1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Base ARM implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "ARMBaseInstrInfo.h"
14 #include "ARMBaseRegisterInfo.h"
15 #include "ARMConstantPoolValue.h"
16 #include "ARMFeatures.h"
17 #include "ARMHazardRecognizer.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "MVETailPredUtils.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/CodeGen/DFAPacketizer.h"
29 #include "llvm/CodeGen/LiveVariables.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineConstantPool.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineModuleInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/MachinePipeliner.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/MachineScheduler.h"
42 #include "llvm/CodeGen/MultiHazardRecognizer.h"
43 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
44 #include "llvm/CodeGen/SelectionDAGNodes.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetRegisterInfo.h"
47 #include "llvm/CodeGen/TargetSchedule.h"
48 #include "llvm/IR/Attributes.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalValue.h"
53 #include "llvm/MC/MCAsmInfo.h"
54 #include "llvm/MC/MCInstrDesc.h"
55 #include "llvm/MC/MCInstrItineraries.h"
56 #include "llvm/Support/BranchProbability.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Compiler.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Target/TargetMachine.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstdint>
67 #include <iterator>
68 #include <new>
69 #include <utility>
70 #include <vector>
71
72 using namespace llvm;
73
74 #define DEBUG_TYPE "arm-instrinfo"
75
76 #define GET_INSTRINFO_CTOR_DTOR
77 #include "ARMGenInstrInfo.inc"
78
79 static cl::opt<bool>
80 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
81 cl::desc("Enable ARM 2-addr to 3-addr conv"));
82
83 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
84 struct ARM_MLxEntry {
85 uint16_t MLxOpc; // MLA / MLS opcode
86 uint16_t MulOpc; // Expanded multiplication opcode
87 uint16_t AddSubOpc; // Expanded add / sub opcode
88 bool NegAcc; // True if the acc is negated before the add / sub.
89 bool HasLane; // True if instruction has an extra "lane" operand.
90 };
91
92 static const ARM_MLxEntry ARM_MLxTable[] = {
93 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane
94 // fp scalar ops
95 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false },
96 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false },
97 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false },
98 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false },
99 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false },
100 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false },
101 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false },
102 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false },
103
104 // fp SIMD ops
105 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false },
106 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false },
107 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false },
108 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false },
109 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true },
110 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true },
111 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true },
112 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true },
113 };
114
ARMBaseInstrInfo(const ARMSubtarget & STI)115 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
116 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
117 Subtarget(STI) {
118 for (unsigned i = 0, e = std::size(ARM_MLxTable); i != e; ++i) {
119 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
120 llvm_unreachable("Duplicated entries?");
121 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
122 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
123 }
124 }
125
126 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
127 // currently defaults to no prepass hazard recognizer.
128 ScheduleHazardRecognizer *
CreateTargetHazardRecognizer(const TargetSubtargetInfo * STI,const ScheduleDAG * DAG) const129 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
130 const ScheduleDAG *DAG) const {
131 if (usePreRAHazardRecognizer()) {
132 const InstrItineraryData *II =
133 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
134 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
135 }
136 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
137 }
138
139 // Called during:
140 // - pre-RA scheduling
141 // - post-RA scheduling when FeatureUseMISched is set
CreateTargetMIHazardRecognizer(const InstrItineraryData * II,const ScheduleDAGMI * DAG) const142 ScheduleHazardRecognizer *ARMBaseInstrInfo::CreateTargetMIHazardRecognizer(
143 const InstrItineraryData *II, const ScheduleDAGMI *DAG) const {
144 MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
145
146 // We would like to restrict this hazard recognizer to only
147 // post-RA scheduling; we can tell that we're post-RA because we don't
148 // track VRegLiveness.
149 // Cortex-M7: TRM indicates that there is a single ITCM bank and two DTCM
150 // banks banked on bit 2. Assume that TCMs are in use.
151 if (Subtarget.isCortexM7() && !DAG->hasVRegLiveness())
152 MHR->AddHazardRecognizer(
153 std::make_unique<ARMBankConflictHazardRecognizer>(DAG, 0x4, true));
154
155 // Not inserting ARMHazardRecognizerFPMLx because that would change
156 // legacy behavior
157
158 auto BHR = TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG);
159 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
160 return MHR;
161 }
162
163 // Called during post-RA scheduling when FeatureUseMISched is not set
164 ScheduleHazardRecognizer *ARMBaseInstrInfo::
CreateTargetPostRAHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const165 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
166 const ScheduleDAG *DAG) const {
167 MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
168
169 if (Subtarget.isThumb2() || Subtarget.hasVFP2Base())
170 MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>());
171
172 auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
173 if (BHR)
174 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
175 return MHR;
176 }
177
178 MachineInstr *
convertToThreeAddress(MachineInstr & MI,LiveVariables * LV,LiveIntervals * LIS) const179 ARMBaseInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV,
180 LiveIntervals *LIS) const {
181 // FIXME: Thumb2 support.
182
183 if (!EnableARM3Addr)
184 return nullptr;
185
186 MachineFunction &MF = *MI.getParent()->getParent();
187 uint64_t TSFlags = MI.getDesc().TSFlags;
188 bool isPre = false;
189 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
190 default: return nullptr;
191 case ARMII::IndexModePre:
192 isPre = true;
193 break;
194 case ARMII::IndexModePost:
195 break;
196 }
197
198 // Try splitting an indexed load/store to an un-indexed one plus an add/sub
199 // operation.
200 unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
201 if (MemOpc == 0)
202 return nullptr;
203
204 MachineInstr *UpdateMI = nullptr;
205 MachineInstr *MemMI = nullptr;
206 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
207 const MCInstrDesc &MCID = MI.getDesc();
208 unsigned NumOps = MCID.getNumOperands();
209 bool isLoad = !MI.mayStore();
210 const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
211 const MachineOperand &Base = MI.getOperand(2);
212 const MachineOperand &Offset = MI.getOperand(NumOps - 3);
213 Register WBReg = WB.getReg();
214 Register BaseReg = Base.getReg();
215 Register OffReg = Offset.getReg();
216 unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
217 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
218 switch (AddrMode) {
219 default: llvm_unreachable("Unknown indexed op!");
220 case ARMII::AddrMode2: {
221 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
222 unsigned Amt = ARM_AM::getAM2Offset(OffImm);
223 if (OffReg == 0) {
224 if (ARM_AM::getSOImmVal(Amt) == -1)
225 // Can't encode it in a so_imm operand. This transformation will
226 // add more than 1 instruction. Abandon!
227 return nullptr;
228 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
229 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
230 .addReg(BaseReg)
231 .addImm(Amt)
232 .add(predOps(Pred))
233 .add(condCodeOp());
234 } else if (Amt != 0) {
235 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
236 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
237 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
238 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
239 .addReg(BaseReg)
240 .addReg(OffReg)
241 .addReg(0)
242 .addImm(SOOpc)
243 .add(predOps(Pred))
244 .add(condCodeOp());
245 } else
246 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
247 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
248 .addReg(BaseReg)
249 .addReg(OffReg)
250 .add(predOps(Pred))
251 .add(condCodeOp());
252 break;
253 }
254 case ARMII::AddrMode3 : {
255 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
256 unsigned Amt = ARM_AM::getAM3Offset(OffImm);
257 if (OffReg == 0)
258 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
259 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
260 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
261 .addReg(BaseReg)
262 .addImm(Amt)
263 .add(predOps(Pred))
264 .add(condCodeOp());
265 else
266 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
267 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
268 .addReg(BaseReg)
269 .addReg(OffReg)
270 .add(predOps(Pred))
271 .add(condCodeOp());
272 break;
273 }
274 }
275
276 std::vector<MachineInstr*> NewMIs;
277 if (isPre) {
278 if (isLoad)
279 MemMI =
280 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
281 .addReg(WBReg)
282 .addImm(0)
283 .addImm(Pred);
284 else
285 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
286 .addReg(MI.getOperand(1).getReg())
287 .addReg(WBReg)
288 .addReg(0)
289 .addImm(0)
290 .addImm(Pred);
291 NewMIs.push_back(MemMI);
292 NewMIs.push_back(UpdateMI);
293 } else {
294 if (isLoad)
295 MemMI =
296 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
297 .addReg(BaseReg)
298 .addImm(0)
299 .addImm(Pred);
300 else
301 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
302 .addReg(MI.getOperand(1).getReg())
303 .addReg(BaseReg)
304 .addReg(0)
305 .addImm(0)
306 .addImm(Pred);
307 if (WB.isDead())
308 UpdateMI->getOperand(0).setIsDead();
309 NewMIs.push_back(UpdateMI);
310 NewMIs.push_back(MemMI);
311 }
312
313 // Transfer LiveVariables states, kill / dead info.
314 if (LV) {
315 for (const MachineOperand &MO : MI.operands()) {
316 if (MO.isReg() && MO.getReg().isVirtual()) {
317 Register Reg = MO.getReg();
318
319 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
320 if (MO.isDef()) {
321 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
322 if (MO.isDead())
323 LV->addVirtualRegisterDead(Reg, *NewMI);
324 }
325 if (MO.isUse() && MO.isKill()) {
326 for (unsigned j = 0; j < 2; ++j) {
327 // Look at the two new MI's in reverse order.
328 MachineInstr *NewMI = NewMIs[j];
329 if (!NewMI->readsRegister(Reg))
330 continue;
331 LV->addVirtualRegisterKilled(Reg, *NewMI);
332 if (VI.removeKill(MI))
333 VI.Kills.push_back(NewMI);
334 break;
335 }
336 }
337 }
338 }
339 }
340
341 MachineBasicBlock &MBB = *MI.getParent();
342 MBB.insert(MI, NewMIs[1]);
343 MBB.insert(MI, NewMIs[0]);
344 return NewMIs[0];
345 }
346
347 // Branch analysis.
348 // Cond vector output format:
349 // 0 elements indicates an unconditional branch
350 // 2 elements indicates a conditional branch; the elements are
351 // the condition to check and the CPSR.
352 // 3 elements indicates a hardware loop end; the elements
353 // are the opcode, the operand value to test, and a dummy
354 // operand used to pad out to 3 operands.
analyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const355 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
356 MachineBasicBlock *&TBB,
357 MachineBasicBlock *&FBB,
358 SmallVectorImpl<MachineOperand> &Cond,
359 bool AllowModify) const {
360 TBB = nullptr;
361 FBB = nullptr;
362
363 MachineBasicBlock::instr_iterator I = MBB.instr_end();
364 if (I == MBB.instr_begin())
365 return false; // Empty blocks are easy.
366 --I;
367
368 // Walk backwards from the end of the basic block until the branch is
369 // analyzed or we give up.
370 while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
371 // Flag to be raised on unanalyzeable instructions. This is useful in cases
372 // where we want to clean up on the end of the basic block before we bail
373 // out.
374 bool CantAnalyze = false;
375
376 // Skip over DEBUG values, predicated nonterminators and speculation
377 // barrier terminators.
378 while (I->isDebugInstr() || !I->isTerminator() ||
379 isSpeculationBarrierEndBBOpcode(I->getOpcode()) ||
380 I->getOpcode() == ARM::t2DoLoopStartTP){
381 if (I == MBB.instr_begin())
382 return false;
383 --I;
384 }
385
386 if (isIndirectBranchOpcode(I->getOpcode()) ||
387 isJumpTableBranchOpcode(I->getOpcode())) {
388 // Indirect branches and jump tables can't be analyzed, but we still want
389 // to clean up any instructions at the tail of the basic block.
390 CantAnalyze = true;
391 } else if (isUncondBranchOpcode(I->getOpcode())) {
392 TBB = I->getOperand(0).getMBB();
393 } else if (isCondBranchOpcode(I->getOpcode())) {
394 // Bail out if we encounter multiple conditional branches.
395 if (!Cond.empty())
396 return true;
397
398 assert(!FBB && "FBB should have been null.");
399 FBB = TBB;
400 TBB = I->getOperand(0).getMBB();
401 Cond.push_back(I->getOperand(1));
402 Cond.push_back(I->getOperand(2));
403 } else if (I->isReturn()) {
404 // Returns can't be analyzed, but we should run cleanup.
405 CantAnalyze = true;
406 } else if (I->getOpcode() == ARM::t2LoopEnd &&
407 MBB.getParent()
408 ->getSubtarget<ARMSubtarget>()
409 .enableMachinePipeliner()) {
410 if (!Cond.empty())
411 return true;
412 FBB = TBB;
413 TBB = I->getOperand(1).getMBB();
414 Cond.push_back(MachineOperand::CreateImm(I->getOpcode()));
415 Cond.push_back(I->getOperand(0));
416 Cond.push_back(MachineOperand::CreateImm(0));
417 } else {
418 // We encountered other unrecognized terminator. Bail out immediately.
419 return true;
420 }
421
422 // Cleanup code - to be run for unpredicated unconditional branches and
423 // returns.
424 if (!isPredicated(*I) &&
425 (isUncondBranchOpcode(I->getOpcode()) ||
426 isIndirectBranchOpcode(I->getOpcode()) ||
427 isJumpTableBranchOpcode(I->getOpcode()) ||
428 I->isReturn())) {
429 // Forget any previous condition branch information - it no longer applies.
430 Cond.clear();
431 FBB = nullptr;
432
433 // If we can modify the function, delete everything below this
434 // unconditional branch.
435 if (AllowModify) {
436 MachineBasicBlock::iterator DI = std::next(I);
437 while (DI != MBB.instr_end()) {
438 MachineInstr &InstToDelete = *DI;
439 ++DI;
440 // Speculation barriers must not be deleted.
441 if (isSpeculationBarrierEndBBOpcode(InstToDelete.getOpcode()))
442 continue;
443 InstToDelete.eraseFromParent();
444 }
445 }
446 }
447
448 if (CantAnalyze) {
449 // We may not be able to analyze the block, but we could still have
450 // an unconditional branch as the last instruction in the block, which
451 // just branches to layout successor. If this is the case, then just
452 // remove it if we're allowed to make modifications.
453 if (AllowModify && !isPredicated(MBB.back()) &&
454 isUncondBranchOpcode(MBB.back().getOpcode()) &&
455 TBB && MBB.isLayoutSuccessor(TBB))
456 removeBranch(MBB);
457 return true;
458 }
459
460 if (I == MBB.instr_begin())
461 return false;
462
463 --I;
464 }
465
466 // We made it past the terminators without bailing out - we must have
467 // analyzed this branch successfully.
468 return false;
469 }
470
removeBranch(MachineBasicBlock & MBB,int * BytesRemoved) const471 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
472 int *BytesRemoved) const {
473 assert(!BytesRemoved && "code size not handled");
474
475 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
476 if (I == MBB.end())
477 return 0;
478
479 if (!isUncondBranchOpcode(I->getOpcode()) &&
480 !isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd)
481 return 0;
482
483 // Remove the branch.
484 I->eraseFromParent();
485
486 I = MBB.end();
487
488 if (I == MBB.begin()) return 1;
489 --I;
490 if (!isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd)
491 return 1;
492
493 // Remove the branch.
494 I->eraseFromParent();
495 return 2;
496 }
497
insertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,ArrayRef<MachineOperand> Cond,const DebugLoc & DL,int * BytesAdded) const498 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
499 MachineBasicBlock *TBB,
500 MachineBasicBlock *FBB,
501 ArrayRef<MachineOperand> Cond,
502 const DebugLoc &DL,
503 int *BytesAdded) const {
504 assert(!BytesAdded && "code size not handled");
505 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
506 int BOpc = !AFI->isThumbFunction()
507 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
508 int BccOpc = !AFI->isThumbFunction()
509 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
510 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
511
512 // Shouldn't be a fall through.
513 assert(TBB && "insertBranch must not be told to insert a fallthrough");
514 assert((Cond.size() == 2 || Cond.size() == 0 || Cond.size() == 3) &&
515 "ARM branch conditions have two or three components!");
516
517 // For conditional branches, we use addOperand to preserve CPSR flags.
518
519 if (!FBB) {
520 if (Cond.empty()) { // Unconditional branch?
521 if (isThumb)
522 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
523 else
524 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
525 } else if (Cond.size() == 2) {
526 BuildMI(&MBB, DL, get(BccOpc))
527 .addMBB(TBB)
528 .addImm(Cond[0].getImm())
529 .add(Cond[1]);
530 } else
531 BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB);
532 return 1;
533 }
534
535 // Two-way conditional branch.
536 if (Cond.size() == 2)
537 BuildMI(&MBB, DL, get(BccOpc))
538 .addMBB(TBB)
539 .addImm(Cond[0].getImm())
540 .add(Cond[1]);
541 else if (Cond.size() == 3)
542 BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB);
543 if (isThumb)
544 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
545 else
546 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
547 return 2;
548 }
549
550 bool ARMBaseInstrInfo::
reverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const551 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
552 if (Cond.size() == 2) {
553 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
554 Cond[0].setImm(ARMCC::getOppositeCondition(CC));
555 return false;
556 }
557 return true;
558 }
559
isPredicated(const MachineInstr & MI) const560 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
561 if (MI.isBundle()) {
562 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
563 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
564 while (++I != E && I->isInsideBundle()) {
565 int PIdx = I->findFirstPredOperandIdx();
566 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
567 return true;
568 }
569 return false;
570 }
571
572 int PIdx = MI.findFirstPredOperandIdx();
573 return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
574 }
575
createMIROperandComment(const MachineInstr & MI,const MachineOperand & Op,unsigned OpIdx,const TargetRegisterInfo * TRI) const576 std::string ARMBaseInstrInfo::createMIROperandComment(
577 const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
578 const TargetRegisterInfo *TRI) const {
579
580 // First, let's see if there is a generic comment for this operand
581 std::string GenericComment =
582 TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI);
583 if (!GenericComment.empty())
584 return GenericComment;
585
586 // If not, check if we have an immediate operand.
587 if (!Op.isImm())
588 return std::string();
589
590 // And print its corresponding condition code if the immediate is a
591 // predicate.
592 int FirstPredOp = MI.findFirstPredOperandIdx();
593 if (FirstPredOp != (int) OpIdx)
594 return std::string();
595
596 std::string CC = "CC::";
597 CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm());
598 return CC;
599 }
600
PredicateInstruction(MachineInstr & MI,ArrayRef<MachineOperand> Pred) const601 bool ARMBaseInstrInfo::PredicateInstruction(
602 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
603 unsigned Opc = MI.getOpcode();
604 if (isUncondBranchOpcode(Opc)) {
605 MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
606 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
607 .addImm(Pred[0].getImm())
608 .addReg(Pred[1].getReg());
609 return true;
610 }
611
612 int PIdx = MI.findFirstPredOperandIdx();
613 if (PIdx != -1) {
614 MachineOperand &PMO = MI.getOperand(PIdx);
615 PMO.setImm(Pred[0].getImm());
616 MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
617
618 // Thumb 1 arithmetic instructions do not set CPSR when executed inside an
619 // IT block. This affects how they are printed.
620 const MCInstrDesc &MCID = MI.getDesc();
621 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
622 assert(MCID.operands()[1].isOptionalDef() &&
623 "CPSR def isn't expected operand");
624 assert((MI.getOperand(1).isDead() ||
625 MI.getOperand(1).getReg() != ARM::CPSR) &&
626 "if conversion tried to stop defining used CPSR");
627 MI.getOperand(1).setReg(ARM::NoRegister);
628 }
629
630 return true;
631 }
632 return false;
633 }
634
SubsumesPredicate(ArrayRef<MachineOperand> Pred1,ArrayRef<MachineOperand> Pred2) const635 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
636 ArrayRef<MachineOperand> Pred2) const {
637 if (Pred1.size() > 2 || Pred2.size() > 2)
638 return false;
639
640 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
641 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
642 if (CC1 == CC2)
643 return true;
644
645 switch (CC1) {
646 default:
647 return false;
648 case ARMCC::AL:
649 return true;
650 case ARMCC::HS:
651 return CC2 == ARMCC::HI;
652 case ARMCC::LS:
653 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
654 case ARMCC::GE:
655 return CC2 == ARMCC::GT;
656 case ARMCC::LE:
657 return CC2 == ARMCC::LT;
658 }
659 }
660
ClobbersPredicate(MachineInstr & MI,std::vector<MachineOperand> & Pred,bool SkipDead) const661 bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI,
662 std::vector<MachineOperand> &Pred,
663 bool SkipDead) const {
664 bool Found = false;
665 for (const MachineOperand &MO : MI.operands()) {
666 bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR);
667 bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR;
668 if (ClobbersCPSR || IsCPSR) {
669
670 // Filter out T1 instructions that have a dead CPSR,
671 // allowing IT blocks to be generated containing T1 instructions
672 const MCInstrDesc &MCID = MI.getDesc();
673 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() &&
674 SkipDead)
675 continue;
676
677 Pred.push_back(MO);
678 Found = true;
679 }
680 }
681
682 return Found;
683 }
684
isCPSRDefined(const MachineInstr & MI)685 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
686 for (const auto &MO : MI.operands())
687 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
688 return true;
689 return false;
690 }
691
isEligibleForITBlock(const MachineInstr * MI)692 static bool isEligibleForITBlock(const MachineInstr *MI) {
693 switch (MI->getOpcode()) {
694 default: return true;
695 case ARM::tADC: // ADC (register) T1
696 case ARM::tADDi3: // ADD (immediate) T1
697 case ARM::tADDi8: // ADD (immediate) T2
698 case ARM::tADDrr: // ADD (register) T1
699 case ARM::tAND: // AND (register) T1
700 case ARM::tASRri: // ASR (immediate) T1
701 case ARM::tASRrr: // ASR (register) T1
702 case ARM::tBIC: // BIC (register) T1
703 case ARM::tEOR: // EOR (register) T1
704 case ARM::tLSLri: // LSL (immediate) T1
705 case ARM::tLSLrr: // LSL (register) T1
706 case ARM::tLSRri: // LSR (immediate) T1
707 case ARM::tLSRrr: // LSR (register) T1
708 case ARM::tMUL: // MUL T1
709 case ARM::tMVN: // MVN (register) T1
710 case ARM::tORR: // ORR (register) T1
711 case ARM::tROR: // ROR (register) T1
712 case ARM::tRSB: // RSB (immediate) T1
713 case ARM::tSBC: // SBC (register) T1
714 case ARM::tSUBi3: // SUB (immediate) T1
715 case ARM::tSUBi8: // SUB (immediate) T2
716 case ARM::tSUBrr: // SUB (register) T1
717 return !ARMBaseInstrInfo::isCPSRDefined(*MI);
718 }
719 }
720
721 /// isPredicable - Return true if the specified instruction can be predicated.
722 /// By default, this returns true for every instruction with a
723 /// PredicateOperand.
isPredicable(const MachineInstr & MI) const724 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
725 if (!MI.isPredicable())
726 return false;
727
728 if (MI.isBundle())
729 return false;
730
731 if (!isEligibleForITBlock(&MI))
732 return false;
733
734 const MachineFunction *MF = MI.getParent()->getParent();
735 const ARMFunctionInfo *AFI =
736 MF->getInfo<ARMFunctionInfo>();
737
738 // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
739 // In their ARM encoding, they can't be encoded in a conditional form.
740 if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
741 return false;
742
743 // Make indirect control flow changes unpredicable when SLS mitigation is
744 // enabled.
745 const ARMSubtarget &ST = MF->getSubtarget<ARMSubtarget>();
746 if (ST.hardenSlsRetBr() && isIndirectControlFlowNotComingBack(MI))
747 return false;
748 if (ST.hardenSlsBlr() && isIndirectCall(MI))
749 return false;
750
751 if (AFI->isThumb2Function()) {
752 if (getSubtarget().restrictIT())
753 return isV8EligibleForIT(&MI);
754 }
755
756 return true;
757 }
758
759 namespace llvm {
760
IsCPSRDead(const MachineInstr * MI)761 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
762 for (const MachineOperand &MO : MI->operands()) {
763 if (!MO.isReg() || MO.isUndef() || MO.isUse())
764 continue;
765 if (MO.getReg() != ARM::CPSR)
766 continue;
767 if (!MO.isDead())
768 return false;
769 }
770 // all definitions of CPSR are dead
771 return true;
772 }
773
774 } // end namespace llvm
775
776 /// GetInstSize - Return the size of the specified MachineInstr.
777 ///
getInstSizeInBytes(const MachineInstr & MI) const778 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
779 const MachineBasicBlock &MBB = *MI.getParent();
780 const MachineFunction *MF = MBB.getParent();
781 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
782
783 const MCInstrDesc &MCID = MI.getDesc();
784
785 switch (MI.getOpcode()) {
786 default:
787 // Return the size specified in .td file. If there's none, return 0, as we
788 // can't define a default size (Thumb1 instructions are 2 bytes, Thumb2
789 // instructions are 2-4 bytes, and ARM instructions are 4 bytes), in
790 // contrast to AArch64 instructions which have a default size of 4 bytes for
791 // example.
792 return MCID.getSize();
793 case TargetOpcode::BUNDLE:
794 return getInstBundleLength(MI);
795 case ARM::CONSTPOOL_ENTRY:
796 case ARM::JUMPTABLE_INSTS:
797 case ARM::JUMPTABLE_ADDRS:
798 case ARM::JUMPTABLE_TBB:
799 case ARM::JUMPTABLE_TBH:
800 // If this machine instr is a constant pool entry, its size is recorded as
801 // operand #2.
802 return MI.getOperand(2).getImm();
803 case ARM::SPACE:
804 return MI.getOperand(1).getImm();
805 case ARM::INLINEASM:
806 case ARM::INLINEASM_BR: {
807 // If this machine instr is an inline asm, measure it.
808 unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
809 if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction())
810 Size = alignTo(Size, 4);
811 return Size;
812 }
813 }
814 }
815
getInstBundleLength(const MachineInstr & MI) const816 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
817 unsigned Size = 0;
818 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
819 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
820 while (++I != E && I->isInsideBundle()) {
821 assert(!I->isBundle() && "No nested bundle!");
822 Size += getInstSizeInBytes(*I);
823 }
824 return Size;
825 }
826
copyFromCPSR(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,bool KillSrc,const ARMSubtarget & Subtarget) const827 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
828 MachineBasicBlock::iterator I,
829 unsigned DestReg, bool KillSrc,
830 const ARMSubtarget &Subtarget) const {
831 unsigned Opc = Subtarget.isThumb()
832 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
833 : ARM::MRS;
834
835 MachineInstrBuilder MIB =
836 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
837
838 // There is only 1 A/R class MRS instruction, and it always refers to
839 // APSR. However, there are lots of other possibilities on M-class cores.
840 if (Subtarget.isMClass())
841 MIB.addImm(0x800);
842
843 MIB.add(predOps(ARMCC::AL))
844 .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
845 }
846
copyToCPSR(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned SrcReg,bool KillSrc,const ARMSubtarget & Subtarget) const847 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
848 MachineBasicBlock::iterator I,
849 unsigned SrcReg, bool KillSrc,
850 const ARMSubtarget &Subtarget) const {
851 unsigned Opc = Subtarget.isThumb()
852 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
853 : ARM::MSR;
854
855 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
856
857 if (Subtarget.isMClass())
858 MIB.addImm(0x800);
859 else
860 MIB.addImm(8);
861
862 MIB.addReg(SrcReg, getKillRegState(KillSrc))
863 .add(predOps(ARMCC::AL))
864 .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
865 }
866
addUnpredicatedMveVpredNOp(MachineInstrBuilder & MIB)867 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) {
868 MIB.addImm(ARMVCC::None);
869 MIB.addReg(0);
870 MIB.addReg(0); // tp_reg
871 }
872
addUnpredicatedMveVpredROp(MachineInstrBuilder & MIB,Register DestReg)873 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB,
874 Register DestReg) {
875 addUnpredicatedMveVpredNOp(MIB);
876 MIB.addReg(DestReg, RegState::Undef);
877 }
878
addPredicatedMveVpredNOp(MachineInstrBuilder & MIB,unsigned Cond)879 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) {
880 MIB.addImm(Cond);
881 MIB.addReg(ARM::VPR, RegState::Implicit);
882 MIB.addReg(0); // tp_reg
883 }
884
addPredicatedMveVpredROp(MachineInstrBuilder & MIB,unsigned Cond,unsigned Inactive)885 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB,
886 unsigned Cond, unsigned Inactive) {
887 addPredicatedMveVpredNOp(MIB, Cond);
888 MIB.addReg(Inactive);
889 }
890
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,const DebugLoc & DL,MCRegister DestReg,MCRegister SrcReg,bool KillSrc) const891 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
892 MachineBasicBlock::iterator I,
893 const DebugLoc &DL, MCRegister DestReg,
894 MCRegister SrcReg, bool KillSrc) const {
895 bool GPRDest = ARM::GPRRegClass.contains(DestReg);
896 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
897
898 if (GPRDest && GPRSrc) {
899 BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
900 .addReg(SrcReg, getKillRegState(KillSrc))
901 .add(predOps(ARMCC::AL))
902 .add(condCodeOp());
903 return;
904 }
905
906 bool SPRDest = ARM::SPRRegClass.contains(DestReg);
907 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
908
909 unsigned Opc = 0;
910 if (SPRDest && SPRSrc)
911 Opc = ARM::VMOVS;
912 else if (GPRDest && SPRSrc)
913 Opc = ARM::VMOVRS;
914 else if (SPRDest && GPRSrc)
915 Opc = ARM::VMOVSR;
916 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64())
917 Opc = ARM::VMOVD;
918 else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
919 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MQPRCopy;
920
921 if (Opc) {
922 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
923 MIB.addReg(SrcReg, getKillRegState(KillSrc));
924 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR)
925 MIB.addReg(SrcReg, getKillRegState(KillSrc));
926 if (Opc == ARM::MVE_VORR)
927 addUnpredicatedMveVpredROp(MIB, DestReg);
928 else if (Opc != ARM::MQPRCopy)
929 MIB.add(predOps(ARMCC::AL));
930 return;
931 }
932
933 // Handle register classes that require multiple instructions.
934 unsigned BeginIdx = 0;
935 unsigned SubRegs = 0;
936 int Spacing = 1;
937
938 // Use VORRq when possible.
939 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
940 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
941 BeginIdx = ARM::qsub_0;
942 SubRegs = 2;
943 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
944 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
945 BeginIdx = ARM::qsub_0;
946 SubRegs = 4;
947 // Fall back to VMOVD.
948 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
949 Opc = ARM::VMOVD;
950 BeginIdx = ARM::dsub_0;
951 SubRegs = 2;
952 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
953 Opc = ARM::VMOVD;
954 BeginIdx = ARM::dsub_0;
955 SubRegs = 3;
956 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
957 Opc = ARM::VMOVD;
958 BeginIdx = ARM::dsub_0;
959 SubRegs = 4;
960 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
961 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
962 BeginIdx = ARM::gsub_0;
963 SubRegs = 2;
964 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
965 Opc = ARM::VMOVD;
966 BeginIdx = ARM::dsub_0;
967 SubRegs = 2;
968 Spacing = 2;
969 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
970 Opc = ARM::VMOVD;
971 BeginIdx = ARM::dsub_0;
972 SubRegs = 3;
973 Spacing = 2;
974 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
975 Opc = ARM::VMOVD;
976 BeginIdx = ARM::dsub_0;
977 SubRegs = 4;
978 Spacing = 2;
979 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) &&
980 !Subtarget.hasFP64()) {
981 Opc = ARM::VMOVS;
982 BeginIdx = ARM::ssub_0;
983 SubRegs = 2;
984 } else if (SrcReg == ARM::CPSR) {
985 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
986 return;
987 } else if (DestReg == ARM::CPSR) {
988 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
989 return;
990 } else if (DestReg == ARM::VPR) {
991 assert(ARM::GPRRegClass.contains(SrcReg));
992 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg)
993 .addReg(SrcReg, getKillRegState(KillSrc))
994 .add(predOps(ARMCC::AL));
995 return;
996 } else if (SrcReg == ARM::VPR) {
997 assert(ARM::GPRRegClass.contains(DestReg));
998 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg)
999 .addReg(SrcReg, getKillRegState(KillSrc))
1000 .add(predOps(ARMCC::AL));
1001 return;
1002 } else if (DestReg == ARM::FPSCR_NZCV) {
1003 assert(ARM::GPRRegClass.contains(SrcReg));
1004 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg)
1005 .addReg(SrcReg, getKillRegState(KillSrc))
1006 .add(predOps(ARMCC::AL));
1007 return;
1008 } else if (SrcReg == ARM::FPSCR_NZCV) {
1009 assert(ARM::GPRRegClass.contains(DestReg));
1010 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg)
1011 .addReg(SrcReg, getKillRegState(KillSrc))
1012 .add(predOps(ARMCC::AL));
1013 return;
1014 }
1015
1016 assert(Opc && "Impossible reg-to-reg copy");
1017
1018 const TargetRegisterInfo *TRI = &getRegisterInfo();
1019 MachineInstrBuilder Mov;
1020
1021 // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
1022 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
1023 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
1024 Spacing = -Spacing;
1025 }
1026 #ifndef NDEBUG
1027 SmallSet<unsigned, 4> DstRegs;
1028 #endif
1029 for (unsigned i = 0; i != SubRegs; ++i) {
1030 Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
1031 Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
1032 assert(Dst && Src && "Bad sub-register");
1033 #ifndef NDEBUG
1034 assert(!DstRegs.count(Src) && "destructive vector copy");
1035 DstRegs.insert(Dst);
1036 #endif
1037 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
1038 // VORR (NEON or MVE) takes two source operands.
