xref: /openbsd/gnu/gcc/gcc/dominance.c (revision 404b540a)
1 /* Calculate (post)dominators in slightly super-linear time.
2    Copyright (C) 2000, 2003, 2004, 2005 Free Software Foundation, Inc.
3    Contributed by Michael Matz (matz@ifh.de).
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 2, or (at your option)
10    any later version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING.  If not, write to the Free
19    Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20    02110-1301, USA.  */
21 
22 /* This file implements the well known algorithm from Lengauer and Tarjan
23    to compute the dominators in a control flow graph.  A basic block D is said
24    to dominate another block X, when all paths from the entry node of the CFG
25    to X go also over D.  The dominance relation is a transitive reflexive
26    relation and its minimal transitive reduction is a tree, called the
27    dominator tree.  So for each block X besides the entry block exists a
28    block I(X), called the immediate dominator of X, which is the parent of X
29    in the dominator tree.
30 
31    The algorithm computes this dominator tree implicitly by computing for
32    each block its immediate dominator.  We use tree balancing and path
33    compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
34    slowly growing functional inverse of the Ackerman function.  */
35 
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "hard-reg-set.h"
42 #include "obstack.h"
43 #include "basic-block.h"
44 #include "toplev.h"
45 #include "et-forest.h"
46 #include "timevar.h"
47 
48 /* Whether the dominators and the postdominators are available.  */
49 enum dom_state dom_computed[2];
50 
51 /* We name our nodes with integers, beginning with 1.  Zero is reserved for
52    'undefined' or 'end of list'.  The name of each node is given by the dfs
53    number of the corresponding basic block.  Please note, that we include the
54    artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
55    support multiple entry points.  Its dfs number is of course 1.  */
56 
57 /* Type of Basic Block aka. TBB */
58 typedef unsigned int TBB;
59 
60 /* We work in a poor-mans object oriented fashion, and carry an instance of
61    this structure through all our 'methods'.  It holds various arrays
62    reflecting the (sub)structure of the flowgraph.  Most of them are of type
63    TBB and are also indexed by TBB.  */
64 
65 struct dom_info
66 {
67   /* The parent of a node in the DFS tree.  */
68   TBB *dfs_parent;
69   /* For a node x key[x] is roughly the node nearest to the root from which
70      exists a way to x only over nodes behind x.  Such a node is also called
71      semidominator.  */
72   TBB *key;
73   /* The value in path_min[x] is the node y on the path from x to the root of
74      the tree x is in with the smallest key[y].  */
75   TBB *path_min;
76   /* bucket[x] points to the first node of the set of nodes having x as key.  */
77   TBB *bucket;
78   /* And next_bucket[x] points to the next node.  */
79   TBB *next_bucket;
80   /* After the algorithm is done, dom[x] contains the immediate dominator
81      of x.  */
82   TBB *dom;
83 
84   /* The following few fields implement the structures needed for disjoint
85      sets.  */
86   /* set_chain[x] is the next node on the path from x to the representant
87      of the set containing x.  If set_chain[x]==0 then x is a root.  */
88   TBB *set_chain;
89   /* set_size[x] is the number of elements in the set named by x.  */
90   unsigned int *set_size;
91   /* set_child[x] is used for balancing the tree representing a set.  It can
92      be understood as the next sibling of x.  */
93   TBB *set_child;
94 
95   /* If b is the number of a basic block (BB->index), dfs_order[b] is the
96      number of that node in DFS order counted from 1.  This is an index
97      into most of the other arrays in this structure.  */
98   TBB *dfs_order;
99   /* If x is the DFS-index of a node which corresponds with a basic block,
100      dfs_to_bb[x] is that basic block.  Note, that in our structure there are
101      more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
102      is true for every basic block bb, but not the opposite.  */
103   basic_block *dfs_to_bb;
104 
105   /* This is the next free DFS number when creating the DFS tree.  */
106   unsigned int dfsnum;
107   /* The number of nodes in the DFS tree (==dfsnum-1).  */
108   unsigned int nodes;
109 
110   /* Blocks with bits set here have a fake edge to EXIT.  These are used
111      to turn a DFS forest into a proper tree.  */
112   bitmap fake_exit_edge;
113 };
114 
115 static void init_dom_info (struct dom_info *, enum cdi_direction);
116 static void free_dom_info (struct dom_info *);
117 static void calc_dfs_tree_nonrec (struct dom_info *, basic_block,
118 				  enum cdi_direction);
119 static void calc_dfs_tree (struct dom_info *, enum cdi_direction);
120 static void compress (struct dom_info *, TBB);
121 static TBB eval (struct dom_info *, TBB);
122 static void link_roots (struct dom_info *, TBB, TBB);
123 static void calc_idoms (struct dom_info *, enum cdi_direction);
124 void debug_dominance_info (enum cdi_direction);
125 
126 /* Keeps track of the*/
127 static unsigned n_bbs_in_dom_tree[2];
128 
129 /* Helper macro for allocating and initializing an array,
130    for aesthetic reasons.  */
131 #define init_ar(var, type, num, content)			\
132   do								\
133     {								\
134       unsigned int i = 1;    /* Catch content == i.  */		\
135       if (! (content))						\
136 	(var) = XCNEWVEC (type, num);				\
137       else							\
138 	{							\
139 	  (var) = XNEWVEC (type, (num));			\
140 	  for (i = 0; i < num; i++)				\
141 	    (var)[i] = (content);				\
142 	}							\
143     }								\
144   while (0)
145 
146 /* Allocate all needed memory in a pessimistic fashion (so we round up).
