1 /* Calculate (post)dominators in slightly super-linear time.
2 Copyright (C) 2000, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Michael Matz (matz@ifh.de).
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
30
31 The algorithm computes this dominator tree implicitly by computing for
32 each block its immediate dominator. We use tree balancing and path
33 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
34 slowly growing functional inverse of the Ackerman function. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "hard-reg-set.h"
42 #include "obstack.h"
43 #include "basic-block.h"
44 #include "toplev.h"
45 #include "et-forest.h"
46 #include "timevar.h"
47
48 /* Whether the dominators and the postdominators are available. */
49 enum dom_state dom_computed[2];
50
51 /* We name our nodes with integers, beginning with 1. Zero is reserved for
52 'undefined' or 'end of list'. The name of each node is given by the dfs
53 number of the corresponding basic block. Please note, that we include the
54 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
55 support multiple entry points. Its dfs number is of course 1. */
56
57 /* Type of Basic Block aka. TBB */
58 typedef unsigned int TBB;
59
60 /* We work in a poor-mans object oriented fashion, and carry an instance of
61 this structure through all our 'methods'. It holds various arrays
62 reflecting the (sub)structure of the flowgraph. Most of them are of type
63 TBB and are also indexed by TBB. */
64
65 struct dom_info
66 {
67 /* The parent of a node in the DFS tree. */
68 TBB *dfs_parent;
69 /* For a node x key[x] is roughly the node nearest to the root from which
70 exists a way to x only over nodes behind x. Such a node is also called
71 semidominator. */
72 TBB *key;
73 /* The value in path_min[x] is the node y on the path from x to the root of
74 the tree x is in with the smallest key[y]. */
75 TBB *path_min;
76 /* bucket[x] points to the first node of the set of nodes having x as key. */
77 TBB *bucket;
78 /* And next_bucket[x] points to the next node. */
79 TBB *next_bucket;
80 /* After the algorithm is done, dom[x] contains the immediate dominator
81 of x. */
82 TBB *dom;
83
84 /* The following few fields implement the structures needed for disjoint
85 sets. */
86 /* set_chain[x] is the next node on the path from x to the representant
87 of the set containing x. If set_chain[x]==0 then x is a root. */
88 TBB *set_chain;
89 /* set_size[x] is the number of elements in the set named by x. */
90 unsigned int *set_size;
91 /* set_child[x] is used for balancing the tree representing a set. It can
92 be understood as the next sibling of x. */
93 TBB *set_child;
94
95 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
96 number of that node in DFS order counted from 1. This is an index
97 into most of the other arrays in this structure. */
98 TBB *dfs_order;
99 /* If x is the DFS-index of a node which corresponds with a basic block,
100 dfs_to_bb[x] is that basic block. Note, that in our structure there are
101 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
102 is true for every basic block bb, but not the opposite. */
103 basic_block *dfs_to_bb;
104
105 /* This is the next free DFS number when creating the DFS tree. */
106 unsigned int dfsnum;
107 /* The number of nodes in the DFS tree (==dfsnum-1). */
108 unsigned int nodes;
109
110 /* Blocks with bits set here have a fake edge to EXIT. These are used
111 to turn a DFS forest into a proper tree. */
112 bitmap fake_exit_edge;
113 };
114
115 static void init_dom_info (struct dom_info *, enum cdi_direction);
116 static void free_dom_info (struct dom_info *);
117 static void calc_dfs_tree_nonrec (struct dom_info *, basic_block,
118 enum cdi_direction);
119 static void calc_dfs_tree (struct dom_info *, enum cdi_direction);
120 static void compress (struct dom_info *, TBB);
121 static TBB eval (struct dom_info *, TBB);
122 static void link_roots (struct dom_info *, TBB, TBB);
123 static void calc_idoms (struct dom_info *, enum cdi_direction);
124 void debug_dominance_info (enum cdi_direction);
125
126 /* Keeps track of the*/
127 static unsigned n_bbs_in_dom_tree[2];
128
129 /* Helper macro for allocating and initializing an array,
130 for aesthetic reasons. */
131 #define init_ar(var, type, num, content) \
132 do \
133 { \
134 unsigned int i = 1; /* Catch content == i. */ \
135 if (! (content)) \
136 (var) = XCNEWVEC (type, num); \
137 else \
138 { \
139 (var) = XNEWVEC (type, (num)); \
140 for (i = 0; i < num; i++) \
141 (var)[i] = (content); \
142 } \
143 } \
144 while (0)
145
146 /* Allocate all needed memory in a pessimistic fashion (so we round up).
