1 //===- ExprCXX.h - Classes for representing expressions ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines the clang::Expr interface and subclasses for C++ expressions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_CLANG_AST_EXPRCXX_H
15 #define LLVM_CLANG_AST_EXPRCXX_H
16
17 #include "clang/AST/ASTConcept.h"
18 #include "clang/AST/ComputeDependence.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/DeclarationName.h"
24 #include "clang/AST/DependenceFlags.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/NestedNameSpecifier.h"
27 #include "clang/AST/OperationKinds.h"
28 #include "clang/AST/Stmt.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/TemplateBase.h"
31 #include "clang/AST/Type.h"
32 #include "clang/AST/UnresolvedSet.h"
33 #include "clang/Basic/ExceptionSpecificationType.h"
34 #include "clang/Basic/ExpressionTraits.h"
35 #include "clang/Basic/LLVM.h"
36 #include "clang/Basic/Lambda.h"
37 #include "clang/Basic/LangOptions.h"
38 #include "clang/Basic/OperatorKinds.h"
39 #include "clang/Basic/SourceLocation.h"
40 #include "clang/Basic/Specifiers.h"
41 #include "clang/Basic/TypeTraits.h"
42 #include "llvm/ADT/ArrayRef.h"
43 #include "llvm/ADT/None.h"
44 #include "llvm/ADT/Optional.h"
45 #include "llvm/ADT/PointerUnion.h"
46 #include "llvm/ADT/StringRef.h"
47 #include "llvm/ADT/iterator_range.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/TrailingObjects.h"
51 #include <cassert>
52 #include <cstddef>
53 #include <cstdint>
54 #include <memory>
55
56 namespace clang {
57
58 class ASTContext;
59 class DeclAccessPair;
60 class IdentifierInfo;
61 class LambdaCapture;
62 class NonTypeTemplateParmDecl;
63 class TemplateParameterList;
64
65 //===--------------------------------------------------------------------===//
66 // C++ Expressions.
67 //===--------------------------------------------------------------------===//
68
69 /// A call to an overloaded operator written using operator
70 /// syntax.
71 ///
72 /// Represents a call to an overloaded operator written using operator
73 /// syntax, e.g., "x + y" or "*p". While semantically equivalent to a
74 /// normal call, this AST node provides better information about the
75 /// syntactic representation of the call.
76 ///
77 /// In a C++ template, this expression node kind will be used whenever
78 /// any of the arguments are type-dependent. In this case, the
79 /// function itself will be a (possibly empty) set of functions and
80 /// function templates that were found by name lookup at template
81 /// definition time.
82 class CXXOperatorCallExpr final : public CallExpr {
83 friend class ASTStmtReader;
84 friend class ASTStmtWriter;
85
86 SourceRange Range;
87
88 // CXXOperatorCallExpr has some trailing objects belonging
89 // to CallExpr. See CallExpr for the details.
90
91 SourceRange getSourceRangeImpl() const LLVM_READONLY;
92
93 CXXOperatorCallExpr(OverloadedOperatorKind OpKind, Expr *Fn,
94 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
95 SourceLocation OperatorLoc, FPOptionsOverride FPFeatures,
96 ADLCallKind UsesADL);
97
98 CXXOperatorCallExpr(unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty);
99
100 public:
101 static CXXOperatorCallExpr *
102 Create(const ASTContext &Ctx, OverloadedOperatorKind OpKind, Expr *Fn,
103 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
104 SourceLocation OperatorLoc, FPOptionsOverride FPFeatures,
105 ADLCallKind UsesADL = NotADL);
106
107 static CXXOperatorCallExpr *CreateEmpty(const ASTContext &Ctx,
108 unsigned NumArgs, bool HasFPFeatures,
109 EmptyShell Empty);
110
111 /// Returns the kind of overloaded operator that this expression refers to.
getOperator()112 OverloadedOperatorKind getOperator() const {
113 return static_cast<OverloadedOperatorKind>(
114 CXXOperatorCallExprBits.OperatorKind);
115 }
116
isAssignmentOp(OverloadedOperatorKind Opc)117 static bool isAssignmentOp(OverloadedOperatorKind Opc) {
118 return Opc == OO_Equal || Opc == OO_StarEqual || Opc == OO_SlashEqual ||
119 Opc == OO_PercentEqual || Opc == OO_PlusEqual ||
120 Opc == OO_MinusEqual || Opc == OO_LessLessEqual ||
121 Opc == OO_GreaterGreaterEqual || Opc == OO_AmpEqual ||
122 Opc == OO_CaretEqual || Opc == OO_PipeEqual;
123 }
isAssignmentOp()124 bool isAssignmentOp() const { return isAssignmentOp(getOperator()); }
125
isComparisonOp(OverloadedOperatorKind Opc)126 static bool isComparisonOp(OverloadedOperatorKind Opc) {
127 switch (Opc) {
128 case OO_EqualEqual:
129 case OO_ExclaimEqual:
130 case OO_Greater:
131 case OO_GreaterEqual:
132 case OO_Less:
133 case OO_LessEqual:
134 case OO_Spaceship:
135 return true;
136 default:
137 return false;
138 }
139 }
isComparisonOp()140 bool isComparisonOp() const { return isComparisonOp(getOperator()); }
141
142 /// Is this written as an infix binary operator?
143 bool isInfixBinaryOp() const;
144
145 /// Returns the location of the operator symbol in the expression.
146 ///
147 /// When \c getOperator()==OO_Call, this is the location of the right
148 /// parentheses; when \c getOperator()==OO_Subscript, this is the location
149 /// of the right bracket.
getOperatorLoc()150 SourceLocation getOperatorLoc() const { return getRParenLoc(); }
151
getExprLoc()152 SourceLocation getExprLoc() const LLVM_READONLY {
153 OverloadedOperatorKind Operator = getOperator();
154 return (Operator < OO_Plus || Operator >= OO_Arrow ||
155 Operator == OO_PlusPlus || Operator == OO_MinusMinus)
156 ? getBeginLoc()
157 : getOperatorLoc();
158 }
159
getBeginLoc()160 SourceLocation getBeginLoc() const { return Range.getBegin(); }
getEndLoc()161 SourceLocation getEndLoc() const { return Range.getEnd(); }
getSourceRange()162 SourceRange getSourceRange() const { return Range; }
163
classof(const Stmt * T)164 static bool classof(const Stmt *T) {
165 return T->getStmtClass() == CXXOperatorCallExprClass;
166 }
167 };
168
169 /// Represents a call to a member function that
170 /// may be written either with member call syntax (e.g., "obj.func()"
171 /// or "objptr->func()") or with normal function-call syntax
172 /// ("func()") within a member function that ends up calling a member
173 /// function. The callee in either case is a MemberExpr that contains
174 /// both the object argument and the member function, while the
175 /// arguments are the arguments within the parentheses (not including
176 /// the object argument).
177 class CXXMemberCallExpr final : public CallExpr {
178 // CXXMemberCallExpr has some trailing objects belonging
179 // to CallExpr. See CallExpr for the details.
180
181 CXXMemberCallExpr(Expr *Fn, ArrayRef<Expr *> Args, QualType Ty,
182 ExprValueKind VK, SourceLocation RP,
183 FPOptionsOverride FPOptions, unsigned MinNumArgs);
184
185 CXXMemberCallExpr(unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty);
186
187 public:
188 static CXXMemberCallExpr *Create(const ASTContext &Ctx, Expr *Fn,
189 ArrayRef<Expr *> Args, QualType Ty,
190 ExprValueKind VK, SourceLocation RP,
191 FPOptionsOverride FPFeatures,
192 unsigned MinNumArgs = 0);
193
194 static CXXMemberCallExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
195 bool HasFPFeatures, EmptyShell Empty);
196
197 /// Retrieve the implicit object argument for the member call.
198 ///
199 /// For example, in "x.f(5)", this returns the sub-expression "x".
200 Expr *getImplicitObjectArgument() const;
201
202 /// Retrieve the type of the object argument.
203 ///
204 /// Note that this always returns a non-pointer type.
205 QualType getObjectType() const;
206
207 /// Retrieve the declaration of the called method.
208 CXXMethodDecl *getMethodDecl() const;
209
210 /// Retrieve the CXXRecordDecl for the underlying type of
211 /// the implicit object argument.
212 ///
213 /// Note that this is may not be the same declaration as that of the class
214 /// context of the CXXMethodDecl which this function is calling.
215 /// FIXME: Returns 0 for member pointer call exprs.
216 CXXRecordDecl *getRecordDecl() const;
217
getExprLoc()218 SourceLocation getExprLoc() const LLVM_READONLY {
219 SourceLocation CLoc = getCallee()->getExprLoc();
220 if (CLoc.isValid())
221 return CLoc;
222
223 return getBeginLoc();
224 }
225
classof(const Stmt * T)226 static bool classof(const Stmt *T) {
227 return T->getStmtClass() == CXXMemberCallExprClass;
228 }
229 };
230
231 /// Represents a call to a CUDA kernel function.
232 class CUDAKernelCallExpr final : public CallExpr {
233 friend class ASTStmtReader;
234
235 enum { CONFIG, END_PREARG };
236
237 // CUDAKernelCallExpr has some trailing objects belonging
238 // to CallExpr. See CallExpr for the details.
239
240 CUDAKernelCallExpr(Expr *Fn, CallExpr *Config, ArrayRef<Expr *> Args,
241 QualType Ty, ExprValueKind VK, SourceLocation RP,
242 FPOptionsOverride FPFeatures, unsigned MinNumArgs);
243
244 CUDAKernelCallExpr(unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty);
245
246 public:
247 static CUDAKernelCallExpr *Create(const ASTContext &Ctx, Expr *Fn,
248 CallExpr *Config, ArrayRef<Expr *> Args,
249 QualType Ty, ExprValueKind VK,
250 SourceLocation RP,
251 FPOptionsOverride FPFeatures,
252 unsigned MinNumArgs = 0);
253
254 static CUDAKernelCallExpr *CreateEmpty(const ASTContext &Ctx,
255 unsigned NumArgs, bool HasFPFeatures,
256 EmptyShell Empty);
257
getConfig()258 const CallExpr *getConfig() const {
259 return cast_or_null<CallExpr>(getPreArg(CONFIG));
260 }
getConfig()261 CallExpr *getConfig() { return cast_or_null<CallExpr>(getPreArg(CONFIG)); }
262
classof(const Stmt * T)263 static bool classof(const Stmt *T) {
264 return T->getStmtClass() == CUDAKernelCallExprClass;
265 }
266 };
267
268 /// A rewritten comparison expression that was originally written using
269 /// operator syntax.
270 ///
271 /// In C++20, the following rewrites are performed:
272 /// - <tt>a == b</tt> -> <tt>b == a</tt>
273 /// - <tt>a != b</tt> -> <tt>!(a == b)</tt>
274 /// - <tt>a != b</tt> -> <tt>!(b == a)</tt>
275 /// - For \c \@ in \c <, \c <=, \c >, \c >=, \c <=>:
276 /// - <tt>a @ b</tt> -> <tt>(a <=> b) @ 0</tt>
277 /// - <tt>a @ b</tt> -> <tt>0 @ (b <=> a)</tt>
278 ///
279 /// This expression provides access to both the original syntax and the
280 /// rewritten expression.
281 ///
282 /// Note that the rewritten calls to \c ==, \c <=>, and \c \@ are typically
283 /// \c CXXOperatorCallExprs, but could theoretically be \c BinaryOperators.
284 class CXXRewrittenBinaryOperator : public Expr {
285 friend class ASTStmtReader;
286
287 /// The rewritten semantic form.
288 Stmt *SemanticForm;
289
290 public:
CXXRewrittenBinaryOperator(Expr * SemanticForm,bool IsReversed)291 CXXRewrittenBinaryOperator(Expr *SemanticForm, bool IsReversed)
292 : Expr(CXXRewrittenBinaryOperatorClass, SemanticForm->getType(),
293 SemanticForm->getValueKind(), SemanticForm->getObjectKind()),
294 SemanticForm(SemanticForm) {
295 CXXRewrittenBinaryOperatorBits.IsReversed = IsReversed;
296 setDependence(computeDependence(this));
297 }
CXXRewrittenBinaryOperator(EmptyShell Empty)298 CXXRewrittenBinaryOperator(EmptyShell Empty)
299 : Expr(CXXRewrittenBinaryOperatorClass, Empty), SemanticForm() {}
300
301 /// Get an equivalent semantic form for this expression.
getSemanticForm()302 Expr *getSemanticForm() { return cast<Expr>(SemanticForm); }
getSemanticForm()303 const Expr *getSemanticForm() const { return cast<Expr>(SemanticForm); }
304
305 struct DecomposedForm {
306 /// The original opcode, prior to rewriting.
307 BinaryOperatorKind Opcode;
308 /// The original left-hand side.
309 const Expr *LHS;
310 /// The original right-hand side.
311 const Expr *RHS;
312 /// The inner \c == or \c <=> operator expression.
313 const Expr *InnerBinOp;
314 };
315
316 /// Decompose this operator into its syntactic form.
317 DecomposedForm getDecomposedForm() const LLVM_READONLY;
318
319 /// Determine whether this expression was rewritten in reverse form.
isReversed()320 bool isReversed() const { return CXXRewrittenBinaryOperatorBits.IsReversed; }
321
getOperator()322 BinaryOperatorKind getOperator() const { return getDecomposedForm().Opcode; }
getOpcode()323 BinaryOperatorKind getOpcode() const { return getOperator(); }
getOpcodeStr(BinaryOperatorKind Op)324 static StringRef getOpcodeStr(BinaryOperatorKind Op) {
325 return BinaryOperator::getOpcodeStr(Op);
326 }
getOpcodeStr()327 StringRef getOpcodeStr() const {
328 return BinaryOperator::getOpcodeStr(getOpcode());
329 }
isComparisonOp()330 bool isComparisonOp() const { return true; }
isAssignmentOp()331 bool isAssignmentOp() const { return false; }
332
getLHS()333 const Expr *getLHS() const { return getDecomposedForm().LHS; }
getRHS()334 const Expr *getRHS() const { return getDecomposedForm().RHS; }
335
getOperatorLoc()336 SourceLocation getOperatorLoc() const LLVM_READONLY {
337 return getDecomposedForm().InnerBinOp->getExprLoc();
338 }
getExprLoc()339 SourceLocation getExprLoc() const LLVM_READONLY { return getOperatorLoc(); }
340
341 /// Compute the begin and end locations from the decomposed form.
342 /// The locations of the semantic form are not reliable if this is
343 /// a reversed expression.
344 //@{
getBeginLoc()345 SourceLocation getBeginLoc() const LLVM_READONLY {
346 return getDecomposedForm().LHS->getBeginLoc();
347 }
getEndLoc()348 SourceLocation getEndLoc() const LLVM_READONLY {
349 return getDecomposedForm().RHS->getEndLoc();
350 }
getSourceRange()351 SourceRange getSourceRange() const LLVM_READONLY {
352 DecomposedForm DF = getDecomposedForm();
353 return SourceRange(DF.LHS->getBeginLoc(), DF.RHS->getEndLoc());
354 }
355 //@}
356
children()357 child_range children() {
358 return child_range(&SemanticForm, &SemanticForm + 1);
359 }
360
classof(const Stmt * T)361 static bool classof(const Stmt *T) {
362 return T->getStmtClass() == CXXRewrittenBinaryOperatorClass;
363 }
364 };
365
366 /// Abstract class common to all of the C++ "named"/"keyword" casts.
367 ///
368 /// This abstract class is inherited by all of the classes
369 /// representing "named" casts: CXXStaticCastExpr for \c static_cast,
370 /// CXXDynamicCastExpr for \c dynamic_cast, CXXReinterpretCastExpr for
371 /// reinterpret_cast, CXXConstCastExpr for \c const_cast and
372 /// CXXAddrspaceCastExpr for addrspace_cast (in OpenCL).
373 class CXXNamedCastExpr : public ExplicitCastExpr {
374 private:
375 // the location of the casting op
376 SourceLocation Loc;
377
378 // the location of the right parenthesis
379 SourceLocation RParenLoc;
380
381 // range for '<' '>'
382 SourceRange AngleBrackets;
383
384 protected:
385 friend class ASTStmtReader;
386
CXXNamedCastExpr(StmtClass SC,QualType ty,ExprValueKind VK,CastKind kind,Expr * op,unsigned PathSize,bool HasFPFeatures,TypeSourceInfo * writtenTy,SourceLocation l,SourceLocation RParenLoc,SourceRange AngleBrackets)387 CXXNamedCastExpr(StmtClass SC, QualType ty, ExprValueKind VK, CastKind kind,
388 Expr *op, unsigned PathSize, bool HasFPFeatures,
389 TypeSourceInfo *writtenTy, SourceLocation l,
390 SourceLocation RParenLoc, SourceRange AngleBrackets)
391 : ExplicitCastExpr(SC, ty, VK, kind, op, PathSize, HasFPFeatures,
392 writtenTy),
393 Loc(l), RParenLoc(RParenLoc), AngleBrackets(AngleBrackets) {}
394
CXXNamedCastExpr(StmtClass SC,EmptyShell Shell,unsigned PathSize,bool HasFPFeatures)395 explicit CXXNamedCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize,
396 bool HasFPFeatures)
397 : ExplicitCastExpr(SC, Shell, PathSize, HasFPFeatures) {}
398
399 public:
400 const char *getCastName() const;
401
402 /// Retrieve the location of the cast operator keyword, e.g.,
403 /// \c static_cast.
getOperatorLoc()404 SourceLocation getOperatorLoc() const { return Loc; }
405
406 /// Retrieve the location of the closing parenthesis.
getRParenLoc()407 SourceLocation getRParenLoc() const { return RParenLoc; }
408
getBeginLoc()409 SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
getEndLoc()410 SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
getAngleBrackets()411 SourceRange getAngleBrackets() const LLVM_READONLY { return AngleBrackets; }
412
classof(const Stmt * T)413 static bool classof(const Stmt *T) {
414 switch (T->getStmtClass()) {
415 case CXXStaticCastExprClass:
416 case CXXDynamicCastExprClass:
417 case CXXReinterpretCastExprClass:
418 case CXXConstCastExprClass:
419 case CXXAddrspaceCastExprClass:
420 return true;
421 default:
422 return false;
423 }
424 }
425 };
426
427 /// A C++ \c static_cast expression (C++ [expr.static.cast]).
428 ///
429 /// This expression node represents a C++ static cast, e.g.,
430 /// \c static_cast<int>(1.0).
431 class CXXStaticCastExpr final
432 : public CXXNamedCastExpr,
433 private llvm::TrailingObjects<CXXStaticCastExpr, CXXBaseSpecifier *,
434 FPOptionsOverride> {
CXXStaticCastExpr(QualType ty,ExprValueKind vk,CastKind kind,Expr * op,unsigned pathSize,TypeSourceInfo * writtenTy,FPOptionsOverride FPO,SourceLocation l,SourceLocation RParenLoc,SourceRange AngleBrackets)435 CXXStaticCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
436 unsigned pathSize, TypeSourceInfo *writtenTy,
437 FPOptionsOverride FPO, SourceLocation l,
438 SourceLocation RParenLoc, SourceRange AngleBrackets)
439 : CXXNamedCastExpr(CXXStaticCastExprClass, ty, vk, kind, op, pathSize,
440 FPO.requiresTrailingStorage(), writtenTy, l, RParenLoc,
441 AngleBrackets) {
442 if (hasStoredFPFeatures())
443 *getTrailingFPFeatures() = FPO;
444 }
445
CXXStaticCastExpr(EmptyShell Empty,unsigned PathSize,bool HasFPFeatures)446 explicit CXXStaticCastExpr(EmptyShell Empty, unsigned PathSize,
447 bool HasFPFeatures)
448 : CXXNamedCastExpr(CXXStaticCastExprClass, Empty, PathSize,
449 HasFPFeatures) {}
450
numTrailingObjects(OverloadToken<CXXBaseSpecifier * >)451 unsigned numTrailingObjects(OverloadToken<CXXBaseSpecifier *>) const {
452 return path_size();
453 }
454
455 public:
456 friend class CastExpr;
457 friend TrailingObjects;
458
459 static CXXStaticCastExpr *
460 Create(const ASTContext &Context, QualType T, ExprValueKind VK, CastKind K,
461 Expr *Op, const CXXCastPath *Path, TypeSourceInfo *Written,
462 FPOptionsOverride FPO, SourceLocation L, SourceLocation RParenLoc,
463 SourceRange AngleBrackets);
464 static CXXStaticCastExpr *CreateEmpty(const ASTContext &Context,
465 unsigned PathSize, bool hasFPFeatures);
466
classof(const Stmt * T)467 static bool classof(const Stmt *T) {
468 return T->getStmtClass() == CXXStaticCastExprClass;
469 }
470 };
471
472 /// A C++ @c dynamic_cast expression (C++ [expr.dynamic.cast]).
473 ///
474 /// This expression node represents a dynamic cast, e.g.,
475 /// \c dynamic_cast<Derived*>(BasePtr). Such a cast may perform a run-time
476 /// check to determine how to perform the type conversion.
477 class CXXDynamicCastExpr final
478 : public CXXNamedCastExpr,
479 private llvm::TrailingObjects<CXXDynamicCastExpr, CXXBaseSpecifier *> {
CXXDynamicCastExpr(QualType ty,ExprValueKind VK,CastKind kind,Expr * op,unsigned pathSize,TypeSourceInfo * writtenTy,SourceLocation l,SourceLocation RParenLoc,SourceRange AngleBrackets)480 CXXDynamicCastExpr(QualType ty, ExprValueKind VK, CastKind kind, Expr *op,
481 unsigned pathSize, TypeSourceInfo *writtenTy,
482 SourceLocation l, SourceLocation RParenLoc,
483 SourceRange AngleBrackets)
484 : CXXNamedCastExpr(CXXDynamicCastExprClass, ty, VK, kind, op, pathSize,
485 /*HasFPFeatures*/ false, writtenTy, l, RParenLoc,
486 AngleBrackets) {}
487
CXXDynamicCastExpr(EmptyShell Empty,unsigned pathSize)488 explicit CXXDynamicCastExpr(EmptyShell Empty, unsigned pathSize)
489 : CXXNamedCastExpr(CXXDynamicCastExprClass, Empty, pathSize,
490 /*HasFPFeatures*/ false) {}
491
492 public:
493 friend class CastExpr;
494 friend TrailingObjects;
495
496 static CXXDynamicCastExpr *Create(const ASTContext &Context, QualType T,
497 ExprValueKind VK, CastKind Kind, Expr *Op,
498 const CXXCastPath *Path,
499 TypeSourceInfo *Written, SourceLocation L,
500 SourceLocation RParenLoc,
501 SourceRange AngleBrackets);
502
503 static CXXDynamicCastExpr *CreateEmpty(const ASTContext &Context,
504 unsigned pathSize);
505
506 bool isAlwaysNull() const;
507
classof(const Stmt * T)508 static bool classof(const Stmt *T) {
509 return T->getStmtClass() == CXXDynamicCastExprClass;
510 }
511 };
512
513 /// A C++ @c reinterpret_cast expression (C++ [expr.reinterpret.cast]).
514 ///
515 /// This expression node represents a reinterpret cast, e.g.,
516 /// @c reinterpret_cast<int>(VoidPtr).
517 ///
518 /// A reinterpret_cast provides a differently-typed view of a value but
519 /// (in Clang, as in most C++ implementations) performs no actual work at
520 /// run time.
521 class CXXReinterpretCastExpr final
522 : public CXXNamedCastExpr,
523 private llvm::TrailingObjects<CXXReinterpretCastExpr,
524 CXXBaseSpecifier *> {
CXXReinterpretCastExpr(QualType ty,ExprValueKind vk,CastKind kind,Expr * op,unsigned pathSize,TypeSourceInfo * writtenTy,SourceLocation l,SourceLocation RParenLoc,SourceRange AngleBrackets)525 CXXReinterpretCastExpr(QualType ty, ExprValueKind vk, CastKind kind, Expr *op,
526 unsigned pathSize, TypeSourceInfo *writtenTy,
527 SourceLocation l, SourceLocation RParenLoc,
528 SourceRange AngleBrackets)
529 : CXXNamedCastExpr(CXXReinterpretCastExprClass, ty, vk, kind, op,
530 pathSize, /*HasFPFeatures*/ false, writtenTy, l,
531 RParenLoc, AngleBrackets) {}
532
CXXReinterpretCastExpr(EmptyShell Empty,unsigned pathSize)533 CXXReinterpretCastExpr(EmptyShell Empty, unsigned pathSize)
534 : CXXNamedCastExpr(CXXReinterpretCastExprClass, Empty, pathSize,
535 /*HasFPFeatures*/ false) {}
536
537 public:
538 friend class CastExpr;
539 friend TrailingObjects;
540
541 static CXXReinterpretCastExpr *Create(const ASTContext &Context, QualType T,
542 ExprValueKind VK, CastKind Kind,
543 Expr *Op, const CXXCastPath *Path,
544 TypeSourceInfo *WrittenTy, SourceLocation L,
545 SourceLocation RParenLoc,
546 SourceRange AngleBrackets);
547 static CXXReinterpretCastExpr *CreateEmpty(const ASTContext &Context,
548 unsigned pathSize);
549
classof(const Stmt * T)550 static bool classof(const Stmt *T) {
551 return T->getStmtClass() == CXXReinterpretCastExprClass;
552 }
553 };
554
555 /// A C++ \c const_cast expression (C++ [expr.const.cast]).
556 ///
557 /// This expression node represents a const cast, e.g.,
558 /// \c const_cast<char*>(PtrToConstChar).
559 ///
560 /// A const_cast can remove type qualifiers but does not change the underlying
561 /// value.
562 class CXXConstCastExpr final
563 : public CXXNamedCastExpr,
564 private llvm::TrailingObjects<CXXConstCastExpr, CXXBaseSpecifier *> {
CXXConstCastExpr(QualType ty,ExprValueKind VK,Expr * op,TypeSourceInfo * writtenTy,SourceLocation l,SourceLocation RParenLoc,SourceRange AngleBrackets)565 CXXConstCastExpr(QualType ty, ExprValueKind VK, Expr *op,
566 TypeSourceInfo *writtenTy, SourceLocation l,
567 SourceLocation RParenLoc, SourceRange AngleBrackets)
568 : CXXNamedCastExpr(CXXConstCastExprClass, ty, VK, CK_NoOp, op, 0,
569 /*HasFPFeatures*/ false, writtenTy, l, RParenLoc,
570 AngleBrackets) {}
571
CXXConstCastExpr(EmptyShell Empty)572 explicit CXXConstCastExpr(EmptyShell Empty)
573 : CXXNamedCastExpr(CXXConstCastExprClass, Empty, 0,
574 /*HasFPFeatures*/ false) {}
575
576 public:
577 friend class CastExpr;
578 friend TrailingObjects;
579
580 static CXXConstCastExpr *Create(const ASTContext &Context, QualType T,
581 ExprValueKind VK, Expr *Op,
582 TypeSourceInfo *WrittenTy, SourceLocation L,
583 SourceLocation RParenLoc,
584 SourceRange AngleBrackets);
585 static CXXConstCastExpr *CreateEmpty(const ASTContext &Context);
586
classof(const Stmt * T)587 static bool classof(const Stmt *T) {
588 return T->getStmtClass() == CXXConstCastExprClass;
589 }
590 };
591
592 /// A C++ addrspace_cast expression (currently only enabled for OpenCL).
593 ///
594 /// This expression node represents a cast between pointers to objects in
595 /// different address spaces e.g.,
596 /// \c addrspace_cast<global int*>(PtrToGenericInt).
597 ///
598 /// A addrspace_cast can cast address space type qualifiers but does not change
599 /// the underlying value.
