 58,
1086 };
1087
DecodeIITType(unsigned & NextElt,ArrayRef<unsigned char> Infos,IIT_Info LastInfo,SmallVectorImpl<Intrinsic::IITDescriptor> & OutputTable)1088 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
1089 IIT_Info LastInfo,
1090 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
1091 using namespace Intrinsic;
1092
1093 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
1094
1095 IIT_Info Info = IIT_Info(Infos[NextElt++]);
1096 unsigned StructElts = 2;
1097
1098 switch (Info) {
1099 case IIT_Done:
1100 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
1101 return;
1102 case IIT_VARARG:
1103 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
1104 return;
1105 case IIT_MMX:
1106 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
1107 return;
1108 case IIT_AMX:
1109 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
1110 return;
1111 case IIT_TOKEN:
1112 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1113 return;
1114 case IIT_METADATA:
1115 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1116 return;
1117 case IIT_F16:
1118 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1119 return;
1120 case IIT_BF16:
1121 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1122 return;
1123 case IIT_F32:
1124 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1125 return;
1126 case IIT_F64:
1127 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1128 return;
1129 case IIT_F128:
1130 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1131 return;
1132 case IIT_PPCF128:
1133 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
1134 return;
1135 case IIT_I1:
1136 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1137 return;
1138 case IIT_I2:
1139 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2));
1140 return;
1141 case IIT_I4:
1142 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4));
1143 return;
1144 case IIT_I8:
1145 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1146 return;
1147 case IIT_I16:
1148 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1149 return;
1150 case IIT_I32:
1151 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1152 return;
1153 case IIT_I64:
1154 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1155 return;
1156 case IIT_I128:
1157 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1158 return;
1159 case IIT_V1:
1160 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1161 DecodeIITType(NextElt, Infos, Info, OutputTable);
1162 return;
1163 case IIT_V2:
1164 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1165 DecodeIITType(NextElt, Infos, Info, OutputTable);
1166 return;
1167 case IIT_V3:
1168 OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
1169 DecodeIITType(NextElt, Infos, Info, OutputTable);
1170 return;
1171 case IIT_V4:
1172 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1173 DecodeIITType(NextElt, Infos, Info, OutputTable);
1174 return;
1175 case IIT_V8:
1176 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1177 DecodeIITType(NextElt, Infos, Info, OutputTable);
1178 return;
1179 case IIT_V16:
1180 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1181 DecodeIITType(NextElt, Infos, Info, OutputTable);
1182 return;
1183 case IIT_V32:
1184 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1185 DecodeIITType(NextElt, Infos, Info, OutputTable);
1186 return;
1187 case IIT_V64:
1188 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1189 DecodeIITType(NextElt, Infos, Info, OutputTable);
1190 return;
1191 case IIT_V128:
1192 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1193 DecodeIITType(NextElt, Infos, Info, OutputTable);
1194 return;
1195 case IIT_V256:
1196 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1197 DecodeIITType(NextElt, Infos, Info, OutputTable);
1198 return;
1199 case IIT_V512:
1200 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1201 DecodeIITType(NextElt, Infos, Info, OutputTable);
1202 return;
1203 case IIT_V1024:
1204 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1205 DecodeIITType(NextElt, Infos, Info, OutputTable);
1206 return;
1207 case IIT_EXTERNREF:
1208 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
1209 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1210 return;
1211 case IIT_FUNCREF:
1212 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
1213 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1214 return;
1215 case IIT_PTR:
1216 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1217 DecodeIITType(NextElt, Infos, Info, OutputTable);
1218 return;
1219 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype]
1220 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1221 Infos[NextElt++]));
1222 DecodeIITType(NextElt, Infos, Info, OutputTable);
1223 return;
1224 }
1225 case IIT_ARG: {
1226 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1227 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1228 return;
1229 }
1230 case IIT_EXTEND_ARG: {
1231 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1232 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1233 ArgInfo));
1234 return;
1235 }
1236 case IIT_TRUNC_ARG: {
