1 //===- llvm/CallingConvLower.h - Calling Conventions ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the CCState and CCValAssign classes, used for lowering
10 // and implementing calling conventions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_CODEGEN_CALLINGCONVLOWER_H
15 #define LLVM_CODEGEN_CALLINGCONVLOWER_H
16 
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/CodeGen/Register.h"
19 #include "llvm/CodeGen/TargetCallingConv.h"
20 #include "llvm/IR/CallingConv.h"
21 #include "llvm/Support/Alignment.h"
22 
23 namespace llvm {
24 
25 class CCState;
26 class MachineFunction;
27 class MVT;
28 class TargetRegisterInfo;
29 
30 /// CCValAssign - Represent assignment of one arg/retval to a location.
31 class CCValAssign {
32 public:
33   enum LocInfo {
34     Full,      // The value fills the full location.
35     SExt,      // The value is sign extended in the location.
36     ZExt,      // The value is zero extended in the location.
37     AExt,      // The value is extended with undefined upper bits.
38     SExtUpper, // The value is in the upper bits of the location and should be
39                // sign extended when retrieved.
40     ZExtUpper, // The value is in the upper bits of the location and should be
41                // zero extended when retrieved.
42     AExtUpper, // The value is in the upper bits of the location and should be
43                // extended with undefined upper bits when retrieved.
44     BCvt,      // The value is bit-converted in the location.
45     Trunc,     // The value is truncated in the location.
46     VExt,      // The value is vector-widened in the location.
47                // FIXME: Not implemented yet. Code that uses AExt to mean
48                // vector-widen should be fixed to use VExt instead.
49     FPExt,     // The floating-point value is fp-extended in the location.
50     Indirect   // The location contains pointer to the value.
51     // TODO: a subset of the value is in the location.
52   };
53 
54 private:
55   // Holds one of:
56   // - the register that the value is assigned to;
57   // - the memory offset at which the value resides;
58   // - additional information about pending location; the exact interpretation
59   //   of the data is target-dependent.
60   std::variant<Register, int64_t, unsigned> Data;
61 
62   /// ValNo - This is the value number being assigned (e.g. an argument number).
63   unsigned ValNo;
64 
65   /// isCustom - True if this arg/retval requires special handling.
66   unsigned isCustom : 1;
67 
68   /// Information about how the value is assigned.
69   LocInfo HTP : 6;
70 
71   /// ValVT - The type of the value being assigned.
72   MVT ValVT;
73 
74   /// LocVT - The type of the location being assigned to.
75   MVT LocVT;
76 
CCValAssign(LocInfo HTP,unsigned ValNo,MVT ValVT,MVT LocVT,bool IsCustom)77   CCValAssign(LocInfo HTP, unsigned ValNo, MVT ValVT, MVT LocVT, bool IsCustom)
78       : ValNo(ValNo), isCustom(IsCustom), HTP(HTP), ValVT(ValVT), LocVT(LocVT) {
79   }
80 
81 public:
82   static CCValAssign getReg(unsigned ValNo, MVT ValVT, unsigned RegNo,
83                             MVT LocVT, LocInfo HTP, bool IsCustom = false) {
84     CCValAssign Ret(HTP, ValNo, ValVT, LocVT, IsCustom);
85     Ret.Data = Register(RegNo);
86     return Ret;
87   }
88 
getCustomReg(unsigned ValNo,MVT ValVT,unsigned RegNo,MVT LocVT,LocInfo HTP)89   static CCValAssign getCustomReg(unsigned ValNo, MVT ValVT, unsigned RegNo,
90                                   MVT LocVT, LocInfo HTP) {
91     return getReg(ValNo, ValVT, RegNo, LocVT, HTP, /*IsCustom=*/true);
92   }
93 
94   static CCValAssign getMem(unsigned ValNo, MVT ValVT, unsigned Offset,
95                             MVT LocVT, LocInfo HTP, bool IsCustom = false) {
96     CCValAssign Ret(HTP, ValNo, ValVT, LocVT, IsCustom);
97     Ret.Data = int64_t(Offset);
98     return Ret;
99   }
100 