147 This initializes the contents of DI, which already must be allocated. */
148
149 static void
init_dom_info(struct dom_info * di,enum cdi_direction dir)150 init_dom_info (struct dom_info *di, enum cdi_direction dir)
151 {
152 unsigned int num = n_basic_blocks;
153 init_ar (di->dfs_parent, TBB, num, 0);
154 init_ar (di->path_min, TBB, num, i);
155 init_ar (di->key, TBB, num, i);
156 init_ar (di->dom, TBB, num, 0);
157
158 init_ar (di->bucket, TBB, num, 0);
159 init_ar (di->next_bucket, TBB, num, 0);
160
161 init_ar (di->set_chain, TBB, num, 0);
162 init_ar (di->set_size, unsigned int, num, 1);
163 init_ar (di->set_child, TBB, num, 0);
164
165 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
166 init_ar (di->dfs_to_bb, basic_block, num, 0);
167
168 di->dfsnum = 1;
169 di->nodes = 0;
170
171 di->fake_exit_edge = dir ? BITMAP_ALLOC (NULL) : NULL;
172 }
173
174 #undef init_ar
175
176 /* Free all allocated memory in DI, but not DI itself. */
177
178 static void
free_dom_info(struct dom_info * di)179 free_dom_info (struct dom_info *di)
180 {
181 free (di->dfs_parent);
182 free (di->path_min);
183 free (di->key);
184 free (di->dom);
185 free (di->bucket);
186 free (di->next_bucket);
187 free (di->set_chain);
188 free (di->set_size);
189 free (di->set_child);
190 free (di->dfs_order);
191 free (di->dfs_to_bb);
192 BITMAP_FREE (di->fake_exit_edge);
193 }
194
195 /* The nonrecursive variant of creating a DFS tree. DI is our working
196 structure, BB the starting basic block for this tree and REVERSE
197 is true, if predecessors should be visited instead of successors of a
198 node. After this is done all nodes reachable from BB were visited, have
199 assigned their dfs number and are linked together to form a tree. */
200
201 static void
calc_dfs_tree_nonrec(struct dom_info * di,basic_block bb,enum cdi_direction reverse)202 calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb,
203 enum cdi_direction reverse)
204 {
205 /* We call this _only_ if bb is not already visited. */
206 edge e;
207 TBB child_i, my_i = 0;
208 edge_iterator *stack;
209 edge_iterator ei, einext;
210 int sp;
211 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
212 problem). */
213 basic_block en_block;
214 /* Ending block. */
215 basic_block ex_block;
216
217 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
218 sp = 0;
219
220 /* Initialize our border blocks, and the first edge. */
221 if (reverse)
222 {
223 ei = ei_start (bb->preds);
224 en_block = EXIT_BLOCK_PTR;
225 ex_block = ENTRY_BLOCK_PTR;
226 }
227 else
228 {
229 ei = ei_start (bb->succs);
230 en_block = ENTRY_BLOCK_PTR;
231 ex_block = EXIT_BLOCK_PTR;
232 }
233
234 /* When the stack is empty we break out of this loop. */
235 while (1)
236 {
237 basic_block bn;
238
239 /* This loop traverses edges e in depth first manner, and fills the
240 stack. */
241 while (!ei_end_p (ei))
242 {
243 e = ei_edge (ei);
244
245 /* Deduce from E the current and the next block (BB and BN), and the
246 next edge. */
247 if (reverse)
248 {
249 bn = e->src;
250
251 /* If the next node BN is either already visited or a border
252 block the current edge is useless, and simply overwritten
253 with the next edge out of the current node. */
254 if (bn == ex_block || di->dfs_order[bn->index])
255 {
256 ei_next (&ei);
257 continue;
258 }
259 bb = e->dest;
260 einext = ei_start (bn->preds);
261 }
262 else
263 {
264 bn = e->dest;
265 if (bn == ex_block || di->dfs_order[bn->index])
266 {
267 ei_next (&ei);
268 continue;
269 }
270 bb = e->src;
271 einext = ei_start (bn->succs);
272 }
273
274 gcc_assert (bn != en_block);
275
276 /* Fill the DFS tree info calculatable _before_ recursing. */
277 if (bb != en_block)
278 my_i = di->dfs_order[bb->index];
279 else
280 my_i = di->dfs_order[last_basic_block];
281 child_i = di->dfs_order[bn->index] = di->dfsnum++;
282 di->dfs_to_bb[child_i] = bn;
283 di->dfs_parent[child_i] = my_i;
284
285 /* Save the current point in the CFG on the stack, and recurse. */
286 stack[sp++] = ei;
287 ei = einext;
288 }
289
290 if (!sp)
291 break;
292 ei = stack[--sp];
293
294 /* OK. The edge-list was exhausted, meaning normally we would
295 end the recursion. After returning from the recursive call,
296 there were (may be) other statements which were run after a
297 child node was completely considered by DFS. Here is the
298 point to do it in the non-recursive variant.
