xref: /openbsd/gnu/gcc/gcc/tree-ssa-propagate.c (revision ad47ef84)
1 /* Generic SSA value propagation engine.
2    Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc.
3    Contributed by Diego Novillo <dnovillo@redhat.com>
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published by the
9    Free Software Foundation; either version 2, or (at your option) any
10    later version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15    for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING.  If not, write to the Free
19    Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20    02110-1301, USA.  */
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "ggc.h"
31 #include "basic-block.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "function.h"
35 #include "diagnostic.h"
36 #include "timevar.h"
37 #include "tree-dump.h"
38 #include "tree-flow.h"
39 #include "tree-pass.h"
40 #include "tree-ssa-propagate.h"
41 #include "langhooks.h"
42 #include "varray.h"
43 #include "vec.h"
44 
45 /* This file implements a generic value propagation engine based on
46    the same propagation used by the SSA-CCP algorithm [1].
47 
48    Propagation is performed by simulating the execution of every
49    statement that produces the value being propagated.  Simulation
50    proceeds as follows:
51 
52    1- Initially, all edges of the CFG are marked not executable and
53       the CFG worklist is seeded with all the statements in the entry
54       basic block (block 0).
55 
56    2- Every statement S is simulated with a call to the call-back
57       function SSA_PROP_VISIT_STMT.  This evaluation may produce 3
58       results:
59 
60       	SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
61 	    interest and does not affect any of the work lists.
62 
63 	SSA_PROP_VARYING: The value produced by S cannot be determined
64 	    at compile time.  Further simulation of S is not required.
65 	    If S is a conditional jump, all the outgoing edges for the
66 	    block are considered executable and added to the work
67 	    list.
68 
69 	SSA_PROP_INTERESTING: S produces a value that can be computed
70 	    at compile time.  Its result can be propagated into the
71 	    statements that feed from S.  Furthermore, if S is a
72 	    conditional jump, only the edge known to be taken is added
73 	    to the work list.  Edges that are known not to execute are
74 	    never simulated.
75 
76    3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI.  The
77       return value from SSA_PROP_VISIT_PHI has the same semantics as
78       described in #2.
79 
80    4- Three work lists are kept.  Statements are only added to these
81       lists if they produce one of SSA_PROP_INTERESTING or
82       SSA_PROP_VARYING.
83 
84    	CFG_BLOCKS contains the list of blocks to be simulated.
85 	    Blocks are added to this list if their incoming edges are
86 	    found executable.
87 
88 	VARYING_SSA_EDGES contains the list of statements that feed
89 	    from statements that produce an SSA_PROP_VARYING result.
90 	    These are simulated first to speed up processing.
91 
92 	INTERESTING_SSA_EDGES contains the list of statements that
93 	    feed from statements that produce an SSA_PROP_INTERESTING
94 	    result.
95 
96    5- Simulation terminates when all three work lists are drained.
97 
98    Before calling ssa_propagate, it is important to clear
99    DONT_SIMULATE_AGAIN for all the statements in the program that
100    should be simulated.  This initialization allows an implementation
101    to specify which statements should never be simulated.
102 
103    It is also important to compute def-use information before calling
104    ssa_propagate.
105 
106    References:
107 
108      [1] Constant propagation with conditional branches,
109          Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
110 
111      [2] Building an Optimizing Compiler,
112 	 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
113 
114      [3] Advanced Compiler Design and Implementation,
115 	 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6  */
116 
117 /* Function pointers used to parameterize the propagation engine.  */
118 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
119 static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
120 
121 /* Use the TREE_DEPRECATED bitflag to mark statements that have been
122    added to one of the SSA edges worklists.  This flag is used to
123    avoid visiting statements unnecessarily when draining an SSA edge
124    worklist.  If while simulating a basic block, we find a statement with
125    STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
126    processing from visiting it again.  */
127 #define STMT_IN_SSA_EDGE_WORKLIST(T)	TREE_DEPRECATED (T)
128 
129 /* A bitmap to keep track of executable blocks in the CFG.  */
130 static sbitmap executable_blocks;
131 
132 /* Array of control flow edges on the worklist.  */
133 static VEC(basic_block,heap) *cfg_blocks;
134 
135 static unsigned int cfg_blocks_num = 0;
136 static int cfg_blocks_tail;
137 static int cfg_blocks_head;
138 
139 static sbitmap bb_in_list;
140 
141 /* Worklist of SSA edges which will need reexamination as their
142    definition has changed.  SSA edges are def-use edges in the SSA
143    web.  For each D-U edge, we store the target statement or PHI node
144    U.  */
145 static GTY(()) VEC(tree,gc) *interesting_ssa_edges;
146 
147 /* Identical to INTERESTING_SSA_EDGES.  For performance reasons, the
148    list of SSA edges is split into two.  One contains all SSA edges
149    who need to be reexamined because their lattice value changed to
150    varying (this worklist), and the other contains all other SSA edges
151    to be reexamined (INTERESTING_SSA_EDGES).
152 
153    Since most values in the program are VARYING, the ideal situation
154    is to move them to that lattice value as quickly as possible.