147    This initializes the contents of DI, which already must be allocated.  */
148 
149 static void
init_dom_info(struct dom_info * di,enum cdi_direction dir)150 init_dom_info (struct dom_info *di, enum cdi_direction dir)
151 {
152   unsigned int num = n_basic_blocks;
153   init_ar (di->dfs_parent, TBB, num, 0);
154   init_ar (di->path_min, TBB, num, i);
155   init_ar (di->key, TBB, num, i);
156   init_ar (di->dom, TBB, num, 0);
157 
158   init_ar (di->bucket, TBB, num, 0);
159   init_ar (di->next_bucket, TBB, num, 0);
160 
161   init_ar (di->set_chain, TBB, num, 0);
162   init_ar (di->set_size, unsigned int, num, 1);
163   init_ar (di->set_child, TBB, num, 0);
164 
165   init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
166   init_ar (di->dfs_to_bb, basic_block, num, 0);
167 
168   di->dfsnum = 1;
169   di->nodes = 0;
170 
171   di->fake_exit_edge = dir ? BITMAP_ALLOC (NULL) : NULL;
172 }
173 
174 #undef init_ar
175 
176 /* Free all allocated memory in DI, but not DI itself.  */
177 
178 static void
free_dom_info(struct dom_info * di)179 free_dom_info (struct dom_info *di)
180 {
181   free (di->dfs_parent);
182   free (di->path_min);
183   free (di->key);
184   free (di->dom);
185   free (di->bucket);
186   free (di->next_bucket);
187   free (di->set_chain);
188   free (di->set_size);
189   free (di->set_child);
190   free (di->dfs_order);
191   free (di->dfs_to_bb);
192   BITMAP_FREE (di->fake_exit_edge);
193 }
194 
195 /* The nonrecursive variant of creating a DFS tree.  DI is our working
196    structure, BB the starting basic block for this tree and REVERSE
197    is true, if predecessors should be visited instead of successors of a
198    node.  After this is done all nodes reachable from BB were visited, have
199    assigned their dfs number and are linked together to form a tree.  */
200 
201 static void
calc_dfs_tree_nonrec(struct dom_info * di,basic_block bb,enum cdi_direction reverse)202 calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb,
203 		      enum cdi_direction reverse)
204 {
205   /* We call this _only_ if bb is not already visited.  */
206   edge e;
207   TBB child_i, my_i = 0;
208   edge_iterator *stack;
209   edge_iterator ei, einext;
210   int sp;
211   /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
212      problem).  */
213   basic_block en_block;
214   /* Ending block.  */
215   basic_block ex_block;
216 
217   stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
218   sp = 0;
219 
220   /* Initialize our border blocks, and the first edge.  */
221   if (reverse)
222     {
223       ei = ei_start (bb->preds);
224       en_block = EXIT_BLOCK_PTR;
225       ex_block = ENTRY_BLOCK_PTR;
226     }
227   else
228     {
229       ei = ei_start (bb->succs);
230       en_block = ENTRY_BLOCK_PTR;
231       ex_block = EXIT_BLOCK_PTR;
232     }
233 
234   /* When the stack is empty we break out of this loop.  */
235   while (1)
236     {
237       basic_block bn;
238 
239       /* This loop traverses edges e in depth first manner, and fills the
240          stack.  */
241       while (!ei_end_p (ei))
242 	{
243 	  e = ei_edge (ei);
244 
245 	  /* Deduce from E the current and the next block (BB and BN), and the
246 	     next edge.  */
247 	  if (reverse)
248 	    {
249 	      bn = e->src;
250 
251 	      /* If the next node BN is either already visited or a border
252 	         block the current edge is useless, and simply overwritten
253 	         with the next edge out of the current node.  */
254 	      if (bn == ex_block || di->dfs_order[bn->index])
255 		{
256 		  ei_next (&ei);
257 		  continue;
258 		}
259 	      bb = e->dest;
260 	      einext = ei_start (bn->preds);
261 	    }
262 	  else
263 	    {
264 	      bn = e->dest;
265 	      if (bn == ex_block || di->dfs_order[bn->index])
266 		{
267 		  ei_next (&ei);
268 		  continue;
269 		}
270 	      bb = e->src;
271 	      einext = ei_start (bn->succs);
272 	    }
273 
274 	  gcc_assert (bn != en_block);
275 
276 	  /* Fill the DFS tree info calculatable _before_ recursing.  */
277 	  if (bb != en_block)
278 	    my_i = di->dfs_order[bb->index];
279 	  else
280 	    my_i = di->dfs_order[last_basic_block];
281 	  child_i = di->dfs_order[bn->index] = di->dfsnum++;
282 	  di->dfs_to_bb[child_i] = bn;
283 	  di->dfs_parent[child_i] = my_i;
284 
285 	  /* Save the current point in the CFG on the stack, and recurse.  */
286 	  stack[sp++] = ei;
287 	  ei = einext;
288 	}
289 
290       if (!sp)
291 	break;
292       ei = stack[--sp];
293 
294       /* OK.  The edge-list was exhausted, meaning normally we would
295          end the recursion.  After returning from the recursive call,
296          there were (may be) other statements which were run after a
297          child node was completely considered by DFS.  Here is the
298          point to do it in the non-recursive variant.