600 class CXXAddrspaceCastExpr final
601 : public CXXNamedCastExpr,
602 private llvm::TrailingObjects<CXXAddrspaceCastExpr, CXXBaseSpecifier *> {
CXXAddrspaceCastExpr(QualType ty,ExprValueKind VK,CastKind Kind,Expr * op,TypeSourceInfo * writtenTy,SourceLocation l,SourceLocation RParenLoc,SourceRange AngleBrackets)603 CXXAddrspaceCastExpr(QualType ty, ExprValueKind VK, CastKind Kind, Expr *op,
604 TypeSourceInfo *writtenTy, SourceLocation l,
605 SourceLocation RParenLoc, SourceRange AngleBrackets)
606 : CXXNamedCastExpr(CXXAddrspaceCastExprClass, ty, VK, Kind, op, 0,
607 /*HasFPFeatures*/ false, writtenTy, l, RParenLoc,
608 AngleBrackets) {}
609
CXXAddrspaceCastExpr(EmptyShell Empty)610 explicit CXXAddrspaceCastExpr(EmptyShell Empty)
611 : CXXNamedCastExpr(CXXAddrspaceCastExprClass, Empty, 0,
612 /*HasFPFeatures*/ false) {}
613
614 public:
615 friend class CastExpr;
616 friend TrailingObjects;
617
618 static CXXAddrspaceCastExpr *
619 Create(const ASTContext &Context, QualType T, ExprValueKind VK, CastKind Kind,
620 Expr *Op, TypeSourceInfo *WrittenTy, SourceLocation L,
621 SourceLocation RParenLoc, SourceRange AngleBrackets);
622 static CXXAddrspaceCastExpr *CreateEmpty(const ASTContext &Context);
623
classof(const Stmt * T)624 static bool classof(const Stmt *T) {
625 return T->getStmtClass() == CXXAddrspaceCastExprClass;
626 }
627 };
628
629 /// A call to a literal operator (C++11 [over.literal])
630 /// written as a user-defined literal (C++11 [lit.ext]).
631 ///
632 /// Represents a user-defined literal, e.g. "foo"_bar or 1.23_xyz. While this
633 /// is semantically equivalent to a normal call, this AST node provides better
634 /// information about the syntactic representation of the literal.
635 ///
636 /// Since literal operators are never found by ADL and can only be declared at
637 /// namespace scope, a user-defined literal is never dependent.
638 class UserDefinedLiteral final : public CallExpr {
639 friend class ASTStmtReader;
640 friend class ASTStmtWriter;
641
642 /// The location of a ud-suffix within the literal.
643 SourceLocation UDSuffixLoc;
644
645 // UserDefinedLiteral has some trailing objects belonging
646 // to CallExpr. See CallExpr for the details.
647
648 UserDefinedLiteral(Expr *Fn, ArrayRef<Expr *> Args, QualType Ty,
649 ExprValueKind VK, SourceLocation LitEndLoc,
650 SourceLocation SuffixLoc, FPOptionsOverride FPFeatures);
651
652 UserDefinedLiteral(unsigned NumArgs, bool HasFPFeatures, EmptyShell Empty);
653
654 public:
655 static UserDefinedLiteral *Create(const ASTContext &Ctx, Expr *Fn,
656 ArrayRef<Expr *> Args, QualType Ty,
657 ExprValueKind VK, SourceLocation LitEndLoc,
658 SourceLocation SuffixLoc,
659 FPOptionsOverride FPFeatures);
660
661 static UserDefinedLiteral *CreateEmpty(const ASTContext &Ctx,
662 unsigned NumArgs, bool HasFPOptions,
663 EmptyShell Empty);
664
665 /// The kind of literal operator which is invoked.
666 enum LiteralOperatorKind {
667 /// Raw form: operator "" X (const char *)
668 LOK_Raw,
669
670 /// Raw form: operator "" X<cs...> ()
671 LOK_Template,
672
673 /// operator "" X (unsigned long long)
674 LOK_Integer,
675
676 /// operator "" X (long double)
677 LOK_Floating,
678
679 /// operator "" X (const CharT *, size_t)
680 LOK_String,
681
682 /// operator "" X (CharT)
683 LOK_Character
684 };
685
686 /// Returns the kind of literal operator invocation
687 /// which this expression represents.
688 LiteralOperatorKind getLiteralOperatorKind() const;
689
690 /// If this is not a raw user-defined literal, get the
691 /// underlying cooked literal (representing the literal with the suffix
692 /// removed).
693 Expr *getCookedLiteral();
getCookedLiteral()694 const Expr *getCookedLiteral() const {
695 return const_cast<UserDefinedLiteral*>(this)->getCookedLiteral();
696 }
697
getBeginLoc()698 SourceLocation getBeginLoc() const {
699 if (getLiteralOperatorKind() == LOK_Template)
700 return getRParenLoc();
701 return getArg(0)->getBeginLoc();
702 }
703
getEndLoc()704 SourceLocation getEndLoc() const { return getRParenLoc(); }
705
706 /// Returns the location of a ud-suffix in the expression.
707 ///
708 /// For a string literal, there may be multiple identical suffixes. This
709 /// returns the first.
getUDSuffixLoc()710 SourceLocation getUDSuffixLoc() const { return UDSuffixLoc; }
711
712 /// Returns the ud-suffix specified for this literal.
713 const IdentifierInfo *getUDSuffix() const;
714
classof(const Stmt * S)715 static bool classof(const Stmt *S) {
716 return S->getStmtClass() == UserDefinedLiteralClass;
717 }
718 };
719
720 /// A boolean literal, per ([C++ lex.bool] Boolean literals).
721 class CXXBoolLiteralExpr : public Expr {
722 public:
CXXBoolLiteralExpr(bool Val,QualType Ty,SourceLocation Loc)723 CXXBoolLiteralExpr(bool Val, QualType Ty, SourceLocation Loc)
724 : Expr(CXXBoolLiteralExprClass, Ty, VK_RValue, OK_Ordinary) {
725 CXXBoolLiteralExprBits.Value = Val;
726 CXXBoolLiteralExprBits.Loc = Loc;
727 setDependence(ExprDependence::None);
728 }
729
CXXBoolLiteralExpr(EmptyShell Empty)730 explicit CXXBoolLiteralExpr(EmptyShell Empty)
731 : Expr(CXXBoolLiteralExprClass, Empty) {}
732
getValue()733 bool getValue() const { return CXXBoolLiteralExprBits.Value; }
setValue(bool V)734 void setValue(bool V) { CXXBoolLiteralExprBits.Value = V; }
735
getBeginLoc()736 SourceLocation getBeginLoc() const { return getLocation(); }
getEndLoc()737 SourceLocation getEndLoc() const { return getLocation(); }
738
getLocation()739 SourceLocation getLocation() const { return CXXBoolLiteralExprBits.Loc; }
setLocation(SourceLocation L)740 void setLocation(SourceLocation L) { CXXBoolLiteralExprBits.Loc = L; }
741
classof(const Stmt * T)742 static bool classof(const Stmt *T) {
743 return T->getStmtClass() == CXXBoolLiteralExprClass;
744 }
745
746 // Iterators
children()747 child_range children() {
748 return child_range(child_iterator(), child_iterator());
749 }
750
children()751 const_child_range children() const {
752 return const_child_range(const_child_iterator(), const_child_iterator());
753 }
754 };
755
756 /// The null pointer literal (C++11 [lex.nullptr])
757 ///
758 /// Introduced in C++11, the only literal of type \c nullptr_t is \c nullptr.
759 class CXXNullPtrLiteralExpr : public Expr {
760 public:
CXXNullPtrLiteralExpr(QualType Ty,SourceLocation Loc)761 CXXNullPtrLiteralExpr(QualType Ty, SourceLocation Loc)
762 : Expr(CXXNullPtrLiteralExprClass, Ty, VK_RValue, OK_Ordinary) {
763 CXXNullPtrLiteralExprBits.Loc = Loc;
764 setDependence(ExprDependence::None);
765 }
766
CXXNullPtrLiteralExpr(EmptyShell Empty)767 explicit CXXNullPtrLiteralExpr(EmptyShell Empty)
768 : Expr(CXXNullPtrLiteralExprClass, Empty) {}
769
getBeginLoc()770 SourceLocation getBeginLoc() const { return getLocation(); }
getEndLoc()771 SourceLocation getEndLoc() const { return getLocation(); }
772
getLocation()773 SourceLocation getLocation() const { return CXXNullPtrLiteralExprBits.Loc; }
setLocation(SourceLocation L)774 void setLocation(SourceLocation L) { CXXNullPtrLiteralExprBits.Loc = L; }
775
classof(const Stmt * T)776 static bool classof(const Stmt *T) {
777 return T->getStmtClass() == CXXNullPtrLiteralExprClass;
778 }
779
children()780 child_range children() {
781 return child_range(child_iterator(), child_iterator());
782 }
783
children()784 const_child_range children() const {
785 return const_child_range(const_child_iterator(), const_child_iterator());
786 }
787 };
788
789 /// Implicit construction of a std::initializer_list<T> object from an
790 /// array temporary within list-initialization (C++11 [dcl.init.list]p5).
791 class CXXStdInitializerListExpr : public Expr {
792 Stmt *SubExpr = nullptr;
793
CXXStdInitializerListExpr(EmptyShell Empty)794 CXXStdInitializerListExpr(EmptyShell Empty)
795 : Expr(CXXStdInitializerListExprClass, Empty) {}
796
797 public:
798 friend class ASTReader;
799 friend class ASTStmtReader;
800
CXXStdInitializerListExpr(QualType Ty,Expr * SubExpr)801 CXXStdInitializerListExpr(QualType Ty, Expr *SubExpr)
802 : Expr(CXXStdInitializerListExprClass, Ty, VK_RValue, OK_Ordinary),
803 SubExpr(SubExpr) {
804 setDependence(computeDependence(this));
805 }
806
getSubExpr()807 Expr *getSubExpr() { return static_cast<Expr*>(SubExpr); }
getSubExpr()808 const Expr *getSubExpr() const { return static_cast<const Expr*>(SubExpr); }
809
getBeginLoc()810 SourceLocation getBeginLoc() const LLVM_READONLY {
811 return SubExpr->getBeginLoc();
812 }
813
getEndLoc()814 SourceLocation getEndLoc() const LLVM_READONLY {
815 return SubExpr->getEndLoc();
816 }
817
818 /// Retrieve the source range of the expression.
getSourceRange()819 SourceRange getSourceRange() const LLVM_READONLY {
820 return SubExpr->getSourceRange();
821 }
822
classof(const Stmt * S)823 static bool classof(const Stmt *S) {
824 return S->getStmtClass() == CXXStdInitializerListExprClass;
825 }
826
children()827 child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
828
children()829 const_child_range children() const {
830 return const_child_range(&SubExpr, &SubExpr + 1);
831 }
832 };
833
834 /// A C++ \c typeid expression (C++ [expr.typeid]), which gets
835 /// the \c type_info that corresponds to the supplied type, or the (possibly
836 /// dynamic) type of the supplied expression.
837 ///
838 /// This represents code like \c typeid(int) or \c typeid(*objPtr)
839 class CXXTypeidExpr : public Expr {
840 friend class ASTStmtReader;
841
842 private:
843 llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
844 SourceRange Range;
845
846 public:
CXXTypeidExpr(QualType Ty,TypeSourceInfo * Operand,SourceRange R)847 CXXTypeidExpr(QualType Ty, TypeSourceInfo *Operand, SourceRange R)
848 : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary), Operand(Operand),
849 Range(R) {
850 setDependence(computeDependence(this));
851 }
852
CXXTypeidExpr(QualType Ty,Expr * Operand,SourceRange R)853 CXXTypeidExpr(QualType Ty, Expr *Operand, SourceRange R)
854 : Expr(CXXTypeidExprClass, Ty, VK_LValue, OK_Ordinary), Operand(Operand),
855 Range(R) {
856 setDependence(computeDependence(this));
857 }
858
CXXTypeidExpr(EmptyShell Empty,bool isExpr)859 CXXTypeidExpr(EmptyShell Empty, bool isExpr)
860 : Expr(CXXTypeidExprClass, Empty) {
861 if (isExpr)
862 Operand = (Expr*)nullptr;
863 else
864 Operand = (TypeSourceInfo*)nullptr;
865 }
866
867 /// Determine whether this typeid has a type operand which is potentially
868 /// evaluated, per C++11 [expr.typeid]p3.
869 bool isPotentiallyEvaluated() const;
870
871 /// Best-effort check if the expression operand refers to a most derived
872 /// object. This is not a strong guarantee.
873 bool isMostDerived(ASTContext &Context) const;
874
isTypeOperand()875 bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
876
877 /// Retrieves the type operand of this typeid() expression after
878 /// various required adjustments (removing reference types, cv-qualifiers).
879 QualType getTypeOperand(ASTContext &Context) const;
880
881 /// Retrieve source information for the type operand.
getTypeOperandSourceInfo()882 TypeSourceInfo *getTypeOperandSourceInfo() const {
883 assert(isTypeOperand() && "Cannot call getTypeOperand for typeid(expr)");
884 return Operand.get<TypeSourceInfo *>();
885 }
getExprOperand()886 Expr *getExprOperand() const {
887 assert(!isTypeOperand() && "Cannot call getExprOperand for typeid(type)");
888 return static_cast<Expr*>(Operand.get<Stmt *>());
889 }
890
getBeginLoc()891 SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
getEndLoc()892 SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
getSourceRange()893 SourceRange getSourceRange() const LLVM_READONLY { return Range; }
setSourceRange(SourceRange R)894 void setSourceRange(SourceRange R) { Range = R; }
895
classof(const Stmt * T)896 static bool classof(const Stmt *T) {
897 return T->getStmtClass() == CXXTypeidExprClass;
898 }
899
900 // Iterators
children()901 child_range children() {
902 if (isTypeOperand())
903 return child_range(child_iterator(), child_iterator());
904 auto **begin = reinterpret_cast<Stmt **>(&Operand);
905 return child_range(begin, begin + 1);
906 }
907
children()908 const_child_range children() const {
909 if (isTypeOperand())
910 return const_child_range(const_child_iterator(), const_child_iterator());
911
912 auto **begin =
913 reinterpret_cast<Stmt **>(&const_cast<CXXTypeidExpr *>(this)->Operand);
914 return const_child_range(begin, begin + 1);
915 }
916 };
917
918 /// A member reference to an MSPropertyDecl.
919 ///
920 /// This expression always has pseudo-object type, and therefore it is
921 /// typically not encountered in a fully-typechecked expression except
922 /// within the syntactic form of a PseudoObjectExpr.
923 class MSPropertyRefExpr : public Expr {
924 Expr *BaseExpr;
925 MSPropertyDecl *TheDecl;
926 SourceLocation MemberLoc;
927 bool IsArrow;
928 NestedNameSpecifierLoc QualifierLoc;
929
930 public:
931 friend class ASTStmtReader;
932
MSPropertyRefExpr(Expr * baseExpr,MSPropertyDecl * decl,bool isArrow,QualType ty,ExprValueKind VK,NestedNameSpecifierLoc qualifierLoc,SourceLocation nameLoc)933 MSPropertyRefExpr(Expr *baseExpr, MSPropertyDecl *decl, bool isArrow,
934 QualType ty, ExprValueKind VK,
935 NestedNameSpecifierLoc qualifierLoc, SourceLocation nameLoc)
936 : Expr(MSPropertyRefExprClass, ty, VK, OK_Ordinary), BaseExpr(baseExpr),
937 TheDecl(decl), MemberLoc(nameLoc), IsArrow(isArrow),
938 QualifierLoc(qualifierLoc) {
939 setDependence(computeDependence(this));
940 }
941
MSPropertyRefExpr(EmptyShell Empty)942 MSPropertyRefExpr(EmptyShell Empty) : Expr(MSPropertyRefExprClass, Empty) {}
943
getSourceRange()944 SourceRange getSourceRange() const LLVM_READONLY {
945 return SourceRange(getBeginLoc(), getEndLoc());
946 }
947
isImplicitAccess()948 bool isImplicitAccess() const {
949 return getBaseExpr() && getBaseExpr()->isImplicitCXXThis();
950 }
951
getBeginLoc()952 SourceLocation getBeginLoc() const {
953 if (!isImplicitAccess())
954 return BaseExpr->getBeginLoc();
955 else if (QualifierLoc)
956 return QualifierLoc.getBeginLoc();
957 else
958 return MemberLoc;
959 }
960
getEndLoc()961 SourceLocation getEndLoc() const { return getMemberLoc(); }
962
children()963 child_range children() {
964 return child_range((Stmt**)&BaseExpr, (Stmt**)&BaseExpr + 1);
965 }
966
children()967 const_child_range children() const {
968 auto Children = const_cast<MSPropertyRefExpr *>(this)->children();
969 return const_child_range(Children.begin(), Children.end());
970 }
971
classof(const Stmt * T)972 static bool classof(const Stmt *T) {
973 return T->getStmtClass() == MSPropertyRefExprClass;
974 }
975
getBaseExpr()976 Expr *getBaseExpr() const { return BaseExpr; }
getPropertyDecl()977 MSPropertyDecl *getPropertyDecl() const { return TheDecl; }
isArrow()978 bool isArrow() const { return IsArrow; }
getMemberLoc()979 SourceLocation getMemberLoc() const { return MemberLoc; }
getQualifierLoc()980 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
981 };
982
983 /// MS property subscript expression.
984 /// MSVC supports 'property' attribute and allows to apply it to the
985 /// declaration of an empty array in a class or structure definition.
986 /// For example:
987 /// \code
988 /// __declspec(property(get=GetX, put=PutX)) int x[];
989 /// \endcode
990 /// The above statement indicates that x[] can be used with one or more array
991 /// indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b), and
992 /// p->x[a][b] = i will be turned into p->PutX(a, b, i).
993 /// This is a syntactic pseudo-object expression.
994 class MSPropertySubscriptExpr : public Expr {
995 friend class ASTStmtReader;
996
997 enum { BASE_EXPR, IDX_EXPR, NUM_SUBEXPRS = 2 };
998
999 Stmt *SubExprs[NUM_SUBEXPRS];
1000 SourceLocation RBracketLoc;
1001
setBase(Expr * Base)1002 void setBase(Expr *Base) { SubExprs[BASE_EXPR] = Base; }
setIdx(Expr * Idx)1003 void setIdx(Expr *Idx) { SubExprs[IDX_EXPR] = Idx; }
1004
1005 public:
MSPropertySubscriptExpr(Expr * Base,Expr * Idx,QualType Ty,ExprValueKind VK,ExprObjectKind OK,SourceLocation RBracketLoc)1006 MSPropertySubscriptExpr(Expr *Base, Expr *Idx, QualType Ty, ExprValueKind VK,
1007 ExprObjectKind OK, SourceLocation RBracketLoc)
1008 : Expr(MSPropertySubscriptExprClass, Ty, VK, OK),
1009 RBracketLoc(RBracketLoc) {
1010 SubExprs[BASE_EXPR] = Base;
1011 SubExprs[IDX_EXPR] = Idx;
1012 setDependence(computeDependence(this));
1013 }
1014
1015 /// Create an empty array subscript expression.
MSPropertySubscriptExpr(EmptyShell Shell)1016 explicit MSPropertySubscriptExpr(EmptyShell Shell)
1017 : Expr(MSPropertySubscriptExprClass, Shell) {}
1018
getBase()1019 Expr *getBase() { return cast<Expr>(SubExprs[BASE_EXPR]); }
getBase()1020 const Expr *getBase() const { return cast<Expr>(SubExprs[BASE_EXPR]); }
1021
getIdx()1022 Expr *getIdx() { return cast<Expr>(SubExprs[IDX_EXPR]); }
getIdx()1023 const Expr *getIdx() const { return cast<Expr>(SubExprs[IDX_EXPR]); }
1024
getBeginLoc()1025 SourceLocation getBeginLoc() const LLVM_READONLY {
1026 return getBase()->getBeginLoc();
1027 }
1028
getEndLoc()1029 SourceLocation getEndLoc() const LLVM_READONLY { return RBracketLoc; }
1030
getRBracketLoc()1031 SourceLocation getRBracketLoc() const { return RBracketLoc; }
setRBracketLoc(SourceLocation L)1032 void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
1033
getExprLoc()1034 SourceLocation getExprLoc() const LLVM_READONLY {
1035 return getBase()->getExprLoc();
1036 }
1037
classof(const Stmt * T)1038 static bool classof(const Stmt *T) {
1039 return T->getStmtClass() == MSPropertySubscriptExprClass;
1040 }
1041
1042 // Iterators
children()1043 child_range children() {
1044 return child_range(&SubExprs[0], &SubExprs[0] + NUM_SUBEXPRS);
1045 }
1046
children()1047 const_child_range children() const {
1048 return const_child_range(&SubExprs[0], &SubExprs[0] + NUM_SUBEXPRS);
1049 }
1050 };
1051
1052 /// A Microsoft C++ @c __uuidof expression, which gets
1053 /// the _GUID that corresponds to the supplied type or expression.
1054 ///
1055 /// This represents code like @c __uuidof(COMTYPE) or @c __uuidof(*comPtr)
1056 class CXXUuidofExpr : public Expr {
1057 friend class ASTStmtReader;
1058
1059 private:
1060 llvm::PointerUnion<Stmt *, TypeSourceInfo *> Operand;
1061 MSGuidDecl *Guid;
1062 SourceRange Range;
1063
1064 public:
CXXUuidofExpr(QualType Ty,TypeSourceInfo * Operand,MSGuidDecl * Guid,SourceRange R)1065 CXXUuidofExpr(QualType Ty, TypeSourceInfo *Operand, MSGuidDecl *Guid,
1066 SourceRange R)
1067 : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary), Operand(Operand),
1068 Guid(Guid), Range(R) {
1069 setDependence(computeDependence(this));
1070 }
1071
CXXUuidofExpr(QualType Ty,Expr * Operand,MSGuidDecl * Guid,SourceRange R)1072 CXXUuidofExpr(QualType Ty, Expr *Operand, MSGuidDecl *Guid, SourceRange R)
1073 : Expr(CXXUuidofExprClass, Ty, VK_LValue, OK_Ordinary), Operand(Operand),
1074 Guid(Guid), Range(R) {
1075 setDependence(computeDependence(this));
1076 }
1077
CXXUuidofExpr(EmptyShell Empty,bool isExpr)1078 CXXUuidofExpr(EmptyShell Empty, bool isExpr)
1079 : Expr(CXXUuidofExprClass, Empty) {
1080 if (isExpr)
1081 Operand = (Expr*)nullptr;
1082 else
1083 Operand = (TypeSourceInfo*)nullptr;
1084 }
1085
isTypeOperand()1086 bool isTypeOperand() const { return Operand.is<TypeSourceInfo *>(); }
1087
1088 /// Retrieves the type operand of this __uuidof() expression after
1089 /// various required adjustments (removing reference types, cv-qualifiers).
1090 QualType getTypeOperand(ASTContext &Context) const;
1091
1092 /// Retrieve source information for the type operand.
getTypeOperandSourceInfo()1093 TypeSourceInfo *getTypeOperandSourceInfo() const {
1094 assert(isTypeOperand() && "Cannot call getTypeOperand for __uuidof(expr)");
1095 return Operand.get<TypeSourceInfo *>();
1096 }
getExprOperand()1097 Expr *getExprOperand() const {
1098 assert(!isTypeOperand() && "Cannot call getExprOperand for __uuidof(type)");
1099 return static_cast<Expr*>(Operand.get<Stmt *>());
1100 }
1101
getGuidDecl()1102 MSGuidDecl *getGuidDecl() const { return Guid; }
1103
getBeginLoc()1104 SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); }
getEndLoc()1105 SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); }
getSourceRange()1106 SourceRange getSourceRange() const LLVM_READONLY { return Range; }
setSourceRange(SourceRange R)1107 void setSourceRange(SourceRange R) { Range = R; }
1108
classof(const Stmt * T)1109 static bool classof(const Stmt *T) {
1110 return T->getStmtClass() == CXXUuidofExprClass;
1111 }
1112
1113 // Iterators
children()1114 child_range children() {
1115 if (isTypeOperand())
1116 return child_range(child_iterator(), child_iterator());
1117 auto **begin = reinterpret_cast<Stmt **>(&Operand);
1118 return child_range(begin, begin + 1);
1119 }
1120
children()1121 const_child_range children() const {
1122 if (isTypeOperand())
1123 return const_child_range(const_child_iterator(), const_child_iterator());
1124 auto **begin =
1125 reinterpret_cast<Stmt **>(&const_cast<CXXUuidofExpr *>(this)->Operand);
1126 return const_child_range(begin, begin + 1);
1127 }
1128 };
1129
1130 /// Represents the \c this expression in C++.
1131 ///
1132 /// This is a pointer to the object on which the current member function is
1133 /// executing (C++ [expr.prim]p3). Example:
1134 ///
1135 /// \code
1136 /// class Foo {
1137 /// public:
1138 /// void bar();
1139 /// void test() { this->bar(); }
1140 /// };
1141 /// \endcode
1142 class CXXThisExpr : public Expr {
1143 public:
CXXThisExpr(SourceLocation L,QualType Ty,bool IsImplicit)1144 CXXThisExpr(SourceLocation L, QualType Ty, bool IsImplicit)
1145 : Expr(CXXThisExprClass, Ty, VK_RValue, OK_Ordinary) {
1146 CXXThisExprBits.IsImplicit = IsImplicit;
1147 CXXThisExprBits.Loc = L;
1148 setDependence(computeDependence(this));
1149 }
1150
CXXThisExpr(EmptyShell Empty)1151 CXXThisExpr(EmptyShell Empty) : Expr(CXXThisExprClass, Empty) {}
1152
getLocation()1153 SourceLocation getLocation() const { return CXXThisExprBits.Loc; }
setLocation(SourceLocation L)1154 void setLocation(SourceLocation L) { CXXThisExprBits.Loc = L; }
1155
getBeginLoc()1156 SourceLocation getBeginLoc() const { return getLocation(); }
getEndLoc()1157 SourceLocation getEndLoc() const { return getLocation(); }
1158
isImplicit()1159 bool isImplicit() const { return CXXThisExprBits.IsImplicit; }
setImplicit(bool I)1160 void setImplicit(bool I) { CXXThisExprBits.IsImplicit = I; }
1161
classof(const Stmt * T)1162 static bool classof(const Stmt *T) {
1163 return T->getStmtClass() == CXXThisExprClass;
1164 }
1165
1166 // Iterators
children()1167 child_range children() {
1168 return child_range(child_iterator(), child_iterator());
1169 }
1170
children()1171 const_child_range children() const {
1172 return const_child_range(const_child_iterator(), const_child_iterator());
1173 }
1174 };
1175
1176 /// A C++ throw-expression (C++ [except.throw]).
1177 ///
1178 /// This handles 'throw' (for re-throwing the current exception) and
1179 /// 'throw' assignment-expression. When assignment-expression isn't
1180 /// present, Op will be null.
1181 class CXXThrowExpr : public Expr {
1182 friend class ASTStmtReader;
1183
1184 /// The optional expression in the throw statement.
1185 Stmt *Operand;
1186
1187 public:
1188 // \p Ty is the void type which is used as the result type of the
1189 // expression. The \p Loc is the location of the throw keyword.
1190 // \p Operand is the expression in the throw statement, and can be
1191 // null if not present.
CXXThrowExpr(Expr * Operand,QualType Ty,SourceLocation Loc,bool IsThrownVariableInScope)1192 CXXThrowExpr(Expr *Operand, QualType Ty, SourceLocation Loc,
1193 bool IsThrownVariableInScope)
1194 : Expr(CXXThrowExprClass, Ty, VK_RValue, OK_Ordinary), Operand(Operand) {
1195 CXXThrowExprBits.ThrowLoc = Loc;
1196 CXXThrowExprBits.IsThrownVariableInScope = IsThrownVariableInScope;
1197 setDependence(computeDependence(this));
1198 }
CXXThrowExpr(EmptyShell Empty)1199 CXXThrowExpr(EmptyShell Empty) : Expr(CXXThrowExprClass, Empty) {}
1200
getSubExpr()1201 const Expr *getSubExpr() const { return cast_or_null<Expr>(Operand); }
getSubExpr()1202 Expr *getSubExpr() { return cast_or_null<Expr>(Operand); }
1203
getThrowLoc()1204 SourceLocation getThrowLoc() const { return CXXThrowExprBits.ThrowLoc; }
1205
1206 /// Determines whether the variable thrown by this expression (if any!)
