1 //===- ThreadSafetyCommon.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the interfaces declared in ThreadSafetyCommon.h
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
14 #include "clang/AST/Attr.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclGroup.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/OperationKinds.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/Type.h"
24 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
25 #include "clang/Analysis/CFG.h"
26 #include "clang/Basic/LLVM.h"
27 #include "clang/Basic/OperatorKinds.h"
28 #include "clang/Basic/Specifiers.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Support/Casting.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <string>
35 #include <utility>
36 
37 using namespace clang;
38 using namespace threadSafety;
39 
40 // From ThreadSafetyUtil.h
getSourceLiteralString(const Expr * CE)41 std::string threadSafety::getSourceLiteralString(const Expr *CE) {
42   switch (CE->getStmtClass()) {
43     case Stmt::IntegerLiteralClass:
44       return toString(cast<IntegerLiteral>(CE)->getValue(), 10, true);
45     case Stmt::StringLiteralClass: {
46       std::string ret("\"");
47       ret += cast<StringLiteral>(CE)->getString();
48       ret += "\"";
49       return ret;
50     }
51     case Stmt::CharacterLiteralClass:
52     case Stmt::CXXNullPtrLiteralExprClass:
53     case Stmt::GNUNullExprClass:
54     case Stmt::CXXBoolLiteralExprClass:
55     case Stmt::FloatingLiteralClass:
56     case Stmt::ImaginaryLiteralClass:
57     case Stmt::ObjCStringLiteralClass:
58     default:
59       return "#lit";
60   }
61 }
62 
63 // Return true if E is a variable that points to an incomplete Phi node.
isIncompletePhi(const til::SExpr * E)64 static bool isIncompletePhi(const til::SExpr *E) {
65   if (const auto *Ph = dyn_cast<til::Phi>(E))
66     return Ph->status() == til::Phi::PH_Incomplete;
67   return false;
68 }
69 
70 using CallingContext = SExprBuilder::CallingContext;
71 
lookupStmt(const Stmt * S)72 til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) {
73   auto It = SMap.find(S);
74   if (It != SMap.end())
75     return It->second;
76   return nullptr;
77 }
78 
buildCFG(CFGWalker & Walker)79 til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) {
80   Walker.walk(*this);
81   return Scfg;
82 }
83 
isCalleeArrow(const Expr * E)84 static bool isCalleeArrow(const Expr *E) {
85   const auto *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
86   return ME ? ME->isArrow() : false;
87 }
88 
ClassifyDiagnostic(const CapabilityAttr * A)89 static StringRef ClassifyDiagnostic(const CapabilityAttr *A) {
90   return A->getName();
91 }
92 
ClassifyDiagnostic(QualType VDT)93 static StringRef ClassifyDiagnostic(QualType VDT) {
94   // We need to look at the declaration of the type of the value to determine
95   // which it is. The type should either be a record or a typedef, or a pointer
96   // or reference thereof.
97   if (const auto *RT = VDT->getAs<RecordType>()) {
98     if (const auto *RD = RT->getDecl())
99       if (const auto *CA = RD->getAttr<CapabilityAttr>())
100         return ClassifyDiagnostic(CA);
101   } else if (const auto *TT = VDT->getAs<TypedefType>()) {
102     if (const auto *TD = TT->getDecl())
103       if (const auto *CA = TD->getAttr<CapabilityAttr>())
104         return ClassifyDiagnostic(CA);
105   } else if (VDT->isPointerType() || VDT->isReferenceType())
106     return ClassifyDiagnostic(VDT->getPointeeType());
107 
108   return "mutex";
109 }
110 
111 /// Translate a clang expression in an attribute to a til::SExpr.
112 /// Constructs the context from D, DeclExp, and SelfDecl.
113 ///
114 /// \param AttrExp The expression to translate.
115 /// \param D       The declaration to which the attribute is attached.
116 /// \param DeclExp An expression involving the Decl to which the attribute
117 ///                is attached.  E.g. the call to a function.
118 /// \param Self    S-expression to substitute for a \ref CXXThisExpr.
translateAttrExpr(const Expr * AttrExp,const NamedDecl * D,const Expr * DeclExp,til::SExpr * Self)119 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
120                                                const NamedDecl *D,
121                                                const Expr *DeclExp,
122                                                til::SExpr *Self) {
123   // If we are processing a raw attribute expression, with no substitutions.
124   if (!DeclExp && !Self)
125     return translateAttrExpr(AttrExp, nullptr);
126 
127   CallingContext Ctx(nullptr, D);
128 
129   // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
130   // for formal parameters when we call buildMutexID later.
131   if (!DeclExp)
132     /* We'll use Self. */;
133   else if (const auto *ME = dyn_cast<MemberExpr>(DeclExp)) {
134     Ctx.SelfArg   = ME->getBase();
135     Ctx.SelfArrow = ME->isArrow();
136   } else if (const auto *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
137     Ctx.SelfArg   = CE->getImplicitObjectArgument();
138     Ctx.SelfArrow = isCalleeArrow(CE->getCallee());
139     Ctx.NumArgs   = CE->getNumArgs();
140     Ctx.FunArgs   = CE->getArgs();
141   } else if (const auto *CE = dyn_cast<CallExpr>(DeclExp)) {
142     Ctx.NumArgs = CE->getNumArgs();
143     Ctx.FunArgs = CE->getArgs();
144   } else if (const auto *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
145     Ctx.SelfArg = nullptr;  // Will be set below
146     Ctx.NumArgs = CE->getNumArgs();
147     Ctx.FunArgs = CE->getArgs();
148   }
149 
150   if (Self) {
151     assert(!Ctx.SelfArg && "Ambiguous self argument");
152     Ctx.SelfArg = Self;
153 
154     // If the attribute has no arguments, then assume the argument is "this".