getCustomMem(unsigned ValNo,MVT ValVT,unsigned Offset,MVT LocVT,LocInfo HTP)101   static CCValAssign getCustomMem(unsigned ValNo, MVT ValVT, unsigned Offset,
102                                   MVT LocVT, LocInfo HTP) {
103     return getMem(ValNo, ValVT, Offset, LocVT, HTP, /*IsCustom=*/true);
104   }
105 
106   static CCValAssign getPending(unsigned ValNo, MVT ValVT, MVT LocVT,
107                                 LocInfo HTP, unsigned ExtraInfo = 0) {
108     CCValAssign Ret(HTP, ValNo, ValVT, LocVT, false);
109     Ret.Data = ExtraInfo;
110     return Ret;
111   }
112 
convertToReg(unsigned RegNo)113   void convertToReg(unsigned RegNo) { Data = Register(RegNo); }
114 
convertToMem(unsigned Offset)115   void convertToMem(unsigned Offset) { Data = int64_t(Offset); }
116 
getValNo()117   unsigned getValNo() const { return ValNo; }
getValVT()118   MVT getValVT() const { return ValVT; }
119 
isRegLoc()120   bool isRegLoc() const { return std::holds_alternative<Register>(Data); }
isMemLoc()121   bool isMemLoc() const { return std::holds_alternative<int64_t>(Data); }
isPendingLoc()122   bool isPendingLoc() const { return std::holds_alternative<unsigned>(Data); }
123 
needsCustom()124   bool needsCustom() const { return isCustom; }
125 
getLocReg()126   Register getLocReg() const { return std::get<Register>(Data); }
getLocMemOffset()127   unsigned getLocMemOffset() const { return std::get<int64_t>(Data); }
getExtraInfo()128   unsigned getExtraInfo() const { return std::get<unsigned>(Data); }
129 
getLocVT()130   MVT getLocVT() const { return LocVT; }
131 
getLocInfo()132   LocInfo getLocInfo() const { return HTP; }
isExtInLoc()133   bool isExtInLoc() const {
134     return (HTP == AExt || HTP == SExt || HTP == ZExt);
135   }
136 
isUpperBitsInLoc()137   bool isUpperBitsInLoc() const {
138     return HTP == AExtUpper || HTP == SExtUpper || HTP == ZExtUpper;
139   }
140 };
141 
142 /// Describes a register that needs to be forwarded from the prologue to a
143 /// musttail call.
144 struct ForwardedRegister {
ForwardedRegisterForwardedRegister145   ForwardedRegister(Register VReg, MCPhysReg PReg, MVT VT)
146       : VReg(VReg), PReg(PReg), VT(VT) {}
147   Register VReg;
148   MCPhysReg PReg;
149   MVT VT;
150 };
151 
152 /// CCAssignFn - This function assigns a location for Val, updating State to
153 /// reflect the change.  It returns 'true' if it failed to handle Val.
154 typedef bool CCAssignFn(unsigned ValNo, MVT ValVT,
155                         MVT LocVT, CCValAssign::LocInfo LocInfo,
156                         ISD::ArgFlagsTy ArgFlags, CCState &State);
157 
158 /// CCCustomFn - This function assigns a location for Val, possibly updating
159 /// all args to reflect changes and indicates if it handled it. It must set
160 /// isCustom if it handles the arg and returns true.
161 typedef bool CCCustomFn(unsigned &ValNo, MVT &ValVT,
162                         MVT &LocVT, CCValAssign::LocInfo &LocInfo,
163                         ISD::ArgFlagsTy &ArgFlags, CCState &State);
164 
165 /// CCState - This class holds information needed while lowering arguments and
166 /// return values.  It captures which registers are already assigned and which
167 /// stack slots are used.  It provides accessors to allocate these values.
168 class CCState {
169 private:
170   CallingConv::ID CallingConv;
171   bool IsVarArg;
172   bool AnalyzingMustTailForwardedRegs = false;
173   MachineFunction &MF;
174   const TargetRegisterInfo &TRI;
175   SmallVectorImpl<CCValAssign> &Locs;
176   LLVMContext &Context;
177 
178   unsigned StackOffset;
179   Align MaxStackArgAlign;
180   SmallVector<uint32_t, 16> UsedRegs;
181   SmallVector<CCValAssign, 4> PendingLocs;
182   SmallVector<ISD::ArgFlagsTy, 4> PendingArgFlags;
183 
184   // ByValInfo and SmallVector<ByValInfo, 4> ByValRegs:
185   //
186   // Vector of ByValInfo instances (ByValRegs) is introduced for byval registers
187   // tracking.