1207 /// is within the innermost try block.
1208 ///
1209 /// This information is required to determine whether the NRVO can apply to
1210 /// this variable.
isThrownVariableInScope()1211 bool isThrownVariableInScope() const {
1212 return CXXThrowExprBits.IsThrownVariableInScope;
1213 }
1214
getBeginLoc()1215 SourceLocation getBeginLoc() const { return getThrowLoc(); }
getEndLoc()1216 SourceLocation getEndLoc() const LLVM_READONLY {
1217 if (!getSubExpr())
1218 return getThrowLoc();
1219 return getSubExpr()->getEndLoc();
1220 }
1221
classof(const Stmt * T)1222 static bool classof(const Stmt *T) {
1223 return T->getStmtClass() == CXXThrowExprClass;
1224 }
1225
1226 // Iterators
children()1227 child_range children() {
1228 return child_range(&Operand, Operand ? &Operand + 1 : &Operand);
1229 }
1230
children()1231 const_child_range children() const {
1232 return const_child_range(&Operand, Operand ? &Operand + 1 : &Operand);
1233 }
1234 };
1235
1236 /// A default argument (C++ [dcl.fct.default]).
1237 ///
1238 /// This wraps up a function call argument that was created from the
1239 /// corresponding parameter's default argument, when the call did not
1240 /// explicitly supply arguments for all of the parameters.
1241 class CXXDefaultArgExpr final : public Expr {
1242 friend class ASTStmtReader;
1243
1244 /// The parameter whose default is being used.
1245 ParmVarDecl *Param;
1246
1247 /// The context where the default argument expression was used.
1248 DeclContext *UsedContext;
1249
CXXDefaultArgExpr(StmtClass SC,SourceLocation Loc,ParmVarDecl * Param,DeclContext * UsedContext)1250 CXXDefaultArgExpr(StmtClass SC, SourceLocation Loc, ParmVarDecl *Param,
1251 DeclContext *UsedContext)
1252 : Expr(SC,
1253 Param->hasUnparsedDefaultArg()
1254 ? Param->getType().getNonReferenceType()
1255 : Param->getDefaultArg()->getType(),
1256 Param->getDefaultArg()->getValueKind(),
1257 Param->getDefaultArg()->getObjectKind()),
1258 Param(Param), UsedContext(UsedContext) {
1259 CXXDefaultArgExprBits.Loc = Loc;
1260 setDependence(ExprDependence::None);
1261 }
1262
1263 public:
CXXDefaultArgExpr(EmptyShell Empty)1264 CXXDefaultArgExpr(EmptyShell Empty) : Expr(CXXDefaultArgExprClass, Empty) {}
1265
1266 // \p Param is the parameter whose default argument is used by this
1267 // expression.
Create(const ASTContext & C,SourceLocation Loc,ParmVarDecl * Param,DeclContext * UsedContext)1268 static CXXDefaultArgExpr *Create(const ASTContext &C, SourceLocation Loc,
1269 ParmVarDecl *Param,
1270 DeclContext *UsedContext) {
1271 return new (C)
1272 CXXDefaultArgExpr(CXXDefaultArgExprClass, Loc, Param, UsedContext);
1273 }
1274
1275 // Retrieve the parameter that the argument was created from.
getParam()1276 const ParmVarDecl *getParam() const { return Param; }
getParam()1277 ParmVarDecl *getParam() { return Param; }
1278
1279 // Retrieve the actual argument to the function call.
getExpr()1280 const Expr *getExpr() const { return getParam()->getDefaultArg(); }
getExpr()1281 Expr *getExpr() { return getParam()->getDefaultArg(); }
1282
getUsedContext()1283 const DeclContext *getUsedContext() const { return UsedContext; }
getUsedContext()1284 DeclContext *getUsedContext() { return UsedContext; }
1285
1286 /// Retrieve the location where this default argument was actually used.
getUsedLocation()1287 SourceLocation getUsedLocation() const { return CXXDefaultArgExprBits.Loc; }
1288
1289 /// Default argument expressions have no representation in the
1290 /// source, so they have an empty source range.
getBeginLoc()1291 SourceLocation getBeginLoc() const { return SourceLocation(); }
getEndLoc()1292 SourceLocation getEndLoc() const { return SourceLocation(); }
1293
getExprLoc()1294 SourceLocation getExprLoc() const { return getUsedLocation(); }
1295
classof(const Stmt * T)1296 static bool classof(const Stmt *T) {
1297 return T->getStmtClass() == CXXDefaultArgExprClass;
1298 }
1299
1300 // Iterators
children()1301 child_range children() {
1302 return child_range(child_iterator(), child_iterator());
1303 }
1304
children()1305 const_child_range children() const {
1306 return const_child_range(const_child_iterator(), const_child_iterator());
1307 }
1308 };
1309
1310 /// A use of a default initializer in a constructor or in aggregate
1311 /// initialization.
1312 ///
1313 /// This wraps a use of a C++ default initializer (technically,
1314 /// a brace-or-equal-initializer for a non-static data member) when it
1315 /// is implicitly used in a mem-initializer-list in a constructor
1316 /// (C++11 [class.base.init]p8) or in aggregate initialization
1317 /// (C++1y [dcl.init.aggr]p7).
1318 class CXXDefaultInitExpr : public Expr {
1319 friend class ASTReader;
1320 friend class ASTStmtReader;
1321
1322 /// The field whose default is being used.
1323 FieldDecl *Field;
1324
1325 /// The context where the default initializer expression was used.
1326 DeclContext *UsedContext;
1327
1328 CXXDefaultInitExpr(const ASTContext &Ctx, SourceLocation Loc,
1329 FieldDecl *Field, QualType Ty, DeclContext *UsedContext);
1330
CXXDefaultInitExpr(EmptyShell Empty)1331 CXXDefaultInitExpr(EmptyShell Empty) : Expr(CXXDefaultInitExprClass, Empty) {}
1332
1333 public:
1334 /// \p Field is the non-static data member whose default initializer is used
1335 /// by this expression.
Create(const ASTContext & Ctx,SourceLocation Loc,FieldDecl * Field,DeclContext * UsedContext)1336 static CXXDefaultInitExpr *Create(const ASTContext &Ctx, SourceLocation Loc,
1337 FieldDecl *Field, DeclContext *UsedContext) {
1338 return new (Ctx) CXXDefaultInitExpr(Ctx, Loc, Field, Field->getType(), UsedContext);
1339 }
1340
1341 /// Get the field whose initializer will be used.
getField()1342 FieldDecl *getField() { return Field; }
getField()1343 const FieldDecl *getField() const { return Field; }
1344
1345 /// Get the initialization expression that will be used.
getExpr()1346 const Expr *getExpr() const {
1347 assert(Field->getInClassInitializer() && "initializer hasn't been parsed");
1348 return Field->getInClassInitializer();
1349 }
getExpr()1350 Expr *getExpr() {
1351 assert(Field->getInClassInitializer() && "initializer hasn't been parsed");
1352 return Field->getInClassInitializer();
1353 }
1354
getUsedContext()1355 const DeclContext *getUsedContext() const { return UsedContext; }
getUsedContext()1356 DeclContext *getUsedContext() { return UsedContext; }
1357
1358 /// Retrieve the location where this default initializer expression was
1359 /// actually used.
getUsedLocation()1360 SourceLocation getUsedLocation() const { return getBeginLoc(); }
1361
getBeginLoc()1362 SourceLocation getBeginLoc() const { return CXXDefaultInitExprBits.Loc; }
getEndLoc()1363 SourceLocation getEndLoc() const { return CXXDefaultInitExprBits.Loc; }
1364
classof(const Stmt * T)1365 static bool classof(const Stmt *T) {
1366 return T->getStmtClass() == CXXDefaultInitExprClass;
1367 }
1368
1369 // Iterators
children()1370 child_range children() {
1371 return child_range(child_iterator(), child_iterator());
1372 }
1373
children()1374 const_child_range children() const {
1375 return const_child_range(const_child_iterator(), const_child_iterator());
1376 }
1377 };
1378
1379 /// Represents a C++ temporary.
1380 class CXXTemporary {
1381 /// The destructor that needs to be called.
1382 const CXXDestructorDecl *Destructor;
1383
CXXTemporary(const CXXDestructorDecl * destructor)1384 explicit CXXTemporary(const CXXDestructorDecl *destructor)
1385 : Destructor(destructor) {}
1386
1387 public:
1388 static CXXTemporary *Create(const ASTContext &C,
1389 const CXXDestructorDecl *Destructor);
1390
getDestructor()1391 const CXXDestructorDecl *getDestructor() const { return Destructor; }
1392
setDestructor(const CXXDestructorDecl * Dtor)1393 void setDestructor(const CXXDestructorDecl *Dtor) {
1394 Destructor = Dtor;
1395 }
1396 };
1397
1398 /// Represents binding an expression to a temporary.
1399 ///
1400 /// This ensures the destructor is called for the temporary. It should only be
1401 /// needed for non-POD, non-trivially destructable class types. For example:
1402 ///
1403 /// \code
1404 /// struct S {
1405 /// S() { } // User defined constructor makes S non-POD.
1406 /// ~S() { } // User defined destructor makes it non-trivial.
1407 /// };
1408 /// void test() {
1409 /// const S &s_ref = S(); // Requires a CXXBindTemporaryExpr.
1410 /// }
1411 /// \endcode
1412 class CXXBindTemporaryExpr : public Expr {
1413 CXXTemporary *Temp = nullptr;
1414 Stmt *SubExpr = nullptr;
1415
CXXBindTemporaryExpr(CXXTemporary * temp,Expr * SubExpr)1416 CXXBindTemporaryExpr(CXXTemporary *temp, Expr *SubExpr)
1417 : Expr(CXXBindTemporaryExprClass, SubExpr->getType(), VK_RValue,
1418 OK_Ordinary),
1419 Temp(temp), SubExpr(SubExpr) {
1420 setDependence(computeDependence(this));
1421 }
1422
1423 public:
CXXBindTemporaryExpr(EmptyShell Empty)1424 CXXBindTemporaryExpr(EmptyShell Empty)
1425 : Expr(CXXBindTemporaryExprClass, Empty) {}
1426
1427 static CXXBindTemporaryExpr *Create(const ASTContext &C, CXXTemporary *Temp,
1428 Expr* SubExpr);
1429
getTemporary()1430 CXXTemporary *getTemporary() { return Temp; }
getTemporary()1431 const CXXTemporary *getTemporary() const { return Temp; }
setTemporary(CXXTemporary * T)1432 void setTemporary(CXXTemporary *T) { Temp = T; }
1433
getSubExpr()1434 const Expr *getSubExpr() const { return cast<Expr>(SubExpr); }
getSubExpr()1435 Expr *getSubExpr() { return cast<Expr>(SubExpr); }
setSubExpr(Expr * E)1436 void setSubExpr(Expr *E) { SubExpr = E; }
1437
getBeginLoc()1438 SourceLocation getBeginLoc() const LLVM_READONLY {
1439 return SubExpr->getBeginLoc();
1440 }
1441
getEndLoc()1442 SourceLocation getEndLoc() const LLVM_READONLY {
1443 return SubExpr->getEndLoc();
1444 }
1445
1446 // Implement isa/cast/dyncast/etc.
classof(const Stmt * T)1447 static bool classof(const Stmt *T) {
1448 return T->getStmtClass() == CXXBindTemporaryExprClass;
1449 }
1450
1451 // Iterators
children()1452 child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
1453
children()1454 const_child_range children() const {
1455 return const_child_range(&SubExpr, &SubExpr + 1);
1456 }
1457 };
1458
1459 /// Represents a call to a C++ constructor.
1460 class CXXConstructExpr : public Expr {
1461 friend class ASTStmtReader;
1462
1463 public:
1464 enum ConstructionKind {
1465 CK_Complete,
1466 CK_NonVirtualBase,
1467 CK_VirtualBase,
1468 CK_Delegating
1469 };
1470
1471 private:
1472 /// A pointer to the constructor which will be ultimately called.
1473 CXXConstructorDecl *Constructor;
1474
1475 SourceRange ParenOrBraceRange;
1476
1477 /// The number of arguments.
1478 unsigned NumArgs;
1479
1480 // We would like to stash the arguments of the constructor call after
1481 // CXXConstructExpr. However CXXConstructExpr is used as a base class of
1482 // CXXTemporaryObjectExpr which makes the use of llvm::TrailingObjects
1483 // impossible.
1484 //
1485 // Instead we manually stash the trailing object after the full object
1486 // containing CXXConstructExpr (that is either CXXConstructExpr or
1487 // CXXTemporaryObjectExpr).
1488 //
1489 // The trailing objects are:
1490 //
1491 // * An array of getNumArgs() "Stmt *" for the arguments of the
1492 // constructor call.
1493
1494 /// Return a pointer to the start of the trailing arguments.
1495 /// Defined just after CXXTemporaryObjectExpr.
1496 inline Stmt **getTrailingArgs();
getTrailingArgs()1497 const Stmt *const *getTrailingArgs() const {
1498 return const_cast<CXXConstructExpr *>(this)->getTrailingArgs();
1499 }
1500
1501 protected:
1502 /// Build a C++ construction expression.
1503 CXXConstructExpr(StmtClass SC, QualType Ty, SourceLocation Loc,
1504 CXXConstructorDecl *Ctor, bool Elidable,
1505 ArrayRef<Expr *> Args, bool HadMultipleCandidates,
1506 bool ListInitialization, bool StdInitListInitialization,
1507 bool ZeroInitialization, ConstructionKind ConstructKind,
1508 SourceRange ParenOrBraceRange);
1509
1510 /// Build an empty C++ construction expression.
1511 CXXConstructExpr(StmtClass SC, EmptyShell Empty, unsigned NumArgs);
1512
1513 /// Return the size in bytes of the trailing objects. Used by
1514 /// CXXTemporaryObjectExpr to allocate the right amount of storage.
sizeOfTrailingObjects(unsigned NumArgs)1515 static unsigned sizeOfTrailingObjects(unsigned NumArgs) {
1516 return NumArgs * sizeof(Stmt *);
1517 }
1518
1519 public:
1520 /// Create a C++ construction expression.
1521 static CXXConstructExpr *
1522 Create(const ASTContext &Ctx, QualType Ty, SourceLocation Loc,
1523 CXXConstructorDecl *Ctor, bool Elidable, ArrayRef<Expr *> Args,
1524 bool HadMultipleCandidates, bool ListInitialization,
1525 bool StdInitListInitialization, bool ZeroInitialization,
1526 ConstructionKind ConstructKind, SourceRange ParenOrBraceRange);
1527
1528 /// Create an empty C++ construction expression.
1529 static CXXConstructExpr *CreateEmpty(const ASTContext &Ctx, unsigned NumArgs);
1530
1531 /// Get the constructor that this expression will (ultimately) call.
getConstructor()1532 CXXConstructorDecl *getConstructor() const { return Constructor; }
1533
getLocation()1534 SourceLocation getLocation() const { return CXXConstructExprBits.Loc; }
setLocation(SourceLocation Loc)1535 void setLocation(SourceLocation Loc) { CXXConstructExprBits.Loc = Loc; }
1536
1537 /// Whether this construction is elidable.
isElidable()1538 bool isElidable() const { return CXXConstructExprBits.Elidable; }
setElidable(bool E)1539 void setElidable(bool E) { CXXConstructExprBits.Elidable = E; }
1540
1541 /// Whether the referred constructor was resolved from
1542 /// an overloaded set having size greater than 1.
hadMultipleCandidates()1543 bool hadMultipleCandidates() const {
1544 return CXXConstructExprBits.HadMultipleCandidates;
1545 }
setHadMultipleCandidates(bool V)1546 void setHadMultipleCandidates(bool V) {
1547 CXXConstructExprBits.HadMultipleCandidates = V;
1548 }
1549
1550 /// Whether this constructor call was written as list-initialization.
isListInitialization()1551 bool isListInitialization() const {
1552 return CXXConstructExprBits.ListInitialization;
1553 }
setListInitialization(bool V)1554 void setListInitialization(bool V) {
1555 CXXConstructExprBits.ListInitialization = V;
1556 }
1557
1558 /// Whether this constructor call was written as list-initialization,
1559 /// but was interpreted as forming a std::initializer_list<T> from the list
1560 /// and passing that as a single constructor argument.
1561 /// See C++11 [over.match.list]p1 bullet 1.
isStdInitListInitialization()1562 bool isStdInitListInitialization() const {
1563 return CXXConstructExprBits.StdInitListInitialization;
1564 }
setStdInitListInitialization(bool V)1565 void setStdInitListInitialization(bool V) {
1566 CXXConstructExprBits.StdInitListInitialization = V;
1567 }
1568
1569 /// Whether this construction first requires
1570 /// zero-initialization before the initializer is called.
requiresZeroInitialization()1571 bool requiresZeroInitialization() const {
1572 return CXXConstructExprBits.ZeroInitialization;
1573 }
setRequiresZeroInitialization(bool ZeroInit)1574 void setRequiresZeroInitialization(bool ZeroInit) {
1575 CXXConstructExprBits.ZeroInitialization = ZeroInit;
1576 }
1577
1578 /// Determine whether this constructor is actually constructing
1579 /// a base class (rather than a complete object).
getConstructionKind()1580 ConstructionKind getConstructionKind() const {
1581 return static_cast<ConstructionKind>(CXXConstructExprBits.ConstructionKind);
1582 }
setConstructionKind(ConstructionKind CK)1583 void setConstructionKind(ConstructionKind CK) {
1584 CXXConstructExprBits.ConstructionKind = CK;
1585 }
1586
1587 using arg_iterator = ExprIterator;
1588 using const_arg_iterator = ConstExprIterator;
1589 using arg_range = llvm::iterator_range<arg_iterator>;
1590 using const_arg_range = llvm::iterator_range<const_arg_iterator>;
1591
arguments()1592 arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
arguments()1593 const_arg_range arguments() const {
1594 return const_arg_range(arg_begin(), arg_end());
1595 }
1596
arg_begin()1597 arg_iterator arg_begin() { return getTrailingArgs(); }
arg_end()1598 arg_iterator arg_end() { return arg_begin() + getNumArgs(); }
arg_begin()1599 const_arg_iterator arg_begin() const { return getTrailingArgs(); }
arg_end()1600 const_arg_iterator arg_end() const { return arg_begin() + getNumArgs(); }
1601
getArgs()1602 Expr **getArgs() { return reinterpret_cast<Expr **>(getTrailingArgs()); }
getArgs()1603 const Expr *const *getArgs() const {
1604 return reinterpret_cast<const Expr *const *>(getTrailingArgs());
1605 }
1606
1607 /// Return the number of arguments to the constructor call.
getNumArgs()1608 unsigned getNumArgs() const { return NumArgs; }
1609
1610 /// Return the specified argument.
getArg(unsigned Arg)1611 Expr *getArg(unsigned Arg) {
1612 assert(Arg < getNumArgs() && "Arg access out of range!");
1613 return getArgs()[Arg];
1614 }
getArg(unsigned Arg)1615 const Expr *getArg(unsigned Arg) const {
1616 assert(Arg < getNumArgs() && "Arg access out of range!");
1617 return getArgs()[Arg];
1618 }
1619
1620 /// Set the specified argument.
setArg(unsigned Arg,Expr * ArgExpr)1621 void setArg(unsigned Arg, Expr *ArgExpr) {
1622 assert(Arg < getNumArgs() && "Arg access out of range!");
1623 getArgs()[Arg] = ArgExpr;
1624 }
1625
1626 SourceLocation getBeginLoc() const LLVM_READONLY;
1627 SourceLocation getEndLoc() const LLVM_READONLY;
getParenOrBraceRange()1628 SourceRange getParenOrBraceRange() const { return ParenOrBraceRange; }
setParenOrBraceRange(SourceRange Range)1629 void setParenOrBraceRange(SourceRange Range) { ParenOrBraceRange = Range; }
1630
classof(const Stmt * T)1631 static bool classof(const Stmt *T) {
1632 return T->getStmtClass() == CXXConstructExprClass ||
1633 T->getStmtClass() == CXXTemporaryObjectExprClass;
1634 }
1635
1636 // Iterators
children()1637 child_range children() {
1638 return child_range(getTrailingArgs(), getTrailingArgs() + getNumArgs());
1639 }
1640
children()1641 const_child_range children() const {
1642 auto Children = const_cast<CXXConstructExpr *>(this)->children();
1643 return const_child_range(Children.begin(), Children.end());
1644 }
1645 };
1646
1647 /// Represents a call to an inherited base class constructor from an
1648 /// inheriting constructor. This call implicitly forwards the arguments from
1649 /// the enclosing context (an inheriting constructor) to the specified inherited
1650 /// base class constructor.
1651 class CXXInheritedCtorInitExpr : public Expr {
1652 private:
1653 CXXConstructorDecl *Constructor = nullptr;
1654
1655 /// The location of the using declaration.
1656 SourceLocation Loc;
1657
1658 /// Whether this is the construction of a virtual base.
1659 unsigned ConstructsVirtualBase : 1;
1660
1661 /// Whether the constructor is inherited from a virtual base class of the
1662 /// class that we construct.
1663 unsigned InheritedFromVirtualBase : 1;
1664
1665 public:
1666 friend class ASTStmtReader;
1667
1668 /// Construct a C++ inheriting construction expression.
CXXInheritedCtorInitExpr(SourceLocation Loc,QualType T,CXXConstructorDecl * Ctor,bool ConstructsVirtualBase,bool InheritedFromVirtualBase)1669 CXXInheritedCtorInitExpr(SourceLocation Loc, QualType T,
1670 CXXConstructorDecl *Ctor, bool ConstructsVirtualBase,
1671 bool InheritedFromVirtualBase)
1672 : Expr(CXXInheritedCtorInitExprClass, T, VK_RValue, OK_Ordinary),
1673 Constructor(Ctor), Loc(Loc),
1674 ConstructsVirtualBase(ConstructsVirtualBase),
1675 InheritedFromVirtualBase(InheritedFromVirtualBase) {
1676 assert(!T->isDependentType());
1677 setDependence(ExprDependence::None);
1678 }
1679
1680 /// Construct an empty C++ inheriting construction expression.
CXXInheritedCtorInitExpr(EmptyShell Empty)1681 explicit CXXInheritedCtorInitExpr(EmptyShell Empty)
1682 : Expr(CXXInheritedCtorInitExprClass, Empty),
1683 ConstructsVirtualBase(false), InheritedFromVirtualBase(false) {}
1684
1685 /// Get the constructor that this expression will call.
getConstructor()1686 CXXConstructorDecl *getConstructor() const { return Constructor; }
1687
1688 /// Determine whether this constructor is actually constructing
1689 /// a base class (rather than a complete object).
constructsVBase()1690 bool constructsVBase() const { return ConstructsVirtualBase; }
getConstructionKind()1691 CXXConstructExpr::ConstructionKind getConstructionKind() const {
1692 return ConstructsVirtualBase ? CXXConstructExpr::CK_VirtualBase
1693 : CXXConstructExpr::CK_NonVirtualBase;
1694 }
1695
1696 /// Determine whether the inherited constructor is inherited from a
1697 /// virtual base of the object we construct. If so, we are not responsible
1698 /// for calling the inherited constructor (the complete object constructor
1699 /// does that), and so we don't need to pass any arguments.
inheritedFromVBase()1700 bool inheritedFromVBase() const { return InheritedFromVirtualBase; }
1701
getLocation()1702 SourceLocation getLocation() const LLVM_READONLY { return Loc; }
getBeginLoc()1703 SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
getEndLoc()1704 SourceLocation getEndLoc() const LLVM_READONLY { return Loc; }
1705
classof(const Stmt * T)1706 static bool classof(const Stmt *T) {
1707 return T->getStmtClass() == CXXInheritedCtorInitExprClass;
1708 }
1709
children()1710 child_range children() {
1711 return child_range(child_iterator(), child_iterator());
1712 }
1713
children()1714 const_child_range children() const {
1715 return const_child_range(const_child_iterator(), const_child_iterator());
1716 }
1717 };
1718
1719 /// Represents an explicit C++ type conversion that uses "functional"
1720 /// notation (C++ [expr.type.conv]).
1721 ///
1722 /// Example:
1723 /// \code
1724 /// x = int(0.5);
1725 /// \endcode
1726 class CXXFunctionalCastExpr final
1727 : public ExplicitCastExpr,
1728 private llvm::TrailingObjects<CXXFunctionalCastExpr, CXXBaseSpecifier *,
1729 FPOptionsOverride> {
1730 SourceLocation LParenLoc;
1731 SourceLocation RParenLoc;
1732
CXXFunctionalCastExpr(QualType ty,ExprValueKind VK,TypeSourceInfo * writtenTy,CastKind kind,Expr * castExpr,unsigned pathSize,FPOptionsOverride FPO,SourceLocation lParenLoc,SourceLocation rParenLoc)1733 CXXFunctionalCastExpr(QualType ty, ExprValueKind VK,
1734 TypeSourceInfo *writtenTy, CastKind kind,
1735 Expr *castExpr, unsigned pathSize,
1736 FPOptionsOverride FPO, SourceLocation lParenLoc,
1737 SourceLocation rParenLoc)
1738 : ExplicitCastExpr(CXXFunctionalCastExprClass, ty, VK, kind, castExpr,
1739 pathSize, FPO.requiresTrailingStorage(), writtenTy),
1740 LParenLoc(lParenLoc), RParenLoc(rParenLoc) {
1741 if (hasStoredFPFeatures())
1742 *getTrailingFPFeatures() = FPO;
1743 }
1744
CXXFunctionalCastExpr(EmptyShell Shell,unsigned PathSize,bool HasFPFeatures)1745 explicit CXXFunctionalCastExpr(EmptyShell Shell, unsigned PathSize,
1746 bool HasFPFeatures)
1747 : ExplicitCastExpr(CXXFunctionalCastExprClass, Shell, PathSize,
1748 HasFPFeatures) {}
1749
numTrailingObjects(OverloadToken<CXXBaseSpecifier * >)1750 unsigned numTrailingObjects(OverloadToken<CXXBaseSpecifier *>) const {
1751 return path_size();
1752 }
1753
1754 public:
1755 friend class CastExpr;
1756 friend TrailingObjects;
1757
1758 static CXXFunctionalCastExpr *
1759 Create(const ASTContext &Context, QualType T, ExprValueKind VK,
1760 TypeSourceInfo *Written, CastKind Kind, Expr *Op,
1761 const CXXCastPath *Path, FPOptionsOverride FPO, SourceLocation LPLoc,
1762 SourceLocation RPLoc);
1763 static CXXFunctionalCastExpr *
1764 CreateEmpty(const ASTContext &Context, unsigned PathSize, bool HasFPFeatures);
1765
getLParenLoc()1766 SourceLocation getLParenLoc() const { return LParenLoc; }
setLParenLoc(SourceLocation L)1767 void setLParenLoc(SourceLocation L) { LParenLoc = L; }
getRParenLoc()1768 SourceLocation getRParenLoc() const { return RParenLoc; }
setRParenLoc(SourceLocation L)1769 void setRParenLoc(SourceLocation L) { RParenLoc = L; }
1770
1771 /// Determine whether this expression models list-initialization.
isListInitialization()1772 bool isListInitialization() const { return LParenLoc.isInvalid(); }
1773
1774 SourceLocation getBeginLoc() const LLVM_READONLY;
1775 SourceLocation getEndLoc() const LLVM_READONLY;
1776
classof(const Stmt * T)1777 static bool classof(const Stmt *T) {
1778 return T->getStmtClass() == CXXFunctionalCastExprClass;
1779 }
1780 };
1781
1782 /// Represents a C++ functional cast expression that builds a
1783 /// temporary object.
1784 ///
1785 /// This expression type represents a C++ "functional" cast
1786 /// (C++[expr.type.conv]) with N != 1 arguments that invokes a
1787 /// constructor to build a temporary object. With N == 1 arguments the
1788 /// functional cast expression will be represented by CXXFunctionalCastExpr.