299          E.g. The block just completed is in e->dest for forward DFS,
300          the block not yet completed (the parent of the one above)
301          in e->src.  This could be used e.g. for computing the number of
302          descendants or the tree depth.  */
303       ei_next (&ei);
304     }
305   free (stack);
306 }
307 
308 /* The main entry for calculating the DFS tree or forest.  DI is our working
309    structure and REVERSE is true, if we are interested in the reverse flow
310    graph.  In that case the result is not necessarily a tree but a forest,
311    because there may be nodes from which the EXIT_BLOCK is unreachable.  */
312 
313 static void
calc_dfs_tree(struct dom_info * di,enum cdi_direction reverse)314 calc_dfs_tree (struct dom_info *di, enum cdi_direction reverse)
315 {
316   /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE).  */
317   basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
318   di->dfs_order[last_basic_block] = di->dfsnum;
319   di->dfs_to_bb[di->dfsnum] = begin;
320   di->dfsnum++;
321 
322   calc_dfs_tree_nonrec (di, begin, reverse);
323 
324   if (reverse)
325     {
326       /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
327          They are reverse-unreachable.  In the dom-case we disallow such
328          nodes, but in post-dom we have to deal with them.
329 
330 	 There are two situations in which this occurs.  First, noreturn
331 	 functions.  Second, infinite loops.  In the first case we need to
332 	 pretend that there is an edge to the exit block.  In the second
333 	 case, we wind up with a forest.  We need to process all noreturn
334 	 blocks before we know if we've got any infinite loops.  */
335 
336       basic_block b;
337       bool saw_unconnected = false;
338 
339       FOR_EACH_BB_REVERSE (b)
340 	{
341 	  if (EDGE_COUNT (b->succs) > 0)
342 	    {
343 	      if (di->dfs_order[b->index] == 0)
344 		saw_unconnected = true;
345 	      continue;
346 	    }
347 	  bitmap_set_bit (di->fake_exit_edge, b->index);
348 	  di->dfs_order[b->index] = di->dfsnum;
349 	  di->dfs_to_bb[di->dfsnum] = b;
350 	  di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
351 	  di->dfsnum++;
352 	  calc_dfs_tree_nonrec (di, b, reverse);
353 	}
354 
355       if (saw_unconnected)
356 	{
357 	  FOR_EACH_BB_REVERSE (b)
358 	    {
359 	      if (di->dfs_order[b->index])
360 		continue;
361 	      bitmap_set_bit (di->fake_exit_edge, b->index);
362 	      di->dfs_order[b->index] = di->dfsnum;
363 	      di->dfs_to_bb[di->dfsnum] = b;
364 	      di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
365 	      di->dfsnum++;
366 	      calc_dfs_tree_nonrec (di, b, reverse);
367 	    }
368 	}
369     }
370 
371   di->nodes = di->dfsnum - 1;
372 
373   /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all.  */
374   gcc_assert (di->nodes == (unsigned int) n_basic_blocks - 1);
375 }
376 
377 /* Compress the path from V to the root of its set and update path_min at the
378    same time.  After compress(di, V) set_chain[V] is the root of the set V is
379    in and path_min[V] is the node with the smallest key[] value on the path
380    from V to that root.  */
381 
382 static void
compress(struct dom_info * di,TBB v)383 compress (struct dom_info *di, TBB v)
384 {
385   /* Btw. It's not worth to unrecurse compress() as the depth is usually not
386      greater than 5 even for huge graphs (I've not seen call depth > 4).