188   // Or, in another words it tracks byval parameters that are stored in
189   // general purpose registers.
190   //
191   // For 4 byte stack alignment,
192   // instance index means byval parameter number in formal
193   // arguments set. Assume, we have some "struct_type" with size = 4 bytes,
194   // then, for function "foo":
195   //
196   // i32 foo(i32 %p, %struct_type* %r, i32 %s, %struct_type* %t)
197   //
198   // ByValRegs[0] describes how "%r" is stored (Begin == r1, End == r2)
199   // ByValRegs[1] describes how "%t" is stored (Begin == r3, End == r4).
200   //
201   // In case of 8 bytes stack alignment,
202   // In function shown above, r3 would be wasted according to AAPCS rules.
203   // ByValRegs vector size still would be 2,
204   // while "%t" goes to the stack: it wouldn't be described in ByValRegs.
205   //
206   // Supposed use-case for this collection:
207   // 1. Initially ByValRegs is empty, InRegsParamsProcessed is 0.
208   // 2. HandleByVal fills up ByValRegs.
209   // 3. Argument analysis (LowerFormatArguments, for example). After
210   // some byval argument was analyzed, InRegsParamsProcessed is increased.
211   struct ByValInfo {
ByValInfoByValInfo212     ByValInfo(unsigned B, unsigned E) : Begin(B), End(E) {}
213 
214     // First register allocated for current parameter.
215     unsigned Begin;
216 
217     // First after last register allocated for current parameter.
218     unsigned End;
219   };
220   SmallVector<ByValInfo, 4 > ByValRegs;
221 
222   // InRegsParamsProcessed - shows how many instances of ByValRegs was proceed
223   // during argument analysis.
224   unsigned InRegsParamsProcessed;
225 
226 public:
227   CCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
228           SmallVectorImpl<CCValAssign> &locs, LLVMContext &C);
229 
addLoc(const CCValAssign & V)230   void addLoc(const CCValAssign &V) {
231     Locs.push_back(V);
232   }
233 
getContext()234   LLVMContext &getContext() const { return Context; }
getMachineFunction()235   MachineFunction &getMachineFunction() const { return MF; }
getCallingConv()236   CallingConv::ID getCallingConv() const { return CallingConv; }
isVarArg()237   bool isVarArg() const { return IsVarArg; }
238 
239   /// getNextStackOffset - Return the next stack offset such that all stack
240   /// slots satisfy their alignment requirements.
getNextStackOffset()241   unsigned getNextStackOffset() const {
242     return StackOffset;
243   }
244 
245   /// getAlignedCallFrameSize - Return the size of the call frame needed to
246   /// be able to store all arguments and such that the alignment requirement
247   /// of each of the arguments is satisfied.
getAlignedCallFrameSize()248   unsigned getAlignedCallFrameSize() const {
249     return alignTo(StackOffset, MaxStackArgAlign);
250   }
251 
252   /// isAllocated - Return true if the specified register (or an alias) is
253   /// allocated.
isAllocated(MCRegister Reg)254   bool isAllocated(MCRegister Reg) const {
255     return UsedRegs[Reg / 32] & (1 << (Reg & 31));
256   }
257 
258   /// AnalyzeFormalArguments - Analyze an array of argument values,
259   /// incorporating info about the formals into this state.
260   void AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
261                               CCAssignFn Fn);
262 
263   /// The function will invoke AnalyzeFormalArguments.
AnalyzeArguments(const SmallVectorImpl<ISD::InputArg> & Ins,CCAssignFn Fn)264   void AnalyzeArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
265                         CCAssignFn Fn) {
266     AnalyzeFormalArguments(Ins, Fn);
267   }
268 
269   /// AnalyzeReturn - Analyze the returned values of a return,
270   /// incorporating info about the result values into this state.
271   void AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
272                      CCAssignFn Fn);
273 
274   /// CheckReturn - Analyze the return values of a function, returning
275   /// true if the return can be performed without sret-demotion, and
276   /// false otherwise.
