1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code dealing with C++ code generation of classes
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGBlocks.h"
14 #include "CGCXXABI.h"
15 #include "CGDebugInfo.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenFunction.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/Basic/CodeGenOptions.h"
27 #include "clang/Basic/TargetBuiltins.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/Transforms/Utils/SanitizerStats.h"
32 #include <optional>
33
34 using namespace clang;
35 using namespace CodeGen;
36
37 /// Return the best known alignment for an unknown pointer to a
38 /// particular class.
getClassPointerAlignment(const CXXRecordDecl * RD)39 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
40 if (!RD->hasDefinition())
41 return CharUnits::One(); // Hopefully won't be used anywhere.
42
43 auto &layout = getContext().getASTRecordLayout(RD);
44
45 // If the class is final, then we know that the pointer points to an
46 // object of that type and can use the full alignment.
47 if (RD->isEffectivelyFinal())
48 return layout.getAlignment();
49
50 // Otherwise, we have to assume it could be a subclass.
51 return layout.getNonVirtualAlignment();
52 }
53
54 /// Return the smallest possible amount of storage that might be allocated
55 /// starting from the beginning of an object of a particular class.
56 ///
57 /// This may be smaller than sizeof(RD) if RD has virtual base classes.
getMinimumClassObjectSize(const CXXRecordDecl * RD)58 CharUnits CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl *RD) {
59 if (!RD->hasDefinition())
60 return CharUnits::One();
61
62 auto &layout = getContext().getASTRecordLayout(RD);
63
64 // If the class is final, then we know that the pointer points to an
65 // object of that type and can use the full alignment.
66 if (RD->isEffectivelyFinal())
67 return layout.getSize();
68
69 // Otherwise, we have to assume it could be a subclass.
70 return std::max(layout.getNonVirtualSize(), CharUnits::One());
71 }
72
73 /// Return the best known alignment for a pointer to a virtual base,
74 /// given the alignment of a pointer to the derived class.
getVBaseAlignment(CharUnits actualDerivedAlign,const CXXRecordDecl * derivedClass,const CXXRecordDecl * vbaseClass)75 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
76 const CXXRecordDecl *derivedClass,
77 const CXXRecordDecl *vbaseClass) {
78 // The basic idea here is that an underaligned derived pointer might
79 // indicate an underaligned base pointer.
80
81 assert(vbaseClass->isCompleteDefinition());
82 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
83 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
84
85 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
86 expectedVBaseAlign);
87 }
88
89 CharUnits
getDynamicOffsetAlignment(CharUnits actualBaseAlign,const CXXRecordDecl * baseDecl,CharUnits expectedTargetAlign)90 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
91 const CXXRecordDecl *baseDecl,
92 CharUnits expectedTargetAlign) {
93 // If the base is an incomplete type (which is, alas, possible with
94 // member pointers), be pessimistic.
95 if (!baseDecl->isCompleteDefinition())
96 return std::min(actualBaseAlign, expectedTargetAlign);
97
98 auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
99 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
100
101 // If the class is properly aligned, assume the target offset is, too.
102 //
103 // This actually isn't necessarily the right thing to do --- if the
104 // class is a complete object, but it's only properly aligned for a
105 // base subobject, then the alignments of things relative to it are
106 // probably off as well. (Note that this requires the alignment of
107 // the target to be greater than the NV alignment of the derived
108 // class.)
109 //
110 // However, our approach to this kind of under-alignment can only
111 // ever be best effort; after all, we're never going to propagate
112 // alignments through variables or parameters. Note, in particular,
113 // that constructing a polymorphic type in an address that's less
114 // than pointer-aligned will generally trap in the constructor,
115 // unless we someday add some sort of attribute to change the
116 // assumed alignment of 'this'. So our goal here is pretty much
117 // just to allow the user to explicitly say that a pointer is
118 // under-aligned and then safely access its fields and vtables.
119 if (actualBaseAlign >= expectedBaseAlign) {
120 return expectedTargetAlign;
121 }
122
123 // Otherwise, we might be offset by an arbitrary multiple of the
124 // actual alignment. The correct adjustment is to take the min of
125 // the two alignments.
126 return std::min(actualBaseAlign, expectedTargetAlign);
127 }
128
LoadCXXThisAddress()129 Address CodeGenFunction::LoadCXXThisAddress() {
130 assert(CurFuncDecl && "loading 'this' without a func declaration?");
131 auto *MD = cast<CXXMethodDecl>(CurFuncDecl);
132
133 // Lazily compute CXXThisAlignment.
134 if (CXXThisAlignment.isZero()) {
135 // Just use the best known alignment for the parent.
136 // TODO: if we're currently emitting a complete-object ctor/dtor,
137 // we can always use the complete-object alignment.
138 CXXThisAlignment = CGM.getClassPointerAlignment(MD->getParent());
139 }
140
141 llvm::Type *Ty = ConvertType(MD->getThisType()->getPointeeType());
142 return Address(LoadCXXThis(), Ty, CXXThisAlignment);
143 }
144
145 /// Emit the address of a field using a member data pointer.
146 ///
147 /// \param E Only used for emergency diagnostics
148 Address
EmitCXXMemberDataPointerAddress(const Expr * E,Address base,llvm::Value * memberPtr,const MemberPointerType * memberPtrType,LValueBaseInfo * BaseInfo,TBAAAccessInfo * TBAAInfo)149 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
150 llvm::Value *memberPtr,
151 const MemberPointerType *memberPtrType,
152 LValueBaseInfo *BaseInfo,
153 TBAAAccessInfo *TBAAInfo) {
154 // Ask the ABI to compute the actual address.
155 llvm::Value *ptr =
156 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
157 memberPtr, memberPtrType);
158
159 QualType memberType = memberPtrType->getPointeeType();
160 CharUnits memberAlign =
161 CGM.getNaturalTypeAlignment(memberType, BaseInfo, TBAAInfo);
162 memberAlign =
163 CGM.getDynamicOffsetAlignment(base.getAlignment(),
164 memberPtrType->getClass()->getAsCXXRecordDecl(),
165 memberAlign);
166 return Address(ptr, ConvertTypeForMem(memberPtrType->getPointeeType()),
167 memberAlign);
168 }
169
computeNonVirtualBaseClassOffset(const CXXRecordDecl * DerivedClass,CastExpr::path_const_iterator Start,CastExpr::path_const_iterator End)170 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
171 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
172 CastExpr::path_const_iterator End) {
173 CharUnits Offset = CharUnits::Zero();
174
175 const ASTContext &Context = getContext();
176 const CXXRecordDecl *RD = DerivedClass;
177
178 for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
179 const CXXBaseSpecifier *Base = *I;
180 assert(!Base->isVirtual() && "Should not see virtual bases here!");
181
182 // Get the layout.
183 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
184
185 const auto *BaseDecl =
186 cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl());
187
188 // Add the offset.
189 Offset += Layout.getBaseClassOffset(BaseDecl);
190
191 RD = BaseDecl;
192 }
193
194 return Offset;
195 }
196
197 llvm::Constant *
GetNonVirtualBaseClassOffset(const CXXRecordDecl * ClassDecl,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd)198 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
199 CastExpr::path_const_iterator PathBegin,
200 CastExpr::path_const_iterator PathEnd) {
201 assert(PathBegin != PathEnd && "Base path should not be empty!");
202
203 CharUnits Offset =
204 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
205 if (Offset.isZero())
206 return nullptr;
207
208 llvm::Type *PtrDiffTy =
209 Types.ConvertType(getContext().getPointerDiffType());
210
211 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
212 }
213
214 /// Gets the address of a direct base class within a complete object.
215 /// This should only be used for (1) non-virtual bases or (2) virtual bases
216 /// when the type is known to be complete (e.g. in complete destructors).
217 ///
218 /// The object pointed to by 'This' is assumed to be non-null.
219 Address
GetAddressOfDirectBaseInCompleteClass(Address This,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,bool BaseIsVirtual)220 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
221 const CXXRecordDecl *Derived,
222 const CXXRecordDecl *Base,
223 bool BaseIsVirtual) {
224 // 'this' must be a pointer (in some address space) to Derived.
225 assert(This.getElementType() == ConvertType(Derived));
226
227 // Compute the offset of the virtual base.
228 CharUnits Offset;
229 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
230 if (BaseIsVirtual)
231 Offset = Layout.getVBaseClassOffset(Base);
232 else
233 Offset = Layout.getBaseClassOffset(Base);
234
235 // Shift and cast down to the base type.
236 // TODO: for complete types, this should be possible with a GEP.
237 Address V = This;
238 if (!Offset.isZero()) {
239 V = Builder.CreateElementBitCast(V, Int8Ty);
240 V = Builder.CreateConstInBoundsByteGEP(V, Offset);
241 }
242 V = Builder.CreateElementBitCast(V, ConvertType(Base));
243
244 return V;
245 }
246
247 static Address
ApplyNonVirtualAndVirtualOffset(CodeGenFunction & CGF,Address addr,CharUnits nonVirtualOffset,llvm::Value * virtualOffset,const CXXRecordDecl * derivedClass,const CXXRecordDecl * nearestVBase)248 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
249 CharUnits nonVirtualOffset,
250 llvm::Value *virtualOffset,
251 const CXXRecordDecl *derivedClass,
252 const CXXRecordDecl *nearestVBase) {
253 // Assert that we have something to do.
254 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
255
256 // Compute the offset from the static and dynamic components.
257 llvm::Value *baseOffset;
258 if (!nonVirtualOffset.isZero()) {
259 llvm::Type *OffsetType =
260 (CGF.CGM.getTarget().getCXXABI().isItaniumFamily() &&
261 CGF.CGM.getItaniumVTableContext().isRelativeLayout())
262 ? CGF.Int32Ty
263 : CGF.PtrDiffTy;
264 baseOffset =
265 llvm::ConstantInt::get(OffsetType, nonVirtualOffset.getQuantity());
266 if (virtualOffset) {
267 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
268 }
269 } else {
270 baseOffset = virtualOffset;
271 }
272
273 // Apply the base offset.
274 llvm::Value *ptr = addr.getPointer();
275 unsigned AddrSpace = ptr->getType()->getPointerAddressSpace();
276 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8Ty->getPointerTo(AddrSpace));
277 ptr = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, ptr, baseOffset, "add.ptr");
278
279 // If we have a virtual component, the alignment of the result will
280 // be relative only to the known alignment of that vbase.
281 CharUnits alignment;
282 if (virtualOffset) {
283 assert(nearestVBase && "virtual offset without vbase?");
284 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
285 derivedClass, nearestVBase);
286 } else {
287 alignment = addr.getAlignment();
288 }
289 alignment = alignment.alignmentAtOffset(nonVirtualOffset);
290
291 return Address(ptr, CGF.Int8Ty, alignment);
292 }
293
GetAddressOfBaseClass(Address Value,const CXXRecordDecl * Derived,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd,bool NullCheckValue,SourceLocation Loc)294 Address CodeGenFunction::GetAddressOfBaseClass(
295 Address Value, const CXXRecordDecl *Derived,
296 CastExpr::path_const_iterator PathBegin,
297 CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
298 SourceLocation Loc) {
299 assert(PathBegin != PathEnd && "Base path should not be empty!");
300
301 CastExpr::path_const_iterator Start = PathBegin;
302 const CXXRecordDecl *VBase = nullptr;
303
304 // Sema has done some convenient canonicalization here: if the
305 // access path involved any virtual steps, the conversion path will
306 // *start* with a step down to the correct virtual base subobject,
307 // and hence will not require any further steps.
308 if ((*Start)->isVirtual()) {
309 VBase = cast<CXXRecordDecl>(
310 (*Start)->getType()->castAs<RecordType>()->getDecl());
311 ++Start;
312 }
313
314 // Compute the static offset of the ultimate destination within its
315 // allocating subobject (the virtual base, if there is one, or else
316 // the "complete" object that we see).
317 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
318 VBase ? VBase : Derived, Start, PathEnd);
319
320 // If there's a virtual step, we can sometimes "devirtualize" it.
321 // For now, that's limited to when the derived type is final.
322 // TODO: "devirtualize" this for accesses to known-complete objects.
323 if (VBase && Derived->hasAttr<FinalAttr>()) {
324 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
325 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
326 NonVirtualOffset += vBaseOffset;
327 VBase = nullptr; // we no longer have a virtual step
328 }
329
330 // Get the base pointer type.
331 llvm::Type *BaseValueTy = ConvertType((PathEnd[-1])->getType());
332 llvm::Type *BasePtrTy =
333 BaseValueTy->getPointerTo(Value.getType()->getPointerAddressSpace());
334
335 QualType DerivedTy = getContext().getRecordType(Derived);
336 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
337
338 // If the static offset is zero and we don't have a virtual step,
339 // just do a bitcast; null checks are unnecessary.
340 if (NonVirtualOffset.isZero() && !VBase) {
341 if (sanitizePerformTypeCheck()) {
342 SanitizerSet SkippedChecks;
343 SkippedChecks.set(SanitizerKind::Null, !NullCheckValue);
344 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(),
345 DerivedTy, DerivedAlign, SkippedChecks);
346 }
347 return Builder.CreateElementBitCast(Value, BaseValueTy);
348 }
349
350 llvm::BasicBlock *origBB = nullptr;
351 llvm::BasicBlock *endBB = nullptr;
352
353 // Skip over the offset (and the vtable load) if we're supposed to
354 // null-check the pointer.
355 if (NullCheckValue) {
356 origBB = Builder.GetInsertBlock();
357 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
358 endBB = createBasicBlock("cast.end");
359
360 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer());
361 Builder.CreateCondBr(isNull, endBB, notNullBB);
362 EmitBlock(notNullBB);
363 }
364
365 if (sanitizePerformTypeCheck()) {
366 SanitizerSet SkippedChecks;
367 SkippedChecks.set(SanitizerKind::Null, true);
368 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
369 Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks);
370 }
371
372 // Compute the virtual offset.
373 llvm::Value *VirtualOffset = nullptr;
374 if (VBase) {
375 VirtualOffset =
376 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
377 }
378
379 // Apply both offsets.