1789 /// Example:
1790 /// \code
1791 /// struct X { X(int, float); }
1792 ///
1793 /// X create_X() {
1794 /// return X(1, 3.14f); // creates a CXXTemporaryObjectExpr
1795 /// };
1796 /// \endcode
1797 class CXXTemporaryObjectExpr final : public CXXConstructExpr {
1798 friend class ASTStmtReader;
1799
1800 // CXXTemporaryObjectExpr has some trailing objects belonging
1801 // to CXXConstructExpr. See the comment inside CXXConstructExpr
1802 // for more details.
1803
1804 TypeSourceInfo *TSI;
1805
1806 CXXTemporaryObjectExpr(CXXConstructorDecl *Cons, QualType Ty,
1807 TypeSourceInfo *TSI, ArrayRef<Expr *> Args,
1808 SourceRange ParenOrBraceRange,
1809 bool HadMultipleCandidates, bool ListInitialization,
1810 bool StdInitListInitialization,
1811 bool ZeroInitialization);
1812
1813 CXXTemporaryObjectExpr(EmptyShell Empty, unsigned NumArgs);
1814
1815 public:
1816 static CXXTemporaryObjectExpr *
1817 Create(const ASTContext &Ctx, CXXConstructorDecl *Cons, QualType Ty,
1818 TypeSourceInfo *TSI, ArrayRef<Expr *> Args,
1819 SourceRange ParenOrBraceRange, bool HadMultipleCandidates,
1820 bool ListInitialization, bool StdInitListInitialization,
1821 bool ZeroInitialization);
1822
1823 static CXXTemporaryObjectExpr *CreateEmpty(const ASTContext &Ctx,
1824 unsigned NumArgs);
1825
getTypeSourceInfo()1826 TypeSourceInfo *getTypeSourceInfo() const { return TSI; }
1827
1828 SourceLocation getBeginLoc() const LLVM_READONLY;
1829 SourceLocation getEndLoc() const LLVM_READONLY;
1830
classof(const Stmt * T)1831 static bool classof(const Stmt *T) {
1832 return T->getStmtClass() == CXXTemporaryObjectExprClass;
1833 }
1834 };
1835
getTrailingArgs()1836 Stmt **CXXConstructExpr::getTrailingArgs() {
1837 if (auto *E = dyn_cast<CXXTemporaryObjectExpr>(this))
1838 return reinterpret_cast<Stmt **>(E + 1);
1839 assert((getStmtClass() == CXXConstructExprClass) &&
1840 "Unexpected class deriving from CXXConstructExpr!");
1841 return reinterpret_cast<Stmt **>(this + 1);
1842 }
1843
1844 /// A C++ lambda expression, which produces a function object
1845 /// (of unspecified type) that can be invoked later.
1846 ///
1847 /// Example:
1848 /// \code
1849 /// void low_pass_filter(std::vector<double> &values, double cutoff) {
1850 /// values.erase(std::remove_if(values.begin(), values.end(),
1851 /// [=](double value) { return value > cutoff; });
1852 /// }
1853 /// \endcode
1854 ///
1855 /// C++11 lambda expressions can capture local variables, either by copying
1856 /// the values of those local variables at the time the function
1857 /// object is constructed (not when it is called!) or by holding a
1858 /// reference to the local variable. These captures can occur either
1859 /// implicitly or can be written explicitly between the square
1860 /// brackets ([...]) that start the lambda expression.
1861 ///
1862 /// C++1y introduces a new form of "capture" called an init-capture that
1863 /// includes an initializing expression (rather than capturing a variable),
1864 /// and which can never occur implicitly.
1865 class LambdaExpr final : public Expr,
1866 private llvm::TrailingObjects<LambdaExpr, Stmt *> {
1867 // LambdaExpr has some data stored in LambdaExprBits.
1868
1869 /// The source range that covers the lambda introducer ([...]).
1870 SourceRange IntroducerRange;
1871
1872 /// The source location of this lambda's capture-default ('=' or '&').
1873 SourceLocation CaptureDefaultLoc;
1874
1875 /// The location of the closing brace ('}') that completes
1876 /// the lambda.
1877 ///
1878 /// The location of the brace is also available by looking up the
1879 /// function call operator in the lambda class. However, it is
1880 /// stored here to improve the performance of getSourceRange(), and
1881 /// to avoid having to deserialize the function call operator from a
1882 /// module file just to determine the source range.
1883 SourceLocation ClosingBrace;
1884
1885 /// Construct a lambda expression.
1886 LambdaExpr(QualType T, SourceRange IntroducerRange,
1887 LambdaCaptureDefault CaptureDefault,
1888 SourceLocation CaptureDefaultLoc, bool ExplicitParams,
1889 bool ExplicitResultType, ArrayRef<Expr *> CaptureInits,
1890 SourceLocation ClosingBrace, bool ContainsUnexpandedParameterPack);
1891
1892 /// Construct an empty lambda expression.
1893 LambdaExpr(EmptyShell Empty, unsigned NumCaptures);
1894
getStoredStmts()1895 Stmt **getStoredStmts() { return getTrailingObjects<Stmt *>(); }
getStoredStmts()1896 Stmt *const *getStoredStmts() const { return getTrailingObjects<Stmt *>(); }
1897
1898 void initBodyIfNeeded() const;
1899
1900 public:
1901 friend class ASTStmtReader;
1902 friend class ASTStmtWriter;
1903 friend TrailingObjects;
1904
1905 /// Construct a new lambda expression.
1906 static LambdaExpr *
1907 Create(const ASTContext &C, CXXRecordDecl *Class, SourceRange IntroducerRange,
1908 LambdaCaptureDefault CaptureDefault, SourceLocation CaptureDefaultLoc,
1909 bool ExplicitParams, bool ExplicitResultType,
1910 ArrayRef<Expr *> CaptureInits, SourceLocation ClosingBrace,
1911 bool ContainsUnexpandedParameterPack);
1912
1913 /// Construct a new lambda expression that will be deserialized from
1914 /// an external source.
1915 static LambdaExpr *CreateDeserialized(const ASTContext &C,
1916 unsigned NumCaptures);
1917
1918 /// Determine the default capture kind for this lambda.
getCaptureDefault()1919 LambdaCaptureDefault getCaptureDefault() const {
1920 return static_cast<LambdaCaptureDefault>(LambdaExprBits.CaptureDefault);
1921 }
1922
1923 /// Retrieve the location of this lambda's capture-default, if any.
getCaptureDefaultLoc()1924 SourceLocation getCaptureDefaultLoc() const { return CaptureDefaultLoc; }
1925
1926 /// Determine whether one of this lambda's captures is an init-capture.
1927 bool isInitCapture(const LambdaCapture *Capture) const;
1928
1929 /// An iterator that walks over the captures of the lambda,
1930 /// both implicit and explicit.
1931 using capture_iterator = const LambdaCapture *;
1932
1933 /// An iterator over a range of lambda captures.
1934 using capture_range = llvm::iterator_range<capture_iterator>;
1935
1936 /// Retrieve this lambda's captures.
1937 capture_range captures() const;
1938
1939 /// Retrieve an iterator pointing to the first lambda capture.
1940 capture_iterator capture_begin() const;
1941
1942 /// Retrieve an iterator pointing past the end of the
1943 /// sequence of lambda captures.
1944 capture_iterator capture_end() const;
1945
1946 /// Determine the number of captures in this lambda.
capture_size()1947 unsigned capture_size() const { return LambdaExprBits.NumCaptures; }
1948
1949 /// Retrieve this lambda's explicit captures.
1950 capture_range explicit_captures() const;
1951
1952 /// Retrieve an iterator pointing to the first explicit
1953 /// lambda capture.
1954 capture_iterator explicit_capture_begin() const;
1955
1956 /// Retrieve an iterator pointing past the end of the sequence of
1957 /// explicit lambda captures.
1958 capture_iterator explicit_capture_end() const;
1959
1960 /// Retrieve this lambda's implicit captures.
1961 capture_range implicit_captures() const;
1962
1963 /// Retrieve an iterator pointing to the first implicit
1964 /// lambda capture.
1965 capture_iterator implicit_capture_begin() const;
1966
1967 /// Retrieve an iterator pointing past the end of the sequence of
1968 /// implicit lambda captures.
1969 capture_iterator implicit_capture_end() const;
1970
1971 /// Iterator that walks over the capture initialization
1972 /// arguments.
1973 using capture_init_iterator = Expr **;
1974
1975 /// Const iterator that walks over the capture initialization
1976 /// arguments.
1977 /// FIXME: This interface is prone to being used incorrectly.
1978 using const_capture_init_iterator = Expr *const *;
1979
1980 /// Retrieve the initialization expressions for this lambda's captures.
capture_inits()1981 llvm::iterator_range<capture_init_iterator> capture_inits() {
1982 return llvm::make_range(capture_init_begin(), capture_init_end());
1983 }
1984
1985 /// Retrieve the initialization expressions for this lambda's captures.
capture_inits()1986 llvm::iterator_range<const_capture_init_iterator> capture_inits() const {
1987 return llvm::make_range(capture_init_begin(), capture_init_end());
1988 }
1989
1990 /// Retrieve the first initialization argument for this
1991 /// lambda expression (which initializes the first capture field).
capture_init_begin()1992 capture_init_iterator capture_init_begin() {
1993 return reinterpret_cast<Expr **>(getStoredStmts());
1994 }
1995
1996 /// Retrieve the first initialization argument for this
1997 /// lambda expression (which initializes the first capture field).
capture_init_begin()1998 const_capture_init_iterator capture_init_begin() const {
1999 return reinterpret_cast<Expr *const *>(getStoredStmts());
2000 }
2001
2002 /// Retrieve the iterator pointing one past the last
2003 /// initialization argument for this lambda expression.
capture_init_end()2004 capture_init_iterator capture_init_end() {
2005 return capture_init_begin() + capture_size();
2006 }
2007
2008 /// Retrieve the iterator pointing one past the last
2009 /// initialization argument for this lambda expression.
capture_init_end()2010 const_capture_init_iterator capture_init_end() const {
2011 return capture_init_begin() + capture_size();
2012 }
2013
2014 /// Retrieve the source range covering the lambda introducer,
2015 /// which contains the explicit capture list surrounded by square
2016 /// brackets ([...]).
getIntroducerRange()2017 SourceRange getIntroducerRange() const { return IntroducerRange; }
2018
2019 /// Retrieve the class that corresponds to the lambda.
2020 ///
2021 /// This is the "closure type" (C++1y [expr.prim.lambda]), and stores the
2022 /// captures in its fields and provides the various operations permitted
2023 /// on a lambda (copying, calling).
2024 CXXRecordDecl *getLambdaClass() const;
2025
2026 /// Retrieve the function call operator associated with this
2027 /// lambda expression.
2028 CXXMethodDecl *getCallOperator() const;
2029
2030 /// Retrieve the function template call operator associated with this
2031 /// lambda expression.
2032 FunctionTemplateDecl *getDependentCallOperator() const;
2033
2034 /// If this is a generic lambda expression, retrieve the template
2035 /// parameter list associated with it, or else return null.
2036 TemplateParameterList *getTemplateParameterList() const;
2037
2038 /// Get the template parameters were explicitly specified (as opposed to being
2039 /// invented by use of an auto parameter).
2040 ArrayRef<NamedDecl *> getExplicitTemplateParameters() const;
2041
2042 /// Get the trailing requires clause, if any.
2043 Expr *getTrailingRequiresClause() const;
2044
2045 /// Whether this is a generic lambda.
isGenericLambda()2046 bool isGenericLambda() const { return getTemplateParameterList(); }
2047
2048 /// Retrieve the body of the lambda. This will be most of the time
2049 /// a \p CompoundStmt, but can also be \p CoroutineBodyStmt wrapping
2050 /// a \p CompoundStmt. Note that unlike functions, lambda-expressions
2051 /// cannot have a function-try-block.
2052 Stmt *getBody() const;
2053
2054 /// Retrieve the \p CompoundStmt representing the body of the lambda.
2055 /// This is a convenience function for callers who do not need
2056 /// to handle node(s) which may wrap a \p CompoundStmt.
2057 const CompoundStmt *getCompoundStmtBody() const;
getCompoundStmtBody()2058 CompoundStmt *getCompoundStmtBody() {
2059 const auto *ConstThis = this;
2060 return const_cast<CompoundStmt *>(ConstThis->getCompoundStmtBody());
2061 }
2062
2063 /// Determine whether the lambda is mutable, meaning that any
2064 /// captures values can be modified.
2065 bool isMutable() const;
2066
2067 /// Determine whether this lambda has an explicit parameter
2068 /// list vs. an implicit (empty) parameter list.
hasExplicitParameters()2069 bool hasExplicitParameters() const { return LambdaExprBits.ExplicitParams; }
2070
2071 /// Whether this lambda had its result type explicitly specified.
hasExplicitResultType()2072 bool hasExplicitResultType() const {
2073 return LambdaExprBits.ExplicitResultType;
2074 }
2075
classof(const Stmt * T)2076 static bool classof(const Stmt *T) {
2077 return T->getStmtClass() == LambdaExprClass;
2078 }
2079
getBeginLoc()2080 SourceLocation getBeginLoc() const LLVM_READONLY {
2081 return IntroducerRange.getBegin();
2082 }
2083
getEndLoc()2084 SourceLocation getEndLoc() const LLVM_READONLY { return ClosingBrace; }
2085
2086 /// Includes the captures and the body of the lambda.
2087 child_range children();
2088 const_child_range children() const;
2089 };
2090
2091 /// An expression "T()" which creates a value-initialized rvalue of type
2092 /// T, which is a non-class type. See (C++98 [5.2.3p2]).
2093 class CXXScalarValueInitExpr : public Expr {
2094 friend class ASTStmtReader;
2095
2096 TypeSourceInfo *TypeInfo;
2097
2098 public:
2099 /// Create an explicitly-written scalar-value initialization
2100 /// expression.
CXXScalarValueInitExpr(QualType Type,TypeSourceInfo * TypeInfo,SourceLocation RParenLoc)2101 CXXScalarValueInitExpr(QualType Type, TypeSourceInfo *TypeInfo,
2102 SourceLocation RParenLoc)
2103 : Expr(CXXScalarValueInitExprClass, Type, VK_RValue, OK_Ordinary),
2104 TypeInfo(TypeInfo) {
2105 CXXScalarValueInitExprBits.RParenLoc = RParenLoc;
2106 setDependence(computeDependence(this));
2107 }
2108
CXXScalarValueInitExpr(EmptyShell Shell)2109 explicit CXXScalarValueInitExpr(EmptyShell Shell)
2110 : Expr(CXXScalarValueInitExprClass, Shell) {}
2111
getTypeSourceInfo()2112 TypeSourceInfo *getTypeSourceInfo() const {
2113 return TypeInfo;
2114 }
2115
getRParenLoc()2116 SourceLocation getRParenLoc() const {
2117 return CXXScalarValueInitExprBits.RParenLoc;
2118 }
2119
2120 SourceLocation getBeginLoc() const LLVM_READONLY;
getEndLoc()2121 SourceLocation getEndLoc() const { return getRParenLoc(); }
2122
classof(const Stmt * T)2123 static bool classof(const Stmt *T) {
2124 return T->getStmtClass() == CXXScalarValueInitExprClass;
2125 }
2126
2127 // Iterators
children()2128 child_range children() {
2129 return child_range(child_iterator(), child_iterator());
2130 }
2131
children()2132 const_child_range children() const {
2133 return const_child_range(const_child_iterator(), const_child_iterator());
2134 }
2135 };
2136
2137 /// Represents a new-expression for memory allocation and constructor
2138 /// calls, e.g: "new CXXNewExpr(foo)".
2139 class CXXNewExpr final
2140 : public Expr,
2141 private llvm::TrailingObjects<CXXNewExpr, Stmt *, SourceRange> {
2142 friend class ASTStmtReader;
2143 friend class ASTStmtWriter;
2144 friend TrailingObjects;
2145
2146 /// Points to the allocation function used.
2147 FunctionDecl *OperatorNew;
2148
2149 /// Points to the deallocation function used in case of error. May be null.
2150 FunctionDecl *OperatorDelete;
2151
2152 /// The allocated type-source information, as written in the source.
2153 TypeSourceInfo *AllocatedTypeInfo;
2154
2155 /// Range of the entire new expression.
2156 SourceRange Range;
2157
2158 /// Source-range of a paren-delimited initializer.
2159 SourceRange DirectInitRange;
2160
2161 // CXXNewExpr is followed by several optional trailing objects.
2162 // They are in order:
2163 //
2164 // * An optional "Stmt *" for the array size expression.
2165 // Present if and ony if isArray().
2166 //
2167 // * An optional "Stmt *" for the init expression.
2168 // Present if and only if hasInitializer().
2169 //
2170 // * An array of getNumPlacementArgs() "Stmt *" for the placement new
2171 // arguments, if any.
2172 //
2173 // * An optional SourceRange for the range covering the parenthesized type-id
2174 // if the allocated type was expressed as a parenthesized type-id.
2175 // Present if and only if isParenTypeId().
arraySizeOffset()2176 unsigned arraySizeOffset() const { return 0; }
initExprOffset()2177 unsigned initExprOffset() const { return arraySizeOffset() + isArray(); }
placementNewArgsOffset()2178 unsigned placementNewArgsOffset() const {
2179 return initExprOffset() + hasInitializer();
2180 }
2181
numTrailingObjects(OverloadToken<Stmt * >)2182 unsigned numTrailingObjects(OverloadToken<Stmt *>) const {
2183 return isArray() + hasInitializer() + getNumPlacementArgs();
2184 }
2185
numTrailingObjects(OverloadToken<SourceRange>)2186 unsigned numTrailingObjects(OverloadToken<SourceRange>) const {
2187 return isParenTypeId();
2188 }
2189
2190 public:
2191 enum InitializationStyle {
2192 /// New-expression has no initializer as written.
2193 NoInit,
2194
2195 /// New-expression has a C++98 paren-delimited initializer.
2196 CallInit,
2197
2198 /// New-expression has a C++11 list-initializer.
2199 ListInit
2200 };
2201
2202 private:
2203 /// Build a c++ new expression.
2204 CXXNewExpr(bool IsGlobalNew, FunctionDecl *OperatorNew,
2205 FunctionDecl *OperatorDelete, bool ShouldPassAlignment,
2206 bool UsualArrayDeleteWantsSize, ArrayRef<Expr *> PlacementArgs,
2207 SourceRange TypeIdParens, Optional<Expr *> ArraySize,
2208 InitializationStyle InitializationStyle, Expr *Initializer,
2209 QualType Ty, TypeSourceInfo *AllocatedTypeInfo, SourceRange Range,
2210 SourceRange DirectInitRange);
2211
2212 /// Build an empty c++ new expression.
2213 CXXNewExpr(EmptyShell Empty, bool IsArray, unsigned NumPlacementArgs,
2214 bool IsParenTypeId);
2215
2216 public:
2217 /// Create a c++ new expression.
2218 static CXXNewExpr *
2219 Create(const ASTContext &Ctx, bool IsGlobalNew, FunctionDecl *OperatorNew,
2220 FunctionDecl *OperatorDelete, bool ShouldPassAlignment,
2221 bool UsualArrayDeleteWantsSize, ArrayRef<Expr *> PlacementArgs,
2222 SourceRange TypeIdParens, Optional<Expr *> ArraySize,
2223 InitializationStyle InitializationStyle, Expr *Initializer,
2224 QualType Ty, TypeSourceInfo *AllocatedTypeInfo, SourceRange Range,
2225 SourceRange DirectInitRange);
2226
2227 /// Create an empty c++ new expression.
2228 static CXXNewExpr *CreateEmpty(const ASTContext &Ctx, bool IsArray,
2229 bool HasInit, unsigned NumPlacementArgs,
2230 bool IsParenTypeId);
2231
getAllocatedType()2232 QualType getAllocatedType() const {
2233 return getType()->castAs<PointerType>()->getPointeeType();
2234 }
2235
getAllocatedTypeSourceInfo()2236 TypeSourceInfo *getAllocatedTypeSourceInfo() const {
2237 return AllocatedTypeInfo;
2238 }
2239
2240 /// True if the allocation result needs to be null-checked.
2241 ///
2242 /// C++11 [expr.new]p13:
2243 /// If the allocation function returns null, initialization shall
2244 /// not be done, the deallocation function shall not be called,
2245 /// and the value of the new-expression shall be null.
2246 ///
2247 /// C++ DR1748:
2248 /// If the allocation function is a reserved placement allocation
2249 /// function that returns null, the behavior is undefined.
2250 ///
2251 /// An allocation function is not allowed to return null unless it
2252 /// has a non-throwing exception-specification. The '03 rule is
2253 /// identical except that the definition of a non-throwing
2254 /// exception specification is just "is it throw()?".
2255 bool shouldNullCheckAllocation() const;
2256
getOperatorNew()2257 FunctionDecl *getOperatorNew() const { return OperatorNew; }
setOperatorNew(FunctionDecl * D)2258 void setOperatorNew(FunctionDecl *D) { OperatorNew = D; }
getOperatorDelete()2259 FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
setOperatorDelete(FunctionDecl * D)2260 void setOperatorDelete(FunctionDecl *D) { OperatorDelete = D; }
2261
isArray()2262 bool isArray() const { return CXXNewExprBits.IsArray; }
2263
getArraySize()2264 Optional<Expr *> getArraySize() {
2265 if (!isArray())
2266 return None;
2267 return cast_or_null<Expr>(getTrailingObjects<Stmt *>()[arraySizeOffset()]);
2268 }
getArraySize()2269 Optional<const Expr *> getArraySize() const {
2270 if (!isArray())
2271 return None;
2272 return cast_or_null<Expr>(getTrailingObjects<Stmt *>()[arraySizeOffset()]);
2273 }
2274
getNumPlacementArgs()2275 unsigned getNumPlacementArgs() const {
2276 return CXXNewExprBits.NumPlacementArgs;
2277 }
2278
getPlacementArgs()2279 Expr **getPlacementArgs() {
2280 return reinterpret_cast<Expr **>(getTrailingObjects<Stmt *>() +
2281 placementNewArgsOffset());
2282 }
2283
getPlacementArg(unsigned I)2284 Expr *getPlacementArg(unsigned I) {
2285 assert((I < getNumPlacementArgs()) && "Index out of range!");
2286 return getPlacementArgs()[I];
2287 }
getPlacementArg(unsigned I)2288 const Expr *getPlacementArg(unsigned I) const {
2289 return const_cast<CXXNewExpr *>(this)->getPlacementArg(I);
2290 }
2291
isParenTypeId()2292 bool isParenTypeId() const { return CXXNewExprBits.IsParenTypeId; }
getTypeIdParens()2293 SourceRange getTypeIdParens() const {
2294 return isParenTypeId() ? getTrailingObjects<SourceRange>()[0]
2295 : SourceRange();
2296 }
2297
isGlobalNew()2298 bool isGlobalNew() const { return CXXNewExprBits.IsGlobalNew; }
2299
2300 /// Whether this new-expression has any initializer at all.
hasInitializer()2301 bool hasInitializer() const {
2302 return CXXNewExprBits.StoredInitializationStyle > 0;
2303 }
2304
2305 /// The kind of initializer this new-expression has.
getInitializationStyle()2306 InitializationStyle getInitializationStyle() const {
2307 if (CXXNewExprBits.StoredInitializationStyle == 0)
2308 return NoInit;
2309 return static_cast<InitializationStyle>(
2310 CXXNewExprBits.StoredInitializationStyle - 1);
2311 }
2312
2313 /// The initializer of this new-expression.
getInitializer()2314 Expr *getInitializer() {
2315 return hasInitializer()
2316 ? cast<Expr>(getTrailingObjects<Stmt *>()[initExprOffset()])
2317 : nullptr;
2318 }
getInitializer()2319 const Expr *getInitializer() const {
2320 return hasInitializer()
2321 ? cast<Expr>(getTrailingObjects<Stmt *>()[initExprOffset()])
2322 : nullptr;
2323 }
2324
2325 /// Returns the CXXConstructExpr from this new-expression, or null.
getConstructExpr()2326 const CXXConstructExpr *getConstructExpr() const {
2327 return dyn_cast_or_null<CXXConstructExpr>(getInitializer());
2328 }
2329
2330 /// Indicates whether the required alignment should be implicitly passed to
2331 /// the allocation function.
passAlignment()2332 bool passAlignment() const { return CXXNewExprBits.ShouldPassAlignment; }
2333
2334 /// Answers whether the usual array deallocation function for the
2335 /// allocated type expects the size of the allocation as a
2336 /// parameter.
doesUsualArrayDeleteWantSize()2337 bool doesUsualArrayDeleteWantSize() const {
2338 return CXXNewExprBits.UsualArrayDeleteWantsSize;
2339 }
2340
2341 using arg_iterator = ExprIterator;
2342 using const_arg_iterator = ConstExprIterator;
2343
placement_arguments()2344 llvm::iterator_range<arg_iterator> placement_arguments() {
2345 return llvm::make_range(placement_arg_begin(), placement_arg_end());
2346 }
2347
placement_arguments()2348 llvm::iterator_range<const_arg_iterator> placement_arguments() const {
2349 return llvm::make_range(placement_arg_begin(), placement_arg_end());
2350 }
2351
placement_arg_begin()2352 arg_iterator placement_arg_begin() {
2353 return getTrailingObjects<Stmt *>() + placementNewArgsOffset();
2354 }
placement_arg_end()2355 arg_iterator placement_arg_end() {
2356 return placement_arg_begin() + getNumPlacementArgs();
2357 }
placement_arg_begin()2358 const_arg_iterator placement_arg_begin() const {
2359 return getTrailingObjects<Stmt *>() + placementNewArgsOffset();
2360 }
placement_arg_end()2361 const_arg_iterator placement_arg_end() const {
2362 return placement_arg_begin() + getNumPlacementArgs();
2363 }
2364
2365 using raw_arg_iterator = Stmt **;
2366
raw_arg_begin()2367 raw_arg_iterator raw_arg_begin() { return getTrailingObjects<Stmt *>(); }
raw_arg_end()2368 raw_arg_iterator raw_arg_end() {
2369 return raw_arg_begin() + numTrailingObjects(OverloadToken<Stmt *>());
2370 }
raw_arg_begin()2371 const_arg_iterator raw_arg_begin() const {
2372 return getTrailingObjects<Stmt *>();
2373 }
raw_arg_end()2374 const_arg_iterator raw_arg_end() const {
2375 return raw_arg_begin() + numTrailingObjects(OverloadToken<Stmt *>());
2376 }
2377
getBeginLoc()2378 SourceLocation getBeginLoc() const { return Range.getBegin(); }
getEndLoc()2379 SourceLocation getEndLoc() const { return Range.getEnd(); }
2380
getDirectInitRange()2381 SourceRange getDirectInitRange() const { return DirectInitRange; }
getSourceRange()2382 SourceRange getSourceRange() const { return Range; }
2383
classof(const Stmt * T)2384 static bool classof(const Stmt *T) {
2385 return T->getStmtClass() == CXXNewExprClass;
2386 }
2387
2388 // Iterators
children()2389 child_range children() { return child_range(raw_arg_begin(), raw_arg_end()); }
2390
children()2391 const_child_range children() const {
2392 return const_child_range(const_cast<CXXNewExpr *>(this)->children());
2393 }
2394 };
2395
2396 /// Represents a \c delete expression for memory deallocation and
2397 /// destructor calls, e.g. "delete[] pArray".
2398 class CXXDeleteExpr : public Expr {
2399 friend class ASTStmtReader;
2400
2401 /// Points to the operator delete overload that is used. Could be a member.
2402 FunctionDecl *OperatorDelete = nullptr;
2403
2404 /// The pointer expression to be deleted.