1039 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) {
1040 Mov.addReg(Src);
1041 }
1042 // MVE VORR takes predicate operands in place of an ordinary condition.
1043 if (Opc == ARM::MVE_VORR)
1044 addUnpredicatedMveVpredROp(Mov, Dst);
1045 else
1046 Mov = Mov.add(predOps(ARMCC::AL));
1047 // MOVr can set CC.
1048 if (Opc == ARM::MOVr)
1049 Mov = Mov.add(condCodeOp());
1050 }
1051 // Add implicit super-register defs and kills to the last instruction.
1052 Mov->addRegisterDefined(DestReg, TRI);
1053 if (KillSrc)
1054 Mov->addRegisterKilled(SrcReg, TRI);
1055 }
1056
1057 std::optional<DestSourcePair>
isCopyInstrImpl(const MachineInstr & MI) const1058 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
1059 // VMOVRRD is also a copy instruction but it requires
1060 // special way of handling. It is more complex copy version
1061 // and since that we are not considering it. For recognition
1062 // of such instruction isExtractSubregLike MI interface fuction
1063 // could be used.
1064 // VORRq is considered as a move only if two inputs are
1065 // the same register.
1066 if (!MI.isMoveReg() ||
1067 (MI.getOpcode() == ARM::VORRq &&
1068 MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
1069 return std::nullopt;
1070 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1071 }
1072
1073 std::optional<ParamLoadedValue>
describeLoadedValue(const MachineInstr & MI,Register Reg) const1074 ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI,
1075 Register Reg) const {
1076 if (auto DstSrcPair = isCopyInstrImpl(MI)) {
1077 Register DstReg = DstSrcPair->Destination->getReg();
1078
1079 // TODO: We don't handle cases where the forwarding reg is narrower/wider
1080 // than the copy registers. Consider for example:
1081 //
1082 // s16 = VMOVS s0
1083 // s17 = VMOVS s1
1084 // call @callee(d0)
1085 //
1086 // We'd like to describe the call site value of d0 as d8, but this requires
1087 // gathering and merging the descriptions for the two VMOVS instructions.
1088 //
1089 // We also don't handle the reverse situation, where the forwarding reg is
1090 // narrower than the copy destination:
1091 //
1092 // d8 = VMOVD d0
1093 // call @callee(s1)
1094 //
1095 // We need to produce a fragment description (the call site value of s1 is
1096 // /not/ just d8).
1097 if (DstReg != Reg)
1098 return std::nullopt;
1099 }
1100 return TargetInstrInfo::describeLoadedValue(MI, Reg);
1101 }
1102
1103 const MachineInstrBuilder &
AddDReg(MachineInstrBuilder & MIB,unsigned Reg,unsigned SubIdx,unsigned State,const TargetRegisterInfo * TRI) const1104 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
1105 unsigned SubIdx, unsigned State,
1106 const TargetRegisterInfo *TRI) const {
1107 if (!SubIdx)
1108 return MIB.addReg(Reg, State);
1109
1110 if (Register::isPhysicalRegister(Reg))
1111 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
1112 return MIB.addReg(Reg, State, SubIdx);
1113 }
1114
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,Register SrcReg,bool isKill,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI,Register VReg) const1115 void ARMBaseInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1116 MachineBasicBlock::iterator I,
1117 Register SrcReg, bool isKill, int FI,
1118 const TargetRegisterClass *RC,
1119 const TargetRegisterInfo *TRI,
1120 Register VReg) const {
1121 MachineFunction &MF = *MBB.getParent();
1122 MachineFrameInfo &MFI = MF.getFrameInfo();
1123 Align Alignment = MFI.getObjectAlign(FI);
1124
1125 MachineMemOperand *MMO = MF.getMachineMemOperand(
1126 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
1127 MFI.getObjectSize(FI), Alignment);
1128
1129 switch (TRI->getSpillSize(*RC)) {
1130 case 2:
1131 if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1132 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH))
1133 .addReg(SrcReg, getKillRegState(isKill))
1134 .addFrameIndex(FI)
1135 .addImm(0)
1136 .addMemOperand(MMO)
1137 .add(predOps(ARMCC::AL));
1138 } else
1139 llvm_unreachable("Unknown reg class!");
1140 break;
1141 case 4:
1142 if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1143 BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12))
1144 .addReg(SrcReg, getKillRegState(isKill))
1145 .addFrameIndex(FI)
1146 .addImm(0)
1147 .addMemOperand(MMO)
1148 .add(predOps(ARMCC::AL));
1149 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1150 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS))
1151 .addReg(SrcReg, getKillRegState(isKill))
1152 .addFrameIndex(FI)
1153 .addImm(0)
1154 .addMemOperand(MMO)
1155 .add(predOps(ARMCC::AL));
1156 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1157 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off))
1158 .addReg(SrcReg, getKillRegState(isKill))
1159 .addFrameIndex(FI)
1160 .addImm(0)
1161 .addMemOperand(MMO)
1162 .add(predOps(ARMCC::AL));
1163 } else
1164 llvm_unreachable("Unknown reg class!");
1165 break;
1166 case 8:
1167 if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1168 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD))
1169 .addReg(SrcReg, getKillRegState(isKill))
1170 .addFrameIndex(FI)
1171 .addImm(0)
1172 .addMemOperand(MMO)
1173 .add(predOps(ARMCC::AL));
1174 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1175 if (Subtarget.hasV5TEOps()) {
1176 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD));
1177 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1178 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1179 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1180 .add(predOps(ARMCC::AL));
1181 } else {
1182 // Fallback to STM instruction, which has existed since the dawn of
1183 // time.
1184 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA))
1185 .addFrameIndex(FI)
1186 .addMemOperand(MMO)
1187 .add(predOps(ARMCC::AL));
1188 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1189 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1190 }
1191 } else
1192 llvm_unreachable("Unknown reg class!");
1193 break;
1194 case 16:
1195 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1196 // Use aligned spills if the stack can be realigned.
1197 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1198 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64))
1199 .addFrameIndex(FI)
1200 .addImm(16)
1201 .addReg(SrcReg, getKillRegState(isKill))
1202 .addMemOperand(MMO)
1203 .add(predOps(ARMCC::AL));
1204 } else {
1205 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA))
1206 .addReg(SrcReg, getKillRegState(isKill))
1207 .addFrameIndex(FI)
1208 .addMemOperand(MMO)
1209 .add(predOps(ARMCC::AL));
1210 }
1211 } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1212 Subtarget.hasMVEIntegerOps()) {
1213 auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32));
1214 MIB.addReg(SrcReg, getKillRegState(isKill))
1215 .addFrameIndex(FI)
1216 .addImm(0)
1217 .addMemOperand(MMO);
1218 addUnpredicatedMveVpredNOp(MIB);
1219 } else
1220 llvm_unreachable("Unknown reg class!");
1221 break;
1222 case 24:
1223 if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1224 // Use aligned spills if the stack can be realigned.
1225 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1226 Subtarget.hasNEON()) {
1227 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo))
1228 .addFrameIndex(FI)
1229 .addImm(16)
1230 .addReg(SrcReg, getKillRegState(isKill))
1231 .addMemOperand(MMO)
1232 .add(predOps(ARMCC::AL));
1233 } else {
1234 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1235 get(ARM::VSTMDIA))
1236 .addFrameIndex(FI)
1237 .add(predOps(ARMCC::AL))
1238 .addMemOperand(MMO);
1239 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1240 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1241 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1242 }
1243 } else
1244 llvm_unreachable("Unknown reg class!");
1245 break;
1246 case 32:
1247 if (ARM::QQPRRegClass.hasSubClassEq(RC) ||
1248 ARM::MQQPRRegClass.hasSubClassEq(RC) ||
1249 ARM::DQuadRegClass.hasSubClassEq(RC)) {
1250 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1251 Subtarget.hasNEON()) {
1252 // FIXME: It's possible to only store part of the QQ register if the
1253 // spilled def has a sub-register index.
1254 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo))
1255 .addFrameIndex(FI)
1256 .addImm(16)
1257 .addReg(SrcReg, getKillRegState(isKill))
1258 .addMemOperand(MMO)
1259 .add(predOps(ARMCC::AL));
1260 } else if (Subtarget.hasMVEIntegerOps()) {
1261 BuildMI(MBB, I, DebugLoc(), get(ARM::MQQPRStore))
1262 .addReg(SrcReg, getKillRegState(isKill))
1263 .addFrameIndex(FI)
1264 .addMemOperand(MMO);
1265 } else {
1266 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1267 get(ARM::VSTMDIA))
1268 .addFrameIndex(FI)
1269 .add(predOps(ARMCC::AL))
1270 .addMemOperand(MMO);
1271 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1272 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1273 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1274 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1275 }
1276 } else
1277 llvm_unreachable("Unknown reg class!");
1278 break;
1279 case 64:
1280 if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) &&
1281 Subtarget.hasMVEIntegerOps()) {
1282 BuildMI(MBB, I, DebugLoc(), get(ARM::MQQQQPRStore))
1283 .addReg(SrcReg, getKillRegState(isKill))
1284 .addFrameIndex(FI)
1285 .addMemOperand(MMO);
1286 } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1287 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA))
1288 .addFrameIndex(FI)
1289 .add(predOps(ARMCC::AL))
1290 .addMemOperand(MMO);
1291 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1292 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1293 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1294 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1295 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1296 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1297 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1298 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1299 } else
1300 llvm_unreachable("Unknown reg class!");
1301 break;
1302 default:
1303 llvm_unreachable("Unknown reg class!");
1304 }
1305 }
1306
isStoreToStackSlot(const MachineInstr & MI,int & FrameIndex) const1307 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1308 int &FrameIndex) const {
1309 switch (MI.getOpcode()) {
1310 default: break;
1311 case ARM::STRrs:
1312 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1313 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1314 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1315 MI.getOperand(3).getImm() == 0) {
1316 FrameIndex = MI.getOperand(1).getIndex();
1317 return MI.getOperand(0).getReg();
1318 }
1319 break;
1320 case ARM::STRi12:
1321 case ARM::t2STRi12:
1322 case ARM::tSTRspi:
1323 case ARM::VSTRD:
1324 case ARM::VSTRS:
1325 case ARM::VSTR_P0_off:
1326 case ARM::MVE_VSTRWU32:
1327 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1328 MI.getOperand(2).getImm() == 0) {
1329 FrameIndex = MI.getOperand(1).getIndex();
1330 return MI.getOperand(0).getReg();
1331 }
1332 break;
1333 case ARM::VST1q64:
1334 case ARM::VST1d64TPseudo:
1335 case ARM::VST1d64QPseudo:
1336 if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1337 FrameIndex = MI.getOperand(0).getIndex();
1338 return MI.getOperand(2).getReg();
1339 }
1340 break;
1341 case ARM::VSTMQIA:
1342 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1343 FrameIndex = MI.getOperand(1).getIndex();
1344 return MI.getOperand(0).getReg();
1345 }
1346 break;
1347 case ARM::MQQPRStore:
1348 case ARM::MQQQQPRStore:
1349 if (MI.getOperand(1).isFI()) {
1350 FrameIndex = MI.getOperand(1).getIndex();
1351 return MI.getOperand(0).getReg();
1352 }
1353 break;
1354 }
1355
1356 return 0;
1357 }
1358
isStoreToStackSlotPostFE(const MachineInstr & MI,int & FrameIndex) const1359 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1360 int &FrameIndex) const {
1361 SmallVector<const MachineMemOperand *, 1> Accesses;
1362 if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) &&
1363 Accesses.size() == 1) {
1364 FrameIndex =
1365 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1366 ->getFrameIndex();
1367 return true;
1368 }
1369 return false;
1370 }
1371
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,Register DestReg,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI,Register VReg) const1372 void ARMBaseInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1373 MachineBasicBlock::iterator I,
1374 Register DestReg, int FI,
1375 const TargetRegisterClass *RC,
1376 const TargetRegisterInfo *TRI,
1377 Register VReg) const {
1378 DebugLoc DL;
1379 if (I != MBB.end()) DL = I->getDebugLoc();
1380 MachineFunction &MF = *MBB.getParent();
1381 MachineFrameInfo &MFI = MF.getFrameInfo();
1382 const Align Alignment = MFI.getObjectAlign(FI);
1383 MachineMemOperand *MMO = MF.getMachineMemOperand(
1384 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1385 MFI.getObjectSize(FI), Alignment);
1386
1387 switch (TRI->getSpillSize(*RC)) {
1388 case 2:
1389 if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1390 BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
1391 .addFrameIndex(FI)
1392 .addImm(0)
1393 .addMemOperand(MMO)
1394 .add(predOps(ARMCC::AL));
1395 } else
1396 llvm_unreachable("Unknown reg class!");
1397 break;
1398 case 4:
1399 if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1400 BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1401 .addFrameIndex(FI)
1402 .addImm(0)
1403 .addMemOperand(MMO)
1404 .add(predOps(ARMCC::AL));
1405 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1406 BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1407 .addFrameIndex(FI)
1408 .addImm(0)
1409 .addMemOperand(MMO)
1410 .add(predOps(ARMCC::AL));
1411 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1412 BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg)
1413 .addFrameIndex(FI)
1414 .addImm(0)
1415 .addMemOperand(MMO)
1416 .add(predOps(ARMCC::AL));
1417 } else
1418 llvm_unreachable("Unknown reg class!");
1419 break;
1420 case 8:
1421 if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1422 BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1423 .addFrameIndex(FI)
1424 .addImm(0)
1425 .addMemOperand(MMO)
1426 .add(predOps(ARMCC::AL));
1427 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1428 MachineInstrBuilder MIB;
1429
1430 if (Subtarget.hasV5TEOps()) {
1431 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1432 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1433 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1434 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1435 .add(predOps(ARMCC::AL));
1436 } else {
1437 // Fallback to LDM instruction, which has existed since the dawn of
1438 // time.
1439 MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
1440 .addFrameIndex(FI)
1441 .addMemOperand(MMO)
1442 .add(predOps(ARMCC::AL));
1443 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1444 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1445 }
1446
1447 if (DestReg.isPhysical())
1448 MIB.addReg(DestReg, RegState::ImplicitDefine);
1449 } else
1450 llvm_unreachable("Unknown reg class!");
1451 break;
1452 case 16:
1453 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1454 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1455 BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1456 .addFrameIndex(FI)
1457 .addImm(16)
1458 .addMemOperand(MMO)
1459 .add(predOps(ARMCC::AL));
1460 } else {
1461 BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1462 .addFrameIndex(FI)
1463 .addMemOperand(MMO)
1464 .add(predOps(ARMCC::AL));
1465 }
1466 } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1467 Subtarget.hasMVEIntegerOps()) {
1468 auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg);
1469 MIB.addFrameIndex(FI)
1470 .addImm(0)
1471 .addMemOperand(MMO);
1472 addUnpredicatedMveVpredNOp(MIB);
1473 } else
1474 llvm_unreachable("Unknown reg class!");
1475 break;
1476 case 24:
1477 if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1478 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1479 Subtarget.hasNEON()) {
1480 BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1481 .addFrameIndex(FI)
1482 .addImm(16)
1483 .addMemOperand(MMO)
1484 .add(predOps(ARMCC::AL));
1485 } else {
1486 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1487 .addFrameIndex(FI)
1488 .addMemOperand(MMO)
1489 .add(predOps(ARMCC::AL));
1490 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1491 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1492 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1493 if (DestReg.isPhysical())
1494 MIB.addReg(DestReg, RegState::ImplicitDefine);
1495 }
1496 } else
1497 llvm_unreachable("Unknown reg class!");
1498 break;
1499 case 32:
1500 if (ARM::QQPRRegClass.hasSubClassEq(RC) ||
1501 ARM::MQQPRRegClass.hasSubClassEq(RC) ||
1502 ARM::DQuadRegClass.hasSubClassEq(RC)) {
1503 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1504 Subtarget.hasNEON()) {
1505 BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1506 .addFrameIndex(FI)
1507 .addImm(16)
1508 .addMemOperand(MMO)
1509 .add(predOps(ARMCC::AL));
1510 } else if (Subtarget.hasMVEIntegerOps()) {
1511 BuildMI(MBB, I, DL, get(ARM::MQQPRLoad), DestReg)
1512 .addFrameIndex(FI)
1513 .addMemOperand(MMO);
1514 } else {
1515 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1516 .addFrameIndex(FI)
1517 .add(predOps(ARMCC::AL))
1518 .addMemOperand(MMO);
1519 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1520 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1521 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1522 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1523 if (DestReg.isPhysical())
1524 MIB.addReg(DestReg, RegState::ImplicitDefine);
1525 }
1526 } else
1527 llvm_unreachable("Unknown reg class!");
1528 break;
1529 case 64:
1530 if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) &&
1531 Subtarget.hasMVEIntegerOps()) {
1532 BuildMI(MBB, I, DL, get(ARM::MQQQQPRLoad), DestReg)
1533 .addFrameIndex(FI)
1534 .addMemOperand(MMO);
1535 } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1536 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1537 .addFrameIndex(FI)
1538 .add(predOps(ARMCC::AL))
1539 .addMemOperand(MMO);
1540 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1541 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1542 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1543 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1544 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1545 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1546 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1547 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1548 if (DestReg.isPhysical())
1549 MIB.addReg(DestReg, RegState::ImplicitDefine);
1550 } else
1551 llvm_unreachable("Unknown reg class!");
1552 break;
1553 default:
1554 llvm_unreachable("Unknown regclass!");
1555 }
1556 }
1557
isLoadFromStackSlot(const MachineInstr & MI,int & FrameIndex) const1558 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1559 int &FrameIndex) const {
1560 switch (MI.getOpcode()) {
1561 default: break;
1562 case ARM::LDRrs:
1563 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame.
1564 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1565 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1566 MI.getOperand(3).getImm() == 0) {
1567 FrameIndex = MI.getOperand(1).getIndex();
1568 return MI.getOperand(0).getReg();
1569 }
1570 break;
1571 case ARM::LDRi12:
1572 case ARM::t2LDRi12:
1573 case ARM::tLDRspi:
1574 case ARM::VLDRD:
1575 case ARM::VLDRS:
1576 case ARM::VLDR_P0_off:
1577 case ARM::MVE_VLDRWU32:
1578 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1579 MI.getOperand(2).getImm() == 0) {
1580 FrameIndex = MI.getOperand(1).getIndex();
1581 return MI.getOperand(0).getReg();
1582 }
1583 break;
1584 case ARM::VLD1q64:
1585 case ARM::VLD1d8TPseudo:
1586 case ARM::VLD1d16TPseudo:
1587 case ARM::VLD1d32TPseudo:
1588 case ARM::VLD1d64TPseudo:
1589 case ARM::VLD1d8QPseudo:
1590 case ARM::VLD1d16QPseudo:
1591 case ARM::VLD1d32QPseudo:
1592 case ARM::VLD1d64QPseudo:
1593 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1594 FrameIndex = MI.getOperand(1).getIndex();
1595 return MI.getOperand(0).getReg();
1596 }
1597 break;
1598 case ARM::VLDMQIA:
1599 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1600 FrameIndex = MI.getOperand(1).getIndex();
1601 return MI.getOperand(0).getReg();
1602 }
1603 break;
1604 case ARM::MQQPRLoad:
1605 case ARM::MQQQQPRLoad:
1606 if (MI.getOperand(1).isFI()) {
1607 FrameIndex = MI.getOperand(1).getIndex();
1608 return MI.getOperand(0).getReg();
1609 }
1610 break;
1611 }
1612
1613 return 0;
1614 }
1615
isLoadFromStackSlotPostFE(const MachineInstr & MI,int & FrameIndex) const1616 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1617 int &FrameIndex) const {
1618 SmallVector<const MachineMemOperand *, 1> Accesses;
1619 if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) &&
1620 Accesses.size() == 1) {
1621 FrameIndex =
1622 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1623 ->getFrameIndex();
1624 return true;
1625 }
1626 return false;
1627 }
1628
1629 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1630 /// depending on whether the result is used.
expandMEMCPY(MachineBasicBlock::iterator MI) const1631 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1632 bool isThumb1 = Subtarget.isThumb1Only();
1633 bool isThumb2 = Subtarget.isThumb2();
1634 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1635
1636 DebugLoc dl = MI->getDebugLoc();
1637 MachineBasicBlock *BB = MI->getParent();
1638
1639 MachineInstrBuilder LDM, STM;
1640 if (isThumb1 || !MI->getOperand(1).isDead()) {
1641 MachineOperand LDWb(MI->getOperand(1));
1642 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1643 : isThumb1 ? ARM::tLDMIA_UPD
1644 : ARM::LDMIA_UPD))
1645 .add(LDWb);
1646 } else {
1647 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1648 }
1649
1650 if (isThumb1 || !MI->getOperand(0).isDead()) {
1651 MachineOperand STWb(MI->getOperand(0));
1652 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1653 : isThumb1 ? ARM::tSTMIA_UPD
1654 : ARM::STMIA_UPD))
1655 .add(STWb);
1656 } else {
1657 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1658 }
1659
1660 MachineOperand LDBase(MI->getOperand(3));
1661 LDM.add(LDBase).add(predOps(ARMCC::AL));
1662
1663 MachineOperand STBase(MI->getOperand(2));
1664 STM.add(STBase).add(predOps(ARMCC::AL));
1665
1666 // Sort the scratch registers into ascending order.
1667 const TargetRegisterInfo &TRI = getRegisterInfo();
1668 SmallVector<unsigned, 6> ScratchRegs;
1669 for(unsigned I = 5; I < MI->getNumOperands(); ++I)
1670 ScratchRegs.push_back(MI->getOperand(I).getReg());
1671 llvm::sort(ScratchRegs,
1672 [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool {
1673 return TRI.getEncodingValue(Reg1) <
1674 TRI.getEncodingValue(Reg2);
1675 });
1676
1677 for (const auto &Reg : ScratchRegs) {
1678 LDM.addReg(Reg, RegState::Define);
1679 STM.addReg(Reg, RegState::Kill);
1680 }
1681
1682 BB->erase(MI);
1683 }
1684
expandPostRAPseudo(MachineInstr & MI) const1685 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1686 if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1687 expandLoadStackGuard(MI);
1688 MI.getParent()->erase(MI);
1689 return true;
1690 }
1691
1692 if (MI.getOpcode() == ARM::MEMCPY) {
1693 expandMEMCPY(MI);
1694 return true;
1695 }
1696
1697 // This hook gets to expand COPY instructions before they become
1698 // copyPhysReg() calls. Look for VMOVS instructions that can legally be
1699 // widened to VMOVD. We prefer the VMOVD when possible because it may be
1700 // changed into a VORR that can go down the NEON pipeline.
1701 if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64())
1702 return false;
1703
1704 // Look for a copy between even S-registers. That is where we keep floats
1705 // when using NEON v2f32 instructions for f32 arithmetic.
1706 Register DstRegS = MI.getOperand(0).getReg();
1707 Register SrcRegS = MI.getOperand(1).getReg();
1708 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1709 return false;
1710
1711 const TargetRegisterInfo *TRI = &getRegisterInfo();
1712 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1713 &ARM::DPRRegClass);
1714 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1715 &ARM::DPRRegClass);
1716 if (!DstRegD || !SrcRegD)
1717 return false;
1718
1719 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only
1720 // legal if the COPY already defines the full DstRegD, and it isn't a
1721 // sub-register insertion.
1722 if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1723 return false;
1724
1725 // A dead copy shouldn't show up here, but reject it just in case.
1726 if (MI.getOperand(0).isDead())
1727 return false;
1728
1729 // All clear, widen the COPY.
1730 LLVM_DEBUG(dbgs() << "widening: " << MI);
1731 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1732
1733 // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg
1734 // or some other super-register.
1735 int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
1736 if (ImpDefIdx != -1)
1737 MI.removeOperand(ImpDefIdx);
1738
1739 // Change the opcode and operands.
1740 MI.setDesc(get(ARM::VMOVD));
1741 MI.getOperand(0).setReg(DstRegD);
1742 MI.getOperand(1).setReg(SrcRegD);
1743 MIB.add(predOps(ARMCC::AL));
1744
1745 // We are now reading SrcRegD instead of SrcRegS. This may upset the
1746 // register scavenger and machine verifier, so we need to indicate that we
1747 // are reading an undefined value from SrcRegD, but a proper value from
1748 // SrcRegS.
1749 MI.getOperand(1).setIsUndef();
1750 MIB.addReg(SrcRegS, RegState::Implicit);
1751
1752 // SrcRegD may actually contain an unrelated value in the ssub_1
1753 // sub-register. Don't kill it. Only kill the ssub_0 sub-register.
1754 if (MI.getOperand(1).isKill()) {
1755 MI.getOperand(1).setIsKill(false);
1756 MI.addRegisterKilled(SrcRegS, TRI, true);
1757 }
1758
1759 LLVM_DEBUG(dbgs() << "replaced by: " << MI);
1760 return true;
1761 }
1762
1763 /// Create a copy of a const pool value. Update CPI to the new index and return
1764 /// the label UID.
duplicateCPV(MachineFunction & MF,unsigned & CPI)1765 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1766 MachineConstantPool *MCP = MF.getConstantPool();
1767 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1768
1769 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1770 assert(MCPE.isMachineConstantPoolEntry() &&
1771 "Expecting a machine constantpool entry!");
1772 ARMConstantPoolValue *ACPV =
1773 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1774
1775 unsigned PCLabelId = AFI->createPICLabelUId();
1776 ARMConstantPoolValue *NewCPV = nullptr;
1777
1778 // FIXME: The below assumes PIC relocation model and that the function
1779 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1780 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1781 // instructions, so that's probably OK, but is PIC always correct when
1782 // we get here?
1783 if (ACPV->isGlobalValue())
1784 NewCPV = ARMConstantPoolConstant::Create(
1785 cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1786 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1787 else if (ACPV->isExtSymbol())
1788 NewCPV = ARMConstantPoolSymbol::
1789 Create(MF.getFunction().getContext(),
1790 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1791 else if (ACPV->isBlockAddress())
1792 NewCPV = ARMConstantPoolConstant::
1793 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1794 ARMCP::CPBlockAddress, 4);
1795 else if (ACPV->isLSDA())
1796 NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
1797 ARMCP::CPLSDA, 4);
1798 else if (ACPV->isMachineBasicBlock())
1799 NewCPV = ARMConstantPoolMBB::
1800 Create(MF.getFunction().getContext(),
1801 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1802 else
1803 llvm_unreachable("Unexpected ARM constantpool value type!!");
1804 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign());
1805 return PCLabelId;
1806 }
1807
reMaterialize(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,Register DestReg,unsigned SubIdx,const MachineInstr & Orig,const TargetRegisterInfo & TRI) const1808 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1809 MachineBasicBlock::iterator I,
1810 Register DestReg, unsigned SubIdx,
1811 const MachineInstr &Orig,
1812 const TargetRegisterInfo &TRI) const {
1813 unsigned Opcode = Orig.getOpcode();
1814 switch (Opcode) {
1815 default: {
1816 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1817 MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1818 MBB.insert(I, MI);
1819 break;
1820 }
1821 case ARM::tLDRpci_pic:
1822 case ARM::t2LDRpci_pic: {
1823 MachineFunction &MF = *MBB.getParent();
1824 unsigned CPI = Orig.getOperand(1).getIndex();
1825 unsigned PCLabelId = duplicateCPV(MF, CPI);
1826 BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1827 .addConstantPoolIndex(CPI)
1828 .addImm(PCLabelId)
1829 .cloneMemRefs(Orig);
1830 break;
1831 }
1832 }
1833 }
1834
1835 MachineInstr &
duplicate(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertBefore,const MachineInstr & Orig) const1836 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
1837 MachineBasicBlock::iterator InsertBefore,
1838 const MachineInstr &Orig) const {
1839 MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
1840 MachineBasicBlock::instr_iterator I = Cloned.getIterator();
1841 for (;;) {
1842 switch (I->getOpcode()) {
1843 case ARM::tLDRpci_pic:
1844 case ARM::t2LDRpci_pic: {
1845 MachineFunction &MF = *MBB.getParent();
1846 unsigned CPI = I->getOperand(1).getIndex();
1847 unsigned PCLabelId = duplicateCPV(MF, CPI);
1848 I->getOperand(1).setIndex(CPI);
1849 I->getOperand(2).setImm(PCLabelId);
1850 break;
1851 }
1852 }
1853 if (!I->isBundledWithSucc())
1854 break;
1855 ++I;
1856 }
1857 return Cloned;
1858 }
1859
produceSameValue(const MachineInstr & MI0,const MachineInstr & MI1,const MachineRegisterInfo * MRI) const1860 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1861 const MachineInstr &MI1,
1862 const MachineRegisterInfo *MRI) const {
1863 unsigned Opcode = MI0.getOpcode();
1864 if (Opcode == ARM::t2LDRpci || Opcode == ARM::t2LDRpci_pic ||
1865 Opcode == ARM::tLDRpci || Opcode == ARM::tLDRpci_pic ||
1866 Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1867 Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel ||
1868 Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr ||
1869 Opcode == ARM::t2MOV_ga_pcrel) {
1870 if (MI1.getOpcode() != Opcode)
1871 return false;
1872 if (MI0.getNumOperands() != MI1.getNumOperands())
1873 return false;
1874
1875 const MachineOperand &MO0 = MI0.getOperand(1);
1876 const MachineOperand &MO1 = MI1.getOperand(1);
1877 if (MO0.getOffset() != MO1.getOffset())
1878 return false;
1879
1880 if (Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1881 Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel ||
1882 Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr ||
1883 Opcode == ARM::t2MOV_ga_pcrel)
1884 // Ignore the PC labels.
1885 return MO0.getGlobal() == MO1.getGlobal();
1886
1887 const MachineFunction *MF = MI0.getParent()->getParent();
1888 const MachineConstantPool *MCP = MF->getConstantPool();
1889 int CPI0 = MO0.getIndex();
1890 int CPI1 = MO1.getIndex();
1891 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1892 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1893 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1894 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1895 if (isARMCP0 && isARMCP1) {
1896 ARMConstantPoolValue *ACPV0 =
1897 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1898 ARMConstantPoolValue *ACPV1 =
1899 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1900 return ACPV0->hasSameValue(ACPV1);
1901 } else if (!isARMCP0 && !isARMCP1) {
1902 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1903 }
1904 return false;
1905 } else if (Opcode == ARM::PICLDR) {
1906 if (MI1.getOpcode() != Opcode)
1907 return false;
1908 if (MI0.getNumOperands() != MI1.getNumOperands())
1909 return false;
1910
1911 Register Addr0 = MI0.getOperand(1).getReg();
1912 Register Addr1 = MI1.getOperand(1).getReg();
1913 if (Addr0 != Addr1) {
1914 if (!MRI || !Addr0.isVirtual() || !Addr1.isVirtual())
1915 return false;
1916
1917 // This assumes SSA form.
1918 MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1919 MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1920 // Check if the loaded value, e.g. a constantpool of a global address, are
1921 // the same.
1922 if (!produceSameValue(*Def0, *Def1, MRI))
1923 return false;
1924 }
1925
1926 for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1927 // %12 = PICLDR %11, 0, 14, %noreg
1928 const MachineOperand &MO0 = MI0.getOperand(i);
1929 const MachineOperand &MO1 = MI1.getOperand(i);
1930 if (!MO0.isIdenticalTo(MO1))
1931 return false;
1932 }
1933 return true;
1934 }
1935
1936 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1937 }
1938
1939 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1940 /// determine if two loads are loading from the same base address. It should
1941 /// only return true if the base pointers are the same and the only differences
1942 /// between the two addresses is the offset. It also returns the offsets by
1943 /// reference.
1944 ///
1945 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1946 /// is permanently disabled.
areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2) const1947 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1948 int64_t &Offset1,
1949 int64_t &Offset2) const {
1950 // Don't worry about Thumb: just ARM and Thumb2.