380 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
381 VirtualOffset, Derived, VBase);
382
383 // Cast to the destination type.
384 Value = Builder.CreateElementBitCast(Value, BaseValueTy);
385
386 // Build a phi if we needed a null check.
387 if (NullCheckValue) {
388 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
389 Builder.CreateBr(endBB);
390 EmitBlock(endBB);
391
392 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
393 PHI->addIncoming(Value.getPointer(), notNullBB);
394 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
395 Value = Value.withPointer(PHI);
396 }
397
398 return Value;
399 }
400
401 Address
GetAddressOfDerivedClass(Address BaseAddr,const CXXRecordDecl * Derived,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd,bool NullCheckValue)402 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
403 const CXXRecordDecl *Derived,
404 CastExpr::path_const_iterator PathBegin,
405 CastExpr::path_const_iterator PathEnd,
406 bool NullCheckValue) {
407 assert(PathBegin != PathEnd && "Base path should not be empty!");
408
409 QualType DerivedTy =
410 getContext().getCanonicalType(getContext().getTagDeclType(Derived));
411 unsigned AddrSpace = BaseAddr.getAddressSpace();
412 llvm::Type *DerivedValueTy = ConvertType(DerivedTy);
413 llvm::Type *DerivedPtrTy = DerivedValueTy->getPointerTo(AddrSpace);
414
415 llvm::Value *NonVirtualOffset =
416 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
417
418 if (!NonVirtualOffset) {
419 // No offset, we can just cast back.
420 return Builder.CreateElementBitCast(BaseAddr, DerivedValueTy);
421 }
422
423 llvm::BasicBlock *CastNull = nullptr;
424 llvm::BasicBlock *CastNotNull = nullptr;
425 llvm::BasicBlock *CastEnd = nullptr;
426
427 if (NullCheckValue) {
428 CastNull = createBasicBlock("cast.null");
429 CastNotNull = createBasicBlock("cast.notnull");
430 CastEnd = createBasicBlock("cast.end");
431
432 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer());
433 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
434 EmitBlock(CastNotNull);
435 }
436
437 // Apply the offset.
438 llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy);
439 Value = Builder.CreateInBoundsGEP(
440 Int8Ty, Value, Builder.CreateNeg(NonVirtualOffset), "sub.ptr");
441
442 // Just cast.
443 Value = Builder.CreateBitCast(Value, DerivedPtrTy);
444
445 // Produce a PHI if we had a null-check.
446 if (NullCheckValue) {
447 Builder.CreateBr(CastEnd);
448 EmitBlock(CastNull);
449 Builder.CreateBr(CastEnd);
450 EmitBlock(CastEnd);
451
452 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
453 PHI->addIncoming(Value, CastNotNull);
454 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
455 Value = PHI;
456 }
457
458 return Address(Value, DerivedValueTy, CGM.getClassPointerAlignment(Derived));
459 }
460
GetVTTParameter(GlobalDecl GD,bool ForVirtualBase,bool Delegating)461 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
462 bool ForVirtualBase,
463 bool Delegating) {
464 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
465 // This constructor/destructor does not need a VTT parameter.
466 return nullptr;
467 }
468
469 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
470 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
471
472 uint64_t SubVTTIndex;
473
474 if (Delegating) {
475 // If this is a delegating constructor call, just load the VTT.
476 return LoadCXXVTT();
477 } else if (RD == Base) {
478 // If the record matches the base, this is the complete ctor/dtor
479 // variant calling the base variant in a class with virtual bases.
480 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
481 "doing no-op VTT offset in base dtor/ctor?");
482 assert(!ForVirtualBase && "Can't have same class as virtual base!");
483 SubVTTIndex = 0;
484 } else {
485 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
486 CharUnits BaseOffset = ForVirtualBase ?
487 Layout.getVBaseClassOffset(Base) :
488 Layout.getBaseClassOffset(Base);
489
490 SubVTTIndex =
491 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
492 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
493 }
494
495 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
496 // A VTT parameter was passed to the constructor, use it.
497 llvm::Value *VTT = LoadCXXVTT();
498 return Builder.CreateConstInBoundsGEP1_64(VoidPtrTy, VTT, SubVTTIndex);
499 } else {
500 // We're the complete constructor, so get the VTT by name.
501 llvm::GlobalValue *VTT = CGM.getVTables().GetAddrOfVTT(RD);
502 return Builder.CreateConstInBoundsGEP2_64(
503 VTT->getValueType(), VTT, 0, SubVTTIndex);
504 }
505 }
506
507 namespace {
508 /// Call the destructor for a direct base class.
509 struct CallBaseDtor final : EHScopeStack::Cleanup {
510 const CXXRecordDecl *BaseClass;
511 bool BaseIsVirtual;
CallBaseDtor__anonfcad378b0111::CallBaseDtor512 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
513 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
514
Emit__anonfcad378b0111::CallBaseDtor515 void Emit(CodeGenFunction &CGF, Flags flags) override {
516 const CXXRecordDecl *DerivedClass =
517 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
518
519 const CXXDestructorDecl *D = BaseClass->getDestructor();
520 // We are already inside a destructor, so presumably the object being
521 // destroyed should have the expected type.
522 QualType ThisTy = D->getThisObjectType();
523 Address Addr =
524 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
525 DerivedClass, BaseClass,
526 BaseIsVirtual);
527 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
528 /*Delegating=*/false, Addr, ThisTy);
529 }
530 };
531
532 /// A visitor which checks whether an initializer uses 'this' in a
533 /// way which requires the vtable to be properly set.
534 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
535 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
536
537 bool UsesThis;
538
DynamicThisUseChecker__anonfcad378b0111::DynamicThisUseChecker539 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
540
541 // Black-list all explicit and implicit references to 'this'.
542 //
543 // Do we need to worry about external references to 'this' derived
544 // from arbitrary code? If so, then anything which runs arbitrary
545 // external code might potentially access the vtable.
VisitCXXThisExpr__anonfcad378b0111::DynamicThisUseChecker546 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
547 };
548 } // end anonymous namespace
549
BaseInitializerUsesThis(ASTContext & C,const Expr * Init)550 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
551 DynamicThisUseChecker Checker(C);
552 Checker.Visit(Init);
553 return Checker.UsesThis;
554 }
555
EmitBaseInitializer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,CXXCtorInitializer * BaseInit)556 static void EmitBaseInitializer(CodeGenFunction &CGF,
557 const CXXRecordDecl *ClassDecl,
558 CXXCtorInitializer *BaseInit) {
559 assert(BaseInit->isBaseInitializer() &&
560 "Must have base initializer!");
561
562 Address ThisPtr = CGF.LoadCXXThisAddress();
563
564 const Type *BaseType = BaseInit->getBaseClass();
565 const auto *BaseClassDecl =
566 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
567
568 bool isBaseVirtual = BaseInit->isBaseVirtual();
569
570 // If the initializer for the base (other than the constructor
571 // itself) accesses 'this' in any way, we need to initialize the
572 // vtables.
573 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
574 CGF.InitializeVTablePointers(ClassDecl);
575
576 // We can pretend to be a complete class because it only matters for
577 // virtual bases, and we only do virtual bases for complete ctors.
578 Address V =
579 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
580 BaseClassDecl,
581 isBaseVirtual);
582 AggValueSlot AggSlot =
583 AggValueSlot::forAddr(
584 V, Qualifiers(),
585 AggValueSlot::IsDestructed,
586 AggValueSlot::DoesNotNeedGCBarriers,
587 AggValueSlot::IsNotAliased,
588 CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual));
589
590 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
591
592 if (CGF.CGM.getLangOpts().Exceptions &&
593 !BaseClassDecl->hasTrivialDestructor())
594 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
595 isBaseVirtual);
596 }
597
isMemcpyEquivalentSpecialMember(const CXXMethodDecl * D)598 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
599 auto *CD = dyn_cast<CXXConstructorDecl>(D);
600 if (!(CD && CD->isCopyOrMoveConstructor()) &&
601 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
602 return false;
603
604 // We can emit a memcpy for a trivial copy or move constructor/assignment.
605 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
606 return true;
607
608 // We *must* emit a memcpy for a defaulted union copy or move op.
609 if (D->getParent()->isUnion() && D->isDefaulted())
610 return true;
611
612 return false;
613 }
614
EmitLValueForAnyFieldInitialization(CodeGenFunction & CGF,CXXCtorInitializer * MemberInit,LValue & LHS)615 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
616 CXXCtorInitializer *MemberInit,
617 LValue &LHS) {
618 FieldDecl *Field = MemberInit->getAnyMember();
619 if (MemberInit->isIndirectMemberInitializer()) {
620 // If we are initializing an anonymous union field, drill down to the field.
621 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
622 for (const auto *I : IndirectField->chain())
623 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
624 } else {
625 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
626 }
627 }
628
EmitMemberInitializer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,CXXCtorInitializer * MemberInit,const CXXConstructorDecl * Constructor,FunctionArgList & Args)629 static void EmitMemberInitializer(CodeGenFunction &CGF,
630 const CXXRecordDecl *ClassDecl,
631 CXXCtorInitializer *MemberInit,
632 const CXXConstructorDecl *Constructor,
633 FunctionArgList &Args) {
634 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
635 assert(MemberInit->isAnyMemberInitializer() &&
636 "Must have member initializer!");
637 assert(MemberInit->getInit() && "Must have initializer!");
638
639 // non-static data member initializers.
640 FieldDecl *Field = MemberInit->getAnyMember();
641 QualType FieldType = Field->getType();
642
643 llvm::Value *ThisPtr = CGF.LoadCXXThis();
644 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
645 LValue LHS;
646
647 // If a base constructor is being emitted, create an LValue that has the
648 // non-virtual alignment.
649 if (CGF.CurGD.getCtorType() == Ctor_Base)
650 LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy);
651 else
652 LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
653
654 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
655
656 // Special case: if we are in a copy or move constructor, and we are copying
657 // an array of PODs or classes with trivial copy constructors, ignore the
658 // AST and perform the copy we know is equivalent.
659 // FIXME: This is hacky at best... if we had a bit more explicit information
660 // in the AST, we could generalize it more easily.
661 const ConstantArrayType *Array
662 = CGF.getContext().getAsConstantArrayType(FieldType);
663 if (Array && Constructor->isDefaulted() &&
664 Constructor->isCopyOrMoveConstructor()) {
665 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
666 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
667 if (BaseElementTy.isPODType(CGF.getContext()) ||
668 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
669 unsigned SrcArgIndex =
670 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
671 llvm::Value *SrcPtr
672 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
673 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
674 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
675
676 // Copy the aggregate.
677 CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field),
678 LHS.isVolatileQualified());
679 // Ensure that we destroy the objects if an exception is thrown later in
680 // the constructor.
681 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
682 if (CGF.needsEHCleanup(dtorKind))
683 CGF.pushEHDestroy(dtorKind, LHS.getAddress(CGF), FieldType);
684 return;
685 }
686 }
687
688 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit());
689 }
690
EmitInitializerForField(FieldDecl * Field,LValue LHS,Expr * Init)691 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
692 Expr *Init) {
693 QualType FieldType = Field->getType();
694 switch (getEvaluationKind(FieldType)) {
695 case TEK_Scalar:
696 if (LHS.isSimple()) {
697 EmitExprAsInit(Init, Field, LHS, false);
698 } else {
699 RValue RHS = RValue::get(EmitScalarExpr(Init));
700 EmitStoreThroughLValue(RHS, LHS);
701 }
702 break;
703 case TEK_Complex:
704 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
705 break;
706 case TEK_Aggregate: {
707 AggValueSlot Slot = AggValueSlot::forLValue(
708 LHS, *this, AggValueSlot::IsDestructed,
709 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
710 getOverlapForFieldInit(Field), AggValueSlot::IsNotZeroed,
711 // Checks are made by the code that calls constructor.
712 AggValueSlot::IsSanitizerChecked);
713 EmitAggExpr(Init, Slot);
714 break;
715 }
716 }
717
718 // Ensure that we destroy this object if an exception is thrown
719 // later in the constructor.
720 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
721 if (needsEHCleanup(dtorKind))
722 pushEHDestroy(dtorKind, LHS.getAddress(*this), FieldType);
723 }
724
725 /// Checks whether the given constructor is a valid subject for the
726 /// complete-to-base constructor delegation optimization, i.e.
727 /// emitting the complete constructor as a simple call to the base
728 /// constructor.
IsConstructorDelegationValid(const CXXConstructorDecl * Ctor)729 bool CodeGenFunction::IsConstructorDelegationValid(
730 const CXXConstructorDecl *Ctor) {
731
732 // Currently we disable the optimization for classes with virtual
733 // bases because (1) the addresses of parameter variables need to be
734 // consistent across all initializers but (2) the delegate function
735 // call necessarily creates a second copy of the parameter variable.
736 //
737 // The limiting example (purely theoretical AFAIK):
738 // struct A { A(int &c) { c++; } };
739 // struct B : virtual A {
740 // B(int count) : A(count) { printf("%d\n", count); }
741 // };
742 // ...although even this example could in principle be emitted as a
743 // delegation since the address of the parameter doesn't escape.
744 if (Ctor->getParent()->getNumVBases()) {
745 // TODO: white-list trivial vbase initializers. This case wouldn't
746 // be subject to the restrictions below.
747
748 // TODO: white-list cases where:
749 // - there are no non-reference parameters to the constructor
750 // - the initializers don't access any non-reference parameters
751 // - the initializers don't take the address of non-reference
752 // parameters
753 // - etc.
754 // If we ever add any of the above cases, remember that:
755 // - function-try-blocks will always exclude this optimization
756 // - we need to perform the constructor prologue and cleanup in
757 // EmitConstructorBody.
758
759 return false;
760 }
761
762 // We also disable the optimization for variadic functions because
763 // it's impossible to "re-pass" varargs.
764 if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic())
765 return false;
766
767 // FIXME: Decide if we can do a delegation of a delegating constructor.
768 if (Ctor->isDelegatingConstructor())
769 return false;
770
771 return true;
772 }
773
774 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
775 // to poison the extra field paddings inserted under
776 // -fsanitize-address-field-padding=1|2.