155     if (!AttrExp)
156       return CapabilityExpr(
157           Self, ClassifyDiagnostic(cast<CXXMethodDecl>(D)->getThisObjectType()),
158           false);
159     else  // For most attributes.
160       return translateAttrExpr(AttrExp, &Ctx);
161   }
162 
163   // If the attribute has no arguments, then assume the argument is "this".
164   if (!AttrExp)
165     return translateAttrExpr(cast<const Expr *>(Ctx.SelfArg), nullptr);
166   else  // For most attributes.
167     return translateAttrExpr(AttrExp, &Ctx);
168 }
169 
170 /// Translate a clang expression in an attribute to a til::SExpr.
171 // This assumes a CallingContext has already been created.
translateAttrExpr(const Expr * AttrExp,CallingContext * Ctx)172 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
173                                                CallingContext *Ctx) {
174   if (!AttrExp)
175     return CapabilityExpr();
176 
177   if (const auto* SLit = dyn_cast<StringLiteral>(AttrExp)) {
178     if (SLit->getString() == StringRef("*"))
179       // The "*" expr is a universal lock, which essentially turns off
180       // checks until it is removed from the lockset.
181       return CapabilityExpr(new (Arena) til::Wildcard(), StringRef("wildcard"),
182                             false);
183     else
184       // Ignore other string literals for now.
185       return CapabilityExpr();
186   }
187 
188   bool Neg = false;
189   if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) {
190     if (OE->getOperator() == OO_Exclaim) {
191       Neg = true;
192       AttrExp = OE->getArg(0);
193     }
194   }
195   else if (const auto *UO = dyn_cast<UnaryOperator>(AttrExp)) {
196     if (UO->getOpcode() == UO_LNot) {
197       Neg = true;
198       AttrExp = UO->getSubExpr();
199     }
200   }
201 
202   til::SExpr *E = translate(AttrExp, Ctx);
203 
204   // Trap mutex expressions like nullptr, or 0.
205   // Any literal value is nonsense.
206   if (!E || isa<til::Literal>(E))
207     return CapabilityExpr();
208 
209   StringRef Kind = ClassifyDiagnostic(AttrExp->getType());
210 
211   // Hack to deal with smart pointers -- strip off top-level pointer casts.
212   if (const auto *CE = dyn_cast<til::Cast>(E)) {
213     if (CE->castOpcode() == til::CAST_objToPtr)
214       return CapabilityExpr(CE->expr(), Kind, Neg);
215   }
216   return CapabilityExpr(E, Kind, Neg);
217 }
218 
createVariable(const VarDecl * VD)219 til::LiteralPtr *SExprBuilder::createVariable(const VarDecl *VD) {
220   return new (Arena) til::LiteralPtr(VD);
221 }
222 
223 std::pair<til::LiteralPtr *, StringRef>
createThisPlaceholder(const Expr * Exp)224 SExprBuilder::createThisPlaceholder(const Expr *Exp) {
225   return {new (Arena) til::LiteralPtr(nullptr),
226           ClassifyDiagnostic(Exp->getType())};
227 }
228 
229 // Translate a clang statement or expression to a TIL expression.
230 // Also performs substitution of variables; Ctx provides the context.
231 // Dispatches on the type of S.
translate(const Stmt * S,CallingContext * Ctx)232 til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) {
233   if (!S)
234     return nullptr;
235 
236   // Check if S has already been translated and cached.
237   // This handles the lookup of SSA names for DeclRefExprs here.