1951 if (Subtarget.isThumb1Only()) return false;
1952
1953 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1954 return false;
1955
1956 switch (Load1->getMachineOpcode()) {
1957 default:
1958 return false;
1959 case ARM::LDRi12:
1960 case ARM::LDRBi12:
1961 case ARM::LDRD:
1962 case ARM::LDRH:
1963 case ARM::LDRSB:
1964 case ARM::LDRSH:
1965 case ARM::VLDRD:
1966 case ARM::VLDRS:
1967 case ARM::t2LDRi8:
1968 case ARM::t2LDRBi8:
1969 case ARM::t2LDRDi8:
1970 case ARM::t2LDRSHi8:
1971 case ARM::t2LDRi12:
1972 case ARM::t2LDRBi12:
1973 case ARM::t2LDRSHi12:
1974 break;
1975 }
1976
1977 switch (Load2->getMachineOpcode()) {
1978 default:
1979 return false;
1980 case ARM::LDRi12:
1981 case ARM::LDRBi12:
1982 case ARM::LDRD:
1983 case ARM::LDRH:
1984 case ARM::LDRSB:
1985 case ARM::LDRSH:
1986 case ARM::VLDRD:
1987 case ARM::VLDRS:
1988 case ARM::t2LDRi8:
1989 case ARM::t2LDRBi8:
1990 case ARM::t2LDRSHi8:
1991 case ARM::t2LDRi12:
1992 case ARM::t2LDRBi12:
1993 case ARM::t2LDRSHi12:
1994 break;
1995 }
1996
1997 // Check if base addresses and chain operands match.
1998 if (Load1->getOperand(0) != Load2->getOperand(0) ||
1999 Load1->getOperand(4) != Load2->getOperand(4))
2000 return false;
2001
2002 // Index should be Reg0.
2003 if (Load1->getOperand(3) != Load2->getOperand(3))
2004 return false;
2005
2006 // Determine the offsets.
2007 if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
2008 isa<ConstantSDNode>(Load2->getOperand(1))) {
2009 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
2010 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
2011 return true;
2012 }
2013
2014 return false;
2015 }
2016
2017 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
2018 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
2019 /// be scheduled togther. On some targets if two loads are loading from
2020 /// addresses in the same cache line, it's better if they are scheduled
2021 /// together. This function takes two integers that represent the load offsets
2022 /// from the common base address. It returns true if it decides it's desirable
2023 /// to schedule the two loads together. "NumLoads" is the number of loads that
2024 /// have already been scheduled after Load1.
2025 ///
2026 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
2027 /// is permanently disabled.
shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads) const2028 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
2029 int64_t Offset1, int64_t Offset2,
2030 unsigned NumLoads) const {
2031 // Don't worry about Thumb: just ARM and Thumb2.
2032 if (Subtarget.isThumb1Only()) return false;
2033
2034 assert(Offset2 > Offset1);
2035
2036 if ((Offset2 - Offset1) / 8 > 64)
2037 return false;
2038
2039 // Check if the machine opcodes are different. If they are different
2040 // then we consider them to not be of the same base address,
2041 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
2042 // In this case, they are considered to be the same because they are different
2043 // encoding forms of the same basic instruction.
2044 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
2045 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
2046 Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
2047 (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
2048 Load2->getMachineOpcode() == ARM::t2LDRBi8)))
2049 return false; // FIXME: overly conservative?
2050
2051 // Four loads in a row should be sufficient.
2052 if (NumLoads >= 3)
2053 return false;
2054
2055 return true;
2056 }
2057
isSchedulingBoundary(const MachineInstr & MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const2058 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
2059 const MachineBasicBlock *MBB,
2060 const MachineFunction &MF) const {
2061 // Debug info is never a scheduling boundary. It's necessary to be explicit
2062 // due to the special treatment of IT instructions below, otherwise a
2063 // dbg_value followed by an IT will result in the IT instruction being
2064 // considered a scheduling hazard, which is wrong. It should be the actual
2065 // instruction preceding the dbg_value instruction(s), just like it is
2066 // when debug info is not present.
2067 if (MI.isDebugInstr())
2068 return false;
2069
2070 // Terminators and labels can't be scheduled around.
2071 if (MI.isTerminator() || MI.isPosition())
2072 return true;
2073
2074 // INLINEASM_BR can jump to another block
2075 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
2076 return true;
2077
2078 if (isSEHInstruction(MI))
2079 return true;
2080
2081 // Treat the start of the IT block as a scheduling boundary, but schedule
2082 // t2IT along with all instructions following it.
2083 // FIXME: This is a big hammer. But the alternative is to add all potential
2084 // true and anti dependencies to IT block instructions as implicit operands
2085 // to the t2IT instruction. The added compile time and complexity does not
2086 // seem worth it.
2087 MachineBasicBlock::const_iterator I = MI;
2088 // Make sure to skip any debug instructions
2089 while (++I != MBB->end() && I->isDebugInstr())
2090 ;
2091 if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
2092 return true;
2093
2094 // Don't attempt to schedule around any instruction that defines
2095 // a stack-oriented pointer, as it's unlikely to be profitable. This
2096 // saves compile time, because it doesn't require every single
2097 // stack slot reference to depend on the instruction that does the
2098 // modification.
2099 // Calls don't actually change the stack pointer, even if they have imp-defs.
2100 // No ARM calling conventions change the stack pointer. (X86 calling
2101 // conventions sometimes do).
2102 if (!MI.isCall() && MI.definesRegister(ARM::SP))
2103 return true;
2104
2105 return false;
2106 }
2107
2108 bool ARMBaseInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,BranchProbability Probability) const2109 isProfitableToIfCvt(MachineBasicBlock &MBB,
2110 unsigned NumCycles, unsigned ExtraPredCycles,
2111 BranchProbability Probability) const {
2112 if (!NumCycles)
2113 return false;
2114
2115 // If we are optimizing for size, see if the branch in the predecessor can be
2116 // lowered to cbn?z by the constant island lowering pass, and return false if
2117 // so. This results in a shorter instruction sequence.
2118 if (MBB.getParent()->getFunction().hasOptSize()) {
2119 MachineBasicBlock *Pred = *MBB.pred_begin();
2120 if (!Pred->empty()) {
2121 MachineInstr *LastMI = &*Pred->rbegin();
2122 if (LastMI->getOpcode() == ARM::t2Bcc) {
2123 const TargetRegisterInfo *TRI = &getRegisterInfo();
2124 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI);
2125 if (CmpMI)
2126 return false;
2127 }
2128 }
2129 }
2130 return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
2131 MBB, 0, 0, Probability);
2132 }
2133
2134 bool ARMBaseInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & TBB,unsigned TCycles,unsigned TExtra,MachineBasicBlock & FBB,unsigned FCycles,unsigned FExtra,BranchProbability Probability) const2135 isProfitableToIfCvt(MachineBasicBlock &TBB,
2136 unsigned TCycles, unsigned TExtra,
2137 MachineBasicBlock &FBB,
2138 unsigned FCycles, unsigned FExtra,
2139 BranchProbability Probability) const {
2140 if (!TCycles)
2141 return false;
2142
2143 // In thumb code we often end up trading one branch for a IT block, and
2144 // if we are cloning the instruction can increase code size. Prevent
2145 // blocks with multiple predecesors from being ifcvted to prevent this
2146 // cloning.
2147 if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) {
2148 if (TBB.pred_size() != 1 || FBB.pred_size() != 1)
2149 return false;
2150 }
2151
2152 // Attempt to estimate the relative costs of predication versus branching.
2153 // Here we scale up each component of UnpredCost to avoid precision issue when
2154 // scaling TCycles/FCycles by Probability.
2155 const unsigned ScalingUpFactor = 1024;
2156
2157 unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
2158 unsigned UnpredCost;
2159 if (!Subtarget.hasBranchPredictor()) {
2160 // When we don't have a branch predictor it's always cheaper to not take a
2161 // branch than take it, so we have to take that into account.
2162 unsigned NotTakenBranchCost = 1;
2163 unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
2164 unsigned TUnpredCycles, FUnpredCycles;
2165 if (!FCycles) {
2166 // Triangle: TBB is the fallthrough
2167 TUnpredCycles = TCycles + NotTakenBranchCost;
2168 FUnpredCycles = TakenBranchCost;
2169 } else {
2170 // Diamond: TBB is the block that is branched to, FBB is the fallthrough
2171 TUnpredCycles = TCycles + TakenBranchCost;
2172 FUnpredCycles = FCycles + NotTakenBranchCost;
2173 // The branch at the end of FBB will disappear when it's predicated, so
2174 // discount it from PredCost.
2175 PredCost -= 1 * ScalingUpFactor;
2176 }
2177 // The total cost is the cost of each path scaled by their probabilites
2178 unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
2179 unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
2180 UnpredCost = TUnpredCost + FUnpredCost;
2181 // When predicating assume that the first IT can be folded away but later
2182 // ones cost one cycle each
2183 if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
2184 PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
2185 }
2186 } else {
2187 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
2188 unsigned FUnpredCost =
2189 Probability.getCompl().scale(FCycles * ScalingUpFactor);
2190 UnpredCost = TUnpredCost + FUnpredCost;
2191 UnpredCost += 1 * ScalingUpFactor; // The branch itself
2192 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
2193 }
2194
2195 return PredCost <= UnpredCost;
2196 }
2197
2198 unsigned
extraSizeToPredicateInstructions(const MachineFunction & MF,unsigned NumInsts) const2199 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF,
2200 unsigned NumInsts) const {
2201 // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions.
2202 // ARM has a condition code field in every predicable instruction, using it
2203 // doesn't change code size.
2204 if (!Subtarget.isThumb2())
2205 return 0;
2206
2207 // It's possible that the size of the IT is restricted to a single block.
2208 unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4;
2209 return divideCeil(NumInsts, MaxInsts) * 2;
2210 }
2211
2212 unsigned
predictBranchSizeForIfCvt(MachineInstr & MI) const2213 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const {
2214 // If this branch is likely to be folded into the comparison to form a
2215 // CB(N)Z, then removing it won't reduce code size at all, because that will
2216 // just replace the CB(N)Z with a CMP.
2217 if (MI.getOpcode() == ARM::t2Bcc &&
2218 findCMPToFoldIntoCBZ(&MI, &getRegisterInfo()))
2219 return 0;
2220
2221 unsigned Size = getInstSizeInBytes(MI);
2222
2223 // For Thumb2, all branches are 32-bit instructions during the if conversion
2224 // pass, but may be replaced with 16-bit instructions during size reduction.
2225 // Since the branches considered by if conversion tend to be forward branches
2226 // over small basic blocks, they are very likely to be in range for the
2227 // narrow instructions, so we assume the final code size will be half what it
2228 // currently is.
2229 if (Subtarget.isThumb2())
2230 Size /= 2;
2231
2232 return Size;
2233 }
2234
2235 bool
isProfitableToUnpredicate(MachineBasicBlock & TMBB,MachineBasicBlock & FMBB) const2236 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
2237 MachineBasicBlock &FMBB) const {
2238 // Reduce false anti-dependencies to let the target's out-of-order execution
2239 // engine do its thing.
2240 return Subtarget.isProfitableToUnpredicate();
2241 }
2242
2243 /// getInstrPredicate - If instruction is predicated, returns its predicate
2244 /// condition, otherwise returns AL. It also returns the condition code
2245 /// register by reference.
getInstrPredicate(const MachineInstr & MI,Register & PredReg)2246 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
2247 Register &PredReg) {
2248 int PIdx = MI.findFirstPredOperandIdx();
2249 if (PIdx == -1) {
2250 PredReg = 0;
2251 return ARMCC::AL;
2252 }
2253
2254 PredReg = MI.getOperand(PIdx+1).getReg();
2255 return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
2256 }
2257
getMatchingCondBranchOpcode(unsigned Opc)2258 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
2259 if (Opc == ARM::B)
2260 return ARM::Bcc;
2261 if (Opc == ARM::tB)
2262 return ARM::tBcc;
2263 if (Opc == ARM::t2B)
2264 return ARM::t2Bcc;
2265
2266 llvm_unreachable("Unknown unconditional branch opcode!");
2267 }
2268
commuteInstructionImpl(MachineInstr & MI,bool NewMI,unsigned OpIdx1,unsigned OpIdx2) const2269 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
2270 bool NewMI,
2271 unsigned OpIdx1,
2272 unsigned OpIdx2) const {
2273 switch (MI.getOpcode()) {
2274 case ARM::MOVCCr:
2275 case ARM::t2MOVCCr: {
2276 // MOVCC can be commuted by inverting the condition.
2277 Register PredReg;
2278 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
2279 // MOVCC AL can't be inverted. Shouldn't happen.
2280 if (CC == ARMCC::AL || PredReg != ARM::CPSR)
2281 return nullptr;
2282 MachineInstr *CommutedMI =
2283 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2284 if (!CommutedMI)
2285 return nullptr;
2286 // After swapping the MOVCC operands, also invert the condition.
2287 CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
2288 .setImm(ARMCC::getOppositeCondition(CC));
2289 return CommutedMI;
2290 }
2291 }
2292 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2293 }
2294
2295 /// Identify instructions that can be folded into a MOVCC instruction, and
2296 /// return the defining instruction.
2297 MachineInstr *
canFoldIntoMOVCC(Register Reg,const MachineRegisterInfo & MRI,const TargetInstrInfo * TII) const2298 ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI,
2299 const TargetInstrInfo *TII) const {
2300 if (!Reg.isVirtual())
2301 return nullptr;
2302 if (!MRI.hasOneNonDBGUse(Reg))
2303 return nullptr;
2304 MachineInstr *MI = MRI.getVRegDef(Reg);
2305 if (!MI)
2306 return nullptr;
2307 // Check if MI can be predicated and folded into the MOVCC.
2308 if (!isPredicable(*MI))
2309 return nullptr;
2310 // Check if MI has any non-dead defs or physreg uses. This also detects
2311 // predicated instructions which will be reading CPSR.
2312 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 1)) {
2313 // Reject frame index operands, PEI can't handle the predicated pseudos.
2314 if (MO.isFI() || MO.isCPI() || MO.isJTI())
2315 return nullptr;
2316 if (!MO.isReg())
2317 continue;
2318 // MI can't have any tied operands, that would conflict with predication.
2319 if (MO.isTied())
2320 return nullptr;
2321 if (MO.getReg().isPhysical())
2322 return nullptr;
2323 if (MO.isDef() && !MO.isDead())
2324 return nullptr;
2325 }
2326 bool DontMoveAcrossStores = true;
2327 if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
2328 return nullptr;
2329 return MI;
2330 }
2331
analyzeSelect(const MachineInstr & MI,SmallVectorImpl<MachineOperand> & Cond,unsigned & TrueOp,unsigned & FalseOp,bool & Optimizable) const2332 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
2333 SmallVectorImpl<MachineOperand> &Cond,
2334 unsigned &TrueOp, unsigned &FalseOp,
2335 bool &Optimizable) const {
2336 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2337 "Unknown select instruction");
2338 // MOVCC operands:
2339 // 0: Def.
2340 // 1: True use.
2341 // 2: False use.
2342 // 3: Condition code.
2343 // 4: CPSR use.
2344 TrueOp = 1;
2345 FalseOp = 2;
2346 Cond.push_back(MI.getOperand(3));
2347 Cond.push_back(MI.getOperand(4));
2348 // We can always fold a def.
2349 Optimizable = true;
2350 return false;
2351 }
2352
2353 MachineInstr *
optimizeSelect(MachineInstr & MI,SmallPtrSetImpl<MachineInstr * > & SeenMIs,bool PreferFalse) const2354 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
2355 SmallPtrSetImpl<MachineInstr *> &SeenMIs,
2356 bool PreferFalse) const {
2357 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2358 "Unknown select instruction");
2359 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2360 MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
2361 bool Invert = !DefMI;
2362 if (!DefMI)
2363 DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
2364 if (!DefMI)
2365 return nullptr;
2366
2367 // Find new register class to use.
2368 MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
2369 MachineOperand TrueReg = MI.getOperand(Invert ? 1 : 2);
2370 Register DestReg = MI.getOperand(0).getReg();
2371 const TargetRegisterClass *FalseClass = MRI.getRegClass(FalseReg.getReg());
2372 const TargetRegisterClass *TrueClass = MRI.getRegClass(TrueReg.getReg());
2373 if (!MRI.constrainRegClass(DestReg, FalseClass))
2374 return nullptr;
2375 if (!MRI.constrainRegClass(DestReg, TrueClass))
2376 return nullptr;
2377
2378 // Create a new predicated version of DefMI.
2379 // Rfalse is the first use.
2380 MachineInstrBuilder NewMI =
2381 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
2382
2383 // Copy all the DefMI operands, excluding its (null) predicate.
2384 const MCInstrDesc &DefDesc = DefMI->getDesc();
2385 for (unsigned i = 1, e = DefDesc.getNumOperands();
2386 i != e && !DefDesc.operands()[i].isPredicate(); ++i)
2387 NewMI.add(DefMI->getOperand(i));
2388
2389 unsigned CondCode = MI.getOperand(3).getImm();
2390 if (Invert)
2391 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
2392 else
2393 NewMI.addImm(CondCode);
2394 NewMI.add(MI.getOperand(4));
2395
2396 // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2397 if (NewMI->hasOptionalDef())
2398 NewMI.add(condCodeOp());
2399
2400 // The output register value when the predicate is false is an implicit
2401 // register operand tied to the first def.
2402 // The tie makes the register allocator ensure the FalseReg is allocated the
2403 // same register as operand 0.
2404 FalseReg.setImplicit();
2405 NewMI.add(FalseReg);
2406 NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
2407
2408 // Update SeenMIs set: register newly created MI and erase removed DefMI.
2409 SeenMIs.insert(NewMI);
2410 SeenMIs.erase(DefMI);
2411
2412 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2413 // DefMI would be invalid when tranferred inside the loop. Checking for a
2414 // loop is expensive, but at least remove kill flags if they are in different
2415 // BBs.
2416 if (DefMI->getParent() != MI.getParent())
2417 NewMI->clearKillInfo();
2418
2419 // The caller will erase MI, but not DefMI.
2420 DefMI->eraseFromParent();
2421 return NewMI;
2422 }
2423
2424 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2425 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
2426 /// def operand.
2427 ///
2428 /// This will go away once we can teach tblgen how to set the optional CPSR def
2429 /// operand itself.
2430 struct AddSubFlagsOpcodePair {
2431 uint16_t PseudoOpc;
2432 uint16_t MachineOpc;
2433 };
2434
2435 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
2436 {ARM::ADDSri, ARM::ADDri},
2437 {ARM::ADDSrr, ARM::ADDrr},
2438 {ARM::ADDSrsi, ARM::ADDrsi},
2439 {ARM::ADDSrsr, ARM::ADDrsr},
2440
2441 {ARM::SUBSri, ARM::SUBri},
2442 {ARM::SUBSrr, ARM::SUBrr},
2443 {ARM::SUBSrsi, ARM::SUBrsi},
2444 {ARM::SUBSrsr, ARM::SUBrsr},
2445
2446 {ARM::RSBSri, ARM::RSBri},
2447 {ARM::RSBSrsi, ARM::RSBrsi},
2448 {ARM::RSBSrsr, ARM::RSBrsr},
2449
2450 {ARM::tADDSi3, ARM::tADDi3},
2451 {ARM::tADDSi8, ARM::tADDi8},
2452 {ARM::tADDSrr, ARM::tADDrr},
2453 {ARM::tADCS, ARM::tADC},
2454
2455 {ARM::tSUBSi3, ARM::tSUBi3},
2456 {ARM::tSUBSi8, ARM::tSUBi8},
2457 {ARM::tSUBSrr, ARM::tSUBrr},
2458 {ARM::tSBCS, ARM::tSBC},
2459 {ARM::tRSBS, ARM::tRSB},
2460 {ARM::tLSLSri, ARM::tLSLri},
2461
2462 {ARM::t2ADDSri, ARM::t2ADDri},
2463 {ARM::t2ADDSrr, ARM::t2ADDrr},
2464 {ARM::t2ADDSrs, ARM::t2ADDrs},
2465
2466 {ARM::t2SUBSri, ARM::t2SUBri},
2467 {ARM::t2SUBSrr, ARM::t2SUBrr},
2468 {ARM::t2SUBSrs, ARM::t2SUBrs},
2469
2470 {ARM::t2RSBSri, ARM::t2RSBri},
2471 {ARM::t2RSBSrs, ARM::t2RSBrs},
2472 };
2473
convertAddSubFlagsOpcode(unsigned OldOpc)2474 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
2475 for (const auto &Entry : AddSubFlagsOpcodeMap)
2476 if (OldOpc == Entry.PseudoOpc)
2477 return Entry.MachineOpc;
2478 return 0;
2479 }
2480
emitARMRegPlusImmediate(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const DebugLoc & dl,Register DestReg,Register BaseReg,int NumBytes,ARMCC::CondCodes Pred,Register PredReg,const ARMBaseInstrInfo & TII,unsigned MIFlags)2481 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
2482 MachineBasicBlock::iterator &MBBI,
2483 const DebugLoc &dl, Register DestReg,
2484 Register BaseReg, int NumBytes,
2485 ARMCC::CondCodes Pred, Register PredReg,
2486 const ARMBaseInstrInfo &TII,
2487 unsigned MIFlags) {
2488 if (NumBytes == 0 && DestReg != BaseReg) {
2489 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2490 .addReg(BaseReg, RegState::Kill)
2491 .add(predOps(Pred, PredReg))
2492 .add(condCodeOp())
2493 .setMIFlags(MIFlags);
2494 return;
2495 }
2496
2497 bool isSub = NumBytes < 0;
2498 if (isSub) NumBytes = -NumBytes;
2499
2500 while (NumBytes) {
2501 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2502 unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
2503 assert(ThisVal && "Didn't extract field correctly");
2504
2505 // We will handle these bits from offset, clear them.
2506 NumBytes &= ~ThisVal;
2507
2508 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2509
2510 // Build the new ADD / SUB.
2511 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2512 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2513 .addReg(BaseReg, RegState::Kill)
2514 .addImm(ThisVal)
2515 .add(predOps(Pred, PredReg))
2516 .add(condCodeOp())
2517 .setMIFlags(MIFlags);
2518 BaseReg = DestReg;
2519 }
2520 }
2521
tryFoldSPUpdateIntoPushPop(const ARMSubtarget & Subtarget,MachineFunction & MF,MachineInstr * MI,unsigned NumBytes)2522 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2523 MachineFunction &MF, MachineInstr *MI,
2524 unsigned NumBytes) {
2525 // This optimisation potentially adds lots of load and store
2526 // micro-operations, it's only really a great benefit to code-size.
2527 if (!Subtarget.hasMinSize())
2528 return false;
2529
2530 // If only one register is pushed/popped, LLVM can use an LDR/STR
2531 // instead. We can't modify those so make sure we're dealing with an
2532 // instruction we understand.
2533 bool IsPop = isPopOpcode(MI->getOpcode());
2534 bool IsPush = isPushOpcode(MI->getOpcode());
2535 if (!IsPush && !IsPop)
2536 return false;
2537
2538 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2539 MI->getOpcode() == ARM::VLDMDIA_UPD;
2540 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2541 MI->getOpcode() == ARM::tPOP ||
2542 MI->getOpcode() == ARM::tPOP_RET;
2543
2544 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2545 MI->getOperand(1).getReg() == ARM::SP)) &&
2546 "trying to fold sp update into non-sp-updating push/pop");
2547
2548 // The VFP push & pop act on D-registers, so we can only fold an adjustment
2549 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2550 // if this is violated.
2551 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2552 return false;
2553
2554 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2555 // pred) so the list starts at 4. Thumb1 starts after the predicate.
2556 int RegListIdx = IsT1PushPop ? 2 : 4;
2557
2558 // Calculate the space we'll need in terms of registers.
2559 unsigned RegsNeeded;
2560 const TargetRegisterClass *RegClass;
2561 if (IsVFPPushPop) {
2562 RegsNeeded = NumBytes / 8;
2563 RegClass = &ARM::DPRRegClass;
2564 } else {
2565 RegsNeeded = NumBytes / 4;
2566 RegClass = &ARM::GPRRegClass;
2567 }
2568
2569 // We're going to have to strip all list operands off before
2570 // re-adding them since the order matters, so save the existing ones
2571 // for later.
2572 SmallVector<MachineOperand, 4> RegList;
2573
2574 // We're also going to need the first register transferred by this
2575 // instruction, which won't necessarily be the first register in the list.
2576 unsigned FirstRegEnc = -1;
2577
2578 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2579 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
2580 MachineOperand &MO = MI->getOperand(i);
2581 RegList.push_back(MO);
2582
2583 if (MO.isReg() && !MO.isImplicit() &&
2584 TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
2585 FirstRegEnc = TRI->getEncodingValue(MO.getReg());
2586 }
2587
2588 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2589
2590 // Now try to find enough space in the reglist to allocate NumBytes.
2591 for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
2592 --CurRegEnc) {
2593 unsigned CurReg = RegClass->getRegister(CurRegEnc);
2594 if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7))
2595 continue;
2596 if (!IsPop) {
2597 // Pushing any register is completely harmless, mark the register involved
2598 // as undef since we don't care about its value and must not restore it
2599 // during stack unwinding.
2600 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2601 false, false, true));
2602 --RegsNeeded;
2603 continue;
2604 }
2605
2606 // However, we can only pop an extra register if it's not live. For
2607 // registers live within the function we might clobber a return value
2608 // register; the other way a register can be live here is if it's
2609 // callee-saved.
2610 if (isCalleeSavedRegister(CurReg, CSRegs) ||
2611 MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2612 MachineBasicBlock::LQR_Dead) {
2613 // VFP pops don't allow holes in the register list, so any skip is fatal
2614 // for our transformation. GPR pops do, so we should just keep looking.
2615 if (IsVFPPushPop)
2616 return false;
2617 else
2618 continue;
2619 }
2620
2621 // Mark the unimportant registers as <def,dead> in the POP.
2622 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2623 true));
2624 --RegsNeeded;
2625 }
2626
2627 if (RegsNeeded > 0)
2628 return false;
2629
2630 // Finally we know we can profitably perform the optimisation so go
2631 // ahead: strip all existing registers off and add them back again
2632 // in the right order.
2633 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2634 MI->removeOperand(i);
2635
2636 // Add the complete list back in.
2637 MachineInstrBuilder MIB(MF, &*MI);
2638 for (const MachineOperand &MO : llvm::reverse(RegList))
2639 MIB.add(MO);
2640
2641 return true;
2642 }
2643
rewriteARMFrameIndex(MachineInstr & MI,unsigned FrameRegIdx,Register FrameReg,int & Offset,const ARMBaseInstrInfo & TII)2644 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2645 Register FrameReg, int &Offset,
2646 const ARMBaseInstrInfo &TII) {
2647 unsigned Opcode = MI.getOpcode();
2648 const MCInstrDesc &Desc = MI.getDesc();
2649 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2650 bool isSub = false;
2651
2652 // Memory operands in inline assembly always use AddrMode2.
2653 if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR)
2654 AddrMode = ARMII::AddrMode2;
2655
2656 if (Opcode == ARM::ADDri) {
2657 Offset += MI.getOperand(FrameRegIdx+1).getImm();
2658 if (Offset == 0) {
2659 // Turn it into a move.
2660 MI.setDesc(TII.get(ARM::MOVr));
2661 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2662 MI.removeOperand(FrameRegIdx+1);
2663 Offset = 0;
2664 return true;
2665 } else if (Offset < 0) {
2666 Offset = -Offset;
2667 isSub = true;
2668 MI.setDesc(TII.get(ARM::SUBri));
2669 }
2670
2671 // Common case: small offset, fits into instruction.
2672 if (ARM_AM::getSOImmVal(Offset) != -1) {
2673 // Replace the FrameIndex with sp / fp
2674 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2675 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2676 Offset = 0;
2677 return true;
2678 }
2679
2680 // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2681 // as possible.
2682 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2683 unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
2684
2685 // We will handle these bits from offset, clear them.
2686 Offset &= ~ThisImmVal;
2687
2688 // Get the properly encoded SOImmVal field.
2689 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2690 "Bit extraction didn't work?");
2691 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2692 } else {
2693 unsigned ImmIdx = 0;
2694 int InstrOffs = 0;
2695 unsigned NumBits = 0;
2696 unsigned Scale = 1;
2697 switch (AddrMode) {
2698 case ARMII::AddrMode_i12:
2699 ImmIdx = FrameRegIdx + 1;
2700 InstrOffs = MI.getOperand(ImmIdx).getImm();
2701 NumBits = 12;
2702 break;
2703 case ARMII::AddrMode2:
2704 ImmIdx = FrameRegIdx+2;
2705 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2706 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2707 InstrOffs *= -1;
2708 NumBits = 12;
2709 break;
2710 case ARMII::AddrMode3:
2711 ImmIdx = FrameRegIdx+2;
2712 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2713 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2714 InstrOffs *= -1;
2715 NumBits = 8;
2716 break;
2717 case ARMII::AddrMode4:
2718 case ARMII::AddrMode6:
2719 // Can't fold any offset even if it's zero.
2720 return false;
2721 case ARMII::AddrMode5:
2722 ImmIdx = FrameRegIdx+1;
2723 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2724 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2725 InstrOffs *= -1;
2726 NumBits = 8;
2727 Scale = 4;
2728 break;
2729 case ARMII::AddrMode5FP16:
2730 ImmIdx = FrameRegIdx+1;
2731 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2732 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2733 InstrOffs *= -1;
2734 NumBits = 8;
2735 Scale = 2;
2736 break;
2737 case ARMII::AddrModeT2_i7:
2738 case ARMII::AddrModeT2_i7s2:
2739 case ARMII::AddrModeT2_i7s4:
2740 ImmIdx = FrameRegIdx+1;
2741 InstrOffs = MI.getOperand(ImmIdx).getImm();
2742 NumBits = 7;
2743 Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 :
2744 AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1);
2745 break;
2746 default:
2747 llvm_unreachable("Unsupported addressing mode!");
2748 }
2749
2750 Offset += InstrOffs * Scale;
2751 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2752 if (Offset < 0) {
2753 Offset = -Offset;
2754 isSub = true;
2755 }
2756
2757 // Attempt to fold address comp. if opcode has offset bits
2758 if (NumBits > 0) {
2759 // Common case: small offset, fits into instruction.
2760 MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2761 int ImmedOffset = Offset / Scale;
2762 unsigned Mask = (1 << NumBits) - 1;
2763 if ((unsigned)Offset <= Mask * Scale) {
2764 // Replace the FrameIndex with sp
2765 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2766 // FIXME: When addrmode2 goes away, this will simplify (like the
2767 // T2 version), as the LDR.i12 versions don't need the encoding
2768 // tricks for the offset value.
2769 if (isSub) {
2770 if (AddrMode == ARMII::AddrMode_i12)
2771 ImmedOffset = -ImmedOffset;
2772 else
2773 ImmedOffset |= 1 << NumBits;
2774 }
2775 ImmOp.ChangeToImmediate(ImmedOffset);
2776 Offset = 0;
2777 return true;
2778 }
2779
2780 // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2781 ImmedOffset = ImmedOffset & Mask;
2782 if (isSub) {
2783 if (AddrMode == ARMII::AddrMode_i12)
2784 ImmedOffset = -ImmedOffset;
2785 else
2786 ImmedOffset |= 1 << NumBits;
2787 }
2788 ImmOp.ChangeToImmediate(ImmedOffset);
2789 Offset &= ~(Mask*Scale);
2790 }
2791 }
2792
2793 Offset = (isSub) ? -Offset : Offset;
2794 return Offset == 0;
2795 }
2796
2797 /// analyzeCompare - For a comparison instruction, return the source registers
2798 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2799 /// compares against in CmpValue. Return true if the comparison instruction
2800 /// can be analyzed.
analyzeCompare(const MachineInstr & MI,Register & SrcReg,Register & SrcReg2,int64_t & CmpMask,int64_t & CmpValue) const2801 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
2802 Register &SrcReg2, int64_t &CmpMask,
2803 int64_t &CmpValue) const {
2804 switch (MI.getOpcode()) {
2805 default: break;
2806 case ARM::CMPri:
2807 case ARM::t2CMPri:
2808 case ARM::tCMPi8:
2809 SrcReg = MI.getOperand(0).getReg();
2810 SrcReg2 = 0;
2811 CmpMask = ~0;
2812 CmpValue = MI.getOperand(1).getImm();
2813 return true;
2814 case ARM::CMPrr:
2815 case ARM::t2CMPrr:
2816 case ARM::tCMPr:
2817 SrcReg = MI.getOperand(0).getReg();
2818 SrcReg2 = MI.getOperand(1).getReg();
2819 CmpMask = ~0;
2820 CmpValue = 0;
2821 return true;
2822 case ARM::TSTri:
2823 case ARM::t2TSTri:
2824 SrcReg = MI.getOperand(0).getReg();
2825 SrcReg2 = 0;
2826 CmpMask = MI.getOperand(1).getImm();
2827 CmpValue = 0;
2828 return true;
2829 }
2830
2831 return false;
2832 }
2833
2834 /// isSuitableForMask - Identify a suitable 'and' instruction that
2835 /// operates on the given source register and applies the same mask
2836 /// as a 'tst' instruction. Provide a limited look-through for copies.