EmitAsanPrologueOrEpilogue(bool Prologue)777 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
778 ASTContext &Context = getContext();
779 const CXXRecordDecl *ClassDecl =
780 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
781 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
782 if (!ClassDecl->mayInsertExtraPadding()) return;
783
784 struct SizeAndOffset {
785 uint64_t Size;
786 uint64_t Offset;
787 };
788
789 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
790 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
791
792 // Populate sizes and offsets of fields.
793 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
794 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
795 SSV[i].Offset =
796 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
797
798 size_t NumFields = 0;
799 for (const auto *Field : ClassDecl->fields()) {
800 const FieldDecl *D = Field;
801 auto FieldInfo = Context.getTypeInfoInChars(D->getType());
802 CharUnits FieldSize = FieldInfo.Width;
803 assert(NumFields < SSV.size());
804 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
805 NumFields++;
806 }
807 assert(NumFields == SSV.size());
808 if (SSV.size() <= 1) return;
809
810 // We will insert calls to __asan_* run-time functions.
811 // LLVM AddressSanitizer pass may decide to inline them later.
812 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
813 llvm::FunctionType *FTy =
814 llvm::FunctionType::get(CGM.VoidTy, Args, false);
815 llvm::FunctionCallee F = CGM.CreateRuntimeFunction(
816 FTy, Prologue ? "__asan_poison_intra_object_redzone"
817 : "__asan_unpoison_intra_object_redzone");
818
819 llvm::Value *ThisPtr = LoadCXXThis();
820 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
821 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
822 // For each field check if it has sufficient padding,
823 // if so (un)poison it with a call.
824 for (size_t i = 0; i < SSV.size(); i++) {
825 uint64_t AsanAlignment = 8;
826 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
827 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
828 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
829 if (PoisonSize < AsanAlignment || !SSV[i].Size ||
830 (NextField % AsanAlignment) != 0)
831 continue;
832 Builder.CreateCall(
833 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
834 Builder.getIntN(PtrSize, PoisonSize)});
835 }
836 }
837
838 /// EmitConstructorBody - Emits the body of the current constructor.
EmitConstructorBody(FunctionArgList & Args)839 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
840 EmitAsanPrologueOrEpilogue(true);
841 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
842 CXXCtorType CtorType = CurGD.getCtorType();
843
844 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
845 CtorType == Ctor_Complete) &&
846 "can only generate complete ctor for this ABI");
847
848 // Before we go any further, try the complete->base constructor
849 // delegation optimization.
850 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
851 CGM.getTarget().getCXXABI().hasConstructorVariants()) {
852 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc());
853 return;
854 }
855
856 const FunctionDecl *Definition = nullptr;
857 Stmt *Body = Ctor->getBody(Definition);
858 assert(Definition == Ctor && "emitting wrong constructor body");
859
860 // Enter the function-try-block before the constructor prologue if
861 // applicable.
862 bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
863 if (IsTryBody)
864 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
865
866 incrementProfileCounter(Body);
867
868 RunCleanupsScope RunCleanups(*this);
869
870 // TODO: in restricted cases, we can emit the vbase initializers of
871 // a complete ctor and then delegate to the base ctor.
872
873 // Emit the constructor prologue, i.e. the base and member
874 // initializers.
875 EmitCtorPrologue(Ctor, CtorType, Args);
876
877 // Emit the body of the statement.
878 if (IsTryBody)
879 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
880 else if (Body)
881 EmitStmt(Body);
882
883 // Emit any cleanup blocks associated with the member or base
884 // initializers, which includes (along the exceptional path) the
885 // destructors for those members and bases that were fully
886 // constructed.
887 RunCleanups.ForceCleanup();
888
889 if (IsTryBody)
890 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
891 }
892
893 namespace {
894 /// RAII object to indicate that codegen is copying the value representation
895 /// instead of the object representation. Useful when copying a struct or
896 /// class which has uninitialized members and we're only performing
897 /// lvalue-to-rvalue conversion on the object but not its members.
898 class CopyingValueRepresentation {
899 public:
CopyingValueRepresentation(CodeGenFunction & CGF)900 explicit CopyingValueRepresentation(CodeGenFunction &CGF)
901 : CGF(CGF), OldSanOpts(CGF.SanOpts) {
902 CGF.SanOpts.set(SanitizerKind::Bool, false);
903 CGF.SanOpts.set(SanitizerKind::Enum, false);
904 }
~CopyingValueRepresentation()905 ~CopyingValueRepresentation() {
906 CGF.SanOpts = OldSanOpts;
907 }
908 private:
909 CodeGenFunction &CGF;
910 SanitizerSet OldSanOpts;
911 };
912 } // end anonymous namespace
913
914 namespace {
915 class FieldMemcpyizer {
916 public:
FieldMemcpyizer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,const VarDecl * SrcRec)917 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
918 const VarDecl *SrcRec)
919 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
920 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
921 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
922 LastFieldOffset(0), LastAddedFieldIndex(0) {}
923
isMemcpyableField(FieldDecl * F) const924 bool isMemcpyableField(FieldDecl *F) const {
925 // Never memcpy fields when we are adding poisoned paddings.
926 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
927 return false;
928 Qualifiers Qual = F->getType().getQualifiers();
929 if (Qual.hasVolatile() || Qual.hasObjCLifetime())
930 return false;
931 return true;
932 }
933
addMemcpyableField(FieldDecl * F)934 void addMemcpyableField(FieldDecl *F) {
935 if (F->isZeroSize(CGF.getContext()))
936 return;
937 if (!FirstField)
938 addInitialField(F);
939 else
940 addNextField(F);
941 }
942
getMemcpySize(uint64_t FirstByteOffset) const943 CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
944 ASTContext &Ctx = CGF.getContext();
945 unsigned LastFieldSize =
946 LastField->isBitField()
947 ? LastField->getBitWidthValue(Ctx)
948 : Ctx.toBits(
949 Ctx.getTypeInfoDataSizeInChars(LastField->getType()).Width);
950 uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize -
951 FirstByteOffset + Ctx.getCharWidth() - 1;
952 CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits);
953 return MemcpySize;
954 }
955
emitMemcpy()956 void emitMemcpy() {
957 // Give the subclass a chance to bail out if it feels the memcpy isn't
958 // worth it (e.g. Hasn't aggregated enough data).
959 if (!FirstField) {
960 return;
961 }
962
963 uint64_t FirstByteOffset;
964 if (FirstField->isBitField()) {
965 const CGRecordLayout &RL =
966 CGF.getTypes().getCGRecordLayout(FirstField->getParent());
967 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
968 // FirstFieldOffset is not appropriate for bitfields,
969 // we need to use the storage offset instead.
970 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
971 } else {
972 FirstByteOffset = FirstFieldOffset;
973 }
974
975 CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
976 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
977 Address ThisPtr = CGF.LoadCXXThisAddress();
978 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
979 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
980 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
981 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
982 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
983
984 emitMemcpyIR(
985 Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(CGF),
986 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(CGF),
987 MemcpySize);
988 reset();
989 }
990
reset()991 void reset() {
992 FirstField = nullptr;
993 }
994
995 protected:
996 CodeGenFunction &CGF;
997 const CXXRecordDecl *ClassDecl;
998
999 private:
emitMemcpyIR(Address DestPtr,Address SrcPtr,CharUnits Size)1000 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
1001 DestPtr = CGF.Builder.CreateElementBitCast(DestPtr, CGF.Int8Ty);
1002 SrcPtr = CGF.Builder.CreateElementBitCast(SrcPtr, CGF.Int8Ty);
1003 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
1004 }
1005
addInitialField(FieldDecl * F)1006 void addInitialField(FieldDecl *F) {
1007 FirstField = F;
1008 LastField = F;
1009 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1010 LastFieldOffset = FirstFieldOffset;
1011 LastAddedFieldIndex = F->getFieldIndex();
1012 }
1013
addNextField(FieldDecl * F)1014 void addNextField(FieldDecl *F) {
1015 // For the most part, the following invariant will hold:
1016 // F->getFieldIndex() == LastAddedFieldIndex + 1
1017 // The one exception is that Sema won't add a copy-initializer for an
1018 // unnamed bitfield, which will show up here as a gap in the sequence.
1019 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
1020 "Cannot aggregate fields out of order.");
1021 LastAddedFieldIndex = F->getFieldIndex();
1022
1023 // The 'first' and 'last' fields are chosen by offset, rather than field
1024 // index. This allows the code to support bitfields, as well as regular
1025 // fields.
1026 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1027 if (FOffset < FirstFieldOffset) {
1028 FirstField = F;
1029 FirstFieldOffset = FOffset;
1030 } else if (FOffset >= LastFieldOffset) {
1031 LastField = F;
1032 LastFieldOffset = FOffset;
1033 }
1034 }
1035
1036 const VarDecl *SrcRec;
1037 const ASTRecordLayout &RecLayout;
1038 FieldDecl *FirstField;
1039 FieldDecl *LastField;
1040 uint64_t FirstFieldOffset, LastFieldOffset;
1041 unsigned LastAddedFieldIndex;
1042 };
1043
1044 class ConstructorMemcpyizer : public FieldMemcpyizer {
1045 private:
1046 /// Get source argument for copy constructor. Returns null if not a copy
1047 /// constructor.
getTrivialCopySource(CodeGenFunction & CGF,const CXXConstructorDecl * CD,FunctionArgList & Args)1048 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1049 const CXXConstructorDecl *CD,
1050 FunctionArgList &Args) {
1051 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1052 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1053 return nullptr;
1054 }
1055
1056 // Returns true if a CXXCtorInitializer represents a member initialization
1057 // that can be rolled into a memcpy.
isMemberInitMemcpyable(CXXCtorInitializer * MemberInit) const1058 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1059 if (!MemcpyableCtor)
1060 return false;
1061 FieldDecl *Field = MemberInit->getMember();
1062 assert(Field && "No field for member init.");
1063 QualType FieldType = Field->getType();
1064 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1065
1066 // Bail out on non-memcpyable, not-trivially-copyable members.
1067 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1068 !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1069 FieldType->isReferenceType()))
1070 return false;
1071
1072 // Bail out on volatile fields.
1073 if (!isMemcpyableField(Field))
1074 return false;
1075
1076 // Otherwise we're good.
1077 return true;
1078 }
1079
1080 public:
ConstructorMemcpyizer(CodeGenFunction & CGF,const CXXConstructorDecl * CD,FunctionArgList & Args)1081 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1082 FunctionArgList &Args)
1083 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1084 ConstructorDecl(CD),
1085 MemcpyableCtor(CD->isDefaulted() &&
1086 CD->isCopyOrMoveConstructor() &&
1087 CGF.getLangOpts().getGC() == LangOptions::NonGC),
1088 Args(Args) { }
1089
addMemberInitializer(CXXCtorInitializer * MemberInit)1090 void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1091 if (isMemberInitMemcpyable(MemberInit)) {
1092 AggregatedInits.push_back(MemberInit);
1093 addMemcpyableField(MemberInit->getMember());
1094 } else {
1095 emitAggregatedInits();
1096 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1097 ConstructorDecl, Args);
1098 }
1099 }
1100
emitAggregatedInits()1101 void emitAggregatedInits() {
1102 if (AggregatedInits.size() <= 1) {
1103 // This memcpy is too small to be worthwhile. Fall back on default
1104 // codegen.
1105 if (!AggregatedInits.empty()) {
1106 CopyingValueRepresentation CVR(CGF);
1107 EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1108 AggregatedInits[0], ConstructorDecl, Args);
1109 AggregatedInits.clear();
1110 }
1111 reset();
1112 return;
1113 }
1114
1115 pushEHDestructors();
1116 emitMemcpy();
1117 AggregatedInits.clear();
1118 }
1119
pushEHDestructors()1120 void pushEHDestructors() {
1121 Address ThisPtr = CGF.LoadCXXThisAddress();
1122 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1123 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1124
1125 for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1126 CXXCtorInitializer *MemberInit = AggregatedInits[i];
1127 QualType FieldType = MemberInit->getAnyMember()->getType();
1128 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1129 if (!CGF.needsEHCleanup(dtorKind))
1130 continue;
1131 LValue FieldLHS = LHS;
1132 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1133 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(CGF), FieldType);
1134 }
1135 }
1136
finish()1137 void finish() {
1138 emitAggregatedInits();
1139 }
1140
1141 private:
1142 const CXXConstructorDecl *ConstructorDecl;
1143 bool MemcpyableCtor;
1144 FunctionArgList &Args;
1145 SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1146 };
1147
1148 class AssignmentMemcpyizer : public FieldMemcpyizer {
1149 private:
1150 // Returns the memcpyable field copied by the given statement, if one
1151 // exists. Otherwise returns null.
getMemcpyableField(Stmt * S)1152 FieldDecl *getMemcpyableField(Stmt *S) {
1153 if (!AssignmentsMemcpyable)
1154 return nullptr;
1155 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1156 // Recognise trivial assignments.
