1 //===- InputFiles.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "InputFiles.h"
10 #include "Config.h"
11 #include "DWARF.h"
12 #include "Driver.h"
13 #include "InputSection.h"
14 #include "LinkerScript.h"
15 #include "SymbolTable.h"
16 #include "Symbols.h"
17 #include "SyntheticSections.h"
18 #include "Target.h"
19 #include "lld/Common/CommonLinkerContext.h"
20 #include "lld/Common/DWARF.h"
21 #include "llvm/ADT/CachedHashString.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/LTO/LTO.h"
24 #include "llvm/Object/IRObjectFile.h"
25 #include "llvm/Support/ARMAttributeParser.h"
26 #include "llvm/Support/ARMBuildAttributes.h"
27 #include "llvm/Support/Endian.h"
28 #include "llvm/Support/FileSystem.h"
29 #include "llvm/Support/Path.h"
30 #include "llvm/Support/RISCVAttributeParser.h"
31 #include "llvm/Support/TarWriter.h"
32 #include "llvm/Support/raw_ostream.h"
33
34 using namespace llvm;
35 using namespace llvm::ELF;
36 using namespace llvm::object;
37 using namespace llvm::sys;
38 using namespace llvm::sys::fs;
39 using namespace llvm::support::endian;
40 using namespace lld;
41 using namespace lld::elf;
42
43 bool InputFile::isInGroup;
44 uint32_t InputFile::nextGroupId;
45
46 std::unique_ptr<TarWriter> elf::tar;
47
48 DenseMap<StringRef, StringRef> elf::gnuWarnings;
49
50 // Returns "<internal>", "foo.a(bar.o)" or "baz.o".
toString(const InputFile * f)51 std::string lld::toString(const InputFile *f) {
52 static std::mutex mu;
53 if (!f)
54 return "<internal>";
55
56 {
57 std::lock_guard<std::mutex> lock(mu);
58 if (f->toStringCache.empty()) {
59 if (f->archiveName.empty())
60 f->toStringCache = f->getName();
61 else
62 (f->archiveName + "(" + f->getName() + ")").toVector(f->toStringCache);
63 }
64 }
65 return std::string(f->toStringCache);
66 }
67
68 // .gnu.warning.SYMBOL are treated as warning symbols for the given symbol
parseGNUWarning(StringRef name,ArrayRef<char> data,size_t size)69 void lld::parseGNUWarning(StringRef name, ArrayRef<char> data, size_t size) {
70 static std::mutex mu;
71 if (!name.empty() && name.startswith(".gnu.warning.")) {
72 std::lock_guard<std::mutex> lock(mu);
73 StringRef wsym = name.substr(13);
74 StringRef s(data.begin());
75 StringRef wng(s.substr(0, size));
76 symtab.insert(wsym)->gwarn = true;
77 gnuWarnings.insert({wsym, wng});
78 }
79 }
80
getELFKind(MemoryBufferRef mb,StringRef archiveName)81 static ELFKind getELFKind(MemoryBufferRef mb, StringRef archiveName) {
82 unsigned char size;
83 unsigned char endian;
84 std::tie(size, endian) = getElfArchType(mb.getBuffer());
85
86 auto report = [&](StringRef msg) {
87 StringRef filename = mb.getBufferIdentifier();
88 if (archiveName.empty())
89 fatal(filename + ": " + msg);
90 else
91 fatal(archiveName + "(" + filename + "): " + msg);
92 };
93
94 if (!mb.getBuffer().startswith(ElfMagic))
95 report("not an ELF file");
96 if (endian != ELFDATA2LSB && endian != ELFDATA2MSB)
97 report("corrupted ELF file: invalid data encoding");
98 if (size != ELFCLASS32 && size != ELFCLASS64)
99 report("corrupted ELF file: invalid file class");
100
101 size_t bufSize = mb.getBuffer().size();
102 if ((size == ELFCLASS32 && bufSize < sizeof(Elf32_Ehdr)) ||
103 (size == ELFCLASS64 && bufSize < sizeof(Elf64_Ehdr)))
104 report("corrupted ELF file: file is too short");
105
106 if (size == ELFCLASS32)
107 return (endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind;
108 return (endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind;
109 }
110
111 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD
112 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how
113 // the input objects have been compiled.
updateARMVFPArgs(const ARMAttributeParser & attributes,const InputFile * f)114 static void updateARMVFPArgs(const ARMAttributeParser &attributes,
115 const InputFile *f) {
116 std::optional<unsigned> attr =
117 attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args);
118 if (!attr)
119 // If an ABI tag isn't present then it is implicitly given the value of 0
120 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files,
121 // including some in glibc that don't use FP args (and should have value 3)
122 // don't have the attribute so we do not consider an implicit value of 0
123 // as a clash.
