1 /* Generic SSA value propagation engine.
2 Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "ggc.h"
31 #include "basic-block.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "function.h"
35 #include "diagnostic.h"
36 #include "timevar.h"
37 #include "tree-dump.h"
38 #include "tree-flow.h"
39 #include "tree-pass.h"
40 #include "tree-ssa-propagate.h"
41 #include "langhooks.h"
42 #include "varray.h"
43 #include "vec.h"
44
45 /* This file implements a generic value propagation engine based on
46 the same propagation used by the SSA-CCP algorithm [1].
47
48 Propagation is performed by simulating the execution of every
49 statement that produces the value being propagated. Simulation
50 proceeds as follows:
51
52 1- Initially, all edges of the CFG are marked not executable and
53 the CFG worklist is seeded with all the statements in the entry
54 basic block (block 0).
55
56 2- Every statement S is simulated with a call to the call-back
57 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
58 results:
59
60 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
61 interest and does not affect any of the work lists.
62
63 SSA_PROP_VARYING: The value produced by S cannot be determined
64 at compile time. Further simulation of S is not required.
65 If S is a conditional jump, all the outgoing edges for the
66 block are considered executable and added to the work
67 list.
68
69 SSA_PROP_INTERESTING: S produces a value that can be computed
70 at compile time. Its result can be propagated into the
71 statements that feed from S. Furthermore, if S is a
72 conditional jump, only the edge known to be taken is added
73 to the work list. Edges that are known not to execute are
74 never simulated.
75
76 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
77 return value from SSA_PROP_VISIT_PHI has the same semantics as
78 described in #2.
79
80 4- Three work lists are kept. Statements are only added to these
81 lists if they produce one of SSA_PROP_INTERESTING or
82 SSA_PROP_VARYING.
83
84 CFG_BLOCKS contains the list of blocks to be simulated.
85 Blocks are added to this list if their incoming edges are
86 found executable.
87
88 VARYING_SSA_EDGES contains the list of statements that feed
89 from statements that produce an SSA_PROP_VARYING result.
90 These are simulated first to speed up processing.
91
92 INTERESTING_SSA_EDGES contains the list of statements that
93 feed from statements that produce an SSA_PROP_INTERESTING
94 result.
95
96 5- Simulation terminates when all three work lists are drained.
97
98 Before calling ssa_propagate, it is important to clear
99 DONT_SIMULATE_AGAIN for all the statements in the program that
100 should be simulated. This initialization allows an implementation
101 to specify which statements should never be simulated.
102
103 It is also important to compute def-use information before calling
104 ssa_propagate.
105
106 References:
107
108 [1] Constant propagation with conditional branches,
109 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
110
111 [2] Building an Optimizing Compiler,
112 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
113
114 [3] Advanced Compiler Design and Implementation,
115 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
116
117 /* Function pointers used to parameterize the propagation engine. */
118 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
119 static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
120
121 /* Use the TREE_DEPRECATED bitflag to mark statements that have been
122 added to one of the SSA edges worklists. This flag is used to
123 avoid visiting statements unnecessarily when draining an SSA edge
124 worklist. If while simulating a basic block, we find a statement with
125 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
126 processing from visiting it again. */
127 #define STMT_IN_SSA_EDGE_WORKLIST(T) TREE_DEPRECATED (T)
128
129 /* A bitmap to keep track of executable blocks in the CFG. */
130 static sbitmap executable_blocks;
131
132 /* Array of control flow edges on the worklist. */
133 static VEC(basic_block,heap) *cfg_blocks;
134
135 static unsigned int cfg_blocks_num = 0;
136 static int cfg_blocks_tail;
137 static int cfg_blocks_head;
138
139 static sbitmap bb_in_list;
140
141 /* Worklist of SSA edges which will need reexamination as their
142 definition has changed. SSA edges are def-use edges in the SSA
143 web. For each D-U edge, we store the target statement or PHI node
144 U. */
145 static GTY(()) VEC(tree,gc) *interesting_ssa_edges;
146
147 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
148 list of SSA edges is split into two. One contains all SSA edges
149 who need to be reexamined because their lattice value changed to
150 varying (this worklist), and the other contains all other SSA edges
151 to be reexamined (INTERESTING_SSA_EDGES).
152
153 Since most values in the program are VARYING, the ideal situation
154 is to move them to that lattice value as quickly as possible.