1157 if (BO->getOpcode() != BO_Assign)
1158 return nullptr;
1159 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1160 if (!ME)
1161 return nullptr;
1162 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1163 if (!Field || !isMemcpyableField(Field))
1164 return nullptr;
1165 Stmt *RHS = BO->getRHS();
1166 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1167 RHS = EC->getSubExpr();
1168 if (!RHS)
1169 return nullptr;
1170 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) {
1171 if (ME2->getMemberDecl() == Field)
1172 return Field;
1173 }
1174 return nullptr;
1175 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1176 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1177 if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1178 return nullptr;
1179 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1180 if (!IOA)
1181 return nullptr;
1182 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1183 if (!Field || !isMemcpyableField(Field))
1184 return nullptr;
1185 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1186 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1187 return nullptr;
1188 return Field;
1189 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1190 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1191 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1192 return nullptr;
1193 Expr *DstPtr = CE->getArg(0);
1194 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1195 DstPtr = DC->getSubExpr();
1196 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1197 if (!DUO || DUO->getOpcode() != UO_AddrOf)
1198 return nullptr;
1199 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1200 if (!ME)
1201 return nullptr;
1202 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1203 if (!Field || !isMemcpyableField(Field))
1204 return nullptr;
1205 Expr *SrcPtr = CE->getArg(1);
1206 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1207 SrcPtr = SC->getSubExpr();
1208 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1209 if (!SUO || SUO->getOpcode() != UO_AddrOf)
1210 return nullptr;
1211 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1212 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1213 return nullptr;
1214 return Field;
1215 }
1216
1217 return nullptr;
1218 }
1219
1220 bool AssignmentsMemcpyable;
1221 SmallVector<Stmt*, 16> AggregatedStmts;
1222
1223 public:
AssignmentMemcpyizer(CodeGenFunction & CGF,const CXXMethodDecl * AD,FunctionArgList & Args)1224 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1225 FunctionArgList &Args)
1226 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1227 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1228 assert(Args.size() == 2);
1229 }
1230
emitAssignment(Stmt * S)1231 void emitAssignment(Stmt *S) {
1232 FieldDecl *F = getMemcpyableField(S);
1233 if (F) {
1234 addMemcpyableField(F);
1235 AggregatedStmts.push_back(S);
1236 } else {
1237 emitAggregatedStmts();
1238 CGF.EmitStmt(S);
1239 }
1240 }
1241
emitAggregatedStmts()1242 void emitAggregatedStmts() {
1243 if (AggregatedStmts.size() <= 1) {
1244 if (!AggregatedStmts.empty()) {
1245 CopyingValueRepresentation CVR(CGF);
1246 CGF.EmitStmt(AggregatedStmts[0]);
1247 }
1248 reset();
1249 }
1250
1251 emitMemcpy();
1252 AggregatedStmts.clear();
1253 }
1254
finish()1255 void finish() {
1256 emitAggregatedStmts();
1257 }
1258 };
1259 } // end anonymous namespace
1260
isInitializerOfDynamicClass(const CXXCtorInitializer * BaseInit)1261 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
1262 const Type *BaseType = BaseInit->getBaseClass();
1263 const auto *BaseClassDecl =
1264 cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
1265 return BaseClassDecl->isDynamicClass();
1266 }
1267
1268 /// EmitCtorPrologue - This routine generates necessary code to initialize
1269 /// base classes and non-static data members belonging to this constructor.
EmitCtorPrologue(const CXXConstructorDecl * CD,CXXCtorType CtorType,FunctionArgList & Args)1270 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1271 CXXCtorType CtorType,
1272 FunctionArgList &Args) {
1273 if (CD->isDelegatingConstructor())
1274 return EmitDelegatingCXXConstructorCall(CD, Args);
1275
1276 const CXXRecordDecl *ClassDecl = CD->getParent();
1277
1278 CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1279 E = CD->init_end();
1280
1281 // Virtual base initializers first, if any. They aren't needed if:
1282 // - This is a base ctor variant
1283 // - There are no vbases
1284 // - The class is abstract, so a complete object of it cannot be constructed
1285 //
1286 // The check for an abstract class is necessary because sema may not have
1287 // marked virtual base destructors referenced.
1288 bool ConstructVBases = CtorType != Ctor_Base &&
1289 ClassDecl->getNumVBases() != 0 &&
1290 !ClassDecl->isAbstract();
1291
1292 // In the Microsoft C++ ABI, there are no constructor variants. Instead, the
1293 // constructor of a class with virtual bases takes an additional parameter to
1294 // conditionally construct the virtual bases. Emit that check here.
1295 llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1296 if (ConstructVBases &&
1297 !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1298 BaseCtorContinueBB =
1299 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1300 assert(BaseCtorContinueBB);
1301 }
1302
1303 llvm::Value *const OldThis = CXXThisValue;
1304 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1305 if (!ConstructVBases)
1306 continue;
1307 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1308 CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1309 isInitializerOfDynamicClass(*B))
1310 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1311 EmitBaseInitializer(*this, ClassDecl, *B);
1312 }
1313
1314 if (BaseCtorContinueBB) {
1315 // Complete object handler should continue to the remaining initializers.
1316 Builder.CreateBr(BaseCtorContinueBB);
1317 EmitBlock(BaseCtorContinueBB);
1318 }
1319
1320 // Then, non-virtual base initializers.
1321 for (; B != E && (*B)->isBaseInitializer(); B++) {
1322 assert(!(*B)->isBaseVirtual());
1323
1324 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1325 CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1326 isInitializerOfDynamicClass(*B))
1327 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1328 EmitBaseInitializer(*this, ClassDecl, *B);
1329 }
1330
1331 CXXThisValue = OldThis;
1332
1333 InitializeVTablePointers(ClassDecl);
1334
1335 // And finally, initialize class members.
1336 FieldConstructionScope FCS(*this, LoadCXXThisAddress());
1337 ConstructorMemcpyizer CM(*this, CD, Args);
1338 for (; B != E; B++) {
1339 CXXCtorInitializer *Member = (*B);
1340 assert(!Member->isBaseInitializer());
1341 assert(Member->isAnyMemberInitializer() &&
1342 "Delegating initializer on non-delegating constructor");
1343 CM.addMemberInitializer(Member);
1344 }
1345 CM.finish();
1346 }
1347
1348 static bool
1349 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1350
1351 static bool
HasTrivialDestructorBody(ASTContext & Context,const CXXRecordDecl * BaseClassDecl,const CXXRecordDecl * MostDerivedClassDecl)1352 HasTrivialDestructorBody(ASTContext &Context,
1353 const CXXRecordDecl *BaseClassDecl,
1354 const CXXRecordDecl *MostDerivedClassDecl)
1355 {
1356 // If the destructor is trivial we don't have to check anything else.
1357 if (BaseClassDecl->hasTrivialDestructor())
1358 return true;
1359
1360 if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1361 return false;
1362
1363 // Check fields.
1364 for (const auto *Field : BaseClassDecl->fields())
1365 if (!FieldHasTrivialDestructorBody(Context, Field))
1366 return false;
1367
1368 // Check non-virtual bases.
1369 for (const auto &I : BaseClassDecl->bases()) {
1370 if (I.isVirtual())
1371 continue;
1372
1373 const CXXRecordDecl *NonVirtualBase =
1374 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1375 if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1376 MostDerivedClassDecl))
1377 return false;
1378 }
1379
1380 if (BaseClassDecl == MostDerivedClassDecl) {
1381 // Check virtual bases.
1382 for (const auto &I : BaseClassDecl->vbases()) {
1383 const CXXRecordDecl *VirtualBase =
1384 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1385 if (!HasTrivialDestructorBody(Context, VirtualBase,
1386 MostDerivedClassDecl))
1387 return false;
1388 }
1389 }
1390
1391 return true;
1392 }
1393
1394 static bool
FieldHasTrivialDestructorBody(ASTContext & Context,const FieldDecl * Field)1395 FieldHasTrivialDestructorBody(ASTContext &Context,
1396 const FieldDecl *Field)
1397 {
1398 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1399
1400 const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1401 if (!RT)
1402 return true;
1403
1404 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1405
1406 // The destructor for an implicit anonymous union member is never invoked.
1407 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1408 return false;
1409
1410 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1411 }
1412
1413 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1414 /// any vtable pointers before calling this destructor.
CanSkipVTablePointerInitialization(CodeGenFunction & CGF,const CXXDestructorDecl * Dtor)1415 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
1416 const CXXDestructorDecl *Dtor) {
1417 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1418 if (!ClassDecl->isDynamicClass())
1419 return true;
1420
1421 // For a final class, the vtable pointer is known to already point to the
1422 // class's vtable.
1423 if (ClassDecl->isEffectivelyFinal())
1424 return true;
1425
1426 if (!Dtor->hasTrivialBody())
1427 return false;
1428
1429 // Check the fields.
1430 for (const auto *Field : ClassDecl->fields())
1431 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1432 return false;
1433
1434 return true;
1435 }
1436
1437 /// EmitDestructorBody - Emits the body of the current destructor.
EmitDestructorBody(FunctionArgList & Args)1438 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1439 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1440 CXXDtorType DtorType = CurGD.getDtorType();
1441
1442 // For an abstract class, non-base destructors are never used (and can't
1443 // be emitted in general, because vbase dtors may not have been validated
1444 // by Sema), but the Itanium ABI doesn't make them optional and Clang may
1445 // in fact emit references to them from other compilations, so emit them
1446 // as functions containing a trap instruction.
1447 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) {
1448 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
1449 TrapCall->setDoesNotReturn();
1450 TrapCall->setDoesNotThrow();
1451 Builder.CreateUnreachable();
1452 Builder.ClearInsertionPoint();
1453 return;
1454 }
1455
1456 Stmt *Body = Dtor->getBody();
1457 if (Body)
1458 incrementProfileCounter(Body);
1459
1460 // The call to operator delete in a deleting destructor happens
1461 // outside of the function-try-block, which means it's always
1462 // possible to delegate the destructor body to the complete
1463 // destructor. Do so.
1464 if (DtorType == Dtor_Deleting) {
1465 RunCleanupsScope DtorEpilogue(*this);
1466 EnterDtorCleanups(Dtor, Dtor_Deleting);
1467 if (HaveInsertPoint()) {
1468 QualType ThisTy = Dtor->getThisObjectType();
1469 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1470 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1471 }
1472 return;
1473 }
1474
1475 // If the body is a function-try-block, enter the try before
1476 // anything else.
1477 bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1478 if (isTryBody)
1479 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1480 EmitAsanPrologueOrEpilogue(false);
1481
1482 // Enter the epilogue cleanups.
1483 RunCleanupsScope DtorEpilogue(*this);
1484
1485 // If this is the complete variant, just invoke the base variant;
1486 // the epilogue will destruct the virtual bases. But we can't do
1487 // this optimization if the body is a function-try-block, because
1488 // we'd introduce *two* handler blocks. In the Microsoft ABI, we
1489 // always delegate because we might not have a definition in this TU.
1490 switch (DtorType) {
1491 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT");
1492 case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1493
1494 case Dtor_Complete:
1495 assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1496 "can't emit a dtor without a body for non-Microsoft ABIs");
1497
1498 // Enter the cleanup scopes for virtual bases.
1499 EnterDtorCleanups(Dtor, Dtor_Complete);
1500
1501 if (!isTryBody) {
1502 QualType ThisTy = Dtor->getThisObjectType();
1503 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1504 /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1505 break;
1506 }
1507
1508 // Fallthrough: act like we're in the base variant.
1509 [[fallthrough]];
1510
1511 case Dtor_Base:
1512 assert(Body);
1513
1514 // Enter the cleanup scopes for fields and non-virtual bases.
1515 EnterDtorCleanups(Dtor, Dtor_Base);
1516
1517 // Initialize the vtable pointers before entering the body.
1518 if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
1519 // Insert the llvm.launder.invariant.group intrinsic before initializing
1520 // the vptrs to cancel any previous assumptions we might have made.
1521 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1522 CGM.getCodeGenOpts().OptimizationLevel > 0)
1523 CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1524 InitializeVTablePointers(Dtor->getParent());
1525 }
1526
1527 if (isTryBody)
1528 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1529 else if (Body)
1530 EmitStmt(Body);
1531 else {
1532 assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1533 // nothing to do besides what's in the epilogue
1534 }
1535 // -fapple-kext must inline any call to this dtor into
1536 // the caller's body.
1537 if (getLangOpts().AppleKext)
1538 CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1539
1540 break;
1541 }
1542
1543 // Jump out through the epilogue cleanups.
1544 DtorEpilogue.ForceCleanup();
1545
1546 // Exit the try if applicable.
1547 if (isTryBody)
1548 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1549 }
1550
emitImplicitAssignmentOperatorBody(FunctionArgList & Args)1551 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1552 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1553 const Stmt *RootS = AssignOp->getBody();
1554 assert(isa<CompoundStmt>(RootS) &&
1555 "Body of an implicit assignment operator should be compound stmt.");
1556 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1557
1558 LexicalScope Scope(*this, RootCS->getSourceRange());
1559
1560 incrementProfileCounter(RootCS);
1561 AssignmentMemcpyizer AM(*this, AssignOp, Args);
1562 for (auto *I : RootCS->body())
1563 AM.emitAssignment(I);
1564 AM.finish();
1565 }
1566
1567 namespace {
LoadThisForDtorDelete(CodeGenFunction & CGF,const CXXDestructorDecl * DD)1568 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF,
1569 const CXXDestructorDecl *DD) {
1570 if (Expr *ThisArg = DD->getOperatorDeleteThisArg())
1571 return CGF.EmitScalarExpr(ThisArg);
1572 return CGF.LoadCXXThis();
1573 }
1574
1575 /// Call the operator delete associated with the current destructor.
1576 struct CallDtorDelete final : EHScopeStack::Cleanup {
CallDtorDelete__anonfcad378b0411::CallDtorDelete1577 CallDtorDelete() {}
1578
Emit__anonfcad378b0411::CallDtorDelete1579 void Emit(CodeGenFunction &CGF, Flags flags) override {
1580 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1581 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1582 CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1583 LoadThisForDtorDelete(CGF, Dtor),
1584 CGF.getContext().getTagDeclType(ClassDecl));
1585 }
1586 };
1587
EmitConditionalDtorDeleteCall(CodeGenFunction & CGF,llvm::Value * ShouldDeleteCondition,bool ReturnAfterDelete)1588 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF,
1589 llvm::Value *ShouldDeleteCondition,
1590 bool ReturnAfterDelete) {
1591 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1592 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1593 llvm::Value *ShouldCallDelete
1594 = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1595 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1596
1597 CGF.EmitBlock(callDeleteBB);
1598 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1599 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1600 CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1601 LoadThisForDtorDelete(CGF, Dtor),
1602 CGF.getContext().getTagDeclType(ClassDecl));
1603 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() ==
1604 ReturnAfterDelete &&
1605 "unexpected value for ReturnAfterDelete");
1606 if (ReturnAfterDelete)
1607 CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
1608 else
1609 CGF.Builder.CreateBr(continueBB);
1610
1611 CGF.EmitBlock(continueBB);
1612 }
1613
1614 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1615 llvm::Value *ShouldDeleteCondition;
1616
1617 public:
CallDtorDeleteConditional__anonfcad378b0411::CallDtorDeleteConditional1618 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1619 : ShouldDeleteCondition(ShouldDeleteCondition) {
1620 assert(ShouldDeleteCondition != nullptr);
1621 }
1622
Emit__anonfcad378b0411::CallDtorDeleteConditional1623 void Emit(CodeGenFunction &CGF, Flags flags) override {
1624 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition,
1625 /*ReturnAfterDelete*/false);
1626 }
1627 };
1628
1629 class DestroyField final : public EHScopeStack::Cleanup {
1630 const FieldDecl *field;
1631 CodeGenFunction::Destroyer *destroyer;
1632 bool useEHCleanupForArray;
1633
1634 public:
DestroyField(const FieldDecl * field,CodeGenFunction::Destroyer * destroyer,bool useEHCleanupForArray)1635 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1636 bool useEHCleanupForArray)
1637 : field(field), destroyer(destroyer),
1638 useEHCleanupForArray(useEHCleanupForArray) {}
1639
Emit(CodeGenFunction & CGF,Flags flags)1640 void Emit(CodeGenFunction &CGF, Flags flags) override {
1641 // Find the address of the field.