2405 Stmt *Argument = nullptr;
2406
2407 public:
CXXDeleteExpr(QualType Ty,bool GlobalDelete,bool ArrayForm,bool ArrayFormAsWritten,bool UsualArrayDeleteWantsSize,FunctionDecl * OperatorDelete,Expr * Arg,SourceLocation Loc)2408 CXXDeleteExpr(QualType Ty, bool GlobalDelete, bool ArrayForm,
2409 bool ArrayFormAsWritten, bool UsualArrayDeleteWantsSize,
2410 FunctionDecl *OperatorDelete, Expr *Arg, SourceLocation Loc)
2411 : Expr(CXXDeleteExprClass, Ty, VK_RValue, OK_Ordinary),
2412 OperatorDelete(OperatorDelete), Argument(Arg) {
2413 CXXDeleteExprBits.GlobalDelete = GlobalDelete;
2414 CXXDeleteExprBits.ArrayForm = ArrayForm;
2415 CXXDeleteExprBits.ArrayFormAsWritten = ArrayFormAsWritten;
2416 CXXDeleteExprBits.UsualArrayDeleteWantsSize = UsualArrayDeleteWantsSize;
2417 CXXDeleteExprBits.Loc = Loc;
2418 setDependence(computeDependence(this));
2419 }
2420
CXXDeleteExpr(EmptyShell Shell)2421 explicit CXXDeleteExpr(EmptyShell Shell) : Expr(CXXDeleteExprClass, Shell) {}
2422
isGlobalDelete()2423 bool isGlobalDelete() const { return CXXDeleteExprBits.GlobalDelete; }
isArrayForm()2424 bool isArrayForm() const { return CXXDeleteExprBits.ArrayForm; }
isArrayFormAsWritten()2425 bool isArrayFormAsWritten() const {
2426 return CXXDeleteExprBits.ArrayFormAsWritten;
2427 }
2428
2429 /// Answers whether the usual array deallocation function for the
2430 /// allocated type expects the size of the allocation as a
2431 /// parameter. This can be true even if the actual deallocation
2432 /// function that we're using doesn't want a size.
doesUsualArrayDeleteWantSize()2433 bool doesUsualArrayDeleteWantSize() const {
2434 return CXXDeleteExprBits.UsualArrayDeleteWantsSize;
2435 }
2436
getOperatorDelete()2437 FunctionDecl *getOperatorDelete() const { return OperatorDelete; }
2438
getArgument()2439 Expr *getArgument() { return cast<Expr>(Argument); }
getArgument()2440 const Expr *getArgument() const { return cast<Expr>(Argument); }
2441
2442 /// Retrieve the type being destroyed.
2443 ///
2444 /// If the type being destroyed is a dependent type which may or may not
2445 /// be a pointer, return an invalid type.
2446 QualType getDestroyedType() const;
2447
getBeginLoc()2448 SourceLocation getBeginLoc() const { return CXXDeleteExprBits.Loc; }
getEndLoc()2449 SourceLocation getEndLoc() const LLVM_READONLY {
2450 return Argument->getEndLoc();
2451 }
2452
classof(const Stmt * T)2453 static bool classof(const Stmt *T) {
2454 return T->getStmtClass() == CXXDeleteExprClass;
2455 }
2456
2457 // Iterators
children()2458 child_range children() { return child_range(&Argument, &Argument + 1); }
2459
children()2460 const_child_range children() const {
2461 return const_child_range(&Argument, &Argument + 1);
2462 }
2463 };
2464
2465 /// Stores the type being destroyed by a pseudo-destructor expression.
2466 class PseudoDestructorTypeStorage {
2467 /// Either the type source information or the name of the type, if
2468 /// it couldn't be resolved due to type-dependence.
2469 llvm::PointerUnion<TypeSourceInfo *, IdentifierInfo *> Type;
2470
2471 /// The starting source location of the pseudo-destructor type.
2472 SourceLocation Location;
2473
2474 public:
2475 PseudoDestructorTypeStorage() = default;
2476
PseudoDestructorTypeStorage(IdentifierInfo * II,SourceLocation Loc)2477 PseudoDestructorTypeStorage(IdentifierInfo *II, SourceLocation Loc)
2478 : Type(II), Location(Loc) {}
2479
2480 PseudoDestructorTypeStorage(TypeSourceInfo *Info);
2481
getTypeSourceInfo()2482 TypeSourceInfo *getTypeSourceInfo() const {
2483 return Type.dyn_cast<TypeSourceInfo *>();
2484 }
2485
getIdentifier()2486 IdentifierInfo *getIdentifier() const {
2487 return Type.dyn_cast<IdentifierInfo *>();
2488 }
2489
getLocation()2490 SourceLocation getLocation() const { return Location; }
2491 };
2492
2493 /// Represents a C++ pseudo-destructor (C++ [expr.pseudo]).
2494 ///
2495 /// A pseudo-destructor is an expression that looks like a member access to a
2496 /// destructor of a scalar type, except that scalar types don't have
2497 /// destructors. For example:
2498 ///
2499 /// \code
2500 /// typedef int T;
2501 /// void f(int *p) {
2502 /// p->T::~T();
2503 /// }
2504 /// \endcode
2505 ///
2506 /// Pseudo-destructors typically occur when instantiating templates such as:
2507 ///
2508 /// \code
2509 /// template<typename T>
2510 /// void destroy(T* ptr) {
2511 /// ptr->T::~T();
2512 /// }
2513 /// \endcode
2514 ///
2515 /// for scalar types. A pseudo-destructor expression has no run-time semantics
2516 /// beyond evaluating the base expression.
2517 class CXXPseudoDestructorExpr : public Expr {
2518 friend class ASTStmtReader;
2519
2520 /// The base expression (that is being destroyed).
2521 Stmt *Base = nullptr;
2522
2523 /// Whether the operator was an arrow ('->'); otherwise, it was a
2524 /// period ('.').
2525 bool IsArrow : 1;
2526
2527 /// The location of the '.' or '->' operator.
2528 SourceLocation OperatorLoc;
2529
2530 /// The nested-name-specifier that follows the operator, if present.
2531 NestedNameSpecifierLoc QualifierLoc;
2532
2533 /// The type that precedes the '::' in a qualified pseudo-destructor
2534 /// expression.
2535 TypeSourceInfo *ScopeType = nullptr;
2536
2537 /// The location of the '::' in a qualified pseudo-destructor
2538 /// expression.
2539 SourceLocation ColonColonLoc;
2540
2541 /// The location of the '~'.
2542 SourceLocation TildeLoc;
2543
2544 /// The type being destroyed, or its name if we were unable to
2545 /// resolve the name.
2546 PseudoDestructorTypeStorage DestroyedType;
2547
2548 public:
2549 CXXPseudoDestructorExpr(const ASTContext &Context,
2550 Expr *Base, bool isArrow, SourceLocation OperatorLoc,
2551 NestedNameSpecifierLoc QualifierLoc,
2552 TypeSourceInfo *ScopeType,
2553 SourceLocation ColonColonLoc,
2554 SourceLocation TildeLoc,
2555 PseudoDestructorTypeStorage DestroyedType);
2556
CXXPseudoDestructorExpr(EmptyShell Shell)2557 explicit CXXPseudoDestructorExpr(EmptyShell Shell)
2558 : Expr(CXXPseudoDestructorExprClass, Shell), IsArrow(false) {}
2559
getBase()2560 Expr *getBase() const { return cast<Expr>(Base); }
2561
2562 /// Determines whether this member expression actually had
2563 /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2564 /// x->Base::foo.
hasQualifier()2565 bool hasQualifier() const { return QualifierLoc.hasQualifier(); }
2566
2567 /// Retrieves the nested-name-specifier that qualifies the type name,
2568 /// with source-location information.
getQualifierLoc()2569 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
2570
2571 /// If the member name was qualified, retrieves the
2572 /// nested-name-specifier that precedes the member name. Otherwise, returns
2573 /// null.
getQualifier()2574 NestedNameSpecifier *getQualifier() const {
2575 return QualifierLoc.getNestedNameSpecifier();
2576 }
2577
2578 /// Determine whether this pseudo-destructor expression was written
2579 /// using an '->' (otherwise, it used a '.').
isArrow()2580 bool isArrow() const { return IsArrow; }
2581
2582 /// Retrieve the location of the '.' or '->' operator.
getOperatorLoc()2583 SourceLocation getOperatorLoc() const { return OperatorLoc; }
2584
2585 /// Retrieve the scope type in a qualified pseudo-destructor
2586 /// expression.
2587 ///
2588 /// Pseudo-destructor expressions can have extra qualification within them
2589 /// that is not part of the nested-name-specifier, e.g., \c p->T::~T().
2590 /// Here, if the object type of the expression is (or may be) a scalar type,
2591 /// \p T may also be a scalar type and, therefore, cannot be part of a
2592 /// nested-name-specifier. It is stored as the "scope type" of the pseudo-
2593 /// destructor expression.
getScopeTypeInfo()2594 TypeSourceInfo *getScopeTypeInfo() const { return ScopeType; }
2595
2596 /// Retrieve the location of the '::' in a qualified pseudo-destructor
2597 /// expression.
getColonColonLoc()2598 SourceLocation getColonColonLoc() const { return ColonColonLoc; }
2599
2600 /// Retrieve the location of the '~'.
getTildeLoc()2601 SourceLocation getTildeLoc() const { return TildeLoc; }
2602
2603 /// Retrieve the source location information for the type
2604 /// being destroyed.
2605 ///
2606 /// This type-source information is available for non-dependent
2607 /// pseudo-destructor expressions and some dependent pseudo-destructor
2608 /// expressions. Returns null if we only have the identifier for a
2609 /// dependent pseudo-destructor expression.
getDestroyedTypeInfo()2610 TypeSourceInfo *getDestroyedTypeInfo() const {
2611 return DestroyedType.getTypeSourceInfo();
2612 }
2613
2614 /// In a dependent pseudo-destructor expression for which we do not
2615 /// have full type information on the destroyed type, provides the name
2616 /// of the destroyed type.
getDestroyedTypeIdentifier()2617 IdentifierInfo *getDestroyedTypeIdentifier() const {
2618 return DestroyedType.getIdentifier();
2619 }
2620
2621 /// Retrieve the type being destroyed.
2622 QualType getDestroyedType() const;
2623
2624 /// Retrieve the starting location of the type being destroyed.
getDestroyedTypeLoc()2625 SourceLocation getDestroyedTypeLoc() const {
2626 return DestroyedType.getLocation();
2627 }
2628
2629 /// Set the name of destroyed type for a dependent pseudo-destructor
2630 /// expression.
setDestroyedType(IdentifierInfo * II,SourceLocation Loc)2631 void setDestroyedType(IdentifierInfo *II, SourceLocation Loc) {
2632 DestroyedType = PseudoDestructorTypeStorage(II, Loc);
2633 }
2634
2635 /// Set the destroyed type.
setDestroyedType(TypeSourceInfo * Info)2636 void setDestroyedType(TypeSourceInfo *Info) {
2637 DestroyedType = PseudoDestructorTypeStorage(Info);
2638 }
2639
getBeginLoc()2640 SourceLocation getBeginLoc() const LLVM_READONLY {
2641 return Base->getBeginLoc();
2642 }
2643 SourceLocation getEndLoc() const LLVM_READONLY;
2644
classof(const Stmt * T)2645 static bool classof(const Stmt *T) {
2646 return T->getStmtClass() == CXXPseudoDestructorExprClass;
2647 }
2648
2649 // Iterators
children()2650 child_range children() { return child_range(&Base, &Base + 1); }
2651
children()2652 const_child_range children() const {
2653 return const_child_range(&Base, &Base + 1);
2654 }
2655 };
2656
2657 /// A type trait used in the implementation of various C++11 and
2658 /// Library TR1 trait templates.
2659 ///
2660 /// \code
2661 /// __is_pod(int) == true
2662 /// __is_enum(std::string) == false
2663 /// __is_trivially_constructible(vector<int>, int*, int*)
2664 /// \endcode
2665 class TypeTraitExpr final
2666 : public Expr,
2667 private llvm::TrailingObjects<TypeTraitExpr, TypeSourceInfo *> {
2668 /// The location of the type trait keyword.
2669 SourceLocation Loc;
2670
2671 /// The location of the closing parenthesis.
2672 SourceLocation RParenLoc;
2673
2674 // Note: The TypeSourceInfos for the arguments are allocated after the
2675 // TypeTraitExpr.
2676
2677 TypeTraitExpr(QualType T, SourceLocation Loc, TypeTrait Kind,
2678 ArrayRef<TypeSourceInfo *> Args,
2679 SourceLocation RParenLoc,
2680 bool Value);
2681
TypeTraitExpr(EmptyShell Empty)2682 TypeTraitExpr(EmptyShell Empty) : Expr(TypeTraitExprClass, Empty) {}
2683
numTrailingObjects(OverloadToken<TypeSourceInfo * >)2684 size_t numTrailingObjects(OverloadToken<TypeSourceInfo *>) const {
2685 return getNumArgs();
2686 }
2687
2688 public:
2689 friend class ASTStmtReader;
2690 friend class ASTStmtWriter;
2691 friend TrailingObjects;
2692
2693 /// Create a new type trait expression.
2694 static TypeTraitExpr *Create(const ASTContext &C, QualType T,
2695 SourceLocation Loc, TypeTrait Kind,
2696 ArrayRef<TypeSourceInfo *> Args,
2697 SourceLocation RParenLoc,
2698 bool Value);
2699
2700 static TypeTraitExpr *CreateDeserialized(const ASTContext &C,
2701 unsigned NumArgs);
2702
2703 /// Determine which type trait this expression uses.
getTrait()2704 TypeTrait getTrait() const {
2705 return static_cast<TypeTrait>(TypeTraitExprBits.Kind);
2706 }
2707
getValue()2708 bool getValue() const {
2709 assert(!isValueDependent());
2710 return TypeTraitExprBits.Value;
2711 }
2712
2713 /// Determine the number of arguments to this type trait.
getNumArgs()2714 unsigned getNumArgs() const { return TypeTraitExprBits.NumArgs; }
2715
2716 /// Retrieve the Ith argument.
getArg(unsigned I)2717 TypeSourceInfo *getArg(unsigned I) const {
2718 assert(I < getNumArgs() && "Argument out-of-range");
2719 return getArgs()[I];
2720 }
2721
2722 /// Retrieve the argument types.
getArgs()2723 ArrayRef<TypeSourceInfo *> getArgs() const {
2724 return llvm::makeArrayRef(getTrailingObjects<TypeSourceInfo *>(),
2725 getNumArgs());
2726 }
2727
getBeginLoc()2728 SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
getEndLoc()2729 SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
2730
classof(const Stmt * T)2731 static bool classof(const Stmt *T) {
2732 return T->getStmtClass() == TypeTraitExprClass;
2733 }
2734
2735 // Iterators
children()2736 child_range children() {
2737 return child_range(child_iterator(), child_iterator());
2738 }
2739
children()2740 const_child_range children() const {
2741 return const_child_range(const_child_iterator(), const_child_iterator());
2742 }
2743 };
2744
2745 /// An Embarcadero array type trait, as used in the implementation of
2746 /// __array_rank and __array_extent.
2747 ///
2748 /// Example:
2749 /// \code
2750 /// __array_rank(int[10][20]) == 2
2751 /// __array_extent(int, 1) == 20
2752 /// \endcode
2753 class ArrayTypeTraitExpr : public Expr {
2754 /// The trait. An ArrayTypeTrait enum in MSVC compat unsigned.
2755 unsigned ATT : 2;
2756
2757 /// The value of the type trait. Unspecified if dependent.
2758 uint64_t Value = 0;
2759
2760 /// The array dimension being queried, or -1 if not used.
2761 Expr *Dimension;
2762
2763 /// The location of the type trait keyword.
2764 SourceLocation Loc;
2765
2766 /// The location of the closing paren.
2767 SourceLocation RParen;
2768
2769 /// The type being queried.
2770 TypeSourceInfo *QueriedType = nullptr;
2771
2772 public:
2773 friend class ASTStmtReader;
2774
ArrayTypeTraitExpr(SourceLocation loc,ArrayTypeTrait att,TypeSourceInfo * queried,uint64_t value,Expr * dimension,SourceLocation rparen,QualType ty)2775 ArrayTypeTraitExpr(SourceLocation loc, ArrayTypeTrait att,
2776 TypeSourceInfo *queried, uint64_t value, Expr *dimension,
2777 SourceLocation rparen, QualType ty)
2778 : Expr(ArrayTypeTraitExprClass, ty, VK_RValue, OK_Ordinary), ATT(att),
2779 Value(value), Dimension(dimension), Loc(loc), RParen(rparen),
2780 QueriedType(queried) {
2781 assert(att <= ATT_Last && "invalid enum value!");
2782 assert(static_cast<unsigned>(att) == ATT && "ATT overflow!");
2783 setDependence(computeDependence(this));
2784 }
2785
ArrayTypeTraitExpr(EmptyShell Empty)2786 explicit ArrayTypeTraitExpr(EmptyShell Empty)
2787 : Expr(ArrayTypeTraitExprClass, Empty), ATT(0) {}
2788
getBeginLoc()2789 SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
getEndLoc()2790 SourceLocation getEndLoc() const LLVM_READONLY { return RParen; }
2791
getTrait()2792 ArrayTypeTrait getTrait() const { return static_cast<ArrayTypeTrait>(ATT); }
2793
getQueriedType()2794 QualType getQueriedType() const { return QueriedType->getType(); }
2795
getQueriedTypeSourceInfo()2796 TypeSourceInfo *getQueriedTypeSourceInfo() const { return QueriedType; }
2797
getValue()2798 uint64_t getValue() const { assert(!isTypeDependent()); return Value; }
2799
getDimensionExpression()2800 Expr *getDimensionExpression() const { return Dimension; }
2801
classof(const Stmt * T)2802 static bool classof(const Stmt *T) {
2803 return T->getStmtClass() == ArrayTypeTraitExprClass;
2804 }
2805
2806 // Iterators
children()2807 child_range children() {
2808 return child_range(child_iterator(), child_iterator());
2809 }
2810
children()2811 const_child_range children() const {
2812 return const_child_range(const_child_iterator(), const_child_iterator());
2813 }
2814 };
2815
2816 /// An expression trait intrinsic.
2817 ///
2818 /// Example:
2819 /// \code
2820 /// __is_lvalue_expr(std::cout) == true
2821 /// __is_lvalue_expr(1) == false
2822 /// \endcode
2823 class ExpressionTraitExpr : public Expr {
2824 /// The trait. A ExpressionTrait enum in MSVC compatible unsigned.
2825 unsigned ET : 31;
2826
2827 /// The value of the type trait. Unspecified if dependent.
2828 unsigned Value : 1;
2829
2830 /// The location of the type trait keyword.
2831 SourceLocation Loc;
2832
2833 /// The location of the closing paren.
2834 SourceLocation RParen;
2835
2836 /// The expression being queried.
2837 Expr* QueriedExpression = nullptr;
2838
2839 public:
2840 friend class ASTStmtReader;
2841
ExpressionTraitExpr(SourceLocation loc,ExpressionTrait et,Expr * queried,bool value,SourceLocation rparen,QualType resultType)2842 ExpressionTraitExpr(SourceLocation loc, ExpressionTrait et, Expr *queried,
2843 bool value, SourceLocation rparen, QualType resultType)
2844 : Expr(ExpressionTraitExprClass, resultType, VK_RValue, OK_Ordinary),
2845 ET(et), Value(value), Loc(loc), RParen(rparen),
2846 QueriedExpression(queried) {
2847 assert(et <= ET_Last && "invalid enum value!");
2848 assert(static_cast<unsigned>(et) == ET && "ET overflow!");
2849 setDependence(computeDependence(this));
2850 }
2851
ExpressionTraitExpr(EmptyShell Empty)2852 explicit ExpressionTraitExpr(EmptyShell Empty)
2853 : Expr(ExpressionTraitExprClass, Empty), ET(0), Value(false) {}
2854
getBeginLoc()2855 SourceLocation getBeginLoc() const LLVM_READONLY { return Loc; }
getEndLoc()2856 SourceLocation getEndLoc() const LLVM_READONLY { return RParen; }
2857
getTrait()2858 ExpressionTrait getTrait() const { return static_cast<ExpressionTrait>(ET); }
2859
getQueriedExpression()2860 Expr *getQueriedExpression() const { return QueriedExpression; }
2861
getValue()2862 bool getValue() const { return Value; }
2863
classof(const Stmt * T)2864 static bool classof(const Stmt *T) {
2865 return T->getStmtClass() == ExpressionTraitExprClass;
2866 }
2867
2868 // Iterators
children()2869 child_range children() {
2870 return child_range(child_iterator(), child_iterator());
2871 }
2872
children()2873 const_child_range children() const {
2874 return const_child_range(const_child_iterator(), const_child_iterator());
2875 }
2876 };
2877
2878 /// A reference to an overloaded function set, either an
2879 /// \c UnresolvedLookupExpr or an \c UnresolvedMemberExpr.
2880 class OverloadExpr : public Expr {
2881 friend class ASTStmtReader;
2882 friend class ASTStmtWriter;
2883
2884 /// The common name of these declarations.
2885 DeclarationNameInfo NameInfo;
2886
2887 /// The nested-name-specifier that qualifies the name, if any.
2888 NestedNameSpecifierLoc QualifierLoc;
2889
2890 protected:
2891 OverloadExpr(StmtClass SC, const ASTContext &Context,
2892 NestedNameSpecifierLoc QualifierLoc,
2893 SourceLocation TemplateKWLoc,
2894 const DeclarationNameInfo &NameInfo,
2895 const TemplateArgumentListInfo *TemplateArgs,
2896 UnresolvedSetIterator Begin, UnresolvedSetIterator End,
2897 bool KnownDependent, bool KnownInstantiationDependent,
2898 bool KnownContainsUnexpandedParameterPack);
2899
2900 OverloadExpr(StmtClass SC, EmptyShell Empty, unsigned NumResults,
2901 bool HasTemplateKWAndArgsInfo);
2902
2903 /// Return the results. Defined after UnresolvedMemberExpr.
2904 inline DeclAccessPair *getTrailingResults();
getTrailingResults()2905 const DeclAccessPair *getTrailingResults() const {
2906 return const_cast<OverloadExpr *>(this)->getTrailingResults();
2907 }
2908
2909 /// Return the optional template keyword and arguments info.
2910 /// Defined after UnresolvedMemberExpr.
2911 inline ASTTemplateKWAndArgsInfo *getTrailingASTTemplateKWAndArgsInfo();
getTrailingASTTemplateKWAndArgsInfo()2912 const ASTTemplateKWAndArgsInfo *getTrailingASTTemplateKWAndArgsInfo() const {
2913 return const_cast<OverloadExpr *>(this)
2914 ->getTrailingASTTemplateKWAndArgsInfo();
2915 }
2916
2917 /// Return the optional template arguments. Defined after
2918 /// UnresolvedMemberExpr.
2919 inline TemplateArgumentLoc *getTrailingTemplateArgumentLoc();
getTrailingTemplateArgumentLoc()2920 const TemplateArgumentLoc *getTrailingTemplateArgumentLoc() const {
2921 return const_cast<OverloadExpr *>(this)->getTrailingTemplateArgumentLoc();
2922 }
2923
hasTemplateKWAndArgsInfo()2924 bool hasTemplateKWAndArgsInfo() const {
2925 return OverloadExprBits.HasTemplateKWAndArgsInfo;
2926 }
2927
2928 public:
2929 struct FindResult {
2930 OverloadExpr *Expression;
2931 bool IsAddressOfOperand;
2932 bool HasFormOfMemberPointer;
2933 };
2934
2935 /// Finds the overloaded expression in the given expression \p E of
2936 /// OverloadTy.
2937 ///
2938 /// \return the expression (which must be there) and true if it has
2939 /// the particular form of a member pointer expression
find(Expr * E)2940 static FindResult find(Expr *E) {
2941 assert(E->getType()->isSpecificBuiltinType(BuiltinType::Overload));
2942
2943 FindResult Result;
2944
2945 E = E->IgnoreParens();
2946 if (isa<UnaryOperator>(E)) {
2947 assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
2948 E = cast<UnaryOperator>(E)->getSubExpr();
2949 auto *Ovl = cast<OverloadExpr>(E->IgnoreParens());
2950
2951 Result.HasFormOfMemberPointer = (E == Ovl && Ovl->getQualifier());
2952 Result.IsAddressOfOperand = true;
2953 Result.Expression = Ovl;
2954 } else {
2955 Result.HasFormOfMemberPointer = false;
2956 Result.IsAddressOfOperand = false;
2957 Result.Expression = cast<OverloadExpr>(E);
2958 }
2959
2960 return Result;
2961 }
2962
2963 /// Gets the naming class of this lookup, if any.
2964 /// Defined after UnresolvedMemberExpr.
2965 inline CXXRecordDecl *getNamingClass();
getNamingClass()2966 const CXXRecordDecl *getNamingClass() const {
2967 return const_cast<OverloadExpr *>(this)->getNamingClass();
2968 }
2969
2970 using decls_iterator = UnresolvedSetImpl::iterator;
2971
decls_begin()2972 decls_iterator decls_begin() const {
2973 return UnresolvedSetIterator(getTrailingResults());
2974 }
decls_end()2975 decls_iterator decls_end() const {
2976 return UnresolvedSetIterator(getTrailingResults() + getNumDecls());
2977 }
decls()2978 llvm::iterator_range<decls_iterator> decls() const {
2979 return llvm::make_range(decls_begin(), decls_end());
2980 }
2981
2982 /// Gets the number of declarations in the unresolved set.
getNumDecls()2983 unsigned getNumDecls() const { return OverloadExprBits.NumResults; }
2984
2985 /// Gets the full name info.
getNameInfo()2986 const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
2987
2988 /// Gets the name looked up.
getName()2989 DeclarationName getName() const { return NameInfo.getName(); }
2990
2991 /// Gets the location of the name.
getNameLoc()2992 SourceLocation getNameLoc() const { return NameInfo.getLoc(); }
2993
2994 /// Fetches the nested-name qualifier, if one was given.
getQualifier()2995 NestedNameSpecifier *getQualifier() const {
2996 return QualifierLoc.getNestedNameSpecifier();
2997 }
2998
2999 /// Fetches the nested-name qualifier with source-location
3000 /// information, if one was given.
getQualifierLoc()3001 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3002
3003 /// Retrieve the location of the template keyword preceding
3004 /// this name, if any.
getTemplateKeywordLoc()3005 SourceLocation getTemplateKeywordLoc() const {
3006 if (!hasTemplateKWAndArgsInfo())
3007 return SourceLocation();
3008 return getTrailingASTTemplateKWAndArgsInfo()->TemplateKWLoc;
3009 }
3010
3011 /// Retrieve the location of the left angle bracket starting the
3012 /// explicit template argument list following the name, if any.
getLAngleLoc()3013 SourceLocation getLAngleLoc() const {
3014 if (!hasTemplateKWAndArgsInfo())
3015 return SourceLocation();
3016 return getTrailingASTTemplateKWAndArgsInfo()->LAngleLoc;
3017 }
3018
3019 /// Retrieve the location of the right angle bracket ending the
3020 /// explicit template argument list following the name, if any.
getRAngleLoc()3021 SourceLocation getRAngleLoc() const {
3022 if (!hasTemplateKWAndArgsInfo())
3023 return SourceLocation();
3024 return getTrailingASTTemplateKWAndArgsInfo()->RAngleLoc;
3025 }
3026
3027 /// Determines whether the name was preceded by the template keyword.
hasTemplateKeyword()3028 bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
3029
3030 /// Determines whether this expression had explicit template arguments.
hasExplicitTemplateArgs()3031 bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
3032
getTemplateArgs()3033 TemplateArgumentLoc const *getTemplateArgs() const {
3034 if (!hasExplicitTemplateArgs())
3035 return nullptr;
3036 return const_cast<OverloadExpr *>(this)->getTrailingTemplateArgumentLoc();
3037 }
3038
getNumTemplateArgs()3039 unsigned getNumTemplateArgs() const {
3040 if (!hasExplicitTemplateArgs())
3041 return 0;
3042
3043 return getTrailingASTTemplateKWAndArgsInfo()->NumTemplateArgs;
3044 }
3045
template_arguments()3046 ArrayRef<TemplateArgumentLoc> template_arguments() const {
3047 return {getTemplateArgs(), getNumTemplateArgs()};
3048 }
3049
3050 /// Copies the template arguments into the given structure.
copyTemplateArgumentsInto(TemplateArgumentListInfo & List)3051 void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
3052 if (hasExplicitTemplateArgs())
3053 getTrailingASTTemplateKWAndArgsInfo()->copyInto(getTemplateArgs(), List);
3054 }
3055
classof(const Stmt * T)3056 static bool classof(const Stmt *T) {
3057 return T->getStmtClass() == UnresolvedLookupExprClass ||
3058 T->getStmtClass() == UnresolvedMemberExprClass;
3059 }
3060 };
3061
3062 /// A reference to a name which we were able to look up during
3063 /// parsing but could not resolve to a specific declaration.