277   bool CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
278                    CCAssignFn Fn);
279 
280   /// AnalyzeCallOperands - Analyze the outgoing arguments to a call,
281   /// incorporating info about the passed values into this state.
282   void AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
283                            CCAssignFn Fn);
284 
285   /// AnalyzeCallOperands - Same as above except it takes vectors of types
286   /// and argument flags.
287   void AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs,
288                            SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
289                            CCAssignFn Fn);
290 
291   /// The function will invoke AnalyzeCallOperands.
AnalyzeArguments(const SmallVectorImpl<ISD::OutputArg> & Outs,CCAssignFn Fn)292   void AnalyzeArguments(const SmallVectorImpl<ISD::OutputArg> &Outs,
293                         CCAssignFn Fn) {
294     AnalyzeCallOperands(Outs, Fn);
295   }
296 
297   /// AnalyzeCallResult - Analyze the return values of a call,
298   /// incorporating info about the passed values into this state.
299   void AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
300                          CCAssignFn Fn);
301 
302   /// A shadow allocated register is a register that was allocated
303   /// but wasn't added to the location list (Locs).
304   /// \returns true if the register was allocated as shadow or false otherwise.
305   bool IsShadowAllocatedReg(MCRegister Reg) const;
306 
307   /// AnalyzeCallResult - Same as above except it's specialized for calls which
308   /// produce a single value.
309   void AnalyzeCallResult(MVT VT, CCAssignFn Fn);
310 
311   /// getFirstUnallocated - Return the index of the first unallocated register
312   /// in the set, or Regs.size() if they are all allocated.
getFirstUnallocated(ArrayRef<MCPhysReg> Regs)313   unsigned getFirstUnallocated(ArrayRef<MCPhysReg> Regs) const {
314     for (unsigned i = 0; i < Regs.size(); ++i)
315       if (!isAllocated(Regs[i]))
316         return i;
317     return Regs.size();
318   }
319 
DeallocateReg(MCPhysReg Reg)320   void DeallocateReg(MCPhysReg Reg) {
321     assert(isAllocated(Reg) && "Trying to deallocate an unallocated register");
322     MarkUnallocated(Reg);
323   }
324 
325   /// AllocateReg - Attempt to allocate one register.  If it is not available,
326   /// return zero.  Otherwise, return the register, marking it and any aliases
327   /// as allocated.
AllocateReg(MCPhysReg Reg)328   MCRegister AllocateReg(MCPhysReg Reg) {
329     if (isAllocated(Reg))
330       return MCRegister();
331     MarkAllocated(Reg);
332     return Reg;
333   }
334 
335   /// Version of AllocateReg with extra register to be shadowed.
AllocateReg(MCPhysReg Reg,MCPhysReg ShadowReg)336   MCRegister AllocateReg(MCPhysReg Reg, MCPhysReg ShadowReg) {
337     if (isAllocated(Reg))
338       return MCRegister();
339     MarkAllocated(Reg);
340     MarkAllocated(ShadowReg);
341     return Reg;
342   }
343 
344   /// AllocateReg - Attempt to allocate one of the specified registers.  If none
345   /// are available, return zero.  Otherwise, return the first one available,
346   /// marking it and any aliases as allocated.
AllocateReg(ArrayRef<MCPhysReg> Regs)347   MCPhysReg AllocateReg(ArrayRef<MCPhysReg> Regs) {
348     unsigned FirstUnalloc = getFirstUnallocated(Regs);
349     if (FirstUnalloc == Regs.size())
350       return MCRegister();    // Didn't find the reg.
351 
352     // Mark the register and any aliases as allocated.
353     MCPhysReg Reg = Regs[FirstUnalloc];
354     MarkAllocated(Reg);
355     return Reg;
356   }
357 
358   /// AllocateRegBlock - Attempt to allocate a block of RegsRequired consecutive
359   /// registers. If this is not possible, return zero. Otherwise, return the first
360   /// register of the block that were allocated, marking the entire block as allocated.