1642 Address thisValue = CGF.LoadCXXThisAddress();
1643 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1644 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1645 LValue LV = CGF.EmitLValueForField(ThisLV, field);
1646 assert(LV.isSimple());
1647
1648 CGF.emitDestroy(LV.getAddress(CGF), field->getType(), destroyer,
1649 flags.isForNormalCleanup() && useEHCleanupForArray);
1650 }
1651 };
1652
1653 class DeclAsInlineDebugLocation {
1654 CGDebugInfo *DI;
1655 llvm::MDNode *InlinedAt;
1656 std::optional<ApplyDebugLocation> Location;
1657
1658 public:
DeclAsInlineDebugLocation(CodeGenFunction & CGF,const NamedDecl & Decl)1659 DeclAsInlineDebugLocation(CodeGenFunction &CGF, const NamedDecl &Decl)
1660 : DI(CGF.getDebugInfo()) {
1661 if (!DI)
1662 return;
1663 InlinedAt = DI->getInlinedAt();
1664 DI->setInlinedAt(CGF.Builder.getCurrentDebugLocation());
1665 Location.emplace(CGF, Decl.getLocation());
1666 }
1667
~DeclAsInlineDebugLocation()1668 ~DeclAsInlineDebugLocation() {
1669 if (!DI)
1670 return;
1671 Location.reset();
1672 DI->setInlinedAt(InlinedAt);
1673 }
1674 };
1675
EmitSanitizerDtorCallback(CodeGenFunction & CGF,StringRef Name,llvm::Value * Ptr,std::optional<CharUnits::QuantityType> PoisonSize={})1676 static void EmitSanitizerDtorCallback(
1677 CodeGenFunction &CGF, StringRef Name, llvm::Value *Ptr,
1678 std::optional<CharUnits::QuantityType> PoisonSize = {}) {
1679 CodeGenFunction::SanitizerScope SanScope(&CGF);
1680 // Pass in void pointer and size of region as arguments to runtime
1681 // function
1682 SmallVector<llvm::Value *, 2> Args = {
1683 CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy)};
1684 SmallVector<llvm::Type *, 2> ArgTypes = {CGF.VoidPtrTy};
1685
1686 if (PoisonSize.has_value()) {
1687 Args.emplace_back(llvm::ConstantInt::get(CGF.SizeTy, *PoisonSize));
1688 ArgTypes.emplace_back(CGF.SizeTy);
1689 }
1690
1691 llvm::FunctionType *FnType =
1692 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1693 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FnType, Name);
1694
1695 CGF.EmitNounwindRuntimeCall(Fn, Args);
1696 }
1697
1698 static void
EmitSanitizerDtorFieldsCallback(CodeGenFunction & CGF,llvm::Value * Ptr,CharUnits::QuantityType PoisonSize)1699 EmitSanitizerDtorFieldsCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
1700 CharUnits::QuantityType PoisonSize) {
1701 EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_fields", Ptr,
1702 PoisonSize);
1703 }
1704
1705 /// Poison base class with a trivial destructor.
1706 struct SanitizeDtorTrivialBase final : EHScopeStack::Cleanup {
1707 const CXXRecordDecl *BaseClass;
1708 bool BaseIsVirtual;
SanitizeDtorTrivialBase__anonfcad378b0411::SanitizeDtorTrivialBase1709 SanitizeDtorTrivialBase(const CXXRecordDecl *Base, bool BaseIsVirtual)
1710 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
1711
Emit__anonfcad378b0411::SanitizeDtorTrivialBase1712 void Emit(CodeGenFunction &CGF, Flags flags) override {
1713 const CXXRecordDecl *DerivedClass =
1714 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
1715
1716 Address Addr = CGF.GetAddressOfDirectBaseInCompleteClass(
1717 CGF.LoadCXXThisAddress(), DerivedClass, BaseClass, BaseIsVirtual);
1718
1719 const ASTRecordLayout &BaseLayout =
1720 CGF.getContext().getASTRecordLayout(BaseClass);
1721 CharUnits BaseSize = BaseLayout.getSize();
1722
1723 if (!BaseSize.isPositive())
1724 return;
1725
1726 // Use the base class declaration location as inline DebugLocation. All
1727 // fields of the class are destroyed.
1728 DeclAsInlineDebugLocation InlineHere(CGF, *BaseClass);
1729 EmitSanitizerDtorFieldsCallback(CGF, Addr.getPointer(),
1730 BaseSize.getQuantity());
1731
1732 // Prevent the current stack frame from disappearing from the stack trace.
1733 CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1734 }
1735 };
1736
1737 class SanitizeDtorFieldRange final : public EHScopeStack::Cleanup {
1738 const CXXDestructorDecl *Dtor;
1739 unsigned StartIndex;
1740 unsigned EndIndex;
1741
1742 public:
SanitizeDtorFieldRange(const CXXDestructorDecl * Dtor,unsigned StartIndex,unsigned EndIndex)1743 SanitizeDtorFieldRange(const CXXDestructorDecl *Dtor, unsigned StartIndex,
1744 unsigned EndIndex)
1745 : Dtor(Dtor), StartIndex(StartIndex), EndIndex(EndIndex) {}
1746
1747 // Generate function call for handling object poisoning.
1748 // Disables tail call elimination, to prevent the current stack frame
1749 // from disappearing from the stack trace.
Emit(CodeGenFunction & CGF,Flags flags)1750 void Emit(CodeGenFunction &CGF, Flags flags) override {
1751 const ASTContext &Context = CGF.getContext();
1752 const ASTRecordLayout &Layout =
1753 Context.getASTRecordLayout(Dtor->getParent());
1754
1755 // It's a first trivial field so it should be at the begining of a char,
1756 // still round up start offset just in case.
1757 CharUnits PoisonStart = Context.toCharUnitsFromBits(
1758 Layout.getFieldOffset(StartIndex) + Context.getCharWidth() - 1);
1759 llvm::ConstantInt *OffsetSizePtr =
1760 llvm::ConstantInt::get(CGF.SizeTy, PoisonStart.getQuantity());
1761
1762 llvm::Value *OffsetPtr = CGF.Builder.CreateGEP(
1763 CGF.Int8Ty,
1764 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy),
1765 OffsetSizePtr);
1766
1767 CharUnits PoisonEnd;
1768 if (EndIndex >= Layout.getFieldCount()) {
1769 PoisonEnd = Layout.getNonVirtualSize();
1770 } else {
1771 PoisonEnd =
1772 Context.toCharUnitsFromBits(Layout.getFieldOffset(EndIndex));
1773 }
1774 CharUnits PoisonSize = PoisonEnd - PoisonStart;
1775 if (!PoisonSize.isPositive())
1776 return;
1777
1778 // Use the top field declaration location as inline DebugLocation.
1779 DeclAsInlineDebugLocation InlineHere(
1780 CGF, **std::next(Dtor->getParent()->field_begin(), StartIndex));
1781 EmitSanitizerDtorFieldsCallback(CGF, OffsetPtr, PoisonSize.getQuantity());
1782
1783 // Prevent the current stack frame from disappearing from the stack trace.
1784 CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1785 }
1786 };
1787
1788 class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
1789 const CXXDestructorDecl *Dtor;
1790
1791 public:
SanitizeDtorVTable(const CXXDestructorDecl * Dtor)1792 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1793
1794 // Generate function call for handling vtable pointer poisoning.
Emit(CodeGenFunction & CGF,Flags flags)1795 void Emit(CodeGenFunction &CGF, Flags flags) override {
1796 assert(Dtor->getParent()->isDynamicClass());
1797 (void)Dtor;
1798 // Poison vtable and vtable ptr if they exist for this class.
1799 llvm::Value *VTablePtr = CGF.LoadCXXThis();
1800
1801 // Pass in void pointer and size of region as arguments to runtime
1802 // function
1803 EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_vptr",
1804 VTablePtr);
1805 }
1806 };
1807
1808 class SanitizeDtorCleanupBuilder {
1809 ASTContext &Context;
1810 EHScopeStack &EHStack;
1811 const CXXDestructorDecl *DD;
1812 std::optional<unsigned> StartIndex;
1813
1814 public:
SanitizeDtorCleanupBuilder(ASTContext & Context,EHScopeStack & EHStack,const CXXDestructorDecl * DD)1815 SanitizeDtorCleanupBuilder(ASTContext &Context, EHScopeStack &EHStack,
1816 const CXXDestructorDecl *DD)
1817 : Context(Context), EHStack(EHStack), DD(DD), StartIndex(std::nullopt) {}
PushCleanupForField(const FieldDecl * Field)1818 void PushCleanupForField(const FieldDecl *Field) {
1819 if (Field->isZeroSize(Context))
1820 return;
1821 unsigned FieldIndex = Field->getFieldIndex();
1822 if (FieldHasTrivialDestructorBody(Context, Field)) {
1823 if (!StartIndex)
1824 StartIndex = FieldIndex;
1825 } else if (StartIndex) {
1826 EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD,
1827 *StartIndex, FieldIndex);
1828 StartIndex = std::nullopt;
1829 }
1830 }
End()1831 void End() {
1832 if (StartIndex)
1833 EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD,
1834 *StartIndex, -1);
1835 }
1836 };
1837 } // end anonymous namespace
1838
1839 /// Emit all code that comes at the end of class's
1840 /// destructor. This is to call destructors on members and base classes
1841 /// in reverse order of their construction.
1842 ///
1843 /// For a deleting destructor, this also handles the case where a destroying
1844 /// operator delete completely overrides the definition.
EnterDtorCleanups(const CXXDestructorDecl * DD,CXXDtorType DtorType)1845 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1846 CXXDtorType DtorType) {
1847 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1848 "Should not emit dtor epilogue for non-exported trivial dtor!");
1849
1850 // The deleting-destructor phase just needs to call the appropriate
1851 // operator delete that Sema picked up.
1852 if (DtorType == Dtor_Deleting) {
1853 assert(DD->getOperatorDelete() &&
1854 "operator delete missing - EnterDtorCleanups");
1855 if (CXXStructorImplicitParamValue) {
1856 // If there is an implicit param to the deleting dtor, it's a boolean
1857 // telling whether this is a deleting destructor.
1858 if (DD->getOperatorDelete()->isDestroyingOperatorDelete())
1859 EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue,
1860 /*ReturnAfterDelete*/true);
1861 else
1862 EHStack.pushCleanup<CallDtorDeleteConditional>(
1863 NormalAndEHCleanup, CXXStructorImplicitParamValue);
1864 } else {
1865 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) {
1866 const CXXRecordDecl *ClassDecl = DD->getParent();
1867 EmitDeleteCall(DD->getOperatorDelete(),
1868 LoadThisForDtorDelete(*this, DD),
1869 getContext().getTagDeclType(ClassDecl));
1870 EmitBranchThroughCleanup(ReturnBlock);
1871 } else {
1872 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1873 }
1874 }
1875 return;
1876 }
1877
1878 const CXXRecordDecl *ClassDecl = DD->getParent();
1879
1880 // Unions have no bases and do not call field destructors.
1881 if (ClassDecl->isUnion())
1882 return;
1883
1884 // The complete-destructor phase just destructs all the virtual bases.
1885 if (DtorType == Dtor_Complete) {
1886 // Poison the vtable pointer such that access after the base
1887 // and member destructors are invoked is invalid.
1888 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1889 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
1890 ClassDecl->isPolymorphic())
1891 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1892
1893 // We push them in the forward order so that they'll be popped in
1894 // the reverse order.
1895 for (const auto &Base : ClassDecl->vbases()) {
1896 auto *BaseClassDecl =
1897 cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl());
1898
1899 if (BaseClassDecl->hasTrivialDestructor()) {
1900 // Under SanitizeMemoryUseAfterDtor, poison the trivial base class
1901 // memory. For non-trival base classes the same is done in the class
1902 // destructor.
1903 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1904 SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty())
1905 EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup,
1906 BaseClassDecl,
1907 /*BaseIsVirtual*/ true);
1908 } else {
1909 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl,
1910 /*BaseIsVirtual*/ true);
1911 }
1912 }
1913
1914 return;
1915 }
1916
1917 assert(DtorType == Dtor_Base);
1918 // Poison the vtable pointer if it has no virtual bases, but inherits
1919 // virtual functions.
1920 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1921 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
1922 ClassDecl->isPolymorphic())
1923 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1924
1925 // Destroy non-virtual bases.
1926 for (const auto &Base : ClassDecl->bases()) {
1927 // Ignore virtual bases.
1928 if (Base.isVirtual())
1929 continue;
1930
1931 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1932
1933 if (BaseClassDecl->hasTrivialDestructor()) {
1934 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1935 SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty())
1936 EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup,
1937 BaseClassDecl,
1938 /*BaseIsVirtual*/ false);
1939 } else {
1940 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl,
1941 /*BaseIsVirtual*/ false);
1942 }
1943 }
1944
1945 // Poison fields such that access after their destructors are
1946 // invoked, and before the base class destructor runs, is invalid.