387      Also performance wise compress() ranges _far_ behind eval().  */
388   TBB parent = di->set_chain[v];
389   if (di->set_chain[parent])
390     {
391       compress (di, parent);
392       if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
393 	di->path_min[v] = di->path_min[parent];
394       di->set_chain[v] = di->set_chain[parent];
395     }
396 }
397 
398 /* Compress the path from V to the set root of V if needed (when the root has
399    changed since the last call).  Returns the node with the smallest key[]
400    value on the path from V to the root.  */
401 
402 static inline TBB
eval(struct dom_info * di,TBB v)403 eval (struct dom_info *di, TBB v)
404 {
405   /* The representant of the set V is in, also called root (as the set
406      representation is a tree).  */
407   TBB rep = di->set_chain[v];
408 
409   /* V itself is the root.  */
410   if (!rep)
411     return di->path_min[v];
412 
413   /* Compress only if necessary.  */
414   if (di->set_chain[rep])
415     {
416       compress (di, v);
417       rep = di->set_chain[v];
418     }
419 
420   if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
421     return di->path_min[v];
422   else
423     return di->path_min[rep];
424 }
425 
426 /* This essentially merges the two sets of V and W, giving a single set with
427    the new root V.  The internal representation of these disjoint sets is a
428    balanced tree.  Currently link(V,W) is only used with V being the parent
429    of W.  */
430 
431 static void
link_roots(struct dom_info * di,TBB v,TBB w)432 link_roots (struct dom_info *di, TBB v, TBB w)
433 {
434   TBB s = w;
435 
436   /* Rebalance the tree.  */
437   while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
438     {
439       if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
440 	  >= 2 * di->set_size[di->set_child[s]])
441 	{
442 	  di->set_chain[di->set_child[s]] = s;
443 	  di->set_child[s] = di->set_child[di->set_child[s]];
444 	}
445       else
446 	{
447 	  di->set_size[di->set_child[s]] = di->set_size[s];
448 	  s = di->set_chain[s] = di->set_child[s];
449 	}
450     }
451 
452   di->path_min[s] = di->path_min[w];
453   di->set_size[v] += di->set_size[w];
454   if (di->set_size[v] < 2 * di->set_size[w])
455     {
456       TBB tmp = s;
457       s = di->set_child[v];
458       di->set_child[v] = tmp;
459     }
460 
461   /* Merge all subtrees.  */
462   while (s)
463     {
464       di->set_chain[s] = v;
465       s = di->set_child[s];
466     }
467 }
468 
469 /* This calculates the immediate dominators (or post-dominators if REVERSE is
470    true).  DI is our working structure and should hold the DFS forest.
471    On return the immediate dominator to node V is in di->dom[V].  */
472 
473 static void
calc_idoms(struct dom_info * di,enum cdi_direction reverse)474 calc_idoms (struct dom_info *di, enum cdi_direction reverse)
475 {
476   TBB v, w, k, par;
477   basic_block en_block;
478   edge_iterator ei, einext;
479 
480   if (reverse)
481     en_block = EXIT_BLOCK_PTR;
482   else
483     en_block = ENTRY_BLOCK_PTR;
484 
485   /* Go backwards in DFS order, to first look at the leafs.  */
486   v = di->nodes;
487   while (v > 1)
488     {
489       basic_block bb = di->dfs_to_bb[v];
490       edge e;
491 
492       par = di->dfs_parent[v];
493       k = v;
494 
495       ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
496 
497       if (reverse)
498 	{
499 	  /* If this block has a fake edge to exit, process that first.  */
500 	  if (bitmap_bit_p (di->fake_exit_edge, bb->index))
501 	    {
502 	      einext = ei;
503 	      einext.index = 0;
504 	      goto do_fake_exit_edge;
505 	    }
506 	}
507 
508       /* Search all direct predecessors for the smallest node with a path
509          to them.  That way we have the smallest node with also a path to
510          us only over nodes behind us.  In effect we search for our
511          semidominator.  */
512       while (!ei_end_p (ei))
513 	{
514 	  TBB k1;
515 	  basic_block b;
516 
517 	  e = ei_edge (ei);
518 	  b = (reverse) ? e->dest : e->src;
519 	  einext = ei;
520 	  ei_next (&einext);
521 
522 	  if (b == en_block)
523 	    {
524 	    do_fake_exit_edge:
525 	      k1 = di->dfs_order[last_basic_block];
526 	    }
527 	  else
528 	    k1 = di->dfs_order[b->index];
529 
530 	  /* Call eval() only if really needed.  If k1 is above V in DFS tree,