238   if (til::SExpr *E = lookupStmt(S))
239     return E;
240 
241   switch (S->getStmtClass()) {
242   case Stmt::DeclRefExprClass:
243     return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx);
244   case Stmt::CXXThisExprClass:
245     return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx);
246   case Stmt::MemberExprClass:
247     return translateMemberExpr(cast<MemberExpr>(S), Ctx);
248   case Stmt::ObjCIvarRefExprClass:
249     return translateObjCIVarRefExpr(cast<ObjCIvarRefExpr>(S), Ctx);
250   case Stmt::CallExprClass:
251     return translateCallExpr(cast<CallExpr>(S), Ctx);
252   case Stmt::CXXMemberCallExprClass:
253     return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx);
254   case Stmt::CXXOperatorCallExprClass:
255     return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx);
256   case Stmt::UnaryOperatorClass:
257     return translateUnaryOperator(cast<UnaryOperator>(S), Ctx);
258   case Stmt::BinaryOperatorClass:
259   case Stmt::CompoundAssignOperatorClass:
260     return translateBinaryOperator(cast<BinaryOperator>(S), Ctx);
261 
262   case Stmt::ArraySubscriptExprClass:
263     return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
264   case Stmt::ConditionalOperatorClass:
265     return translateAbstractConditionalOperator(
266              cast<ConditionalOperator>(S), Ctx);
267   case Stmt::BinaryConditionalOperatorClass:
268     return translateAbstractConditionalOperator(
269              cast<BinaryConditionalOperator>(S), Ctx);
270 
271   // We treat these as no-ops
272   case Stmt::ConstantExprClass:
273     return translate(cast<ConstantExpr>(S)->getSubExpr(), Ctx);
274   case Stmt::ParenExprClass:
275     return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx);
276   case Stmt::ExprWithCleanupsClass:
277     return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx);
278   case Stmt::CXXBindTemporaryExprClass:
279     return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx);
280   case Stmt::MaterializeTemporaryExprClass:
281     return translate(cast<MaterializeTemporaryExpr>(S)->getSubExpr(), Ctx);
282 
283   // Collect all literals
284   case Stmt::CharacterLiteralClass:
285   case Stmt::CXXNullPtrLiteralExprClass:
286   case Stmt::GNUNullExprClass:
287   case Stmt::CXXBoolLiteralExprClass:
288   case Stmt::FloatingLiteralClass:
289   case Stmt::ImaginaryLiteralClass:
290   case Stmt::IntegerLiteralClass:
291   case Stmt::StringLiteralClass:
292   case Stmt::ObjCStringLiteralClass:
293     return new (Arena) til::Literal(cast<Expr>(S));
294 
295   case Stmt::DeclStmtClass:
296     return translateDeclStmt(cast<DeclStmt>(S), Ctx);
297   default:
298     break;
299   }
300   if (const auto *CE = dyn_cast<CastExpr>(S))
301     return translateCastExpr(CE, Ctx);
302 
303   return new (Arena) til::Undefined(S);
304 }
305 
translateDeclRefExpr(const DeclRefExpr * DRE,CallingContext * Ctx)306 til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
307                                                CallingContext *Ctx) {
308   const auto *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
309 
310   // Function parameters require substitution and/or renaming.
311   if (const auto *PV = dyn_cast<ParmVarDecl>(VD)) {
312     unsigned I = PV->getFunctionScopeIndex();
313     const DeclContext *D = PV->getDeclContext();
314     if (Ctx && Ctx->FunArgs) {
315       const Decl *Canonical = Ctx->AttrDecl->getCanonicalDecl();
316       if (isa<FunctionDecl>(D)
317               ? (cast<FunctionDecl>(D)->getCanonicalDecl() == Canonical)
318               : (cast<ObjCMethodDecl>(D)->getCanonicalDecl() == Canonical)) {
319         // Substitute call arguments for references to function parameters
320         assert(I < Ctx->NumArgs);
321         return translate(Ctx->FunArgs[I], Ctx->Prev);
322       }
323     }
324     // Map the param back to the param of the original function declaration
325     // for consistent comparisons.
326     VD = isa<FunctionDecl>(D)
327              ? cast<FunctionDecl>(D)->getCanonicalDecl()->getParamDecl(I)
328              : cast<ObjCMethodDecl>(D)->getCanonicalDecl()->getParamDecl(I);
329   }
330 
331   // For non-local variables, treat it as a reference to a named object.
332   return new (Arena) til::LiteralPtr(VD);
333 }
334 
translateCXXThisExpr(const CXXThisExpr * TE,CallingContext * Ctx)335 til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE,
336                                                CallingContext *Ctx) {
337   // Substitute for 'this'
338   if (Ctx && Ctx->SelfArg) {
339     if (const auto *SelfArg = dyn_cast<const Expr *>(Ctx->SelfArg))
340       return translate(SelfArg, Ctx->Prev);
341     else
342       return cast<til::SExpr *>(Ctx->SelfArg);
343   }
344   assert(SelfVar && "We have no variable for 'this'!");
345   return SelfVar;
346 }
347 
getValueDeclFromSExpr(const til::SExpr * E)348 static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {
349   if (const auto *V = dyn_cast<til::Variable>(E))
350     return V->clangDecl();
351   if (const auto *Ph = dyn_cast<til::Phi>(E))
352     return Ph->clangDecl();
353   if (const auto *P = dyn_cast<til::Project>(E))
354     return P->clangDecl();
355   if (const auto *L = dyn_cast<til::LiteralPtr>(E))
356     return L->clangDecl();
357   return nullptr;
358 }
359 
hasAnyPointerType(const til::SExpr * E)360 static bool hasAnyPointerType(const til::SExpr *E) {
361   auto *VD = getValueDeclFromSExpr(E);
362   if (VD && VD->getType()->isAnyPointerType())
363     return true;
364   if (const auto *C = dyn_cast<til::Cast>(E))
365     return C->castOpcode() == til::CAST_objToPtr;
366 
367   return false;
368 }
369 
370 // Grab the very first declaration of virtual method D
getFirstVirtualDecl(const CXXMethodDecl * D)371 static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) {
372   while (true) {
373     D = D->getCanonicalDecl();
374     auto OverriddenMethods = D->overridden_methods();
375     if (OverriddenMethods.begin() == OverriddenMethods.end())
376       return D;  // Method does not override anything
377     // FIXME: this does not work with multiple inheritance.