2837 /// When successful, MI will hold the found instruction.
isSuitableForMask(MachineInstr * & MI,Register SrcReg,int CmpMask,bool CommonUse)2838 static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg,
2839 int CmpMask, bool CommonUse) {
2840 switch (MI->getOpcode()) {
2841 case ARM::ANDri:
2842 case ARM::t2ANDri:
2843 if (CmpMask != MI->getOperand(2).getImm())
2844 return false;
2845 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2846 return true;
2847 break;
2848 }
2849
2850 return false;
2851 }
2852
2853 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2854 /// the condition code if we modify the instructions such that flags are
2855 /// set by ADD(a,b,X).
getCmpToAddCondition(ARMCC::CondCodes CC)2856 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
2857 switch (CC) {
2858 default: return ARMCC::AL;
2859 case ARMCC::HS: return ARMCC::LO;
2860 case ARMCC::LO: return ARMCC::HS;
2861 case ARMCC::VS: return ARMCC::VS;
2862 case ARMCC::VC: return ARMCC::VC;
2863 }
2864 }
2865
2866 /// isRedundantFlagInstr - check whether the first instruction, whose only
2867 /// purpose is to update flags, can be made redundant.
2868 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2869 /// CMPri can be made redundant by SUBri if the operands are the same.
2870 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2871 /// This function can be extended later on.
isRedundantFlagInstr(const MachineInstr * CmpI,Register SrcReg,Register SrcReg2,int64_t ImmValue,const MachineInstr * OI,bool & IsThumb1)2872 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
2873 Register SrcReg, Register SrcReg2,
2874 int64_t ImmValue,
2875 const MachineInstr *OI,
2876 bool &IsThumb1) {
2877 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2878 (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) &&
2879 ((OI->getOperand(1).getReg() == SrcReg &&
2880 OI->getOperand(2).getReg() == SrcReg2) ||
2881 (OI->getOperand(1).getReg() == SrcReg2 &&
2882 OI->getOperand(2).getReg() == SrcReg))) {
2883 IsThumb1 = false;
2884 return true;
2885 }
2886
2887 if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr &&
2888 ((OI->getOperand(2).getReg() == SrcReg &&
2889 OI->getOperand(3).getReg() == SrcReg2) ||
2890 (OI->getOperand(2).getReg() == SrcReg2 &&
2891 OI->getOperand(3).getReg() == SrcReg))) {
2892 IsThumb1 = true;
2893 return true;
2894 }
2895
2896 if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) &&
2897 (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) &&
2898 OI->getOperand(1).getReg() == SrcReg &&
2899 OI->getOperand(2).getImm() == ImmValue) {
2900 IsThumb1 = false;
2901 return true;
2902 }
2903
2904 if (CmpI->getOpcode() == ARM::tCMPi8 &&
2905 (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) &&
2906 OI->getOperand(2).getReg() == SrcReg &&
2907 OI->getOperand(3).getImm() == ImmValue) {
2908 IsThumb1 = true;
2909 return true;
2910 }
2911
2912 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2913 (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
2914 OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
2915 OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
2916 OI->getOperand(0).getReg() == SrcReg &&
2917 OI->getOperand(1).getReg() == SrcReg2) {
2918 IsThumb1 = false;
2919 return true;
2920 }
2921
2922 if (CmpI->getOpcode() == ARM::tCMPr &&
2923 (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 ||
2924 OI->getOpcode() == ARM::tADDrr) &&
2925 OI->getOperand(0).getReg() == SrcReg &&
2926 OI->getOperand(2).getReg() == SrcReg2) {
2927 IsThumb1 = true;
2928 return true;
2929 }
2930
2931 return false;
2932 }
2933
isOptimizeCompareCandidate(MachineInstr * MI,bool & IsThumb1)2934 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
2935 switch (MI->getOpcode()) {
2936 default: return false;
2937 case ARM::tLSLri:
2938 case ARM::tLSRri:
2939 case ARM::tLSLrr:
2940 case ARM::tLSRrr:
2941 case ARM::tSUBrr:
2942 case ARM::tADDrr:
2943 case ARM::tADDi3:
2944 case ARM::tADDi8:
2945 case ARM::tSUBi3:
2946 case ARM::tSUBi8:
2947 case ARM::tMUL:
2948 case ARM::tADC:
2949 case ARM::tSBC:
2950 case ARM::tRSB:
2951 case ARM::tAND:
2952 case ARM::tORR:
2953 case ARM::tEOR:
2954 case ARM::tBIC:
2955 case ARM::tMVN:
2956 case ARM::tASRri:
2957 case ARM::tASRrr:
2958 case ARM::tROR:
2959 IsThumb1 = true;
2960 [[fallthrough]];
2961 case ARM::RSBrr:
2962 case ARM::RSBri:
2963 case ARM::RSCrr:
2964 case ARM::RSCri:
2965 case ARM::ADDrr:
2966 case ARM::ADDri:
2967 case ARM::ADCrr:
2968 case ARM::ADCri:
2969 case ARM::SUBrr:
2970 case ARM::SUBri:
2971 case ARM::SBCrr:
2972 case ARM::SBCri:
2973 case ARM::t2RSBri:
2974 case ARM::t2ADDrr:
2975 case ARM::t2ADDri:
2976 case ARM::t2ADCrr:
2977 case ARM::t2ADCri:
2978 case ARM::t2SUBrr:
2979 case ARM::t2SUBri:
2980 case ARM::t2SBCrr:
2981 case ARM::t2SBCri:
2982 case ARM::ANDrr:
2983 case ARM::ANDri:
2984 case ARM::ANDrsr:
2985 case ARM::ANDrsi:
2986 case ARM::t2ANDrr:
2987 case ARM::t2ANDri:
2988 case ARM::t2ANDrs:
2989 case ARM::ORRrr:
2990 case ARM::ORRri:
2991 case ARM::ORRrsr:
2992 case ARM::ORRrsi:
2993 case ARM::t2ORRrr:
2994 case ARM::t2ORRri:
2995 case ARM::t2ORRrs:
2996 case ARM::EORrr:
2997 case ARM::EORri:
2998 case ARM::EORrsr:
2999 case ARM::EORrsi:
3000 case ARM::t2EORrr:
3001 case ARM::t2EORri:
3002 case ARM::t2EORrs:
3003 case ARM::BICri:
3004 case ARM::BICrr:
3005 case ARM::BICrsi:
3006 case ARM::BICrsr:
3007 case ARM::t2BICri:
3008 case ARM::t2BICrr:
3009 case ARM::t2BICrs:
3010 case ARM::t2LSRri:
3011 case ARM::t2LSRrr:
3012 case ARM::t2LSLri:
3013 case ARM::t2LSLrr:
3014 case ARM::MOVsr:
3015 case ARM::MOVsi:
3016 return true;
3017 }
3018 }
3019
3020 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
3021 /// comparison into one that sets the zero bit in the flags register;
3022 /// Remove a redundant Compare instruction if an earlier instruction can set the
3023 /// flags in the same way as Compare.
3024 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
3025 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
3026 /// condition code of instructions which use the flags.
optimizeCompareInstr(MachineInstr & CmpInstr,Register SrcReg,Register SrcReg2,int64_t CmpMask,int64_t CmpValue,const MachineRegisterInfo * MRI) const3027 bool ARMBaseInstrInfo::optimizeCompareInstr(
3028 MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask,
3029 int64_t CmpValue, const MachineRegisterInfo *MRI) const {
3030 // Get the unique definition of SrcReg.
3031 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3032 if (!MI) return false;
3033
3034 // Masked compares sometimes use the same register as the corresponding 'and'.
3035 if (CmpMask != ~0) {
3036 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
3037 MI = nullptr;
3038 for (MachineRegisterInfo::use_instr_iterator
3039 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
3040 UI != UE; ++UI) {
3041 if (UI->getParent() != CmpInstr.getParent())
3042 continue;
3043 MachineInstr *PotentialAND = &*UI;
3044 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
3045 isPredicated(*PotentialAND))
3046 continue;
3047 MI = PotentialAND;
3048 break;
3049 }
3050 if (!MI) return false;
3051 }
3052 }
3053
3054 // Get ready to iterate backward from CmpInstr.
3055 MachineBasicBlock::iterator I = CmpInstr, E = MI,
3056 B = CmpInstr.getParent()->begin();
3057
3058 // Early exit if CmpInstr is at the beginning of the BB.
3059 if (I == B) return false;
3060
3061 // There are two possible candidates which can be changed to set CPSR:
3062 // One is MI, the other is a SUB or ADD instruction.
3063 // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
3064 // ADDr[ri](r1, r2, X).
3065 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
3066 MachineInstr *SubAdd = nullptr;
3067 if (SrcReg2 != 0)
3068 // MI is not a candidate for CMPrr.
3069 MI = nullptr;
3070 else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
3071 // Conservatively refuse to convert an instruction which isn't in the same
3072 // BB as the comparison.
3073 // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
3074 // Thus we cannot return here.
3075 if (CmpInstr.getOpcode() == ARM::CMPri ||
3076 CmpInstr.getOpcode() == ARM::t2CMPri ||
3077 CmpInstr.getOpcode() == ARM::tCMPi8)
3078 MI = nullptr;
3079 else
3080 return false;
3081 }
3082
3083 bool IsThumb1 = false;
3084 if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
3085 return false;
3086
3087 // We also want to do this peephole for cases like this: if (a*b == 0),
3088 // and optimise away the CMP instruction from the generated code sequence:
3089 // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
3090 // resulting from the select instruction, but these MOVS instructions for
3091 // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
3092 // However, if we only have MOVS instructions in between the CMP and the
3093 // other instruction (the MULS in this example), then the CPSR is dead so we
3094 // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
3095 // reordering and then continue the analysis hoping we can eliminate the
3096 // CMP. This peephole works on the vregs, so is still in SSA form. As a
3097 // consequence, the movs won't redefine/kill the MUL operands which would
3098 // make this reordering illegal.
3099 const TargetRegisterInfo *TRI = &getRegisterInfo();
3100 if (MI && IsThumb1) {
3101 --I;
3102 if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) {
3103 bool CanReorder = true;
3104 for (; I != E; --I) {
3105 if (I->getOpcode() != ARM::tMOVi8) {
3106 CanReorder = false;
3107 break;
3108 }
3109 }
3110 if (CanReorder) {
3111 MI = MI->removeFromParent();
3112 E = CmpInstr;
3113 CmpInstr.getParent()->insert(E, MI);
3114 }
3115 }
3116 I = CmpInstr;
3117 E = MI;
3118 }
3119
3120 // Check that CPSR isn't set between the comparison instruction and the one we
3121 // want to change. At the same time, search for SubAdd.
3122 bool SubAddIsThumb1 = false;
3123 do {
3124 const MachineInstr &Instr = *--I;
3125
3126 // Check whether CmpInstr can be made redundant by the current instruction.
3127 if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr,
3128 SubAddIsThumb1)) {
3129 SubAdd = &*I;
3130 break;
3131 }
3132
3133 // Allow E (which was initially MI) to be SubAdd but do not search before E.
3134 if (I == E)
3135 break;
3136
3137 if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
3138 Instr.readsRegister(ARM::CPSR, TRI))
3139 // This instruction modifies or uses CPSR after the one we want to
3140 // change. We can't do this transformation.
3141 return false;
3142
3143 if (I == B) {
3144 // In some cases, we scan the use-list of an instruction for an AND;
3145 // that AND is in the same BB, but may not be scheduled before the
3146 // corresponding TST. In that case, bail out.
3147 //
3148 // FIXME: We could try to reschedule the AND.
3149 return false;
3150 }
3151 } while (true);
3152
3153 // Return false if no candidates exist.
3154 if (!MI && !SubAdd)
3155 return false;
3156
3157 // If we found a SubAdd, use it as it will be closer to the CMP
3158 if (SubAdd) {
3159 MI = SubAdd;
3160 IsThumb1 = SubAddIsThumb1;
3161 }
3162
3163 // We can't use a predicated instruction - it doesn't always write the flags.
3164 if (isPredicated(*MI))
3165 return false;
3166
3167 // Scan forward for the use of CPSR
3168 // When checking against MI: if it's a conditional code that requires
3169 // checking of the V bit or C bit, then this is not safe to do.
3170 // It is safe to remove CmpInstr if CPSR is redefined or killed.
3171 // If we are done with the basic block, we need to check whether CPSR is
3172 // live-out.
3173 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
3174 OperandsToUpdate;
3175 bool isSafe = false;
3176 I = CmpInstr;
3177 E = CmpInstr.getParent()->end();
3178 while (!isSafe && ++I != E) {
3179 const MachineInstr &Instr = *I;
3180 for (unsigned IO = 0, EO = Instr.getNumOperands();
3181 !isSafe && IO != EO; ++IO) {
3182 const MachineOperand &MO = Instr.getOperand(IO);
3183 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
3184 isSafe = true;
3185 break;
3186 }
3187 if (!MO.isReg() || MO.getReg() != ARM::CPSR)
3188 continue;
3189 if (MO.isDef()) {
3190 isSafe = true;
3191 break;
3192 }
3193 // Condition code is after the operand before CPSR except for VSELs.
3194 ARMCC::CondCodes CC;
3195 bool IsInstrVSel = true;
3196 switch (Instr.getOpcode()) {
3197 default:
3198 IsInstrVSel = false;
3199 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
3200 break;
3201 case ARM::VSELEQD:
3202 case ARM::VSELEQS:
3203 case ARM::VSELEQH:
3204 CC = ARMCC::EQ;
3205 break;
3206 case ARM::VSELGTD:
3207 case ARM::VSELGTS:
3208 case ARM::VSELGTH:
3209 CC = ARMCC::GT;
3210 break;
3211 case ARM::VSELGED:
3212 case ARM::VSELGES:
3213 case ARM::VSELGEH:
3214 CC = ARMCC::GE;
3215 break;
3216 case ARM::VSELVSD:
3217 case ARM::VSELVSS:
3218 case ARM::VSELVSH:
3219 CC = ARMCC::VS;
3220 break;
3221 }
3222
3223 if (SubAdd) {
3224 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
3225 // on CMP needs to be updated to be based on SUB.
3226 // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
3227 // needs to be modified.
3228 // Push the condition code operands to OperandsToUpdate.
3229 // If it is safe to remove CmpInstr, the condition code of these
3230 // operands will be modified.
3231 unsigned Opc = SubAdd->getOpcode();
3232 bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
3233 Opc == ARM::SUBri || Opc == ARM::t2SUBri ||
3234 Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 ||
3235 Opc == ARM::tSUBi8;
3236 unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2;
3237 if (!IsSub ||
3238 (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 &&
3239 SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) {
3240 // VSel doesn't support condition code update.
3241 if (IsInstrVSel)
3242 return false;
3243 // Ensure we can swap the condition.
3244 ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
3245 if (NewCC == ARMCC::AL)
3246 return false;
3247 OperandsToUpdate.push_back(
3248 std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
3249 }
3250 } else {
3251 // No SubAdd, so this is x = <op> y, z; cmp x, 0.
3252 switch (CC) {
3253 case ARMCC::EQ: // Z
3254 case ARMCC::NE: // Z
3255 case ARMCC::MI: // N
3256 case ARMCC::PL: // N
3257 case ARMCC::AL: // none
3258 // CPSR can be used multiple times, we should continue.
3259 break;
3260 case ARMCC::HS: // C
3261 case ARMCC::LO: // C
3262 case ARMCC::VS: // V
3263 case ARMCC::VC: // V
3264 case ARMCC::HI: // C Z
3265 case ARMCC::LS: // C Z
3266 case ARMCC::GE: // N V
3267 case ARMCC::LT: // N V
3268 case ARMCC::GT: // Z N V
3269 case ARMCC::LE: // Z N V
3270 // The instruction uses the V bit or C bit which is not safe.
3271 return false;
3272 }
3273 }
3274 }
3275 }
3276
3277 // If CPSR is not killed nor re-defined, we should check whether it is
3278 // live-out. If it is live-out, do not optimize.
3279 if (!isSafe) {
3280 MachineBasicBlock *MBB = CmpInstr.getParent();
3281 for (MachineBasicBlock *Succ : MBB->successors())
3282 if (Succ->isLiveIn(ARM::CPSR))
3283 return false;
3284 }
3285
3286 // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
3287 // set CPSR so this is represented as an explicit output)
3288 if (!IsThumb1) {
3289 unsigned CPSRRegNum = MI->getNumExplicitOperands() - 1;
3290 MI->getOperand(CPSRRegNum).setReg(ARM::CPSR);
3291 MI->getOperand(CPSRRegNum).setIsDef(true);
3292 }
3293 assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
3294 CmpInstr.eraseFromParent();
3295
3296 // Modify the condition code of operands in OperandsToUpdate.
3297 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
3298 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3299 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
3300 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
3301
3302 MI->clearRegisterDeads(ARM::CPSR);
3303
3304 return true;
3305 }
3306
shouldSink(const MachineInstr & MI) const3307 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
3308 // Do not sink MI if it might be used to optimize a redundant compare.
3309 // We heuristically only look at the instruction immediately following MI to
3310 // avoid potentially searching the entire basic block.
3311 if (isPredicated(MI))
3312 return true;
3313 MachineBasicBlock::const_iterator Next = &MI;
3314 ++Next;
3315 Register SrcReg, SrcReg2;
3316 int64_t CmpMask, CmpValue;
3317 bool IsThumb1;
3318 if (Next != MI.getParent()->end() &&
3319 analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
3320 isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1))
3321 return false;
3322 return true;
3323 }
3324
FoldImmediate(MachineInstr & UseMI,MachineInstr & DefMI,Register Reg,MachineRegisterInfo * MRI) const3325 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
3326 Register Reg,
3327 MachineRegisterInfo *MRI) const {
3328 // Fold large immediates into add, sub, or, xor.
3329 unsigned DefOpc = DefMI.getOpcode();
3330 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
3331 return false;
3332 if (!DefMI.getOperand(1).isImm())
3333 // Could be t2MOVi32imm @xx
3334 return false;
3335
3336 if (!MRI->hasOneNonDBGUse(Reg))
3337 return false;
3338
3339 const MCInstrDesc &DefMCID = DefMI.getDesc();
3340 if (DefMCID.hasOptionalDef()) {
3341 unsigned NumOps = DefMCID.getNumOperands();
3342 const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
3343 if (MO.getReg() == ARM::CPSR && !MO.isDead())
3344 // If DefMI defines CPSR and it is not dead, it's obviously not safe
3345 // to delete DefMI.
3346 return false;
3347 }
3348
3349 const MCInstrDesc &UseMCID = UseMI.getDesc();
3350 if (UseMCID.hasOptionalDef()) {
3351 unsigned NumOps = UseMCID.getNumOperands();
3352 if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
3353 // If the instruction sets the flag, do not attempt this optimization
3354 // since it may change the semantics of the code.
3355 return false;
3356 }
3357
3358 unsigned UseOpc = UseMI.getOpcode();
3359 unsigned NewUseOpc = 0;
3360 uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
3361 uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
3362 bool Commute = false;
3363 switch (UseOpc) {
3364 default: return false;
3365 case ARM::SUBrr:
3366 case ARM::ADDrr:
3367 case ARM::ORRrr:
3368 case ARM::EORrr:
3369 case ARM::t2SUBrr:
3370 case ARM::t2ADDrr:
3371 case ARM::t2ORRrr:
3372 case ARM::t2EORrr: {
3373 Commute = UseMI.getOperand(2).getReg() != Reg;
3374 switch (UseOpc) {
3375 default: break;
3376 case ARM::ADDrr:
3377 case ARM::SUBrr:
3378 if (UseOpc == ARM::SUBrr && Commute)
3379 return false;
3380
3381 // ADD/SUB are special because they're essentially the same operation, so
3382 // we can handle a larger range of immediates.
3383 if (ARM_AM::isSOImmTwoPartVal(ImmVal))
3384 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
3385 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
3386 ImmVal = -ImmVal;
3387 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
3388 } else
3389 return false;
3390 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3391 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3392 break;
3393 case ARM::ORRrr:
3394 case ARM::EORrr:
3395 if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
3396 return false;
3397 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3398 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3399 switch (UseOpc) {
3400 default: break;
3401 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
3402 case ARM::EORrr: NewUseOpc = ARM::EORri; break;
3403 }
3404 break;
3405 case ARM::t2ADDrr:
3406 case ARM::t2SUBrr: {
3407 if (UseOpc == ARM::t2SUBrr && Commute)
3408 return false;
3409
3410 // ADD/SUB are special because they're essentially the same operation, so
3411 // we can handle a larger range of immediates.
3412 const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP;
3413 const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri;
3414 const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri;
3415 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3416 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB;
3417 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
3418 ImmVal = -ImmVal;
3419 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD;
3420 } else
3421 return false;
3422 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3423 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3424 break;
3425 }
3426 case ARM::t2ORRrr:
3427 case ARM::t2EORrr:
3428 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3429 return false;
3430 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3431 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3432 switch (UseOpc) {
3433 default: break;
3434 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
3435 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
3436 }
3437 break;
3438 }
3439 }
3440 }
3441
3442 unsigned OpIdx = Commute ? 2 : 1;
3443 Register Reg1 = UseMI.getOperand(OpIdx).getReg();
3444 bool isKill = UseMI.getOperand(OpIdx).isKill();
3445 const TargetRegisterClass *TRC = MRI->getRegClass(Reg);
3446 Register NewReg = MRI->createVirtualRegister(TRC);
3447 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
3448 NewReg)
3449 .addReg(Reg1, getKillRegState(isKill))
3450 .addImm(SOImmValV1)
3451 .add(predOps(ARMCC::AL))
3452 .add(condCodeOp());
3453 UseMI.setDesc(get(NewUseOpc));
3454 UseMI.getOperand(1).setReg(NewReg);
3455 UseMI.getOperand(1).setIsKill();
3456 UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
3457 DefMI.eraseFromParent();
3458 // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP.
3459 // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm].
3460 // Then the below code will not be needed, as the input/output register
3461 // classes will be rgpr or gprSP.
3462 // For now, we fix the UseMI operand explicitly here:
3463 switch(NewUseOpc){
3464 case ARM::t2ADDspImm:
3465 case ARM::t2SUBspImm:
3466 case ARM::t2ADDri:
3467 case ARM::t2SUBri:
3468 MRI->constrainRegClass(UseMI.getOperand(0).getReg(), TRC);
3469 }
3470 return true;
3471 }
3472
getNumMicroOpsSwiftLdSt(const InstrItineraryData * ItinData,const MachineInstr & MI)3473 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
3474 const MachineInstr &MI) {
3475 switch (MI.getOpcode()) {
3476 default: {
3477 const MCInstrDesc &Desc = MI.getDesc();
3478 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
3479 assert(UOps >= 0 && "bad # UOps");
3480 return UOps;
3481 }
3482
3483 case ARM::LDRrs:
3484 case ARM::LDRBrs:
3485 case ARM::STRrs:
3486 case ARM::STRBrs: {
3487 unsigned ShOpVal = MI.getOperand(3).getImm();
3488 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3489 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3490 if (!isSub &&
3491 (ShImm == 0 ||
3492 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3493 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3494 return 1;
3495 return 2;
3496 }
3497
3498 case ARM::LDRH:
3499 case ARM::STRH: {
3500 if (!MI.getOperand(2).getReg())
3501 return 1;
3502
3503 unsigned ShOpVal = MI.getOperand(3).getImm();
3504 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3505 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3506 if (!isSub &&
3507 (ShImm == 0 ||
3508 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3509 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3510 return 1;
3511 return 2;
3512 }
3513
3514 case ARM::LDRSB:
3515 case ARM::LDRSH:
3516 return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
3517
3518 case ARM::LDRSB_POST:
3519 case ARM::LDRSH_POST: {
3520 Register Rt = MI.getOperand(0).getReg();
3521 Register Rm = MI.getOperand(3).getReg();
3522 return (Rt == Rm) ? 4 : 3;
3523 }
3524
3525 case ARM::LDR_PRE_REG:
3526 case ARM::LDRB_PRE_REG: {
3527 Register Rt = MI.getOperand(0).getReg();
3528 Register Rm = MI.getOperand(3).getReg();
3529 if (Rt == Rm)
3530 return 3;
3531 unsigned ShOpVal = MI.getOperand(4).getImm();
3532 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3533 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3534 if (!isSub &&
3535 (ShImm == 0 ||
3536 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3537 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3538 return 2;
3539 return 3;
3540 }
3541
3542 case ARM::STR_PRE_REG:
3543 case ARM::STRB_PRE_REG: {
3544 unsigned ShOpVal = MI.getOperand(4).getImm();
3545 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3546 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3547 if (!isSub &&
3548 (ShImm == 0 ||
3549 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3550 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3551 return 2;
3552 return 3;
3553 }
3554
3555 case ARM::LDRH_PRE:
3556 case ARM::STRH_PRE: {
3557 Register Rt = MI.getOperand(0).getReg();
3558 Register Rm = MI.getOperand(3).getReg();
3559 if (!Rm)
3560 return 2;
3561 if (Rt == Rm)
3562 return 3;
3563 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
3564 }
3565
3566 case ARM::LDR_POST_REG:
3567 case ARM::LDRB_POST_REG:
3568 case ARM::LDRH_POST: {
3569 Register Rt = MI.getOperand(0).getReg();
3570 Register Rm = MI.getOperand(3).getReg();
3571 return (Rt == Rm) ? 3 : 2;
3572 }
3573
3574 case ARM::LDR_PRE_IMM:
3575 case ARM::LDRB_PRE_IMM:
3576 case ARM::LDR_POST_IMM:
3577 case ARM::LDRB_POST_IMM:
3578 case ARM::STRB_POST_IMM:
3579 case ARM::STRB_POST_REG:
3580 case ARM::STRB_PRE_IMM:
3581 case ARM::STRH_POST:
3582 case ARM::STR_POST_IMM:
3583 case ARM::STR_POST_REG:
3584 case ARM::STR_PRE_IMM:
3585 return 2;
3586
3587 case ARM::LDRSB_PRE:
3588 case ARM::LDRSH_PRE: {
3589 Register Rm = MI.getOperand(3).getReg();
3590 if (Rm == 0)
3591 return 3;
3592 Register Rt = MI.getOperand(0).getReg();
3593 if (Rt == Rm)
3594 return 4;
3595 unsigned ShOpVal = MI.getOperand(4).getImm();
3596 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3597 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3598 if (!isSub &&
3599 (ShImm == 0 ||
3600 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3601 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3602 return 3;
3603 return 4;
3604 }
3605
3606 case ARM::LDRD: {
3607 Register Rt = MI.getOperand(0).getReg();
3608 Register Rn = MI.getOperand(2).getReg();
3609 Register Rm = MI.getOperand(3).getReg();
3610 if (Rm)
3611 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3612 : 3;
3613 return (Rt == Rn) ? 3 : 2;
3614 }
3615
3616 case ARM::STRD: {
3617 Register Rm = MI.getOperand(3).getReg();
3618 if (Rm)
3619 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3620 : 3;
3621 return 2;
3622 }
3623
3624 case ARM::LDRD_POST:
3625 case ARM::t2LDRD_POST:
3626 return 3;
3627
3628 case ARM::STRD_POST:
3629 case ARM::t2STRD_POST:
3630 return 4;
3631
3632 case ARM::LDRD_PRE: {
3633 Register Rt = MI.getOperand(0).getReg();
3634 Register Rn = MI.getOperand(3).getReg();
3635 Register Rm = MI.getOperand(4).getReg();
3636 if (Rm)
3637 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3638 : 4;
3639 return (Rt == Rn) ? 4 : 3;
3640 }
3641
3642 case ARM::t2LDRD_PRE: {
3643 Register Rt = MI.getOperand(0).getReg();
3644 Register Rn = MI.getOperand(3).getReg();
3645 return (Rt == Rn) ? 4 : 3;
3646 }
3647
3648 case ARM::STRD_PRE: {
3649 Register Rm = MI.getOperand(4).getReg();
3650 if (Rm)
3651 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3652 : 4;
3653 return 3;
3654 }
3655
3656 case ARM::t2STRD_PRE:
3657 return 3;
3658
3659 case ARM::t2LDR_POST:
3660 case ARM::t2LDRB_POST:
3661 case ARM::t2LDRB_PRE:
3662 case ARM::t2LDRSBi12:
3663 case ARM::t2LDRSBi8:
3664 case ARM::t2LDRSBpci:
3665 case ARM::t2LDRSBs:
3666 case ARM::t2LDRH_POST:
3667 case ARM::t2LDRH_PRE:
3668 case ARM::t2LDRSBT:
3669 case ARM::t2LDRSB_POST:
3670 case ARM::t2LDRSB_PRE:
3671 case ARM::t2LDRSH_POST:
3672 case ARM::t2LDRSH_PRE:
3673 case ARM::t2LDRSHi12:
3674 case ARM::t2LDRSHi8:
3675 case ARM::t2LDRSHpci:
3676 case ARM::t2LDRSHs:
3677 return 2;
3678
3679 case ARM::t2LDRDi8: {
3680 Register Rt = MI.getOperand(0).getReg();
3681 Register Rn = MI.getOperand(2).getReg();
3682 return (Rt == Rn) ? 3 : 2;
3683 }
3684
3685 case ARM::t2STRB_POST:
3686 case ARM::t2STRB_PRE:
3687 case ARM::t2STRBs:
3688 case ARM::t2STRDi8:
3689 case ARM::t2STRH_POST:
3690 case ARM::t2STRH_PRE:
3691 case ARM::t2STRHs:
3692 case ARM::t2STR_POST:
3693 case ARM::t2STR_PRE:
3694 case ARM::t2STRs:
3695 return 2;
3696 }
3697 }
3698
3699 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3700 // can't be easily determined return 0 (missing MachineMemOperand).
3701 //
3702 // FIXME: The current MachineInstr design does not support relying on machine
3703 // mem operands to determine the width of a memory access. Instead, we expect
3704 // the target to provide this information based on the instruction opcode and
3705 // operands. However, using MachineMemOperand is the best solution now for
3706 // two reasons:
3707 //
3708 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3709 // operands. This is much more dangerous than using the MachineMemOperand
3710 // sizes because CodeGen passes can insert/remove optional machine operands. In
3711 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3712 // postRA passes as well.
3713 //
3714 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3715 // machine model that calls this should handle the unknown (zero size) case.
3716 //
3717 // Long term, we should require a target hook that verifies MachineMemOperand
3718 // sizes during MC lowering. That target hook should be local to MC lowering
3719 // because we can't ensure that it is aware of other MI forms. Doing this will
3720 // ensure that MachineMemOperands are correctly propagated through all passes.
getNumLDMAddresses(const MachineInstr & MI) const3721 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3722 unsigned Size = 0;
3723 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3724 E = MI.memoperands_end();
3725 I != E; ++I) {
3726 Size += (*I)->getSize();
3727 }
3728 // FIXME: The scheduler currently can't handle values larger than 16. But
3729 // the values can actually go up to 32 for floating-point load/store
3730 // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory
3731 // operations isn't right; we could end up with "extra" memory operands for
3732 // various reasons, like tail merge merging two memory operations.
3733 return std::min(Size / 4, 16U);
3734 }
3735
getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,unsigned NumRegs)3736 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3737 unsigned NumRegs) {
3738 unsigned UOps = 1 + NumRegs; // 1 for address computation.
3739 switch (Opc) {
3740 default:
3741 break;
3742 case ARM::VLDMDIA_UPD:
3743 case ARM::VLDMDDB_UPD:
3744 case ARM::VLDMSIA_UPD:
3745 case ARM::VLDMSDB_UPD:
3746 case ARM::VSTMDIA_UPD:
3747 case ARM::VSTMDDB_UPD:
3748 case ARM::VSTMSIA_UPD:
3749 case ARM::VSTMSDB_UPD:
3750 case ARM::LDMIA_UPD:
3751 case ARM::LDMDA_UPD:
3752 case ARM::LDMDB_UPD:
3753 case ARM::LDMIB_UPD:
3754 case ARM::STMIA_UPD:
3755 case ARM::STMDA_UPD:
3756 case ARM::STMDB_UPD:
3757 case ARM::STMIB_UPD:
3758 case ARM::tLDMIA_UPD:
3759 case ARM::tSTMIA_UPD:
3760 case ARM::t2LDMIA_UPD:
3761 case ARM::t2LDMDB_UPD:
3762 case ARM::t2STMIA_UPD:
3763 case ARM::t2STMDB_UPD:
3764 ++UOps; // One for base register writeback.
3765 break;
3766 case ARM::LDMIA_RET:
3767 case ARM::tPOP_RET:
3768 case ARM::t2LDMIA_RET:
3769 UOps += 2; // One for base reg wb, one for write to pc.
3770 break;
3771 }
3772 return UOps;
3773 }
3774
getNumMicroOps(const InstrItineraryData * ItinData,const MachineInstr & MI) const3775 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3776 const MachineInstr &MI) const {
3777 if (!ItinData || ItinData->isEmpty())
3778 return 1;
3779
3780 const MCInstrDesc &Desc = MI.getDesc();
3781 unsigned Class = Desc.getSchedClass();
3782 int ItinUOps = ItinData->getNumMicroOps(Class);
3783 if (ItinUOps >= 0) {
3784 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3785 return getNumMicroOpsSwiftLdSt(ItinData, MI);
3786
3787 return ItinUOps;
3788 }
3789
3790 unsigned Opc = MI.getOpcode();
3791 switch (Opc) {
3792 default:
3793 llvm_unreachable("Unexpected multi-uops instruction!");
3794 case ARM::VLDMQIA:
3795 case ARM::VSTMQIA:
3796 return 2;
3797
3798 // The number of uOps for load / store multiple are determined by the number
3799 // registers.