155    Thus, it doesn't make sense to process any other type of lattice
156    value until all VARYING values are propagated fully, which is one
157    thing using the VARYING worklist achieves.  In addition, if we
158    don't use a separate worklist for VARYING edges, we end up with
159    situations where lattice values move from
160    UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING.  */
161 static GTY(()) VEC(tree,gc) *varying_ssa_edges;
162 
163 
164 /* Return true if the block worklist empty.  */
165 
166 static inline bool
cfg_blocks_empty_p(void)167 cfg_blocks_empty_p (void)
168 {
169   return (cfg_blocks_num == 0);
170 }
171 
172 
173 /* Add a basic block to the worklist.  The block must not be already
174    in the worklist, and it must not be the ENTRY or EXIT block.  */
175 
176 static void
cfg_blocks_add(basic_block bb)177 cfg_blocks_add (basic_block bb)
178 {
179   gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
180   gcc_assert (!TEST_BIT (bb_in_list, bb->index));
181 
182   if (cfg_blocks_empty_p ())
183     {
184       cfg_blocks_tail = cfg_blocks_head = 0;
185       cfg_blocks_num = 1;
186     }
187   else
188     {
189       cfg_blocks_num++;
190       if (cfg_blocks_num > VEC_length (basic_block, cfg_blocks))
191 	{
192 	  /* We have to grow the array now.  Adjust to queue to occupy
193 	     the full space of the original array.  We do not need to
194 	     initialize the newly allocated portion of the array
195 	     because we keep track of CFG_BLOCKS_HEAD and
196 	     CFG_BLOCKS_HEAD.  */
197 	  cfg_blocks_tail = VEC_length (basic_block, cfg_blocks);
198 	  cfg_blocks_head = 0;
199 	  VEC_safe_grow (basic_block, heap, cfg_blocks, 2 * cfg_blocks_tail);
200 	}
201       else
202 	cfg_blocks_tail = ((cfg_blocks_tail + 1)
203 			   % VEC_length (basic_block, cfg_blocks));
204     }
205 
206   VEC_replace (basic_block, cfg_blocks, cfg_blocks_tail, bb);
207   SET_BIT (bb_in_list, bb->index);
208 }
209 
210 
211 /* Remove a block from the worklist.  */
212 
213 static basic_block
cfg_blocks_get(void)214 cfg_blocks_get (void)
215 {
216   basic_block bb;
217 
218   bb = VEC_index (basic_block, cfg_blocks, cfg_blocks_head);
219 
220   gcc_assert (!cfg_blocks_empty_p ());
221   gcc_assert (bb);
222 
223   cfg_blocks_head = ((cfg_blocks_head + 1)
224 		     % VEC_length (basic_block, cfg_blocks));
225   --cfg_blocks_num;
226   RESET_BIT (bb_in_list, bb->index);
227 
228   return bb;
229 }
230 
231 
232 /* We have just defined a new value for VAR.  If IS_VARYING is true,
233    add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
234    them to INTERESTING_SSA_EDGES.  */
235 
236 static void
add_ssa_edge(tree var,bool is_varying)237 add_ssa_edge (tree var, bool is_varying)
238 {
239   imm_use_iterator iter;
240   use_operand_p use_p;
241 
242   FOR_EACH_IMM_USE_FAST (use_p, iter, var)
243     {
244       tree use_stmt = USE_STMT (use_p);
245 
246       if (!DONT_SIMULATE_AGAIN (use_stmt)
247 	  && !STMT_IN_SSA_EDGE_WORKLIST (use_stmt))
248 	{
249 	  STMT_IN_SSA_EDGE_WORKLIST (use_stmt) = 1;
250 	  if (is_varying)
251 	    VEC_safe_push (tree, gc, varying_ssa_edges, use_stmt);
252 	  else
253 	    VEC_safe_push (tree, gc, interesting_ssa_edges, use_stmt);
254 	}
255     }
256 }
257 
258 
259 /* Add edge E to the control flow worklist.  */
260 
261 static void
add_control_edge(edge e)262 add_control_edge (edge e)
263 {
264   basic_block bb = e->dest;
265   if (bb == EXIT_BLOCK_PTR)
266     return;
267 
268   /* If the edge had already been executed, skip it.  */
269   if (e->flags & EDGE_EXECUTABLE)
270     return;
271 
272   e->flags |= EDGE_EXECUTABLE;
273 
274   /* If the block is already in the list, we're done.  */
275   if (TEST_BIT (bb_in_list, bb->index))
276     return;
277 
278   cfg_blocks_add (bb);
279 
280   if (dump_file && (dump_flags & TDF_DETAILS))
281     fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
282 	e->src->index, e->dest->index);
283 }
284 
285 
286 /* Simulate the execution of STMT and update the work lists accordingly.  */
287 
288 static void
simulate_stmt(tree stmt)289 simulate_stmt (tree stmt)
290 {
291   enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
292   edge taken_edge = NULL;
293   tree output_name = NULL_TREE;
294 
295   /* Don't bother visiting statements that are already
296      considered varying by the propagator.  */
297   if (DONT_SIMULATE_AGAIN (stmt))
298     return;
299 
300   if (TREE_CODE (stmt) == PHI_NODE)
301     {
302       val = ssa_prop_visit_phi (stmt);
303       output_name = PHI_RESULT (stmt);
304     }
305   else
306     val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
307 
308   if (val == SSA_PROP_VARYING)
309     {
310       DONT_SIMULATE_AGAIN (stmt) = 1;
311 
312       /* If the statement produced a new varying value, add the SSA
313 	 edges coming out of OUTPUT_NAME.  */
314       if (output_name)
315 	add_ssa_edge (output_name, true);
316 
317       /* If STMT transfers control out of its basic block, add
318 	 all outgoing edges to the work list.  */
319       if (stmt_ends_bb_p (stmt))
320 	{
321 	  edge e;
322 	  edge_iterator ei;
323 	  basic_block bb = bb_for_stmt (stmt);
324 	  FOR_EACH_EDGE (e, ei, bb->succs)
325 	    add_control_edge (e);
326 	}
327     }
328   else if (val == SSA_PROP_INTERESTING)
329     {
330       /* If the statement produced new value, add the SSA edges coming
331 	 out of OUTPUT_NAME.  */
332       if (output_name)
333 	add_ssa_edge (output_name, false);
334 
335       /* If we know which edge is going to be taken out of this block,
336 	 add it to the CFG work list.  */
337       if (taken_edge)
338 	add_control_edge (taken_edge);
339     }
340 }
341 
342 /* Process an SSA edge worklist.  WORKLIST is the SSA edge worklist to
343    drain.  This pops statements off the given WORKLIST and processes
344    them until there are no more statements on WORKLIST.