378     D = *OverriddenMethods.begin();
379   }
380   return nullptr;
381 }
382 
translateMemberExpr(const MemberExpr * ME,CallingContext * Ctx)383 til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
384                                               CallingContext *Ctx) {
385   til::SExpr *BE = translate(ME->getBase(), Ctx);
386   til::SExpr *E  = new (Arena) til::SApply(BE);
387 
388   const auto *D = cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
389   if (const auto *VD = dyn_cast<CXXMethodDecl>(D))
390     D = getFirstVirtualDecl(VD);
391 
392   til::Project *P = new (Arena) til::Project(E, D);
393   if (hasAnyPointerType(BE))
394     P->setArrow(true);
395   return P;
396 }
397 
translateObjCIVarRefExpr(const ObjCIvarRefExpr * IVRE,CallingContext * Ctx)398 til::SExpr *SExprBuilder::translateObjCIVarRefExpr(const ObjCIvarRefExpr *IVRE,
399                                                    CallingContext *Ctx) {
400   til::SExpr *BE = translate(IVRE->getBase(), Ctx);
401   til::SExpr *E = new (Arena) til::SApply(BE);
402 
403   const auto *D = cast<ObjCIvarDecl>(IVRE->getDecl()->getCanonicalDecl());
404 
405   til::Project *P = new (Arena) til::Project(E, D);
406   if (hasAnyPointerType(BE))
407     P->setArrow(true);
408   return P;
409 }
410 
translateCallExpr(const CallExpr * CE,CallingContext * Ctx,const Expr * SelfE)411 til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
412                                             CallingContext *Ctx,
413                                             const Expr *SelfE) {
414   if (CapabilityExprMode) {
415     // Handle LOCK_RETURNED
416     if (const FunctionDecl *FD = CE->getDirectCallee()) {
417       FD = FD->getMostRecentDecl();
418       if (LockReturnedAttr *At = FD->getAttr<LockReturnedAttr>()) {
419         CallingContext LRCallCtx(Ctx);
420         LRCallCtx.AttrDecl = CE->getDirectCallee();
421         LRCallCtx.SelfArg = SelfE;
422         LRCallCtx.NumArgs = CE->getNumArgs();
423         LRCallCtx.FunArgs = CE->getArgs();
424         return const_cast<til::SExpr *>(
425             translateAttrExpr(At->getArg(), &LRCallCtx).sexpr());
426       }
427     }
428   }
429 
430   til::SExpr *E = translate(CE->getCallee(), Ctx);
431   for (const auto *Arg : CE->arguments()) {
432     til::SExpr *A = translate(Arg, Ctx);
433     E = new (Arena) til::Apply(E, A);
434   }
435   return new (Arena) til::Call(E, CE);
436 }
437 
translateCXXMemberCallExpr(const CXXMemberCallExpr * ME,CallingContext * Ctx)438 til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
439     const CXXMemberCallExpr *ME, CallingContext *Ctx) {
440   if (CapabilityExprMode) {
441     // Ignore calls to get() on smart pointers.
442     if (ME->getMethodDecl()->getNameAsString() == "get" &&
443         ME->getNumArgs() == 0) {
444       auto *E = translate(ME->getImplicitObjectArgument(), Ctx);
445       return new (Arena) til::Cast(til::CAST_objToPtr, E);
446       // return E;
447     }
448   }
449   return translateCallExpr(cast<CallExpr>(ME), Ctx,
450                            ME->getImplicitObjectArgument());
451 }
452 
translateCXXOperatorCallExpr(const CXXOperatorCallExpr * OCE,CallingContext * Ctx)453 til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
454     const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
455   if (CapabilityExprMode) {
456     // Ignore operator * and operator -> on smart pointers.
457     OverloadedOperatorKind k = OCE->getOperator();
458     if (k == OO_Star || k == OO_Arrow) {
459       auto *E = translate(OCE->getArg(0), Ctx);
460       return new (Arena) til::Cast(til::CAST_objToPtr, E);
461       // return E;
462     }
463   }
464   return translateCallExpr(cast<CallExpr>(OCE), Ctx);
465 }
466 
translateUnaryOperator(const UnaryOperator * UO,CallingContext * Ctx)467 til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO,
468                                                  CallingContext *Ctx) {
469   switch (UO->getOpcode()) {
470   case UO_PostInc:
471   case UO_PostDec:
472   case UO_PreInc:
473   case UO_PreDec:
474     return new (Arena) til::Undefined(UO);
475 
476   case UO_AddrOf:
477     if (CapabilityExprMode) {
478       // interpret &Graph::mu_ as an existential.
479       if (const auto *DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) {
480         if (DRE->getDecl()->isCXXInstanceMember()) {
481           // This is a pointer-to-member expression, e.g. &MyClass::mu_.
482           // We interpret this syntax specially, as a wildcard.