299 E.g. The block just completed is in e->dest for forward DFS,
300 the block not yet completed (the parent of the one above)
301 in e->src. This could be used e.g. for computing the number of
302 descendants or the tree depth. */
303 ei_next (&ei);
304 }
305 free (stack);
306 }
307
308 /* The main entry for calculating the DFS tree or forest. DI is our working
309 structure and REVERSE is true, if we are interested in the reverse flow
310 graph. In that case the result is not necessarily a tree but a forest,
311 because there may be nodes from which the EXIT_BLOCK is unreachable. */
312
313 static void
calc_dfs_tree(struct dom_info * di,enum cdi_direction reverse)314 calc_dfs_tree (struct dom_info *di, enum cdi_direction reverse)
315 {
316 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
317 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
318 di->dfs_order[last_basic_block] = di->dfsnum;
319 di->dfs_to_bb[di->dfsnum] = begin;
320 di->dfsnum++;
321
322 calc_dfs_tree_nonrec (di, begin, reverse);
323
324 if (reverse)
325 {
326 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
327 They are reverse-unreachable. In the dom-case we disallow such
328 nodes, but in post-dom we have to deal with them.
329
330 There are two situations in which this occurs. First, noreturn
331 functions. Second, infinite loops. In the first case we need to
332 pretend that there is an edge to the exit block. In the second
333 case, we wind up with a forest. We need to process all noreturn
334 blocks before we know if we've got any infinite loops. */
335
336 basic_block b;
337 bool saw_unconnected = false;
338
339 FOR_EACH_BB_REVERSE (b)
340 {
341 if (EDGE_COUNT (b->succs) > 0)
342 {
343 if (di->dfs_order[b->index] == 0)
344 saw_unconnected = true;
345 continue;
346 }
347 bitmap_set_bit (di->fake_exit_edge, b->index);
348 di->dfs_order[b->index] = di->dfsnum;
349 di->dfs_to_bb[di->dfsnum] = b;
350 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
351 di->dfsnum++;
352 calc_dfs_tree_nonrec (di, b, reverse);
353 }
354
355 if (saw_unconnected)
356 {
357 FOR_EACH_BB_REVERSE (b)
358 {
359 if (di->dfs_order[b->index])
360 continue;
361 bitmap_set_bit (di->fake_exit_edge, b->index);
362 di->dfs_order[b->index] = di->dfsnum;
363 di->dfs_to_bb[di->dfsnum] = b;
364 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
365 di->dfsnum++;
366 calc_dfs_tree_nonrec (di, b, reverse);
367 }
368 }
369 }
370
371 di->nodes = di->dfsnum - 1;
372
373 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
374 gcc_assert (di->nodes == (unsigned int) n_basic_blocks - 1);
375 }
376
377 /* Compress the path from V to the root of its set and update path_min at the
378 same time. After compress(di, V) set_chain[V] is the root of the set V is
379 in and path_min[V] is the node with the smallest key[] value on the path
380 from V to that root. */
381
382 static void
compress(struct dom_info * di,TBB v)383 compress (struct dom_info *di, TBB v)
384 {
385 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
386 greater than 5 even for huge graphs (I've not seen call depth > 4).