531 	     then we know, that eval(k1) == k1 and key[k1] == k1.  */
532 	  if (k1 > v)
533 	    k1 = di->key[eval (di, k1)];
534 	  if (k1 < k)
535 	    k = k1;
536 
537 	  ei = einext;
538 	}
539 
540       di->key[v] = k;
541       link_roots (di, par, v);
542       di->next_bucket[v] = di->bucket[k];
543       di->bucket[k] = v;
544 
545       /* Transform semidominators into dominators.  */
546       for (w = di->bucket[par]; w; w = di->next_bucket[w])
547 	{
548 	  k = eval (di, w);
549 	  if (di->key[k] < di->key[w])
550 	    di->dom[w] = k;
551 	  else
552 	    di->dom[w] = par;
553 	}
554       /* We don't need to cleanup next_bucket[].  */
555       di->bucket[par] = 0;
556       v--;
557     }
558 
559   /* Explicitly define the dominators.  */
560   di->dom[1] = 0;
561   for (v = 2; v <= di->nodes; v++)
562     if (di->dom[v] != di->key[v])
563       di->dom[v] = di->dom[di->dom[v]];
564 }
565 
566 /* Assign dfs numbers starting from NUM to NODE and its sons.  */
567 
568 static void
assign_dfs_numbers(struct et_node * node,int * num)569 assign_dfs_numbers (struct et_node *node, int *num)
570 {
571   struct et_node *son;
572 
573   node->dfs_num_in = (*num)++;
574 
575   if (node->son)
576     {
577       assign_dfs_numbers (node->son, num);
578       for (son = node->son->right; son != node->son; son = son->right)
579 	assign_dfs_numbers (son, num);
580     }
581 
582   node->dfs_num_out = (*num)++;
583 }
584 
585 /* Compute the data necessary for fast resolving of dominator queries in a
586    static dominator tree.  */
587 
588 static void
compute_dom_fast_query(enum cdi_direction dir)589 compute_dom_fast_query (enum cdi_direction dir)
590 {
591   int num = 0;
592   basic_block bb;
593 
594   gcc_assert (dom_info_available_p (dir));
595 
596   if (dom_computed[dir] == DOM_OK)
597     return;
598 
599   FOR_ALL_BB (bb)
600     {
601       if (!bb->dom[dir]->father)
602 	assign_dfs_numbers (bb->dom[dir], &num);
603     }
604 
605   dom_computed[dir] = DOM_OK;
606 }
607 
608 /* The main entry point into this module.  DIR is set depending on whether
609    we want to compute dominators or postdominators.  */
610 
611 void
calculate_dominance_info(enum cdi_direction dir)612 calculate_dominance_info (enum cdi_direction dir)
613 {
614   struct dom_info di;
615   basic_block b;
616 
617   if (dom_computed[dir] == DOM_OK)
618     return;
619 
620   timevar_push (TV_DOMINANCE);
621   if (!dom_info_available_p (dir))
622     {
623       gcc_assert (!n_bbs_in_dom_tree[dir]);
624 
625       FOR_ALL_BB (b)
626 	{
627 	  b->dom[dir] = et_new_tree (b);
628 	}
629       n_bbs_in_dom_tree[dir] = n_basic_blocks;
630 
631       init_dom_info (&di, dir);
632       calc_dfs_tree (&di, dir);
633       calc_idoms (&di, dir);
634 
635       FOR_EACH_BB (b)
636 	{
637 	  TBB d = di.dom[di.dfs_order[b->index]];
638 
639 	  if (di.dfs_to_bb[d])
640 	    et_set_father (b->dom[dir], di.dfs_to_bb[d]->dom[dir]);
641 	}
642 
643       free_dom_info (&di);
644       dom_computed[dir] = DOM_NO_FAST_QUERY;
645     }
646 
647   compute_dom_fast_query (dir);
648 
649   timevar_pop (TV_DOMINANCE);
650 }
651 
652 /* Free dominance information for direction DIR.  */
653 void
free_dominance_info(enum cdi_direction dir)654 free_dominance_info (enum cdi_direction dir)
655 {
656   basic_block bb;
657 
658   if (!dom_info_available_p (dir))
659     return;
660 
661   FOR_ALL_BB (bb)
662     {
663       et_free_tree_force (bb->dom[dir]);
664       bb->dom[dir] = NULL;
665     }
666   et_free_pools ();
667 
668   n_bbs_in_dom_tree[dir] = 0;
669 
670   dom_computed[dir] = DOM_NONE;
671 }
672 
673 /* Return the immediate dominator of basic block BB.  */
674 basic_block
get_immediate_dominator(enum cdi_direction dir,basic_block bb)675 get_immediate_dominator (enum cdi_direction dir, basic_block bb)
676 {
677   struct et_node *node = bb->dom[dir];
678 
679   gcc_assert (dom_computed[dir]);
680 
681   if (!node->father)
682     return NULL;
683 
684   return node->father->data;
685 }
686 
687 /* Set the immediate dominator of the block possibly removing
688    existing edge.  NULL can be used to remove any edge.  */
689 inline void
set_immediate_dominator(enum cdi_direction dir,basic_block bb,basic_block dominated_by)690 set_immediate_dominator (enum cdi_direction dir, basic_block bb,