1237 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1238 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1239 ArgInfo));
1240 return;
1241 }
1242 case IIT_HALF_VEC_ARG: {
1243 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1244 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1245 ArgInfo));
1246 return;
1247 }
1248 case IIT_SAME_VEC_WIDTH_ARG: {
1249 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1250 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1251 ArgInfo));
1252 return;
1253 }
1254 case IIT_PTR_TO_ARG: {
1255 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1256 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1257 ArgInfo));
1258 return;
1259 }
1260 case IIT_PTR_TO_ELT: {
1261 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1262 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1263 return;
1264 }
1265 case IIT_ANYPTR_TO_ELT: {
1266 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1267 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1268 OutputTable.push_back(
1269 IITDescriptor::get(IITDescriptor::AnyPtrToElt, ArgNo, RefNo));
1270 return;
1271 }
1272 case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1273 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1274 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1275 OutputTable.push_back(
1276 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1277 return;
1278 }
1279 case IIT_EMPTYSTRUCT:
1280 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1281 return;
1282 case IIT_STRUCT9: ++StructElts; [[fallthrough]];
1283 case IIT_STRUCT8: ++StructElts; [[fallthrough]];
1284 case IIT_STRUCT7: ++StructElts; [[fallthrough]];
1285 case IIT_STRUCT6: ++StructElts; [[fallthrough]];
1286 case IIT_STRUCT5: ++StructElts; [[fallthrough]];
1287 case IIT_STRUCT4: ++StructElts; [[fallthrough]];
1288 case IIT_STRUCT3: ++StructElts; [[fallthrough]];
1289 case IIT_STRUCT2: {
1290 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1291
1292 for (unsigned i = 0; i != StructElts; ++i)
1293 DecodeIITType(NextElt, Infos, Info, OutputTable);
1294 return;
1295 }
1296 case IIT_SUBDIVIDE2_ARG: {
1297 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1298 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1299 ArgInfo));
1300 return;
1301 }
1302 case IIT_SUBDIVIDE4_ARG: {
1303 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1304 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1305 ArgInfo));
1306 return;
1307 }
1308 case IIT_VEC_ELEMENT: {
1309 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1310 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1311 ArgInfo));
1312 return;
1313 }
1314 case IIT_SCALABLE_VEC: {
1315 DecodeIITType(NextElt, Infos, Info, OutputTable);
1316 return;
1317 }
1318 case IIT_VEC_OF_BITCASTS_TO_INT: {
1319 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1320 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1321 ArgInfo));
1322 return;
1323 }
1324 }
1325 llvm_unreachable("unhandled");
1326 }
1327
1328 #define GET_INTRINSIC_GENERATOR_GLOBAL
1329 #include "llvm/IR/IntrinsicImpl.inc"
1330 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1331
getIntrinsicInfoTableEntries(ID id,SmallVectorImpl<IITDescriptor> & T)1332 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1333 SmallVectorImpl<IITDescriptor> &T){
1334 // Check to see if the intrinsic's type was expressible by the table.
1335 unsigned TableVal = IIT_Table[id-1];
1336
1337 // Decode the TableVal into an array of IITValues.
1338 SmallVector<unsigned char, 8> IITValues;
1339 ArrayRef<unsigned char> IITEntries;
1340 unsigned NextElt = 0;
1341 if ((TableVal >> 31) != 0) {
1342 // This is an offset into the IIT_LongEncodingTable.
1343 IITEntries = IIT_LongEncodingTable;
1344
1345 // Strip sentinel bit.
1346 NextElt = (TableVal << 1) >> 1;
1347 } else {
1348 // Decode the TableVal into an array of IITValues. If the entry was encoded
1349 // into a single word in the table itself, decode it now.
1350 do {
1351 IITValues.push_back(TableVal & 0xF);
1352 TableVal >>= 4;
1353 } while (TableVal);
1354
1355 IITEntries = IITValues;
1356 NextElt = 0;
1357 }
1358
1359 // Okay, decode the table into the output vector of IITDescriptors.
1360 DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1361 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1362 DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1363 }
1364
DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> & Infos,ArrayRef<Type * > Tys,LLVMContext & Context)1365 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1366 ArrayRef<Type*> Tys, LLVMContext &Context) {
1367 using namespace Intrinsic;
1368
1369 IITDescriptor D = Infos.front();
1370 Infos = Infos.slice(1);
1371
1372 switch (D.Kind) {
1373 case IITDescriptor::Void: return Type::getVoidTy(Context);
1374 case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1375 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1376 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1377 case IITDescriptor::Token: return Type::getTokenTy(Context);
1378 case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1379 case IITDescriptor::Half: return Type::getHalfTy(Context);