345    We take a pointer to WORKLIST because it may be reallocated when an
346    SSA edge is added to it in simulate_stmt.  */
347 
348 static void
process_ssa_edge_worklist(VEC (tree,gc)** worklist)349 process_ssa_edge_worklist (VEC(tree,gc) **worklist)
350 {
351   /* Drain the entire worklist.  */
352   while (VEC_length (tree, *worklist) > 0)
353     {
354       basic_block bb;
355 
356       /* Pull the statement to simulate off the worklist.  */
357       tree stmt = VEC_pop (tree, *worklist);
358 
359       /* If this statement was already visited by simulate_block, then
360 	 we don't need to visit it again here.  */
361       if (!STMT_IN_SSA_EDGE_WORKLIST (stmt))
362 	continue;
363 
364       /* STMT is no longer in a worklist.  */
365       STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
366 
367       if (dump_file && (dump_flags & TDF_DETAILS))
368 	{
369 	  fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
370 	  print_generic_stmt (dump_file, stmt, dump_flags);
371 	}
372 
373       bb = bb_for_stmt (stmt);
374 
375       /* PHI nodes are always visited, regardless of whether or not
376 	 the destination block is executable.  Otherwise, visit the
377 	 statement only if its block is marked executable.  */
378       if (TREE_CODE (stmt) == PHI_NODE
379 	  || TEST_BIT (executable_blocks, bb->index))
380 	simulate_stmt (stmt);
381     }
382 }
383 
384 
385 /* Simulate the execution of BLOCK.  Evaluate the statement associated
386    with each variable reference inside the block.  */
387 
388 static void
simulate_block(basic_block block)389 simulate_block (basic_block block)
390 {
391   tree phi;
392 
393   /* There is nothing to do for the exit block.  */
394   if (block == EXIT_BLOCK_PTR)
395     return;
396 
397   if (dump_file && (dump_flags & TDF_DETAILS))
398     fprintf (dump_file, "\nSimulating block %d\n", block->index);
399 
400   /* Always simulate PHI nodes, even if we have simulated this block
401      before.  */
402   for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
403     simulate_stmt (phi);
404 
405   /* If this is the first time we've simulated this block, then we
406      must simulate each of its statements.  */
407   if (!TEST_BIT (executable_blocks, block->index))
408     {
409       block_stmt_iterator j;
410       unsigned int normal_edge_count;
411       edge e, normal_edge;
412       edge_iterator ei;
413 
414       /* Note that we have simulated this block.  */
415       SET_BIT (executable_blocks, block->index);
416 
417       for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j))
418 	{
419 	  tree stmt = bsi_stmt (j);
420 
421 	  /* If this statement is already in the worklist then
422 	     "cancel" it.  The reevaluation implied by the worklist
423 	     entry will produce the same value we generate here and
424 	     thus reevaluating it again from the worklist is
425 	     pointless.  */
426 	  if (STMT_IN_SSA_EDGE_WORKLIST (stmt))
427 	    STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
428 
429 	  simulate_stmt (stmt);
430 	}
431 
432       /* We can not predict when abnormal edges will be executed, so
433 	 once a block is considered executable, we consider any
434 	 outgoing abnormal edges as executable.
435 
436 	 At the same time, if this block has only one successor that is
437 	 reached by non-abnormal edges, then add that successor to the
438 	 worklist.  */
439       normal_edge_count = 0;
440       normal_edge = NULL;
441       FOR_EACH_EDGE (e, ei, block->succs)
442 	{
443 	  if (e->flags & EDGE_ABNORMAL)
444 	    add_control_edge (e);
445 	  else
446 	    {
447 	      normal_edge_count++;
448 	      normal_edge = e;
449 	    }
450 	}
451 
452       if (normal_edge_count == 1)
453 	add_control_edge (normal_edge);
454     }
455 }
456 
457 
458 /* Initialize local data structures and work lists.  */
459 
460 static void
ssa_prop_init(void)461 ssa_prop_init (void)
462 {
463   edge e;
464   edge_iterator ei;
465   basic_block bb;
466   size_t i;
467 
468   /* Worklists of SSA edges.  */
469   interesting_ssa_edges = VEC_alloc (tree, gc, 20);
470   varying_ssa_edges = VEC_alloc (tree, gc, 20);
471 
472   executable_blocks = sbitmap_alloc (last_basic_block);
473   sbitmap_zero (executable_blocks);
474 
475   bb_in_list = sbitmap_alloc (last_basic_block);
476   sbitmap_zero (bb_in_list);
477 
478   if (dump_file && (dump_flags & TDF_DETAILS))
479     dump_immediate_uses (dump_file);
480 
481   cfg_blocks = VEC_alloc (basic_block, heap, 20);
482   VEC_safe_grow (basic_block, heap, cfg_blocks, 20);
483 
484   /* Initialize the values for every SSA_NAME.  */
485   for (i = 1; i < num_ssa_names; i++)
486     if (ssa_name (i))
487       SSA_NAME_VALUE (ssa_name (i)) = NULL_TREE;
488 
489   /* Initially assume that every edge in the CFG is not executable.