3064 ///
3065 /// This arises in several ways:
3066 /// * we might be waiting for argument-dependent lookup;
3067 /// * the name might resolve to an overloaded function;
3068 /// and eventually:
3069 /// * the lookup might have included a function template.
3070 ///
3071 /// These never include UnresolvedUsingValueDecls, which are always class
3072 /// members and therefore appear only in UnresolvedMemberLookupExprs.
3073 class UnresolvedLookupExpr final
3074 : public OverloadExpr,
3075 private llvm::TrailingObjects<UnresolvedLookupExpr, DeclAccessPair,
3076 ASTTemplateKWAndArgsInfo,
3077 TemplateArgumentLoc> {
3078 friend class ASTStmtReader;
3079 friend class OverloadExpr;
3080 friend TrailingObjects;
3081
3082 /// The naming class (C++ [class.access.base]p5) of the lookup, if
3083 /// any. This can generally be recalculated from the context chain,
3084 /// but that can be fairly expensive for unqualified lookups.
3085 CXXRecordDecl *NamingClass;
3086
3087 // UnresolvedLookupExpr is followed by several trailing objects.
3088 // They are in order:
3089 //
3090 // * An array of getNumResults() DeclAccessPair for the results. These are
3091 // undesugared, which is to say, they may include UsingShadowDecls.
3092 // Access is relative to the naming class.
3093 //
3094 // * An optional ASTTemplateKWAndArgsInfo for the explicitly specified
3095 // template keyword and arguments. Present if and only if
3096 // hasTemplateKWAndArgsInfo().
3097 //
3098 // * An array of getNumTemplateArgs() TemplateArgumentLoc containing
3099 // location information for the explicitly specified template arguments.
3100
3101 UnresolvedLookupExpr(const ASTContext &Context, CXXRecordDecl *NamingClass,
3102 NestedNameSpecifierLoc QualifierLoc,
3103 SourceLocation TemplateKWLoc,
3104 const DeclarationNameInfo &NameInfo, bool RequiresADL,
3105 bool Overloaded,
3106 const TemplateArgumentListInfo *TemplateArgs,
3107 UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3108
3109 UnresolvedLookupExpr(EmptyShell Empty, unsigned NumResults,
3110 bool HasTemplateKWAndArgsInfo);
3111
numTrailingObjects(OverloadToken<DeclAccessPair>)3112 unsigned numTrailingObjects(OverloadToken<DeclAccessPair>) const {
3113 return getNumDecls();
3114 }
3115
numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>)3116 unsigned numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
3117 return hasTemplateKWAndArgsInfo();
3118 }
3119
3120 public:
3121 static UnresolvedLookupExpr *
3122 Create(const ASTContext &Context, CXXRecordDecl *NamingClass,
3123 NestedNameSpecifierLoc QualifierLoc,
3124 const DeclarationNameInfo &NameInfo, bool RequiresADL, bool Overloaded,
3125 UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3126
3127 static UnresolvedLookupExpr *
3128 Create(const ASTContext &Context, CXXRecordDecl *NamingClass,
3129 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
3130 const DeclarationNameInfo &NameInfo, bool RequiresADL,
3131 const TemplateArgumentListInfo *Args, UnresolvedSetIterator Begin,
3132 UnresolvedSetIterator End);
3133
3134 static UnresolvedLookupExpr *CreateEmpty(const ASTContext &Context,
3135 unsigned NumResults,
3136 bool HasTemplateKWAndArgsInfo,
3137 unsigned NumTemplateArgs);
3138
3139 /// True if this declaration should be extended by
3140 /// argument-dependent lookup.
requiresADL()3141 bool requiresADL() const { return UnresolvedLookupExprBits.RequiresADL; }
3142
3143 /// True if this lookup is overloaded.
isOverloaded()3144 bool isOverloaded() const { return UnresolvedLookupExprBits.Overloaded; }
3145
3146 /// Gets the 'naming class' (in the sense of C++0x
3147 /// [class.access.base]p5) of the lookup. This is the scope
3148 /// that was looked in to find these results.
getNamingClass()3149 CXXRecordDecl *getNamingClass() { return NamingClass; }
getNamingClass()3150 const CXXRecordDecl *getNamingClass() const { return NamingClass; }
3151
getBeginLoc()3152 SourceLocation getBeginLoc() const LLVM_READONLY {
3153 if (NestedNameSpecifierLoc l = getQualifierLoc())
3154 return l.getBeginLoc();
3155 return getNameInfo().getBeginLoc();
3156 }
3157
getEndLoc()3158 SourceLocation getEndLoc() const LLVM_READONLY {
3159 if (hasExplicitTemplateArgs())
3160 return getRAngleLoc();
3161 return getNameInfo().getEndLoc();
3162 }
3163
children()3164 child_range children() {
3165 return child_range(child_iterator(), child_iterator());
3166 }
3167
children()3168 const_child_range children() const {
3169 return const_child_range(const_child_iterator(), const_child_iterator());
3170 }
3171
classof(const Stmt * T)3172 static bool classof(const Stmt *T) {
3173 return T->getStmtClass() == UnresolvedLookupExprClass;
3174 }
3175 };
3176
3177 /// A qualified reference to a name whose declaration cannot
3178 /// yet be resolved.
3179 ///
3180 /// DependentScopeDeclRefExpr is similar to DeclRefExpr in that
3181 /// it expresses a reference to a declaration such as
3182 /// X<T>::value. The difference, however, is that an
3183 /// DependentScopeDeclRefExpr node is used only within C++ templates when
3184 /// the qualification (e.g., X<T>::) refers to a dependent type. In
3185 /// this case, X<T>::value cannot resolve to a declaration because the
3186 /// declaration will differ from one instantiation of X<T> to the
3187 /// next. Therefore, DependentScopeDeclRefExpr keeps track of the
3188 /// qualifier (X<T>::) and the name of the entity being referenced
3189 /// ("value"). Such expressions will instantiate to a DeclRefExpr once the
3190 /// declaration can be found.
3191 class DependentScopeDeclRefExpr final
3192 : public Expr,
3193 private llvm::TrailingObjects<DependentScopeDeclRefExpr,
3194 ASTTemplateKWAndArgsInfo,
3195 TemplateArgumentLoc> {
3196 friend class ASTStmtReader;
3197 friend class ASTStmtWriter;
3198 friend TrailingObjects;
3199
3200 /// The nested-name-specifier that qualifies this unresolved
3201 /// declaration name.
3202 NestedNameSpecifierLoc QualifierLoc;
3203
3204 /// The name of the entity we will be referencing.
3205 DeclarationNameInfo NameInfo;
3206
3207 DependentScopeDeclRefExpr(QualType Ty, NestedNameSpecifierLoc QualifierLoc,
3208 SourceLocation TemplateKWLoc,
3209 const DeclarationNameInfo &NameInfo,
3210 const TemplateArgumentListInfo *Args);
3211
numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>)3212 size_t numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
3213 return hasTemplateKWAndArgsInfo();
3214 }
3215
hasTemplateKWAndArgsInfo()3216 bool hasTemplateKWAndArgsInfo() const {
3217 return DependentScopeDeclRefExprBits.HasTemplateKWAndArgsInfo;
3218 }
3219
3220 public:
3221 static DependentScopeDeclRefExpr *
3222 Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
3223 SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo,
3224 const TemplateArgumentListInfo *TemplateArgs);
3225
3226 static DependentScopeDeclRefExpr *CreateEmpty(const ASTContext &Context,
3227 bool HasTemplateKWAndArgsInfo,
3228 unsigned NumTemplateArgs);
3229
3230 /// Retrieve the name that this expression refers to.
getNameInfo()3231 const DeclarationNameInfo &getNameInfo() const { return NameInfo; }
3232
3233 /// Retrieve the name that this expression refers to.
getDeclName()3234 DeclarationName getDeclName() const { return NameInfo.getName(); }
3235
3236 /// Retrieve the location of the name within the expression.
3237 ///
3238 /// For example, in "X<T>::value" this is the location of "value".
getLocation()3239 SourceLocation getLocation() const { return NameInfo.getLoc(); }
3240
3241 /// Retrieve the nested-name-specifier that qualifies the
3242 /// name, with source location information.
getQualifierLoc()3243 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3244
3245 /// Retrieve the nested-name-specifier that qualifies this
3246 /// declaration.
getQualifier()3247 NestedNameSpecifier *getQualifier() const {
3248 return QualifierLoc.getNestedNameSpecifier();
3249 }
3250
3251 /// Retrieve the location of the template keyword preceding
3252 /// this name, if any.
getTemplateKeywordLoc()3253 SourceLocation getTemplateKeywordLoc() const {
3254 if (!hasTemplateKWAndArgsInfo())
3255 return SourceLocation();
3256 return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
3257 }
3258
3259 /// Retrieve the location of the left angle bracket starting the
3260 /// explicit template argument list following the name, if any.
getLAngleLoc()3261 SourceLocation getLAngleLoc() const {
3262 if (!hasTemplateKWAndArgsInfo())
3263 return SourceLocation();
3264 return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
3265 }
3266
3267 /// Retrieve the location of the right angle bracket ending the
3268 /// explicit template argument list following the name, if any.
getRAngleLoc()3269 SourceLocation getRAngleLoc() const {
3270 if (!hasTemplateKWAndArgsInfo())
3271 return SourceLocation();
3272 return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
3273 }
3274
3275 /// Determines whether the name was preceded by the template keyword.
hasTemplateKeyword()3276 bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
3277
3278 /// Determines whether this lookup had explicit template arguments.
hasExplicitTemplateArgs()3279 bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
3280
3281 /// Copies the template arguments (if present) into the given
3282 /// structure.
copyTemplateArgumentsInto(TemplateArgumentListInfo & List)3283 void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
3284 if (hasExplicitTemplateArgs())
3285 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
3286 getTrailingObjects<TemplateArgumentLoc>(), List);
3287 }
3288
getTemplateArgs()3289 TemplateArgumentLoc const *getTemplateArgs() const {
3290 if (!hasExplicitTemplateArgs())
3291 return nullptr;
3292
3293 return getTrailingObjects<TemplateArgumentLoc>();
3294 }
3295
getNumTemplateArgs()3296 unsigned getNumTemplateArgs() const {
3297 if (!hasExplicitTemplateArgs())
3298 return 0;
3299
3300 return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
3301 }
3302
template_arguments()3303 ArrayRef<TemplateArgumentLoc> template_arguments() const {
3304 return {getTemplateArgs(), getNumTemplateArgs()};
3305 }
3306
3307 /// Note: getBeginLoc() is the start of the whole DependentScopeDeclRefExpr,
3308 /// and differs from getLocation().getStart().
getBeginLoc()3309 SourceLocation getBeginLoc() const LLVM_READONLY {
3310 return QualifierLoc.getBeginLoc();
3311 }
3312
getEndLoc()3313 SourceLocation getEndLoc() const LLVM_READONLY {
3314 if (hasExplicitTemplateArgs())
3315 return getRAngleLoc();
3316 return getLocation();
3317 }
3318
classof(const Stmt * T)3319 static bool classof(const Stmt *T) {
3320 return T->getStmtClass() == DependentScopeDeclRefExprClass;
3321 }
3322
children()3323 child_range children() {
3324 return child_range(child_iterator(), child_iterator());
3325 }
3326
children()3327 const_child_range children() const {
3328 return const_child_range(const_child_iterator(), const_child_iterator());
3329 }
3330 };
3331
3332 /// Represents an expression -- generally a full-expression -- that
3333 /// introduces cleanups to be run at the end of the sub-expression's
3334 /// evaluation. The most common source of expression-introduced
3335 /// cleanups is temporary objects in C++, but several other kinds of
3336 /// expressions can create cleanups, including basically every
3337 /// call in ARC that returns an Objective-C pointer.
3338 ///
3339 /// This expression also tracks whether the sub-expression contains a
3340 /// potentially-evaluated block literal. The lifetime of a block
3341 /// literal is the extent of the enclosing scope.
3342 class ExprWithCleanups final
3343 : public FullExpr,
3344 private llvm::TrailingObjects<
3345 ExprWithCleanups,
3346 llvm::PointerUnion<BlockDecl *, CompoundLiteralExpr *>> {
3347 public:
3348 /// The type of objects that are kept in the cleanup.
3349 /// It's useful to remember the set of blocks and block-scoped compound
3350 /// literals; we could also remember the set of temporaries, but there's
3351 /// currently no need.
3352 using CleanupObject = llvm::PointerUnion<BlockDecl *, CompoundLiteralExpr *>;
3353
3354 private:
3355 friend class ASTStmtReader;
3356 friend TrailingObjects;
3357
3358 ExprWithCleanups(EmptyShell, unsigned NumObjects);
3359 ExprWithCleanups(Expr *SubExpr, bool CleanupsHaveSideEffects,
3360 ArrayRef<CleanupObject> Objects);
3361
3362 public:
3363 static ExprWithCleanups *Create(const ASTContext &C, EmptyShell empty,
3364 unsigned numObjects);
3365
3366 static ExprWithCleanups *Create(const ASTContext &C, Expr *subexpr,
3367 bool CleanupsHaveSideEffects,
3368 ArrayRef<CleanupObject> objects);
3369
getObjects()3370 ArrayRef<CleanupObject> getObjects() const {
3371 return llvm::makeArrayRef(getTrailingObjects<CleanupObject>(),
3372 getNumObjects());
3373 }
3374
getNumObjects()3375 unsigned getNumObjects() const { return ExprWithCleanupsBits.NumObjects; }
3376
getObject(unsigned i)3377 CleanupObject getObject(unsigned i) const {
3378 assert(i < getNumObjects() && "Index out of range");
3379 return getObjects()[i];
3380 }
3381
cleanupsHaveSideEffects()3382 bool cleanupsHaveSideEffects() const {
3383 return ExprWithCleanupsBits.CleanupsHaveSideEffects;
3384 }
3385
getBeginLoc()3386 SourceLocation getBeginLoc() const LLVM_READONLY {
3387 return SubExpr->getBeginLoc();
3388 }
3389
getEndLoc()3390 SourceLocation getEndLoc() const LLVM_READONLY {
3391 return SubExpr->getEndLoc();
3392 }
3393
3394 // Implement isa/cast/dyncast/etc.
classof(const Stmt * T)3395 static bool classof(const Stmt *T) {
3396 return T->getStmtClass() == ExprWithCleanupsClass;
3397 }
3398
3399 // Iterators
children()3400 child_range children() { return child_range(&SubExpr, &SubExpr + 1); }
3401
children()3402 const_child_range children() const {
3403 return const_child_range(&SubExpr, &SubExpr + 1);
3404 }
3405 };
3406
3407 /// Describes an explicit type conversion that uses functional
3408 /// notion but could not be resolved because one or more arguments are
3409 /// type-dependent.
3410 ///
3411 /// The explicit type conversions expressed by
3412 /// CXXUnresolvedConstructExpr have the form <tt>T(a1, a2, ..., aN)</tt>,
3413 /// where \c T is some type and \c a1, \c a2, ..., \c aN are values, and
3414 /// either \c T is a dependent type or one or more of the <tt>a</tt>'s is
3415 /// type-dependent. For example, this would occur in a template such
3416 /// as:
3417 ///
3418 /// \code
3419 /// template<typename T, typename A1>
3420 /// inline T make_a(const A1& a1) {
3421 /// return T(a1);
3422 /// }
3423 /// \endcode
3424 ///
3425 /// When the returned expression is instantiated, it may resolve to a
3426 /// constructor call, conversion function call, or some kind of type
3427 /// conversion.
3428 class CXXUnresolvedConstructExpr final
3429 : public Expr,
3430 private llvm::TrailingObjects<CXXUnresolvedConstructExpr, Expr *> {
3431 friend class ASTStmtReader;
3432 friend TrailingObjects;
3433
3434 /// The type being constructed.
3435 TypeSourceInfo *TSI;
3436
3437 /// The location of the left parentheses ('(').
3438 SourceLocation LParenLoc;
3439
3440 /// The location of the right parentheses (')').
3441 SourceLocation RParenLoc;
3442
3443 CXXUnresolvedConstructExpr(QualType T, TypeSourceInfo *TSI,
3444 SourceLocation LParenLoc, ArrayRef<Expr *> Args,
3445 SourceLocation RParenLoc);
3446
CXXUnresolvedConstructExpr(EmptyShell Empty,unsigned NumArgs)3447 CXXUnresolvedConstructExpr(EmptyShell Empty, unsigned NumArgs)
3448 : Expr(CXXUnresolvedConstructExprClass, Empty), TSI(nullptr) {
3449 CXXUnresolvedConstructExprBits.NumArgs = NumArgs;
3450 }
3451
3452 public:
3453 static CXXUnresolvedConstructExpr *Create(const ASTContext &Context,
3454 QualType T, TypeSourceInfo *TSI,
3455 SourceLocation LParenLoc,
3456 ArrayRef<Expr *> Args,
3457 SourceLocation RParenLoc);
3458
3459 static CXXUnresolvedConstructExpr *CreateEmpty(const ASTContext &Context,
3460 unsigned NumArgs);
3461
3462 /// Retrieve the type that is being constructed, as specified
3463 /// in the source code.
getTypeAsWritten()3464 QualType getTypeAsWritten() const { return TSI->getType(); }
3465
3466 /// Retrieve the type source information for the type being
3467 /// constructed.
getTypeSourceInfo()3468 TypeSourceInfo *getTypeSourceInfo() const { return TSI; }
3469
3470 /// Retrieve the location of the left parentheses ('(') that
3471 /// precedes the argument list.
getLParenLoc()3472 SourceLocation getLParenLoc() const { return LParenLoc; }
setLParenLoc(SourceLocation L)3473 void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3474
3475 /// Retrieve the location of the right parentheses (')') that
3476 /// follows the argument list.
getRParenLoc()3477 SourceLocation getRParenLoc() const { return RParenLoc; }
setRParenLoc(SourceLocation L)3478 void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3479
3480 /// Determine whether this expression models list-initialization.
3481 /// If so, there will be exactly one subexpression, which will be
3482 /// an InitListExpr.
isListInitialization()3483 bool isListInitialization() const { return LParenLoc.isInvalid(); }
3484
3485 /// Retrieve the number of arguments.
getNumArgs()3486 unsigned getNumArgs() const { return CXXUnresolvedConstructExprBits.NumArgs; }
3487
3488 using arg_iterator = Expr **;
3489 using arg_range = llvm::iterator_range<arg_iterator>;
3490
arg_begin()3491 arg_iterator arg_begin() { return getTrailingObjects<Expr *>(); }
arg_end()3492 arg_iterator arg_end() { return arg_begin() + getNumArgs(); }
arguments()3493 arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
3494
3495 using const_arg_iterator = const Expr* const *;
3496 using const_arg_range = llvm::iterator_range<const_arg_iterator>;
3497
arg_begin()3498 const_arg_iterator arg_begin() const { return getTrailingObjects<Expr *>(); }
arg_end()3499 const_arg_iterator arg_end() const { return arg_begin() + getNumArgs(); }
arguments()3500 const_arg_range arguments() const {
3501 return const_arg_range(arg_begin(), arg_end());
3502 }
3503
getArg(unsigned I)3504 Expr *getArg(unsigned I) {
3505 assert(I < getNumArgs() && "Argument index out-of-range");
3506 return arg_begin()[I];
3507 }
3508
getArg(unsigned I)3509 const Expr *getArg(unsigned I) const {
3510 assert(I < getNumArgs() && "Argument index out-of-range");
3511 return arg_begin()[I];
3512 }
3513
setArg(unsigned I,Expr * E)3514 void setArg(unsigned I, Expr *E) {
3515 assert(I < getNumArgs() && "Argument index out-of-range");
3516 arg_begin()[I] = E;
3517 }
3518
3519 SourceLocation getBeginLoc() const LLVM_READONLY;
getEndLoc()3520 SourceLocation getEndLoc() const LLVM_READONLY {
3521 if (!RParenLoc.isValid() && getNumArgs() > 0)
3522 return getArg(getNumArgs() - 1)->getEndLoc();
3523 return RParenLoc;
3524 }
3525
classof(const Stmt * T)3526 static bool classof(const Stmt *T) {
3527 return T->getStmtClass() == CXXUnresolvedConstructExprClass;
3528 }
3529
3530 // Iterators
children()3531 child_range children() {
3532 auto **begin = reinterpret_cast<Stmt **>(arg_begin());
3533 return child_range(begin, begin + getNumArgs());
3534 }
3535
children()3536 const_child_range children() const {
3537 auto **begin = reinterpret_cast<Stmt **>(
3538 const_cast<CXXUnresolvedConstructExpr *>(this)->arg_begin());
3539 return const_child_range(begin, begin + getNumArgs());
3540 }
3541 };
3542
3543 /// Represents a C++ member access expression where the actual
3544 /// member referenced could not be resolved because the base
3545 /// expression or the member name was dependent.
3546 ///
3547 /// Like UnresolvedMemberExprs, these can be either implicit or
3548 /// explicit accesses. It is only possible to get one of these with
3549 /// an implicit access if a qualifier is provided.
3550 class CXXDependentScopeMemberExpr final
3551 : public Expr,
3552 private llvm::TrailingObjects<CXXDependentScopeMemberExpr,
3553 ASTTemplateKWAndArgsInfo,
3554 TemplateArgumentLoc, NamedDecl *> {
3555 friend class ASTStmtReader;
3556 friend class ASTStmtWriter;
3557 friend TrailingObjects;
3558
3559 /// The expression for the base pointer or class reference,
3560 /// e.g., the \c x in x.f. Can be null in implicit accesses.
3561 Stmt *Base;
3562
3563 /// The type of the base expression. Never null, even for
3564 /// implicit accesses.
3565 QualType BaseType;
3566
3567 /// The nested-name-specifier that precedes the member name, if any.
3568 /// FIXME: This could be in principle store as a trailing object.
3569 /// However the performance impact of doing so should be investigated first.
3570 NestedNameSpecifierLoc QualifierLoc;
3571
3572 /// The member to which this member expression refers, which
3573 /// can be name, overloaded operator, or destructor.
3574 ///
3575 /// FIXME: could also be a template-id
3576 DeclarationNameInfo MemberNameInfo;
3577
3578 // CXXDependentScopeMemberExpr is followed by several trailing objects,
3579 // some of which optional. They are in order:
3580 //
3581 // * An optional ASTTemplateKWAndArgsInfo for the explicitly specified
3582 // template keyword and arguments. Present if and only if
3583 // hasTemplateKWAndArgsInfo().
3584 //
3585 // * An array of getNumTemplateArgs() TemplateArgumentLoc containing location
3586 // information for the explicitly specified template arguments.
3587 //
3588 // * An optional NamedDecl *. In a qualified member access expression such
3589 // as t->Base::f, this member stores the resolves of name lookup in the
3590 // context of the member access expression, to be used at instantiation
3591 // time. Present if and only if hasFirstQualifierFoundInScope().
3592
hasTemplateKWAndArgsInfo()3593 bool hasTemplateKWAndArgsInfo() const {
3594 return CXXDependentScopeMemberExprBits.HasTemplateKWAndArgsInfo;
3595 }
3596
hasFirstQualifierFoundInScope()3597 bool hasFirstQualifierFoundInScope() const {
3598 return CXXDependentScopeMemberExprBits.HasFirstQualifierFoundInScope;
3599 }
3600
numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>)3601 unsigned numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
3602 return hasTemplateKWAndArgsInfo();
3603 }
3604
numTrailingObjects(OverloadToken<TemplateArgumentLoc>)3605 unsigned numTrailingObjects(OverloadToken<TemplateArgumentLoc>) const {
3606 return getNumTemplateArgs();
3607 }
3608
numTrailingObjects(OverloadToken<NamedDecl * >)3609 unsigned numTrailingObjects(OverloadToken<NamedDecl *>) const {
3610 return hasFirstQualifierFoundInScope();
3611 }
3612
3613 CXXDependentScopeMemberExpr(const ASTContext &Ctx, Expr *Base,
3614 QualType BaseType, bool IsArrow,
3615 SourceLocation OperatorLoc,
3616 NestedNameSpecifierLoc QualifierLoc,
3617 SourceLocation TemplateKWLoc,
3618 NamedDecl *FirstQualifierFoundInScope,
3619 DeclarationNameInfo MemberNameInfo,
3620 const TemplateArgumentListInfo *TemplateArgs);
3621
3622 CXXDependentScopeMemberExpr(EmptyShell Empty, bool HasTemplateKWAndArgsInfo,
3623 bool HasFirstQualifierFoundInScope);
3624
3625 public:
3626 static CXXDependentScopeMemberExpr *
3627 Create(const ASTContext &Ctx, Expr *Base, QualType BaseType, bool IsArrow,
3628 SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc,
3629 SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierFoundInScope,
3630 DeclarationNameInfo MemberNameInfo,
3631 const TemplateArgumentListInfo *TemplateArgs);
3632
3633 static CXXDependentScopeMemberExpr *
3634 CreateEmpty(const ASTContext &Ctx, bool HasTemplateKWAndArgsInfo,
3635 unsigned NumTemplateArgs, bool HasFirstQualifierFoundInScope);
3636
3637 /// True if this is an implicit access, i.e. one in which the
3638 /// member being accessed was not written in the source. The source
3639 /// location of the operator is invalid in this case.
isImplicitAccess()3640 bool isImplicitAccess() const {
3641 if (!Base)
3642 return true;
3643 return cast<Expr>(Base)->isImplicitCXXThis();
3644 }
3645
3646 /// Retrieve the base object of this member expressions,
3647 /// e.g., the \c x in \c x.m.
getBase()3648 Expr *getBase() const {
3649 assert(!isImplicitAccess());
3650 return cast<Expr>(Base);
3651 }
3652
getBaseType()3653 QualType getBaseType() const { return BaseType; }
3654
3655 /// Determine whether this member expression used the '->'
3656 /// operator; otherwise, it used the '.' operator.
isArrow()3657 bool isArrow() const { return CXXDependentScopeMemberExprBits.IsArrow; }
3658
3659 /// Retrieve the location of the '->' or '.' operator.
getOperatorLoc()3660 SourceLocation getOperatorLoc() const {
3661 return CXXDependentScopeMemberExprBits.OperatorLoc;
3662 }
3663
3664 /// Retrieve the nested-name-specifier that qualifies the member name.
getQualifier()3665 NestedNameSpecifier *getQualifier() const {
3666 return QualifierLoc.getNestedNameSpecifier();
3667 }
3668
3669 /// Retrieve the nested-name-specifier that qualifies the member
3670 /// name, with source location information.
getQualifierLoc()3671 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
3672
3673 /// Retrieve the first part of the nested-name-specifier that was
3674 /// found in the scope of the member access expression when the member access
3675 /// was initially parsed.