1380 case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1381 case IITDescriptor::Float: return Type::getFloatTy(Context);
1382 case IITDescriptor::Double: return Type::getDoubleTy(Context);
1383 case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1384 case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
1385
1386 case IITDescriptor::Integer:
1387 return IntegerType::get(Context, D.Integer_Width);
1388 case IITDescriptor::Vector:
1389 return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1390 D.Vector_Width);
1391 case IITDescriptor::Pointer:
1392 return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1393 D.Pointer_AddressSpace);
1394 case IITDescriptor::Struct: {
1395 SmallVector<Type *, 8> Elts;
1396 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1397 Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1398 return StructType::get(Context, Elts);
1399 }
1400 case IITDescriptor::Argument:
1401 return Tys[D.getArgumentNumber()];
1402 case IITDescriptor::ExtendArgument: {
1403 Type *Ty = Tys[D.getArgumentNumber()];
1404 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1405 return VectorType::getExtendedElementVectorType(VTy);
1406
1407 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1408 }
1409 case IITDescriptor::TruncArgument: {
1410 Type *Ty = Tys[D.getArgumentNumber()];
1411 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1412 return VectorType::getTruncatedElementVectorType(VTy);
1413
1414 IntegerType *ITy = cast<IntegerType>(Ty);
1415 assert(ITy->getBitWidth() % 2 == 0);
1416 return IntegerType::get(Context, ITy->getBitWidth() / 2);
1417 }
1418 case IITDescriptor::Subdivide2Argument:
1419 case IITDescriptor::Subdivide4Argument: {
1420 Type *Ty = Tys[D.getArgumentNumber()];
1421 VectorType *VTy = dyn_cast<VectorType>(Ty);
1422 assert(VTy && "Expected an argument of Vector Type");
1423 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1424 return VectorType::getSubdividedVectorType(VTy, SubDivs);
1425 }
1426 case IITDescriptor::HalfVecArgument:
1427 return VectorType::getHalfElementsVectorType(cast<VectorType>(
1428 Tys[D.getArgumentNumber()]));
1429 case IITDescriptor::SameVecWidthArgument: {
1430 Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1431 Type *Ty = Tys[D.getArgumentNumber()];
1432 if (auto *VTy = dyn_cast<VectorType>(Ty))
1433 return VectorType::get(EltTy, VTy->getElementCount());
1434 return EltTy;
1435 }
1436 case IITDescriptor::PtrToArgument: {
1437 Type *Ty = Tys[D.getArgumentNumber()];
1438 return PointerType::getUnqual(Ty);
1439 }
1440 case IITDescriptor::PtrToElt: {
1441 Type *Ty = Tys[D.getArgumentNumber()];
1442 VectorType *VTy = dyn_cast<VectorType>(Ty);
1443 if (!VTy)
1444 llvm_unreachable("Expected an argument of Vector Type");
1445 Type *EltTy = VTy->getElementType();
1446 return PointerType::getUnqual(EltTy);
1447 }
1448 case IITDescriptor::VecElementArgument: {
1449 Type *Ty = Tys[D.getArgumentNumber()];
1450 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1451 return VTy->getElementType();
1452 llvm_unreachable("Expected an argument of Vector Type");
1453 }
1454 case IITDescriptor::VecOfBitcastsToInt: {
1455 Type *Ty = Tys[D.getArgumentNumber()];
1456 VectorType *VTy = dyn_cast<VectorType>(Ty);
1457 assert(VTy && "Expected an argument of Vector Type");
1458 return VectorType::getInteger(VTy);
1459 }
1460 case IITDescriptor::VecOfAnyPtrsToElt:
1461 // Return the overloaded type (which determines the pointers address space)
1462 return Tys[D.getOverloadArgNumber()];
1463 case IITDescriptor::AnyPtrToElt:
1464 // Return the overloaded type (which determines the pointers address space)
1465 return Tys[D.getOverloadArgNumber()];
1466 }
1467 llvm_unreachable("unhandled");
1468 }
1469
getType(LLVMContext & Context,ID id,ArrayRef<Type * > Tys)1470 FunctionType *Intrinsic::getType(LLVMContext &Context,
1471 ID id, ArrayRef<Type*> Tys) {
1472 SmallVector<IITDescriptor, 8> Table;
1473 getIntrinsicInfoTableEntries(id, Table);
1474
1475 ArrayRef<IITDescriptor> TableRef = Table;
1476 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1477
1478 SmallVector<Type*, 8> ArgTys;
1479 while (!TableRef.empty())
1480 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1481
1482 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1483 // If we see void type as the type of the last argument, it is vararg intrinsic
1484 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1485 ArgTys.pop_back();
1486 return FunctionType::get(ResultTy, ArgTys, true);
1487 }
1488 return FunctionType::get(ResultTy, ArgTys, false);
1489 }
1490
isOverloaded(ID id)1491 bool Intrinsic::isOverloaded(ID id) {
1492 #define GET_INTRINSIC_OVERLOAD_TABLE
1493 #include "llvm/IR/IntrinsicImpl.inc"
1494 #undef GET_INTRINSIC_OVERLOAD_TABLE
1495 }
1496
1497 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1498 #define GET_INTRINSIC_ATTRIBUTES
1499 #include "llvm/IR/IntrinsicImpl.inc"
1500 #undef GET_INTRINSIC_ATTRIBUTES
1501
getDeclaration(Module * M,ID id,ArrayRef<Type * > Tys)1502 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1503 // There can never be multiple globals with the same name of different types,
1504 // because intrinsics must be a specific type.