387 Also performance wise compress() ranges _far_ behind eval(). */
388 TBB parent = di->set_chain[v];
389 if (di->set_chain[parent])
390 {
391 compress (di, parent);
392 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
393 di->path_min[v] = di->path_min[parent];
394 di->set_chain[v] = di->set_chain[parent];
395 }
396 }
397
398 /* Compress the path from V to the set root of V if needed (when the root has
399 changed since the last call). Returns the node with the smallest key[]
400 value on the path from V to the root. */
401
402 static inline TBB
eval(struct dom_info * di,TBB v)403 eval (struct dom_info *di, TBB v)
404 {
405 /* The representant of the set V is in, also called root (as the set
406 representation is a tree). */
407 TBB rep = di->set_chain[v];
408
409 /* V itself is the root. */
410 if (!rep)
411 return di->path_min[v];
412
413 /* Compress only if necessary. */
414 if (di->set_chain[rep])
415 {
416 compress (di, v);
417 rep = di->set_chain[v];
418 }
419
420 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
421 return di->path_min[v];
422 else
423 return di->path_min[rep];
424 }
425
426 /* This essentially merges the two sets of V and W, giving a single set with
427 the new root V. The internal representation of these disjoint sets is a
428 balanced tree. Currently link(V,W) is only used with V being the parent
429 of W. */
430
431 static void
link_roots(struct dom_info * di,TBB v,TBB w)432 link_roots (struct dom_info *di, TBB v, TBB w)
433 {
434 TBB s = w;
435
436 /* Rebalance the tree. */
437 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
438 {
439 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
440 >= 2 * di->set_size[di->set_child[s]])
441 {
442 di->set_chain[di->set_child[s]] = s;
443 di->set_child[s] = di->set_child[di->set_child[s]];
444 }
445 else
446 {
447 di->set_size[di->set_child[s]] = di->set_size[s];
448 s = di->set_chain[s] = di->set_child[s];
449 }
450 }
451
452 di->path_min[s] = di->path_min[w];
453 di->set_size[v] += di->set_size[w];
454 if (di->set_size[v] < 2 * di->set_size[w])
455 {
456 TBB tmp = s;
457 s = di->set_child[v];
458 di->set_child[v] = tmp;
459 }
460
461 /* Merge all subtrees. */
462 while (s)
463 {
464 di->set_chain[s] = v;
465 s = di->set_child[s];
466 }
467 }
468
469 /* This calculates the immediate dominators (or post-dominators if REVERSE is
470 true). DI is our working structure and should hold the DFS forest.
471 On return the immediate dominator to node V is in di->dom[V]. */
472
473 static void
calc_idoms(struct dom_info * di,enum cdi_direction reverse)474 calc_idoms (struct dom_info *di, enum cdi_direction reverse)
475 {
476 TBB v, w, k, par;
477 basic_block en_block;
478 edge_iterator ei, einext;
479
480 if (reverse)
481 en_block = EXIT_BLOCK_PTR;
482 else
483 en_block = ENTRY_BLOCK_PTR;
484
485 /* Go backwards in DFS order, to first look at the leafs. */
486 v = di->nodes;
487 while (v > 1)
488 {
489 basic_block bb = di->dfs_to_bb[v];
490 edge e;
491
492 par = di->dfs_parent[v];
493 k = v;
494
495 ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
496
497 if (reverse)
498 {
499 /* If this block has a fake edge to exit, process that first. */
500 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
501 {
502 einext = ei;
503 einext.index = 0;
504 goto do_fake_exit_edge;
505 }
506 }
507
508 /* Search all direct predecessors for the smallest node with a path
509 to them. That way we have the smallest node with also a path to
510 us only over nodes behind us. In effect we search for our
511 semidominator. */
512 while (!ei_end_p (ei))
513 {
514 TBB k1;
515 basic_block b;
516
517 e = ei_edge (ei);
518 b = (reverse) ? e->dest : e->src;
519 einext = ei;
520 ei_next (&einext);
521
522 if (b == en_block)
523 {
524 do_fake_exit_edge:
525 k1 = di->dfs_order[last_basic_block];
526 }
527 else
528 k1 = di->dfs_order[b->index];
529
530 /* Call eval() only if really needed. If k1 is above V in DFS tree,
531 then we know, that eval(k1) == k1 and key[k1] == k1. */