AllocateRegBlock(ArrayRef<MCPhysReg> Regs,unsigned RegsRequired)361   MCPhysReg AllocateRegBlock(ArrayRef<MCPhysReg> Regs, unsigned RegsRequired) {
362     if (RegsRequired > Regs.size())
363       return 0;
364 
365     for (unsigned StartIdx = 0; StartIdx <= Regs.size() - RegsRequired;
366          ++StartIdx) {
367       bool BlockAvailable = true;
368       // Check for already-allocated regs in this block
369       for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
370         if (isAllocated(Regs[StartIdx + BlockIdx])) {
371           BlockAvailable = false;
372           break;
373         }
374       }
375       if (BlockAvailable) {
376         // Mark the entire block as allocated
377         for (unsigned BlockIdx = 0; BlockIdx < RegsRequired; ++BlockIdx) {
378           MarkAllocated(Regs[StartIdx + BlockIdx]);
379         }
380         return Regs[StartIdx];
381       }
382     }
383     // No block was available
384     return 0;
385   }
386 
387   /// Version of AllocateReg with list of registers to be shadowed.
AllocateReg(ArrayRef<MCPhysReg> Regs,const MCPhysReg * ShadowRegs)388   MCRegister AllocateReg(ArrayRef<MCPhysReg> Regs, const MCPhysReg *ShadowRegs) {
389     unsigned FirstUnalloc = getFirstUnallocated(Regs);
390     if (FirstUnalloc == Regs.size())
391       return MCRegister();    // Didn't find the reg.
392 
393     // Mark the register and any aliases as allocated.
394     MCRegister Reg = Regs[FirstUnalloc], ShadowReg = ShadowRegs[FirstUnalloc];
395     MarkAllocated(Reg);
396     MarkAllocated(ShadowReg);
397     return Reg;
398   }
399 
400   /// AllocateStack - Allocate a chunk of stack space with the specified size
401   /// and alignment.
AllocateStack(unsigned Size,Align Alignment)402   unsigned AllocateStack(unsigned Size, Align Alignment) {
403     StackOffset = alignTo(StackOffset, Alignment);
404     unsigned Result = StackOffset;
405     StackOffset += Size;
406     MaxStackArgAlign = std::max(Alignment, MaxStackArgAlign);
407     ensureMaxAlignment(Alignment);
408     return Result;
409   }
410 
411   void ensureMaxAlignment(Align Alignment);
412 
413   /// Version of AllocateStack with list of extra registers to be shadowed.
414   /// Note that, unlike AllocateReg, this shadows ALL of the shadow registers.
AllocateStack(unsigned Size,Align Alignment,ArrayRef<MCPhysReg> ShadowRegs)415   unsigned AllocateStack(unsigned Size, Align Alignment,
416                          ArrayRef<MCPhysReg> ShadowRegs) {
417     for (MCPhysReg Reg : ShadowRegs)
418       MarkAllocated(Reg);
419     return AllocateStack(Size, Alignment);
420   }
421 
422   // HandleByVal - Allocate a stack slot large enough to pass an argument by
423   // value. The size and alignment information of the argument is encoded in its
424   // parameter attribute.
425   void HandleByVal(unsigned ValNo, MVT ValVT, MVT LocVT,
426                    CCValAssign::LocInfo LocInfo, int MinSize, Align MinAlign,
427                    ISD::ArgFlagsTy ArgFlags);
428 
429   // Returns count of byval arguments that are to be stored (even partly)
430   // in registers.
getInRegsParamsCount()431   unsigned getInRegsParamsCount() const { return ByValRegs.size(); }
432 
433   // Returns count of byval in-regs arguments processed.
getInRegsParamsProcessed()434   unsigned getInRegsParamsProcessed() const { return InRegsParamsProcessed; }
435 
436   // Get information about N-th byval parameter that is stored in registers.
437   // Here "ByValParamIndex" is N.
getInRegsParamInfo(unsigned InRegsParamRecordIndex,unsigned & BeginReg,unsigned & EndReg)438   void getInRegsParamInfo(unsigned InRegsParamRecordIndex,
439                           unsigned& BeginReg, unsigned& EndReg) const {
440     assert(InRegsParamRecordIndex < ByValRegs.size() &&
441            "Wrong ByVal parameter index");
442 
443     const ByValInfo& info = ByValRegs[InRegsParamRecordIndex];
444     BeginReg = info.Begin;
445     EndReg = info.End;
446   }
447 
448   // Add information about parameter that is kept in registers.
addInRegsParamInfo(unsigned RegBegin,unsigned RegEnd)449   void addInRegsParamInfo(unsigned RegBegin, unsigned RegEnd) {
450     ByValRegs.push_back(ByValInfo(RegBegin, RegEnd));
451   }
452 
453   // Goes either to next byval parameter (excluding "waste" record), or
454   // to the end of collection.