124 return;
125
126 unsigned vfpArgs = *attr;
127 ARMVFPArgKind arg;
128 switch (vfpArgs) {
129 case ARMBuildAttrs::BaseAAPCS:
130 arg = ARMVFPArgKind::Base;
131 break;
132 case ARMBuildAttrs::HardFPAAPCS:
133 arg = ARMVFPArgKind::VFP;
134 break;
135 case ARMBuildAttrs::ToolChainFPPCS:
136 // Tool chain specific convention that conforms to neither AAPCS variant.
137 arg = ARMVFPArgKind::ToolChain;
138 break;
139 case ARMBuildAttrs::CompatibleFPAAPCS:
140 // Object compatible with all conventions.
141 return;
142 default:
143 error(toString(f) + ": unknown Tag_ABI_VFP_args value: " + Twine(vfpArgs));
144 return;
145 }
146 // Follow ld.bfd and error if there is a mix of calling conventions.
147 if (config->armVFPArgs != arg && config->armVFPArgs != ARMVFPArgKind::Default)
148 error(toString(f) + ": incompatible Tag_ABI_VFP_args");
149 else
150 config->armVFPArgs = arg;
151 }
152
153 // The ARM support in lld makes some use of instructions that are not available
154 // on all ARM architectures. Namely:
155 // - Use of BLX instruction for interworking between ARM and Thumb state.
156 // - Use of the extended Thumb branch encoding in relocation.
157 // - Use of the MOVT/MOVW instructions in Thumb Thunks.
158 // The ARM Attributes section contains information about the architecture chosen
159 // at compile time. We follow the convention that if at least one input object
160 // is compiled with an architecture that supports these features then lld is
161 // permitted to use them.
updateSupportedARMFeatures(const ARMAttributeParser & attributes)162 static void updateSupportedARMFeatures(const ARMAttributeParser &attributes) {
163 std::optional<unsigned> attr =
164 attributes.getAttributeValue(ARMBuildAttrs::CPU_arch);
165 if (!attr)
166 return;
167 auto arch = *attr;
168 switch (arch) {
169 case ARMBuildAttrs::Pre_v4:
170 case ARMBuildAttrs::v4:
171 case ARMBuildAttrs::v4T:
172 // Architectures prior to v5 do not support BLX instruction
173 break;
174 case ARMBuildAttrs::v5T:
175 case ARMBuildAttrs::v5TE:
176 case ARMBuildAttrs::v5TEJ:
177 case ARMBuildAttrs::v6:
178 case ARMBuildAttrs::v6KZ:
179 case ARMBuildAttrs::v6K:
180 config->armHasBlx = true;
181 // Architectures used in pre-Cortex processors do not support
182 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception
183 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do.
184 break;
185 default:
186 // All other Architectures have BLX and extended branch encoding
187 config->armHasBlx = true;
188 config->armJ1J2BranchEncoding = true;
189 if (arch != ARMBuildAttrs::v6_M && arch != ARMBuildAttrs::v6S_M)
190 // All Architectures used in Cortex processors with the exception
191 // of v6-M and v6S-M have the MOVT and MOVW instructions.
192 config->armHasMovtMovw = true;
193 break;
194 }
195 }
196
InputFile(Kind k,MemoryBufferRef m)197 InputFile::InputFile(Kind k, MemoryBufferRef m)
198 : mb(m), groupId(nextGroupId), fileKind(k) {
199 // All files within the same --{start,end}-group get the same group ID.
200 // Otherwise, a new file will get a new group ID.
201 if (!isInGroup)
202 ++nextGroupId;
203 }
204
readFile(StringRef path)205 std::optional<MemoryBufferRef> elf::readFile(StringRef path) {
206 llvm::TimeTraceScope timeScope("Load input files", path);
207
208 // The --chroot option changes our virtual root directory.