3676 ///
3677 /// This function only returns a useful result when member access expression
3678 /// uses a qualified member name, e.g., "x.Base::f". Here, the declaration
3679 /// returned by this function describes what was found by unqualified name
3680 /// lookup for the identifier "Base" within the scope of the member access
3681 /// expression itself. At template instantiation time, this information is
3682 /// combined with the results of name lookup into the type of the object
3683 /// expression itself (the class type of x).
getFirstQualifierFoundInScope()3684 NamedDecl *getFirstQualifierFoundInScope() const {
3685 if (!hasFirstQualifierFoundInScope())
3686 return nullptr;
3687 return *getTrailingObjects<NamedDecl *>();
3688 }
3689
3690 /// Retrieve the name of the member that this expression refers to.
getMemberNameInfo()3691 const DeclarationNameInfo &getMemberNameInfo() const {
3692 return MemberNameInfo;
3693 }
3694
3695 /// Retrieve the name of the member that this expression refers to.
getMember()3696 DeclarationName getMember() const { return MemberNameInfo.getName(); }
3697
3698 // Retrieve the location of the name of the member that this
3699 // expression refers to.
getMemberLoc()3700 SourceLocation getMemberLoc() const { return MemberNameInfo.getLoc(); }
3701
3702 /// Retrieve the location of the template keyword preceding the
3703 /// member name, if any.
getTemplateKeywordLoc()3704 SourceLocation getTemplateKeywordLoc() const {
3705 if (!hasTemplateKWAndArgsInfo())
3706 return SourceLocation();
3707 return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->TemplateKWLoc;
3708 }
3709
3710 /// Retrieve the location of the left angle bracket starting the
3711 /// explicit template argument list following the member name, if any.
getLAngleLoc()3712 SourceLocation getLAngleLoc() const {
3713 if (!hasTemplateKWAndArgsInfo())
3714 return SourceLocation();
3715 return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->LAngleLoc;
3716 }
3717
3718 /// Retrieve the location of the right angle bracket ending the
3719 /// explicit template argument list following the member name, if any.
getRAngleLoc()3720 SourceLocation getRAngleLoc() const {
3721 if (!hasTemplateKWAndArgsInfo())
3722 return SourceLocation();
3723 return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->RAngleLoc;
3724 }
3725
3726 /// Determines whether the member name was preceded by the template keyword.
hasTemplateKeyword()3727 bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
3728
3729 /// Determines whether this member expression actually had a C++
3730 /// template argument list explicitly specified, e.g., x.f<int>.
hasExplicitTemplateArgs()3731 bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
3732
3733 /// Copies the template arguments (if present) into the given
3734 /// structure.
copyTemplateArgumentsInto(TemplateArgumentListInfo & List)3735 void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
3736 if (hasExplicitTemplateArgs())
3737 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->copyInto(
3738 getTrailingObjects<TemplateArgumentLoc>(), List);
3739 }
3740
3741 /// Retrieve the template arguments provided as part of this
3742 /// template-id.
getTemplateArgs()3743 const TemplateArgumentLoc *getTemplateArgs() const {
3744 if (!hasExplicitTemplateArgs())
3745 return nullptr;
3746
3747 return getTrailingObjects<TemplateArgumentLoc>();
3748 }
3749
3750 /// Retrieve the number of template arguments provided as part of this
3751 /// template-id.
getNumTemplateArgs()3752 unsigned getNumTemplateArgs() const {
3753 if (!hasExplicitTemplateArgs())
3754 return 0;
3755
3756 return getTrailingObjects<ASTTemplateKWAndArgsInfo>()->NumTemplateArgs;
3757 }
3758
template_arguments()3759 ArrayRef<TemplateArgumentLoc> template_arguments() const {
3760 return {getTemplateArgs(), getNumTemplateArgs()};
3761 }
3762
getBeginLoc()3763 SourceLocation getBeginLoc() const LLVM_READONLY {
3764 if (!isImplicitAccess())
3765 return Base->getBeginLoc();
3766 if (getQualifier())
3767 return getQualifierLoc().getBeginLoc();
3768 return MemberNameInfo.getBeginLoc();
3769 }
3770
getEndLoc()3771 SourceLocation getEndLoc() const LLVM_READONLY {
3772 if (hasExplicitTemplateArgs())
3773 return getRAngleLoc();
3774 return MemberNameInfo.getEndLoc();
3775 }
3776
classof(const Stmt * T)3777 static bool classof(const Stmt *T) {
3778 return T->getStmtClass() == CXXDependentScopeMemberExprClass;
3779 }
3780
3781 // Iterators
children()3782 child_range children() {
3783 if (isImplicitAccess())
3784 return child_range(child_iterator(), child_iterator());
3785 return child_range(&Base, &Base + 1);
3786 }
3787
children()3788 const_child_range children() const {
3789 if (isImplicitAccess())
3790 return const_child_range(const_child_iterator(), const_child_iterator());
3791 return const_child_range(&Base, &Base + 1);
3792 }
3793 };
3794
3795 /// Represents a C++ member access expression for which lookup
3796 /// produced a set of overloaded functions.
3797 ///
3798 /// The member access may be explicit or implicit:
3799 /// \code
3800 /// struct A {
3801 /// int a, b;
3802 /// int explicitAccess() { return this->a + this->A::b; }
3803 /// int implicitAccess() { return a + A::b; }
3804 /// };
3805 /// \endcode
3806 ///
3807 /// In the final AST, an explicit access always becomes a MemberExpr.
3808 /// An implicit access may become either a MemberExpr or a
3809 /// DeclRefExpr, depending on whether the member is static.
3810 class UnresolvedMemberExpr final
3811 : public OverloadExpr,
3812 private llvm::TrailingObjects<UnresolvedMemberExpr, DeclAccessPair,
3813 ASTTemplateKWAndArgsInfo,
3814 TemplateArgumentLoc> {
3815 friend class ASTStmtReader;
3816 friend class OverloadExpr;
3817 friend TrailingObjects;
3818
3819 /// The expression for the base pointer or class reference,
3820 /// e.g., the \c x in x.f.
3821 ///
3822 /// This can be null if this is an 'unbased' member expression.
3823 Stmt *Base;
3824
3825 /// The type of the base expression; never null.
3826 QualType BaseType;
3827
3828 /// The location of the '->' or '.' operator.
3829 SourceLocation OperatorLoc;
3830
3831 // UnresolvedMemberExpr is followed by several trailing objects.
3832 // They are in order:
3833 //
3834 // * An array of getNumResults() DeclAccessPair for the results. These are
3835 // undesugared, which is to say, they may include UsingShadowDecls.
3836 // Access is relative to the naming class.
3837 //
3838 // * An optional ASTTemplateKWAndArgsInfo for the explicitly specified
3839 // template keyword and arguments. Present if and only if
3840 // hasTemplateKWAndArgsInfo().
3841 //
3842 // * An array of getNumTemplateArgs() TemplateArgumentLoc containing
3843 // location information for the explicitly specified template arguments.
3844
3845 UnresolvedMemberExpr(const ASTContext &Context, bool HasUnresolvedUsing,
3846 Expr *Base, QualType BaseType, bool IsArrow,
3847 SourceLocation OperatorLoc,
3848 NestedNameSpecifierLoc QualifierLoc,
3849 SourceLocation TemplateKWLoc,
3850 const DeclarationNameInfo &MemberNameInfo,
3851 const TemplateArgumentListInfo *TemplateArgs,
3852 UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3853
3854 UnresolvedMemberExpr(EmptyShell Empty, unsigned NumResults,
3855 bool HasTemplateKWAndArgsInfo);
3856
numTrailingObjects(OverloadToken<DeclAccessPair>)3857 unsigned numTrailingObjects(OverloadToken<DeclAccessPair>) const {
3858 return getNumDecls();
3859 }
3860
numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>)3861 unsigned numTrailingObjects(OverloadToken<ASTTemplateKWAndArgsInfo>) const {
3862 return hasTemplateKWAndArgsInfo();
3863 }
3864
3865 public:
3866 static UnresolvedMemberExpr *
3867 Create(const ASTContext &Context, bool HasUnresolvedUsing, Expr *Base,
3868 QualType BaseType, bool IsArrow, SourceLocation OperatorLoc,
3869 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
3870 const DeclarationNameInfo &MemberNameInfo,
3871 const TemplateArgumentListInfo *TemplateArgs,
3872 UnresolvedSetIterator Begin, UnresolvedSetIterator End);
3873
3874 static UnresolvedMemberExpr *CreateEmpty(const ASTContext &Context,
3875 unsigned NumResults,
3876 bool HasTemplateKWAndArgsInfo,
3877 unsigned NumTemplateArgs);
3878
3879 /// True if this is an implicit access, i.e., one in which the
3880 /// member being accessed was not written in the source.
3881 ///
3882 /// The source location of the operator is invalid in this case.
3883 bool isImplicitAccess() const;
3884
3885 /// Retrieve the base object of this member expressions,
3886 /// e.g., the \c x in \c x.m.
getBase()3887 Expr *getBase() {
3888 assert(!isImplicitAccess());
3889 return cast<Expr>(Base);
3890 }
getBase()3891 const Expr *getBase() const {
3892 assert(!isImplicitAccess());
3893 return cast<Expr>(Base);
3894 }
3895
getBaseType()3896 QualType getBaseType() const { return BaseType; }
3897
3898 /// Determine whether the lookup results contain an unresolved using
3899 /// declaration.
hasUnresolvedUsing()3900 bool hasUnresolvedUsing() const {
3901 return UnresolvedMemberExprBits.HasUnresolvedUsing;
3902 }
3903
3904 /// Determine whether this member expression used the '->'
3905 /// operator; otherwise, it used the '.' operator.
isArrow()3906 bool isArrow() const { return UnresolvedMemberExprBits.IsArrow; }
3907
3908 /// Retrieve the location of the '->' or '.' operator.
getOperatorLoc()3909 SourceLocation getOperatorLoc() const { return OperatorLoc; }
3910
3911 /// Retrieve the naming class of this lookup.
3912 CXXRecordDecl *getNamingClass();
getNamingClass()3913 const CXXRecordDecl *getNamingClass() const {
3914 return const_cast<UnresolvedMemberExpr *>(this)->getNamingClass();
3915 }
3916
3917 /// Retrieve the full name info for the member that this expression
3918 /// refers to.
getMemberNameInfo()3919 const DeclarationNameInfo &getMemberNameInfo() const { return getNameInfo(); }
3920
3921 /// Retrieve the name of the member that this expression refers to.
getMemberName()3922 DeclarationName getMemberName() const { return getName(); }
3923
3924 /// Retrieve the location of the name of the member that this
3925 /// expression refers to.
getMemberLoc()3926 SourceLocation getMemberLoc() const { return getNameLoc(); }
3927
3928 /// Return the preferred location (the member name) for the arrow when
3929 /// diagnosing a problem with this expression.
getExprLoc()3930 SourceLocation getExprLoc() const LLVM_READONLY { return getMemberLoc(); }
3931
getBeginLoc()3932 SourceLocation getBeginLoc() const LLVM_READONLY {
3933 if (!isImplicitAccess())
3934 return Base->getBeginLoc();
3935 if (NestedNameSpecifierLoc l = getQualifierLoc())
3936 return l.getBeginLoc();
3937 return getMemberNameInfo().getBeginLoc();
3938 }
3939
getEndLoc()3940 SourceLocation getEndLoc() const LLVM_READONLY {
3941 if (hasExplicitTemplateArgs())
3942 return getRAngleLoc();
3943 return getMemberNameInfo().getEndLoc();
3944 }
3945
classof(const Stmt * T)3946 static bool classof(const Stmt *T) {
3947 return T->getStmtClass() == UnresolvedMemberExprClass;
3948 }
3949
3950 // Iterators
children()3951 child_range children() {
3952 if (isImplicitAccess())
3953 return child_range(child_iterator(), child_iterator());
3954 return child_range(&Base, &Base + 1);
3955 }
3956
children()3957 const_child_range children() const {
3958 if (isImplicitAccess())
3959 return const_child_range(const_child_iterator(), const_child_iterator());
3960 return const_child_range(&Base, &Base + 1);
3961 }
3962 };
3963
getTrailingResults()3964 DeclAccessPair *OverloadExpr::getTrailingResults() {
3965 if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(this))
3966 return ULE->getTrailingObjects<DeclAccessPair>();
3967 return cast<UnresolvedMemberExpr>(this)->getTrailingObjects<DeclAccessPair>();
3968 }
3969
getTrailingASTTemplateKWAndArgsInfo()3970 ASTTemplateKWAndArgsInfo *OverloadExpr::getTrailingASTTemplateKWAndArgsInfo() {
3971 if (!hasTemplateKWAndArgsInfo())
3972 return nullptr;
3973
3974 if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(this))
3975 return ULE->getTrailingObjects<ASTTemplateKWAndArgsInfo>();
3976 return cast<UnresolvedMemberExpr>(this)
3977 ->getTrailingObjects<ASTTemplateKWAndArgsInfo>();
3978 }
3979
getTrailingTemplateArgumentLoc()3980 TemplateArgumentLoc *OverloadExpr::getTrailingTemplateArgumentLoc() {
3981 if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(this))
3982 return ULE->getTrailingObjects<TemplateArgumentLoc>();
3983 return cast<UnresolvedMemberExpr>(this)
3984 ->getTrailingObjects<TemplateArgumentLoc>();
3985 }
3986
getNamingClass()3987 CXXRecordDecl *OverloadExpr::getNamingClass() {
3988 if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(this))
3989 return ULE->getNamingClass();
3990 return cast<UnresolvedMemberExpr>(this)->getNamingClass();
3991 }
3992
3993 /// Represents a C++11 noexcept expression (C++ [expr.unary.noexcept]).
3994 ///
3995 /// The noexcept expression tests whether a given expression might throw. Its
3996 /// result is a boolean constant.
3997 class CXXNoexceptExpr : public Expr {
3998 friend class ASTStmtReader;
3999
4000 Stmt *Operand;
4001 SourceRange Range;
4002
4003 public:
CXXNoexceptExpr(QualType Ty,Expr * Operand,CanThrowResult Val,SourceLocation Keyword,SourceLocation RParen)4004 CXXNoexceptExpr(QualType Ty, Expr *Operand, CanThrowResult Val,
4005 SourceLocation Keyword, SourceLocation RParen)
4006 : Expr(CXXNoexceptExprClass, Ty, VK_RValue, OK_Ordinary),
4007 Operand(Operand), Range(Keyword, RParen) {
4008 CXXNoexceptExprBits.Value = Val == CT_Cannot;
4009 setDependence(computeDependence(this, Val));
4010 }
4011
CXXNoexceptExpr(EmptyShell Empty)4012 CXXNoexceptExpr(EmptyShell Empty) : Expr(CXXNoexceptExprClass, Empty) {}
4013
getOperand()4014 Expr *getOperand() const { return static_cast<Expr *>(Operand); }
4015
getBeginLoc()4016 SourceLocation getBeginLoc() const { return Range.getBegin(); }
getEndLoc()4017 SourceLocation getEndLoc() const { return Range.getEnd(); }
getSourceRange()4018 SourceRange getSourceRange() const { return Range; }
4019
getValue()4020 bool getValue() const { return CXXNoexceptExprBits.Value; }
4021
classof(const Stmt * T)4022 static bool classof(const Stmt *T) {
4023 return T->getStmtClass() == CXXNoexceptExprClass;
4024 }
4025
4026 // Iterators
children()4027 child_range children() { return child_range(&Operand, &Operand + 1); }
4028
children()4029 const_child_range children() const {
4030 return const_child_range(&Operand, &Operand + 1);
4031 }
4032 };
4033
4034 /// Represents a C++11 pack expansion that produces a sequence of
4035 /// expressions.
4036 ///
4037 /// A pack expansion expression contains a pattern (which itself is an
4038 /// expression) followed by an ellipsis. For example:
4039 ///
4040 /// \code
4041 /// template<typename F, typename ...Types>
4042 /// void forward(F f, Types &&...args) {
4043 /// f(static_cast<Types&&>(args)...);
4044 /// }
4045 /// \endcode
4046 ///
4047 /// Here, the argument to the function object \c f is a pack expansion whose
4048 /// pattern is \c static_cast<Types&&>(args). When the \c forward function
4049 /// template is instantiated, the pack expansion will instantiate to zero or
4050 /// or more function arguments to the function object \c f.
4051 class PackExpansionExpr : public Expr {
4052 friend class ASTStmtReader;
4053 friend class ASTStmtWriter;
4054
4055 SourceLocation EllipsisLoc;
4056
4057 /// The number of expansions that will be produced by this pack
4058 /// expansion expression, if known.
4059 ///
4060 /// When zero, the number of expansions is not known. Otherwise, this value
4061 /// is the number of expansions + 1.
4062 unsigned NumExpansions;
4063
4064 Stmt *Pattern;
4065
4066 public:
PackExpansionExpr(QualType T,Expr * Pattern,SourceLocation EllipsisLoc,Optional<unsigned> NumExpansions)4067 PackExpansionExpr(QualType T, Expr *Pattern, SourceLocation EllipsisLoc,
4068 Optional<unsigned> NumExpansions)
4069 : Expr(PackExpansionExprClass, T, Pattern->getValueKind(),
4070 Pattern->getObjectKind()),
4071 EllipsisLoc(EllipsisLoc),
4072 NumExpansions(NumExpansions ? *NumExpansions + 1 : 0),
4073 Pattern(Pattern) {
4074 setDependence(computeDependence(this));
4075 }
4076
PackExpansionExpr(EmptyShell Empty)4077 PackExpansionExpr(EmptyShell Empty) : Expr(PackExpansionExprClass, Empty) {}
4078
4079 /// Retrieve the pattern of the pack expansion.
getPattern()4080 Expr *getPattern() { return reinterpret_cast<Expr *>(Pattern); }
4081
4082 /// Retrieve the pattern of the pack expansion.
getPattern()4083 const Expr *getPattern() const { return reinterpret_cast<Expr *>(Pattern); }
4084
4085 /// Retrieve the location of the ellipsis that describes this pack
4086 /// expansion.
getEllipsisLoc()4087 SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
4088
4089 /// Determine the number of expansions that will be produced when
4090 /// this pack expansion is instantiated, if already known.
getNumExpansions()4091 Optional<unsigned> getNumExpansions() const {
4092 if (NumExpansions)
4093 return NumExpansions - 1;
4094
4095 return None;
4096 }
4097
getBeginLoc()4098 SourceLocation getBeginLoc() const LLVM_READONLY {
4099 return Pattern->getBeginLoc();
4100 }
4101
getEndLoc()4102 SourceLocation getEndLoc() const LLVM_READONLY { return EllipsisLoc; }
4103
classof(const Stmt * T)4104 static bool classof(const Stmt *T) {
4105 return T->getStmtClass() == PackExpansionExprClass;
4106 }
4107
4108 // Iterators
children()4109 child_range children() {
4110 return child_range(&Pattern, &Pattern + 1);
4111 }
4112
children()4113 const_child_range children() const {
4114 return const_child_range(&Pattern, &Pattern + 1);
4115 }
4116 };
4117
4118 /// Represents an expression that computes the length of a parameter
4119 /// pack.
4120 ///
4121 /// \code
4122 /// template<typename ...Types>
4123 /// struct count {
4124 /// static const unsigned value = sizeof...(Types);
4125 /// };
4126 /// \endcode
4127 class SizeOfPackExpr final
4128 : public Expr,
4129 private llvm::TrailingObjects<SizeOfPackExpr, TemplateArgument> {
4130 friend class ASTStmtReader;
4131 friend class ASTStmtWriter;
4132 friend TrailingObjects;
4133
4134 /// The location of the \c sizeof keyword.
4135 SourceLocation OperatorLoc;
4136
4137 /// The location of the name of the parameter pack.
4138 SourceLocation PackLoc;
4139
4140 /// The location of the closing parenthesis.
4141 SourceLocation RParenLoc;
4142
4143 /// The length of the parameter pack, if known.
4144 ///
4145 /// When this expression is not value-dependent, this is the length of
4146 /// the pack. When the expression was parsed rather than instantiated
4147 /// (and thus is value-dependent), this is zero.
4148 ///
4149 /// After partial substitution into a sizeof...(X) expression (for instance,
4150 /// within an alias template or during function template argument deduction),
4151 /// we store a trailing array of partially-substituted TemplateArguments,
4152 /// and this is the length of that array.
4153 unsigned Length;
4154
4155 /// The parameter pack.
4156 NamedDecl *Pack = nullptr;
4157
4158 /// Create an expression that computes the length of
4159 /// the given parameter pack.
SizeOfPackExpr(QualType SizeType,SourceLocation OperatorLoc,NamedDecl * Pack,SourceLocation PackLoc,SourceLocation RParenLoc,Optional<unsigned> Length,ArrayRef<TemplateArgument> PartialArgs)4160 SizeOfPackExpr(QualType SizeType, SourceLocation OperatorLoc, NamedDecl *Pack,
4161 SourceLocation PackLoc, SourceLocation RParenLoc,
4162 Optional<unsigned> Length,
4163 ArrayRef<TemplateArgument> PartialArgs)
4164 : Expr(SizeOfPackExprClass, SizeType, VK_RValue, OK_Ordinary),
4165 OperatorLoc(OperatorLoc), PackLoc(PackLoc), RParenLoc(RParenLoc),
4166 Length(Length ? *Length : PartialArgs.size()), Pack(Pack) {
4167 assert((!Length || PartialArgs.empty()) &&
4168 "have partial args for non-dependent sizeof... expression");
4169 auto *Args = getTrailingObjects<TemplateArgument>();
4170 std::uninitialized_copy(PartialArgs.begin(), PartialArgs.end(), Args);
4171 setDependence(Length ? ExprDependence::None
4172 : ExprDependence::ValueInstantiation);
4173 }
4174
4175 /// Create an empty expression.
SizeOfPackExpr(EmptyShell Empty,unsigned NumPartialArgs)4176 SizeOfPackExpr(EmptyShell Empty, unsigned NumPartialArgs)
4177 : Expr(SizeOfPackExprClass, Empty), Length(NumPartialArgs) {}
4178
4179 public:
4180 static SizeOfPackExpr *Create(ASTContext &Context, SourceLocation OperatorLoc,
4181 NamedDecl *Pack, SourceLocation PackLoc,
4182 SourceLocation RParenLoc,
4183 Optional<unsigned> Length = None,
4184 ArrayRef<TemplateArgument> PartialArgs = None);
4185 static SizeOfPackExpr *CreateDeserialized(ASTContext &Context,
4186 unsigned NumPartialArgs);
4187
4188 /// Determine the location of the 'sizeof' keyword.
getOperatorLoc()4189 SourceLocation getOperatorLoc() const { return OperatorLoc; }
4190
4191 /// Determine the location of the parameter pack.
getPackLoc()4192 SourceLocation getPackLoc() const { return PackLoc; }
4193
4194 /// Determine the location of the right parenthesis.
getRParenLoc()4195 SourceLocation getRParenLoc() const { return RParenLoc; }
4196
4197 /// Retrieve the parameter pack.
getPack()4198 NamedDecl *getPack() const { return Pack; }
4199
4200 /// Retrieve the length of the parameter pack.
4201 ///
4202 /// This routine may only be invoked when the expression is not
4203 /// value-dependent.
getPackLength()4204 unsigned getPackLength() const {
4205 assert(!isValueDependent() &&
4206 "Cannot get the length of a value-dependent pack size expression");
4207 return Length;
4208 }
4209
4210 /// Determine whether this represents a partially-substituted sizeof...
4211 /// expression, such as is produced for:
4212 ///
4213 /// template<typename ...Ts> using X = int[sizeof...(Ts)];
4214 /// template<typename ...Us> void f(X<Us..., 1, 2, 3, Us...>);
isPartiallySubstituted()4215 bool isPartiallySubstituted() const {
4216 return isValueDependent() && Length;
4217 }
4218
4219 /// Get
getPartialArguments()4220 ArrayRef<TemplateArgument> getPartialArguments() const {
4221 assert(isPartiallySubstituted());
4222 const auto *Args = getTrailingObjects<TemplateArgument>();
4223 return llvm::makeArrayRef(Args, Args + Length);
4224 }
4225
getBeginLoc()4226 SourceLocation getBeginLoc() const LLVM_READONLY { return OperatorLoc; }
getEndLoc()4227 SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
4228
classof(const Stmt * T)4229 static bool classof(const Stmt *T) {
4230 return T->getStmtClass() == SizeOfPackExprClass;
4231 }
4232
4233 // Iterators
children()4234 child_range children() {
4235 return child_range(child_iterator(), child_iterator());
4236 }
4237
children()4238 const_child_range children() const {
4239 return const_child_range(const_child_iterator(), const_child_iterator());
4240 }
4241 };
4242
4243 /// Represents a reference to a non-type template parameter
4244 /// that has been substituted with a template argument.
4245 class SubstNonTypeTemplateParmExpr : public Expr {
4246 friend class ASTReader;
4247 friend class ASTStmtReader;
4248
4249 /// The replaced parameter and a flag indicating if it was a reference
4250 /// parameter. For class NTTPs, we can't determine that based on the value
4251 /// category alone.
4252 llvm::PointerIntPair<NonTypeTemplateParmDecl*, 1, bool> ParamAndRef;
4253
4254 /// The replacement expression.
4255 Stmt *Replacement;
4256
SubstNonTypeTemplateParmExpr(EmptyShell Empty)4257 explicit SubstNonTypeTemplateParmExpr(EmptyShell Empty)
4258 : Expr(SubstNonTypeTemplateParmExprClass, Empty) {}
4259
4260 public:
SubstNonTypeTemplateParmExpr(QualType Ty,ExprValueKind ValueKind,SourceLocation Loc,NonTypeTemplateParmDecl * Param,bool RefParam,Expr * Replacement)4261 SubstNonTypeTemplateParmExpr(QualType Ty, ExprValueKind ValueKind,
4262 SourceLocation Loc,
4263 NonTypeTemplateParmDecl *Param, bool RefParam,
4264 Expr *Replacement)
4265 : Expr(SubstNonTypeTemplateParmExprClass, Ty, ValueKind, OK_Ordinary),
4266 ParamAndRef(Param, RefParam), Replacement(Replacement) {
4267 SubstNonTypeTemplateParmExprBits.NameLoc = Loc;
4268 setDependence(computeDependence(this));
4269 }
4270
getNameLoc()4271 SourceLocation getNameLoc() const {
4272 return SubstNonTypeTemplateParmExprBits.NameLoc;
4273 }
getBeginLoc()4274 SourceLocation getBeginLoc() const { return getNameLoc(); }
getEndLoc()4275 SourceLocation getEndLoc() const { return getNameLoc(); }
4276
getReplacement()4277 Expr *getReplacement() const { return cast<Expr>(Replacement); }
4278
getParameter()4279 NonTypeTemplateParmDecl *getParameter() const {
4280 return ParamAndRef.getPointer();
4281 }
4282
isReferenceParameter()4283 bool isReferenceParameter() const { return ParamAndRef.getInt(); }
4284
4285 /// Determine the substituted type of the template parameter.
4286 QualType getParameterType(const ASTContext &Ctx) const;
4287
classof(const Stmt * s)4288 static bool classof(const Stmt *s) {
4289 return s->getStmtClass() == SubstNonTypeTemplateParmExprClass;
4290 }
4291
4292 // Iterators
children()4293 child_range children() { return child_range(&Replacement, &Replacement + 1); }
4294
children()4295 const_child_range children() const {
4296 return const_child_range(&Replacement, &Replacement + 1);
4297 }
4298 };
4299
4300 /// Represents a reference to a non-type template parameter pack that
4301 /// has been substituted with a non-template argument pack.
4302 ///
4303 /// When a pack expansion in the source code contains multiple parameter packs
4304 /// and those parameter packs correspond to different levels of template
4305 /// parameter lists, this node is used to represent a non-type template
4306 /// parameter pack from an outer level, which has already had its argument pack
4307 /// substituted but that still lives within a pack expansion that itself
4308 /// could not be instantiated. When actually performing a substitution into
4309 /// that pack expansion (e.g., when all template parameters have corresponding
4310 /// arguments), this type will be replaced with the appropriate underlying
4311 /// expression at the current pack substitution index.
4312 class SubstNonTypeTemplateParmPackExpr : public Expr {
4313 friend class ASTReader;
4314 friend class ASTStmtReader;
4315
4316 /// The non-type template parameter pack itself.
4317 NonTypeTemplateParmDecl *Param;
4318
4319 /// A pointer to the set of template arguments that this
4320 /// parameter pack is instantiated with.
4321 const TemplateArgument *Arguments;
4322
4323 /// The number of template arguments in \c Arguments.
4324 unsigned NumArguments;
4325
4326 /// The location of the non-type template parameter pack reference.