691 			 basic_block dominated_by)
692 {
693   struct et_node *node = bb->dom[dir];
694 
695   gcc_assert (dom_computed[dir]);
696 
697   if (node->father)
698     {
699       if (node->father->data == dominated_by)
700 	return;
701       et_split (node);
702     }
703 
704   if (dominated_by)
705     et_set_father (node, dominated_by->dom[dir]);
706 
707   if (dom_computed[dir] == DOM_OK)
708     dom_computed[dir] = DOM_NO_FAST_QUERY;
709 }
710 
711 /* Store all basic blocks immediately dominated by BB into BBS and return
712    their number.  */
713 int
get_dominated_by(enum cdi_direction dir,basic_block bb,basic_block ** bbs)714 get_dominated_by (enum cdi_direction dir, basic_block bb, basic_block **bbs)
715 {
716   int n;
717   struct et_node *node = bb->dom[dir], *son = node->son, *ason;
718 
719   gcc_assert (dom_computed[dir]);
720 
721   if (!son)
722     {
723       *bbs = NULL;
724       return 0;
725     }
726 
727   for (ason = son->right, n = 1; ason != son; ason = ason->right)
728     n++;
729 
730   *bbs = XNEWVEC (basic_block, n);
731   (*bbs)[0] = son->data;
732   for (ason = son->right, n = 1; ason != son; ason = ason->right)
733     (*bbs)[n++] = ason->data;
734 
735   return n;
736 }
737 
738 /* Find all basic blocks that are immediately dominated (in direction DIR)
739    by some block between N_REGION ones stored in REGION, except for blocks
740    in the REGION itself.  The found blocks are stored to DOMS and their number
741    is returned.  */
742 
743 unsigned
get_dominated_by_region(enum cdi_direction dir,basic_block * region,unsigned n_region,basic_block * doms)744 get_dominated_by_region (enum cdi_direction dir, basic_block *region,
745 			 unsigned n_region, basic_block *doms)
746 {
747   unsigned n_doms = 0, i;
748   basic_block dom;
749 
750   for (i = 0; i < n_region; i++)
751     region[i]->flags |= BB_DUPLICATED;
752   for (i = 0; i < n_region; i++)
753     for (dom = first_dom_son (dir, region[i]);
754 	 dom;
755 	 dom = next_dom_son (dir, dom))
756       if (!(dom->flags & BB_DUPLICATED))
757 	doms[n_doms++] = dom;
758   for (i = 0; i < n_region; i++)
759     region[i]->flags &= ~BB_DUPLICATED;
760 
761   return n_doms;
762 }
763 
764 /* Redirect all edges pointing to BB to TO.  */
765 void
redirect_immediate_dominators(enum cdi_direction dir,basic_block bb,basic_block to)766 redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
767 			       basic_block to)
768 {
769   struct et_node *bb_node = bb->dom[dir], *to_node = to->dom[dir], *son;
770 
771   gcc_assert (dom_computed[dir]);
772 
773   if (!bb_node->son)
774     return;
775 
776   while (bb_node->son)
777     {
778       son = bb_node->son;
779 
780       et_split (son);
781       et_set_father (son, to_node);
782     }
783 
784   if (dom_computed[dir] == DOM_OK)
785     dom_computed[dir] = DOM_NO_FAST_QUERY;
786 }
787 
788 /* Find first basic block in the tree dominating both BB1 and BB2.  */
789 basic_block
nearest_common_dominator(enum cdi_direction dir,basic_block bb1,basic_block bb2)790 nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
791 {
792   gcc_assert (dom_computed[dir]);
793 
794   if (!bb1)
795     return bb2;
796   if (!bb2)
797     return bb1;
798 
799   return et_nca (bb1->dom[dir], bb2->dom[dir])->data;
800 }
801 
802 
803 /* Find the nearest common dominator for the basic blocks in BLOCKS,
804    using dominance direction DIR.  */
805 
806 basic_block
nearest_common_dominator_for_set(enum cdi_direction dir,bitmap blocks)807 nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
808 {
809   unsigned i, first;
810   bitmap_iterator bi;
811   basic_block dom;
812 
813   first = bitmap_first_set_bit (blocks);
814   dom = BASIC_BLOCK (first);
815   EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
816     if (dom != BASIC_BLOCK (i))
817       dom = nearest_common_dominator (dir, dom, BASIC_BLOCK (i));
818 
819   return dom;
820 }
821 
822 /*  Given a dominator tree, we can determine whether one thing
823     dominates another in constant time by using two DFS numbers:
824 
825     1. The number for when we visit a node on the way down the tree
826     2. The number for when we visit a node on the way back up the tree
827 
828     You can view these as bounds for the range of dfs numbers the
829     nodes in the subtree of the dominator tree rooted at that node
830     will contain.