1947 bool SanitizeFields = CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1948 SanOpts.has(SanitizerKind::Memory);
1949 SanitizeDtorCleanupBuilder SanitizeBuilder(getContext(), EHStack, DD);
1950
1951 // Destroy direct fields.
1952 for (const auto *Field : ClassDecl->fields()) {
1953 if (SanitizeFields)
1954 SanitizeBuilder.PushCleanupForField(Field);
1955
1956 QualType type = Field->getType();
1957 QualType::DestructionKind dtorKind = type.isDestructedType();
1958 if (!dtorKind)
1959 continue;
1960
1961 // Anonymous union members do not have their destructors called.
1962 const RecordType *RT = type->getAsUnionType();
1963 if (RT && RT->getDecl()->isAnonymousStructOrUnion())
1964 continue;
1965
1966 CleanupKind cleanupKind = getCleanupKind(dtorKind);
1967 EHStack.pushCleanup<DestroyField>(
1968 cleanupKind, Field, getDestroyer(dtorKind), cleanupKind & EHCleanup);
1969 }
1970
1971 if (SanitizeFields)
1972 SanitizeBuilder.End();
1973 }
1974
1975 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1976 /// constructor for each of several members of an array.
1977 ///
1978 /// \param ctor the constructor to call for each element
1979 /// \param arrayType the type of the array to initialize
1980 /// \param arrayBegin an arrayType*
1981 /// \param zeroInitialize true if each element should be
1982 /// zero-initialized before it is constructed
EmitCXXAggrConstructorCall(const CXXConstructorDecl * ctor,const ArrayType * arrayType,Address arrayBegin,const CXXConstructExpr * E,bool NewPointerIsChecked,bool zeroInitialize)1983 void CodeGenFunction::EmitCXXAggrConstructorCall(
1984 const CXXConstructorDecl *ctor, const ArrayType *arrayType,
1985 Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked,
1986 bool zeroInitialize) {
1987 QualType elementType;
1988 llvm::Value *numElements =
1989 emitArrayLength(arrayType, elementType, arrayBegin);
1990
1991 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E,
1992 NewPointerIsChecked, zeroInitialize);
1993 }
1994
1995 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1996 /// constructor for each of several members of an array.
1997 ///
1998 /// \param ctor the constructor to call for each element
1999 /// \param numElements the number of elements in the array;
2000 /// may be zero
2001 /// \param arrayBase a T*, where T is the type constructed by ctor
2002 /// \param zeroInitialize true if each element should be
2003 /// zero-initialized before it is constructed
EmitCXXAggrConstructorCall(const CXXConstructorDecl * ctor,llvm::Value * numElements,Address arrayBase,const CXXConstructExpr * E,bool NewPointerIsChecked,bool zeroInitialize)2004 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
2005 llvm::Value *numElements,
2006 Address arrayBase,
2007 const CXXConstructExpr *E,
2008 bool NewPointerIsChecked,
2009 bool zeroInitialize) {
2010 // It's legal for numElements to be zero. This can happen both
2011 // dynamically, because x can be zero in 'new A[x]', and statically,
2012 // because of GCC extensions that permit zero-length arrays. There
2013 // are probably legitimate places where we could assume that this
2014 // doesn't happen, but it's not clear that it's worth it.
2015 llvm::BranchInst *zeroCheckBranch = nullptr;
2016
2017 // Optimize for a constant count.
2018 llvm::ConstantInt *constantCount
2019 = dyn_cast<llvm::ConstantInt>(numElements);
2020 if (constantCount) {
2021 // Just skip out if the constant count is zero.
2022 if (constantCount->isZero()) return;
2023
2024 // Otherwise, emit the check.
2025 } else {
2026 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
2027 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
2028 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
2029 EmitBlock(loopBB);
2030 }
2031
2032 // Find the end of the array.
2033 llvm::Type *elementType = arrayBase.getElementType();
2034 llvm::Value *arrayBegin = arrayBase.getPointer();
2035 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(
2036 elementType, arrayBegin, numElements, "arrayctor.end");
2037
2038 // Enter the loop, setting up a phi for the current location to initialize.
2039 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2040 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
2041 EmitBlock(loopBB);
2042 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
2043 "arrayctor.cur");
2044 cur->addIncoming(arrayBegin, entryBB);
2045
2046 // Inside the loop body, emit the constructor call on the array element.
2047
2048 // The alignment of the base, adjusted by the size of a single element,
2049 // provides a conservative estimate of the alignment of every element.
2050 // (This assumes we never start tracking offsetted alignments.)
2051 //
2052 // Note that these are complete objects and so we don't need to
2053 // use the non-virtual size or alignment.
2054 QualType type = getContext().getTypeDeclType(ctor->getParent());
2055 CharUnits eltAlignment =
2056 arrayBase.getAlignment()
2057 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2058 Address curAddr = Address(cur, elementType, eltAlignment);
2059
2060 // Zero initialize the storage, if requested.
2061 if (zeroInitialize)
2062 EmitNullInitialization(curAddr, type);
2063
2064 // C++ [class.temporary]p4:
2065 // There are two contexts in which temporaries are destroyed at a different
2066 // point than the end of the full-expression. The first context is when a
2067 // default constructor is called to initialize an element of an array.
2068 // If the constructor has one or more default arguments, the destruction of
2069 // every temporary created in a default argument expression is sequenced
2070 // before the construction of the next array element, if any.
2071
2072 {
2073 RunCleanupsScope Scope(*this);
2074
2075 // Evaluate the constructor and its arguments in a regular
2076 // partial-destroy cleanup.
2077 if (getLangOpts().Exceptions &&
2078 !ctor->getParent()->hasTrivialDestructor()) {
2079 Destroyer *destroyer = destroyCXXObject;
2080 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
2081 *destroyer);
2082 }
2083 auto currAVS = AggValueSlot::forAddr(
2084 curAddr, type.getQualifiers(), AggValueSlot::IsDestructed,
2085 AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
2086 AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed,
2087 NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked
2088 : AggValueSlot::IsNotSanitizerChecked);
2089 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
2090 /*Delegating=*/false, currAVS, E);
2091 }
2092
2093 // Go to the next element.
2094 llvm::Value *next = Builder.CreateInBoundsGEP(
2095 elementType, cur, llvm::ConstantInt::get(SizeTy, 1), "arrayctor.next");
2096 cur->addIncoming(next, Builder.GetInsertBlock());
2097
2098 // Check whether that's the end of the loop.
2099 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
2100 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
2101 Builder.CreateCondBr(done, contBB, loopBB);
2102
2103 // Patch the earlier check to skip over the loop.
2104 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
2105
2106 EmitBlock(contBB);
2107 }
2108
destroyCXXObject(CodeGenFunction & CGF,Address addr,QualType type)2109 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
2110 Address addr,
2111 QualType type) {
2112 const RecordType *rtype = type->castAs<RecordType>();
2113 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
2114 const CXXDestructorDecl *dtor = record->getDestructor();
2115 assert(!dtor->isTrivial());
2116 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
2117 /*Delegating=*/false, addr, type);
2118 }
2119
EmitCXXConstructorCall(const CXXConstructorDecl * D,CXXCtorType Type,bool ForVirtualBase,bool Delegating,AggValueSlot ThisAVS,const CXXConstructExpr * E)2120 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2121 CXXCtorType Type,
2122 bool ForVirtualBase,
2123 bool Delegating,
2124 AggValueSlot ThisAVS,
2125 const CXXConstructExpr *E) {
2126 CallArgList Args;
2127 Address This = ThisAVS.getAddress();
2128 LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace();
2129 QualType ThisType = D->getThisType();
2130 LangAS ThisAS = ThisType.getTypePtr()->getPointeeType().getAddressSpace();
2131 llvm::Value *ThisPtr = This.getPointer();
2132
2133 if (SlotAS != ThisAS) {
2134 unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS);
2135 llvm::Type *NewType = llvm::PointerType::getWithSamePointeeType(
2136 This.getType(), TargetThisAS);
2137 ThisPtr = getTargetHooks().performAddrSpaceCast(*this, This.getPointer(),
2138 ThisAS, SlotAS, NewType);
2139 }
2140
2141 // Push the this ptr.
2142 Args.add(RValue::get(ThisPtr), D->getThisType());
2143
2144 // If this is a trivial constructor, emit a memcpy now before we lose
2145 // the alignment information on the argument.
2146 // FIXME: It would be better to preserve alignment information into CallArg.
2147 if (isMemcpyEquivalentSpecialMember(D)) {
2148 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2149
2150 const Expr *Arg = E->getArg(0);
2151 LValue Src = EmitLValue(Arg);
2152 QualType DestTy = getContext().getTypeDeclType(D->getParent());
2153 LValue Dest = MakeAddrLValue(This, DestTy);
2154 EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap());
2155 return;
2156 }
2157
2158 // Add the rest of the user-supplied arguments.
2159 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2160 EvaluationOrder Order = E->isListInitialization()
2161 ? EvaluationOrder::ForceLeftToRight
2162 : EvaluationOrder::Default;
2163 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(),
2164 /*ParamsToSkip*/ 0, Order);
2165
2166 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args,
2167 ThisAVS.mayOverlap(), E->getExprLoc(),
2168 ThisAVS.isSanitizerChecked());
2169 }
2170
canEmitDelegateCallArgs(CodeGenFunction & CGF,const CXXConstructorDecl * Ctor,CXXCtorType Type,CallArgList & Args)2171 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF,
2172 const CXXConstructorDecl *Ctor,
2173 CXXCtorType Type, CallArgList &Args) {
2174 // We can't forward a variadic call.
2175 if (Ctor->isVariadic())
2176 return false;
2177
2178 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2179 // If the parameters are callee-cleanup, it's not safe to forward.
2180 for (auto *P : Ctor->parameters())
2181 if (P->needsDestruction(CGF.getContext()))
2182 return false;
2183
2184 // Likewise if they're inalloca.
2185 const CGFunctionInfo &Info =
2186 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0);
2187 if (Info.usesInAlloca())
2188 return false;
2189 }
2190
2191 // Anything else should be OK.
2192 return true;
2193 }
2194
EmitCXXConstructorCall(const CXXConstructorDecl * D,CXXCtorType Type,bool ForVirtualBase,bool Delegating,Address This,CallArgList & Args,AggValueSlot::Overlap_t Overlap,SourceLocation Loc,bool NewPointerIsChecked)2195 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2196 CXXCtorType Type,
2197 bool ForVirtualBase,
2198 bool Delegating,
2199 Address This,
2200 CallArgList &Args,
2201 AggValueSlot::Overlap_t Overlap,
2202 SourceLocation Loc,
2203 bool NewPointerIsChecked) {
2204 const CXXRecordDecl *ClassDecl = D->getParent();
2205
2206 if (!NewPointerIsChecked)
2207 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(),
2208 getContext().getRecordType(ClassDecl), CharUnits::Zero());
2209
2210 if (D->isTrivial() && D->isDefaultConstructor()) {
2211 assert(Args.size() == 1 && "trivial default ctor with args");
2212 return;
2213 }
2214
2215 // If this is a trivial constructor, just emit what's needed. If this is a
2216 // union copy constructor, we must emit a memcpy, because the AST does not
2217 // model that copy.
2218 if (isMemcpyEquivalentSpecialMember(D)) {
2219 assert(Args.size() == 2 && "unexpected argcount for trivial ctor");
2220
2221 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType();
2222 Address Src = Address(Args[1].getRValue(*this).getScalarVal(), ConvertTypeForMem(SrcTy),
2223 CGM.getNaturalTypeAlignment(SrcTy));
2224 LValue SrcLVal = MakeAddrLValue(Src, SrcTy);
2225 QualType DestTy = getContext().getTypeDeclType(ClassDecl);
2226 LValue DestLVal = MakeAddrLValue(This, DestTy);
2227 EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap);
2228 return;
2229 }
2230
2231 bool PassPrototypeArgs = true;
2232 // Check whether we can actually emit the constructor before trying to do so.
2233 if (auto Inherited = D->getInheritedConstructor()) {
2234 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type);
2235 if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) {
2236 EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase,
2237 Delegating, Args);
2238 return;
2239 }
2240 }
2241
2242 // Insert any ABI-specific implicit constructor arguments.
2243 CGCXXABI::AddedStructorArgCounts ExtraArgs =
2244 CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase,
2245 Delegating, Args);
2246
2247 // Emit the call.
2248 llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type));
2249 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall(
2250 Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs);
2251 CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type));
2252 EmitCall(Info, Callee, ReturnValueSlot(), Args, nullptr, false, Loc);
2253
2254 // Generate vtable assumptions if we're constructing a complete object
2255 // with a vtable. We don't do this for base subobjects for two reasons:
2256 // first, it's incorrect for classes with virtual bases, and second, we're
2257 // about to overwrite the vptrs anyway.
2258 // We also have to make sure if we can refer to vtable:
2259 // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2260 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2261 // sure that definition of vtable is not hidden,
2262 // then we are always safe to refer to it.
2263 // FIXME: It looks like InstCombine is very inefficient on dealing with
2264 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2265 if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2266 ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2267 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
2268 CGM.getCodeGenOpts().StrictVTablePointers)
2269 EmitVTableAssumptionLoads(ClassDecl, This);
2270 }
2271
EmitInheritedCXXConstructorCall(const CXXConstructorDecl * D,bool ForVirtualBase,Address This,bool InheritedFromVBase,const CXXInheritedCtorInitExpr * E)2272 void CodeGenFunction::EmitInheritedCXXConstructorCall(
2273 const CXXConstructorDecl *D, bool ForVirtualBase, Address This,
2274 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) {
2275 CallArgList Args;
2276 CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType());
2277
2278 // Forward the parameters.
2279 if (InheritedFromVBase &&
2280 CGM.getTarget().getCXXABI().hasConstructorVariants()) {
2281 // Nothing to do; this construction is not responsible for constructing
2282 // the base class containing the inherited constructor.
2283 // FIXME: Can we just pass undef's for the remaining arguments if we don't
2284 // have constructor variants?
2285 Args.push_back(ThisArg);
2286 } else if (!CXXInheritedCtorInitExprArgs.empty()) {
2287 // The inheriting constructor was inlined; just inject its arguments.