532 if (k1 > v)
533 k1 = di->key[eval (di, k1)];
534 if (k1 < k)
535 k = k1;
536
537 ei = einext;
538 }
539
540 di->key[v] = k;
541 link_roots (di, par, v);
542 di->next_bucket[v] = di->bucket[k];
543 di->bucket[k] = v;
544
545 /* Transform semidominators into dominators. */
546 for (w = di->bucket[par]; w; w = di->next_bucket[w])
547 {
548 k = eval (di, w);
549 if (di->key[k] < di->key[w])
550 di->dom[w] = k;
551 else
552 di->dom[w] = par;
553 }
554 /* We don't need to cleanup next_bucket[]. */
555 di->bucket[par] = 0;
556 v--;
557 }
558
559 /* Explicitly define the dominators. */
560 di->dom[1] = 0;
561 for (v = 2; v <= di->nodes; v++)
562 if (di->dom[v] != di->key[v])
563 di->dom[v] = di->dom[di->dom[v]];
564 }
565
566 /* Assign dfs numbers starting from NUM to NODE and its sons. */
567
568 static void
assign_dfs_numbers(struct et_node * node,int * num)569 assign_dfs_numbers (struct et_node *node, int *num)
570 {
571 struct et_node *son;
572
573 node->dfs_num_in = (*num)++;
574
575 if (node->son)
576 {
577 assign_dfs_numbers (node->son, num);
578 for (son = node->son->right; son != node->son; son = son->right)
579 assign_dfs_numbers (son, num);
580 }
581
582 node->dfs_num_out = (*num)++;
583 }
584
585 /* Compute the data necessary for fast resolving of dominator queries in a
586 static dominator tree. */
587
588 static void
compute_dom_fast_query(enum cdi_direction dir)589 compute_dom_fast_query (enum cdi_direction dir)
590 {
591 int num = 0;
592 basic_block bb;
593
594 gcc_assert (dom_info_available_p (dir));
595
596 if (dom_computed[dir] == DOM_OK)
597 return;
598
599 FOR_ALL_BB (bb)
600 {
601 if (!bb->dom[dir]->father)
602 assign_dfs_numbers (bb->dom[dir], &num);
603 }
604
605 dom_computed[dir] = DOM_OK;
606 }
607
608 /* The main entry point into this module. DIR is set depending on whether
609 we want to compute dominators or postdominators. */
610
611 void
calculate_dominance_info(enum cdi_direction dir)612 calculate_dominance_info (enum cdi_direction dir)
613 {
614 struct dom_info di;
615 basic_block b;
616
617 if (dom_computed[dir] == DOM_OK)
618 return;
619
620 timevar_push (TV_DOMINANCE);
621 if (!dom_info_available_p (dir))
622 {
623 gcc_assert (!n_bbs_in_dom_tree[dir]);
624
625 FOR_ALL_BB (b)
626 {
627 b->dom[dir] = et_new_tree (b);
628 }
629 n_bbs_in_dom_tree[dir] = n_basic_blocks;
630
631 init_dom_info (&di, dir);
632 calc_dfs_tree (&di, dir);
633 calc_idoms (&di, dir);
634
635 FOR_EACH_BB (b)
636 {
637 TBB d = di.dom[di.dfs_order[b->index]];
638
639 if (di.dfs_to_bb[d])
640 et_set_father (b->dom[dir], di.dfs_to_bb[d]->dom[dir]);
641 }
642
643 free_dom_info (&di);
644 dom_computed[dir] = DOM_NO_FAST_QUERY;
645 }
646
647 compute_dom_fast_query (dir);
648
649 timevar_pop (TV_DOMINANCE);
650 }
651
652 /* Free dominance information for direction DIR. */
653 void
free_dominance_info(enum cdi_direction dir)654 free_dominance_info (enum cdi_direction dir)
655 {
656 basic_block bb;
657
658 if (!dom_info_available_p (dir))
659 return;
660
661 FOR_ALL_BB (bb)
662 {
663 et_free_tree_force (bb->dom[dir]);
664 bb->dom[dir] = NULL;
665 }
666 et_free_pools ();
667
668 n_bbs_in_dom_tree[dir] = 0;
669
670 dom_computed[dir] = DOM_NONE;
671 }
672
673 /* Return the immediate dominator of basic block BB. */
674 basic_block
get_immediate_dominator(enum cdi_direction dir,basic_block bb)675 get_immediate_dominator (enum cdi_direction dir, basic_block bb)
676 {
677 struct et_node *node = bb->dom[dir];
678
679 gcc_assert (dom_computed[dir]);
680
681 if (!node->father)
682 return NULL;
683
684 return node->father->data;
685 }
686
687 /* Set the immediate dominator of the block possibly removing
688 existing edge. NULL can be used to remove any edge. */
689 inline void
set_immediate_dominator(enum cdi_direction dir,basic_block bb,basic_block dominated_by)690 set_immediate_dominator (enum cdi_direction dir, basic_block bb,
691 basic_block dominated_by)
692 {
693 struct et_node *node = bb->dom[dir];
694