209 // This is useful when you are dealing with files created by --reproduce.
210 if (!config->chroot.empty() && path.startswith("/"))
211 path = saver().save(config->chroot + path);
212
213 log(path);
214 config->dependencyFiles.insert(llvm::CachedHashString(path));
215
216 auto mbOrErr = MemoryBuffer::getFile(path, /*IsText=*/false,
217 /*RequiresNullTerminator=*/false);
218 if (auto ec = mbOrErr.getError()) {
219 error("cannot open " + path + ": " + ec.message());
220 return std::nullopt;
221 }
222
223 MemoryBufferRef mbref = (*mbOrErr)->getMemBufferRef();
224 ctx.memoryBuffers.push_back(std::move(*mbOrErr)); // take MB ownership
225
226 if (tar)
227 tar->append(relativeToRoot(path), mbref.getBuffer());
228 return mbref;
229 }
230
231 // All input object files must be for the same architecture
232 // (e.g. it does not make sense to link x86 object files with
233 // MIPS object files.) This function checks for that error.
isCompatible(InputFile * file)234 static bool isCompatible(InputFile *file) {
235 if (!file->isElf() && !isa<BitcodeFile>(file))
236 return true;
237
238 if (file->ekind == config->ekind && file->emachine == config->emachine) {
239 if (config->emachine != EM_MIPS)
240 return true;
241 if (isMipsN32Abi(file) == config->mipsN32Abi)
242 return true;
243 }
244
245 StringRef target =
246 !config->bfdname.empty() ? config->bfdname : config->emulation;
247 if (!target.empty()) {
248 error(toString(file) + " is incompatible with " + target);
249 return false;
250 }
251
252 InputFile *existing = nullptr;
253 if (!ctx.objectFiles.empty())
254 existing = ctx.objectFiles[0];
255 else if (!ctx.sharedFiles.empty())
256 existing = ctx.sharedFiles[0];
257 else if (!ctx.bitcodeFiles.empty())
258 existing = ctx.bitcodeFiles[0];
259 std::string with;
260 if (existing)
261 with = " with " + toString(existing);
262 error(toString(file) + " is incompatible" + with);
263 return false;
264 }
265
doParseFile(InputFile * file)266 template <class ELFT> static void doParseFile(InputFile *file) {
267 if (!isCompatible(file))
268 return;
269
270 // Binary file
271 if (auto *f = dyn_cast<BinaryFile>(file)) {
272 ctx.binaryFiles.push_back(f);
273 f->parse();
274 return;
275 }
276
277 // Lazy object file
278 if (file->lazy) {
279 if (auto *f = dyn_cast<BitcodeFile>(file)) {
280 ctx.lazyBitcodeFiles.push_back(f);
281 f->parseLazy();
282 } else {
283 cast<ObjFile<ELFT>>(file)->parseLazy();
284 }
285 return;
286 }
287
288 if (config->trace)
289 message(toString(file));
290
291 // .so file
292 if (auto *f = dyn_cast<SharedFile>(file)) {
293 f->parse<ELFT>();
294 return;
295 }
296
297 // LLVM bitcode file
298 if (auto *f = dyn_cast<BitcodeFile>(file)) {
299 ctx.bitcodeFiles.push_back(f);
300 f->parse();
301 return;
302 }
303
304 // Regular object file
305 ctx.objectFiles.push_back(cast<ELFFileBase>(file));
306 cast<ObjFile<ELFT>>(file)->parse();
307 }
308
309 // Add symbols in File to the symbol table.
parseFile(InputFile * file)310 void elf::parseFile(InputFile *file) { invokeELFT(doParseFile, file); }
311
312 // Concatenates arguments to construct a string representing an error location.
createFileLineMsg(StringRef path,unsigned line)313 static std::string createFileLineMsg(StringRef path, unsigned line) {
314 std::string filename = std::string(path::filename(path));
315 std::string lineno = ":" + std::to_string(line);
316 if (filename == path)
317 return filename + lineno;
318 return filename + lineno + " (" + path.str() + lineno + ")";
319 }
320
321 template <class ELFT>
getSrcMsgAux(ObjFile<ELFT> & file,const Symbol & sym,InputSectionBase & sec,uint64_t offset)322 static std::string getSrcMsgAux(ObjFile<ELFT> &file, const Symbol &sym,
323 InputSectionBase &sec, uint64_t offset) {
324 // In DWARF, functions and variables are stored to different places.