3800 //
3801 // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3802 // same cycle. The scheduling for the first load / store must be done
3803 // separately by assuming the address is not 64-bit aligned.
3804 //
3805 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3806 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON
3807 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3808 case ARM::VLDMDIA:
3809 case ARM::VLDMDIA_UPD:
3810 case ARM::VLDMDDB_UPD:
3811 case ARM::VLDMSIA:
3812 case ARM::VLDMSIA_UPD:
3813 case ARM::VLDMSDB_UPD:
3814 case ARM::VSTMDIA:
3815 case ARM::VSTMDIA_UPD:
3816 case ARM::VSTMDDB_UPD:
3817 case ARM::VSTMSIA:
3818 case ARM::VSTMSIA_UPD:
3819 case ARM::VSTMSDB_UPD: {
3820 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3821 return (NumRegs / 2) + (NumRegs % 2) + 1;
3822 }
3823
3824 case ARM::LDMIA_RET:
3825 case ARM::LDMIA:
3826 case ARM::LDMDA:
3827 case ARM::LDMDB:
3828 case ARM::LDMIB:
3829 case ARM::LDMIA_UPD:
3830 case ARM::LDMDA_UPD:
3831 case ARM::LDMDB_UPD:
3832 case ARM::LDMIB_UPD:
3833 case ARM::STMIA:
3834 case ARM::STMDA:
3835 case ARM::STMDB:
3836 case ARM::STMIB:
3837 case ARM::STMIA_UPD:
3838 case ARM::STMDA_UPD:
3839 case ARM::STMDB_UPD:
3840 case ARM::STMIB_UPD:
3841 case ARM::tLDMIA:
3842 case ARM::tLDMIA_UPD:
3843 case ARM::tSTMIA_UPD:
3844 case ARM::tPOP_RET:
3845 case ARM::tPOP:
3846 case ARM::tPUSH:
3847 case ARM::t2LDMIA_RET:
3848 case ARM::t2LDMIA:
3849 case ARM::t2LDMDB:
3850 case ARM::t2LDMIA_UPD:
3851 case ARM::t2LDMDB_UPD:
3852 case ARM::t2STMIA:
3853 case ARM::t2STMDB:
3854 case ARM::t2STMIA_UPD:
3855 case ARM::t2STMDB_UPD: {
3856 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3857 switch (Subtarget.getLdStMultipleTiming()) {
3858 case ARMSubtarget::SingleIssuePlusExtras:
3859 return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3860 case ARMSubtarget::SingleIssue:
3861 // Assume the worst.
3862 return NumRegs;
3863 case ARMSubtarget::DoubleIssue: {
3864 if (NumRegs < 4)
3865 return 2;
3866 // 4 registers would be issued: 2, 2.
3867 // 5 registers would be issued: 2, 2, 1.
3868 unsigned UOps = (NumRegs / 2);
3869 if (NumRegs % 2)
3870 ++UOps;
3871 return UOps;
3872 }
3873 case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3874 unsigned UOps = (NumRegs / 2);
3875 // If there are odd number of registers or if it's not 64-bit aligned,
3876 // then it takes an extra AGU (Address Generation Unit) cycle.
3877 if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3878 (*MI.memoperands_begin())->getAlign() < Align(8))
3879 ++UOps;
3880 return UOps;
3881 }
3882 }
3883 }
3884 }
3885 llvm_unreachable("Didn't find the number of microops");
3886 }
3887
3888 int
getVLDMDefCycle(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefClass,unsigned DefIdx,unsigned DefAlign) const3889 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3890 const MCInstrDesc &DefMCID,
3891 unsigned DefClass,
3892 unsigned DefIdx, unsigned DefAlign) const {
3893 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3894 if (RegNo <= 0)
3895 // Def is the address writeback.
3896 return ItinData->getOperandCycle(DefClass, DefIdx);
3897
3898 int DefCycle;
3899 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3900 // (regno / 2) + (regno % 2) + 1
3901 DefCycle = RegNo / 2 + 1;
3902 if (RegNo % 2)
3903 ++DefCycle;
3904 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3905 DefCycle = RegNo;
3906 bool isSLoad = false;
3907
3908 switch (DefMCID.getOpcode()) {
3909 default: break;
3910 case ARM::VLDMSIA:
3911 case ARM::VLDMSIA_UPD:
3912 case ARM::VLDMSDB_UPD:
3913 isSLoad = true;
3914 break;
3915 }
3916
3917 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3918 // then it takes an extra cycle.
3919 if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3920 ++DefCycle;
3921 } else {
3922 // Assume the worst.
3923 DefCycle = RegNo + 2;
3924 }
3925
3926 return DefCycle;
3927 }
3928
3929 int
getLDMDefCycle(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefClass,unsigned DefIdx,unsigned DefAlign) const3930 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3931 const MCInstrDesc &DefMCID,
3932 unsigned DefClass,
3933 unsigned DefIdx, unsigned DefAlign) const {
3934 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3935 if (RegNo <= 0)
3936 // Def is the address writeback.
3937 return ItinData->getOperandCycle(DefClass, DefIdx);
3938
3939 int DefCycle;
3940 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3941 // 4 registers would be issued: 1, 2, 1.
3942 // 5 registers would be issued: 1, 2, 2.
3943 DefCycle = RegNo / 2;
3944 if (DefCycle < 1)
3945 DefCycle = 1;
3946 // Result latency is issue cycle + 2: E2.
3947 DefCycle += 2;
3948 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3949 DefCycle = (RegNo / 2);
3950 // If there are odd number of registers or if it's not 64-bit aligned,
3951 // then it takes an extra AGU (Address Generation Unit) cycle.
3952 if ((RegNo % 2) || DefAlign < 8)
3953 ++DefCycle;
3954 // Result latency is AGU cycles + 2.
3955 DefCycle += 2;
3956 } else {
3957 // Assume the worst.
3958 DefCycle = RegNo + 2;
3959 }
3960
3961 return DefCycle;
3962 }
3963
3964 int
getVSTMUseCycle(const InstrItineraryData * ItinData,const MCInstrDesc & UseMCID,unsigned UseClass,unsigned UseIdx,unsigned UseAlign) const3965 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3966 const MCInstrDesc &UseMCID,
3967 unsigned UseClass,
3968 unsigned UseIdx, unsigned UseAlign) const {
3969 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3970 if (RegNo <= 0)
3971 return ItinData->getOperandCycle(UseClass, UseIdx);
3972
3973 int UseCycle;
3974 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3975 // (regno / 2) + (regno % 2) + 1
3976 UseCycle = RegNo / 2 + 1;
3977 if (RegNo % 2)
3978 ++UseCycle;
3979 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3980 UseCycle = RegNo;
3981 bool isSStore = false;
3982
3983 switch (UseMCID.getOpcode()) {
3984 default: break;
3985 case ARM::VSTMSIA:
3986 case ARM::VSTMSIA_UPD:
3987 case ARM::VSTMSDB_UPD:
3988 isSStore = true;
3989 break;
3990 }
3991
3992 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3993 // then it takes an extra cycle.
3994 if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3995 ++UseCycle;
3996 } else {
3997 // Assume the worst.
3998 UseCycle = RegNo + 2;
3999 }
4000
4001 return UseCycle;
4002 }
4003
4004 int
getSTMUseCycle(const InstrItineraryData * ItinData,const MCInstrDesc & UseMCID,unsigned UseClass,unsigned UseIdx,unsigned UseAlign) const4005 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
4006 const MCInstrDesc &UseMCID,
4007 unsigned UseClass,
4008 unsigned UseIdx, unsigned UseAlign) const {
4009 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
4010 if (RegNo <= 0)
4011 return ItinData->getOperandCycle(UseClass, UseIdx);
4012
4013 int UseCycle;
4014 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
4015 UseCycle = RegNo / 2;
4016 if (UseCycle < 2)
4017 UseCycle = 2;
4018 // Read in E3.
4019 UseCycle += 2;
4020 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
4021 UseCycle = (RegNo / 2);
4022 // If there are odd number of registers or if it's not 64-bit aligned,
4023 // then it takes an extra AGU (Address Generation Unit) cycle.
4024 if ((RegNo % 2) || UseAlign < 8)
4025 ++UseCycle;
4026 } else {
4027 // Assume the worst.
4028 UseCycle = 1;
4029 }
4030 return UseCycle;
4031 }
4032
4033 int
getOperandLatency(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefIdx,unsigned DefAlign,const MCInstrDesc & UseMCID,unsigned UseIdx,unsigned UseAlign) const4034 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4035 const MCInstrDesc &DefMCID,
4036 unsigned DefIdx, unsigned DefAlign,
4037 const MCInstrDesc &UseMCID,
4038 unsigned UseIdx, unsigned UseAlign) const {
4039 unsigned DefClass = DefMCID.getSchedClass();
4040 unsigned UseClass = UseMCID.getSchedClass();
4041
4042 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
4043 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
4044
4045 // This may be a def / use of a variable_ops instruction, the operand
4046 // latency might be determinable dynamically. Let the target try to
4047 // figure it out.
4048 int DefCycle = -1;
4049 bool LdmBypass = false;
4050 switch (DefMCID.getOpcode()) {
4051 default:
4052 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4053 break;
4054
4055 case ARM::VLDMDIA:
4056 case ARM::VLDMDIA_UPD:
4057 case ARM::VLDMDDB_UPD:
4058 case ARM::VLDMSIA:
4059 case ARM::VLDMSIA_UPD:
4060 case ARM::VLDMSDB_UPD:
4061 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4062 break;
4063
4064 case ARM::LDMIA_RET:
4065 case ARM::LDMIA:
4066 case ARM::LDMDA:
4067 case ARM::LDMDB:
4068 case ARM::LDMIB:
4069 case ARM::LDMIA_UPD:
4070 case ARM::LDMDA_UPD:
4071 case ARM::LDMDB_UPD:
4072 case ARM::LDMIB_UPD:
4073 case ARM::tLDMIA:
4074 case ARM::tLDMIA_UPD:
4075 case ARM::tPUSH:
4076 case ARM::t2LDMIA_RET:
4077 case ARM::t2LDMIA:
4078 case ARM::t2LDMDB:
4079 case ARM::t2LDMIA_UPD:
4080 case ARM::t2LDMDB_UPD:
4081 LdmBypass = true;
4082 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4083 break;
4084 }
4085
4086 if (DefCycle == -1)
4087 // We can't seem to determine the result latency of the def, assume it's 2.
4088 DefCycle = 2;
4089
4090 int UseCycle = -1;
4091 switch (UseMCID.getOpcode()) {
4092 default:
4093 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
4094 break;
4095
4096 case ARM::VSTMDIA:
4097 case ARM::VSTMDIA_UPD:
4098 case ARM::VSTMDDB_UPD:
4099 case ARM::VSTMSIA:
4100 case ARM::VSTMSIA_UPD:
4101 case ARM::VSTMSDB_UPD:
4102 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4103 break;
4104
4105 case ARM::STMIA:
4106 case ARM::STMDA:
4107 case ARM::STMDB:
4108 case ARM::STMIB:
4109 case ARM::STMIA_UPD:
4110 case ARM::STMDA_UPD:
4111 case ARM::STMDB_UPD:
4112 case ARM::STMIB_UPD:
4113 case ARM::tSTMIA_UPD:
4114 case ARM::tPOP_RET:
4115 case ARM::tPOP:
4116 case ARM::t2STMIA:
4117 case ARM::t2STMDB:
4118 case ARM::t2STMIA_UPD:
4119 case ARM::t2STMDB_UPD:
4120 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4121 break;
4122 }
4123
4124 if (UseCycle == -1)
4125 // Assume it's read in the first stage.
4126 UseCycle = 1;
4127
4128 UseCycle = DefCycle - UseCycle + 1;
4129 if (UseCycle > 0) {
4130 if (LdmBypass) {
4131 // It's a variable_ops instruction so we can't use DefIdx here. Just use
4132 // first def operand.
4133 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
4134 UseClass, UseIdx))
4135 --UseCycle;
4136 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
4137 UseClass, UseIdx)) {
4138 --UseCycle;
4139 }
4140 }
4141
4142 return UseCycle;
4143 }
4144
getBundledDefMI(const TargetRegisterInfo * TRI,const MachineInstr * MI,unsigned Reg,unsigned & DefIdx,unsigned & Dist)4145 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
4146 const MachineInstr *MI, unsigned Reg,
4147 unsigned &DefIdx, unsigned &Dist) {
4148 Dist = 0;
4149
4150 MachineBasicBlock::const_iterator I = MI; ++I;
4151 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
4152 assert(II->isInsideBundle() && "Empty bundle?");
4153
4154 int Idx = -1;
4155 while (II->isInsideBundle()) {
4156 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
4157 if (Idx != -1)
4158 break;
4159 --II;
4160 ++Dist;
4161 }
4162
4163 assert(Idx != -1 && "Cannot find bundled definition!");
4164 DefIdx = Idx;
4165 return &*II;
4166 }
4167
getBundledUseMI(const TargetRegisterInfo * TRI,const MachineInstr & MI,unsigned Reg,unsigned & UseIdx,unsigned & Dist)4168 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
4169 const MachineInstr &MI, unsigned Reg,
4170 unsigned &UseIdx, unsigned &Dist) {
4171 Dist = 0;
4172
4173 MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
4174 assert(II->isInsideBundle() && "Empty bundle?");
4175 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4176
4177 // FIXME: This doesn't properly handle multiple uses.
4178 int Idx = -1;
4179 while (II != E && II->isInsideBundle()) {
4180 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
4181 if (Idx != -1)
4182 break;
4183 if (II->getOpcode() != ARM::t2IT)
4184 ++Dist;
4185 ++II;
4186 }
4187
4188 if (Idx == -1) {
4189 Dist = 0;
4190 return nullptr;
4191 }
4192
4193 UseIdx = Idx;
4194 return &*II;
4195 }
4196
4197 /// Return the number of cycles to add to (or subtract from) the static
4198 /// itinerary based on the def opcode and alignment. The caller will ensure that
4199 /// adjusted latency is at least one cycle.
adjustDefLatency(const ARMSubtarget & Subtarget,const MachineInstr & DefMI,const MCInstrDesc & DefMCID,unsigned DefAlign)4200 static int adjustDefLatency(const ARMSubtarget &Subtarget,
4201 const MachineInstr &DefMI,
4202 const MCInstrDesc &DefMCID, unsigned DefAlign) {
4203 int Adjust = 0;
4204 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
4205 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4206 // variants are one cycle cheaper.
4207 switch (DefMCID.getOpcode()) {
4208 default: break;
4209 case ARM::LDRrs:
4210 case ARM::LDRBrs: {
4211 unsigned ShOpVal = DefMI.getOperand(3).getImm();
4212 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4213 if (ShImm == 0 ||
4214 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4215 --Adjust;
4216 break;
4217 }
4218 case ARM::t2LDRs:
4219 case ARM::t2LDRBs:
4220 case ARM::t2LDRHs:
4221 case ARM::t2LDRSHs: {
4222 // Thumb2 mode: lsl only.
4223 unsigned ShAmt = DefMI.getOperand(3).getImm();
4224 if (ShAmt == 0 || ShAmt == 2)
4225 --Adjust;
4226 break;
4227 }
4228 }
4229 } else if (Subtarget.isSwift()) {
4230 // FIXME: Properly handle all of the latency adjustments for address
4231 // writeback.
4232 switch (DefMCID.getOpcode()) {
4233 default: break;
4234 case ARM::LDRrs:
4235 case ARM::LDRBrs: {
4236 unsigned ShOpVal = DefMI.getOperand(3).getImm();
4237 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
4238 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4239 if (!isSub &&
4240 (ShImm == 0 ||
4241 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4242 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
4243 Adjust -= 2;
4244 else if (!isSub &&
4245 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4246 --Adjust;
4247 break;
4248 }
4249 case ARM::t2LDRs:
4250 case ARM::t2LDRBs:
4251 case ARM::t2LDRHs:
4252 case ARM::t2LDRSHs: {
4253 // Thumb2 mode: lsl only.
4254 unsigned ShAmt = DefMI.getOperand(3).getImm();
4255 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
4256 Adjust -= 2;
4257 break;
4258 }
4259 }
4260 }
4261
4262 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
4263 switch (DefMCID.getOpcode()) {
4264 default: break;
4265 case ARM::VLD1q8:
4266 case ARM::VLD1q16:
4267 case ARM::VLD1q32:
4268 case ARM::VLD1q64:
4269 case ARM::VLD1q8wb_fixed:
4270 case ARM::VLD1q16wb_fixed:
4271 case ARM::VLD1q32wb_fixed:
4272 case ARM::VLD1q64wb_fixed:
4273 case ARM::VLD1q8wb_register:
4274 case ARM::VLD1q16wb_register:
4275 case ARM::VLD1q32wb_register:
4276 case ARM::VLD1q64wb_register:
4277 case ARM::VLD2d8:
4278 case ARM::VLD2d16:
4279 case ARM::VLD2d32:
4280 case ARM::VLD2q8:
4281 case ARM::VLD2q16:
4282 case ARM::VLD2q32:
4283 case ARM::VLD2d8wb_fixed:
4284 case ARM::VLD2d16wb_fixed:
4285 case ARM::VLD2d32wb_fixed:
4286 case ARM::VLD2q8wb_fixed:
4287 case ARM::VLD2q16wb_fixed:
4288 case ARM::VLD2q32wb_fixed:
4289 case ARM::VLD2d8wb_register:
4290 case ARM::VLD2d16wb_register:
4291 case ARM::VLD2d32wb_register:
4292 case ARM::VLD2q8wb_register:
4293 case ARM::VLD2q16wb_register:
4294 case ARM::VLD2q32wb_register:
4295 case ARM::VLD3d8:
4296 case ARM::VLD3d16:
4297 case ARM::VLD3d32:
4298 case ARM::VLD1d64T:
4299 case ARM::VLD3d8_UPD:
4300 case ARM::VLD3d16_UPD:
4301 case ARM::VLD3d32_UPD:
4302 case ARM::VLD1d64Twb_fixed:
4303 case ARM::VLD1d64Twb_register:
4304 case ARM::VLD3q8_UPD:
4305 case ARM::VLD3q16_UPD:
4306 case ARM::VLD3q32_UPD:
4307 case ARM::VLD4d8:
4308 case ARM::VLD4d16:
4309 case ARM::VLD4d32:
4310 case ARM::VLD1d64Q:
4311 case ARM::VLD4d8_UPD:
4312 case ARM::VLD4d16_UPD:
4313 case ARM::VLD4d32_UPD:
4314 case ARM::VLD1d64Qwb_fixed:
4315 case ARM::VLD1d64Qwb_register:
4316 case ARM::VLD4q8_UPD:
4317 case ARM::VLD4q16_UPD:
4318 case ARM::VLD4q32_UPD:
4319 case ARM::VLD1DUPq8:
4320 case ARM::VLD1DUPq16:
4321 case ARM::VLD1DUPq32:
4322 case ARM::VLD1DUPq8wb_fixed:
4323 case ARM::VLD1DUPq16wb_fixed:
4324 case ARM::VLD1DUPq32wb_fixed:
4325 case ARM::VLD1DUPq8wb_register:
4326 case ARM::VLD1DUPq16wb_register:
4327 case ARM::VLD1DUPq32wb_register:
4328 case ARM::VLD2DUPd8:
4329 case ARM::VLD2DUPd16:
4330 case ARM::VLD2DUPd32:
4331 case ARM::VLD2DUPd8wb_fixed:
4332 case ARM::VLD2DUPd16wb_fixed:
4333 case ARM::VLD2DUPd32wb_fixed:
4334 case ARM::VLD2DUPd8wb_register:
4335 case ARM::VLD2DUPd16wb_register:
4336 case ARM::VLD2DUPd32wb_register:
4337 case ARM::VLD4DUPd8:
4338 case ARM::VLD4DUPd16:
4339 case ARM::VLD4DUPd32:
4340 case ARM::VLD4DUPd8_UPD:
4341 case ARM::VLD4DUPd16_UPD:
4342 case ARM::VLD4DUPd32_UPD:
4343 case ARM::VLD1LNd8:
4344 case ARM::VLD1LNd16:
4345 case ARM::VLD1LNd32:
4346 case ARM::VLD1LNd8_UPD:
4347 case ARM::VLD1LNd16_UPD:
4348 case ARM::VLD1LNd32_UPD:
4349 case ARM::VLD2LNd8:
4350 case ARM::VLD2LNd16:
4351 case ARM::VLD2LNd32:
4352 case ARM::VLD2LNq16:
4353 case ARM::VLD2LNq32:
4354 case ARM::VLD2LNd8_UPD:
4355 case ARM::VLD2LNd16_UPD:
4356 case ARM::VLD2LNd32_UPD:
4357 case ARM::VLD2LNq16_UPD:
4358 case ARM::VLD2LNq32_UPD:
4359 case ARM::VLD4LNd8:
4360 case ARM::VLD4LNd16:
4361 case ARM::VLD4LNd32:
4362 case ARM::VLD4LNq16:
4363 case ARM::VLD4LNq32:
4364 case ARM::VLD4LNd8_UPD:
4365 case ARM::VLD4LNd16_UPD:
4366 case ARM::VLD4LNd32_UPD:
4367 case ARM::VLD4LNq16_UPD:
4368 case ARM::VLD4LNq32_UPD:
4369 // If the address is not 64-bit aligned, the latencies of these
4370 // instructions increases by one.
4371 ++Adjust;
4372 break;
4373 }
4374 }
4375 return Adjust;
4376 }
4377
getOperandLatency(const InstrItineraryData * ItinData,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const4378 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4379 const MachineInstr &DefMI,
4380 unsigned DefIdx,
4381 const MachineInstr &UseMI,
4382 unsigned UseIdx) const {
4383 // No operand latency. The caller may fall back to getInstrLatency.
4384 if (!ItinData || ItinData->isEmpty())
4385 return -1;
4386
4387 const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4388 Register Reg = DefMO.getReg();
4389
4390 const MachineInstr *ResolvedDefMI = &DefMI;
4391 unsigned DefAdj = 0;
4392 if (DefMI.isBundle())
4393 ResolvedDefMI =
4394 getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
4395 if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
4396 ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
4397 return 1;
4398 }
4399
4400 const MachineInstr *ResolvedUseMI = &UseMI;
4401 unsigned UseAdj = 0;
4402 if (UseMI.isBundle()) {
4403 ResolvedUseMI =
4404 getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
4405 if (!ResolvedUseMI)
4406 return -1;
4407 }
4408
4409 return getOperandLatencyImpl(
4410 ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
4411 Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
4412 }
4413
getOperandLatencyImpl(const InstrItineraryData * ItinData,const MachineInstr & DefMI,unsigned DefIdx,const MCInstrDesc & DefMCID,unsigned DefAdj,const MachineOperand & DefMO,unsigned Reg,const MachineInstr & UseMI,unsigned UseIdx,const MCInstrDesc & UseMCID,unsigned UseAdj) const4414 int ARMBaseInstrInfo::getOperandLatencyImpl(
4415 const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4416 unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
4417 const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
4418 unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
4419 if (Reg == ARM::CPSR) {
4420 if (DefMI.getOpcode() == ARM::FMSTAT) {
4421 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4422 return Subtarget.isLikeA9() ? 1 : 20;
4423 }
4424
4425 // CPSR set and branch can be paired in the same cycle.
4426 if (UseMI.isBranch())
4427 return 0;
4428
4429 // Otherwise it takes the instruction latency (generally one).
4430 unsigned Latency = getInstrLatency(ItinData, DefMI);
4431
4432 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4433 // its uses. Instructions which are otherwise scheduled between them may
4434 // incur a code size penalty (not able to use the CPSR setting 16-bit
4435 // instructions).
4436 if (Latency > 0 && Subtarget.isThumb2()) {
4437 const MachineFunction *MF = DefMI.getParent()->getParent();
4438 // FIXME: Use Function::hasOptSize().
4439 if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
4440 --Latency;
4441 }
4442 return Latency;
4443 }
4444
4445 if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
4446 return -1;
4447
4448 unsigned DefAlign = DefMI.hasOneMemOperand()
4449 ? (*DefMI.memoperands_begin())->getAlign().value()
4450 : 0;
4451 unsigned UseAlign = UseMI.hasOneMemOperand()
4452 ? (*UseMI.memoperands_begin())->getAlign().value()
4453 : 0;
4454
4455 // Get the itinerary's latency if possible, and handle variable_ops.
4456 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID,
4457 UseIdx, UseAlign);
4458 // Unable to find operand latency. The caller may resort to getInstrLatency.
4459 if (Latency < 0)
4460 return Latency;
4461
4462 // Adjust for IT block position.
4463 int Adj = DefAdj + UseAdj;
4464
4465 // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4466 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
4467 if (Adj >= 0 || (int)Latency > -Adj) {
4468 return Latency + Adj;
4469 }
4470 // Return the itinerary latency, which may be zero but not less than zero.
4471 return Latency;
4472 }
4473
4474 int
getOperandLatency(const InstrItineraryData * ItinData,SDNode * DefNode,unsigned DefIdx,SDNode * UseNode,unsigned UseIdx) const4475 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4476 SDNode *DefNode, unsigned DefIdx,
4477 SDNode *UseNode, unsigned UseIdx) const {
4478 if (!DefNode->isMachineOpcode())
4479 return 1;
4480
4481 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
4482
4483 if (isZeroCost(DefMCID.Opcode))
4484 return 0;
4485
4486 if (!ItinData || ItinData->isEmpty())
4487 return DefMCID.mayLoad() ? 3 : 1;
4488
4489 if (!UseNode->isMachineOpcode()) {
4490 int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
4491 int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
4492 int Threshold = 1 + Adj;
4493 return Latency <= Threshold ? 1 : Latency - Adj;
4494 }
4495
4496 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
4497 auto *DefMN = cast<MachineSDNode>(DefNode);
4498 unsigned DefAlign = !DefMN->memoperands_empty()
4499 ? (*DefMN->memoperands_begin())->getAlign().value()
4500 : 0;
4501 auto *UseMN = cast<MachineSDNode>(UseNode);
4502 unsigned UseAlign = !UseMN->memoperands_empty()
4503 ? (*UseMN->memoperands_begin())->getAlign().value()
4504 : 0;
4505 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
4506 UseMCID, UseIdx, UseAlign);
4507
4508 if (Latency > 1 &&
4509 (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
4510 Subtarget.isCortexA7())) {
4511 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4512 // variants are one cycle cheaper.
4513 switch (DefMCID.getOpcode()) {
4514 default: break;
4515 case ARM::LDRrs:
4516 case ARM::LDRBrs: {
4517 unsigned ShOpVal =
4518 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4519 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4520 if (ShImm == 0 ||
4521 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4522 --Latency;
4523 break;
4524 }
4525 case ARM::t2LDRs:
4526 case ARM::t2LDRBs:
4527 case ARM::t2LDRHs:
4528 case ARM::t2LDRSHs: {
4529 // Thumb2 mode: lsl only.
4530 unsigned ShAmt =
4531 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4532 if (ShAmt == 0 || ShAmt == 2)
4533 --Latency;
4534 break;
4535 }
4536 }
4537 } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
4538 // FIXME: Properly handle all of the latency adjustments for address
4539 // writeback.
4540 switch (DefMCID.getOpcode()) {
4541 default: break;
4542 case ARM::LDRrs:
4543 case ARM::LDRBrs: {
4544 unsigned ShOpVal =
4545 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4546 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4547 if (ShImm == 0 ||
4548 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4549 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4550 Latency -= 2;
4551 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4552 --Latency;
4553 break;
4554 }
4555 case ARM::t2LDRs:
4556 case ARM::t2LDRBs:
4557 case ARM::t2LDRHs:
4558 case ARM::t2LDRSHs:
4559 // Thumb2 mode: lsl 0-3 only.
4560 Latency -= 2;
4561 break;
4562 }
4563 }
4564
4565 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
4566 switch (DefMCID.getOpcode()) {
4567 default: break;
4568 case ARM::VLD1q8:
4569 case ARM::VLD1q16:
4570 case ARM::VLD1q32:
4571 case ARM::VLD1q64:
4572 case ARM::VLD1q8wb_register:
4573 case ARM::VLD1q16wb_register:
4574 case ARM::VLD1q32wb_register:
4575 case ARM::VLD1q64wb_register:
4576 case ARM::VLD1q8wb_fixed:
4577 case ARM::VLD1q16wb_fixed:
4578 case ARM::VLD1q32wb_fixed:
4579 case ARM::VLD1q64wb_fixed:
4580 case ARM::VLD2d8:
4581 case ARM::VLD2d16:
4582 case ARM::VLD2d32:
4583 case ARM::VLD2q8Pseudo:
4584 case ARM::VLD2q16Pseudo:
4585 case ARM::VLD2q32Pseudo:
4586 case ARM::VLD2d8wb_fixed:
4587 case ARM::VLD2d16wb_fixed:
4588 case ARM::VLD2d32wb_fixed:
4589 case ARM::VLD2q8PseudoWB_fixed:
4590 case ARM::VLD2q16PseudoWB_fixed:
4591 case ARM::VLD2q32PseudoWB_fixed:
4592 case ARM::VLD2d8wb_register:
4593 case ARM::VLD2d16wb_register:
4594 case ARM::VLD2d32wb_register:
4595 case ARM::VLD2q8PseudoWB_register:
4596 case ARM::VLD2q16PseudoWB_register:
4597 case ARM::VLD2q32PseudoWB_register:
4598 case ARM::VLD3d8Pseudo:
4599 case ARM::VLD3d16Pseudo:
4600 case ARM::VLD3d32Pseudo:
4601 case ARM::VLD1d8TPseudo:
4602 case ARM::VLD1d16TPseudo:
4603 case ARM::VLD1d32TPseudo:
4604 case ARM::VLD1d64TPseudo:
4605 case ARM::VLD1d64TPseudoWB_fixed:
4606 case ARM::VLD1d64TPseudoWB_register:
4607 case ARM::VLD3d8Pseudo_UPD:
4608 case ARM::VLD3d16Pseudo_UPD:
4609 case ARM::VLD3d32Pseudo_UPD:
4610 case ARM::VLD3q8Pseudo_UPD:
4611 case ARM::VLD3q16Pseudo_UPD:
4612 case ARM::VLD3q32Pseudo_UPD:
4613 case ARM::VLD3q8oddPseudo:
4614 case ARM::VLD3q16oddPseudo:
4615 case ARM::VLD3q32oddPseudo:
4616 case ARM::VLD3q8oddPseudo_UPD:
4617 case ARM::VLD3q16oddPseudo_UPD:
4618 case ARM::VLD3q32oddPseudo_UPD:
4619 case ARM::VLD4d8Pseudo:
4620 case ARM::VLD4d16Pseudo:
4621 case ARM::VLD4d32Pseudo:
4622 case ARM::VLD1d8QPseudo:
4623 case ARM::VLD1d16QPseudo:
4624 case ARM::VLD1d32QPseudo:
4625 case ARM::VLD1d64QPseudo:
4626 case ARM::VLD1d64QPseudoWB_fixed:
4627 case ARM::VLD1d64QPseudoWB_register:
4628 case ARM::VLD1q8HighQPseudo:
4629 case ARM::VLD1q8LowQPseudo_UPD:
4630 case ARM::VLD1q8HighTPseudo:
4631 case ARM::VLD1q8LowTPseudo_UPD:
4632 case ARM::VLD1q16HighQPseudo:
4633 case ARM::VLD1q16LowQPseudo_UPD:
4634 case ARM::VLD1q16HighTPseudo:
4635 case ARM::VLD1q16LowTPseudo_UPD:
4636 case ARM::VLD1q32HighQPseudo:
4637 case ARM::VLD1q32LowQPseudo_UPD:
4638 case ARM::VLD1q32HighTPseudo:
4639 case ARM::VLD1q32LowTPseudo_UPD:
4640 case ARM::VLD1q64HighQPseudo:
4641 case ARM::VLD1q64LowQPseudo_UPD:
4642 case ARM::VLD1q64HighTPseudo:
4643 case ARM::VLD1q64LowTPseudo_UPD:
4644 case ARM::VLD4d8Pseudo_UPD:
4645 case ARM::VLD4d16Pseudo_UPD:
4646 case ARM::VLD4d32Pseudo_UPD:
4647 case ARM::VLD4q8Pseudo_UPD:
4648 case ARM::VLD4q16Pseudo_UPD:
4649 case ARM::VLD4q32Pseudo_UPD:
4650 case ARM::VLD4q8oddPseudo:
4651 case ARM::VLD4q16oddPseudo:
4652 case ARM::VLD4q32oddPseudo:
4653 case ARM::VLD4q8oddPseudo_UPD:
4654 case ARM::VLD4q16oddPseudo_UPD:
4655 case ARM::VLD4q32oddPseudo_UPD:
4656 case ARM::VLD1DUPq8:
4657 case ARM::VLD1DUPq16:
4658 case ARM::VLD1DUPq32:
4659 case ARM::VLD1DUPq8wb_fixed:
4660 case ARM::VLD1DUPq16wb_fixed:
4661 case ARM::VLD1DUPq32wb_fixed:
4662 case ARM::VLD1DUPq8wb_register:
4663 case ARM::VLD1DUPq16wb_register:
4664 case ARM::VLD1DUPq32wb_register:
4665 case ARM::VLD2DUPd8:
4666 case ARM::VLD2DUPd16:
4667 case ARM::VLD2DUPd32:
4668 case ARM::VLD2DUPd8wb_fixed:
4669 case ARM::VLD2DUPd16wb_fixed:
4670 case ARM::VLD2DUPd32wb_fixed:
4671 case ARM::VLD2DUPd8wb_register:
4672 case ARM::VLD2DUPd16wb_register:
4673 case ARM::VLD2DUPd32wb_register:
4674 case ARM::VLD2DUPq8EvenPseudo:
4675 case ARM::VLD2DUPq8OddPseudo:
4676 case ARM::VLD2DUPq16EvenPseudo:
4677 case ARM::VLD2DUPq16OddPseudo:
4678 case ARM::VLD2DUPq32EvenPseudo:
4679 case ARM::VLD2DUPq32OddPseudo:
4680 case ARM::VLD3DUPq8EvenPseudo:
4681 case ARM::VLD3DUPq8OddPseudo:
4682 case ARM::VLD3DUPq16EvenPseudo:
4683 case ARM::VLD3DUPq16OddPseudo:
4684 case ARM::VLD3DUPq32EvenPseudo:
4685 case ARM::VLD3DUPq32OddPseudo:
4686 case ARM::VLD4DUPd8Pseudo:
4687 case ARM::VLD4DUPd16Pseudo:
4688 case ARM::VLD4DUPd32Pseudo:
4689 case ARM::VLD4DUPd8Pseudo_UPD:
4690 case ARM::VLD4DUPd16Pseudo_UPD:
4691 case ARM::VLD4DUPd32Pseudo_UPD:
4692 case ARM::VLD4DUPq8EvenPseudo:
4693 case ARM::VLD4DUPq8OddPseudo:
4694 case ARM::VLD4DUPq16EvenPseudo:
4695 case ARM::VLD4DUPq16OddPseudo:
4696 case ARM::VLD4DUPq32EvenPseudo:
4697 case ARM::VLD4DUPq32OddPseudo:
4698 case ARM::VLD1LNq8Pseudo:
4699 case ARM::VLD1LNq16Pseudo:
4700 case ARM::VLD1LNq32Pseudo:
4701 case ARM::VLD1LNq8Pseudo_UPD:
4702 case ARM::VLD1LNq16Pseudo_UPD:
4703 case ARM::VLD1LNq32Pseudo_UPD:
4704 case ARM::VLD2LNd8Pseudo:
4705 case ARM::VLD2LNd16Pseudo:
4706 case ARM::VLD2LNd32Pseudo:
4707 case ARM::VLD2LNq16Pseudo:
4708 case ARM::VLD2LNq32Pseudo:
4709 case ARM::VLD2LNd8Pseudo_UPD:
4710 case ARM::VLD2LNd16Pseudo_UPD:
4711 case ARM::VLD2LNd32Pseudo_UPD:
4712 case ARM::VLD2LNq16Pseudo_UPD:
4713 case ARM::VLD2LNq32Pseudo_UPD:
4714 case ARM::VLD4LNd8Pseudo:
4715 case ARM::VLD4LNd16Pseudo:
4716 case ARM::VLD4LNd32Pseudo:
4717 case ARM::VLD4LNq16Pseudo:
4718 case ARM::VLD4LNq32Pseudo:
4719 case ARM::VLD4LNd8Pseudo_UPD:
4720 case ARM::VLD4LNd16Pseudo_UPD:
4721 case ARM::VLD4LNd32Pseudo_UPD:
4722 case ARM::VLD4LNq16Pseudo_UPD:
4723 case ARM::VLD4LNq32Pseudo_UPD:
4724 // If the address is not 64-bit aligned, the latencies of these
4725 // instructions increases by one.