155 Thus, it doesn't make sense to process any other type of lattice
156 value until all VARYING values are propagated fully, which is one
157 thing using the VARYING worklist achieves. In addition, if we
158 don't use a separate worklist for VARYING edges, we end up with
159 situations where lattice values move from
160 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
161 static GTY(()) VEC(tree,gc) *varying_ssa_edges;
162
163
164 /* Return true if the block worklist empty. */
165
166 static inline bool
cfg_blocks_empty_p(void)167 cfg_blocks_empty_p (void)
168 {
169 return (cfg_blocks_num == 0);
170 }
171
172
173 /* Add a basic block to the worklist. The block must not be already
174 in the worklist, and it must not be the ENTRY or EXIT block. */
175
176 static void
cfg_blocks_add(basic_block bb)177 cfg_blocks_add (basic_block bb)
178 {
179 gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
180 gcc_assert (!TEST_BIT (bb_in_list, bb->index));
181
182 if (cfg_blocks_empty_p ())
183 {
184 cfg_blocks_tail = cfg_blocks_head = 0;
185 cfg_blocks_num = 1;
186 }
187 else
188 {
189 cfg_blocks_num++;
190 if (cfg_blocks_num > VEC_length (basic_block, cfg_blocks))
191 {
192 /* We have to grow the array now. Adjust to queue to occupy
193 the full space of the original array. We do not need to
194 initialize the newly allocated portion of the array
195 because we keep track of CFG_BLOCKS_HEAD and
196 CFG_BLOCKS_HEAD. */
197 cfg_blocks_tail = VEC_length (basic_block, cfg_blocks);
198 cfg_blocks_head = 0;
199 VEC_safe_grow (basic_block, heap, cfg_blocks, 2 * cfg_blocks_tail);
200 }
201 else
202 cfg_blocks_tail = ((cfg_blocks_tail + 1)
203 % VEC_length (basic_block, cfg_blocks));
204 }
205
206 VEC_replace (basic_block, cfg_blocks, cfg_blocks_tail, bb);
207 SET_BIT (bb_in_list, bb->index);
208 }
209
210
211 /* Remove a block from the worklist. */
212
213 static basic_block
cfg_blocks_get(void)214 cfg_blocks_get (void)
215 {
216 basic_block bb;
217
218 bb = VEC_index (basic_block, cfg_blocks, cfg_blocks_head);
219
220 gcc_assert (!cfg_blocks_empty_p ());
221 gcc_assert (bb);
222
223 cfg_blocks_head = ((cfg_blocks_head + 1)
224 % VEC_length (basic_block, cfg_blocks));
225 --cfg_blocks_num;
226 RESET_BIT (bb_in_list, bb->index);
227
228 return bb;
229 }
230
231
232 /* We have just defined a new value for VAR. If IS_VARYING is true,
233 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
234 them to INTERESTING_SSA_EDGES. */
235
236 static void
add_ssa_edge(tree var,bool is_varying)237 add_ssa_edge (tree var, bool is_varying)
238 {
239 imm_use_iterator iter;
240 use_operand_p use_p;
241
242 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
243 {
244 tree use_stmt = USE_STMT (use_p);
245
246 if (!DONT_SIMULATE_AGAIN (use_stmt)
247 && !STMT_IN_SSA_EDGE_WORKLIST (use_stmt))
248 {
249 STMT_IN_SSA_EDGE_WORKLIST (use_stmt) = 1;
250 if (is_varying)
251 VEC_safe_push (tree, gc, varying_ssa_edges, use_stmt);
252 else
253 VEC_safe_push (tree, gc, interesting_ssa_edges, use_stmt);
254 }
255 }
256 }
257
258
259 /* Add edge E to the control flow worklist. */
260
261 static void
add_control_edge(edge e)262 add_control_edge (edge e)
263 {
264 basic_block bb = e->dest;
265 if (bb == EXIT_BLOCK_PTR)
266 return;
267
268 /* If the edge had already been executed, skip it. */
269 if (e->flags & EDGE_EXECUTABLE)
270 return;
271
272 e->flags |= EDGE_EXECUTABLE;
273
274 /* If the block is already in the list, we're done. */
275 if (TEST_BIT (bb_in_list, bb->index))
276 return;
277
278 cfg_blocks_add (bb);
279
280 if (dump_file && (dump_flags & TDF_DETAILS))
281 fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
282 e->src->index, e->dest->index);
283 }
284
285
286 /* Simulate the execution of STMT and update the work lists accordingly. */
287
288 static void
simulate_stmt(tree stmt)289 simulate_stmt (tree stmt)
290 {
291 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
292 edge taken_edge = NULL;
293 tree output_name = NULL_TREE;
294
295 /* Don't bother visiting statements that are already
296 considered varying by the propagator. */
297 if (DONT_SIMULATE_AGAIN (stmt))
298 return;
299
300 if (TREE_CODE (stmt) == PHI_NODE)
301 {
302 val = ssa_prop_visit_phi (stmt);
303 output_name = PHI_RESULT (stmt);
304 }
305 else
306 val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
307
308 if (val == SSA_PROP_VARYING)
309 {
310 DONT_SIMULATE_AGAIN (stmt) = 1;
311
312 /* If the statement produced a new varying value, add the SSA
313 edges coming out of OUTPUT_NAME. */
314 if (output_name)
315 add_ssa_edge (output_name, true);
316
317 /* If STMT transfers control out of its basic block, add
318 all outgoing edges to the work list. */
319 if (stmt_ends_bb_p (stmt))
320 {
321 edge e;
322 edge_iterator ei;
323 basic_block bb = bb_for_stmt (stmt);
324 FOR_EACH_EDGE (e, ei, bb->succs)
325 add_control_edge (e);
326 }
327 }
328 else if (val == SSA_PROP_INTERESTING)
329 {
330 /* If the statement produced new value, add the SSA edges coming
331 out of OUTPUT_NAME. */
332 if (output_name)
333 add_ssa_edge (output_name, false);
334
335 /* If we know which edge is going to be taken out of this block,
336 add it to the CFG work list. */
337 if (taken_edge)
338 add_control_edge (taken_edge);
339 }
340 }
341
342 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
343 drain. This pops statements off the given WORKLIST and processes
344 them until there are no more statements on WORKLIST.