831 
832     The dominator tree is always a simple acyclic tree, so there are
833     only three possible relations two nodes in the dominator tree have
834     to each other:
835 
836     1. Node A is above Node B (and thus, Node A dominates node B)
837 
838      A
839      |
840      C
841     / \
842    B   D
843 
844 
845    In the above case, DFS_Number_In of A will be <= DFS_Number_In of
846    B, and DFS_Number_Out of A will be >= DFS_Number_Out of B.  This is
847    because we must hit A in the dominator tree *before* B on the walk
848    down, and we will hit A *after* B on the walk back up
849 
850    2. Node A is below node B (and thus, node B dominates node A)
851 
852 
853      B
854      |
855      A
856     / \
857    C   D
858 
859    In the above case, DFS_Number_In of A will be >= DFS_Number_In of
860    B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
861 
862    This is because we must hit A in the dominator tree *after* B on
863    the walk down, and we will hit A *before* B on the walk back up
864 
865    3. Node A and B are siblings (and thus, neither dominates the other)
866 
867      C
868      |
869      D
870     / \
871    A   B
872 
873    In the above case, DFS_Number_In of A will *always* be <=
874    DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
875    DFS_Number_Out of B.  This is because we will always finish the dfs
876    walk of one of the subtrees before the other, and thus, the dfs
877    numbers for one subtree can't intersect with the range of dfs
878    numbers for the other subtree.  If you swap A and B's position in
879    the dominator tree, the comparison changes direction, but the point
880    is that both comparisons will always go the same way if there is no
881    dominance relationship.
882 
883    Thus, it is sufficient to write
884 
885    A_Dominates_B (node A, node B)
886    {
887      return DFS_Number_In(A) <= DFS_Number_In(B)
888             && DFS_Number_Out (A) >= DFS_Number_Out(B);
889    }
890 
891    A_Dominated_by_B (node A, node B)
892    {
893      return DFS_Number_In(A) >= DFS_Number_In(A)
894             && DFS_Number_Out (A) <= DFS_Number_Out(B);
895    }  */
896 
897 /* Return TRUE in case BB1 is dominated by BB2.  */
898 bool
dominated_by_p(enum cdi_direction dir,basic_block bb1,basic_block bb2)899 dominated_by_p (enum cdi_direction dir, basic_block bb1, basic_block bb2)
900 {
901   struct et_node *n1 = bb1->dom[dir], *n2 = bb2->dom[dir];
902 
903   gcc_assert (dom_computed[dir]);
904 
905   if (dom_computed[dir] == DOM_OK)
906     return (n1->dfs_num_in >= n2->dfs_num_in
907   	    && n1->dfs_num_out <= n2->dfs_num_out);
908 
909   return et_below (n1, n2);
910 }
911 
912 /* Returns the entry dfs number for basic block BB, in the direction DIR.  */
913 
914 unsigned
bb_dom_dfs_in(enum cdi_direction dir,basic_block bb)915 bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
916 {
917   struct et_node *n = bb->dom[dir];
918 
919   gcc_assert (dom_computed[dir] == DOM_OK);
920   return n->dfs_num_in;
921 }
922 
923 /* Returns the exit dfs number for basic block BB, in the direction DIR.  */
924 
925 unsigned
bb_dom_dfs_out(enum cdi_direction dir,basic_block bb)926 bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
927 {
928   struct et_node *n = bb->dom[dir];
929 
930   gcc_assert (dom_computed[dir] == DOM_OK);
931   return n->dfs_num_out;
932 }
933 
934 /* Verify invariants of dominator structure.  */
935 void
verify_dominators(enum cdi_direction dir)936 verify_dominators (enum cdi_direction dir)
937 {
938   int err = 0;
939   basic_block bb;
940 
941   gcc_assert (dom_info_available_p (dir));
942 
943   FOR_EACH_BB (bb)
944     {
945       basic_block dom_bb;
946       basic_block imm_bb;
947 
948       dom_bb = recount_dominator (dir, bb);
949       imm_bb = get_immediate_dominator (dir, bb);
950       if (dom_bb != imm_bb)
951 	{
952 	  if ((dom_bb == NULL) || (imm_bb == NULL))
953 	    error ("dominator of %d status unknown", bb->index);
954 	  else
955 	    error ("dominator of %d should be %d, not %d",
956 		   bb->index, dom_bb->index, imm_bb->index);
957 	  err = 1;
958 	}
959     }
960 
961   if (dir == CDI_DOMINATORS)
962     {
963       FOR_EACH_BB (bb)
964 	{
965 	  if (!dominated_by_p (dir, bb, ENTRY_BLOCK_PTR))
966 	    {
967 	      error ("ENTRY does not dominate bb %d", bb->index);
968 	      err = 1;