4726 ++Latency;
4727 break;
4728 }
4729
4730 return Latency;
4731 }
4732
getPredicationCost(const MachineInstr & MI) const4733 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
4734 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4735 MI.isImplicitDef())
4736 return 0;
4737
4738 if (MI.isBundle())
4739 return 0;
4740
4741 const MCInstrDesc &MCID = MI.getDesc();
4742
4743 if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4744 !Subtarget.cheapPredicableCPSRDef())) {
4745 // When predicated, CPSR is an additional source operand for CPSR updating
4746 // instructions, this apparently increases their latencies.
4747 return 1;
4748 }
4749 return 0;
4750 }
4751
getInstrLatency(const InstrItineraryData * ItinData,const MachineInstr & MI,unsigned * PredCost) const4752 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4753 const MachineInstr &MI,
4754 unsigned *PredCost) const {
4755 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4756 MI.isImplicitDef())
4757 return 1;
4758
4759 // An instruction scheduler typically runs on unbundled instructions, however
4760 // other passes may query the latency of a bundled instruction.
4761 if (MI.isBundle()) {
4762 unsigned Latency = 0;
4763 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4764 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4765 while (++I != E && I->isInsideBundle()) {
4766 if (I->getOpcode() != ARM::t2IT)
4767 Latency += getInstrLatency(ItinData, *I, PredCost);
4768 }
4769 return Latency;
4770 }
4771
4772 const MCInstrDesc &MCID = MI.getDesc();
4773 if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4774 !Subtarget.cheapPredicableCPSRDef()))) {
4775 // When predicated, CPSR is an additional source operand for CPSR updating
4776 // instructions, this apparently increases their latencies.
4777 *PredCost = 1;
4778 }
4779 // Be sure to call getStageLatency for an empty itinerary in case it has a
4780 // valid MinLatency property.
4781 if (!ItinData)
4782 return MI.mayLoad() ? 3 : 1;
4783
4784 unsigned Class = MCID.getSchedClass();
4785
4786 // For instructions with variable uops, use uops as latency.
4787 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4788 return getNumMicroOps(ItinData, MI);
4789
4790 // For the common case, fall back on the itinerary's latency.
4791 unsigned Latency = ItinData->getStageLatency(Class);
4792
4793 // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4794 unsigned DefAlign =
4795 MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0;
4796 int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4797 if (Adj >= 0 || (int)Latency > -Adj) {
4798 return Latency + Adj;
4799 }
4800 return Latency;
4801 }
4802
getInstrLatency(const InstrItineraryData * ItinData,SDNode * Node) const4803 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4804 SDNode *Node) const {
4805 if (!Node->isMachineOpcode())
4806 return 1;
4807
4808 if (!ItinData || ItinData->isEmpty())
4809 return 1;
4810
4811 unsigned Opcode = Node->getMachineOpcode();
4812 switch (Opcode) {
4813 default:
4814 return ItinData->getStageLatency(get(Opcode).getSchedClass());
4815 case ARM::VLDMQIA:
4816 case ARM::VSTMQIA:
4817 return 2;
4818 }
4819 }
4820
hasHighOperandLatency(const TargetSchedModel & SchedModel,const MachineRegisterInfo * MRI,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const4821 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4822 const MachineRegisterInfo *MRI,
4823 const MachineInstr &DefMI,
4824 unsigned DefIdx,
4825 const MachineInstr &UseMI,
4826 unsigned UseIdx) const {
4827 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4828 unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4829 if (Subtarget.nonpipelinedVFP() &&
4830 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4831 return true;
4832
4833 // Hoist VFP / NEON instructions with 4 or higher latency.
4834 unsigned Latency =
4835 SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4836 if (Latency <= 3)
4837 return false;
4838 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4839 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4840 }
4841
hasLowDefLatency(const TargetSchedModel & SchedModel,const MachineInstr & DefMI,unsigned DefIdx) const4842 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4843 const MachineInstr &DefMI,
4844 unsigned DefIdx) const {
4845 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4846 if (!ItinData || ItinData->isEmpty())
4847 return false;
4848
4849 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4850 if (DDomain == ARMII::DomainGeneral) {
4851 unsigned DefClass = DefMI.getDesc().getSchedClass();
4852 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4853 return (DefCycle != -1 && DefCycle <= 2);
4854 }
4855 return false;
4856 }
4857
verifyInstruction(const MachineInstr & MI,StringRef & ErrInfo) const4858 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4859 StringRef &ErrInfo) const {
4860 if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4861 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4862 return false;
4863 }
4864 if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) {
4865 // Make sure we don't generate a lo-lo mov that isn't supported.
4866 if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) &&
4867 !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) {
4868 ErrInfo = "Non-flag-setting Thumb1 mov is v6-only";
4869 return false;
4870 }
4871 }
4872 if (MI.getOpcode() == ARM::tPUSH ||
4873 MI.getOpcode() == ARM::tPOP ||
4874 MI.getOpcode() == ARM::tPOP_RET) {
4875 for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2)) {
4876 if (MO.isImplicit() || !MO.isReg())
4877 continue;
4878 Register Reg = MO.getReg();
4879 if (Reg < ARM::R0 || Reg > ARM::R7) {
4880 if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) &&
4881 !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) {
4882 ErrInfo = "Unsupported register in Thumb1 push/pop";
4883 return false;
4884 }
4885 }
4886 }
4887 }
4888 if (MI.getOpcode() == ARM::MVE_VMOV_q_rr) {
4889 assert(MI.getOperand(4).isImm() && MI.getOperand(5).isImm());
4890 if ((MI.getOperand(4).getImm() != 2 && MI.getOperand(4).getImm() != 3) ||
4891 MI.getOperand(4).getImm() != MI.getOperand(5).getImm() + 2) {
4892 ErrInfo = "Incorrect array index for MVE_VMOV_q_rr";
4893 return false;
4894 }
4895 }
4896
4897 // Check the address model by taking the first Imm operand and checking it is
4898 // legal for that addressing mode.
4899 ARMII::AddrMode AddrMode =
4900 (ARMII::AddrMode)(MI.getDesc().TSFlags & ARMII::AddrModeMask);
4901 switch (AddrMode) {
4902 default:
4903 break;
4904 case ARMII::AddrModeT2_i7:
4905 case ARMII::AddrModeT2_i7s2:
4906 case ARMII::AddrModeT2_i7s4:
4907 case ARMII::AddrModeT2_i8:
4908 case ARMII::AddrModeT2_i8pos:
4909 case ARMII::AddrModeT2_i8neg:
4910 case ARMII::AddrModeT2_i8s4:
4911 case ARMII::AddrModeT2_i12: {
4912 uint32_t Imm = 0;
4913 for (auto Op : MI.operands()) {
4914 if (Op.isImm()) {
4915 Imm = Op.getImm();
4916 break;
4917 }
4918 }
4919 if (!isLegalAddressImm(MI.getOpcode(), Imm, this)) {
4920 ErrInfo = "Incorrect AddrMode Imm for instruction";
4921 return false;
4922 }
4923 break;
4924 }
4925 }
4926 return true;
4927 }
4928
expandLoadStackGuardBase(MachineBasicBlock::iterator MI,unsigned LoadImmOpc,unsigned LoadOpc) const4929 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4930 unsigned LoadImmOpc,
4931 unsigned LoadOpc) const {
4932 assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
4933 "ROPI/RWPI not currently supported with stack guard");
4934
4935 MachineBasicBlock &MBB = *MI->getParent();
4936 DebugLoc DL = MI->getDebugLoc();
4937 Register Reg = MI->getOperand(0).getReg();
4938 MachineInstrBuilder MIB;
4939 unsigned int Offset = 0;
4940
4941 if (LoadImmOpc == ARM::MRC || LoadImmOpc == ARM::t2MRC) {
4942 assert(Subtarget.isReadTPHard() &&
4943 "TLS stack protector requires hardware TLS register");
4944
4945 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4946 .addImm(15)
4947 .addImm(0)
4948 .addImm(13)
4949 .addImm(0)
4950 .addImm(3)
4951 .add(predOps(ARMCC::AL));
4952
4953 Module &M = *MBB.getParent()->getFunction().getParent();
4954 Offset = M.getStackProtectorGuardOffset();
4955 if (Offset & ~0xfffU) {
4956 // The offset won't fit in the LDR's 12-bit immediate field, so emit an
4957 // extra ADD to cover the delta. This gives us a guaranteed 8 additional
4958 // bits, resulting in a range of 0 to +1 MiB for the guard offset.
4959 unsigned AddOpc = (LoadImmOpc == ARM::MRC) ? ARM::ADDri : ARM::t2ADDri;
4960 BuildMI(MBB, MI, DL, get(AddOpc), Reg)
4961 .addReg(Reg, RegState::Kill)
4962 .addImm(Offset & ~0xfffU)
4963 .add(predOps(ARMCC::AL))
4964 .addReg(0);
4965 Offset &= 0xfffU;
4966 }
4967 } else {
4968 const GlobalValue *GV =
4969 cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4970 bool IsIndirect = Subtarget.isGVIndirectSymbol(GV);
4971
4972 unsigned TargetFlags = ARMII::MO_NO_FLAG;
4973 if (Subtarget.isTargetMachO()) {
4974 TargetFlags |= ARMII::MO_NONLAZY;
4975 } else if (Subtarget.isTargetCOFF()) {
4976 if (GV->hasDLLImportStorageClass())
4977 TargetFlags |= ARMII::MO_DLLIMPORT;
4978 else if (IsIndirect)
4979 TargetFlags |= ARMII::MO_COFFSTUB;
4980 } else if (Subtarget.isGVInGOT(GV)) {
4981 TargetFlags |= ARMII::MO_GOT;
4982 }
4983
4984 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4985 .addGlobalAddress(GV, 0, TargetFlags);
4986
4987 if (IsIndirect) {
4988 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4989 MIB.addReg(Reg, RegState::Kill).addImm(0);
4990 auto Flags = MachineMemOperand::MOLoad |
4991 MachineMemOperand::MODereferenceable |
4992 MachineMemOperand::MOInvariant;
4993 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4994 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4));
4995 MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
4996 }
4997 }
4998
4999 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
5000 MIB.addReg(Reg, RegState::Kill)
5001 .addImm(Offset)
5002 .cloneMemRefs(*MI)
5003 .add(predOps(ARMCC::AL));
5004 }
5005
5006 bool
isFpMLxInstruction(unsigned Opcode,unsigned & MulOpc,unsigned & AddSubOpc,bool & NegAcc,bool & HasLane) const5007 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
5008 unsigned &AddSubOpc,
5009 bool &NegAcc, bool &HasLane) const {
5010 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
5011 if (I == MLxEntryMap.end())
5012 return false;
5013
5014 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
5015 MulOpc = Entry.MulOpc;
5016 AddSubOpc = Entry.AddSubOpc;
5017 NegAcc = Entry.NegAcc;
5018 HasLane = Entry.HasLane;
5019 return true;
5020 }
5021
5022 //===----------------------------------------------------------------------===//
5023 // Execution domains.
5024 //===----------------------------------------------------------------------===//
5025 //
5026 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
5027 // and some can go down both. The vmov instructions go down the VFP pipeline,
5028 // but they can be changed to vorr equivalents that are executed by the NEON
5029 // pipeline.
5030 //
5031 // We use the following execution domain numbering:
5032 //
5033 enum ARMExeDomain {
5034 ExeGeneric = 0,
5035 ExeVFP = 1,
5036 ExeNEON = 2
5037 };
5038
5039 //
5040 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
5041 //
5042 std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr & MI) const5043 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
5044 // If we don't have access to NEON instructions then we won't be able
5045 // to swizzle anything to the NEON domain. Check to make sure.
5046 if (Subtarget.hasNEON()) {
5047 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
5048 // if they are not predicated.
5049 if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
5050 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
5051
5052 // CortexA9 is particularly picky about mixing the two and wants these
5053 // converted.
5054 if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
5055 (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
5056 MI.getOpcode() == ARM::VMOVS))
5057 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
5058 }
5059 // No other instructions can be swizzled, so just determine their domain.
5060 unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
5061
5062 if (Domain & ARMII::DomainNEON)
5063 return std::make_pair(ExeNEON, 0);
5064
5065 // Certain instructions can go either way on Cortex-A8.
5066 // Treat them as NEON instructions.
5067 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
5068 return std::make_pair(ExeNEON, 0);
5069
5070 if (Domain & ARMII::DomainVFP)
5071 return std::make_pair(ExeVFP, 0);
5072
5073 return std::make_pair(ExeGeneric, 0);
5074 }
5075
getCorrespondingDRegAndLane(const TargetRegisterInfo * TRI,unsigned SReg,unsigned & Lane)5076 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
5077 unsigned SReg, unsigned &Lane) {
5078 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
5079 Lane = 0;
5080
5081 if (DReg != ARM::NoRegister)
5082 return DReg;
5083
5084 Lane = 1;
5085 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
5086
5087 assert(DReg && "S-register with no D super-register?");
5088 return DReg;
5089 }
5090
5091 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
5092 /// set ImplicitSReg to a register number that must be marked as implicit-use or
5093 /// zero if no register needs to be defined as implicit-use.
5094 ///
5095 /// If the function cannot determine if an SPR should be marked implicit use or
5096 /// not, it returns false.
5097 ///
5098 /// This function handles cases where an instruction is being modified from taking
5099 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
5100 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
5101 /// lane of the DPR).
5102 ///
5103 /// If the other SPR is defined, an implicit-use of it should be added. Else,
5104 /// (including the case where the DPR itself is defined), it should not.
5105 ///
getImplicitSPRUseForDPRUse(const TargetRegisterInfo * TRI,MachineInstr & MI,unsigned DReg,unsigned Lane,unsigned & ImplicitSReg)5106 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
5107 MachineInstr &MI, unsigned DReg,
5108 unsigned Lane, unsigned &ImplicitSReg) {
5109 // If the DPR is defined or used already, the other SPR lane will be chained
5110 // correctly, so there is nothing to be done.
5111 if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
5112 ImplicitSReg = 0;
5113 return true;
5114 }
5115
5116 // Otherwise we need to go searching to see if the SPR is set explicitly.
5117 ImplicitSReg = TRI->getSubReg(DReg,
5118 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
5119 MachineBasicBlock::LivenessQueryResult LQR =
5120 MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
5121
5122 if (LQR == MachineBasicBlock::LQR_Live)
5123 return true;
5124 else if (LQR == MachineBasicBlock::LQR_Unknown)
5125 return false;
5126
5127 // If the register is known not to be live, there is no need to add an
5128 // implicit-use.
5129 ImplicitSReg = 0;
5130 return true;
5131 }
5132
setExecutionDomain(MachineInstr & MI,unsigned Domain) const5133 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
5134 unsigned Domain) const {
5135 unsigned DstReg, SrcReg, DReg;
5136 unsigned Lane;
5137 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
5138 const TargetRegisterInfo *TRI = &getRegisterInfo();
5139 switch (MI.getOpcode()) {
5140 default:
5141 llvm_unreachable("cannot handle opcode!");
5142 break;
5143 case ARM::VMOVD:
5144 if (Domain != ExeNEON)
5145 break;
5146
5147 // Zap the predicate operands.
5148 assert(!isPredicated(MI) && "Cannot predicate a VORRd");
5149
5150 // Make sure we've got NEON instructions.
5151 assert(Subtarget.hasNEON() && "VORRd requires NEON");
5152
5153 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
5154 DstReg = MI.getOperand(0).getReg();
5155 SrcReg = MI.getOperand(1).getReg();
5156
5157 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5158 MI.removeOperand(i - 1);
5159
5160 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
5161 MI.setDesc(get(ARM::VORRd));
5162 MIB.addReg(DstReg, RegState::Define)
5163 .addReg(SrcReg)
5164 .addReg(SrcReg)
5165 .add(predOps(ARMCC::AL));
5166 break;
5167 case ARM::VMOVRS:
5168 if (Domain != ExeNEON)
5169 break;
5170 assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
5171
5172 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
5173 DstReg = MI.getOperand(0).getReg();
5174 SrcReg = MI.getOperand(1).getReg();
5175
5176 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5177 MI.removeOperand(i - 1);
5178
5179 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
5180
5181 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
5182 // Note that DSrc has been widened and the other lane may be undef, which
5183 // contaminates the entire register.
5184 MI.setDesc(get(ARM::VGETLNi32));
5185 MIB.addReg(DstReg, RegState::Define)
5186 .addReg(DReg, RegState::Undef)
5187 .addImm(Lane)
5188 .add(predOps(ARMCC::AL));
5189
5190 // The old source should be an implicit use, otherwise we might think it
5191 // was dead before here.
5192 MIB.addReg(SrcReg, RegState::Implicit);
5193 break;
5194 case ARM::VMOVSR: {
5195 if (Domain != ExeNEON)
5196 break;
5197 assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
5198
5199 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
5200 DstReg = MI.getOperand(0).getReg();
5201 SrcReg = MI.getOperand(1).getReg();
5202
5203 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
5204
5205 unsigned ImplicitSReg;
5206 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
5207 break;
5208
5209 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5210 MI.removeOperand(i - 1);
5211
5212 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
5213 // Again DDst may be undefined at the beginning of this instruction.
5214 MI.setDesc(get(ARM::VSETLNi32));
5215 MIB.addReg(DReg, RegState::Define)
5216 .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
5217 .addReg(SrcReg)
5218 .addImm(Lane)
5219 .add(predOps(ARMCC::AL));
5220
5221 // The narrower destination must be marked as set to keep previous chains
5222 // in place.
5223 MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5224 if (ImplicitSReg != 0)
5225 MIB.addReg(ImplicitSReg, RegState::Implicit);
5226 break;
5227 }
5228 case ARM::VMOVS: {
5229 if (Domain != ExeNEON)
5230 break;
5231
5232 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
5233 DstReg = MI.getOperand(0).getReg();
5234 SrcReg = MI.getOperand(1).getReg();
5235
5236 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
5237 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
5238 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
5239
5240 unsigned ImplicitSReg;
5241 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
5242 break;
5243
5244 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5245 MI.removeOperand(i - 1);
5246
5247 if (DSrc == DDst) {
5248 // Destination can be:
5249 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
5250 MI.setDesc(get(ARM::VDUPLN32d));
5251 MIB.addReg(DDst, RegState::Define)
5252 .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
5253 .addImm(SrcLane)
5254 .add(predOps(ARMCC::AL));
5255
5256 // Neither the source or the destination are naturally represented any
5257 // more, so add them in manually.
5258 MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
5259 MIB.addReg(SrcReg, RegState::Implicit);
5260 if (ImplicitSReg != 0)
5261 MIB.addReg(ImplicitSReg, RegState::Implicit);
5262 break;
5263 }
5264
5265 // In general there's no single instruction that can perform an S <-> S
5266 // move in NEON space, but a pair of VEXT instructions *can* do the
5267 // job. It turns out that the VEXTs needed will only use DSrc once, with
5268 // the position based purely on the combination of lane-0 and lane-1
5269 // involved. For example
5270 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1
5271 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1
5272 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1
5273 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1
5274 //
5275 // Pattern of the MachineInstrs is:
5276 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
5277 MachineInstrBuilder NewMIB;
5278 NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
5279 DDst);
5280
5281 // On the first instruction, both DSrc and DDst may be undef if present.
5282 // Specifically when the original instruction didn't have them as an
5283 // <imp-use>.
5284 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
5285 bool CurUndef = !MI.readsRegister(CurReg, TRI);
5286 NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
5287
5288 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
5289 CurUndef = !MI.readsRegister(CurReg, TRI);
5290 NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
5291 .addImm(1)
5292 .add(predOps(ARMCC::AL));
5293
5294 if (SrcLane == DstLane)
5295 NewMIB.addReg(SrcReg, RegState::Implicit);
5296
5297 MI.setDesc(get(ARM::VEXTd32));
5298 MIB.addReg(DDst, RegState::Define);
5299
5300 // On the second instruction, DDst has definitely been defined above, so
5301 // it is not undef. DSrc, if present, can be undef as above.
5302 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
5303 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5304 MIB.addReg(CurReg, getUndefRegState(CurUndef));
5305
5306 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
5307 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5308 MIB.addReg(CurReg, getUndefRegState(CurUndef))
5309 .addImm(1)
5310 .add(predOps(ARMCC::AL));
5311
5312 if (SrcLane != DstLane)
5313 MIB.addReg(SrcReg, RegState::Implicit);
5314
5315 // As before, the original destination is no longer represented, add it
5316 // implicitly.
5317 MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5318 if (ImplicitSReg != 0)
5319 MIB.addReg(ImplicitSReg, RegState::Implicit);
5320 break;
5321 }
5322 }
5323 }
5324
5325 //===----------------------------------------------------------------------===//
5326 // Partial register updates
5327 //===----------------------------------------------------------------------===//
5328 //
5329 // Swift renames NEON registers with 64-bit granularity. That means any
5330 // instruction writing an S-reg implicitly reads the containing D-reg. The
5331 // problem is mostly avoided by translating f32 operations to v2f32 operations
5332 // on D-registers, but f32 loads are still a problem.
5333 //
5334 // These instructions can load an f32 into a NEON register:
5335 //
5336 // VLDRS - Only writes S, partial D update.
5337 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
5338 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
5339 //
5340 // FCONSTD can be used as a dependency-breaking instruction.
getPartialRegUpdateClearance(const MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const5341 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
5342 const MachineInstr &MI, unsigned OpNum,
5343 const TargetRegisterInfo *TRI) const {
5344 auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
5345 if (!PartialUpdateClearance)
5346 return 0;
5347
5348 assert(TRI && "Need TRI instance");
5349
5350 const MachineOperand &MO = MI.getOperand(OpNum);
5351 if (MO.readsReg())
5352 return 0;
5353 Register Reg = MO.getReg();
5354 int UseOp = -1;
5355
5356 switch (MI.getOpcode()) {
5357 // Normal instructions writing only an S-register.
5358 case ARM::VLDRS:
5359 case ARM::FCONSTS:
5360 case ARM::VMOVSR:
5361 case ARM::VMOVv8i8:
5362 case ARM::VMOVv4i16:
5363 case ARM::VMOVv2i32:
5364 case ARM::VMOVv2f32:
5365 case ARM::VMOVv1i64:
5366 UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
5367 break;
5368
5369 // Explicitly reads the dependency.
5370 case ARM::VLD1LNd32:
5371 UseOp = 3;
5372 break;
5373 default:
5374 return 0;
5375 }
5376
5377 // If this instruction actually reads a value from Reg, there is no unwanted
5378 // dependency.
5379 if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
5380 return 0;
5381
5382 // We must be able to clobber the whole D-reg.
5383 if (Reg.isVirtual()) {
5384 // Virtual register must be a def undef foo:ssub_0 operand.
5385 if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
5386 return 0;
5387 } else if (ARM::SPRRegClass.contains(Reg)) {
5388 // Physical register: MI must define the full D-reg.
5389 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
5390 &ARM::DPRRegClass);
5391 if (!DReg || !MI.definesRegister(DReg, TRI))
5392 return 0;
5393 }
5394
5395 // MI has an unwanted D-register dependency.
5396 // Avoid defs in the previous N instructrions.
5397 return PartialUpdateClearance;
5398 }
5399
5400 // Break a partial register dependency after getPartialRegUpdateClearance
5401 // returned non-zero.
breakPartialRegDependency(MachineInstr & MI,unsigned OpNum,const TargetRegisterInfo * TRI) const5402 void ARMBaseInstrInfo::breakPartialRegDependency(
5403 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5404 assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
5405 assert(TRI && "Need TRI instance");
5406
5407 const MachineOperand &MO = MI.getOperand(OpNum);
5408 Register Reg = MO.getReg();
5409 assert(Reg.isPhysical() && "Can't break virtual register dependencies.");
5410 unsigned DReg = Reg;
5411
5412 // If MI defines an S-reg, find the corresponding D super-register.
5413 if (ARM::SPRRegClass.contains(Reg)) {
5414 DReg = ARM::D0 + (Reg - ARM::S0) / 2;
5415 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
5416 }
5417
5418 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
5419 assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
5420
5421 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
5422 // the full D-register by loading the same value to both lanes. The
5423 // instruction is micro-coded with 2 uops, so don't do this until we can
5424 // properly schedule micro-coded instructions. The dispatcher stalls cause
5425 // too big regressions.
5426
5427 // Insert the dependency-breaking FCONSTD before MI.
5428 // 96 is the encoding of 0.5, but the actual value doesn't matter here.
5429 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
5430 .addImm(96)
5431 .add(predOps(ARMCC::AL));
5432 MI.addRegisterKilled(DReg, TRI, true);
5433 }
5434
hasNOP() const5435 bool ARMBaseInstrInfo::hasNOP() const {
5436 return Subtarget.getFeatureBits()[ARM::HasV6KOps];
5437 }
5438
isSwiftFastImmShift(const MachineInstr * MI) const5439 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
5440 if (MI->getNumOperands() < 4)
5441 return true;
5442 unsigned ShOpVal = MI->getOperand(3).getImm();
5443 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
5444 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
5445 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
5446 ((ShImm == 1 || ShImm == 2) &&
5447 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
5448 return true;
5449
5450 return false;
5451 }
5452
getRegSequenceLikeInputs(const MachineInstr & MI,unsigned DefIdx,SmallVectorImpl<RegSubRegPairAndIdx> & InputRegs) const5453 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
5454 const MachineInstr &MI, unsigned DefIdx,
5455 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
5456 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5457 assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
5458
5459 switch (MI.getOpcode()) {
5460 case ARM::VMOVDRR:
5461 // dX = VMOVDRR rY, rZ
5462 // is the same as:
5463 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5464 // Populate the InputRegs accordingly.
5465 // rY
5466 const MachineOperand *MOReg = &MI.getOperand(1);
5467 if (!MOReg->isUndef())
5468 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5469 MOReg->getSubReg(), ARM::ssub_0));
5470 // rZ
5471 MOReg = &MI.getOperand(2);
5472 if (!MOReg->isUndef())
5473 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5474 MOReg->getSubReg(), ARM::ssub_1));
5475 return true;
5476 }
5477 llvm_unreachable("Target dependent opcode missing");
5478 }
5479
getExtractSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPairAndIdx & InputReg) const5480 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5481 const MachineInstr &MI, unsigned DefIdx,
5482 RegSubRegPairAndIdx &InputReg) const {
5483 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5484 assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
5485
5486 switch (MI.getOpcode()) {
5487 case ARM::VMOVRRD:
5488 // rX, rY = VMOVRRD dZ
5489 // is the same as:
5490 // rX = EXTRACT_SUBREG dZ, ssub_0
5491 // rY = EXTRACT_SUBREG dZ, ssub_1
5492 const MachineOperand &MOReg = MI.getOperand(2);
5493 if (MOReg.isUndef())
5494 return false;
5495 InputReg.Reg = MOReg.getReg();
5496 InputReg.SubReg = MOReg.getSubReg();
5497 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
5498 return true;
5499 }
5500 llvm_unreachable("Target dependent opcode missing");
5501 }
5502
getInsertSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPair & BaseReg,RegSubRegPairAndIdx & InsertedReg) const5503 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5504 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
5505 RegSubRegPairAndIdx &InsertedReg) const {
5506 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5507 assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
5508
5509 switch (MI.getOpcode()) {
5510 case ARM::VSETLNi32:
5511 case ARM::MVE_VMOV_to_lane_32:
5512 // dX = VSETLNi32 dY, rZ, imm
5513 // qX = MVE_VMOV_to_lane_32 qY, rZ, imm
5514 const MachineOperand &MOBaseReg = MI.getOperand(1);
5515 const MachineOperand &MOInsertedReg = MI.getOperand(2);
5516 if (MOInsertedReg.isUndef())
5517 return false;
5518 const MachineOperand &MOIndex = MI.getOperand(3);
5519 BaseReg.Reg = MOBaseReg.getReg();
5520 BaseReg.SubReg = MOBaseReg.getSubReg();
5521
5522 InsertedReg.Reg = MOInsertedReg.getReg();
5523 InsertedReg.SubReg = MOInsertedReg.getSubReg();
5524 InsertedReg.SubIdx = ARM::ssub_0 + MOIndex.getImm();
5525 return true;
5526 }
5527 llvm_unreachable("Target dependent opcode missing");
5528 }
5529
5530 std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned TF) const5531 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
5532 const unsigned Mask = ARMII::MO_OPTION_MASK;
5533 return std::make_pair(TF & Mask, TF & ~Mask);
5534 }
5535
5536 ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags() const5537 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
5538 using namespace ARMII;
5539
5540 static const std::pair<unsigned, const char *> TargetFlags[] = {
5541 {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}};
5542 return ArrayRef(TargetFlags);
5543 }
5544
5545 ArrayRef<std::pair<unsigned, const char *>>
getSerializableBitmaskMachineOperandTargetFlags() const5546 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
5547 using namespace ARMII;
5548
5549 static const std::pair<unsigned, const char *> TargetFlags[] = {
5550 {MO_COFFSTUB, "arm-coffstub"},
5551 {MO_GOT, "arm-got"},
5552 {MO_SBREL, "arm-sbrel"},
5553 {MO_DLLIMPORT, "arm-dllimport"},
5554 {MO_SECREL, "arm-secrel"},
5555 {MO_NONLAZY, "arm-nonlazy"}};
5556 return ArrayRef(TargetFlags);
5557 }
5558
5559 std::optional<RegImmPair>
isAddImmediate(const MachineInstr & MI,Register Reg) const5560 ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI, Register Reg) const {
5561 int Sign = 1;
5562 unsigned Opcode = MI.getOpcode();
5563 int64_t Offset = 0;
5564
5565 // TODO: Handle cases where Reg is a super- or sub-register of the
5566 // destination register.