490      (including the edges coming out of ENTRY_BLOCK_PTR).  */
491   FOR_ALL_BB (bb)
492     {
493       block_stmt_iterator si;
494 
495       for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
496 	STMT_IN_SSA_EDGE_WORKLIST (bsi_stmt (si)) = 0;
497 
498       FOR_EACH_EDGE (e, ei, bb->succs)
499 	e->flags &= ~EDGE_EXECUTABLE;
500     }
501 
502   /* Seed the algorithm by adding the successors of the entry block to the
503      edge worklist.  */
504   FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
505     add_control_edge (e);
506 }
507 
508 
509 /* Free allocated storage.  */
510 
511 static void
ssa_prop_fini(void)512 ssa_prop_fini (void)
513 {
514   VEC_free (tree, gc, interesting_ssa_edges);
515   VEC_free (tree, gc, varying_ssa_edges);
516   VEC_free (basic_block, heap, cfg_blocks);
517   cfg_blocks = NULL;
518   sbitmap_free (bb_in_list);
519   sbitmap_free (executable_blocks);
520 }
521 
522 
523 /* Get the main expression from statement STMT.  */
524 
525 tree
get_rhs(tree stmt)526 get_rhs (tree stmt)
527 {
528   enum tree_code code = TREE_CODE (stmt);
529 
530   switch (code)
531     {
532     case RETURN_EXPR:
533       stmt = TREE_OPERAND (stmt, 0);
534       if (!stmt || TREE_CODE (stmt) != MODIFY_EXPR)
535 	return stmt;
536       /* FALLTHRU */
537 
538     case MODIFY_EXPR:
539       stmt = TREE_OPERAND (stmt, 1);
540       if (TREE_CODE (stmt) == WITH_SIZE_EXPR)
541 	return TREE_OPERAND (stmt, 0);
542       else
543 	return stmt;
544 
545     case COND_EXPR:
546       return COND_EXPR_COND (stmt);
547     case SWITCH_EXPR:
548       return SWITCH_COND (stmt);
549     case GOTO_EXPR:
550       return GOTO_DESTINATION (stmt);
551     case LABEL_EXPR:
552       return LABEL_EXPR_LABEL (stmt);
553 
554     default:
555       return stmt;
556     }
557 }
558 
559 
560 /* Set the main expression of *STMT_P to EXPR.  If EXPR is not a valid
561    GIMPLE expression no changes are done and the function returns
562    false.  */
563 
564 bool
set_rhs(tree * stmt_p,tree expr)565 set_rhs (tree *stmt_p, tree expr)
566 {
567   tree stmt = *stmt_p, op;
568   enum tree_code code = TREE_CODE (expr);
569   stmt_ann_t ann;
570   tree var;
571   ssa_op_iter iter;
572 
573   /* Verify the constant folded result is valid gimple.  */
574   switch (TREE_CODE_CLASS (code))
575     {
576     case tcc_declaration:
577       if (!is_gimple_variable(expr))
578  	return false;
579       break;
580 
581     case tcc_constant:
582       break;
583 
584     case tcc_binary:
585     case tcc_comparison:
586       if (!is_gimple_val (TREE_OPERAND (expr, 0))
587 	  || !is_gimple_val (TREE_OPERAND (expr, 1)))
588 	return false;
589       break;
590 
591     case tcc_unary:
592       if (!is_gimple_val (TREE_OPERAND (expr, 0)))
593 	return false;
594       break;
595     case tcc_expression:
596       switch (code)
597 	{
598 	case ADDR_EXPR:
599           if (TREE_CODE (TREE_OPERAND (expr, 0)) == ARRAY_REF
600 	      && !is_gimple_val (TREE_OPERAND (TREE_OPERAND (expr, 0), 1)))
601 	    return false;
602 	  break;
603 
604 	case TRUTH_NOT_EXPR:
605 	  if (!is_gimple_val (TREE_OPERAND (expr, 0)))
606 	    return false;
607 	  break;
608 
609 	case TRUTH_AND_EXPR:
610 	case TRUTH_XOR_EXPR:
611 	case TRUTH_OR_EXPR:
612 	  if (!is_gimple_val (TREE_OPERAND (expr, 0))
613 	      || !is_gimple_val (TREE_OPERAND (expr, 1)))
614 	    return false;
615 	  break;
616 
617 	case CALL_EXPR:
618 	case EXC_PTR_EXPR:
619 	case FILTER_EXPR:
620 	  break;
621 
622 	default:
623 	  return false;
624 	}
625       break;
626 
627     case tcc_exceptional:
628       switch (code)
629 	{
630 	case SSA_NAME:
631 	  break;
632 
633 	default:
634 	  return false;
635 	}
636       break;
637 
638     default:
639       return false;
640     }
641 
642   if (EXPR_HAS_LOCATION (stmt)
643       && EXPR_P (expr)
644       && ! EXPR_HAS_LOCATION (expr)
645       && TREE_SIDE_EFFECTS (expr)
646       && TREE_CODE (expr) != LABEL_EXPR)
647     SET_EXPR_LOCATION (expr, EXPR_LOCATION (stmt));
648 
649   switch (TREE_CODE (stmt))
650     {
651     case RETURN_EXPR:
652       op = TREE_OPERAND (stmt, 0);
653       if (TREE_CODE (op) != MODIFY_EXPR)
654 	{
655 	  TREE_OPERAND (stmt, 0) = expr;
656 	  break;
657 	}
658       stmt = op;
659       /* FALLTHRU */
660 
661     case MODIFY_EXPR:
662       op = TREE_OPERAND (stmt, 1);
663       if (TREE_CODE (op) == WITH_SIZE_EXPR)
664 	stmt = op;
665       TREE_OPERAND (stmt, 1) = expr;
666       break;
667 
668     case COND_EXPR:
669       if (!is_gimple_condexpr (expr))
670         return false;
671       COND_EXPR_COND (stmt) = expr;
672       break;
673     case SWITCH_EXPR:
674       SWITCH_COND (stmt) = expr;
675       break;
676     case GOTO_EXPR:
677       GOTO_DESTINATION (stmt) = expr;
678       break;
679     case LABEL_EXPR:
680       LABEL_EXPR_LABEL (stmt) = expr;