345 We take a pointer to WORKLIST because it may be reallocated when an
346 SSA edge is added to it in simulate_stmt. */
347
348 static void
process_ssa_edge_worklist(VEC (tree,gc)** worklist)349 process_ssa_edge_worklist (VEC(tree,gc) **worklist)
350 {
351 /* Drain the entire worklist. */
352 while (VEC_length (tree, *worklist) > 0)
353 {
354 basic_block bb;
355
356 /* Pull the statement to simulate off the worklist. */
357 tree stmt = VEC_pop (tree, *worklist);
358
359 /* If this statement was already visited by simulate_block, then
360 we don't need to visit it again here. */
361 if (!STMT_IN_SSA_EDGE_WORKLIST (stmt))
362 continue;
363
364 /* STMT is no longer in a worklist. */
365 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
366
367 if (dump_file && (dump_flags & TDF_DETAILS))
368 {
369 fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
370 print_generic_stmt (dump_file, stmt, dump_flags);
371 }
372
373 bb = bb_for_stmt (stmt);
374
375 /* PHI nodes are always visited, regardless of whether or not
376 the destination block is executable. Otherwise, visit the
377 statement only if its block is marked executable. */
378 if (TREE_CODE (stmt) == PHI_NODE
379 || TEST_BIT (executable_blocks, bb->index))
380 simulate_stmt (stmt);
381 }
382 }
383
384
385 /* Simulate the execution of BLOCK. Evaluate the statement associated
386 with each variable reference inside the block. */
387
388 static void
simulate_block(basic_block block)389 simulate_block (basic_block block)
390 {
391 tree phi;
392
393 /* There is nothing to do for the exit block. */
394 if (block == EXIT_BLOCK_PTR)
395 return;
396
397 if (dump_file && (dump_flags & TDF_DETAILS))
398 fprintf (dump_file, "\nSimulating block %d\n", block->index);
399
400 /* Always simulate PHI nodes, even if we have simulated this block
401 before. */
402 for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
403 simulate_stmt (phi);
404
405 /* If this is the first time we've simulated this block, then we
406 must simulate each of its statements. */
407 if (!TEST_BIT (executable_blocks, block->index))
408 {
409 block_stmt_iterator j;
410 unsigned int normal_edge_count;
411 edge e, normal_edge;
412 edge_iterator ei;
413
414 /* Note that we have simulated this block. */
415 SET_BIT (executable_blocks, block->index);
416
417 for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j))
418 {
419 tree stmt = bsi_stmt (j);
420
421 /* If this statement is already in the worklist then
422 "cancel" it. The reevaluation implied by the worklist
423 entry will produce the same value we generate here and
424 thus reevaluating it again from the worklist is
425 pointless. */
426 if (STMT_IN_SSA_EDGE_WORKLIST (stmt))
427 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
428
429 simulate_stmt (stmt);
430 }
431
432 /* We can not predict when abnormal edges will be executed, so
433 once a block is considered executable, we consider any
434 outgoing abnormal edges as executable.
435
436 At the same time, if this block has only one successor that is
437 reached by non-abnormal edges, then add that successor to the
438 worklist. */
439 normal_edge_count = 0;
440 normal_edge = NULL;
441 FOR_EACH_EDGE (e, ei, block->succs)
442 {
443 if (e->flags & EDGE_ABNORMAL)
444 add_control_edge (e);
445 else
446 {
447 normal_edge_count++;
448 normal_edge = e;
449 }
450 }
451
452 if (normal_edge_count == 1)
453 add_control_edge (normal_edge);
454 }
455 }
456
457
458 /* Initialize local data structures and work lists. */
459
460 static void
ssa_prop_init(void)461 ssa_prop_init (void)
462 {
463 edge e;
464 edge_iterator ei;
465 basic_block bb;
466 size_t i;
467
468 /* Worklists of SSA edges. */
469 interesting_ssa_edges = VEC_alloc (tree, gc, 20);
470 varying_ssa_edges = VEC_alloc (tree, gc, 20);
471
472 executable_blocks = sbitmap_alloc (last_basic_block);
473 sbitmap_zero (executable_blocks);
474
475 bb_in_list = sbitmap_alloc (last_basic_block);
476 sbitmap_zero (bb_in_list);
477
478 if (dump_file && (dump_flags & TDF_DETAILS))
479 dump_immediate_uses (dump_file);
480
481 cfg_blocks = VEC_alloc (basic_block, heap, 20);
482 VEC_safe_grow (basic_block, heap, cfg_blocks, 20);
483
484 /* Initialize the values for every SSA_NAME. */
485 for (i = 1; i < num_ssa_names; i++)
486 if (ssa_name (i))
487 SSA_NAME_VALUE (ssa_name (i)) = NULL_TREE;
488
489 /* Initially assume that every edge in the CFG is not executable.