1505 auto *FT = getType(M->getContext(), id, Tys);
1506 return cast<Function>(
1507 M->getOrInsertFunction(
1508 Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT)
1509 .getCallee());
1510 }
1511
1512 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
1513 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1514 #include "llvm/IR/IntrinsicImpl.inc"
1515 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1516
1517 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1518 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1519 #include "llvm/IR/IntrinsicImpl.inc"
1520 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1521
1522 using DeferredIntrinsicMatchPair =
1523 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1524
matchIntrinsicType(Type * Ty,ArrayRef<Intrinsic::IITDescriptor> & Infos,SmallVectorImpl<Type * > & ArgTys,SmallVectorImpl<DeferredIntrinsicMatchPair> & DeferredChecks,bool IsDeferredCheck)1525 static bool matchIntrinsicType(
1526 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1527 SmallVectorImpl<Type *> &ArgTys,
1528 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1529 bool IsDeferredCheck) {
1530 using namespace Intrinsic;
1531
1532 // If we ran out of descriptors, there are too many arguments.
1533 if (Infos.empty()) return true;
1534
1535 // Do this before slicing off the 'front' part
1536 auto InfosRef = Infos;
1537 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1538 DeferredChecks.emplace_back(T, InfosRef);
1539 return false;
1540 };
1541
1542 IITDescriptor D = Infos.front();
1543 Infos = Infos.slice(1);
1544
1545 switch (D.Kind) {
1546 case IITDescriptor::Void: return !Ty->isVoidTy();
1547 case IITDescriptor::VarArg: return true;
1548 case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
1549 case IITDescriptor::AMX: return !Ty->isX86_AMXTy();
1550 case IITDescriptor::Token: return !Ty->isTokenTy();
1551 case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1552 case IITDescriptor::Half: return !Ty->isHalfTy();
1553 case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1554 case IITDescriptor::Float: return !Ty->isFloatTy();
1555 case IITDescriptor::Double: return !Ty->isDoubleTy();
1556 case IITDescriptor::Quad: return !Ty->isFP128Ty();
1557 case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
1558 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1559 case IITDescriptor::Vector: {
1560 VectorType *VT = dyn_cast<VectorType>(Ty);
1561 return !VT || VT->getElementCount() != D.Vector_Width ||
1562 matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1563 DeferredChecks, IsDeferredCheck);
1564 }
1565 case IITDescriptor::Pointer: {
1566 PointerType *PT = dyn_cast<PointerType>(Ty);
1567 if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace)
1568 return true;
1569 if (!PT->isOpaque()) {
1570 /* Manually consume a pointer to empty struct descriptor, which is
1571 * used for externref. We don't want to enforce that the struct is
1572 * anonymous in this case. (This renders externref intrinsics
1573 * non-unique, but this will go away with opaque pointers anyway.) */
1574 if (Infos.front().Kind == IITDescriptor::Struct &&
1575 Infos.front().Struct_NumElements == 0) {
1576 Infos = Infos.slice(1);
1577 return false;
1578 }
1579 return matchIntrinsicType(PT->getNonOpaquePointerElementType(), Infos,
1580 ArgTys, DeferredChecks, IsDeferredCheck);
1581 }
1582 // Consume IIT descriptors relating to the pointer element type.
1583 // FIXME: Intrinsic type matching of nested single value types or even
1584 // aggregates doesn't work properly with opaque pointers but hopefully
1585 // doesn't happen in practice.
1586 while (Infos.front().Kind == IITDescriptor::Pointer ||
1587 Infos.front().Kind == IITDescriptor::Vector)
1588 Infos = Infos.slice(1);
1589 assert((Infos.front().Kind != IITDescriptor::Argument ||
1590 Infos.front().getArgumentKind() == IITDescriptor::AK_MatchType) &&
1591 "Unsupported polymorphic pointer type with opaque pointer");
1592 Infos = Infos.slice(1);
1593 return false;
1594 }
1595
1596 case IITDescriptor::Struct: {
1597 StructType *ST = dyn_cast<StructType>(Ty);
1598 if (!ST || !ST->isLiteral() || ST->isPacked() ||
1599 ST->getNumElements() != D.Struct_NumElements)
1600 return true;
1601
1602 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1603 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1604 DeferredChecks, IsDeferredCheck))
1605 return true;
1606 return false;
1607 }
1608
1609 case IITDescriptor::Argument:
1610 // If this is the second occurrence of an argument,
1611 // verify that the later instance matches the previous instance.
1612 if (D.getArgumentNumber() < ArgTys.size())
1613 return Ty != ArgTys[D.getArgumentNumber()];
1614
1615 if (D.getArgumentNumber() > ArgTys.size() ||
1616 D.getArgumentKind() == IITDescriptor::AK_MatchType)
1617 return IsDeferredCheck || DeferCheck(Ty);
1618
1619 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1620 "Table consistency error");
1621 ArgTys.push_back(Ty);
1622
1623 switch (D.getArgumentKind()) {
1624 case IITDescriptor::AK_Any: return false; // Success
1625 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1626 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
1627 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
1628 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1629 default: break;
1630 }
1631 llvm_unreachable("all argument kinds not covered");
1632
1633 case IITDescriptor::ExtendArgument: {
1634 // If this is a forward reference, defer the check for later.