681       break;
682 
683     default:
684       /* Replace the whole statement with EXPR.  If EXPR has no side
685 	 effects, then replace *STMT_P with an empty statement.  */
686       ann = stmt_ann (stmt);
687       *stmt_p = TREE_SIDE_EFFECTS (expr) ? expr : build_empty_stmt ();
688       (*stmt_p)->common.ann = (tree_ann_t) ann;
689 
690       if (in_ssa_p
691 	  && TREE_SIDE_EFFECTS (expr))
692 	{
693 	  /* Fix all the SSA_NAMEs created by *STMT_P to point to its new
694 	     replacement.  */
695 	  FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_DEFS)
696 	    {
697 	      if (TREE_CODE (var) == SSA_NAME)
698 		SSA_NAME_DEF_STMT (var) = *stmt_p;
699 	    }
700 	}
701       break;
702     }
703 
704   return true;
705 }
706 
707 
708 /* Entry point to the propagation engine.
709 
710    VISIT_STMT is called for every statement visited.
711    VISIT_PHI is called for every PHI node visited.  */
712 
713 void
ssa_propagate(ssa_prop_visit_stmt_fn visit_stmt,ssa_prop_visit_phi_fn visit_phi)714 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
715 	       ssa_prop_visit_phi_fn visit_phi)
716 {
717   ssa_prop_visit_stmt = visit_stmt;
718   ssa_prop_visit_phi = visit_phi;
719 
720   ssa_prop_init ();
721 
722   /* Iterate until the worklists are empty.  */
723   while (!cfg_blocks_empty_p ()
724 	 || VEC_length (tree, interesting_ssa_edges) > 0
725 	 || VEC_length (tree, varying_ssa_edges) > 0)
726     {
727       if (!cfg_blocks_empty_p ())
728 	{
729 	  /* Pull the next block to simulate off the worklist.  */
730 	  basic_block dest_block = cfg_blocks_get ();
731 	  simulate_block (dest_block);
732 	}
733 
734       /* In order to move things to varying as quickly as
735 	 possible,process the VARYING_SSA_EDGES worklist first.  */
736       process_ssa_edge_worklist (&varying_ssa_edges);
737 
738       /* Now process the INTERESTING_SSA_EDGES worklist.  */
739       process_ssa_edge_worklist (&interesting_ssa_edges);
740     }
741 
742   ssa_prop_fini ();
743 }
744 
745 
746 /* Return the first V_MAY_DEF or V_MUST_DEF operand for STMT.  */
747 
748 tree
first_vdef(tree stmt)749 first_vdef (tree stmt)
750 {
751   ssa_op_iter iter;
752   tree op;
753 
754   /* Simply return the first operand we arrive at.  */
755   FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
756     return (op);
757 
758   gcc_unreachable ();
759 }
760 
761 
762 /* Return true if STMT is of the form 'LHS = mem_ref', where 'mem_ref'
763    is a non-volatile pointer dereference, a structure reference or a
764    reference to a single _DECL.  Ignore volatile memory references
765    because they are not interesting for the optimizers.  */
766 
767 bool
stmt_makes_single_load(tree stmt)768 stmt_makes_single_load (tree stmt)
769 {
770   tree rhs;
771 
772   if (TREE_CODE (stmt) != MODIFY_EXPR)
773     return false;
774 
775   if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VUSE))
776     return false;
777 
778   rhs = TREE_OPERAND (stmt, 1);
779   STRIP_NOPS (rhs);
780 
781   return (!TREE_THIS_VOLATILE (rhs)
782 	  && (DECL_P (rhs)
783 	      || REFERENCE_CLASS_P (rhs)));
784 }
785 
786 
787 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
788    is a non-volatile pointer dereference, a structure reference or a
789    reference to a single _DECL.  Ignore volatile memory references
790    because they are not interesting for the optimizers.  */
791 
792 bool
stmt_makes_single_store(tree stmt)793 stmt_makes_single_store (tree stmt)
794 {
795   tree lhs;
796 
797   if (TREE_CODE (stmt) != MODIFY_EXPR)
798     return false;
799 
800   if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VMUSTDEF))
801     return false;
802 
803   lhs = TREE_OPERAND (stmt, 0);
804   STRIP_NOPS (lhs);
805 
806   return (!TREE_THIS_VOLATILE (lhs)
807           && (DECL_P (lhs)
808 	      || REFERENCE_CLASS_P (lhs)));
809 }
810 
811 
812 /* If STMT makes a single memory load and all the virtual use operands
813    have the same value in array VALUES, return it.  Otherwise, return
814    NULL.  */
815 
816 prop_value_t *
get_value_loaded_by(tree stmt,prop_value_t * values)817 get_value_loaded_by (tree stmt, prop_value_t *values)
818 {
819   ssa_op_iter i;
820   tree vuse;
821   prop_value_t *prev_val = NULL;
822   prop_value_t *val = NULL;
823 
824   FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, i, SSA_OP_VIRTUAL_USES)
825     {
826       val = &values[SSA_NAME_VERSION (vuse)];
827       if (prev_val && prev_val->value != val->value)
828 	return NULL;
829       prev_val = val;
830     }
831 
832   return val;
833 }
834 
835 
836 /* Propagation statistics.  */
837 struct prop_stats_d
838 {
839   long num_const_prop;
840   long num_copy_prop;
841   long num_pred_folded;
842 };
843 
844 static struct prop_stats_d prop_stats;
845 
846 /* Replace USE references in statement STMT with the values stored in