490 (including the edges coming out of ENTRY_BLOCK_PTR). */
491 FOR_ALL_BB (bb)
492 {
493 block_stmt_iterator si;
494
495 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
496 STMT_IN_SSA_EDGE_WORKLIST (bsi_stmt (si)) = 0;
497
498 FOR_EACH_EDGE (e, ei, bb->succs)
499 e->flags &= ~EDGE_EXECUTABLE;
500 }
501
502 /* Seed the algorithm by adding the successors of the entry block to the
503 edge worklist. */
504 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
505 add_control_edge (e);
506 }
507
508
509 /* Free allocated storage. */
510
511 static void
ssa_prop_fini(void)512 ssa_prop_fini (void)
513 {
514 VEC_free (tree, gc, interesting_ssa_edges);
515 VEC_free (tree, gc, varying_ssa_edges);
516 VEC_free (basic_block, heap, cfg_blocks);
517 cfg_blocks = NULL;
518 sbitmap_free (bb_in_list);
519 sbitmap_free (executable_blocks);
520 }
521
522
523 /* Get the main expression from statement STMT. */
524
525 tree
get_rhs(tree stmt)526 get_rhs (tree stmt)
527 {
528 enum tree_code code = TREE_CODE (stmt);
529
530 switch (code)
531 {
532 case RETURN_EXPR:
533 stmt = TREE_OPERAND (stmt, 0);
534 if (!stmt || TREE_CODE (stmt) != MODIFY_EXPR)
535 return stmt;
536 /* FALLTHRU */
537
538 case MODIFY_EXPR:
539 stmt = TREE_OPERAND (stmt, 1);
540 if (TREE_CODE (stmt) == WITH_SIZE_EXPR)
541 return TREE_OPERAND (stmt, 0);
542 else
543 return stmt;
544
545 case COND_EXPR:
546 return COND_EXPR_COND (stmt);
547 case SWITCH_EXPR:
548 return SWITCH_COND (stmt);
549 case GOTO_EXPR:
550 return GOTO_DESTINATION (stmt);
551 case LABEL_EXPR:
552 return LABEL_EXPR_LABEL (stmt);
553
554 default:
555 return stmt;
556 }
557 }
558
559
560 /* Set the main expression of *STMT_P to EXPR. If EXPR is not a valid
561 GIMPLE expression no changes are done and the function returns
562 false. */
563
564 bool
set_rhs(tree * stmt_p,tree expr)565 set_rhs (tree *stmt_p, tree expr)
566 {
567 tree stmt = *stmt_p, op;
568 enum tree_code code = TREE_CODE (expr);
569 stmt_ann_t ann;
570 tree var;
571 ssa_op_iter iter;
572
573 /* Verify the constant folded result is valid gimple. */
574 switch (TREE_CODE_CLASS (code))
575 {
576 case tcc_declaration:
577 if (!is_gimple_variable(expr))
578 return false;
579 break;
580
581 case tcc_constant:
582 break;
583
584 case tcc_binary:
585 case tcc_comparison:
586 if (!is_gimple_val (TREE_OPERAND (expr, 0))
587 || !is_gimple_val (TREE_OPERAND (expr, 1)))
588 return false;
589 break;
590
591 case tcc_unary:
592 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
593 return false;
594 break;
595 case tcc_expression:
596 switch (code)
597 {
598 case ADDR_EXPR:
599 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ARRAY_REF
600 && !is_gimple_val (TREE_OPERAND (TREE_OPERAND (expr, 0), 1)))
601 return false;
602 break;
603
604 case TRUTH_NOT_EXPR:
605 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
606 return false;
607 break;
608
609 case TRUTH_AND_EXPR:
610 case TRUTH_XOR_EXPR:
611 case TRUTH_OR_EXPR:
612 if (!is_gimple_val (TREE_OPERAND (expr, 0))
613 || !is_gimple_val (TREE_OPERAND (expr, 1)))
614 return false;
615 break;
616
617 case CALL_EXPR:
618 case EXC_PTR_EXPR:
619 case FILTER_EXPR:
620 break;
621
622 default:
623 return false;
624 }
625 break;
626
627 case tcc_exceptional:
628 switch (code)
629 {
630 case SSA_NAME:
631 break;
632
633 default:
634 return false;
635 }
636 break;
637
638 default:
639 return false;
640 }
641
642 if (EXPR_HAS_LOCATION (stmt)
643 && EXPR_P (expr)
644 && ! EXPR_HAS_LOCATION (expr)
645 && TREE_SIDE_EFFECTS (expr)
646 && TREE_CODE (expr) != LABEL_EXPR)
647 SET_EXPR_LOCATION (expr, EXPR_LOCATION (stmt));
648
649 switch (TREE_CODE (stmt))
650 {
651 case RETURN_EXPR:
652 op = TREE_OPERAND (stmt, 0);
653 if (TREE_CODE (op) != MODIFY_EXPR)
654 {
655 TREE_OPERAND (stmt, 0) = expr;
656 break;
657 }
658 stmt = op;
659 /* FALLTHRU */
660
661 case MODIFY_EXPR:
662 op = TREE_OPERAND (stmt, 1);
663 if (TREE_CODE (op) == WITH_SIZE_EXPR)
664 stmt = op;
665 TREE_OPERAND (stmt, 1) = expr;
666 break;
667
668 case COND_EXPR:
669 if (!is_gimple_condexpr (expr))
670 return false;
671 COND_EXPR_COND (stmt) = expr;
672 break;
673 case SWITCH_EXPR:
674 SWITCH_COND (stmt) = expr;
675 break;
676 case GOTO_EXPR:
677 GOTO_DESTINATION (stmt) = expr;
678 break;
679 case LABEL_EXPR:
680 LABEL_EXPR_LABEL (stmt) = expr;
681 break;
682
683 default:
684 /* Replace the whole statement with EXPR. If EXPR has no side