455   // Returns false, if end is reached.
nextInRegsParam()456   bool nextInRegsParam() {
457     unsigned e = ByValRegs.size();
458     if (InRegsParamsProcessed < e)
459       ++InRegsParamsProcessed;
460     return InRegsParamsProcessed < e;
461   }
462 
463   // Clear byval registers tracking info.
clearByValRegsInfo()464   void clearByValRegsInfo() {
465     InRegsParamsProcessed = 0;
466     ByValRegs.clear();
467   }
468 
469   // Rewind byval registers tracking info.
rewindByValRegsInfo()470   void rewindByValRegsInfo() {
471     InRegsParamsProcessed = 0;
472   }
473 
474   // Get list of pending assignments
getPendingLocs()475   SmallVectorImpl<CCValAssign> &getPendingLocs() {
476     return PendingLocs;
477   }
478 
479   // Get a list of argflags for pending assignments.
getPendingArgFlags()480   SmallVectorImpl<ISD::ArgFlagsTy> &getPendingArgFlags() {
481     return PendingArgFlags;
482   }
483 
484   /// Compute the remaining unused register parameters that would be used for
485   /// the given value type. This is useful when varargs are passed in the
486   /// registers that normal prototyped parameters would be passed in, or for
487   /// implementing perfect forwarding.
488   void getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs, MVT VT,
489                                    CCAssignFn Fn);
490 
491   /// Compute the set of registers that need to be preserved and forwarded to
492   /// any musttail calls.
493   void analyzeMustTailForwardedRegisters(
494       SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes,
495       CCAssignFn Fn);
496 
497   /// Returns true if the results of the two calling conventions are compatible.
498   /// This is usually part of the check for tailcall eligibility.
499   static bool resultsCompatible(CallingConv::ID CalleeCC,
500                                 CallingConv::ID CallerCC, MachineFunction &MF,
501                                 LLVMContext &C,
502                                 const SmallVectorImpl<ISD::InputArg> &Ins,
503                                 CCAssignFn CalleeFn, CCAssignFn CallerFn);
504 
505   /// The function runs an additional analysis pass over function arguments.
506   /// It will mark each argument with the attribute flag SecArgPass.
507   /// After running, it will sort the locs list.
508   template <class T>
AnalyzeArgumentsSecondPass(const SmallVectorImpl<T> & Args,CCAssignFn Fn)509   void AnalyzeArgumentsSecondPass(const SmallVectorImpl<T> &Args,
510                                   CCAssignFn Fn) {
511     unsigned NumFirstPassLocs = Locs.size();
512 
513     /// Creates similar argument list to \p Args in which each argument is
514     /// marked using SecArgPass flag.
515     SmallVector<T, 16> SecPassArg;
516     // SmallVector<ISD::InputArg, 16> SecPassArg;
517     for (auto Arg : Args) {
518       Arg.Flags.setSecArgPass();
519       SecPassArg.push_back(Arg);
520     }
521 
522     // Run the second argument pass
523     AnalyzeArguments(SecPassArg, Fn);
524 
525     // Sort the locations of the arguments according to their original position.
526     SmallVector<CCValAssign, 16> TmpArgLocs;
527     TmpArgLocs.swap(Locs);
528     auto B = TmpArgLocs.begin(), E = TmpArgLocs.end();
529     std::merge(B, B + NumFirstPassLocs, B + NumFirstPassLocs, E,
530                std::back_inserter(Locs),
531                [](const CCValAssign &A, const CCValAssign &B) -> bool {
532                  return A.getValNo() < B.getValNo();
533                });
534   }
535 
536 private:
537   /// MarkAllocated - Mark a register and all of its aliases as allocated.
538   void MarkAllocated(MCPhysReg Reg);
539 
540   void MarkUnallocated(MCPhysReg Reg);
541 };
542 
543 } // end namespace llvm
544 
545 #endif // LLVM_CODEGEN_CALLINGCONVLOWER_H
546