695 gcc_assert (dom_computed[dir]);
696
697 if (node->father)
698 {
699 if (node->father->data == dominated_by)
700 return;
701 et_split (node);
702 }
703
704 if (dominated_by)
705 et_set_father (node, dominated_by->dom[dir]);
706
707 if (dom_computed[dir] == DOM_OK)
708 dom_computed[dir] = DOM_NO_FAST_QUERY;
709 }
710
711 /* Store all basic blocks immediately dominated by BB into BBS and return
712 their number. */
713 int
get_dominated_by(enum cdi_direction dir,basic_block bb,basic_block ** bbs)714 get_dominated_by (enum cdi_direction dir, basic_block bb, basic_block **bbs)
715 {
716 int n;
717 struct et_node *node = bb->dom[dir], *son = node->son, *ason;
718
719 gcc_assert (dom_computed[dir]);
720
721 if (!son)
722 {
723 *bbs = NULL;
724 return 0;
725 }
726
727 for (ason = son->right, n = 1; ason != son; ason = ason->right)
728 n++;
729
730 *bbs = XNEWVEC (basic_block, n);
731 (*bbs)[0] = son->data;
732 for (ason = son->right, n = 1; ason != son; ason = ason->right)
733 (*bbs)[n++] = ason->data;
734
735 return n;
736 }
737
738 /* Find all basic blocks that are immediately dominated (in direction DIR)
739 by some block between N_REGION ones stored in REGION, except for blocks
740 in the REGION itself. The found blocks are stored to DOMS and their number
741 is returned. */
742
743 unsigned
get_dominated_by_region(enum cdi_direction dir,basic_block * region,unsigned n_region,basic_block * doms)744 get_dominated_by_region (enum cdi_direction dir, basic_block *region,
745 unsigned n_region, basic_block *doms)
746 {
747 unsigned n_doms = 0, i;
748 basic_block dom;
749
750 for (i = 0; i < n_region; i++)
751 region[i]->flags |= BB_DUPLICATED;
752 for (i = 0; i < n_region; i++)
753 for (dom = first_dom_son (dir, region[i]);
754 dom;
755 dom = next_dom_son (dir, dom))
756 if (!(dom->flags & BB_DUPLICATED))
757 doms[n_doms++] = dom;
758 for (i = 0; i < n_region; i++)
759 region[i]->flags &= ~BB_DUPLICATED;
760
761 return n_doms;
762 }
763
764 /* Redirect all edges pointing to BB to TO. */
765 void
redirect_immediate_dominators(enum cdi_direction dir,basic_block bb,basic_block to)766 redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
767 basic_block to)
768 {
769 struct et_node *bb_node = bb->dom[dir], *to_node = to->dom[dir], *son;
770
771 gcc_assert (dom_computed[dir]);
772
773 if (!bb_node->son)
774 return;
775
776 while (bb_node->son)
777 {
778 son = bb_node->son;
779
780 et_split (son);
781 et_set_father (son, to_node);
782 }
783
784 if (dom_computed[dir] == DOM_OK)
785 dom_computed[dir] = DOM_NO_FAST_QUERY;
786 }
787
788 /* Find first basic block in the tree dominating both BB1 and BB2. */
789 basic_block
nearest_common_dominator(enum cdi_direction dir,basic_block bb1,basic_block bb2)790 nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
791 {
792 gcc_assert (dom_computed[dir]);
793
794 if (!bb1)
795 return bb2;
796 if (!bb2)
797 return bb1;
798
799 return et_nca (bb1->dom[dir], bb2->dom[dir])->data;
800 }
801
802
803 /* Find the nearest common dominator for the basic blocks in BLOCKS,
804 using dominance direction DIR. */
805
806 basic_block
nearest_common_dominator_for_set(enum cdi_direction dir,bitmap blocks)807 nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
808 {
809 unsigned i, first;
810 bitmap_iterator bi;
811 basic_block dom;
812
813 first = bitmap_first_set_bit (blocks);
814 dom = BASIC_BLOCK (first);
815 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
816 if (dom != BASIC_BLOCK (i))
817 dom = nearest_common_dominator (dir, dom, BASIC_BLOCK (i));
818
819 return dom;
820 }
821
822 /* Given a dominator tree, we can determine whether one thing
823 dominates another in constant time by using two DFS numbers:
824
825 1. The number for when we visit a node on the way down the tree
826 2. The number for when we visit a node on the way back up the tree
827
828 You can view these as bounds for the range of dfs numbers the
829 nodes in the subtree of the dominator tree rooted at that node
830 will contain.