685 effects, then replace *STMT_P with an empty statement. */
686 ann = stmt_ann (stmt);
687 *stmt_p = TREE_SIDE_EFFECTS (expr) ? expr : build_empty_stmt ();
688 (*stmt_p)->common.ann = (tree_ann_t) ann;
689
690 if (in_ssa_p
691 && TREE_SIDE_EFFECTS (expr))
692 {
693 /* Fix all the SSA_NAMEs created by *STMT_P to point to its new
694 replacement. */
695 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_DEFS)
696 {
697 if (TREE_CODE (var) == SSA_NAME)
698 SSA_NAME_DEF_STMT (var) = *stmt_p;
699 }
700 }
701 break;
702 }
703
704 return true;
705 }
706
707
708 /* Entry point to the propagation engine.
709
710 VISIT_STMT is called for every statement visited.
711 VISIT_PHI is called for every PHI node visited. */
712
713 void
ssa_propagate(ssa_prop_visit_stmt_fn visit_stmt,ssa_prop_visit_phi_fn visit_phi)714 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
715 ssa_prop_visit_phi_fn visit_phi)
716 {
717 ssa_prop_visit_stmt = visit_stmt;
718 ssa_prop_visit_phi = visit_phi;
719
720 ssa_prop_init ();
721
722 /* Iterate until the worklists are empty. */
723 while (!cfg_blocks_empty_p ()
724 || VEC_length (tree, interesting_ssa_edges) > 0
725 || VEC_length (tree, varying_ssa_edges) > 0)
726 {
727 if (!cfg_blocks_empty_p ())
728 {
729 /* Pull the next block to simulate off the worklist. */
730 basic_block dest_block = cfg_blocks_get ();
731 simulate_block (dest_block);
732 }
733
734 /* In order to move things to varying as quickly as
735 possible,process the VARYING_SSA_EDGES worklist first. */
736 process_ssa_edge_worklist (&varying_ssa_edges);
737
738 /* Now process the INTERESTING_SSA_EDGES worklist. */
739 process_ssa_edge_worklist (&interesting_ssa_edges);
740 }
741
742 ssa_prop_fini ();
743 }
744
745
746 /* Return the first V_MAY_DEF or V_MUST_DEF operand for STMT. */
747
748 tree
first_vdef(tree stmt)749 first_vdef (tree stmt)
750 {
751 ssa_op_iter iter;
752 tree op;
753
754 /* Simply return the first operand we arrive at. */
755 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
756 return (op);
757
758 gcc_unreachable ();
759 }
760
761
762 /* Return true if STMT is of the form 'LHS = mem_ref', where 'mem_ref'
763 is a non-volatile pointer dereference, a structure reference or a
764 reference to a single _DECL. Ignore volatile memory references
765 because they are not interesting for the optimizers. */
766
767 bool
stmt_makes_single_load(tree stmt)768 stmt_makes_single_load (tree stmt)
769 {
770 tree rhs;
771
772 if (TREE_CODE (stmt) != MODIFY_EXPR)
773 return false;
774
775 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VUSE))
776 return false;
777
778 rhs = TREE_OPERAND (stmt, 1);
779 STRIP_NOPS (rhs);
780
781 return (!TREE_THIS_VOLATILE (rhs)
782 && (DECL_P (rhs)
783 || REFERENCE_CLASS_P (rhs)));
784 }
785
786
787 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
788 is a non-volatile pointer dereference, a structure reference or a
789 reference to a single _DECL. Ignore volatile memory references
790 because they are not interesting for the optimizers. */
791
792 bool
stmt_makes_single_store(tree stmt)793 stmt_makes_single_store (tree stmt)
794 {
795 tree lhs;
796
797 if (TREE_CODE (stmt) != MODIFY_EXPR)
798 return false;
799
800 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VMUSTDEF))
801 return false;
802
803 lhs = TREE_OPERAND (stmt, 0);
804 STRIP_NOPS (lhs);
805
806 return (!TREE_THIS_VOLATILE (lhs)
807 && (DECL_P (lhs)
808 || REFERENCE_CLASS_P (lhs)));
809 }
810
811
812 /* If STMT makes a single memory load and all the virtual use operands
813 have the same value in array VALUES, return it. Otherwise, return
814 NULL. */
815
816 prop_value_t *
get_value_loaded_by(tree stmt,prop_value_t * values)817 get_value_loaded_by (tree stmt, prop_value_t *values)
818 {
819 ssa_op_iter i;
820 tree vuse;
821 prop_value_t *prev_val = NULL;
822 prop_value_t *val = NULL;
823
824 FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, i, SSA_OP_VIRTUAL_USES)
825 {
826 val = &values[SSA_NAME_VERSION (vuse)];
827 if (prev_val && prev_val->value != val->value)
828 return NULL;
829 prev_val = val;
830 }
831
832 return val;
833 }
834
835
836 /* Propagation statistics. */
837 struct prop_stats_d
838 {
839 long num_const_prop;
840 long num_copy_prop;
841 long num_pred_folded;
842 };
843
844 static struct prop_stats_d prop_stats;
845
846 /* Replace USE references in statement STMT with the values stored in