1635 if (D.getArgumentNumber() >= ArgTys.size())
1636 return IsDeferredCheck || DeferCheck(Ty);
1637
1638 Type *NewTy = ArgTys[D.getArgumentNumber()];
1639 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1640 NewTy = VectorType::getExtendedElementVectorType(VTy);
1641 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1642 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1643 else
1644 return true;
1645
1646 return Ty != NewTy;
1647 }
1648 case IITDescriptor::TruncArgument: {
1649 // If this is a forward reference, defer the check for later.
1650 if (D.getArgumentNumber() >= ArgTys.size())
1651 return IsDeferredCheck || DeferCheck(Ty);
1652
1653 Type *NewTy = ArgTys[D.getArgumentNumber()];
1654 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1655 NewTy = VectorType::getTruncatedElementVectorType(VTy);
1656 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1657 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1658 else
1659 return true;
1660
1661 return Ty != NewTy;
1662 }
1663 case IITDescriptor::HalfVecArgument:
1664 // If this is a forward reference, defer the check for later.
1665 if (D.getArgumentNumber() >= ArgTys.size())
1666 return IsDeferredCheck || DeferCheck(Ty);
1667 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1668 VectorType::getHalfElementsVectorType(
1669 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1670 case IITDescriptor::SameVecWidthArgument: {
1671 if (D.getArgumentNumber() >= ArgTys.size()) {
1672 // Defer check and subsequent check for the vector element type.
1673 Infos = Infos.slice(1);
1674 return IsDeferredCheck || DeferCheck(Ty);
1675 }
1676 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1677 auto *ThisArgType = dyn_cast<VectorType>(Ty);
1678 // Both must be vectors of the same number of elements or neither.
1679 if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1680 return true;
1681 Type *EltTy = Ty;
1682 if (ThisArgType) {
1683 if (ReferenceType->getElementCount() !=
1684 ThisArgType->getElementCount())
1685 return true;
1686 EltTy = ThisArgType->getElementType();
1687 }
1688 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1689 IsDeferredCheck);
1690 }
1691 case IITDescriptor::PtrToArgument: {
1692 if (D.getArgumentNumber() >= ArgTys.size())
1693 return IsDeferredCheck || DeferCheck(Ty);
1694 Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1695 PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1696 return (!ThisArgType ||
1697 !ThisArgType->isOpaqueOrPointeeTypeMatches(ReferenceType));
1698 }
1699 case IITDescriptor::PtrToElt: {
1700 if (D.getArgumentNumber() >= ArgTys.size())
1701 return IsDeferredCheck || DeferCheck(Ty);
1702 VectorType * ReferenceType =
1703 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1704 PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1705
1706 if (!ThisArgType || !ReferenceType)
1707 return true;
1708 return !ThisArgType->isOpaqueOrPointeeTypeMatches(
1709 ReferenceType->getElementType());
1710 }
1711 case IITDescriptor::AnyPtrToElt: {
1712 unsigned RefArgNumber = D.getRefArgNumber();
1713 if (RefArgNumber >= ArgTys.size()) {
1714 if (IsDeferredCheck)
1715 return true;
1716 // If forward referencing, already add the pointer type and
1717 // defer the checks for later.
1718 ArgTys.push_back(Ty);
1719 return DeferCheck(Ty);
1720 }
1721
1722 if (!IsDeferredCheck) {
1723 assert(D.getOverloadArgNumber() == ArgTys.size() &&
1724 "Table consistency error");
1725 ArgTys.push_back(Ty);
1726 }
1727
1728 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1729 auto *ThisArgType = dyn_cast<PointerType>(Ty);
1730 if (!ThisArgType || !ReferenceType)
1731 return true;
1732 return !ThisArgType->isOpaqueOrPointeeTypeMatches(
1733 ReferenceType->getElementType());
1734 }
1735 case IITDescriptor::VecOfAnyPtrsToElt: {
1736 unsigned RefArgNumber = D.getRefArgNumber();
1737 if (RefArgNumber >= ArgTys.size()) {
1738 if (IsDeferredCheck)
1739 return true;
1740 // If forward referencing, already add the pointer-vector type and
1741 // defer the checks for later.
1742 ArgTys.push_back(Ty);
1743 return DeferCheck(Ty);
1744 }
1745
1746 if (!IsDeferredCheck){
1747 assert(D.getOverloadArgNumber() == ArgTys.size() &&
1748 "Table consistency error");
1749 ArgTys.push_back(Ty);
1750 }
1751
1752 // Verify the overloaded type "matches" the Ref type.