4327 SourceLocation NameLoc;
4328
SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)4329 explicit SubstNonTypeTemplateParmPackExpr(EmptyShell Empty)
4330 : Expr(SubstNonTypeTemplateParmPackExprClass, Empty) {}
4331
4332 public:
4333 SubstNonTypeTemplateParmPackExpr(QualType T,
4334 ExprValueKind ValueKind,
4335 NonTypeTemplateParmDecl *Param,
4336 SourceLocation NameLoc,
4337 const TemplateArgument &ArgPack);
4338
4339 /// Retrieve the non-type template parameter pack being substituted.
getParameterPack()4340 NonTypeTemplateParmDecl *getParameterPack() const { return Param; }
4341
4342 /// Retrieve the location of the parameter pack name.
getParameterPackLocation()4343 SourceLocation getParameterPackLocation() const { return NameLoc; }
4344
4345 /// Retrieve the template argument pack containing the substituted
4346 /// template arguments.
4347 TemplateArgument getArgumentPack() const;
4348
getBeginLoc()4349 SourceLocation getBeginLoc() const LLVM_READONLY { return NameLoc; }
getEndLoc()4350 SourceLocation getEndLoc() const LLVM_READONLY { return NameLoc; }
4351
classof(const Stmt * T)4352 static bool classof(const Stmt *T) {
4353 return T->getStmtClass() == SubstNonTypeTemplateParmPackExprClass;
4354 }
4355
4356 // Iterators
children()4357 child_range children() {
4358 return child_range(child_iterator(), child_iterator());
4359 }
4360
children()4361 const_child_range children() const {
4362 return const_child_range(const_child_iterator(), const_child_iterator());
4363 }
4364 };
4365
4366 /// Represents a reference to a function parameter pack or init-capture pack
4367 /// that has been substituted but not yet expanded.
4368 ///
4369 /// When a pack expansion contains multiple parameter packs at different levels,
4370 /// this node is used to represent a function parameter pack at an outer level
4371 /// which we have already substituted to refer to expanded parameters, but where
4372 /// the containing pack expansion cannot yet be expanded.
4373 ///
4374 /// \code
4375 /// template<typename...Ts> struct S {
4376 /// template<typename...Us> auto f(Ts ...ts) -> decltype(g(Us(ts)...));
4377 /// };
4378 /// template struct S<int, int>;
4379 /// \endcode
4380 class FunctionParmPackExpr final
4381 : public Expr,
4382 private llvm::TrailingObjects<FunctionParmPackExpr, VarDecl *> {
4383 friend class ASTReader;
4384 friend class ASTStmtReader;
4385 friend TrailingObjects;
4386
4387 /// The function parameter pack which was referenced.
4388 VarDecl *ParamPack;
4389
4390 /// The location of the function parameter pack reference.
4391 SourceLocation NameLoc;
4392
4393 /// The number of expansions of this pack.
4394 unsigned NumParameters;
4395
4396 FunctionParmPackExpr(QualType T, VarDecl *ParamPack,
4397 SourceLocation NameLoc, unsigned NumParams,
4398 VarDecl *const *Params);
4399
4400 public:
4401 static FunctionParmPackExpr *Create(const ASTContext &Context, QualType T,
4402 VarDecl *ParamPack,
4403 SourceLocation NameLoc,
4404 ArrayRef<VarDecl *> Params);
4405 static FunctionParmPackExpr *CreateEmpty(const ASTContext &Context,
4406 unsigned NumParams);
4407
4408 /// Get the parameter pack which this expression refers to.
getParameterPack()4409 VarDecl *getParameterPack() const { return ParamPack; }
4410
4411 /// Get the location of the parameter pack.
getParameterPackLocation()4412 SourceLocation getParameterPackLocation() const { return NameLoc; }
4413
4414 /// Iterators over the parameters which the parameter pack expanded
4415 /// into.
4416 using iterator = VarDecl * const *;
begin()4417 iterator begin() const { return getTrailingObjects<VarDecl *>(); }
end()4418 iterator end() const { return begin() + NumParameters; }
4419
4420 /// Get the number of parameters in this parameter pack.
getNumExpansions()4421 unsigned getNumExpansions() const { return NumParameters; }
4422
4423 /// Get an expansion of the parameter pack by index.
getExpansion(unsigned I)4424 VarDecl *getExpansion(unsigned I) const { return begin()[I]; }
4425
getBeginLoc()4426 SourceLocation getBeginLoc() const LLVM_READONLY { return NameLoc; }
getEndLoc()4427 SourceLocation getEndLoc() const LLVM_READONLY { return NameLoc; }
4428
classof(const Stmt * T)4429 static bool classof(const Stmt *T) {
4430 return T->getStmtClass() == FunctionParmPackExprClass;
4431 }
4432
children()4433 child_range children() {
4434 return child_range(child_iterator(), child_iterator());
4435 }
4436
children()4437 const_child_range children() const {
4438 return const_child_range(const_child_iterator(), const_child_iterator());
4439 }
4440 };
4441
4442 /// Represents a prvalue temporary that is written into memory so that
4443 /// a reference can bind to it.
4444 ///
4445 /// Prvalue expressions are materialized when they need to have an address
4446 /// in memory for a reference to bind to. This happens when binding a
4447 /// reference to the result of a conversion, e.g.,
4448 ///
4449 /// \code
4450 /// const int &r = 1.0;
4451 /// \endcode
4452 ///
4453 /// Here, 1.0 is implicitly converted to an \c int. That resulting \c int is
4454 /// then materialized via a \c MaterializeTemporaryExpr, and the reference
4455 /// binds to the temporary. \c MaterializeTemporaryExprs are always glvalues
4456 /// (either an lvalue or an xvalue, depending on the kind of reference binding
4457 /// to it), maintaining the invariant that references always bind to glvalues.
4458 ///
4459 /// Reference binding and copy-elision can both extend the lifetime of a
4460 /// temporary. When either happens, the expression will also track the
4461 /// declaration which is responsible for the lifetime extension.
4462 class MaterializeTemporaryExpr : public Expr {
4463 private:
4464 friend class ASTStmtReader;
4465 friend class ASTStmtWriter;
4466
4467 llvm::PointerUnion<Stmt *, LifetimeExtendedTemporaryDecl *> State;
4468
4469 public:
4470 MaterializeTemporaryExpr(QualType T, Expr *Temporary,
4471 bool BoundToLvalueReference,
4472 LifetimeExtendedTemporaryDecl *MTD = nullptr);
4473
MaterializeTemporaryExpr(EmptyShell Empty)4474 MaterializeTemporaryExpr(EmptyShell Empty)
4475 : Expr(MaterializeTemporaryExprClass, Empty) {}
4476
4477 /// Retrieve the temporary-generating subexpression whose value will
4478 /// be materialized into a glvalue.
getSubExpr()4479 Expr *getSubExpr() const {
4480 return cast<Expr>(
4481 State.is<Stmt *>()
4482 ? State.get<Stmt *>()
4483 : State.get<LifetimeExtendedTemporaryDecl *>()->getTemporaryExpr());
4484 }
4485
4486 /// Retrieve the storage duration for the materialized temporary.
getStorageDuration()4487 StorageDuration getStorageDuration() const {
4488 return State.is<Stmt *>() ? SD_FullExpression
4489 : State.get<LifetimeExtendedTemporaryDecl *>()
4490 ->getStorageDuration();
4491 }
4492
4493 /// Get the storage for the constant value of a materialized temporary
4494 /// of static storage duration.
getOrCreateValue(bool MayCreate)4495 APValue *getOrCreateValue(bool MayCreate) const {
4496 assert(State.is<LifetimeExtendedTemporaryDecl *>() &&
4497 "the temporary has not been lifetime extended");
4498 return State.get<LifetimeExtendedTemporaryDecl *>()->getOrCreateValue(
4499 MayCreate);
4500 }
4501
getLifetimeExtendedTemporaryDecl()4502 LifetimeExtendedTemporaryDecl *getLifetimeExtendedTemporaryDecl() {
4503 return State.dyn_cast<LifetimeExtendedTemporaryDecl *>();
4504 }
4505 const LifetimeExtendedTemporaryDecl *
getLifetimeExtendedTemporaryDecl()4506 getLifetimeExtendedTemporaryDecl() const {
4507 return State.dyn_cast<LifetimeExtendedTemporaryDecl *>();
4508 }
4509
4510 /// Get the declaration which triggered the lifetime-extension of this
4511 /// temporary, if any.
getExtendingDecl()4512 ValueDecl *getExtendingDecl() {
4513 return State.is<Stmt *>() ? nullptr
4514 : State.get<LifetimeExtendedTemporaryDecl *>()
4515 ->getExtendingDecl();
4516 }
getExtendingDecl()4517 const ValueDecl *getExtendingDecl() const {
4518 return const_cast<MaterializeTemporaryExpr *>(this)->getExtendingDecl();
4519 }
4520
4521 void setExtendingDecl(ValueDecl *ExtendedBy, unsigned ManglingNumber);
4522
getManglingNumber()4523 unsigned getManglingNumber() const {
4524 return State.is<Stmt *>() ? 0
4525 : State.get<LifetimeExtendedTemporaryDecl *>()
4526 ->getManglingNumber();
4527 }
4528
4529 /// Determine whether this materialized temporary is bound to an
4530 /// lvalue reference; otherwise, it's bound to an rvalue reference.
isBoundToLvalueReference()4531 bool isBoundToLvalueReference() const {
4532 return getValueKind() == VK_LValue;
4533 }
4534
4535 /// Determine whether this temporary object is usable in constant
4536 /// expressions, as specified in C++20 [expr.const]p4.
4537 bool isUsableInConstantExpressions(const ASTContext &Context) const;
4538
getBeginLoc()4539 SourceLocation getBeginLoc() const LLVM_READONLY {
4540 return getSubExpr()->getBeginLoc();
4541 }
4542
getEndLoc()4543 SourceLocation getEndLoc() const LLVM_READONLY {
4544 return getSubExpr()->getEndLoc();
4545 }
4546
classof(const Stmt * T)4547 static bool classof(const Stmt *T) {
4548 return T->getStmtClass() == MaterializeTemporaryExprClass;
4549 }
4550
4551 // Iterators
children()4552 child_range children() {
4553 return State.is<Stmt *>()
4554 ? child_range(State.getAddrOfPtr1(), State.getAddrOfPtr1() + 1)
4555 : State.get<LifetimeExtendedTemporaryDecl *>()->childrenExpr();
4556 }
4557
children()4558 const_child_range children() const {
4559 return State.is<Stmt *>()
4560 ? const_child_range(State.getAddrOfPtr1(),
4561 State.getAddrOfPtr1() + 1)
4562 : const_cast<const LifetimeExtendedTemporaryDecl *>(
4563 State.get<LifetimeExtendedTemporaryDecl *>())
4564 ->childrenExpr();
4565 }
4566 };
4567
4568 /// Represents a folding of a pack over an operator.
4569 ///
4570 /// This expression is always dependent and represents a pack expansion of the
4571 /// forms:
4572 ///
4573 /// ( expr op ... )
4574 /// ( ... op expr )
4575 /// ( expr op ... op expr )
4576 class CXXFoldExpr : public Expr {
4577 friend class ASTStmtReader;
4578 friend class ASTStmtWriter;
4579
4580 enum SubExpr { Callee, LHS, RHS, Count };
4581
4582 SourceLocation LParenLoc;
4583 SourceLocation EllipsisLoc;
4584 SourceLocation RParenLoc;
4585 // When 0, the number of expansions is not known. Otherwise, this is one more
4586 // than the number of expansions.
4587 unsigned NumExpansions;
4588 Stmt *SubExprs[SubExpr::Count];
4589 BinaryOperatorKind Opcode;
4590
4591 public:
CXXFoldExpr(QualType T,UnresolvedLookupExpr * Callee,SourceLocation LParenLoc,Expr * LHS,BinaryOperatorKind Opcode,SourceLocation EllipsisLoc,Expr * RHS,SourceLocation RParenLoc,Optional<unsigned> NumExpansions)4592 CXXFoldExpr(QualType T, UnresolvedLookupExpr *Callee,
4593 SourceLocation LParenLoc, Expr *LHS, BinaryOperatorKind Opcode,
4594 SourceLocation EllipsisLoc, Expr *RHS, SourceLocation RParenLoc,
4595 Optional<unsigned> NumExpansions)
4596 : Expr(CXXFoldExprClass, T, VK_RValue, OK_Ordinary), LParenLoc(LParenLoc),
4597 EllipsisLoc(EllipsisLoc), RParenLoc(RParenLoc),
4598 NumExpansions(NumExpansions ? *NumExpansions + 1 : 0), Opcode(Opcode) {
4599 SubExprs[SubExpr::Callee] = Callee;
4600 SubExprs[SubExpr::LHS] = LHS;
4601 SubExprs[SubExpr::RHS] = RHS;
4602 setDependence(computeDependence(this));
4603 }
4604
CXXFoldExpr(EmptyShell Empty)4605 CXXFoldExpr(EmptyShell Empty) : Expr(CXXFoldExprClass, Empty) {}
4606
getCallee()4607 UnresolvedLookupExpr *getCallee() const {
4608 return static_cast<UnresolvedLookupExpr *>(SubExprs[SubExpr::Callee]);
4609 }
getLHS()4610 Expr *getLHS() const { return static_cast<Expr*>(SubExprs[SubExpr::LHS]); }
getRHS()4611 Expr *getRHS() const { return static_cast<Expr*>(SubExprs[SubExpr::RHS]); }
4612
4613 /// Does this produce a right-associated sequence of operators?
isRightFold()4614 bool isRightFold() const {
4615 return getLHS() && getLHS()->containsUnexpandedParameterPack();
4616 }
4617
4618 /// Does this produce a left-associated sequence of operators?
isLeftFold()4619 bool isLeftFold() const { return !isRightFold(); }
4620
4621 /// Get the pattern, that is, the operand that contains an unexpanded pack.
getPattern()4622 Expr *getPattern() const { return isLeftFold() ? getRHS() : getLHS(); }
4623
4624 /// Get the operand that doesn't contain a pack, for a binary fold.
getInit()4625 Expr *getInit() const { return isLeftFold() ? getLHS() : getRHS(); }
4626
getLParenLoc()4627 SourceLocation getLParenLoc() const { return LParenLoc; }
getRParenLoc()4628 SourceLocation getRParenLoc() const { return RParenLoc; }
getEllipsisLoc()4629 SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
getOperator()4630 BinaryOperatorKind getOperator() const { return Opcode; }
4631
getNumExpansions()4632 Optional<unsigned> getNumExpansions() const {
4633 if (NumExpansions)
4634 return NumExpansions - 1;
4635 return None;
4636 }
4637
getBeginLoc()4638 SourceLocation getBeginLoc() const LLVM_READONLY {
4639 if (LParenLoc.isValid())
4640 return LParenLoc;
4641 if (isLeftFold())
4642 return getEllipsisLoc();
4643 return getLHS()->getBeginLoc();
4644 }
4645
getEndLoc()4646 SourceLocation getEndLoc() const LLVM_READONLY {
4647 if (RParenLoc.isValid())
4648 return RParenLoc;
4649 if (isRightFold())
4650 return getEllipsisLoc();
4651 return getRHS()->getEndLoc();
4652 }
4653
classof(const Stmt * T)4654 static bool classof(const Stmt *T) {
4655 return T->getStmtClass() == CXXFoldExprClass;
4656 }
4657
4658 // Iterators
children()4659 child_range children() {
4660 return child_range(SubExprs, SubExprs + SubExpr::Count);
4661 }
4662
children()4663 const_child_range children() const {
4664 return const_child_range(SubExprs, SubExprs + SubExpr::Count);
4665 }
4666 };
4667
4668 /// Represents an expression that might suspend coroutine execution;
4669 /// either a co_await or co_yield expression.
4670 ///
4671 /// Evaluation of this expression first evaluates its 'ready' expression. If
4672 /// that returns 'false':
4673 /// -- execution of the coroutine is suspended
4674 /// -- the 'suspend' expression is evaluated
4675 /// -- if the 'suspend' expression returns 'false', the coroutine is
4676 /// resumed
4677 /// -- otherwise, control passes back to the resumer.
4678 /// If the coroutine is not suspended, or when it is resumed, the 'resume'
4679 /// expression is evaluated, and its result is the result of the overall
4680 /// expression.
4681 class CoroutineSuspendExpr : public Expr {
4682 friend class ASTStmtReader;
4683
4684 SourceLocation KeywordLoc;
4685
4686 enum SubExpr { Common, Ready, Suspend, Resume, Count };
4687
4688 Stmt *SubExprs[SubExpr::Count];
4689 OpaqueValueExpr *OpaqueValue = nullptr;
4690
4691 public:
CoroutineSuspendExpr(StmtClass SC,SourceLocation KeywordLoc,Expr * Common,Expr * Ready,Expr * Suspend,Expr * Resume,OpaqueValueExpr * OpaqueValue)4692 CoroutineSuspendExpr(StmtClass SC, SourceLocation KeywordLoc, Expr *Common,
4693 Expr *Ready, Expr *Suspend, Expr *Resume,
4694 OpaqueValueExpr *OpaqueValue)
4695 : Expr(SC, Resume->getType(), Resume->getValueKind(),
4696 Resume->getObjectKind()),
4697 KeywordLoc(KeywordLoc), OpaqueValue(OpaqueValue) {
4698 SubExprs[SubExpr::Common] = Common;
4699 SubExprs[SubExpr::Ready] = Ready;
4700 SubExprs[SubExpr::Suspend] = Suspend;
4701 SubExprs[SubExpr::Resume] = Resume;
4702 setDependence(computeDependence(this));
4703 }
4704
CoroutineSuspendExpr(StmtClass SC,SourceLocation KeywordLoc,QualType Ty,Expr * Common)4705 CoroutineSuspendExpr(StmtClass SC, SourceLocation KeywordLoc, QualType Ty,
4706 Expr *Common)
4707 : Expr(SC, Ty, VK_RValue, OK_Ordinary), KeywordLoc(KeywordLoc) {
4708 assert(Common->isTypeDependent() && Ty->isDependentType() &&
4709 "wrong constructor for non-dependent co_await/co_yield expression");
4710 SubExprs[SubExpr::Common] = Common;
4711 SubExprs[SubExpr::Ready] = nullptr;
4712 SubExprs[SubExpr::Suspend] = nullptr;
4713 SubExprs[SubExpr::Resume] = nullptr;
4714 setDependence(computeDependence(this));
4715 }
4716
CoroutineSuspendExpr(StmtClass SC,EmptyShell Empty)4717 CoroutineSuspendExpr(StmtClass SC, EmptyShell Empty) : Expr(SC, Empty) {
4718 SubExprs[SubExpr::Common] = nullptr;
4719 SubExprs[SubExpr::Ready] = nullptr;
4720 SubExprs[SubExpr::Suspend] = nullptr;
4721 SubExprs[SubExpr::Resume] = nullptr;
4722 }
4723
getKeywordLoc()4724 SourceLocation getKeywordLoc() const { return KeywordLoc; }
4725
getCommonExpr()4726 Expr *getCommonExpr() const {
4727 return static_cast<Expr*>(SubExprs[SubExpr::Common]);
4728 }
4729
4730 /// getOpaqueValue - Return the opaque value placeholder.
getOpaqueValue()4731 OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
4732
getReadyExpr()4733 Expr *getReadyExpr() const {
4734 return static_cast<Expr*>(SubExprs[SubExpr::Ready]);
4735 }
4736
getSuspendExpr()4737 Expr *getSuspendExpr() const {
4738 return static_cast<Expr*>(SubExprs[SubExpr::Suspend]);
4739 }
4740
getResumeExpr()4741 Expr *getResumeExpr() const {
4742 return static_cast<Expr*>(SubExprs[SubExpr::Resume]);
4743 }
4744
getBeginLoc()4745 SourceLocation getBeginLoc() const LLVM_READONLY { return KeywordLoc; }
4746
getEndLoc()4747 SourceLocation getEndLoc() const LLVM_READONLY {
4748 return getCommonExpr()->getEndLoc();
4749 }
4750
children()4751 child_range children() {
4752 return child_range(SubExprs, SubExprs + SubExpr::Count);
4753 }
4754
children()4755 const_child_range children() const {
4756 return const_child_range(SubExprs, SubExprs + SubExpr::Count);
4757 }
4758
classof(const Stmt * T)4759 static bool classof(const Stmt *T) {
4760 return T->getStmtClass() == CoawaitExprClass ||
4761 T->getStmtClass() == CoyieldExprClass;
4762 }
4763 };
4764
4765 /// Represents a 'co_await' expression.
4766 class CoawaitExpr : public CoroutineSuspendExpr {
4767 friend class ASTStmtReader;
4768
4769 public:
4770 CoawaitExpr(SourceLocation CoawaitLoc, Expr *Operand, Expr *Ready,
4771 Expr *Suspend, Expr *Resume, OpaqueValueExpr *OpaqueValue,
4772 bool IsImplicit = false)
CoroutineSuspendExpr(CoawaitExprClass,CoawaitLoc,Operand,Ready,Suspend,Resume,OpaqueValue)4773 : CoroutineSuspendExpr(CoawaitExprClass, CoawaitLoc, Operand, Ready,
4774 Suspend, Resume, OpaqueValue) {
4775 CoawaitBits.IsImplicit = IsImplicit;
4776 }
4777
4778 CoawaitExpr(SourceLocation CoawaitLoc, QualType Ty, Expr *Operand,
4779 bool IsImplicit = false)
CoroutineSuspendExpr(CoawaitExprClass,CoawaitLoc,Ty,Operand)4780 : CoroutineSuspendExpr(CoawaitExprClass, CoawaitLoc, Ty, Operand) {
4781 CoawaitBits.IsImplicit = IsImplicit;
4782 }
4783
CoawaitExpr(EmptyShell Empty)4784 CoawaitExpr(EmptyShell Empty)
4785 : CoroutineSuspendExpr(CoawaitExprClass, Empty) {}
4786
getOperand()4787 Expr *getOperand() const {
4788 // FIXME: Dig out the actual operand or store it.
4789 return getCommonExpr();
4790 }
4791
isImplicit()4792 bool isImplicit() const { return CoawaitBits.IsImplicit; }
4793 void setIsImplicit(bool value = true) { CoawaitBits.IsImplicit = value; }
4794
classof(const Stmt * T)4795 static bool classof(const Stmt *T) {
4796 return T->getStmtClass() == CoawaitExprClass;
4797 }
4798 };
4799
4800 /// Represents a 'co_await' expression while the type of the promise
4801 /// is dependent.
4802 class DependentCoawaitExpr : public Expr {
4803 friend class ASTStmtReader;
4804
4805 SourceLocation KeywordLoc;
4806 Stmt *SubExprs[2];
4807
4808 public:
DependentCoawaitExpr(SourceLocation KeywordLoc,QualType Ty,Expr * Op,UnresolvedLookupExpr * OpCoawait)4809 DependentCoawaitExpr(SourceLocation KeywordLoc, QualType Ty, Expr *Op,
4810 UnresolvedLookupExpr *OpCoawait)
4811 : Expr(DependentCoawaitExprClass, Ty, VK_RValue, OK_Ordinary),
4812 KeywordLoc(KeywordLoc) {
4813 // NOTE: A co_await expression is dependent on the coroutines promise
4814 // type and may be dependent even when the `Op` expression is not.
4815 assert(Ty->isDependentType() &&
4816 "wrong constructor for non-dependent co_await/co_yield expression");
4817 SubExprs[0] = Op;
4818 SubExprs[1] = OpCoawait;
4819 setDependence(computeDependence(this));
4820 }
4821
DependentCoawaitExpr(EmptyShell Empty)4822 DependentCoawaitExpr(EmptyShell Empty)
4823 : Expr(DependentCoawaitExprClass, Empty) {}
4824
getOperand()4825 Expr *getOperand() const { return cast<Expr>(SubExprs[0]); }
4826
getOperatorCoawaitLookup()4827 UnresolvedLookupExpr *getOperatorCoawaitLookup() const {
4828 return cast<UnresolvedLookupExpr>(SubExprs[1]);
4829 }
4830
getKeywordLoc()4831 SourceLocation getKeywordLoc() const { return KeywordLoc; }
4832
getBeginLoc()4833 SourceLocation getBeginLoc() const LLVM_READONLY { return KeywordLoc; }
4834
getEndLoc()4835 SourceLocation getEndLoc() const LLVM_READONLY {
4836 return getOperand()->getEndLoc();
4837 }
4838
children()4839 child_range children() { return child_range(SubExprs, SubExprs + 2); }
4840
children()4841 const_child_range children() const {
4842 return const_child_range(SubExprs, SubExprs + 2);
4843 }
4844
classof(const Stmt * T)4845 static bool classof(const Stmt *T) {
4846 return T->getStmtClass() == DependentCoawaitExprClass;
4847 }
4848 };
4849
4850 /// Represents a 'co_yield' expression.
4851 class CoyieldExpr : public CoroutineSuspendExpr {
4852 friend class ASTStmtReader;
4853
4854 public:
CoyieldExpr(SourceLocation CoyieldLoc,Expr * Operand,Expr * Ready,Expr * Suspend,Expr * Resume,OpaqueValueExpr * OpaqueValue)4855 CoyieldExpr(SourceLocation CoyieldLoc, Expr *Operand, Expr *Ready,
4856 Expr *Suspend, Expr *Resume, OpaqueValueExpr *OpaqueValue)
4857 : CoroutineSuspendExpr(CoyieldExprClass, CoyieldLoc, Operand, Ready,
4858 Suspend, Resume, OpaqueValue) {}
CoyieldExpr(SourceLocation CoyieldLoc,QualType Ty,Expr * Operand)4859 CoyieldExpr(SourceLocation CoyieldLoc, QualType Ty, Expr *Operand)
4860 : CoroutineSuspendExpr(CoyieldExprClass, CoyieldLoc, Ty, Operand) {}
CoyieldExpr(EmptyShell Empty)4861 CoyieldExpr(EmptyShell Empty)
4862 : CoroutineSuspendExpr(CoyieldExprClass, Empty) {}
4863
getOperand()4864 Expr *getOperand() const {
4865 // FIXME: Dig out the actual operand or store it.
4866 return getCommonExpr();
4867 }
4868
classof(const Stmt * T)4869 static bool classof(const Stmt *T) {
4870 return T->getStmtClass() == CoyieldExprClass;
4871 }
4872 };
4873
4874 /// Represents a C++2a __builtin_bit_cast(T, v) expression. Used to implement
4875 /// std::bit_cast. These can sometimes be evaluated as part of a constant
4876 /// expression, but otherwise CodeGen to a simple memcpy in general.
4877 class BuiltinBitCastExpr final
4878 : public ExplicitCastExpr,
4879 private llvm::TrailingObjects<BuiltinBitCastExpr, CXXBaseSpecifier *> {
4880 friend class ASTStmtReader;
4881 friend class CastExpr;
4882 friend TrailingObjects;
4883
4884 SourceLocation KWLoc;
4885 SourceLocation RParenLoc;
4886
4887 public:
BuiltinBitCastExpr(QualType T,ExprValueKind VK,CastKind CK,Expr * SrcExpr,TypeSourceInfo * DstType,SourceLocation KWLoc,SourceLocation RParenLoc)4888 BuiltinBitCastExpr(QualType T, ExprValueKind VK, CastKind CK, Expr *SrcExpr,
4889 TypeSourceInfo *DstType, SourceLocation KWLoc,
4890 SourceLocation RParenLoc)
4891 : ExplicitCastExpr(BuiltinBitCastExprClass, T, VK, CK, SrcExpr, 0, false,
4892 DstType),
4893 KWLoc(KWLoc), RParenLoc(RParenLoc) {}
BuiltinBitCastExpr(EmptyShell Empty)4894 BuiltinBitCastExpr(EmptyShell Empty)
4895 : ExplicitCastExpr(BuiltinBitCastExprClass, Empty, 0, false) {}
4896
getBeginLoc()4897 SourceLocation getBeginLoc() const LLVM_READONLY { return KWLoc; }
getEndLoc()4898 SourceLocation getEndLoc() const LLVM_READONLY { return RParenLoc; }
4899
classof(const Stmt * T)4900 static bool classof(const Stmt *T) {
4901 return T->getStmtClass() == BuiltinBitCastExprClass;
4902 }
4903 };
4904
4905 } // namespace clang
4906
4907 #endif // LLVM_CLANG_AST_EXPRCXX_H
4908