831
832 The dominator tree is always a simple acyclic tree, so there are
833 only three possible relations two nodes in the dominator tree have
834 to each other:
835
836 1. Node A is above Node B (and thus, Node A dominates node B)
837
838 A
839 |
840 C
841 / \
842 B D
843
844
845 In the above case, DFS_Number_In of A will be <= DFS_Number_In of
846 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
847 because we must hit A in the dominator tree *before* B on the walk
848 down, and we will hit A *after* B on the walk back up
849
850 2. Node A is below node B (and thus, node B dominates node A)
851
852
853 B
854 |
855 A
856 / \
857 C D
858
859 In the above case, DFS_Number_In of A will be >= DFS_Number_In of
860 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
861
862 This is because we must hit A in the dominator tree *after* B on
863 the walk down, and we will hit A *before* B on the walk back up
864
865 3. Node A and B are siblings (and thus, neither dominates the other)
866
867 C
868 |
869 D
870 / \
871 A B
872
873 In the above case, DFS_Number_In of A will *always* be <=
874 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
875 DFS_Number_Out of B. This is because we will always finish the dfs
876 walk of one of the subtrees before the other, and thus, the dfs
877 numbers for one subtree can't intersect with the range of dfs
878 numbers for the other subtree. If you swap A and B's position in
879 the dominator tree, the comparison changes direction, but the point
880 is that both comparisons will always go the same way if there is no
881 dominance relationship.
882
883 Thus, it is sufficient to write
884
885 A_Dominates_B (node A, node B)
886 {
887 return DFS_Number_In(A) <= DFS_Number_In(B)
888 && DFS_Number_Out (A) >= DFS_Number_Out(B);
889 }
890
891 A_Dominated_by_B (node A, node B)
892 {
893 return DFS_Number_In(A) >= DFS_Number_In(A)
894 && DFS_Number_Out (A) <= DFS_Number_Out(B);
895 } */
896
897 /* Return TRUE in case BB1 is dominated by BB2. */
898 bool
dominated_by_p(enum cdi_direction dir,basic_block bb1,basic_block bb2)899 dominated_by_p (enum cdi_direction dir, basic_block bb1, basic_block bb2)
900 {
901 struct et_node *n1 = bb1->dom[dir], *n2 = bb2->dom[dir];
902
903 gcc_assert (dom_computed[dir]);
904
905 if (dom_computed[dir] == DOM_OK)
906 return (n1->dfs_num_in >= n2->dfs_num_in
907 && n1->dfs_num_out <= n2->dfs_num_out);
908
909 return et_below (n1, n2);
910 }
911
912 /* Returns the entry dfs number for basic block BB, in the direction DIR. */
913
914 unsigned
bb_dom_dfs_in(enum cdi_direction dir,basic_block bb)915 bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
916 {
917 struct et_node *n = bb->dom[dir];
918
919 gcc_assert (dom_computed[dir] == DOM_OK);
920 return n->dfs_num_in;
921 }
922
923 /* Returns the exit dfs number for basic block BB, in the direction DIR. */
924
925 unsigned
bb_dom_dfs_out(enum cdi_direction dir,basic_block bb)926 bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
927 {
928 struct et_node *n = bb->dom[dir];
929
930 gcc_assert (dom_computed[dir] == DOM_OK);
931 return n->dfs_num_out;
932 }
933
934 /* Verify invariants of dominator structure. */
935 void
verify_dominators(enum cdi_direction dir)936 verify_dominators (enum cdi_direction dir)
937 {
938 int err = 0;
939 basic_block bb;
940
941 gcc_assert (dom_info_available_p (dir));
942
943 FOR_EACH_BB (bb)
944 {
945 basic_block dom_bb;
946 basic_block imm_bb;
947
948 dom_bb = recount_dominator (dir, bb);
949 imm_bb = get_immediate_dominator (dir, bb);
950 if (dom_bb != imm_bb)
951 {
952 if ((dom_bb == NULL) || (imm_bb == NULL))
953 error ("dominator of %d status unknown", bb->index);
954 else
955 error ("dominator of %d should be %d, not %d",
956 bb->index, dom_bb->index, imm_bb->index);
957 err = 1;
958 }
959 }
960
961 if (dir == CDI_DOMINATORS)
962 {
963 FOR_EACH_BB (bb)
964 {
965 if (!dominated_by_p (dir, bb, ENTRY_BLOCK_PTR))
966 {
967 error ("ENTRY does not dominate bb %d", bb->index);
968 err = 1;
969 }
970 }
971 }
972
973 gcc_assert (!err);
974 }
975