483           auto *W = new (Arena) til::Wildcard();
484           return new (Arena) til::Project(W, DRE->getDecl());
485         }
486       }
487     }
488     // otherwise, & is a no-op
489     return translate(UO->getSubExpr(), Ctx);
490 
491   // We treat these as no-ops
492   case UO_Deref:
493   case UO_Plus:
494     return translate(UO->getSubExpr(), Ctx);
495 
496   case UO_Minus:
497     return new (Arena)
498       til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx));
499   case UO_Not:
500     return new (Arena)
501       til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx));
502   case UO_LNot:
503     return new (Arena)
504       til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx));
505 
506   // Currently unsupported
507   case UO_Real:
508   case UO_Imag:
509   case UO_Extension:
510   case UO_Coawait:
511     return new (Arena) til::Undefined(UO);
512   }
513   return new (Arena) til::Undefined(UO);
514 }
515 
translateBinOp(til::TIL_BinaryOpcode Op,const BinaryOperator * BO,CallingContext * Ctx,bool Reverse)516 til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op,
517                                          const BinaryOperator *BO,
518                                          CallingContext *Ctx, bool Reverse) {
519    til::SExpr *E0 = translate(BO->getLHS(), Ctx);
520    til::SExpr *E1 = translate(BO->getRHS(), Ctx);
521    if (Reverse)
522      return new (Arena) til::BinaryOp(Op, E1, E0);
523    else
524      return new (Arena) til::BinaryOp(Op, E0, E1);
525 }
526 
translateBinAssign(til::TIL_BinaryOpcode Op,const BinaryOperator * BO,CallingContext * Ctx,bool Assign)527 til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op,
528                                              const BinaryOperator *BO,
529                                              CallingContext *Ctx,
530                                              bool Assign) {
531   const Expr *LHS = BO->getLHS();
532   const Expr *RHS = BO->getRHS();
533   til::SExpr *E0 = translate(LHS, Ctx);
534   til::SExpr *E1 = translate(RHS, Ctx);
535 
536   const ValueDecl *VD = nullptr;
537   til::SExpr *CV = nullptr;
538   if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
539     VD = DRE->getDecl();
540     CV = lookupVarDecl(VD);
541   }
542 
543   if (!Assign) {
544     til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0);
545     E1 = new (Arena) til::BinaryOp(Op, Arg, E1);
546     E1 = addStatement(E1, nullptr, VD);
547   }
548   if (VD && CV)
549     return updateVarDecl(VD, E1);
550   return new (Arena) til::Store(E0, E1);
551 }
552 
translateBinaryOperator(const BinaryOperator * BO,CallingContext * Ctx)553 til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO,
554                                                   CallingContext *Ctx) {
555   switch (BO->getOpcode()) {
556   case BO_PtrMemD:
557   case BO_PtrMemI:
558     return new (Arena) til::Undefined(BO);
559 
560   case BO_Mul:  return translateBinOp(til::BOP_Mul, BO, Ctx);
561   case BO_Div:  return translateBinOp(til::BOP_Div, BO, Ctx);
562   case BO_Rem:  return translateBinOp(til::BOP_Rem, BO, Ctx);
563   case BO_Add:  return translateBinOp(til::BOP_Add, BO, Ctx);
564   case BO_Sub:  return translateBinOp(til::BOP_Sub, BO, Ctx);
565   case BO_Shl:  return translateBinOp(til::BOP_Shl, BO, Ctx);
566   case BO_Shr:  return translateBinOp(til::BOP_Shr, BO, Ctx);
567   case BO_LT:   return translateBinOp(til::BOP_Lt,  BO, Ctx);
568   case BO_GT:   return translateBinOp(til::BOP_Lt,  BO, Ctx, true);
569   case BO_LE:   return translateBinOp(til::BOP_Leq, BO, Ctx);
570   case BO_GE:   return translateBinOp(til::BOP_Leq, BO, Ctx, true);
571   case BO_EQ:   return translateBinOp(til::BOP_Eq,  BO, Ctx);
572   case BO_NE:   return translateBinOp(til::BOP_Neq, BO, Ctx);
573   case BO_Cmp:  return translateBinOp(til::BOP_Cmp, BO, Ctx);
574   case BO_And:  return translateBinOp(til::BOP_BitAnd,   BO, Ctx);
575   case BO_Xor:  return translateBinOp(til::BOP_BitXor,   BO, Ctx);
576   case BO_Or:   return translateBinOp(til::BOP_BitOr,    BO, Ctx);
577   case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx);
578   case BO_LOr:  return translateBinOp(til::BOP_LogicOr,  BO, Ctx);
579 
580   case BO_Assign:    return translateBinAssign(til::BOP_Eq,  BO, Ctx, true);
581   case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx);
582   case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx);
583   case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx);
584   case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx);
585   case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx);
586   case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx);
587   case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx);
588   case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx);
589   case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx);
590   case BO_OrAssign:  return translateBinAssign(til::BOP_BitOr,  BO, Ctx);
591 
592   case BO_Comma:
593     // The clang CFG should have already processed both sides.
594     return translate(BO->getRHS(), Ctx);
595   }
596   return new (Arena) til::Undefined(BO);
597 }
598 
translateCastExpr(const CastExpr * CE,CallingContext * Ctx)599 til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE,
600                                             CallingContext *Ctx) {
601   CastKind K = CE->getCastKind();
602   switch (K) {
603   case CK_LValueToRValue: {
604     if (const auto *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
605       til::SExpr *E0 = lookupVarDecl(DRE->getDecl());
606       if (E0)
607         return E0;
608     }
609     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
610     return E0;
611     // FIXME!! -- get Load working properly
612     // return new (Arena) til::Load(E0);
613   }
614   case CK_NoOp:
615   case CK_DerivedToBase:
616   case CK_UncheckedDerivedToBase:
617   case CK_ArrayToPointerDecay:
618   case CK_FunctionToPointerDecay: {
619     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
620     return E0;
621   }
622   default: {
623     // FIXME: handle different kinds of casts.