1753 // i.e. Ty is a vector with the same width as Ref.
1754 // Composed of pointers to the same element type as Ref.
1755 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1756 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1757 if (!ThisArgVecTy || !ReferenceType ||
1758 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1759 return true;
1760 PointerType *ThisArgEltTy =
1761 dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1762 if (!ThisArgEltTy)
1763 return true;
1764 return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches(
1765 ReferenceType->getElementType());
1766 }
1767 case IITDescriptor::VecElementArgument: {
1768 if (D.getArgumentNumber() >= ArgTys.size())
1769 return IsDeferredCheck ? true : DeferCheck(Ty);
1770 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1771 return !ReferenceType || Ty != ReferenceType->getElementType();
1772 }
1773 case IITDescriptor::Subdivide2Argument:
1774 case IITDescriptor::Subdivide4Argument: {
1775 // If this is a forward reference, defer the check for later.
1776 if (D.getArgumentNumber() >= ArgTys.size())
1777 return IsDeferredCheck || DeferCheck(Ty);
1778
1779 Type *NewTy = ArgTys[D.getArgumentNumber()];
1780 if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1781 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1782 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1783 return Ty != NewTy;
1784 }
1785 return true;
1786 }
1787 case IITDescriptor::VecOfBitcastsToInt: {
1788 if (D.getArgumentNumber() >= ArgTys.size())
1789 return IsDeferredCheck || DeferCheck(Ty);
1790 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1791 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1792 if (!ThisArgVecTy || !ReferenceType)
1793 return true;
1794 return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1795 }
1796 }
1797 llvm_unreachable("unhandled");
1798 }
1799
1800 Intrinsic::MatchIntrinsicTypesResult
matchIntrinsicSignature(FunctionType * FTy,ArrayRef<Intrinsic::IITDescriptor> & Infos,SmallVectorImpl<Type * > & ArgTys)1801 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1802 ArrayRef<Intrinsic::IITDescriptor> &Infos,
1803 SmallVectorImpl<Type *> &ArgTys) {
1804 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1805 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1806 false))
1807 return MatchIntrinsicTypes_NoMatchRet;
1808
1809 unsigned NumDeferredReturnChecks = DeferredChecks.size();
1810
1811 for (auto *Ty : FTy->params())
1812 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1813 return MatchIntrinsicTypes_NoMatchArg;
1814
1815 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1816 DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1817 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1818 true))
1819 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1820 : MatchIntrinsicTypes_NoMatchArg;
1821 }
1822
1823 return MatchIntrinsicTypes_Match;
1824 }
1825
1826 bool
matchIntrinsicVarArg(bool isVarArg,ArrayRef<Intrinsic::IITDescriptor> & Infos)1827 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1828 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1829 // If there are no descriptors left, then it can't be a vararg.
1830 if (Infos.empty())
1831 return isVarArg;
1832
1833 // There should be only one descriptor remaining at this point.
1834 if (Infos.size() != 1)
1835 return true;
1836
1837 // Check and verify the descriptor.
1838 IITDescriptor D = Infos.front();
1839 Infos = Infos.slice(1);
1840 if (D.Kind == IITDescriptor::VarArg)
1841 return !isVarArg;
1842
1843 return true;
1844 }
1845
getIntrinsicSignature(Function * F,SmallVectorImpl<Type * > & ArgTys)1846 bool Intrinsic::getIntrinsicSignature(Function *F,
1847 SmallVectorImpl<Type *> &ArgTys) {
1848 Intrinsic::ID ID = F->getIntrinsicID();
1849 if (!ID)
1850 return false;
1851
1852 SmallVector<Intrinsic::IITDescriptor, 8> Table;
1853 getIntrinsicInfoTableEntries(ID, Table);
1854 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1855
1856 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1857 ArgTys) !=
1858 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1859 return false;
1860 }
1861 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1862 TableRef))
1863 return false;
1864 return true;
1865 }
1866
remangleIntrinsicFunction(Function * F)1867 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1868 SmallVector<Type *, 4> ArgTys;
1869 if (!getIntrinsicSignature(F, ArgTys))
1870 return std::nullopt;
1871
1872 Intrinsic::ID ID = F->getIntrinsicID();
1873 StringRef Name = F->getName();
1874 std::string WantedName =
1875 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1876 if (Name == WantedName)
1877 return std::nullopt;
1878
1879 Function *NewDecl = [&] {
1880 if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1881 if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1882 if (ExistingF->getFunctionType() == F->getFunctionType())
1883 return ExistingF;
1884
1885 // The name already exists, but is not a function or has the wrong
1886 // prototype. Make place for the new one by renaming the old version.
1887 // Either this old version will be removed later on or the module is
1888 // invalid and we'll get an error.