847 PROP_VALUE. Return true if at least one reference was replaced. If
848 REPLACED_ADDRESSES_P is given, it will be set to true if an address
849 constant was replaced. */
850
851 bool
replace_uses_in(tree stmt,bool * replaced_addresses_p,prop_value_t * prop_value)852 replace_uses_in (tree stmt, bool *replaced_addresses_p,
853 prop_value_t *prop_value)
854 {
855 bool replaced = false;
856 use_operand_p use;
857 ssa_op_iter iter;
858
859 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
860 {
861 tree tuse = USE_FROM_PTR (use);
862 tree val = prop_value[SSA_NAME_VERSION (tuse)].value;
863
864 if (val == tuse || val == NULL_TREE)
865 continue;
866
867 if (TREE_CODE (stmt) == ASM_EXPR
868 && !may_propagate_copy_into_asm (tuse))
869 continue;
870
871 if (!may_propagate_copy (tuse, val))
872 continue;
873
874 if (TREE_CODE (val) != SSA_NAME)
875 prop_stats.num_const_prop++;
876 else
877 prop_stats.num_copy_prop++;
878
879 propagate_value (use, val);
880
881 replaced = true;
882 if (POINTER_TYPE_P (TREE_TYPE (tuse)) && replaced_addresses_p)
883 *replaced_addresses_p = true;
884 }
885
886 return replaced;
887 }
888
889
890 /* Replace the VUSE references in statement STMT with the values
891 stored in PROP_VALUE. Return true if a reference was replaced. If
892 REPLACED_ADDRESSES_P is given, it will be set to true if an address
893 constant was replaced.
894
895 Replacing VUSE operands is slightly more complex than replacing
896 regular USEs. We are only interested in two types of replacements
897 here:
898
899 1- If the value to be replaced is a constant or an SSA name for a
900 GIMPLE register, then we are making a copy/constant propagation
901 from a memory store. For instance,
902
903 # a_3 = V_MAY_DEF <a_2>
904 a.b = x_1;
905 ...
906 # VUSE <a_3>
907 y_4 = a.b;
908
909 This replacement is only possible iff STMT is an assignment
910 whose RHS is identical to the LHS of the statement that created
911 the VUSE(s) that we are replacing. Otherwise, we may do the
912 wrong replacement:
913
914 # a_3 = V_MAY_DEF <a_2>
915 # b_5 = V_MAY_DEF <b_4>
916 *p = 10;
917 ...
918 # VUSE <b_5>
919 x_8 = b;
920
921 Even though 'b_5' acquires the value '10' during propagation,
922 there is no way for the propagator to tell whether the
923 replacement is correct in every reached use, because values are
924 computed at definition sites. Therefore, when doing final
925 substitution of propagated values, we have to check each use
926 site. Since the RHS of STMT ('b') is different from the LHS of
927 the originating statement ('*p'), we cannot replace 'b' with
928 '10'.
929
930 Similarly, when merging values from PHI node arguments,
931 propagators need to take care not to merge the same values
932 stored in different locations:
933
934 if (...)
935 # a_3 = V_MAY_DEF <a_2>
936 a.b = 3;
937 else
938 # a_4 = V_MAY_DEF <a_2>
939 a.c = 3;
940 # a_5 = PHI <a_3, a_4>
941
942 It would be wrong to propagate '3' into 'a_5' because that
943 operation merges two stores to different memory locations.
944
945
946 2- If the value to be replaced is an SSA name for a virtual
947 register, then we simply replace each VUSE operand with its
948 value from PROP_VALUE. This is the same replacement done by
949 replace_uses_in. */
950
951 static bool
replace_vuses_in(tree stmt,bool * replaced_addresses_p,prop_value_t * prop_value)952 replace_vuses_in (tree stmt, bool *replaced_addresses_p,
953 prop_value_t *prop_value)
954 {
955 bool replaced = false;
956 ssa_op_iter iter;
957 use_operand_p vuse;
958
959 if (stmt_makes_single_load (stmt))
960 {
961 /* If STMT is an assignment whose RHS is a single memory load,
962 see if we are trying to propagate a constant or a GIMPLE
963 register (case #1 above). */
964 prop_value_t *val = get_value_loaded_by (stmt, prop_value);
965 tree rhs = TREE_OPERAND (stmt, 1);
966
967 if (val
968 && val->value
969 && (is_gimple_reg (val->value)
970 || is_gimple_min_invariant (val->value))
971 && simple_cst_equal (rhs, val->mem_ref) == 1)
972
973 {
974 /* If we are replacing a constant address, inform our
975 caller. */
976 if (TREE_CODE (val->value) != SSA_NAME
977 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (stmt, 1)))
978 && replaced_addresses_p)
979 *replaced_addresses_p = true;
980
981 /* We can only perform the substitution if the load is done
982 from the same memory location as the original store.