2288 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() &&
2289 "wrong number of parameters for inherited constructor call");
2290 Args = CXXInheritedCtorInitExprArgs;
2291 Args[0] = ThisArg;
2292 } else {
2293 // The inheriting constructor was not inlined. Emit delegating arguments.
2294 Args.push_back(ThisArg);
2295 const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl);
2296 assert(OuterCtor->getNumParams() == D->getNumParams());
2297 assert(!OuterCtor->isVariadic() && "should have been inlined");
2298
2299 for (const auto *Param : OuterCtor->parameters()) {
2300 assert(getContext().hasSameUnqualifiedType(
2301 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(),
2302 Param->getType()));
2303 EmitDelegateCallArg(Args, Param, E->getLocation());
2304
2305 // Forward __attribute__(pass_object_size).
2306 if (Param->hasAttr<PassObjectSizeAttr>()) {
2307 auto *POSParam = SizeArguments[Param];
2308 assert(POSParam && "missing pass_object_size value for forwarding");
2309 EmitDelegateCallArg(Args, POSParam, E->getLocation());
2310 }
2311 }
2312 }
2313
2314 EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false,
2315 This, Args, AggValueSlot::MayOverlap,
2316 E->getLocation(), /*NewPointerIsChecked*/true);
2317 }
2318
EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl * Ctor,CXXCtorType CtorType,bool ForVirtualBase,bool Delegating,CallArgList & Args)2319 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
2320 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase,
2321 bool Delegating, CallArgList &Args) {
2322 GlobalDecl GD(Ctor, CtorType);
2323 InlinedInheritingConstructorScope Scope(*this, GD);
2324 ApplyInlineDebugLocation DebugScope(*this, GD);
2325 RunCleanupsScope RunCleanups(*this);
2326
2327 // Save the arguments to be passed to the inherited constructor.
2328 CXXInheritedCtorInitExprArgs = Args;
2329
2330 FunctionArgList Params;
2331 QualType RetType = BuildFunctionArgList(CurGD, Params);
2332 FnRetTy = RetType;
2333
2334 // Insert any ABI-specific implicit constructor arguments.
2335 CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType,
2336 ForVirtualBase, Delegating, Args);
2337
2338 // Emit a simplified prolog. We only need to emit the implicit params.
2339 assert(Args.size() >= Params.size() && "too few arguments for call");
2340 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2341 if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) {
2342 const RValue &RV = Args[I].getRValue(*this);
2343 assert(!RV.isComplex() && "complex indirect params not supported");
2344 ParamValue Val = RV.isScalar()
2345 ? ParamValue::forDirect(RV.getScalarVal())
2346 : ParamValue::forIndirect(RV.getAggregateAddress());
2347 EmitParmDecl(*Params[I], Val, I + 1);
2348 }
2349 }
2350
2351 // Create a return value slot if the ABI implementation wants one.
2352 // FIXME: This is dumb, we should ask the ABI not to try to set the return
2353 // value instead.
2354 if (!RetType->isVoidType())
2355 ReturnValue = CreateIRTemp(RetType, "retval.inhctor");
2356
2357 CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
2358 CXXThisValue = CXXABIThisValue;
2359
2360 // Directly emit the constructor initializers.
2361 EmitCtorPrologue(Ctor, CtorType, Params);
2362 }
2363
EmitVTableAssumptionLoad(const VPtr & Vptr,Address This)2364 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
2365 llvm::Value *VTableGlobal =
2366 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
2367 if (!VTableGlobal)
2368 return;
2369
2370 // We can just use the base offset in the complete class.
2371 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2372
2373 if (!NonVirtualOffset.isZero())
2374 This =
2375 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
2376 Vptr.VTableClass, Vptr.NearestVBase);
2377
2378 llvm::Value *VPtrValue =
2379 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
2380 llvm::Value *Cmp =
2381 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
2382 Builder.CreateAssumption(Cmp);
2383 }
2384
EmitVTableAssumptionLoads(const CXXRecordDecl * ClassDecl,Address This)2385 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
2386 Address This) {
2387 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
2388 for (const VPtr &Vptr : getVTablePointers(ClassDecl))
2389 EmitVTableAssumptionLoad(Vptr, This);
2390 }
2391
2392 void
EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl * D,Address This,Address Src,const CXXConstructExpr * E)2393 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2394 Address This, Address Src,
2395 const CXXConstructExpr *E) {
2396 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2397
2398 CallArgList Args;
2399
2400 // Push the this ptr.
2401 Args.add(RValue::get(This.getPointer()), D->getThisType());
2402
2403 // Push the src ptr.
2404 QualType QT = *(FPT->param_type_begin());
2405 llvm::Type *t = CGM.getTypes().ConvertType(QT);
2406 llvm::Value *SrcVal = Builder.CreateBitCast(Src.getPointer(), t);
2407 Args.add(RValue::get(SrcVal), QT);
2408
2409 // Skip over first argument (Src).
2410 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
2411 /*ParamsToSkip*/ 1);
2412
2413 EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false,
2414 /*Delegating*/false, This, Args,
2415 AggValueSlot::MayOverlap, E->getExprLoc(),
2416 /*NewPointerIsChecked*/false);
2417 }
2418
2419 void
EmitDelegateCXXConstructorCall(const CXXConstructorDecl * Ctor,CXXCtorType CtorType,const FunctionArgList & Args,SourceLocation Loc)2420 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2421 CXXCtorType CtorType,
2422 const FunctionArgList &Args,
2423 SourceLocation Loc) {
2424 CallArgList DelegateArgs;
2425
2426 FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2427 assert(I != E && "no parameters to constructor");
2428
2429 // this
2430 Address This = LoadCXXThisAddress();
2431 DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType());
2432 ++I;
2433
2434 // FIXME: The location of the VTT parameter in the parameter list is
2435 // specific to the Itanium ABI and shouldn't be hardcoded here.
2436 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
2437 assert(I != E && "cannot skip vtt parameter, already done with args");
2438 assert((*I)->getType()->isPointerType() &&
2439 "skipping parameter not of vtt type");
2440 ++I;
2441 }
2442
2443 // Explicit arguments.
2444 for (; I != E; ++I) {
2445 const VarDecl *param = *I;
2446 // FIXME: per-argument source location
2447 EmitDelegateCallArg(DelegateArgs, param, Loc);
2448 }
2449
2450 EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false,
2451 /*Delegating=*/true, This, DelegateArgs,
2452 AggValueSlot::MayOverlap, Loc,
2453 /*NewPointerIsChecked=*/true);
2454 }
2455
2456 namespace {
2457 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2458 const CXXDestructorDecl *Dtor;
2459 Address Addr;
2460 CXXDtorType Type;
2461
CallDelegatingCtorDtor__anonfcad378b0511::CallDelegatingCtorDtor2462 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2463 CXXDtorType Type)
2464 : Dtor(D), Addr(Addr), Type(Type) {}
2465
Emit__anonfcad378b0511::CallDelegatingCtorDtor2466 void Emit(CodeGenFunction &CGF, Flags flags) override {
2467 // We are calling the destructor from within the constructor.
2468 // Therefore, "this" should have the expected type.
2469 QualType ThisTy = Dtor->getThisObjectType();
2470 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
2471 /*Delegating=*/true, Addr, ThisTy);
2472 }
2473 };
2474 } // end anonymous namespace
2475
2476 void
EmitDelegatingCXXConstructorCall(const CXXConstructorDecl * Ctor,const FunctionArgList & Args)2477 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2478 const FunctionArgList &Args) {
2479 assert(Ctor->isDelegatingConstructor());
2480
2481 Address ThisPtr = LoadCXXThisAddress();
2482
2483 AggValueSlot AggSlot =
2484 AggValueSlot::forAddr(ThisPtr, Qualifiers(),
2485 AggValueSlot::IsDestructed,
2486 AggValueSlot::DoesNotNeedGCBarriers,
2487 AggValueSlot::IsNotAliased,
2488 AggValueSlot::MayOverlap,
2489 AggValueSlot::IsNotZeroed,
2490 // Checks are made by the code that calls constructor.
2491 AggValueSlot::IsSanitizerChecked);
2492
2493 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
2494
2495 const CXXRecordDecl *ClassDecl = Ctor->getParent();
2496 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2497 CXXDtorType Type =
2498 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2499
2500 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
2501 ClassDecl->getDestructor(),
2502 ThisPtr, Type);
2503 }
2504 }
2505
EmitCXXDestructorCall(const CXXDestructorDecl * DD,CXXDtorType Type,bool ForVirtualBase,bool Delegating,Address This,QualType ThisTy)2506 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2507 CXXDtorType Type,
2508 bool ForVirtualBase,
2509 bool Delegating, Address This,
2510 QualType ThisTy) {
2511 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
2512 Delegating, This, ThisTy);
2513 }
2514
2515 namespace {
2516 struct CallLocalDtor final : EHScopeStack::Cleanup {
2517 const CXXDestructorDecl *Dtor;
2518 Address Addr;
2519 QualType Ty;
2520
CallLocalDtor__anonfcad378b0611::CallLocalDtor2521 CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty)
2522 : Dtor(D), Addr(Addr), Ty(Ty) {}
2523
Emit__anonfcad378b0611::CallLocalDtor2524 void Emit(CodeGenFunction &CGF, Flags flags) override {
2525 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
2526 /*ForVirtualBase=*/false,
2527 /*Delegating=*/false, Addr, Ty);
2528 }
2529 };
2530 } // end anonymous namespace
2531
PushDestructorCleanup(const CXXDestructorDecl * D,QualType T,Address Addr)2532 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
2533 QualType T, Address Addr) {
2534 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T);
2535 }
2536
PushDestructorCleanup(QualType T,Address Addr)2537 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
2538 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2539 if (!ClassDecl) return;
2540 if (ClassDecl->hasTrivialDestructor()) return;
2541
2542 const CXXDestructorDecl *D = ClassDecl->getDestructor();
2543 assert(D && D->isUsed() && "destructor not marked as used!");
2544 PushDestructorCleanup(D, T, Addr);
2545 }
2546
InitializeVTablePointer(const VPtr & Vptr)2547 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
2548 // Compute the address point.
2549 llvm::Value *VTableAddressPoint =
2550 CGM.getCXXABI().getVTableAddressPointInStructor(
2551 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
2552
2553 if (!VTableAddressPoint)
2554 return;
2555
2556 // Compute where to store the address point.
2557 llvm::Value *VirtualOffset = nullptr;
2558 CharUnits NonVirtualOffset = CharUnits::Zero();
2559
2560 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
2561 // We need to use the virtual base offset offset because the virtual base
2562 // might have a different offset in the most derived class.
2563
2564 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2565 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
2566 NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2567 } else {
2568 // We can just use the base offset in the complete class.
2569 NonVirtualOffset = Vptr.Base.getBaseOffset();
2570 }
2571
2572 // Apply the offsets.
2573 Address VTableField = LoadCXXThisAddress();
2574 if (!NonVirtualOffset.isZero() || VirtualOffset)
2575 VTableField = ApplyNonVirtualAndVirtualOffset(
2576 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
2577 Vptr.NearestVBase);
2578
2579 // Finally, store the address point. Use the same LLVM types as the field to
2580 // support optimization.
2581 unsigned GlobalsAS = CGM.getDataLayout().getDefaultGlobalsAddressSpace();
2582 unsigned ProgAS = CGM.getDataLayout().getProgramAddressSpace();
2583 llvm::Type *VTablePtrTy =
2584 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
2585 ->getPointerTo(ProgAS)
2586 ->getPointerTo(GlobalsAS);
2587 // vtable field is derived from `this` pointer, therefore they should be in
2588 // the same addr space. Note that this might not be LLVM address space 0.
2589 VTableField = Builder.CreateElementBitCast(VTableField, VTablePtrTy);
2590 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
2591
2592 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2593 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrTy);
2594 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
2595 if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2596 CGM.getCodeGenOpts().StrictVTablePointers)
2597 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
2598 }
2599
2600 CodeGenFunction::VPtrsVector
getVTablePointers(const CXXRecordDecl * VTableClass)2601 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
2602 CodeGenFunction::VPtrsVector VPtrsResult;
2603 VisitedVirtualBasesSetTy VBases;
2604 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
2605 /*NearestVBase=*/nullptr,
2606 /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2607 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2608 VPtrsResult);
2609 return VPtrsResult;
2610 }
2611
getVTablePointers(BaseSubobject Base,const CXXRecordDecl * NearestVBase,CharUnits OffsetFromNearestVBase,bool BaseIsNonVirtualPrimaryBase,const CXXRecordDecl * VTableClass,VisitedVirtualBasesSetTy & VBases,VPtrsVector & Vptrs)2612 void CodeGenFunction::getVTablePointers(BaseSubobject Base,
2613 const CXXRecordDecl *NearestVBase,
2614 CharUnits OffsetFromNearestVBase,
2615 bool BaseIsNonVirtualPrimaryBase,
2616 const CXXRecordDecl *VTableClass,
2617 VisitedVirtualBasesSetTy &VBases,
2618 VPtrsVector &Vptrs) {
2619 // If this base is a non-virtual primary base the address point has already
2620 // been set.
2621 if (!BaseIsNonVirtualPrimaryBase) {
2622 // Initialize the vtable pointer for this base.
2623 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
2624 Vptrs.push_back(Vptr);
2625 }
2626
2627 const CXXRecordDecl *RD = Base.getBase();
2628
2629 // Traverse bases.
2630 for (const auto &I : RD->bases()) {
2631 auto *BaseDecl =
2632 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2633
2634 // Ignore classes without a vtable.
2635 if (!BaseDecl->isDynamicClass())
2636 continue;
2637
2638 CharUnits BaseOffset;
2639 CharUnits BaseOffsetFromNearestVBase;
2640 bool BaseDeclIsNonVirtualPrimaryBase;
2641
2642 if (I.isVirtual()) {
2643 // Check if we've visited this virtual base before.