325 // First, look up a function for a given offset.
326 if (std::optional<DILineInfo> info = file.getDILineInfo(&sec, offset))
327 return createFileLineMsg(info->FileName, info->Line);
328
329 // If it failed, look up again as a variable.
330 if (std::optional<std::pair<std::string, unsigned>> fileLine =
331 file.getVariableLoc(sym.getName()))
332 return createFileLineMsg(fileLine->first, fileLine->second);
333
334 // File.sourceFile contains STT_FILE symbol, and that is a last resort.
335 return std::string(file.sourceFile);
336 }
337
getSrcMsg(const Symbol & sym,InputSectionBase & sec,uint64_t offset)338 std::string InputFile::getSrcMsg(const Symbol &sym, InputSectionBase &sec,
339 uint64_t offset) {
340 if (kind() != ObjKind)
341 return "";
342 switch (ekind) {
343 default:
344 llvm_unreachable("Invalid kind");
345 case ELF32LEKind:
346 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), sym, sec, offset);
347 case ELF32BEKind:
348 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), sym, sec, offset);
349 case ELF64LEKind:
350 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), sym, sec, offset);
351 case ELF64BEKind:
352 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), sym, sec, offset);
353 }
354 }
355
getNameForScript() const356 StringRef InputFile::getNameForScript() const {
357 if (archiveName.empty())
358 return getName();
359
360 if (nameForScriptCache.empty())
361 nameForScriptCache = (archiveName + Twine(':') + getName()).str();
362
363 return nameForScriptCache;
364 }
365
366 // An ELF object file may contain a `.deplibs` section. If it exists, the
367 // section contains a list of library specifiers such as `m` for libm. This
368 // function resolves a given name by finding the first matching library checking
369 // the various ways that a library can be specified to LLD. This ELF extension
370 // is a form of autolinking and is called `dependent libraries`. It is currently
371 // unique to LLVM and lld.
addDependentLibrary(StringRef specifier,const InputFile * f)372 static void addDependentLibrary(StringRef specifier, const InputFile *f) {
373 if (!config->dependentLibraries)
374 return;
375 if (std::optional<std::string> s = searchLibraryBaseName(specifier))
376 ctx.driver.addFile(saver().save(*s), /*withLOption=*/true);
377 else if (std::optional<std::string> s = findFromSearchPaths(specifier))
378 ctx.driver.addFile(saver().save(*s), /*withLOption=*/true);
379 else if (fs::exists(specifier))
380 ctx.driver.addFile(specifier, /*withLOption=*/false);
381 else
382 error(toString(f) +
383 ": unable to find library from dependent library specifier: " +
384 specifier);
385 }
386
387 // Record the membership of a section group so that in the garbage collection
388 // pass, section group members are kept or discarded as a unit.
389 template <class ELFT>
handleSectionGroup(ArrayRef<InputSectionBase * > sections,ArrayRef<typename ELFT::Word> entries)390 static void handleSectionGroup(ArrayRef<InputSectionBase *> sections,
391 ArrayRef<typename ELFT::Word> entries) {
392 bool hasAlloc = false;
393 for (uint32_t index : entries.slice(1)) {
394 if (index >= sections.size())
395 return;
396 if (InputSectionBase *s = sections[index])
397 if (s != &InputSection::discarded && s->flags & SHF_ALLOC)
398 hasAlloc = true;
399 }
400
401 // If any member has the SHF_ALLOC flag, the whole group is subject to garbage
402 // collection. See the comment in markLive(). This rule retains .debug_types
403 // and .rela.debug_types.
404 if (!hasAlloc)
405 return;
406
407 // Connect the members in a circular doubly-linked list via
408 // nextInSectionGroup.