847    PROP_VALUE. Return true if at least one reference was replaced.  If
848    REPLACED_ADDRESSES_P is given, it will be set to true if an address
849    constant was replaced.  */
850 
851 bool
replace_uses_in(tree stmt,bool * replaced_addresses_p,prop_value_t * prop_value)852 replace_uses_in (tree stmt, bool *replaced_addresses_p,
853 		 prop_value_t *prop_value)
854 {
855   bool replaced = false;
856   use_operand_p use;
857   ssa_op_iter iter;
858 
859   FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
860     {
861       tree tuse = USE_FROM_PTR (use);
862       tree val = prop_value[SSA_NAME_VERSION (tuse)].value;
863 
864       if (val == tuse || val == NULL_TREE)
865 	continue;
866 
867       if (TREE_CODE (stmt) == ASM_EXPR
868 	  && !may_propagate_copy_into_asm (tuse))
869 	continue;
870 
871       if (!may_propagate_copy (tuse, val))
872 	continue;
873 
874       if (TREE_CODE (val) != SSA_NAME)
875 	prop_stats.num_const_prop++;
876       else
877 	prop_stats.num_copy_prop++;
878 
879       propagate_value (use, val);
880 
881       replaced = true;
882       if (POINTER_TYPE_P (TREE_TYPE (tuse)) && replaced_addresses_p)
883 	*replaced_addresses_p = true;
884     }
885 
886   return replaced;
887 }
888 
889 
890 /* Replace the VUSE references in statement STMT with the values
891    stored in PROP_VALUE.  Return true if a reference was replaced.  If
892    REPLACED_ADDRESSES_P is given, it will be set to true if an address
893    constant was replaced.
894 
895    Replacing VUSE operands is slightly more complex than replacing
896    regular USEs.  We are only interested in two types of replacements
897    here:
898 
899    1- If the value to be replaced is a constant or an SSA name for a
900       GIMPLE register, then we are making a copy/constant propagation
901       from a memory store.  For instance,
902 
903       	# a_3 = V_MAY_DEF <a_2>
904 	a.b = x_1;
905 	...
906  	# VUSE <a_3>
907 	y_4 = a.b;
908 
909       This replacement is only possible iff STMT is an assignment
910       whose RHS is identical to the LHS of the statement that created
911       the VUSE(s) that we are replacing.  Otherwise, we may do the
912       wrong replacement:
913 
914       	# a_3 = V_MAY_DEF <a_2>
915 	# b_5 = V_MAY_DEF <b_4>
916 	*p = 10;
917 	...
918 	# VUSE <b_5>
919 	x_8 = b;
920 
921       Even though 'b_5' acquires the value '10' during propagation,
922       there is no way for the propagator to tell whether the
923       replacement is correct in every reached use, because values are
924       computed at definition sites.  Therefore, when doing final
925       substitution of propagated values, we have to check each use
926       site.  Since the RHS of STMT ('b') is different from the LHS of
927       the originating statement ('*p'), we cannot replace 'b' with
928       '10'.
929 
930       Similarly, when merging values from PHI node arguments,
931       propagators need to take care not to merge the same values
932       stored in different locations:
933 
934      		if (...)
935 		  # a_3 = V_MAY_DEF <a_2>
936 		  a.b = 3;
937 		else
938 		  # a_4 = V_MAY_DEF <a_2>
939 		  a.c = 3;
940 		# a_5 = PHI <a_3, a_4>
941 
942       It would be wrong to propagate '3' into 'a_5' because that
943       operation merges two stores to different memory locations.
944 
945 
946    2- If the value to be replaced is an SSA name for a virtual
947       register, then we simply replace each VUSE operand with its
948       value from PROP_VALUE.  This is the same replacement done by
949       replace_uses_in.  */
950 
951 static bool
replace_vuses_in(tree stmt,bool * replaced_addresses_p,prop_value_t * prop_value)952 replace_vuses_in (tree stmt, bool *replaced_addresses_p,
953                   prop_value_t *prop_value)
954 {
955   bool replaced = false;
956   ssa_op_iter iter;
957   use_operand_p vuse;
958 
959   if (stmt_makes_single_load (stmt))
960     {
961       /* If STMT is an assignment whose RHS is a single memory load,
962 	 see if we are trying to propagate a constant or a GIMPLE
963 	 register (case #1 above).  */
964       prop_value_t *val = get_value_loaded_by (stmt, prop_value);
965       tree rhs = TREE_OPERAND (stmt, 1);
966 
967       if (val
968 	  && val->value
969 	  && (is_gimple_reg (val->value)
970 	      || is_gimple_min_invariant (val->value))
971 	  && simple_cst_equal (rhs, val->mem_ref) == 1)
972 
973 	{
974 	  /* If we are replacing a constant address, inform our
975 	     caller.  */
976 	  if (TREE_CODE (val->value) != SSA_NAME
977 	      && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (stmt, 1)))
978 	      && replaced_addresses_p)
979 	    *replaced_addresses_p = true;
980 
981 	  /* We can only perform the substitution if the load is done
982 	     from the same memory location as the original store.