624     til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
625     if (CapabilityExprMode)
626       return E0;
627     return new (Arena) til::Cast(til::CAST_none, E0);
628   }
629   }
630 }
631 
632 til::SExpr *
translateArraySubscriptExpr(const ArraySubscriptExpr * E,CallingContext * Ctx)633 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E,
634                                           CallingContext *Ctx) {
635   til::SExpr *E0 = translate(E->getBase(), Ctx);
636   til::SExpr *E1 = translate(E->getIdx(), Ctx);
637   return new (Arena) til::ArrayIndex(E0, E1);
638 }
639 
640 til::SExpr *
translateAbstractConditionalOperator(const AbstractConditionalOperator * CO,CallingContext * Ctx)641 SExprBuilder::translateAbstractConditionalOperator(
642     const AbstractConditionalOperator *CO, CallingContext *Ctx) {
643   auto *C = translate(CO->getCond(), Ctx);
644   auto *T = translate(CO->getTrueExpr(), Ctx);
645   auto *E = translate(CO->getFalseExpr(), Ctx);
646   return new (Arena) til::IfThenElse(C, T, E);
647 }
648 
649 til::SExpr *
translateDeclStmt(const DeclStmt * S,CallingContext * Ctx)650 SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) {
651   DeclGroupRef DGrp = S->getDeclGroup();
652   for (auto *I : DGrp) {
653     if (auto *VD = dyn_cast_or_null<VarDecl>(I)) {
654       Expr *E = VD->getInit();
655       til::SExpr* SE = translate(E, Ctx);
656 
657       // Add local variables with trivial type to the variable map
658       QualType T = VD->getType();
659       if (T.isTrivialType(VD->getASTContext()))
660         return addVarDecl(VD, SE);
661       else {
662         // TODO: add alloca
663       }
664     }
665   }
666   return nullptr;
667 }
668 
669 // If (E) is non-trivial, then add it to the current basic block, and
670 // update the statement map so that S refers to E.  Returns a new variable
671 // that refers to E.
672 // If E is trivial returns E.
addStatement(til::SExpr * E,const Stmt * S,const ValueDecl * VD)673 til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
674                                        const ValueDecl *VD) {
675   if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))
676     return E;
677   if (VD)
678     E = new (Arena) til::Variable(E, VD);
679   CurrentInstructions.push_back(E);
680   if (S)
681     insertStmt(S, E);
682   return E;
683 }
684 
685 // Returns the current value of VD, if known, and nullptr otherwise.
lookupVarDecl(const ValueDecl * VD)686 til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) {
687   auto It = LVarIdxMap.find(VD);
688   if (It != LVarIdxMap.end()) {
689     assert(CurrentLVarMap[It->second].first == VD);
690     return CurrentLVarMap[It->second].second;
691   }
692   return nullptr;
693 }
694 
695 // if E is a til::Variable, update its clangDecl.
maybeUpdateVD(til::SExpr * E,const ValueDecl * VD)696 static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) {
697   if (!E)
698     return;
699   if (auto *V = dyn_cast<til::Variable>(E)) {
700     if (!V->clangDecl())
701       V->setClangDecl(VD);
702   }
703 }
704 
705 // Adds a new variable declaration.
addVarDecl(const ValueDecl * VD,til::SExpr * E)706 til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) {
707   maybeUpdateVD(E, VD);
708   LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size()));
709   CurrentLVarMap.makeWritable();
710   CurrentLVarMap.push_back(std::make_pair(VD, E));
711   return E;
712 }
713 
714 // Updates a current variable declaration.  (E.g. by assignment)
updateVarDecl(const ValueDecl * VD,til::SExpr * E)715 til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
716   maybeUpdateVD(E, VD);
717   auto It = LVarIdxMap.find(VD);
718   if (It == LVarIdxMap.end()) {
719     til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD);
720     til::SExpr *St  = new (Arena) til::Store(Ptr, E);
721     return St;
722   }
723   CurrentLVarMap.makeWritable();
724   CurrentLVarMap.elem(It->second).second = E;
725   return E;
726 }
727 
728 // Make a Phi node in the current block for the i^th variable in CurrentVarMap.
729 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
730 // If E == null, this is a backedge and will be set later.
makePhiNodeVar(unsigned i,unsigned NPreds,til::SExpr * E)731 void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
732   unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
733   assert(ArgIndex > 0 && ArgIndex < NPreds);
734 
735   til::SExpr *CurrE = CurrentLVarMap[i].second;
736   if (CurrE->block() == CurrentBB) {
737     // We already have a Phi node in the current block,
738     // so just add the new variable to the Phi node.
739     auto *Ph = dyn_cast<til::Phi>(CurrE);
740     assert(Ph && "Expecting Phi node.");
741     if (E)
742       Ph->values()[ArgIndex] = E;
743     return;
744   }
745 
746   // Make a new phi node: phi(..., E)
747   // All phi args up to the current index are set to the current value.