409 InputSectionBase *head;
410 InputSectionBase *prev = nullptr;
411 for (uint32_t index : entries.slice(1)) {
412 InputSectionBase *s = sections[index];
413 if (!s || s == &InputSection::discarded)
414 continue;
415 if (prev)
416 prev->nextInSectionGroup = s;
417 else
418 head = s;
419 prev = s;
420 }
421 if (prev)
422 prev->nextInSectionGroup = head;
423 }
424
getDwarf()425 template <class ELFT> DWARFCache *ObjFile<ELFT>::getDwarf() {
426 llvm::call_once(initDwarf, [this]() {
427 dwarf = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
428 std::make_unique<LLDDwarfObj<ELFT>>(this), "",
429 [&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
430 [&](Error warning) {
431 warn(getName() + ": " + toString(std::move(warning)));
432 }));
433 });
434
435 return dwarf.get();
436 }
437
438 // Returns the pair of file name and line number describing location of data
439 // object (variable, array, etc) definition.
440 template <class ELFT>
441 std::optional<std::pair<std::string, unsigned>>
getVariableLoc(StringRef name)442 ObjFile<ELFT>::getVariableLoc(StringRef name) {
443 return getDwarf()->getVariableLoc(name);
444 }
445
446 // Returns source line information for a given offset
447 // using DWARF debug info.
448 template <class ELFT>
getDILineInfo(InputSectionBase * s,uint64_t offset)449 std::optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *s,
450 uint64_t offset) {
451 // Detect SectionIndex for specified section.
452 uint64_t sectionIndex = object::SectionedAddress::UndefSection;
453 ArrayRef<InputSectionBase *> sections = s->file->getSections();
454 for (uint64_t curIndex = 0; curIndex < sections.size(); ++curIndex) {
455 if (s == sections[curIndex]) {
456 sectionIndex = curIndex;
457 break;
458 }
459 }
460
461 return getDwarf()->getDILineInfo(offset, sectionIndex);
462 }
463
ELFFileBase(Kind k,ELFKind ekind,MemoryBufferRef mb)464 ELFFileBase::ELFFileBase(Kind k, ELFKind ekind, MemoryBufferRef mb)
465 : InputFile(k, mb) {
466 this->ekind = ekind;
467 }
468
469 template <typename Elf_Shdr>
findSection(ArrayRef<Elf_Shdr> sections,uint32_t type)470 static const Elf_Shdr *findSection(ArrayRef<Elf_Shdr> sections, uint32_t type) {
471 for (const Elf_Shdr &sec : sections)
472 if (sec.sh_type == type)
473 return &sec;
474 return nullptr;
475 }
476
init()477 void ELFFileBase::init() {
478 switch (ekind) {
479 case ELF32LEKind:
480 init<ELF32LE>(fileKind);
481 break;
482 case ELF32BEKind:
483 init<ELF32BE>(fileKind);
484 break;
485 case ELF64LEKind:
486 init<ELF64LE>(fileKind);
487 break;
488 case ELF64BEKind:
489 init<ELF64BE>(fileKind);
490 break;
491 default:
492 llvm_unreachable("getELFKind");
493 }
494 }
495
init(InputFile::Kind k)496 template <class ELFT> void ELFFileBase::init(InputFile::Kind k) {
497 using Elf_Shdr = typename ELFT::Shdr;
498 using Elf_Sym = typename ELFT::Sym;
499
500 // Initialize trivial attributes.
501 const ELFFile<ELFT> &obj = getObj<ELFT>();
502 emachine = obj.getHeader().e_machine;
503 osabi = obj.getHeader().e_ident[llvm::ELF::EI_OSABI];
504 abiVersion = obj.getHeader().e_ident[llvm::ELF::EI_ABIVERSION];
505
506 ArrayRef<Elf_Shdr> sections = CHECK(obj.sections(), this);
507 elfShdrs = sections.data();
508 numELFShdrs = sections.size();
509
510 // Find a symbol table.
511 const Elf_Shdr *symtabSec =
512 findSection(sections, k == SharedKind ? SHT_DYNSYM : SHT_SYMTAB);
513
514 if (!symtabSec)
515 return;
516
517 // Initialize members corresponding to a symbol table.