983 Since we already know that there are no intervening
984 stores between DEF_STMT and STMT, we only need to check
985 that the RHS of STMT is the same as the memory reference
986 propagated together with the value. */
987 TREE_OPERAND (stmt, 1) = val->value;
988
989 if (TREE_CODE (val->value) != SSA_NAME)
990 prop_stats.num_const_prop++;
991 else
992 prop_stats.num_copy_prop++;
993
994 /* Since we have replaced the whole RHS of STMT, there
995 is no point in checking the other VUSEs, as they will
996 all have the same value. */
997 return true;
998 }
999 }
1000
1001 /* Otherwise, the values for every VUSE operand must be other
1002 SSA_NAMEs that can be propagated into STMT. */
1003 FOR_EACH_SSA_USE_OPERAND (vuse, stmt, iter, SSA_OP_VIRTUAL_USES)
1004 {
1005 tree var = USE_FROM_PTR (vuse);
1006 tree val = prop_value[SSA_NAME_VERSION (var)].value;
1007
1008 if (val == NULL_TREE || var == val)
1009 continue;
1010
1011 /* Constants and copies propagated between real and virtual
1012 operands are only possible in the cases handled above. They
1013 should be ignored in any other context. */
1014 if (is_gimple_min_invariant (val) || is_gimple_reg (val))
1015 continue;
1016
1017 propagate_value (vuse, val);
1018 prop_stats.num_copy_prop++;
1019 replaced = true;
1020 }
1021
1022 return replaced;
1023 }
1024
1025
1026 /* Replace propagated values into all the arguments for PHI using the
1027 values from PROP_VALUE. */
1028
1029 static void
replace_phi_args_in(tree phi,prop_value_t * prop_value)1030 replace_phi_args_in (tree phi, prop_value_t *prop_value)
1031 {
1032 int i;
1033 bool replaced = false;
1034 tree prev_phi = NULL;
1035
1036 if (dump_file && (dump_flags & TDF_DETAILS))
1037 prev_phi = unshare_expr (phi);
1038
1039 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1040 {
1041 tree arg = PHI_ARG_DEF (phi, i);
1042
1043 if (TREE_CODE (arg) == SSA_NAME)
1044 {
1045 tree val = prop_value[SSA_NAME_VERSION (arg)].value;
1046
1047 if (val && val != arg && may_propagate_copy (arg, val))
1048 {
1049 if (TREE_CODE (val) != SSA_NAME)
1050 prop_stats.num_const_prop++;
1051 else
1052 prop_stats.num_copy_prop++;
1053
1054 propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
1055 replaced = true;
1056
1057 /* If we propagated a copy and this argument flows
1058 through an abnormal edge, update the replacement
1059 accordingly. */
1060 if (TREE_CODE (val) == SSA_NAME
1061 && PHI_ARG_EDGE (phi, i)->flags & EDGE_ABNORMAL)
1062 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1063 }
1064 }
1065 }
1066
1067 if (replaced && dump_file && (dump_flags & TDF_DETAILS))
1068 {
1069 fprintf (dump_file, "Folded PHI node: ");
1070 print_generic_stmt (dump_file, prev_phi, TDF_SLIM);
1071 fprintf (dump_file, " into: ");
1072 print_generic_stmt (dump_file, phi, TDF_SLIM);
1073 fprintf (dump_file, "\n");
1074 }
1075 }
1076
1077
1078 /* If STMT has a predicate whose value can be computed using the value
1079 range information computed by VRP, compute its value and return true.
1080 Otherwise, return false. */
1081
1082 static bool
fold_predicate_in(tree stmt)1083 fold_predicate_in (tree stmt)
1084 {
1085 tree *pred_p = NULL;
1086 bool modify_expr_p = false;
1087 tree val;
1088
1089 if (TREE_CODE (stmt) == MODIFY_EXPR
1090 && COMPARISON_CLASS_P (TREE_OPERAND (stmt, 1)))
1091 {
1092 modify_expr_p = true;
1093 pred_p = &TREE_OPERAND (stmt, 1);
1094 }
1095 else if (TREE_CODE (stmt) == COND_EXPR)
1096 pred_p = &COND_EXPR_COND (stmt);
1097 else
1098 return false;
1099
1100 val = vrp_evaluate_conditional (*pred_p, stmt);
1101 if (val)
1102 {
1103 if (modify_expr_p)
1104 val = fold_convert (TREE_TYPE (*pred_p), val);
1105
1106 if (dump_file)
1107 {
1108 fprintf (dump_file, "Folding predicate ");
1109 print_generic_expr (dump_file, *pred_p, 0);
1110 fprintf (dump_file, " to ");
1111 print_generic_expr (dump_file, val, 0);
1112 fprintf (dump_file, "\n");
1113 }
1114
1115 prop_stats.num_pred_folded++;
1116 *pred_p = val;
1117 return true;
1118 }
1119
1120 return false;
1121 }
1122
1123
1124 /* Perform final substitution and folding of propagated values.