748   til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
749   Ph->values().setValues(NPreds, nullptr);
750   for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
751     Ph->values()[PIdx] = CurrE;
752   if (E)
753     Ph->values()[ArgIndex] = E;
754   Ph->setClangDecl(CurrentLVarMap[i].first);
755   // If E is from a back-edge, or either E or CurrE are incomplete, then
756   // mark this node as incomplete; we may need to remove it later.
757   if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE))
758     Ph->setStatus(til::Phi::PH_Incomplete);
759 
760   // Add Phi node to current block, and update CurrentLVarMap[i]
761   CurrentArguments.push_back(Ph);
762   if (Ph->status() == til::Phi::PH_Incomplete)
763     IncompleteArgs.push_back(Ph);
764 
765   CurrentLVarMap.makeWritable();
766   CurrentLVarMap.elem(i).second = Ph;
767 }
768 
769 // Merge values from Map into the current variable map.
770 // This will construct Phi nodes in the current basic block as necessary.
mergeEntryMap(LVarDefinitionMap Map)771 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) {
772   assert(CurrentBlockInfo && "Not processing a block!");
773 
774   if (!CurrentLVarMap.valid()) {
775     // Steal Map, using copy-on-write.
776     CurrentLVarMap = std::move(Map);
777     return;
778   }
779   if (CurrentLVarMap.sameAs(Map))
780     return;  // Easy merge: maps from different predecessors are unchanged.
781 
782   unsigned NPreds = CurrentBB->numPredecessors();
783   unsigned ESz = CurrentLVarMap.size();
784   unsigned MSz = Map.size();
785   unsigned Sz  = std::min(ESz, MSz);
786 
787   for (unsigned i = 0; i < Sz; ++i) {
788     if (CurrentLVarMap[i].first != Map[i].first) {
789       // We've reached the end of variables in common.
790       CurrentLVarMap.makeWritable();
791       CurrentLVarMap.downsize(i);
792       break;
793     }
794     if (CurrentLVarMap[i].second != Map[i].second)
795       makePhiNodeVar(i, NPreds, Map[i].second);
796   }
797   if (ESz > MSz) {
798     CurrentLVarMap.makeWritable();
799     CurrentLVarMap.downsize(Map.size());
800   }
801 }
802 
803 // Merge a back edge into the current variable map.
804 // This will create phi nodes for all variables in the variable map.
mergeEntryMapBackEdge()805 void SExprBuilder::mergeEntryMapBackEdge() {
806   // We don't have definitions for variables on the backedge, because we
807   // haven't gotten that far in the CFG.  Thus, when encountering a back edge,
808   // we conservatively create Phi nodes for all variables.  Unnecessary Phi
809   // nodes will be marked as incomplete, and stripped out at the end.
810   //
811   // An Phi node is unnecessary if it only refers to itself and one other
812   // variable, e.g. x = Phi(y, y, x)  can be reduced to x = y.
813 
814   assert(CurrentBlockInfo && "Not processing a block!");
815 
816   if (CurrentBlockInfo->HasBackEdges)
817     return;
818   CurrentBlockInfo->HasBackEdges = true;
819 
820   CurrentLVarMap.makeWritable();
821   unsigned Sz = CurrentLVarMap.size();
822   unsigned NPreds = CurrentBB->numPredecessors();
823 
824   for (unsigned i = 0; i < Sz; ++i)
825     makePhiNodeVar(i, NPreds, nullptr);
826 }
827 
828 // Update the phi nodes that were initially created for a back edge
829 // once the variable definitions have been computed.
830 // I.e., merge the current variable map into the phi nodes for Blk.
mergePhiNodesBackEdge(const CFGBlock * Blk)831 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) {
832   til::BasicBlock *BB = lookupBlock(Blk);
833   unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
834   assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());
835 
836   for (til::SExpr *PE : BB->arguments()) {
837     auto *Ph = dyn_cast_or_null<til::Phi>(PE);
838     assert(Ph && "Expecting Phi Node.");
839     assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");
840 
841     til::SExpr *E = lookupVarDecl(Ph->clangDecl());
842     assert(E && "Couldn't find local variable for Phi node.");
843     Ph->values()[ArgIndex] = E;
844   }
845 }
846 
enterCFG(CFG * Cfg,const NamedDecl * D,const CFGBlock * First)847 void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D,
848                             const CFGBlock *First) {
849   // Perform initial setup operations.
850   unsigned NBlocks = Cfg->getNumBlockIDs();
851   Scfg = new (Arena) til::SCFG(Arena, NBlocks);
852 
853   // allocate all basic blocks immediately, to handle forward references.
854   BBInfo.resize(NBlocks);
855   BlockMap.resize(NBlocks, nullptr);
856   // create map from clang blockID to til::BasicBlocks
857   for (auto *B : *Cfg) {
858     auto *BB = new (Arena) til::BasicBlock(Arena);
859     BB->reserveInstructions(B->size());
860     BlockMap[B->getBlockID()] = BB;
861   }
862 
863   CurrentBB = lookupBlock(&Cfg->getEntry());
864   auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters()
865                                       : cast<FunctionDecl>(D)->parameters();
866   for (auto *Pm : Parms) {
867     QualType T = Pm->getType();
868     if (!T.isTrivialType(Pm->getASTContext()))
869       continue;
870 
871     // Add parameters to local variable map.
872     // FIXME: right now we emulate params with loads; that should be fixed.