518 firstGlobal = symtabSec->sh_info;
519
520 ArrayRef<Elf_Sym> eSyms = CHECK(obj.symbols(symtabSec), this);
521 if (firstGlobal == 0 || firstGlobal > eSyms.size())
522 fatal(toString(this) + ": invalid sh_info in symbol table");
523
524 elfSyms = reinterpret_cast<const void *>(eSyms.data());
525 numELFSyms = uint32_t(eSyms.size());
526 stringTable = CHECK(obj.getStringTableForSymtab(*symtabSec, sections), this);
527 }
528
529 template <class ELFT>
getSectionIndex(const Elf_Sym & sym) const530 uint32_t ObjFile<ELFT>::getSectionIndex(const Elf_Sym &sym) const {
531 return CHECK(
532 this->getObj().getSectionIndex(sym, getELFSyms<ELFT>(), shndxTable),
533 this);
534 }
535
parse(bool ignoreComdats)536 template <class ELFT> void ObjFile<ELFT>::parse(bool ignoreComdats) {
537 object::ELFFile<ELFT> obj = this->getObj();
538 // Read a section table. justSymbols is usually false.
539 if (this->justSymbols) {
540 initializeJustSymbols();
541 initializeSymbols(obj);
542 return;
543 }
544
545 // Handle dependent libraries and selection of section groups as these are not
546 // done in parallel.
547 ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>();
548 StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this);
549 uint64_t size = objSections.size();
550 sections.resize(size);
551 for (size_t i = 0; i != size; ++i) {
552 const Elf_Shdr &sec = objSections[i];
553 if (sec.sh_type == SHT_LLVM_DEPENDENT_LIBRARIES && !config->relocatable) {
554 StringRef name = check(obj.getSectionName(sec, shstrtab));
555 ArrayRef<char> data = CHECK(
556 this->getObj().template getSectionContentsAsArray<char>(sec), this);
557 if (!data.empty() && data.back() != '\0') {
558 error(
559 toString(this) +
560 ": corrupted dependent libraries section (unterminated string): " +
561 name);
562 } else {
563 for (const char *d = data.begin(), *e = data.end(); d < e;) {
564 StringRef s(d);
565 addDependentLibrary(s, this);
566 d += s.size() + 1;
567 }
568 }
569 this->sections[i] = &InputSection::discarded;
570 continue;
571 }
572
573 if (sec.sh_type == SHT_ARM_ATTRIBUTES && config->emachine == EM_ARM) {
574 ARMAttributeParser attributes;
575 ArrayRef<uint8_t> contents =
576 check(this->getObj().getSectionContents(sec));
577 StringRef name = check(obj.getSectionName(sec, shstrtab));
578 this->sections[i] = &InputSection::discarded;
579 if (Error e =
580 attributes.parse(contents, ekind == ELF32LEKind ? support::little
581 : support::big)) {
582 InputSection isec(*this, sec, name);
583 warn(toString(&isec) + ": " + llvm::toString(std::move(e)));
584 } else {
585 updateSupportedARMFeatures(attributes);
586 updateARMVFPArgs(attributes, this);
587
588 // FIXME: Retain the first attribute section we see. The eglibc ARM
589 // dynamic loaders require the presence of an attribute section for
590 // dlopen to work. In a full implementation we would merge all attribute
591 // sections.
592 if (in.attributes == nullptr) {
593 in.attributes = std::make_unique<InputSection>(*this, sec, name);
594 this->sections[i] = in.attributes.get();
595 }
596 }
597 }
598
599 if (sec.sh_type != SHT_GROUP)
600 continue;
601 StringRef signature = getShtGroupSignature(objSections, sec);
602 ArrayRef<Elf_Word> entries =
603 CHECK(obj.template getSectionContentsAsArray<Elf_Word>(sec), this);
604 if (entries.empty())
605 fatal(toString(this) + ": empty SHT_GROUP");
606
607 Elf_Word flag = entries[0];
608 if (flag && flag != GRP_COMDAT)
609 fatal(toString(this) + ": unsupported SHT_GROUP format");
610
611 bool keepGroup =
612 (flag & GRP_COMDAT) == 0 || ignoreComdats ||
613 symtab.comdatGroups.try_emplace(CachedHashStringRef(signature), this)
614 .second;
615 if (keepGroup) {
616 if (config->relocatable)
617 this->sections[i] = createInputSection(
618 i, sec, check(obj.getSectionName(sec, shstrtab)));
619 continue;
620 }
621
622 // Otherwise, discard group members.