5567 const MachineOperand &Op0 = MI.getOperand(0);
5568 if (!Op0.isReg() || Reg != Op0.getReg())
5569 return std::nullopt;
5570
5571 // We describe SUBri or ADDri instructions.
5572 if (Opcode == ARM::SUBri)
5573 Sign = -1;
5574 else if (Opcode != ARM::ADDri)
5575 return std::nullopt;
5576
5577 // TODO: Third operand can be global address (usually some string). Since
5578 // strings can be relocated we cannot calculate their offsets for
5579 // now.
5580 if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm())
5581 return std::nullopt;
5582
5583 Offset = MI.getOperand(2).getImm() * Sign;
5584 return RegImmPair{MI.getOperand(1).getReg(), Offset};
5585 }
5586
registerDefinedBetween(unsigned Reg,MachineBasicBlock::iterator From,MachineBasicBlock::iterator To,const TargetRegisterInfo * TRI)5587 bool llvm::registerDefinedBetween(unsigned Reg,
5588 MachineBasicBlock::iterator From,
5589 MachineBasicBlock::iterator To,
5590 const TargetRegisterInfo *TRI) {
5591 for (auto I = From; I != To; ++I)
5592 if (I->modifiesRegister(Reg, TRI))
5593 return true;
5594 return false;
5595 }
5596
findCMPToFoldIntoCBZ(MachineInstr * Br,const TargetRegisterInfo * TRI)5597 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br,
5598 const TargetRegisterInfo *TRI) {
5599 // Search backwards to the instruction that defines CSPR. This may or not
5600 // be a CMP, we check that after this loop. If we find another instruction
5601 // that reads cpsr, we return nullptr.
5602 MachineBasicBlock::iterator CmpMI = Br;
5603 while (CmpMI != Br->getParent()->begin()) {
5604 --CmpMI;
5605 if (CmpMI->modifiesRegister(ARM::CPSR, TRI))
5606 break;
5607 if (CmpMI->readsRegister(ARM::CPSR, TRI))
5608 break;
5609 }
5610
5611 // Check that this inst is a CMP r[0-7], #0 and that the register
5612 // is not redefined between the cmp and the br.
5613 if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri)
5614 return nullptr;
5615 Register Reg = CmpMI->getOperand(0).getReg();
5616 Register PredReg;
5617 ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg);
5618 if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0)
5619 return nullptr;
5620 if (!isARMLowRegister(Reg))
5621 return nullptr;
5622 if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI))
5623 return nullptr;
5624
5625 return &*CmpMI;
5626 }
5627
ConstantMaterializationCost(unsigned Val,const ARMSubtarget * Subtarget,bool ForCodesize)5628 unsigned llvm::ConstantMaterializationCost(unsigned Val,
5629 const ARMSubtarget *Subtarget,
5630 bool ForCodesize) {
5631 if (Subtarget->isThumb()) {
5632 if (Val <= 255) // MOV
5633 return ForCodesize ? 2 : 1;
5634 if (Subtarget->hasV6T2Ops() && (Val <= 0xffff || // MOV
5635 ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW
5636 ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN
5637 return ForCodesize ? 4 : 1;
5638 if (Val <= 510) // MOV + ADDi8
5639 return ForCodesize ? 4 : 2;
5640 if (~Val <= 255) // MOV + MVN
5641 return ForCodesize ? 4 : 2;
5642 if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL
5643 return ForCodesize ? 4 : 2;
5644 } else {
5645 if (ARM_AM::getSOImmVal(Val) != -1) // MOV
5646 return ForCodesize ? 4 : 1;
5647 if (ARM_AM::getSOImmVal(~Val) != -1) // MVN
5648 return ForCodesize ? 4 : 1;
5649 if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW
5650 return ForCodesize ? 4 : 1;
5651 if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs
5652 return ForCodesize ? 8 : 2;
5653 if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs
5654 return ForCodesize ? 8 : 2;
5655 }
5656 if (Subtarget->useMovt()) // MOVW + MOVT
5657 return ForCodesize ? 8 : 2;
5658 return ForCodesize ? 8 : 3; // Literal pool load
5659 }
5660
HasLowerConstantMaterializationCost(unsigned Val1,unsigned Val2,const ARMSubtarget * Subtarget,bool ForCodesize)5661 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2,
5662 const ARMSubtarget *Subtarget,
5663 bool ForCodesize) {
5664 // Check with ForCodesize
5665 unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize);
5666 unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize);
5667 if (Cost1 < Cost2)
5668 return true;
5669 if (Cost1 > Cost2)
5670 return false;
5671
5672 // If they are equal, try with !ForCodesize
5673 return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) <
5674 ConstantMaterializationCost(Val2, Subtarget, !ForCodesize);
5675 }
5676
5677 /// Constants defining how certain sequences should be outlined.
5678 /// This encompasses how an outlined function should be called, and what kind of
5679 /// frame should be emitted for that outlined function.
5680 ///
5681 /// \p MachineOutlinerTailCall implies that the function is being created from
5682 /// a sequence of instructions ending in a return.
5683 ///
5684 /// That is,
5685 ///
5686 /// I1 OUTLINED_FUNCTION:
5687 /// I2 --> B OUTLINED_FUNCTION I1
5688 /// BX LR I2
5689 /// BX LR
5690 ///
5691 /// +-------------------------+--------+-----+
5692 /// | | Thumb2 | ARM |
5693 /// +-------------------------+--------+-----+
5694 /// | Call overhead in Bytes | 4 | 4 |
5695 /// | Frame overhead in Bytes | 0 | 0 |
5696 /// | Stack fixup required | No | No |
5697 /// +-------------------------+--------+-----+
5698 ///
5699 /// \p MachineOutlinerThunk implies that the function is being created from
5700 /// a sequence of instructions ending in a call. The outlined function is
5701 /// called with a BL instruction, and the outlined function tail-calls the
5702 /// original call destination.
5703 ///
5704 /// That is,
5705 ///
5706 /// I1 OUTLINED_FUNCTION:
5707 /// I2 --> BL OUTLINED_FUNCTION I1
5708 /// BL f I2
5709 /// B f
5710 ///
5711 /// +-------------------------+--------+-----+
5712 /// | | Thumb2 | ARM |
5713 /// +-------------------------+--------+-----+
5714 /// | Call overhead in Bytes | 4 | 4 |
5715 /// | Frame overhead in Bytes | 0 | 0 |
5716 /// | Stack fixup required | No | No |
5717 /// +-------------------------+--------+-----+
5718 ///
5719 /// \p MachineOutlinerNoLRSave implies that the function should be called using
5720 /// a BL instruction, but doesn't require LR to be saved and restored. This
5721 /// happens when LR is known to be dead.
5722 ///
5723 /// That is,
5724 ///
5725 /// I1 OUTLINED_FUNCTION:
5726 /// I2 --> BL OUTLINED_FUNCTION I1
5727 /// I3 I2
5728 /// I3
5729 /// BX LR
5730 ///
5731 /// +-------------------------+--------+-----+
5732 /// | | Thumb2 | ARM |
5733 /// +-------------------------+--------+-----+
5734 /// | Call overhead in Bytes | 4 | 4 |
5735 /// | Frame overhead in Bytes | 2 | 4 |
5736 /// | Stack fixup required | No | No |
5737 /// +-------------------------+--------+-----+
5738 ///
5739 /// \p MachineOutlinerRegSave implies that the function should be called with a
5740 /// save and restore of LR to an available register. This allows us to avoid
5741 /// stack fixups. Note that this outlining variant is compatible with the
5742 /// NoLRSave case.
5743 ///
5744 /// That is,
5745 ///
5746 /// I1 Save LR OUTLINED_FUNCTION:
5747 /// I2 --> BL OUTLINED_FUNCTION I1
5748 /// I3 Restore LR I2
5749 /// I3
5750 /// BX LR
5751 ///
5752 /// +-------------------------+--------+-----+
5753 /// | | Thumb2 | ARM |
5754 /// +-------------------------+--------+-----+
5755 /// | Call overhead in Bytes | 8 | 12 |
5756 /// | Frame overhead in Bytes | 2 | 4 |
5757 /// | Stack fixup required | No | No |
5758 /// +-------------------------+--------+-----+
5759 ///
5760 /// \p MachineOutlinerDefault implies that the function should be called with
5761 /// a save and restore of LR to the stack.
5762 ///
5763 /// That is,
5764 ///
5765 /// I1 Save LR OUTLINED_FUNCTION:
5766 /// I2 --> BL OUTLINED_FUNCTION I1
5767 /// I3 Restore LR I2
5768 /// I3
5769 /// BX LR
5770 ///
5771 /// +-------------------------+--------+-----+
5772 /// | | Thumb2 | ARM |
5773 /// +-------------------------+--------+-----+
5774 /// | Call overhead in Bytes | 8 | 12 |
5775 /// | Frame overhead in Bytes | 2 | 4 |
5776 /// | Stack fixup required | Yes | Yes |
5777 /// +-------------------------+--------+-----+
5778
5779 enum MachineOutlinerClass {
5780 MachineOutlinerTailCall,
5781 MachineOutlinerThunk,
5782 MachineOutlinerNoLRSave,
5783 MachineOutlinerRegSave,
5784 MachineOutlinerDefault
5785 };
5786
5787 enum MachineOutlinerMBBFlags {
5788 LRUnavailableSomewhere = 0x2,
5789 HasCalls = 0x4,
5790 UnsafeRegsDead = 0x8
5791 };
5792
5793 struct OutlinerCosts {
5794 int CallTailCall;
5795 int FrameTailCall;
5796 int CallThunk;
5797 int FrameThunk;
5798 int CallNoLRSave;
5799 int FrameNoLRSave;
5800 int CallRegSave;
5801 int FrameRegSave;
5802 int CallDefault;
5803 int FrameDefault;
5804 int SaveRestoreLROnStack;
5805
OutlinerCostsOutlinerCosts5806 OutlinerCosts(const ARMSubtarget &target)
5807 : CallTailCall(target.isThumb() ? 4 : 4),
5808 FrameTailCall(target.isThumb() ? 0 : 0),
5809 CallThunk(target.isThumb() ? 4 : 4),
5810 FrameThunk(target.isThumb() ? 0 : 0),
5811 CallNoLRSave(target.isThumb() ? 4 : 4),
5812 FrameNoLRSave(target.isThumb() ? 2 : 4),
5813 CallRegSave(target.isThumb() ? 8 : 12),
5814 FrameRegSave(target.isThumb() ? 2 : 4),
5815 CallDefault(target.isThumb() ? 8 : 12),
5816 FrameDefault(target.isThumb() ? 2 : 4),
5817 SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {}
5818 };
5819
5820 Register
findRegisterToSaveLRTo(outliner::Candidate & C) const5821 ARMBaseInstrInfo::findRegisterToSaveLRTo(outliner::Candidate &C) const {
5822 MachineFunction *MF = C.getMF();
5823 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
5824 const ARMBaseRegisterInfo *ARI =
5825 static_cast<const ARMBaseRegisterInfo *>(&TRI);
5826
5827 BitVector regsReserved = ARI->getReservedRegs(*MF);
5828 // Check if there is an available register across the sequence that we can
5829 // use.
5830 for (Register Reg : ARM::rGPRRegClass) {
5831 if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) &&
5832 Reg != ARM::LR && // LR is not reserved, but don't use it.
5833 Reg != ARM::R12 && // R12 is not guaranteed to be preserved.
5834 C.isAvailableAcrossAndOutOfSeq(Reg, TRI) &&
5835 C.isAvailableInsideSeq(Reg, TRI))
5836 return Reg;
5837 }
5838 return Register();
5839 }
5840
5841 // Compute liveness of LR at the point after the interval [I, E), which
5842 // denotes a *backward* iteration through instructions. Used only for return
5843 // basic blocks, which do not end with a tail call.
isLRAvailable(const TargetRegisterInfo & TRI,MachineBasicBlock::reverse_iterator I,MachineBasicBlock::reverse_iterator E)5844 static bool isLRAvailable(const TargetRegisterInfo &TRI,
5845 MachineBasicBlock::reverse_iterator I,
5846 MachineBasicBlock::reverse_iterator E) {
5847 // At the end of the function LR dead.
5848 bool Live = false;
5849 for (; I != E; ++I) {
5850 const MachineInstr &MI = *I;
5851
5852 // Check defs of LR.
5853 if (MI.modifiesRegister(ARM::LR, &TRI))
5854 Live = false;
5855
5856 // Check uses of LR.
5857 unsigned Opcode = MI.getOpcode();
5858 if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR ||
5859 Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET ||
5860 Opcode == ARM::tBXNS_RET) {
5861 // These instructions use LR, but it's not an (explicit or implicit)
5862 // operand.
5863 Live = true;
5864 continue;
5865 }
5866 if (MI.readsRegister(ARM::LR, &TRI))
5867 Live = true;
5868 }
5869 return !Live;
5870 }
5871
getOutliningCandidateInfo(std::vector<outliner::Candidate> & RepeatedSequenceLocs) const5872 outliner::OutlinedFunction ARMBaseInstrInfo::getOutliningCandidateInfo(
5873 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
5874 outliner::Candidate &FirstCand = RepeatedSequenceLocs[0];
5875 unsigned SequenceSize =
5876 std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0,
5877 [this](unsigned Sum, const MachineInstr &MI) {
5878 return Sum + getInstSizeInBytes(MI);
5879 });
5880
5881 // Properties about candidate MBBs that hold for all of them.
5882 unsigned FlagsSetInAll = 0xF;
5883
5884 // Compute liveness information for each candidate, and set FlagsSetInAll.
5885 const TargetRegisterInfo &TRI = getRegisterInfo();
5886 for (outliner::Candidate &C : RepeatedSequenceLocs)
5887 FlagsSetInAll &= C.Flags;
5888
5889 // According to the ARM Procedure Call Standard, the following are
5890 // undefined on entry/exit from a function call:
5891 //
5892 // * Register R12(IP),
5893 // * Condition codes (and thus the CPSR register)
5894 //
5895 // Since we control the instructions which are part of the outlined regions
5896 // we don't need to be fully compliant with the AAPCS, but we have to
5897 // guarantee that if a veneer is inserted at link time the code is still
5898 // correct. Because of this, we can't outline any sequence of instructions
5899 // where one of these registers is live into/across it. Thus, we need to
5900 // delete those candidates.
5901 auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) {
5902 // If the unsafe registers in this block are all dead, then we don't need
5903 // to compute liveness here.
5904 if (C.Flags & UnsafeRegsDead)
5905 return false;
5906 return C.isAnyUnavailableAcrossOrOutOfSeq({ARM::R12, ARM::CPSR}, TRI);
5907 };
5908
5909 // Are there any candidates where those registers are live?
5910 if (!(FlagsSetInAll & UnsafeRegsDead)) {
5911 // Erase every candidate that violates the restrictions above. (It could be
5912 // true that we have viable candidates, so it's not worth bailing out in
5913 // the case that, say, 1 out of 20 candidates violate the restructions.)
5914 llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall);
5915
5916 // If the sequence doesn't have enough candidates left, then we're done.
5917 if (RepeatedSequenceLocs.size() < 2)
5918 return outliner::OutlinedFunction();
5919 }
5920
5921 // We expect the majority of the outlining candidates to be in consensus with
5922 // regard to return address sign and authentication, and branch target
5923 // enforcement, in other words, partitioning according to all the four
5924 // possible combinations of PAC-RET and BTI is going to yield one big subset
5925 // and three small (likely empty) subsets. That allows us to cull incompatible
5926 // candidates separately for PAC-RET and BTI.
5927
5928 // Partition the candidates in two sets: one with BTI enabled and one with BTI
5929 // disabled. Remove the candidates from the smaller set. If they are the same
5930 // number prefer the non-BTI ones for outlining, since they have less
5931 // overhead.
5932 auto NoBTI =
5933 llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) {
5934 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
5935 return AFI.branchTargetEnforcement();
5936 });
5937 if (std::distance(RepeatedSequenceLocs.begin(), NoBTI) >
5938 std::distance(NoBTI, RepeatedSequenceLocs.end()))
5939 RepeatedSequenceLocs.erase(NoBTI, RepeatedSequenceLocs.end());
5940 else
5941 RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoBTI);
5942
5943 if (RepeatedSequenceLocs.size() < 2)
5944 return outliner::OutlinedFunction();
5945
5946 // Likewise, partition the candidates according to PAC-RET enablement.
5947 auto NoPAC =
5948 llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) {
5949 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
5950 // If the function happens to not spill the LR, do not disqualify it
5951 // from the outlining.
5952 return AFI.shouldSignReturnAddress(true);
5953 });
5954 if (std::distance(RepeatedSequenceLocs.begin(), NoPAC) >
5955 std::distance(NoPAC, RepeatedSequenceLocs.end()))
5956 RepeatedSequenceLocs.erase(NoPAC, RepeatedSequenceLocs.end());
5957 else
5958 RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoPAC);
5959
5960 if (RepeatedSequenceLocs.size() < 2)
5961 return outliner::OutlinedFunction();
5962
5963 // At this point, we have only "safe" candidates to outline. Figure out
5964 // frame + call instruction information.
5965
5966 unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode();
5967
5968 // Helper lambda which sets call information for every candidate.
5969 auto SetCandidateCallInfo =
5970 [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) {
5971 for (outliner::Candidate &C : RepeatedSequenceLocs)
5972 C.setCallInfo(CallID, NumBytesForCall);
5973 };
5974
5975 OutlinerCosts Costs(Subtarget);
5976
5977 const auto &SomeMFI =
5978 *RepeatedSequenceLocs.front().getMF()->getInfo<ARMFunctionInfo>();
5979 // Adjust costs to account for the BTI instructions.
5980 if (SomeMFI.branchTargetEnforcement()) {
5981 Costs.FrameDefault += 4;
5982 Costs.FrameNoLRSave += 4;
5983 Costs.FrameRegSave += 4;
5984 Costs.FrameTailCall += 4;
5985 Costs.FrameThunk += 4;
5986 }
5987
5988 // Adjust costs to account for sign and authentication instructions.
5989 if (SomeMFI.shouldSignReturnAddress(true)) {
5990 Costs.CallDefault += 8; // +PAC instr, +AUT instr
5991 Costs.SaveRestoreLROnStack += 8; // +PAC instr, +AUT instr
5992 }
5993
5994 unsigned FrameID = MachineOutlinerDefault;
5995 unsigned NumBytesToCreateFrame = Costs.FrameDefault;
5996
5997 // If the last instruction in any candidate is a terminator, then we should
5998 // tail call all of the candidates.
5999 if (RepeatedSequenceLocs[0].back()->isTerminator()) {
6000 FrameID = MachineOutlinerTailCall;
6001 NumBytesToCreateFrame = Costs.FrameTailCall;
6002 SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall);
6003 } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX ||
6004 LastInstrOpcode == ARM::BLX_noip || LastInstrOpcode == ARM::tBL ||
6005 LastInstrOpcode == ARM::tBLXr ||
6006 LastInstrOpcode == ARM::tBLXr_noip ||
6007 LastInstrOpcode == ARM::tBLXi) {
6008 FrameID = MachineOutlinerThunk;
6009 NumBytesToCreateFrame = Costs.FrameThunk;
6010 SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk);
6011 } else {
6012 // We need to decide how to emit calls + frames. We can always emit the same
6013 // frame if we don't need to save to the stack. If we have to save to the
6014 // stack, then we need a different frame.
6015 unsigned NumBytesNoStackCalls = 0;
6016 std::vector<outliner::Candidate> CandidatesWithoutStackFixups;
6017
6018 for (outliner::Candidate &C : RepeatedSequenceLocs) {
6019 // LR liveness is overestimated in return blocks, unless they end with a
6020 // tail call.
6021 const auto Last = C.getMBB()->rbegin();
6022 const bool LRIsAvailable =
6023 C.getMBB()->isReturnBlock() && !Last->isCall()
6024 ? isLRAvailable(TRI, Last,
6025 (MachineBasicBlock::reverse_iterator)C.front())
6026 : C.isAvailableAcrossAndOutOfSeq(ARM::LR, TRI);
6027 if (LRIsAvailable) {
6028 FrameID = MachineOutlinerNoLRSave;
6029 NumBytesNoStackCalls += Costs.CallNoLRSave;
6030 C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave);
6031 CandidatesWithoutStackFixups.push_back(C);
6032 }
6033
6034 // Is an unused register available? If so, we won't modify the stack, so
6035 // we can outline with the same frame type as those that don't save LR.
6036 else if (findRegisterToSaveLRTo(C)) {
6037 FrameID = MachineOutlinerRegSave;
6038 NumBytesNoStackCalls += Costs.CallRegSave;
6039 C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave);
6040 CandidatesWithoutStackFixups.push_back(C);
6041 }
6042
6043 // Is SP used in the sequence at all? If not, we don't have to modify
6044 // the stack, so we are guaranteed to get the same frame.
6045 else if (C.isAvailableInsideSeq(ARM::SP, TRI)) {
6046 NumBytesNoStackCalls += Costs.CallDefault;
6047 C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault);
6048 CandidatesWithoutStackFixups.push_back(C);
6049 }
6050
6051 // If we outline this, we need to modify the stack. Pretend we don't
6052 // outline this by saving all of its bytes.
6053 else
6054 NumBytesNoStackCalls += SequenceSize;
6055 }
6056
6057 // If there are no places where we have to save LR, then note that we don't
6058 // have to update the stack. Otherwise, give every candidate the default
6059 // call type
6060 if (NumBytesNoStackCalls <=
6061 RepeatedSequenceLocs.size() * Costs.CallDefault) {
6062 RepeatedSequenceLocs = CandidatesWithoutStackFixups;
6063 FrameID = MachineOutlinerNoLRSave;
6064 } else
6065 SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault);
6066 }
6067
6068 // Does every candidate's MBB contain a call? If so, then we might have a
6069 // call in the range.
6070 if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) {
6071 // check if the range contains a call. These require a save + restore of
6072 // the link register.
6073 if (std::any_of(FirstCand.front(), FirstCand.back(),
6074 [](const MachineInstr &MI) { return MI.isCall(); }))
6075 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
6076
6077 // Handle the last instruction separately. If it is tail call, then the
6078 // last instruction is a call, we don't want to save + restore in this
6079 // case. However, it could be possible that the last instruction is a
6080 // call without it being valid to tail call this sequence. We should
6081 // consider this as well.
6082 else if (FrameID != MachineOutlinerThunk &&
6083 FrameID != MachineOutlinerTailCall && FirstCand.back()->isCall())
6084 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
6085 }
6086
6087 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
6088 NumBytesToCreateFrame, FrameID);
6089 }
6090
checkAndUpdateStackOffset(MachineInstr * MI,int64_t Fixup,bool Updt) const6091 bool ARMBaseInstrInfo::checkAndUpdateStackOffset(MachineInstr *MI,
6092 int64_t Fixup,
6093 bool Updt) const {
6094 int SPIdx = MI->findRegisterUseOperandIdx(ARM::SP);
6095 unsigned AddrMode = (MI->getDesc().TSFlags & ARMII::AddrModeMask);
6096 if (SPIdx < 0)
6097 // No SP operand
6098 return true;
6099 else if (SPIdx != 1 && (AddrMode != ARMII::AddrModeT2_i8s4 || SPIdx != 2))
6100 // If SP is not the base register we can't do much
6101 return false;
6102
6103 // Stack might be involved but addressing mode doesn't handle any offset.
6104 // Rq: AddrModeT1_[1|2|4] don't operate on SP
6105 if (AddrMode == ARMII::AddrMode1 || // Arithmetic instructions
6106 AddrMode == ARMII::AddrMode4 || // Load/Store Multiple
6107 AddrMode == ARMII::AddrMode6 || // Neon Load/Store Multiple
6108 AddrMode == ARMII::AddrModeT2_so || // SP can't be used as based register
6109 AddrMode == ARMII::AddrModeT2_pc || // PCrel access
6110 AddrMode == ARMII::AddrMode2 || // Used by PRE and POST indexed LD/ST
6111 AddrMode == ARMII::AddrModeT2_i7 || // v8.1-M MVE
6112 AddrMode == ARMII::AddrModeT2_i7s2 || // v8.1-M MVE
6113 AddrMode == ARMII::AddrModeT2_i7s4 || // v8.1-M sys regs VLDR/VSTR
6114 AddrMode == ARMII::AddrModeNone ||
6115 AddrMode == ARMII::AddrModeT2_i8 || // Pre/Post inc instructions
6116 AddrMode == ARMII::AddrModeT2_i8neg) // Always negative imm
6117 return false;
6118
6119 unsigned NumOps = MI->getDesc().getNumOperands();
6120 unsigned ImmIdx = NumOps - 3;
6121
6122 const MachineOperand &Offset = MI->getOperand(ImmIdx);
6123 assert(Offset.isImm() && "Is not an immediate");
6124 int64_t OffVal = Offset.getImm();
6125
6126 if (OffVal < 0)
6127 // Don't override data if the are below SP.
6128 return false;
6129
6130 unsigned NumBits = 0;
6131 unsigned Scale = 1;
6132
6133 switch (AddrMode) {
6134 case ARMII::AddrMode3:
6135 if (ARM_AM::getAM3Op(OffVal) == ARM_AM::sub)
6136 return false;
6137 OffVal = ARM_AM::getAM3Offset(OffVal);
6138 NumBits = 8;
6139 break;
6140 case ARMII::AddrMode5:
6141 if (ARM_AM::getAM5Op(OffVal) == ARM_AM::sub)
6142 return false;
6143 OffVal = ARM_AM::getAM5Offset(OffVal);
6144 NumBits = 8;
6145 Scale = 4;
6146 break;
6147 case ARMII::AddrMode5FP16:
6148 if (ARM_AM::getAM5FP16Op(OffVal) == ARM_AM::sub)
6149 return false;
6150 OffVal = ARM_AM::getAM5FP16Offset(OffVal);
6151 NumBits = 8;
6152 Scale = 2;
6153 break;
6154 case ARMII::AddrModeT2_i8pos:
6155 NumBits = 8;
6156 break;
6157 case ARMII::AddrModeT2_i8s4:
6158 // FIXME: Values are already scaled in this addressing mode.
6159 assert((Fixup & 3) == 0 && "Can't encode this offset!");
6160 NumBits = 10;
6161 break;
6162 case ARMII::AddrModeT2_ldrex:
6163 NumBits = 8;
6164 Scale = 4;
6165 break;
6166 case ARMII::AddrModeT2_i12:
6167 case ARMII::AddrMode_i12:
6168 NumBits = 12;
6169 break;
6170 case ARMII::AddrModeT1_s: // SP-relative LD/ST
6171 NumBits = 8;
6172 Scale = 4;
6173 break;
6174 default:
6175 llvm_unreachable("Unsupported addressing mode!");
6176 }
6177 // Make sure the offset is encodable for instructions that scale the
6178 // immediate.
6179 assert(((OffVal * Scale + Fixup) & (Scale - 1)) == 0 &&
6180 "Can't encode this offset!");
6181 OffVal += Fixup / Scale;
6182
6183 unsigned Mask = (1 << NumBits) - 1;
6184
6185 if (OffVal <= Mask) {
6186 if (Updt)
6187 MI->getOperand(ImmIdx).setImm(OffVal);
6188 return true;
6189 }
6190
6191 return false;
6192 }
6193
mergeOutliningCandidateAttributes(Function & F,std::vector<outliner::Candidate> & Candidates) const6194 void ARMBaseInstrInfo::mergeOutliningCandidateAttributes(
6195 Function &F, std::vector<outliner::Candidate> &Candidates) const {
6196 outliner::Candidate &C = Candidates.front();
6197 // branch-target-enforcement is guaranteed to be consistent between all
6198 // candidates, so we only need to look at one.
6199 const Function &CFn = C.getMF()->getFunction();
6200 if (CFn.hasFnAttribute("branch-target-enforcement"))
6201 F.addFnAttr(CFn.getFnAttribute("branch-target-enforcement"));
6202
6203 ARMGenInstrInfo::mergeOutliningCandidateAttributes(F, Candidates);
6204 }
6205
isFunctionSafeToOutlineFrom(MachineFunction & MF,bool OutlineFromLinkOnceODRs) const6206 bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom(
6207 MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
6208 const Function &F = MF.getFunction();
6209
6210 // Can F be deduplicated by the linker? If it can, don't outline from it.
6211 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
6212 return false;
6213
6214 // Don't outline from functions with section markings; the program could
6215 // expect that all the code is in the named section.
6216 // FIXME: Allow outlining from multiple functions with the same section
6217 // marking.
6218 if (F.hasSection())
6219 return false;
6220
6221 // FIXME: Thumb1 outlining is not handled
6222 if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction())
6223 return false;
6224
6225 // It's safe to outline from MF.
6226 return true;
6227 }
6228
isMBBSafeToOutlineFrom(MachineBasicBlock & MBB,unsigned & Flags) const6229 bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
6230 unsigned &Flags) const {
6231 // Check if LR is available through all of the MBB. If it's not, then set
6232 // a flag.
6233 assert(MBB.getParent()->getRegInfo().tracksLiveness() &&
6234 "Suitable Machine Function for outlining must track liveness");
6235
6236 LiveRegUnits LRU(getRegisterInfo());
6237
6238 for (MachineInstr &MI : llvm::reverse(MBB))
6239 LRU.accumulate(MI);
6240
6241 // Check if each of the unsafe registers are available...
6242 bool R12AvailableInBlock = LRU.available(ARM::R12);
6243 bool CPSRAvailableInBlock = LRU.available(ARM::CPSR);
6244
6245 // If all of these are dead (and not live out), we know we don't have to check
6246 // them later.
6247 if (R12AvailableInBlock && CPSRAvailableInBlock)
6248 Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead;
6249
6250 // Now, add the live outs to the set.
6251 LRU.addLiveOuts(MBB);
6252
6253 // If any of these registers is available in the MBB, but also a live out of
6254 // the block, then we know outlining is unsafe.
6255 if (R12AvailableInBlock && !LRU.available(ARM::R12))
6256 return false;
6257 if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR))
6258 return false;
6259
6260 // Check if there's a call inside this MachineBasicBlock. If there is, then
6261 // set a flag.
6262 if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); }))
6263 Flags |= MachineOutlinerMBBFlags::HasCalls;
6264
6265 // LR liveness is overestimated in return blocks.
6266
6267 bool LRIsAvailable =
6268 MBB.isReturnBlock() && !MBB.back().isCall()
6269 ? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend())
6270 : LRU.available(ARM::LR);
6271 if (!LRIsAvailable)
6272 Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere;
6273
6274 return true;
6275 }
6276
6277 outliner::InstrType
getOutliningType(MachineBasicBlock::iterator & MIT,unsigned Flags) const6278 ARMBaseInstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,
6279 unsigned Flags) const {
6280 MachineInstr &MI = *MIT;
6281 const TargetRegisterInfo *TRI = &getRegisterInfo();
6282
6283 // Be conservative with inline ASM
6284 if (MI.isInlineAsm())
6285 return outliner::InstrType::Illegal;
6286
6287 // Don't allow debug values to impact outlining type.
6288 if (MI.isDebugInstr() || MI.isIndirectDebugValue())
6289 return outliner::InstrType::Invisible;
6290
6291 // At this point, KILL or IMPLICIT_DEF instructions don't really tell us much
6292 // so we can go ahead and skip over them.
6293 if (MI.isKill() || MI.isImplicitDef())
6294 return outliner::InstrType::Invisible;
6295
6296 // PIC instructions contain labels, outlining them would break offset
6297 // computing. unsigned Opc = MI.getOpcode();
6298 unsigned Opc = MI.getOpcode();
6299 if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR ||
6300 Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR ||
6301 Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB ||
6302 Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic ||
6303 Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel ||
6304 Opc == ARM::t2MOV_ga_pcrel)
6305 return outliner::InstrType::Illegal;
6306
6307 // Be conservative with ARMv8.1 MVE instructions.