1889 ExistingGV->setName(WantedName + ".renamed");
1890 }
1891 return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1892 }();
1893
1894 NewDecl->setCallingConv(F->getCallingConv());
1895 assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1896 "Shouldn't change the signature");
1897 return NewDecl;
1898 }
1899
1900 /// hasAddressTaken - returns true if there are any uses of this function
1901 /// other than direct calls or invokes to it. Optionally ignores callback
1902 /// uses, assume like pointer annotation calls, and references in llvm.used
1903 /// and llvm.compiler.used variables.
hasAddressTaken(const User ** PutOffender,bool IgnoreCallbackUses,bool IgnoreAssumeLikeCalls,bool IgnoreLLVMUsed,bool IgnoreARCAttachedCall) const1904 bool Function::hasAddressTaken(const User **PutOffender,
1905 bool IgnoreCallbackUses,
1906 bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1907 bool IgnoreARCAttachedCall) const {
1908 for (const Use &U : uses()) {
1909 const User *FU = U.getUser();
1910 if (isa<BlockAddress>(FU))
1911 continue;
1912
1913 if (IgnoreCallbackUses) {
1914 AbstractCallSite ACS(&U);
1915 if (ACS && ACS.isCallbackCall())
1916 continue;
1917 }
1918
1919 const auto *Call = dyn_cast<CallBase>(FU);
1920 if (!Call) {
1921 if (IgnoreAssumeLikeCalls &&
1922 isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1923 all_of(FU->users(), [](const User *U) {
1924 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1925 return I->isAssumeLikeIntrinsic();
1926 return false;
1927 })) {
1928 continue;
1929 }
1930
1931 if (IgnoreLLVMUsed && !FU->user_empty()) {
1932 const User *FUU = FU;
1933 if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1934 FU->hasOneUse() && !FU->user_begin()->user_empty())
1935 FUU = *FU->user_begin();
1936 if (llvm::all_of(FUU->users(), [](const User *U) {
1937 if (const auto *GV = dyn_cast<GlobalVariable>(U))
1938 return GV->hasName() &&
1939 (GV->getName().equals("llvm.compiler.used") ||
1940 GV->getName().equals("llvm.used"));
1941 return false;
1942 }))
1943 continue;
1944 }
1945 if (PutOffender)
1946 *PutOffender = FU;
1947 return true;
1948 }
1949
1950 if (IgnoreAssumeLikeCalls) {
1951 if (const auto *I = dyn_cast<IntrinsicInst>(Call))
1952 if (I->isAssumeLikeIntrinsic())
1953 continue;
1954 }
1955
1956 if (!Call->isCallee(&U) || Call->getFunctionType() != getFunctionType()) {
1957 if (IgnoreARCAttachedCall &&
1958 Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
1959 U.getOperandNo()))
1960 continue;
1961
1962 if (PutOffender)
1963 *PutOffender = FU;
1964 return true;
1965 }
1966 }
1967 return false;
1968 }
1969
isDefTriviallyDead() const1970 bool Function::isDefTriviallyDead() const {
1971 // Check the linkage
1972 if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1973 !hasAvailableExternallyLinkage())
1974 return false;
1975
1976 // Check if the function is used by anything other than a blockaddress.
1977 for (const User *U : users())
1978 if (!isa<BlockAddress>(U))
1979 return false;
1980
1981 return true;
1982 }
1983
1984 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1985 /// setjmp or other function that gcc recognizes as "returning twice".
callsFunctionThatReturnsTwice() const1986 bool Function::callsFunctionThatReturnsTwice() const {
1987 for (const Instruction &I : instructions(this))
1988 if (const auto *Call = dyn_cast<CallBase>(&I))
1989 if (Call->hasFnAttr(Attribute::ReturnsTwice))
1990 return true;
1991
1992 return false;
1993 }
1994
getPersonalityFn() const1995 Constant *Function::getPersonalityFn() const {
1996 assert(hasPersonalityFn() && getNumOperands());
1997 return cast<Constant>(Op<0>());
1998 }
1999
setPersonalityFn(Constant * Fn)2000 void Function::setPersonalityFn(Constant *Fn) {
2001 setHungoffOperand<0>(Fn);
2002 setValueSubclassDataBit(3, Fn != nullptr);
2003 }
2004
getPrefixData() const2005 Constant *Function::getPrefixData() const {
2006 assert(hasPrefixData() && getNumOperands());
2007 return cast<Constant>(Op<1>());
2008 }
2009
setPrefixData(Constant * PrefixData)2010 void Function::setPrefixData(Constant *PrefixData) {
2011 setHungoffOperand<1>(PrefixData);
2012 setValueSubclassDataBit(1, PrefixData != nullptr);
2013 }
2014
getPrologueData() const2015 Constant *Function::getPrologueData() const {
2016 assert(hasPrologueData() && getNumOperands());
2017 return cast<Constant>(Op<2>());
2018 }
2019
setPrologueData(Constant * PrologueData)2020 void Function::setPrologueData(Constant *PrologueData) {
2021 setHungoffOperand<2>(PrologueData);
2022 setValueSubclassDataBit(2, PrologueData != nullptr);
2023 }
2024
allocHungoffUselist()2025 void Function::allocHungoffUselist() {
2026 // If we've already allocated a uselist, stop here.