623 for (uint32_t secIndex : entries.slice(1)) {
624 if (secIndex >= size)
625 fatal(toString(this) +
626 ": invalid section index in group: " + Twine(secIndex));
627 this->sections[secIndex] = &InputSection::discarded;
628 }
629 }
630
631 // Read a symbol table.
632 initializeSymbols(obj);
633 }
634
635 // Sections with SHT_GROUP and comdat bits define comdat section groups.
636 // They are identified and deduplicated by group name. This function
637 // returns a group name.
638 template <class ELFT>
getShtGroupSignature(ArrayRef<Elf_Shdr> sections,const Elf_Shdr & sec)639 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> sections,
640 const Elf_Shdr &sec) {
641 typename ELFT::SymRange symbols = this->getELFSyms<ELFT>();
642 if (sec.sh_info >= symbols.size())
643 fatal(toString(this) + ": invalid symbol index");
644 const typename ELFT::Sym &sym = symbols[sec.sh_info];
645 return CHECK(sym.getName(this->stringTable), this);
646 }
647
648 template <class ELFT>
shouldMerge(const Elf_Shdr & sec,StringRef name)649 bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &sec, StringRef name) {
650 // On a regular link we don't merge sections if -O0 (default is -O1). This
651 // sometimes makes the linker significantly faster, although the output will
652 // be bigger.
653 //
654 // Doing the same for -r would create a problem as it would combine sections
655 // with different sh_entsize. One option would be to just copy every SHF_MERGE
656 // section as is to the output. While this would produce a valid ELF file with
657 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when
658 // they see two .debug_str. We could have separate logic for combining
659 // SHF_MERGE sections based both on their name and sh_entsize, but that seems
660 // to be more trouble than it is worth. Instead, we just use the regular (-O1)
661 // logic for -r.
662 if (config->optimize == 0 && !config->relocatable)
663 return false;
664
665 // A mergeable section with size 0 is useless because they don't have
666 // any data to merge. A mergeable string section with size 0 can be
667 // argued as invalid because it doesn't end with a null character.
668 // We'll avoid a mess by handling them as if they were non-mergeable.
669 if (sec.sh_size == 0)
670 return false;
671
672 // Check for sh_entsize. The ELF spec is not clear about the zero
673 // sh_entsize. It says that "the member [sh_entsize] contains 0 if
674 // the section does not hold a table of fixed-size entries". We know
675 // that Rust 1.13 produces a string mergeable section with a zero
676 // sh_entsize. Here we just accept it rather than being picky about it.
677 uint64_t entSize = sec.sh_entsize;
678 if (entSize == 0)
679 return false;
680 if (sec.sh_size % entSize)
681 fatal(toString(this) + ":(" + name + "): SHF_MERGE section size (" +
682 Twine(sec.sh_size) + ") must be a multiple of sh_entsize (" +
683 Twine(entSize) + ")");
684
685 if (sec.sh_flags & SHF_WRITE)
686 fatal(toString(this) + ":(" + name +
687 "): writable SHF_MERGE section is not supported");
688
689 return true;
690 }
691
692 // This is for --just-symbols.
693 //
694 // --just-symbols is a very minor feature that allows you to link your
695 // output against other existing program, so that if you load both your
696 // program and the other program into memory, your output can refer the
697 // other program's symbols.
698 //
699 // When the option is given, we link "just symbols". The section table is
700 // initialized with null pointers.
initializeJustSymbols()701 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() {
702 sections.resize(numELFShdrs);
703 }
704
705 template <class ELFT>
initializeSections(bool ignoreComdats,const llvm::object::ELFFile<ELFT> & obj)706 void ObjFile<ELFT>::initializeSections(bool ignoreComdats,
707 const llvm::object::ELFFile<ELFT> &obj) {
708 ArrayRef<Elf_Shdr> objSections = getELFShdrs<ELFT>();
709 StringRef shstrtab = CHECK(obj.getSectionStringTable(objSections), this);
710 uint64_t size = objSections.size();
711 SmallVector<ArrayRef<Elf_Word>, 0> selectedGroups;
712 for (size_t i = 0; i != size; ++i) {
713 if (this->sections[i] == &InputSection::discarded)
714 continue;
715 const Elf_Shdr &sec = objSections[i];
716
717 // SHF_EXCLUDE'ed sections are discarded by the linker. However,
718 // if -r is given, we'll let the final link discard such sections.