6308 if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart ||
6309 Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart ||
6310 Opc == ARM::t2WhileLoopStartLR || Opc == ARM::t2WhileLoopStartTP ||
6311 Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd ||
6312 Opc == ARM::t2LoopEndDec)
6313 return outliner::InstrType::Illegal;
6314
6315 const MCInstrDesc &MCID = MI.getDesc();
6316 uint64_t MIFlags = MCID.TSFlags;
6317 if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE)
6318 return outliner::InstrType::Illegal;
6319
6320 // Is this a terminator for a basic block?
6321 if (MI.isTerminator()) {
6322 // Don't outline if the branch is not unconditional.
6323 if (isPredicated(MI))
6324 return outliner::InstrType::Illegal;
6325
6326 // Is this the end of a function?
6327 if (MI.getParent()->succ_empty())
6328 return outliner::InstrType::Legal;
6329
6330 // It's not, so don't outline it.
6331 return outliner::InstrType::Illegal;
6332 }
6333
6334 // Make sure none of the operands are un-outlinable.
6335 for (const MachineOperand &MOP : MI.operands()) {
6336 if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
6337 MOP.isTargetIndex())
6338 return outliner::InstrType::Illegal;
6339 }
6340
6341 // Don't outline if link register or program counter value are used.
6342 if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI))
6343 return outliner::InstrType::Illegal;
6344
6345 if (MI.isCall()) {
6346 // Get the function associated with the call. Look at each operand and find
6347 // the one that represents the calle and get its name.
6348 const Function *Callee = nullptr;
6349 for (const MachineOperand &MOP : MI.operands()) {
6350 if (MOP.isGlobal()) {
6351 Callee = dyn_cast<Function>(MOP.getGlobal());
6352 break;
6353 }
6354 }
6355
6356 // Dont't outline calls to "mcount" like functions, in particular Linux
6357 // kernel function tracing relies on it.
6358 if (Callee &&
6359 (Callee->getName() == "\01__gnu_mcount_nc" ||
6360 Callee->getName() == "\01mcount" || Callee->getName() == "__mcount"))
6361 return outliner::InstrType::Illegal;
6362
6363 // If we don't know anything about the callee, assume it depends on the
6364 // stack layout of the caller. In that case, it's only legal to outline
6365 // as a tail-call. Explicitly list the call instructions we know about so
6366 // we don't get unexpected results with call pseudo-instructions.
6367 auto UnknownCallOutlineType = outliner::InstrType::Illegal;
6368 if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX ||
6369 Opc == ARM::BLX_noip || Opc == ARM::tBLXr || Opc == ARM::tBLXr_noip ||
6370 Opc == ARM::tBLXi)
6371 UnknownCallOutlineType = outliner::InstrType::LegalTerminator;
6372
6373 if (!Callee)
6374 return UnknownCallOutlineType;
6375
6376 // We have a function we have information about. Check if it's something we
6377 // can safely outline.
6378 MachineFunction *MF = MI.getParent()->getParent();
6379 MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee);
6380
6381 // We don't know what's going on with the callee at all. Don't touch it.
6382 if (!CalleeMF)
6383 return UnknownCallOutlineType;
6384
6385 // Check if we know anything about the callee saves on the function. If we
6386 // don't, then don't touch it, since that implies that we haven't computed
6387 // anything about its stack frame yet.
6388 MachineFrameInfo &MFI = CalleeMF->getFrameInfo();
6389 if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 ||
6390 MFI.getNumObjects() > 0)
6391 return UnknownCallOutlineType;
6392
6393 // At this point, we can say that CalleeMF ought to not pass anything on the
6394 // stack. Therefore, we can outline it.
6395 return outliner::InstrType::Legal;
6396 }
6397
6398 // Since calls are handled, don't touch LR or PC
6399 if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI))
6400 return outliner::InstrType::Illegal;
6401
6402 // Does this use the stack?
6403 if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) {
6404 // True if there is no chance that any outlined candidate from this range
6405 // could require stack fixups. That is, both
6406 // * LR is available in the range (No save/restore around call)
6407 // * The range doesn't include calls (No save/restore in outlined frame)
6408 // are true.
6409 // These conditions also ensure correctness of the return address
6410 // authentication - we insert sign and authentication instructions only if
6411 // we save/restore LR on stack, but then this condition ensures that the
6412 // outlined range does not modify the SP, therefore the SP value used for
6413 // signing is the same as the one used for authentication.
6414 // FIXME: This is very restrictive; the flags check the whole block,
6415 // not just the bit we will try to outline.
6416 bool MightNeedStackFixUp =
6417 (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere |
6418 MachineOutlinerMBBFlags::HasCalls));
6419
6420 if (!MightNeedStackFixUp)
6421 return outliner::InstrType::Legal;
6422
6423 // Any modification of SP will break our code to save/restore LR.
6424 // FIXME: We could handle some instructions which add a constant offset to
6425 // SP, with a bit more work.
6426 if (MI.modifiesRegister(ARM::SP, TRI))
6427 return outliner::InstrType::Illegal;
6428
6429 // At this point, we have a stack instruction that we might need to fix up.
6430 // up. We'll handle it if it's a load or store.
6431 if (checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(),
6432 false))
6433 return outliner::InstrType::Legal;
6434
6435 // We can't fix it up, so don't outline it.
6436 return outliner::InstrType::Illegal;
6437 }
6438
6439 // Be conservative with IT blocks.
6440 if (MI.readsRegister(ARM::ITSTATE, TRI) ||
6441 MI.modifiesRegister(ARM::ITSTATE, TRI))
6442 return outliner::InstrType::Illegal;
6443
6444 // Don't outline positions.
6445 if (MI.isPosition())
6446 return outliner::InstrType::Illegal;
6447
6448 return outliner::InstrType::Legal;
6449 }
6450
fixupPostOutline(MachineBasicBlock & MBB) const6451 void ARMBaseInstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const {
6452 for (MachineInstr &MI : MBB) {
6453 checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), true);
6454 }
6455 }
6456
saveLROnStack(MachineBasicBlock & MBB,MachineBasicBlock::iterator It,bool CFI,bool Auth) const6457 void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB,
6458 MachineBasicBlock::iterator It, bool CFI,
6459 bool Auth) const {
6460 int Align = std::max(Subtarget.getStackAlignment().value(), uint64_t(8));
6461 assert(Align >= 8 && Align <= 256);
6462 if (Auth) {
6463 assert(Subtarget.isThumb2());
6464 // Compute PAC in R12. Outlining ensures R12 is dead across the outlined
6465 // sequence.
6466 BuildMI(MBB, It, DebugLoc(), get(ARM::t2PAC))
6467 .setMIFlags(MachineInstr::FrameSetup);
6468 BuildMI(MBB, It, DebugLoc(), get(ARM::t2STRD_PRE), ARM::SP)
6469 .addReg(ARM::R12, RegState::Kill)
6470 .addReg(ARM::LR, RegState::Kill)
6471 .addReg(ARM::SP)
6472 .addImm(-Align)
6473 .add(predOps(ARMCC::AL))
6474 .setMIFlags(MachineInstr::FrameSetup);
6475 } else {
6476 unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM;
6477 BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP)
6478 .addReg(ARM::LR, RegState::Kill)
6479 .addReg(ARM::SP)
6480 .addImm(-Align)
6481 .add(predOps(ARMCC::AL))
6482 .setMIFlags(MachineInstr::FrameSetup);
6483 }
6484
6485 if (!CFI)
6486 return;
6487
6488 MachineFunction &MF = *MBB.getParent();
6489
6490 // Add a CFI, saying CFA is offset by Align bytes from SP.
6491 int64_t StackPosEntry =
6492 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Align));
6493 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6494 .addCFIIndex(StackPosEntry)
6495 .setMIFlags(MachineInstr::FrameSetup);
6496
6497 // Add a CFI saying that the LR that we want to find is now higher than
6498 // before.
6499 int LROffset = Auth ? Align - 4 : Align;
6500 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6501 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6502 int64_t LRPosEntry = MF.addFrameInst(
6503 MCCFIInstruction::createOffset(nullptr, DwarfLR, -LROffset));
6504 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6505 .addCFIIndex(LRPosEntry)
6506 .setMIFlags(MachineInstr::FrameSetup);
6507 if (Auth) {
6508 // Add a CFI for the location of the return adddress PAC.
6509 unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true);
6510 int64_t RACPosEntry = MF.addFrameInst(
6511 MCCFIInstruction::createOffset(nullptr, DwarfRAC, -Align));
6512 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6513 .addCFIIndex(RACPosEntry)
6514 .setMIFlags(MachineInstr::FrameSetup);
6515 }
6516 }
6517
emitCFIForLRSaveToReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator It,Register Reg) const6518 void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB,
6519 MachineBasicBlock::iterator It,
6520 Register Reg) const {
6521 MachineFunction &MF = *MBB.getParent();
6522 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6523 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6524 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
6525
6526 int64_t LRPosEntry = MF.addFrameInst(
6527 MCCFIInstruction::createRegister(nullptr, DwarfLR, DwarfReg));
6528 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6529 .addCFIIndex(LRPosEntry)
6530 .setMIFlags(MachineInstr::FrameSetup);
6531 }
6532
restoreLRFromStack(MachineBasicBlock & MBB,MachineBasicBlock::iterator It,bool CFI,bool Auth) const6533 void ARMBaseInstrInfo::restoreLRFromStack(MachineBasicBlock &MBB,
6534 MachineBasicBlock::iterator It,
6535 bool CFI, bool Auth) const {
6536 int Align = Subtarget.getStackAlignment().value();
6537 if (Auth) {
6538 assert(Subtarget.isThumb2());
6539 // Restore return address PAC and LR.
6540 BuildMI(MBB, It, DebugLoc(), get(ARM::t2LDRD_POST))
6541 .addReg(ARM::R12, RegState::Define)
6542 .addReg(ARM::LR, RegState::Define)
6543 .addReg(ARM::SP, RegState::Define)
6544 .addReg(ARM::SP)
6545 .addImm(Align)
6546 .add(predOps(ARMCC::AL))
6547 .setMIFlags(MachineInstr::FrameDestroy);
6548 // LR authentication is after the CFI instructions, below.
6549 } else {
6550 unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
6551 MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR)
6552 .addReg(ARM::SP, RegState::Define)
6553 .addReg(ARM::SP);
6554 if (!Subtarget.isThumb())
6555 MIB.addReg(0);
6556 MIB.addImm(Subtarget.getStackAlignment().value())
6557 .add(predOps(ARMCC::AL))
6558 .setMIFlags(MachineInstr::FrameDestroy);
6559 }
6560
6561 if (CFI) {
6562 // Now stack has moved back up...
6563 MachineFunction &MF = *MBB.getParent();
6564 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6565 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6566 int64_t StackPosEntry =
6567 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
6568 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6569 .addCFIIndex(StackPosEntry)
6570 .setMIFlags(MachineInstr::FrameDestroy);
6571
6572 // ... and we have restored LR.
6573 int64_t LRPosEntry =
6574 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
6575 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6576 .addCFIIndex(LRPosEntry)
6577 .setMIFlags(MachineInstr::FrameDestroy);
6578
6579 if (Auth) {
6580 unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true);
6581 int64_t Entry =
6582 MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, DwarfRAC));
6583 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6584 .addCFIIndex(Entry)
6585 .setMIFlags(MachineInstr::FrameDestroy);
6586 }
6587 }
6588
6589 if (Auth)
6590 BuildMI(MBB, It, DebugLoc(), get(ARM::t2AUT));
6591 }
6592
emitCFIForLRRestoreFromReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator It) const6593 void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg(
6594 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6595 MachineFunction &MF = *MBB.getParent();
6596 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6597 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6598
6599 int64_t LRPosEntry =
6600 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
6601 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6602 .addCFIIndex(LRPosEntry)
6603 .setMIFlags(MachineInstr::FrameDestroy);
6604 }
6605
buildOutlinedFrame(MachineBasicBlock & MBB,MachineFunction & MF,const outliner::OutlinedFunction & OF) const6606 void ARMBaseInstrInfo::buildOutlinedFrame(
6607 MachineBasicBlock &MBB, MachineFunction &MF,
6608 const outliner::OutlinedFunction &OF) const {
6609 // For thunk outlining, rewrite the last instruction from a call to a
6610 // tail-call.
6611 if (OF.FrameConstructionID == MachineOutlinerThunk) {
6612 MachineInstr *Call = &*--MBB.instr_end();
6613 bool isThumb = Subtarget.isThumb();
6614 unsigned FuncOp = isThumb ? 2 : 0;
6615 unsigned Opc = Call->getOperand(FuncOp).isReg()
6616 ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr
6617 : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd
6618 : ARM::tTAILJMPdND
6619 : ARM::TAILJMPd;
6620 MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc))
6621 .add(Call->getOperand(FuncOp));
6622 if (isThumb && !Call->getOperand(FuncOp).isReg())
6623 MIB.add(predOps(ARMCC::AL));
6624 Call->eraseFromParent();
6625 }
6626
6627 // Is there a call in the outlined range?
6628 auto IsNonTailCall = [](MachineInstr &MI) {
6629 return MI.isCall() && !MI.isReturn();
6630 };
6631 if (llvm::any_of(MBB.instrs(), IsNonTailCall)) {
6632 MachineBasicBlock::iterator It = MBB.begin();
6633 MachineBasicBlock::iterator Et = MBB.end();
6634
6635 if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6636 OF.FrameConstructionID == MachineOutlinerThunk)
6637 Et = std::prev(MBB.end());
6638
6639 // We have to save and restore LR, we need to add it to the liveins if it
6640 // is not already part of the set. This is suffient since outlined
6641 // functions only have one block.
6642 if (!MBB.isLiveIn(ARM::LR))
6643 MBB.addLiveIn(ARM::LR);
6644
6645 // Insert a save before the outlined region
6646 bool Auth = OF.Candidates.front()
6647 .getMF()
6648 ->getInfo<ARMFunctionInfo>()
6649 ->shouldSignReturnAddress(true);
6650 saveLROnStack(MBB, It, true, Auth);
6651
6652 // Fix up the instructions in the range, since we're going to modify the
6653 // stack.
6654 assert(OF.FrameConstructionID != MachineOutlinerDefault &&
6655 "Can only fix up stack references once");
6656 fixupPostOutline(MBB);
6657
6658 // Insert a restore before the terminator for the function. Restore LR.
6659 restoreLRFromStack(MBB, Et, true, Auth);
6660 }
6661
6662 // If this is a tail call outlined function, then there's already a return.
6663 if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6664 OF.FrameConstructionID == MachineOutlinerThunk)
6665 return;
6666
6667 // Here we have to insert the return ourselves. Get the correct opcode from
6668 // current feature set.
6669 BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode()))
6670 .add(predOps(ARMCC::AL));
6671
6672 // Did we have to modify the stack by saving the link register?
6673 if (OF.FrameConstructionID != MachineOutlinerDefault &&
6674 OF.Candidates[0].CallConstructionID != MachineOutlinerDefault)
6675 return;
6676
6677 // We modified the stack.
6678 // Walk over the basic block and fix up all the stack accesses.
6679 fixupPostOutline(MBB);
6680 }
6681
insertOutlinedCall(Module & M,MachineBasicBlock & MBB,MachineBasicBlock::iterator & It,MachineFunction & MF,outliner::Candidate & C) const6682 MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall(
6683 Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
6684 MachineFunction &MF, outliner::Candidate &C) const {
6685 MachineInstrBuilder MIB;
6686 MachineBasicBlock::iterator CallPt;
6687 unsigned Opc;
6688 bool isThumb = Subtarget.isThumb();
6689
6690 // Are we tail calling?
6691 if (C.CallConstructionID == MachineOutlinerTailCall) {
6692 // If yes, then we can just branch to the label.
6693 Opc = isThumb
6694 ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND
6695 : ARM::TAILJMPd;
6696 MIB = BuildMI(MF, DebugLoc(), get(Opc))
6697 .addGlobalAddress(M.getNamedValue(MF.getName()));
6698 if (isThumb)
6699 MIB.add(predOps(ARMCC::AL));
6700 It = MBB.insert(It, MIB);
6701 return It;
6702 }
6703
6704 // Create the call instruction.
6705 Opc = isThumb ? ARM::tBL : ARM::BL;
6706 MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc));
6707 if (isThumb)
6708 CallMIB.add(predOps(ARMCC::AL));
6709 CallMIB.addGlobalAddress(M.getNamedValue(MF.getName()));
6710
6711 if (C.CallConstructionID == MachineOutlinerNoLRSave ||
6712 C.CallConstructionID == MachineOutlinerThunk) {
6713 // No, so just insert the call.
6714 It = MBB.insert(It, CallMIB);
6715 return It;
6716 }
6717
6718 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
6719 // Can we save to a register?
6720 if (C.CallConstructionID == MachineOutlinerRegSave) {
6721 Register Reg = findRegisterToSaveLRTo(C);
6722 assert(Reg != 0 && "No callee-saved register available?");
6723
6724 // Save and restore LR from that register.
6725 copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true);
6726 if (!AFI.isLRSpilled())
6727 emitCFIForLRSaveToReg(MBB, It, Reg);
6728 CallPt = MBB.insert(It, CallMIB);
6729 copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true);
6730 if (!AFI.isLRSpilled())
6731 emitCFIForLRRestoreFromReg(MBB, It);
6732 It--;
6733 return CallPt;
6734 }
6735 // We have the default case. Save and restore from SP.
6736 if (!MBB.isLiveIn(ARM::LR))
6737 MBB.addLiveIn(ARM::LR);
6738 bool Auth = !AFI.isLRSpilled() && AFI.shouldSignReturnAddress(true);
6739 saveLROnStack(MBB, It, !AFI.isLRSpilled(), Auth);
6740 CallPt = MBB.insert(It, CallMIB);
6741 restoreLRFromStack(MBB, It, !AFI.isLRSpilled(), Auth);
6742 It--;
6743 return CallPt;
6744 }
6745
shouldOutlineFromFunctionByDefault(MachineFunction & MF) const6746 bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault(
6747 MachineFunction &MF) const {
6748 return Subtarget.isMClass() && MF.getFunction().hasMinSize();
6749 }
6750
isReallyTriviallyReMaterializable(const MachineInstr & MI) const6751 bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable(
6752 const MachineInstr &MI) const {
6753 // Try hard to rematerialize any VCTPs because if we spill P0, it will block
6754 // the tail predication conversion. This means that the element count
6755 // register has to be live for longer, but that has to be better than
6756 // spill/restore and VPT predication.
6757 return isVCTP(&MI) && !isPredicated(MI);
6758 }
6759
getBLXOpcode(const MachineFunction & MF)6760 unsigned llvm::getBLXOpcode(const MachineFunction &MF) {
6761 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_noip
6762 : ARM::BLX;
6763 }
6764
gettBLXrOpcode(const MachineFunction & MF)6765 unsigned llvm::gettBLXrOpcode(const MachineFunction &MF) {
6766 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::tBLXr_noip
6767 : ARM::tBLXr;
6768 }
6769
getBLXpredOpcode(const MachineFunction & MF)6770 unsigned llvm::getBLXpredOpcode(const MachineFunction &MF) {
6771 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_pred_noip
6772 : ARM::BLX_pred;
6773 }
6774
6775 namespace {
6776 class ARMPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
6777 MachineInstr *EndLoop, *LoopCount;
6778 MachineFunction *MF;
6779 const TargetInstrInfo *TII;
6780
6781 // Bitset[0 .. MAX_STAGES-1] ... iterations needed
6782 // [LAST_IS_USE] : last reference to register in schedule is a use
6783 // [SEEN_AS_LIVE] : Normal pressure algorithm believes register is live
6784 static int constexpr MAX_STAGES = 30;
6785 static int constexpr LAST_IS_USE = MAX_STAGES;
6786 static int constexpr SEEN_AS_LIVE = MAX_STAGES + 1;
6787 typedef std::bitset<MAX_STAGES + 2> IterNeed;
6788 typedef std::map<unsigned, IterNeed> IterNeeds;
6789
6790 void bumpCrossIterationPressure(RegPressureTracker &RPT,
6791 const IterNeeds &CIN);
6792 bool tooMuchRegisterPressure(SwingSchedulerDAG &SSD, SMSchedule &SMS);
6793
6794 // Meanings of the various stuff with loop types:
6795 // t2Bcc:
6796 // EndLoop = branch at end of original BB that will become a kernel
6797 // LoopCount = CC setter live into branch
6798 // t2LoopEnd:
6799 // EndLoop = branch at end of original BB
6800 // LoopCount = t2LoopDec
6801 public:
ARMPipelinerLoopInfo(MachineInstr * EndLoop,MachineInstr * LoopCount)6802 ARMPipelinerLoopInfo(MachineInstr *EndLoop, MachineInstr *LoopCount)
6803 : EndLoop(EndLoop), LoopCount(LoopCount),
6804 MF(EndLoop->getParent()->getParent()),
6805 TII(MF->getSubtarget().getInstrInfo()) {}
6806
shouldIgnoreForPipelining(const MachineInstr * MI) const6807 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
6808 // Only ignore the terminator.
6809 return MI == EndLoop || MI == LoopCount;
6810 }
6811
shouldUseSchedule(SwingSchedulerDAG & SSD,SMSchedule & SMS)6812 bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS) override {
6813 if (tooMuchRegisterPressure(SSD, SMS))
6814 return false;
6815
6816 return true;
6817 }
6818
createTripCountGreaterCondition(int TC,MachineBasicBlock & MBB,SmallVectorImpl<MachineOperand> & Cond)6819 std::optional<bool> createTripCountGreaterCondition(
6820 int TC, MachineBasicBlock &MBB,
6821 SmallVectorImpl<MachineOperand> &Cond) override {
6822
6823 if (isCondBranchOpcode(EndLoop->getOpcode())) {
6824 Cond.push_back(EndLoop->getOperand(1));
6825 Cond.push_back(EndLoop->getOperand(2));
6826 if (EndLoop->getOperand(0).getMBB() == EndLoop->getParent()) {
6827 TII->reverseBranchCondition(Cond);
6828 }
6829 return {};
6830 } else if (EndLoop->getOpcode() == ARM::t2LoopEnd) {
6831 // General case just lets the unrolled t2LoopDec do the subtraction and
6832 // therefore just needs to check if zero has been reached.
6833 MachineInstr *LoopDec = nullptr;
6834 for (auto &I : MBB.instrs())
6835 if (I.getOpcode() == ARM::t2LoopDec)
6836 LoopDec = &I;
6837 assert(LoopDec && "Unable to find copied LoopDec");
6838 // Check if we're done with the loop.
6839 BuildMI(&MBB, LoopDec->getDebugLoc(), TII->get(ARM::t2CMPri))
6840 .addReg(LoopDec->getOperand(0).getReg())
6841 .addImm(0)
6842 .addImm(ARMCC::AL)
6843 .addReg(ARM::NoRegister);
6844 Cond.push_back(MachineOperand::CreateImm(ARMCC::EQ));
6845 Cond.push_back(MachineOperand::CreateReg(ARM::CPSR, false));
6846 return {};
6847 } else
6848 llvm_unreachable("Unknown EndLoop");
6849 }
6850
setPreheader(MachineBasicBlock * NewPreheader)6851 void setPreheader(MachineBasicBlock *NewPreheader) override {}
6852
adjustTripCount(int TripCountAdjust)6853 void adjustTripCount(int TripCountAdjust) override {}
6854
disposed()6855 void disposed() override {}
6856 };
6857
bumpCrossIterationPressure(RegPressureTracker & RPT,const IterNeeds & CIN)6858 void ARMPipelinerLoopInfo::bumpCrossIterationPressure(RegPressureTracker &RPT,
6859 const IterNeeds &CIN) {
6860 // Increase pressure by the amounts in CrossIterationNeeds
6861 for (const auto &N : CIN) {
6862 int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2;
6863 for (int I = 0; I < Cnt; ++I)
6864 RPT.increaseRegPressure(Register(N.first), LaneBitmask::getNone(),
6865 LaneBitmask::getAll());
6866 }
6867 // Decrease pressure by the amounts in CrossIterationNeeds
6868 for (const auto &N : CIN) {
6869 int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2;
6870 for (int I = 0; I < Cnt; ++I)
6871 RPT.decreaseRegPressure(Register(N.first), LaneBitmask::getAll(),
6872 LaneBitmask::getNone());
6873 }
6874 }
6875
tooMuchRegisterPressure(SwingSchedulerDAG & SSD,SMSchedule & SMS)6876 bool ARMPipelinerLoopInfo::tooMuchRegisterPressure(SwingSchedulerDAG &SSD,
6877 SMSchedule &SMS) {
6878 IterNeeds CrossIterationNeeds;
6879
6880 // Determine which values will be loop-carried after the schedule is
6881 // applied
6882
6883 for (auto &SU : SSD.SUnits) {
6884 const MachineInstr *MI = SU.getInstr();
6885 int Stg = SMS.stageScheduled(const_cast<SUnit *>(&SU));
6886 for (auto &S : SU.Succs)
6887 if (MI->isPHI() && S.getKind() == SDep::Anti) {
6888 Register Reg = S.getReg();
6889 if (Reg.isVirtual())
6890 CrossIterationNeeds.insert(std::make_pair(Reg.id(), IterNeed()))
6891 .first->second.set(0);
6892 } else if (S.isAssignedRegDep()) {
6893 int OStg = SMS.stageScheduled(S.getSUnit());
6894 if (OStg >= 0 && OStg != Stg) {
6895 Register Reg = S.getReg();
6896 if (Reg.isVirtual())
6897 CrossIterationNeeds.insert(std::make_pair(Reg.id(), IterNeed()))
6898 .first->second |= ((1 << (OStg - Stg)) - 1);
6899 }
6900 }
6901 }
6902
6903 // Determine more-or-less what the proposed schedule (reversed) is going to
6904 // be; it might not be quite the same because the within-cycle ordering
6905 // created by SMSchedule depends upon changes to help with address offsets and
6906 // the like.
6907 std::vector<SUnit *> ProposedSchedule;
6908 for (int Cycle = SMS.getFinalCycle(); Cycle >= SMS.getFirstCycle(); --Cycle)
6909 for (int Stage = 0, StageEnd = SMS.getMaxStageCount(); Stage <= StageEnd;
6910 ++Stage) {
6911 std::deque<SUnit *> Instrs =
6912 SMS.getInstructions(Cycle + Stage * SMS.getInitiationInterval());
6913 std::sort(Instrs.begin(), Instrs.end(),
6914 [](SUnit *A, SUnit *B) { return A->NodeNum > B->NodeNum; });
6915 for (SUnit *SU : Instrs)
6916 ProposedSchedule.push_back(SU);
6917 }
6918
6919 // Learn whether the last use/def of each cross-iteration register is a use or
6920 // def. If it is a def, RegisterPressure will implicitly increase max pressure
6921 // and we do not have to add the pressure.
6922 for (auto *SU : ProposedSchedule)
6923 for (ConstMIBundleOperands OperI(*SU->getInstr()); OperI.isValid();
6924 ++OperI) {
6925 auto MO = *OperI;
6926 if (!MO.isReg() || !MO.getReg())
6927 continue;
6928 Register Reg = MO.getReg();
6929 auto CIter = CrossIterationNeeds.find(Reg.id());
6930 if (CIter == CrossIterationNeeds.end() || CIter->second[LAST_IS_USE] ||
6931 CIter->second[SEEN_AS_LIVE])
6932 continue;
6933 if (MO.isDef() && !MO.isDead())
6934 CIter->second.set(SEEN_AS_LIVE);
6935 else if (MO.isUse())
6936 CIter->second.set(LAST_IS_USE);
6937 }
6938 for (auto &CI : CrossIterationNeeds)
6939 CI.second.reset(LAST_IS_USE);
6940
6941 RegionPressure RecRegPressure;
6942 RegPressureTracker RPTracker(RecRegPressure);
6943 RegisterClassInfo RegClassInfo;
6944 RegClassInfo.runOnMachineFunction(*MF);
6945 RPTracker.init(MF, &RegClassInfo, nullptr, EndLoop->getParent(),
6946 EndLoop->getParent()->end(), false, false);
6947 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
6948
6949 bumpCrossIterationPressure(RPTracker, CrossIterationNeeds);
6950
6951 for (auto *SU : ProposedSchedule) {
6952 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
6953 RPTracker.setPos(std::next(CurInstI));
6954 RPTracker.recede();
6955
6956 // Track what cross-iteration registers would be seen as live
6957 for (ConstMIBundleOperands OperI(*CurInstI); OperI.isValid(); ++OperI) {
6958 auto MO = *OperI;
6959 if (!MO.isReg() || !MO.getReg())
6960 continue;
6961 Register Reg = MO.getReg();
6962 if (MO.isDef() && !MO.isDead()) {
6963 auto CIter = CrossIterationNeeds.find(Reg.id());
6964 if (CIter != CrossIterationNeeds.end()) {
6965 CIter->second.reset(0);
6966 CIter->second.reset(SEEN_AS_LIVE);
6967 }
6968 }
6969 }
6970 for (auto &S : SU->Preds) {
6971 auto Stg = SMS.stageScheduled(SU);
6972 if (S.isAssignedRegDep()) {
6973 Register Reg = S.getReg();
6974 auto CIter = CrossIterationNeeds.find(Reg.id());
6975 if (CIter != CrossIterationNeeds.end()) {
6976 auto Stg2 = SMS.stageScheduled(const_cast<SUnit *>(S.getSUnit()));
6977 assert(Stg2 <= Stg && "Data dependence upon earlier stage");
6978 if (Stg - Stg2 < MAX_STAGES)
6979 CIter->second.set(Stg - Stg2);
6980 CIter->second.set(SEEN_AS_LIVE);
6981 }
6982 }
6983 }
6984
6985 bumpCrossIterationPressure(RPTracker, CrossIterationNeeds);
6986 }
6987
6988 auto &P = RPTracker.getPressure().MaxSetPressure;
6989 for (unsigned I = 0, E = P.size(); I < E; ++I)
6990 if (P[I] > TRI->getRegPressureSetLimit(*MF, I)) {
6991 return true;
6992 }
6993 return false;
6994 }
6995
6996 } // namespace
6997
6998 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
analyzeLoopForPipelining(MachineBasicBlock * LoopBB) const6999 ARMBaseInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
7000 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
7001 MachineBasicBlock *Preheader = *LoopBB->pred_begin();
7002 if (Preheader == LoopBB)
7003 Preheader = *std::next(LoopBB->pred_begin());
7004
7005 if (I != LoopBB->end() && I->getOpcode() == ARM::t2Bcc) {
7006 // If the branch is a Bcc, then the CPSR should be set somewhere within the
7007 // block. We need to determine the reaching definition of CPSR so that
7008 // it can be marked as non-pipelineable, allowing the pipeliner to force
7009 // it into stage 0 or give up if it cannot or will not do so.
7010 MachineInstr *CCSetter = nullptr;
7011 for (auto &L : LoopBB->instrs()) {
7012 if (L.isCall())
7013 return nullptr;
7014 if (isCPSRDefined(L))
7015 CCSetter = &L;
7016 }
7017 if (CCSetter)
7018 return std::make_unique<ARMPipelinerLoopInfo>(&*I, CCSetter);
7019 else
7020 return nullptr; // Unable to find the CC setter, so unable to guarantee
7021 // that pipeline will work
7022 }
7023
7024 // Recognize:
7025 // preheader:
7026 // %1 = t2DoopLoopStart %0
7027 // loop:
7028 // %2 = phi %1, <not loop>, %..., %loop
7029 // %3 = t2LoopDec %2, <imm>
7030 // t2LoopEnd %3, %loop
7031
7032 if (I != LoopBB->end() && I->getOpcode() == ARM::t2LoopEnd) {
7033 for (auto &L : LoopBB->instrs())
7034 if (L.isCall())
7035 return nullptr;
7036 else if (isVCTP(&L))
7037 return nullptr;
7038 Register LoopDecResult = I->getOperand(0).getReg();
7039 MachineRegisterInfo &MRI = LoopBB->getParent()->getRegInfo();
7040 MachineInstr *LoopDec = MRI.getUniqueVRegDef(LoopDecResult);
7041 if (!LoopDec || LoopDec->getOpcode() != ARM::t2LoopDec)
7042 return nullptr;
7043 MachineInstr *LoopStart = nullptr;
7044 for (auto &J : Preheader->instrs())
7045 if (J.getOpcode() == ARM::t2DoLoopStart)
7046 LoopStart = &J;
7047 if (!LoopStart)
7048 return nullptr;
7049 return std::make_unique<ARMPipelinerLoopInfo>(&*I, LoopDec);
7050 }
7051 return nullptr;
7052 }
7053