1125
1126 PROP_VALUE[I] contains the single value that should be substituted
1127 at every use of SSA name N_I. If PROP_VALUE is NULL, no values are
1128 substituted.
1129
1130 If USE_RANGES_P is true, statements that contain predicate
1131 expressions are evaluated with a call to vrp_evaluate_conditional.
1132 This will only give meaningful results when called from tree-vrp.c
1133 (the information used by vrp_evaluate_conditional is built by the
1134 VRP pass). */
1135
1136 void
substitute_and_fold(prop_value_t * prop_value,bool use_ranges_p)1137 substitute_and_fold (prop_value_t *prop_value, bool use_ranges_p)
1138 {
1139 basic_block bb;
1140
1141 if (prop_value == NULL && !use_ranges_p)
1142 return;
1143
1144 if (dump_file && (dump_flags & TDF_DETAILS))
1145 fprintf (dump_file, "\nSubstituing values and folding statements\n\n");
1146
1147 memset (&prop_stats, 0, sizeof (prop_stats));
1148
1149 /* Substitute values in every statement of every basic block. */
1150 FOR_EACH_BB (bb)
1151 {
1152 block_stmt_iterator i;
1153 tree phi;
1154
1155 /* Propagate known values into PHI nodes. */
1156 if (prop_value)
1157 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1158 replace_phi_args_in (phi, prop_value);
1159
1160 for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
1161 {
1162 bool replaced_address, did_replace;
1163 tree prev_stmt = NULL;
1164 tree stmt = bsi_stmt (i);
1165
1166 /* Ignore ASSERT_EXPRs. They are used by VRP to generate
1167 range information for names and they are discarded
1168 afterwards. */
1169 if (TREE_CODE (stmt) == MODIFY_EXPR
1170 && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
1171 continue;
1172
1173 /* Replace the statement with its folded version and mark it
1174 folded. */
1175 did_replace = false;
1176 replaced_address = false;
1177 if (dump_file && (dump_flags & TDF_DETAILS))
1178 prev_stmt = unshare_expr (stmt);
1179
1180 /* If we have range information, see if we can fold
1181 predicate expressions. */
1182 if (use_ranges_p)
1183 did_replace = fold_predicate_in (stmt);
1184
1185 if (prop_value)
1186 {
1187 /* Only replace real uses if we couldn't fold the
1188 statement using value range information (value range
1189 information is not collected on virtuals, so we only
1190 need to check this for real uses). */
1191 if (!did_replace)
1192 did_replace |= replace_uses_in (stmt, &replaced_address,
1193 prop_value);
1194
1195 did_replace |= replace_vuses_in (stmt, &replaced_address,
1196 prop_value);
1197 }
1198
1199 /* If we made a replacement, fold and cleanup the statement. */
1200 if (did_replace)
1201 {
1202 tree old_stmt = stmt;
1203 tree rhs;
1204
1205 fold_stmt (bsi_stmt_ptr (i));
1206 stmt = bsi_stmt (i);
1207
1208 /* If we folded a builtin function, we'll likely
1209 need to rename VDEFs. */
1210 mark_new_vars_to_rename (stmt);
1211
1212 /* If we cleaned up EH information from the statement,
1213 remove EH edges. */
1214 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1215 tree_purge_dead_eh_edges (bb);
1216
1217 rhs = get_rhs (stmt);
1218 if (TREE_CODE (rhs) == ADDR_EXPR)
1219 recompute_tree_invariant_for_addr_expr (rhs);
1220
1221 if (dump_file && (dump_flags & TDF_DETAILS))
1222 {
1223 fprintf (dump_file, "Folded statement: ");
1224 print_generic_stmt (dump_file, prev_stmt, TDF_SLIM);
1225 fprintf (dump_file, " into: ");
1226 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1227 fprintf (dump_file, "\n");
1228 }
1229 }
1230
1231 /* Some statements may be simplified using ranges. For
1232 example, division may be replaced by shifts, modulo
1233 replaced with bitwise and, etc. Do this after
1234 substituting constants, folding, etc so that we're
1235 presented with a fully propagated, canonicalized
1236 statement. */
1237 if (use_ranges_p)
1238 simplify_stmt_using_ranges (stmt);
1239
1240 }
1241 }
1242
1243 if (dump_file && (dump_flags & TDF_STATS))
1244 {
1245 fprintf (dump_file, "Constants propagated: %6ld\n",
1246 prop_stats.num_const_prop);
1247 fprintf (dump_file, "Copies propagated: %6ld\n",
1248 prop_stats.num_copy_prop);
1249 fprintf (dump_file, "Predicates folded: %6ld\n",
1250 prop_stats.num_pred_folded);
1251 }
1252 }
1253
1254 #include "gt-tree-ssa-propagate.h"
1255