983 	     Since we already know that there are no intervening
984 	     stores between DEF_STMT and STMT, we only need to check
985 	     that the RHS of STMT is the same as the memory reference
986 	     propagated together with the value.  */
987 	  TREE_OPERAND (stmt, 1) = val->value;
988 
989 	  if (TREE_CODE (val->value) != SSA_NAME)
990 	    prop_stats.num_const_prop++;
991 	  else
992 	    prop_stats.num_copy_prop++;
993 
994 	  /* Since we have replaced the whole RHS of STMT, there
995 	     is no point in checking the other VUSEs, as they will
996 	     all have the same value.  */
997 	  return true;
998 	}
999     }
1000 
1001   /* Otherwise, the values for every VUSE operand must be other
1002      SSA_NAMEs that can be propagated into STMT.  */
1003   FOR_EACH_SSA_USE_OPERAND (vuse, stmt, iter, SSA_OP_VIRTUAL_USES)
1004     {
1005       tree var = USE_FROM_PTR (vuse);
1006       tree val = prop_value[SSA_NAME_VERSION (var)].value;
1007 
1008       if (val == NULL_TREE || var == val)
1009 	continue;
1010 
1011       /* Constants and copies propagated between real and virtual
1012 	 operands are only possible in the cases handled above.  They
1013 	 should be ignored in any other context.  */
1014       if (is_gimple_min_invariant (val) || is_gimple_reg (val))
1015 	continue;
1016 
1017       propagate_value (vuse, val);
1018       prop_stats.num_copy_prop++;
1019       replaced = true;
1020     }
1021 
1022   return replaced;
1023 }
1024 
1025 
1026 /* Replace propagated values into all the arguments for PHI using the
1027    values from PROP_VALUE.  */
1028 
1029 static void
replace_phi_args_in(tree phi,prop_value_t * prop_value)1030 replace_phi_args_in (tree phi, prop_value_t *prop_value)
1031 {
1032   int i;
1033   bool replaced = false;
1034   tree prev_phi = NULL;
1035 
1036   if (dump_file && (dump_flags & TDF_DETAILS))
1037     prev_phi = unshare_expr (phi);
1038 
1039   for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1040     {
1041       tree arg = PHI_ARG_DEF (phi, i);
1042 
1043       if (TREE_CODE (arg) == SSA_NAME)
1044 	{
1045 	  tree val = prop_value[SSA_NAME_VERSION (arg)].value;
1046 
1047 	  if (val && val != arg && may_propagate_copy (arg, val))
1048 	    {
1049 	      if (TREE_CODE (val) != SSA_NAME)
1050 		prop_stats.num_const_prop++;
1051 	      else
1052 		prop_stats.num_copy_prop++;
1053 
1054 	      propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
1055 	      replaced = true;
1056 
1057 	      /* If we propagated a copy and this argument flows
1058 		 through an abnormal edge, update the replacement
1059 		 accordingly.  */
1060 	      if (TREE_CODE (val) == SSA_NAME
1061 		  && PHI_ARG_EDGE (phi, i)->flags & EDGE_ABNORMAL)
1062 		SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1063 	    }
1064 	}
1065     }
1066 
1067   if (replaced && dump_file && (dump_flags & TDF_DETAILS))
1068     {
1069       fprintf (dump_file, "Folded PHI node: ");
1070       print_generic_stmt (dump_file, prev_phi, TDF_SLIM);
1071       fprintf (dump_file, "           into: ");
1072       print_generic_stmt (dump_file, phi, TDF_SLIM);
1073       fprintf (dump_file, "\n");
1074     }
1075 }
1076 
1077 
1078 /* If STMT has a predicate whose value can be computed using the value
1079    range information computed by VRP, compute its value and return true.
1080    Otherwise, return false.  */
1081 
1082 static bool
fold_predicate_in(tree stmt)1083 fold_predicate_in (tree stmt)
1084 {
1085   tree *pred_p = NULL;
1086   bool modify_expr_p = false;
1087   tree val;
1088 
1089   if (TREE_CODE (stmt) == MODIFY_EXPR
1090       && COMPARISON_CLASS_P (TREE_OPERAND (stmt, 1)))
1091     {
1092       modify_expr_p = true;
1093       pred_p = &TREE_OPERAND (stmt, 1);
1094     }
1095   else if (TREE_CODE (stmt) == COND_EXPR)
1096     pred_p = &COND_EXPR_COND (stmt);
1097   else
1098     return false;
1099 
1100   val = vrp_evaluate_conditional (*pred_p, stmt);
1101   if (val)
1102     {
1103       if (modify_expr_p)
1104         val = fold_convert (TREE_TYPE (*pred_p), val);
1105 
1106       if (dump_file)
1107 	{
1108 	  fprintf (dump_file, "Folding predicate ");
1109 	  print_generic_expr (dump_file, *pred_p, 0);
1110 	  fprintf (dump_file, " to ");
1111 	  print_generic_expr (dump_file, val, 0);
1112 	  fprintf (dump_file, "\n");
1113 	}
1114 
1115       prop_stats.num_pred_folded++;
1116       *pred_p = val;
1117       return true;
1118     }
1119 
1120   return false;
1121 }
1122 
1123 
1124 /* Perform final substitution and folding of propagated values.