969 	    }
970 	}
971     }
972 
973   gcc_assert (!err);
974 }
975 
976 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
977    assuming that dominators of other blocks are correct.  We also use it to
978    recompute the dominators in a restricted area, by iterating it until it
979    reaches a fixed point.  */
980 
981 basic_block
recount_dominator(enum cdi_direction dir,basic_block bb)982 recount_dominator (enum cdi_direction dir, basic_block bb)
983 {
984   basic_block dom_bb = NULL;
985   edge e;
986   edge_iterator ei;
987 
988   gcc_assert (dom_computed[dir]);
989 
990   if (dir == CDI_DOMINATORS)
991     {
992       FOR_EACH_EDGE (e, ei, bb->preds)
993 	{
994 	  /* Ignore the predecessors that either are not reachable from
995 	     the entry block, or whose dominator was not determined yet.  */
996 	  if (!dominated_by_p (dir, e->src, ENTRY_BLOCK_PTR))
997 	    continue;
998 
999 	  if (!dominated_by_p (dir, e->src, bb))
1000 	    dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1001 	}
1002     }
1003   else
1004     {
1005       FOR_EACH_EDGE (e, ei, bb->succs)
1006 	{
1007 	  if (!dominated_by_p (dir, e->dest, bb))
1008 	    dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1009 	}
1010     }
1011 
1012   return dom_bb;
1013 }
1014 
1015 /* Iteratively recount dominators of BBS. The change is supposed to be local
1016    and not to grow further.  */
1017 void
iterate_fix_dominators(enum cdi_direction dir,basic_block * bbs,int n)1018 iterate_fix_dominators (enum cdi_direction dir, basic_block *bbs, int n)
1019 {
1020   int i, changed = 1;
1021   basic_block old_dom, new_dom;
1022 
1023   gcc_assert (dom_computed[dir]);
1024 
1025   for (i = 0; i < n; i++)
1026     set_immediate_dominator (dir, bbs[i], NULL);
1027 
1028   while (changed)
1029     {
1030       changed = 0;
1031       for (i = 0; i < n; i++)
1032 	{
1033 	  old_dom = get_immediate_dominator (dir, bbs[i]);
1034 	  new_dom = recount_dominator (dir, bbs[i]);
1035 	  if (old_dom != new_dom)
1036 	    {
1037 	      changed = 1;
1038 	      set_immediate_dominator (dir, bbs[i], new_dom);
1039 	    }
1040 	}
1041     }
1042 
1043   for (i = 0; i < n; i++)
1044     gcc_assert (get_immediate_dominator (dir, bbs[i]));
1045 }
1046 
1047 void
add_to_dominance_info(enum cdi_direction dir,basic_block bb)1048 add_to_dominance_info (enum cdi_direction dir, basic_block bb)
1049 {
1050   gcc_assert (dom_computed[dir]);
1051   gcc_assert (!bb->dom[dir]);
1052 
1053   n_bbs_in_dom_tree[dir]++;
1054 
1055   bb->dom[dir] = et_new_tree (bb);
1056 
1057   if (dom_computed[dir] == DOM_OK)
1058     dom_computed[dir] = DOM_NO_FAST_QUERY;
1059 }
1060 
1061 void
delete_from_dominance_info(enum cdi_direction dir,basic_block bb)1062 delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1063 {
1064   gcc_assert (dom_computed[dir]);
1065 
1066   et_free_tree (bb->dom[dir]);
1067   bb->dom[dir] = NULL;
1068   n_bbs_in_dom_tree[dir]--;
1069 
1070   if (dom_computed[dir] == DOM_OK)
1071     dom_computed[dir] = DOM_NO_FAST_QUERY;
1072 }
1073 
1074 /* Returns the first son of BB in the dominator or postdominator tree
1075    as determined by DIR.  */
1076 
1077 basic_block
first_dom_son(enum cdi_direction dir,basic_block bb)1078 first_dom_son (enum cdi_direction dir, basic_block bb)
1079 {
1080   struct et_node *son = bb->dom[dir]->son;
1081 
1082   return son ? son->data : NULL;
1083 }
1084 
1085 /* Returns the next dominance son after BB in the dominator or postdominator
1086    tree as determined by DIR, or NULL if it was the last one.  */
1087 
1088 basic_block
next_dom_son(enum cdi_direction dir,basic_block bb)1089 next_dom_son (enum cdi_direction dir, basic_block bb)
1090 {
1091   struct et_node *next = bb->dom[dir]->right;
1092 
1093   return next->father->son == next ? NULL : next->data;
1094 }
1095 
1096 /* Returns true if dominance information for direction DIR is available.  */
1097 
1098 bool
dom_info_available_p(enum cdi_direction dir)1099 dom_info_available_p (enum cdi_direction dir)
1100 {
1101   return dom_computed[dir] != DOM_NONE;
1102 }
1103 
1104 void
debug_dominance_info(enum cdi_direction dir)1105 debug_dominance_info (enum cdi_direction dir)
1106 {
1107   basic_block bb, bb2;
1108   FOR_EACH_BB (bb)
1109     if ((bb2 = get_immediate_dominator (dir, bb)))
1110       fprintf (stderr, "%i %i\n", bb->index, bb2->index);
1111 }
1112