873     til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm);
874     til::SExpr *Ld = new (Arena) til::Load(Lp);
875     til::SExpr *V  = addStatement(Ld, nullptr, Pm);
876     addVarDecl(Pm, V);
877   }
878 }
879 
enterCFGBlock(const CFGBlock * B)880 void SExprBuilder::enterCFGBlock(const CFGBlock *B) {
881   // Initialize TIL basic block and add it to the CFG.
882   CurrentBB = lookupBlock(B);
883   CurrentBB->reservePredecessors(B->pred_size());
884   Scfg->add(CurrentBB);
885 
886   CurrentBlockInfo = &BBInfo[B->getBlockID()];
887 
888   // CurrentLVarMap is moved to ExitMap on block exit.
889   // FIXME: the entry block will hold function parameters.
890   // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
891 }
892 
handlePredecessor(const CFGBlock * Pred)893 void SExprBuilder::handlePredecessor(const CFGBlock *Pred) {
894   // Compute CurrentLVarMap on entry from ExitMaps of predecessors
895 
896   CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]);
897   BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()];
898   assert(PredInfo->UnprocessedSuccessors > 0);
899 
900   if (--PredInfo->UnprocessedSuccessors == 0)
901     mergeEntryMap(std::move(PredInfo->ExitMap));
902   else
903     mergeEntryMap(PredInfo->ExitMap.clone());
904 
905   ++CurrentBlockInfo->ProcessedPredecessors;
906 }
907 
handlePredecessorBackEdge(const CFGBlock * Pred)908 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) {
909   mergeEntryMapBackEdge();
910 }
911 
enterCFGBlockBody(const CFGBlock * B)912 void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) {
913   // The merge*() methods have created arguments.
914   // Push those arguments onto the basic block.
915   CurrentBB->arguments().reserve(
916     static_cast<unsigned>(CurrentArguments.size()), Arena);
917   for (auto *A : CurrentArguments)
918     CurrentBB->addArgument(A);
919 }
920 
handleStatement(const Stmt * S)921 void SExprBuilder::handleStatement(const Stmt *S) {
922   til::SExpr *E = translate(S, nullptr);
923   addStatement(E, S);
924 }
925 
handleDestructorCall(const VarDecl * VD,const CXXDestructorDecl * DD)926 void SExprBuilder::handleDestructorCall(const VarDecl *VD,
927                                         const CXXDestructorDecl *DD) {
928   til::SExpr *Sf = new (Arena) til::LiteralPtr(VD);
929   til::SExpr *Dr = new (Arena) til::LiteralPtr(DD);
930   til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf);
931   til::SExpr *E = new (Arena) til::Call(Ap);
932   addStatement(E, nullptr);
933 }
934 
exitCFGBlockBody(const CFGBlock * B)935 void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) {
936   CurrentBB->instructions().reserve(
937     static_cast<unsigned>(CurrentInstructions.size()), Arena);
938   for (auto *V : CurrentInstructions)
939     CurrentBB->addInstruction(V);
940 
941   // Create an appropriate terminator
942   unsigned N = B->succ_size();
943   auto It = B->succ_begin();
944   if (N == 1) {
945     til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
946     // TODO: set index
947     unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
948     auto *Tm = new (Arena) til::Goto(BB, Idx);
949     CurrentBB->setTerminator(Tm);
950   }
951   else if (N == 2) {
952     til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr);
953     til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
954     ++It;
955     til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
956     // FIXME: make sure these aren't critical edges.
957     auto *Tm = new (Arena) til::Branch(C, BB1, BB2);
958     CurrentBB->setTerminator(Tm);
959   }
960 }
961 
handleSuccessor(const CFGBlock * Succ)962 void SExprBuilder::handleSuccessor(const CFGBlock *Succ) {
963   ++CurrentBlockInfo->UnprocessedSuccessors;
964 }
965 
handleSuccessorBackEdge(const CFGBlock * Succ)966 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) {
967   mergePhiNodesBackEdge(Succ);
968   ++BBInfo[Succ->getBlockID()].ProcessedPredecessors;
969 }
970 
exitCFGBlock(const CFGBlock * B)971 void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
972   CurrentArguments.clear();
973   CurrentInstructions.clear();
974   CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap);
975   CurrentBB = nullptr;
976   CurrentBlockInfo = nullptr;
977 }
978 
exitCFG(const CFGBlock * Last)979 void SExprBuilder::exitCFG(const CFGBlock *Last) {
980   for (auto *Ph : IncompleteArgs) {
981     if (Ph->status() == til::Phi::PH_Incomplete)
982       simplifyIncompleteArg(Ph);
983   }
984 
985   CurrentArguments.clear();
986   CurrentInstructions.clear();
987   IncompleteArgs.clear();
988 }
989 
990 /*
991 namespace {
992 
993 class TILPrinter :
994     public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
995 
996 } // namespace
997 
998 namespace clang {
999 namespace threadSafety {
1000 
1001 void printSCFG(CFGWalker &Walker) {
1002   llvm::BumpPtrAllocator Bpa;
1003   til::MemRegionRef Arena(&Bpa);
1004   SExprBuilder SxBuilder(Arena);
1005   til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
1006   TILPrinter::print(Scfg, llvm::errs());
1007 }
1008 
1009 } // namespace threadSafety
1010 } // namespace clang
1011 */
1012