976 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
977 assuming that dominators of other blocks are correct. We also use it to
978 recompute the dominators in a restricted area, by iterating it until it
979 reaches a fixed point. */
980
981 basic_block
recount_dominator(enum cdi_direction dir,basic_block bb)982 recount_dominator (enum cdi_direction dir, basic_block bb)
983 {
984 basic_block dom_bb = NULL;
985 edge e;
986 edge_iterator ei;
987
988 gcc_assert (dom_computed[dir]);
989
990 if (dir == CDI_DOMINATORS)
991 {
992 FOR_EACH_EDGE (e, ei, bb->preds)
993 {
994 /* Ignore the predecessors that either are not reachable from
995 the entry block, or whose dominator was not determined yet. */
996 if (!dominated_by_p (dir, e->src, ENTRY_BLOCK_PTR))
997 continue;
998
999 if (!dominated_by_p (dir, e->src, bb))
1000 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1001 }
1002 }
1003 else
1004 {
1005 FOR_EACH_EDGE (e, ei, bb->succs)
1006 {
1007 if (!dominated_by_p (dir, e->dest, bb))
1008 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1009 }
1010 }
1011
1012 return dom_bb;
1013 }
1014
1015 /* Iteratively recount dominators of BBS. The change is supposed to be local
1016 and not to grow further. */
1017 void
iterate_fix_dominators(enum cdi_direction dir,basic_block * bbs,int n)1018 iterate_fix_dominators (enum cdi_direction dir, basic_block *bbs, int n)
1019 {
1020 int i, changed = 1;
1021 basic_block old_dom, new_dom;
1022
1023 gcc_assert (dom_computed[dir]);
1024
1025 for (i = 0; i < n; i++)
1026 set_immediate_dominator (dir, bbs[i], NULL);
1027
1028 while (changed)
1029 {
1030 changed = 0;
1031 for (i = 0; i < n; i++)
1032 {
1033 old_dom = get_immediate_dominator (dir, bbs[i]);
1034 new_dom = recount_dominator (dir, bbs[i]);
1035 if (old_dom != new_dom)
1036 {
1037 changed = 1;
1038 set_immediate_dominator (dir, bbs[i], new_dom);
1039 }
1040 }
1041 }
1042
1043 for (i = 0; i < n; i++)
1044 gcc_assert (get_immediate_dominator (dir, bbs[i]));
1045 }
1046
1047 void
add_to_dominance_info(enum cdi_direction dir,basic_block bb)1048 add_to_dominance_info (enum cdi_direction dir, basic_block bb)
1049 {
1050 gcc_assert (dom_computed[dir]);
1051 gcc_assert (!bb->dom[dir]);
1052
1053 n_bbs_in_dom_tree[dir]++;
1054
1055 bb->dom[dir] = et_new_tree (bb);
1056
1057 if (dom_computed[dir] == DOM_OK)
1058 dom_computed[dir] = DOM_NO_FAST_QUERY;
1059 }
1060
1061 void
delete_from_dominance_info(enum cdi_direction dir,basic_block bb)1062 delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1063 {
1064 gcc_assert (dom_computed[dir]);
1065
1066 et_free_tree (bb->dom[dir]);
1067 bb->dom[dir] = NULL;
1068 n_bbs_in_dom_tree[dir]--;
1069
1070 if (dom_computed[dir] == DOM_OK)
1071 dom_computed[dir] = DOM_NO_FAST_QUERY;
1072 }
1073
1074 /* Returns the first son of BB in the dominator or postdominator tree
1075 as determined by DIR. */
1076
1077 basic_block
first_dom_son(enum cdi_direction dir,basic_block bb)1078 first_dom_son (enum cdi_direction dir, basic_block bb)
1079 {
1080 struct et_node *son = bb->dom[dir]->son;
1081
1082 return son ? son->data : NULL;
1083 }
1084
1085 /* Returns the next dominance son after BB in the dominator or postdominator
1086 tree as determined by DIR, or NULL if it was the last one. */
1087
1088 basic_block
next_dom_son(enum cdi_direction dir,basic_block bb)1089 next_dom_son (enum cdi_direction dir, basic_block bb)
1090 {
1091 struct et_node *next = bb->dom[dir]->right;
1092
1093 return next->father->son == next ? NULL : next->data;
1094 }
1095
1096 /* Returns true if dominance information for direction DIR is available. */
1097
1098 bool
dom_info_available_p(enum cdi_direction dir)1099 dom_info_available_p (enum cdi_direction dir)
1100 {
1101 return dom_computed[dir] != DOM_NONE;
1102 }
1103
1104 void
debug_dominance_info(enum cdi_direction dir)1105 debug_dominance_info (enum cdi_direction dir)
1106 {
1107 basic_block bb, bb2;
1108 FOR_EACH_BB (bb)
1109 if ((bb2 = get_immediate_dominator (dir, bb)))
1110 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
1111 }
1112