1125 
1126    PROP_VALUE[I] contains the single value that should be substituted
1127    at every use of SSA name N_I.  If PROP_VALUE is NULL, no values are
1128    substituted.
1129 
1130    If USE_RANGES_P is true, statements that contain predicate
1131    expressions are evaluated with a call to vrp_evaluate_conditional.
1132    This will only give meaningful results when called from tree-vrp.c
1133    (the information used by vrp_evaluate_conditional is built by the
1134    VRP pass).  */
1135 
1136 void
substitute_and_fold(prop_value_t * prop_value,bool use_ranges_p)1137 substitute_and_fold (prop_value_t *prop_value, bool use_ranges_p)
1138 {
1139   basic_block bb;
1140 
1141   if (prop_value == NULL && !use_ranges_p)
1142     return;
1143 
1144   if (dump_file && (dump_flags & TDF_DETAILS))
1145     fprintf (dump_file, "\nSubstituing values and folding statements\n\n");
1146 
1147   memset (&prop_stats, 0, sizeof (prop_stats));
1148 
1149   /* Substitute values in every statement of every basic block.  */
1150   FOR_EACH_BB (bb)
1151     {
1152       block_stmt_iterator i;
1153       tree phi;
1154 
1155       /* Propagate known values into PHI nodes.  */
1156       if (prop_value)
1157 	for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1158 	  replace_phi_args_in (phi, prop_value);
1159 
1160       for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
1161 	{
1162           bool replaced_address, did_replace;
1163 	  tree prev_stmt = NULL;
1164 	  tree stmt = bsi_stmt (i);
1165 
1166 	  /* Ignore ASSERT_EXPRs.  They are used by VRP to generate
1167 	     range information for names and they are discarded
1168 	     afterwards.  */
1169 	  if (TREE_CODE (stmt) == MODIFY_EXPR
1170 	      && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
1171 	    continue;
1172 
1173 	  /* Replace the statement with its folded version and mark it
1174 	     folded.  */
1175 	  did_replace = false;
1176 	  replaced_address = false;
1177 	  if (dump_file && (dump_flags & TDF_DETAILS))
1178 	    prev_stmt = unshare_expr (stmt);
1179 
1180 	  /* If we have range information, see if we can fold
1181 	     predicate expressions.  */
1182 	  if (use_ranges_p)
1183 	    did_replace = fold_predicate_in (stmt);
1184 
1185 	  if (prop_value)
1186 	    {
1187 	      /* Only replace real uses if we couldn't fold the
1188 		 statement using value range information (value range
1189 		 information is not collected on virtuals, so we only
1190 		 need to check this for real uses).  */
1191 	      if (!did_replace)
1192 		did_replace |= replace_uses_in (stmt, &replaced_address,
1193 		                                prop_value);
1194 
1195 	      did_replace |= replace_vuses_in (stmt, &replaced_address,
1196 		                               prop_value);
1197 	    }
1198 
1199 	  /* If we made a replacement, fold and cleanup the statement.  */
1200 	  if (did_replace)
1201 	    {
1202 	      tree old_stmt = stmt;
1203 	      tree rhs;
1204 
1205 	      fold_stmt (bsi_stmt_ptr (i));
1206 	      stmt = bsi_stmt (i);
1207 
1208 	      /* If we folded a builtin function, we'll likely
1209 		 need to rename VDEFs.  */
1210 	      mark_new_vars_to_rename (stmt);
1211 
1212               /* If we cleaned up EH information from the statement,
1213                  remove EH edges.  */
1214 	      if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
1215 		tree_purge_dead_eh_edges (bb);
1216 
1217 	      rhs = get_rhs (stmt);
1218 	      if (TREE_CODE (rhs) == ADDR_EXPR)
1219 		recompute_tree_invariant_for_addr_expr (rhs);
1220 
1221 	      if (dump_file && (dump_flags & TDF_DETAILS))
1222 		{
1223 		  fprintf (dump_file, "Folded statement: ");
1224 		  print_generic_stmt (dump_file, prev_stmt, TDF_SLIM);
1225 		  fprintf (dump_file, "            into: ");
1226 		  print_generic_stmt (dump_file, stmt, TDF_SLIM);
1227 		  fprintf (dump_file, "\n");
1228 		}
1229 	    }
1230 
1231 	  /* Some statements may be simplified using ranges.  For
1232 	     example, division may be replaced by shifts, modulo
1233 	     replaced with bitwise and, etc.   Do this after
1234 	     substituting constants, folding, etc so that we're
1235 	     presented with a fully propagated, canonicalized
1236 	     statement.  */
1237 	  if (use_ranges_p)
1238 	    simplify_stmt_using_ranges (stmt);
1239 
1240 	}
1241     }
1242 
1243   if (dump_file && (dump_flags & TDF_STATS))
1244     {
1245       fprintf (dump_file, "Constants propagated: %6ld\n",
1246 	       prop_stats.num_const_prop);
1247       fprintf (dump_file, "Copies propagated:    %6ld\n",
1248 	       prop_stats.num_copy_prop);
1249       fprintf (dump_file, "Predicates folded:    %6ld\n",
1250 	       prop_stats.num_pred_folded);
1251     }
1252 }
1253 
1254 #include "gt-tree-ssa-propagate.h"
1255