2644 if (!VBases.insert(BaseDecl).second)
2645 continue;
2646
2647 const ASTRecordLayout &Layout =
2648 getContext().getASTRecordLayout(VTableClass);
2649
2650 BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2651 BaseOffsetFromNearestVBase = CharUnits::Zero();
2652 BaseDeclIsNonVirtualPrimaryBase = false;
2653 } else {
2654 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2655
2656 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2657 BaseOffsetFromNearestVBase =
2658 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2659 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2660 }
2661
2662 getVTablePointers(
2663 BaseSubobject(BaseDecl, BaseOffset),
2664 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
2665 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2666 }
2667 }
2668
InitializeVTablePointers(const CXXRecordDecl * RD)2669 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2670 // Ignore classes without a vtable.
2671 if (!RD->isDynamicClass())
2672 return;
2673
2674 // Initialize the vtable pointers for this class and all of its bases.
2675 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
2676 for (const VPtr &Vptr : getVTablePointers(RD))
2677 InitializeVTablePointer(Vptr);
2678
2679 if (RD->getNumVBases())
2680 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2681 }
2682
GetVTablePtr(Address This,llvm::Type * VTableTy,const CXXRecordDecl * RD)2683 llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
2684 llvm::Type *VTableTy,
2685 const CXXRecordDecl *RD) {
2686 Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy);
2687 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2688 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy);
2689 CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo);
2690
2691 if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2692 CGM.getCodeGenOpts().StrictVTablePointers)
2693 CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
2694
2695 return VTable;
2696 }
2697
2698 // If a class has a single non-virtual base and does not introduce or override
2699 // virtual member functions or fields, it will have the same layout as its base.
2700 // This function returns the least derived such class.
2701 //
2702 // Casting an instance of a base class to such a derived class is technically
2703 // undefined behavior, but it is a relatively common hack for introducing member
2704 // functions on class instances with specific properties (e.g. llvm::Operator)
2705 // that works under most compilers and should not have security implications, so
2706 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2707 static const CXXRecordDecl *
LeastDerivedClassWithSameLayout(const CXXRecordDecl * RD)2708 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2709 if (!RD->field_empty())
2710 return RD;
2711
2712 if (RD->getNumVBases() != 0)
2713 return RD;
2714
2715 if (RD->getNumBases() != 1)
2716 return RD;
2717
2718 for (const CXXMethodDecl *MD : RD->methods()) {
2719 if (MD->isVirtual()) {
2720 // Virtual member functions are only ok if they are implicit destructors
2721 // because the implicit destructor will have the same semantics as the
2722 // base class's destructor if no fields are added.
2723 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2724 continue;
2725 return RD;
2726 }
2727 }
2728
2729 return LeastDerivedClassWithSameLayout(
2730 RD->bases_begin()->getType()->getAsCXXRecordDecl());
2731 }
2732
EmitTypeMetadataCodeForVCall(const CXXRecordDecl * RD,llvm::Value * VTable,SourceLocation Loc)2733 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2734 llvm::Value *VTable,
2735 SourceLocation Loc) {
2736 if (SanOpts.has(SanitizerKind::CFIVCall))
2737 EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc);
2738 else if (CGM.getCodeGenOpts().WholeProgramVTables &&
2739 // Don't insert type test assumes if we are forcing public
2740 // visibility.
2741 !CGM.AlwaysHasLTOVisibilityPublic(RD)) {
2742 QualType Ty = QualType(RD->getTypeForDecl(), 0);
2743 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(Ty);
2744 llvm::Value *TypeId =
2745 llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2746
2747 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2748 // If we already know that the call has hidden LTO visibility, emit
2749 // @llvm.type.test(). Otherwise emit @llvm.public.type.test(), which WPD
2750 // will convert to @llvm.type.test() if we assert at link time that we have
2751 // whole program visibility.
2752 llvm::Intrinsic::ID IID = CGM.HasHiddenLTOVisibility(RD)
2753 ? llvm::Intrinsic::type_test
2754 : llvm::Intrinsic::public_type_test;
2755 llvm::Value *TypeTest =
2756 Builder.CreateCall(CGM.getIntrinsic(IID), {CastedVTable, TypeId});
2757 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest);
2758 }
2759 }
2760
EmitVTablePtrCheckForCall(const CXXRecordDecl * RD,llvm::Value * VTable,CFITypeCheckKind TCK,SourceLocation Loc)2761 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD,
2762 llvm::Value *VTable,
2763 CFITypeCheckKind TCK,
2764 SourceLocation Loc) {
2765 if (!SanOpts.has(SanitizerKind::CFICastStrict))
2766 RD = LeastDerivedClassWithSameLayout(RD);
2767
2768 EmitVTablePtrCheck(RD, VTable, TCK, Loc);
2769 }
2770
EmitVTablePtrCheckForCast(QualType T,Address Derived,bool MayBeNull,CFITypeCheckKind TCK,SourceLocation Loc)2771 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, Address Derived,
2772 bool MayBeNull,
2773 CFITypeCheckKind TCK,
2774 SourceLocation Loc) {
2775 if (!getLangOpts().CPlusPlus)
2776 return;
2777
2778 auto *ClassTy = T->getAs<RecordType>();
2779 if (!ClassTy)
2780 return;
2781
2782 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2783
2784 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2785 return;
2786
2787 if (!SanOpts.has(SanitizerKind::CFICastStrict))
2788 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2789
2790 llvm::BasicBlock *ContBlock = nullptr;
2791
2792 if (MayBeNull) {
2793 llvm::Value *DerivedNotNull =
2794 Builder.CreateIsNotNull(Derived.getPointer(), "cast.nonnull");
2795
2796 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2797 ContBlock = createBasicBlock("cast.cont");
2798
2799 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2800
2801 EmitBlock(CheckBlock);
2802 }
2803
2804 llvm::Value *VTable;
2805 std::tie(VTable, ClassDecl) =
2806 CGM.getCXXABI().LoadVTablePtr(*this, Derived, ClassDecl);
2807
2808 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2809
2810 if (MayBeNull) {
2811 Builder.CreateBr(ContBlock);
2812 EmitBlock(ContBlock);
2813 }
2814 }
2815
EmitVTablePtrCheck(const CXXRecordDecl * RD,llvm::Value * VTable,CFITypeCheckKind TCK,SourceLocation Loc)2816 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2817 llvm::Value *VTable,
2818 CFITypeCheckKind TCK,
2819 SourceLocation Loc) {
2820 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso &&
2821 !CGM.HasHiddenLTOVisibility(RD))
2822 return;
2823
2824 SanitizerMask M;
2825 llvm::SanitizerStatKind SSK;
2826 switch (TCK) {
2827 case CFITCK_VCall:
2828 M = SanitizerKind::CFIVCall;
2829 SSK = llvm::SanStat_CFI_VCall;
2830 break;
2831 case CFITCK_NVCall:
2832 M = SanitizerKind::CFINVCall;
2833 SSK = llvm::SanStat_CFI_NVCall;
2834 break;
2835 case CFITCK_DerivedCast:
2836 M = SanitizerKind::CFIDerivedCast;
2837 SSK = llvm::SanStat_CFI_DerivedCast;
2838 break;
2839 case CFITCK_UnrelatedCast:
2840 M = SanitizerKind::CFIUnrelatedCast;
2841 SSK = llvm::SanStat_CFI_UnrelatedCast;
2842 break;
2843 case CFITCK_ICall:
2844 case CFITCK_NVMFCall:
2845 case CFITCK_VMFCall:
2846 llvm_unreachable("unexpected sanitizer kind");
2847 }
2848
2849 std::string TypeName = RD->getQualifiedNameAsString();
2850 if (getContext().getNoSanitizeList().containsType(M, TypeName))
2851 return;
2852
2853 SanitizerScope SanScope(this);
2854 EmitSanitizerStatReport(SSK);
2855
2856 llvm::Metadata *MD =
2857 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2858 llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
2859
2860 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2861 llvm::Value *TypeTest = Builder.CreateCall(
2862 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId});
2863
2864 llvm::Constant *StaticData[] = {
2865 llvm::ConstantInt::get(Int8Ty, TCK),
2866 EmitCheckSourceLocation(Loc),
2867 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2868 };
2869
2870 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
2871 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
2872 EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData);
2873 return;
2874 }
2875
2876 if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) {
2877 EmitTrapCheck(TypeTest, SanitizerHandler::CFICheckFail);
2878 return;
2879 }
2880
2881 llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2882 CGM.getLLVMContext(),
2883 llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2884 llvm::Value *ValidVtable = Builder.CreateCall(
2885 CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables});
2886 EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail,
2887 StaticData, {CastedVTable, ValidVtable});
2888 }
2889
ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl * RD)2890 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) {
2891 if (!CGM.getCodeGenOpts().WholeProgramVTables ||
2892 !CGM.HasHiddenLTOVisibility(RD))
2893 return false;
2894
2895 if (CGM.getCodeGenOpts().VirtualFunctionElimination)
2896 return true;
2897
2898 if (!SanOpts.has(SanitizerKind::CFIVCall) ||
2899 !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall))
2900 return false;
2901
2902 std::string TypeName = RD->getQualifiedNameAsString();
2903 return !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall,
2904 TypeName);
2905 }
2906
EmitVTableTypeCheckedLoad(const CXXRecordDecl * RD,llvm::Value * VTable,llvm::Type * VTableTy,uint64_t VTableByteOffset)2907 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad(
2908 const CXXRecordDecl *RD, llvm::Value *VTable, llvm::Type *VTableTy,
2909 uint64_t VTableByteOffset) {
2910 SanitizerScope SanScope(this);
2911
2912 EmitSanitizerStatReport(llvm::SanStat_CFI_VCall);
2913
2914 llvm::Metadata *MD =
2915 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2916 llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2917
2918 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2919 llvm::Value *CheckedLoad = Builder.CreateCall(
2920 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load),
2921 {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset),
2922 TypeId});
2923 llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1);
2924
2925 std::string TypeName = RD->getQualifiedNameAsString();
2926 if (SanOpts.has(SanitizerKind::CFIVCall) &&
2927 !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall,
2928 TypeName)) {
2929 EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall),
2930 SanitizerHandler::CFICheckFail, {}, {});
2931 }
2932
2933 return Builder.CreateBitCast(Builder.CreateExtractValue(CheckedLoad, 0),
2934 VTableTy);
2935 }
2936
EmitForwardingCallToLambda(const CXXMethodDecl * callOperator,CallArgList & callArgs)2937 void CodeGenFunction::EmitForwardingCallToLambda(
2938 const CXXMethodDecl *callOperator,
2939 CallArgList &callArgs) {
2940 // Get the address of the call operator.
2941 const CGFunctionInfo &calleeFnInfo =
2942 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2943 llvm::Constant *calleePtr =
2944 CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2945 CGM.getTypes().GetFunctionType(calleeFnInfo));
2946
2947 // Prepare the return slot.
2948 const FunctionProtoType *FPT =
2949 callOperator->getType()->castAs<FunctionProtoType>();
2950 QualType resultType = FPT->getReturnType();
2951 ReturnValueSlot returnSlot;
2952 if (!resultType->isVoidType() &&
2953 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2954 !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2955 returnSlot =
2956 ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(),
2957 /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
2958
2959 // We don't need to separately arrange the call arguments because
2960 // the call can't be variadic anyway --- it's impossible to forward
2961 // variadic arguments.
2962
2963 // Now emit our call.
2964 auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator));
2965 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs);
2966
2967 // If necessary, copy the returned value into the slot.
2968 if (!resultType->isVoidType() && returnSlot.isNull()) {
2969 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) {
2970 RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal()));
2971 }
2972 EmitReturnOfRValue(RV, resultType);
2973 } else
2974 EmitBranchThroughCleanup(ReturnBlock);
2975 }
2976
EmitLambdaBlockInvokeBody()2977 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2978 const BlockDecl *BD = BlockInfo->getBlockDecl();
2979 const VarDecl *variable = BD->capture_begin()->getVariable();
2980 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2981 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2982
2983 if (CallOp->isVariadic()) {
2984 // FIXME: Making this work correctly is nasty because it requires either
2985 // cloning the body of the call operator or making the call operator
2986 // forward.
2987 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2988 return;
2989 }
2990
2991 // Start building arguments for forwarding call
2992 CallArgList CallArgs;
2993
2994 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2995 Address ThisPtr = GetAddrOfBlockDecl(variable);
2996 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
2997
2998 // Add the rest of the parameters.
2999 for (auto *param : BD->parameters())
3000 EmitDelegateCallArg(CallArgs, param, param->getBeginLoc());
3001
3002 assert(!Lambda->isGenericLambda() &&
3003 "generic lambda interconversion to block not implemented");
3004 EmitForwardingCallToLambda(CallOp, CallArgs);
3005 }
3006
EmitLambdaDelegatingInvokeBody(const CXXMethodDecl * MD)3007 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
3008 const CXXRecordDecl *Lambda = MD->getParent();
3009
3010 // Start building arguments for forwarding call
3011 CallArgList CallArgs;
3012
3013 QualType LambdaType = getContext().getRecordType(Lambda);
3014 QualType ThisType = getContext().getPointerType(LambdaType);
3015 Address ThisPtr = CreateMemTemp(LambdaType, "unused.capture");
3016 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
3017
3018 // Add the rest of the parameters.
3019 for (auto *Param : MD->parameters())
3020 EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc());
3021
3022 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
3023 // For a generic lambda, find the corresponding call operator specialization
3024 // to which the call to the static-invoker shall be forwarded.
3025 if (Lambda->isGenericLambda()) {
3026 assert(MD->isFunctionTemplateSpecialization());
3027 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
3028 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
3029 void *InsertPos = nullptr;
3030 FunctionDecl *CorrespondingCallOpSpecialization =
3031 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
3032 assert(CorrespondingCallOpSpecialization);
3033 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
3034 }
3035 EmitForwardingCallToLambda(CallOp, CallArgs);
3036 }
3037
EmitLambdaStaticInvokeBody(const CXXMethodDecl * MD)3038 void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) {
3039 if (MD->isVariadic()) {
3040 // FIXME: Making this work correctly is nasty because it requires either
3041 // cloning the body of the call operator or making the call operator forward.
3042 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
3043 return;
3044 }
3045
3046 EmitLambdaDelegatingInvokeBody(MD);
3047 }
3048