2027 if (getNumOperands())
2028 return;
2029
2030 allocHungoffUses(3, /*IsPhi=*/ false);
2031 setNumHungOffUseOperands(3);
2032
2033 // Initialize the uselist with placeholder operands to allow traversal.
2034 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
2035 Op<0>().set(CPN);
2036 Op<1>().set(CPN);
2037 Op<2>().set(CPN);
2038 }
2039
2040 template <int Idx>
setHungoffOperand(Constant * C)2041 void Function::setHungoffOperand(Constant *C) {
2042 if (C) {
2043 allocHungoffUselist();
2044 Op<Idx>().set(C);
2045 } else if (getNumOperands()) {
2046 Op<Idx>().set(
2047 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
2048 }
2049 }
2050
setValueSubclassDataBit(unsigned Bit,bool On)2051 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
2052 assert(Bit < 16 && "SubclassData contains only 16 bits");
2053 if (On)
2054 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
2055 else
2056 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
2057 }
2058
setEntryCount(ProfileCount Count,const DenseSet<GlobalValue::GUID> * S)2059 void Function::setEntryCount(ProfileCount Count,
2060 const DenseSet<GlobalValue::GUID> *S) {
2061 #if !defined(NDEBUG)
2062 auto PrevCount = getEntryCount();
2063 assert(!PrevCount || PrevCount->getType() == Count.getType());
2064 #endif
2065
2066 auto ImportGUIDs = getImportGUIDs();
2067 if (S == nullptr && ImportGUIDs.size())
2068 S = &ImportGUIDs;
2069
2070 MDBuilder MDB(getContext());
2071 setMetadata(
2072 LLVMContext::MD_prof,
2073 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
2074 }
2075
setEntryCount(uint64_t Count,Function::ProfileCountType Type,const DenseSet<GlobalValue::GUID> * Imports)2076 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
2077 const DenseSet<GlobalValue::GUID> *Imports) {
2078 setEntryCount(ProfileCount(Count, Type), Imports);
2079 }
2080
getEntryCount(bool AllowSynthetic) const2081 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
2082 MDNode *MD = getMetadata(LLVMContext::MD_prof);
2083 if (MD && MD->getOperand(0))
2084 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
2085 if (MDS->getString().equals("function_entry_count")) {
2086 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2087 uint64_t Count = CI->getValue().getZExtValue();
2088 // A value of -1 is used for SamplePGO when there were no samples.
2089 // Treat this the same as unknown.
2090 if (Count == (uint64_t)-1)
2091 return std::nullopt;
2092 return ProfileCount(Count, PCT_Real);
2093 } else if (AllowSynthetic &&
2094 MDS->getString().equals("synthetic_function_entry_count")) {
2095 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2096 uint64_t Count = CI->getValue().getZExtValue();
2097 return ProfileCount(Count, PCT_Synthetic);
2098 }
2099 }
2100 return std::nullopt;
2101 }
2102
getImportGUIDs() const2103 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
2104 DenseSet<GlobalValue::GUID> R;
2105 if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
2106 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
2107 if (MDS->getString().equals("function_entry_count"))
2108 for (unsigned i = 2; i < MD->getNumOperands(); i++)
2109 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
2110 ->getValue()
2111 .getZExtValue());
2112 return R;
2113 }
2114
setSectionPrefix(StringRef Prefix)2115 void Function::setSectionPrefix(StringRef Prefix) {
2116 MDBuilder MDB(getContext());
2117 setMetadata(LLVMContext::MD_section_prefix,
2118 MDB.createFunctionSectionPrefix(Prefix));
2119 }
2120
getSectionPrefix() const2121 std::optional<StringRef> Function::getSectionPrefix() const {
2122 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
2123 assert(cast<MDString>(MD->getOperand(0))
2124 ->getString()
2125 .equals("function_section_prefix") &&
2126 "Metadata not match");
2127 return cast<MDString>(MD->getOperand(1))->getString();
2128 }
2129 return std::nullopt;
2130 }
2131
nullPointerIsDefined() const2132 bool Function::nullPointerIsDefined() const {
2133 return hasFnAttribute(Attribute::NullPointerIsValid);
2134 }
2135
NullPointerIsDefined(const Function * F,unsigned AS)2136 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
2137 if (F && F->nullPointerIsDefined())
2138 return true;
2139
2140 if (AS != 0)
2141 return true;
2142
2143 return false;
2144 }
2145