719 // This is compatible with GNU.
720 if ((sec.sh_flags & SHF_EXCLUDE) && !config->relocatable) {
721 if (sec.sh_type == SHT_LLVM_CALL_GRAPH_PROFILE)
722 cgProfileSectionIndex = i;
723 if (sec.sh_type == SHT_LLVM_ADDRSIG) {
724 // We ignore the address-significance table if we know that the object
725 // file was created by objcopy or ld -r. This is because these tools
726 // will reorder the symbols in the symbol table, invalidating the data
727 // in the address-significance table, which refers to symbols by index.
728 if (sec.sh_link != 0)
729 this->addrsigSec = &sec;
730 else if (config->icf == ICFLevel::Safe)
731 warn(toString(this) +
732 ": --icf=safe conservatively ignores "
733 "SHT_LLVM_ADDRSIG [index " +
734 Twine(i) +
735 "] with sh_link=0 "
736 "(likely created using objcopy or ld -r)");
737 }
738 this->sections[i] = &InputSection::discarded;
739 continue;
740 }
741
742 switch (sec.sh_type) {
743 case SHT_GROUP: {
744 if (!config->relocatable)
745 sections[i] = &InputSection::discarded;
746 StringRef signature =
747 cantFail(this->getELFSyms<ELFT>()[sec.sh_info].getName(stringTable));
748 ArrayRef<Elf_Word> entries =
749 cantFail(obj.template getSectionContentsAsArray<Elf_Word>(sec));
750 if ((entries[0] & GRP_COMDAT) == 0 || ignoreComdats ||
751 symtab.comdatGroups.find(CachedHashStringRef(signature))->second ==
752 this)
753 selectedGroups.push_back(entries);
754 break;
755 }
756 case SHT_SYMTAB_SHNDX:
757 shndxTable = CHECK(obj.getSHNDXTable(sec, objSections), this);
758 break;
759 case SHT_SYMTAB:
760 case SHT_STRTAB:
761 case SHT_REL:
762 case SHT_RELA:
763 case SHT_NULL:
764 break;
765 case SHT_PROGBITS: {
766 this->sections[i] = createInputSection(i, sec, check(obj.getSectionName(sec, shstrtab)));
767 StringRef name = check(obj.getSectionName(sec, shstrtab));
768 ArrayRef<char> data =
769 CHECK(obj.template getSectionContentsAsArray<char>(sec), this);
770 parseGNUWarning(name, data, sec.sh_size);
771 }
772 break;
773 case SHT_LLVM_SYMPART:
774 ctx.hasSympart.store(true, std::memory_order_relaxed);
775 [[fallthrough]];
776 default:
777 this->sections[i] =
778 createInputSection(i, sec, check(obj.getSectionName(sec, shstrtab)));
779 }
780 }
781
782 // We have a second loop. It is used to:
783 // 1) handle SHF_LINK_ORDER sections.
784 // 2) create SHT_REL[A] sections. In some cases the section header index of a
785 // relocation section may be smaller than that of the relocated section. In
786 // such cases, the relocation section would attempt to reference a target
787 // section that has not yet been created. For simplicity, delay creation of
788 // relocation sections until now.
789 for (size_t i = 0; i != size; ++i) {
790 if (this->sections[i] == &InputSection::discarded)
791 continue;
792 const Elf_Shdr &sec = objSections[i];
793
794 if (sec.sh_type == SHT_REL || sec.sh_type == SHT_RELA) {
795 // Find a relocation target section and associate this section with that.
796 // Target may have been discarded if it is in a different section group
797 // and the group is discarded, even though it's a violation of the spec.
798 // We handle that situation gracefully by discarding dangling relocation
799 // sections.
800 const uint32_t info = sec.sh_info;
801 InputSectionBase *s = getRelocTarget(i, sec, info);
802 if (!s)
803 continue;
804
805 // ELF spec allows mergeable sections with relocations, but they are rare,
806 // and it is in practice hard to merge such sections by contents, because
807 // applying relocations at end of linking changes section contents. So, we
808 // simply handle such sections as non-mergeable ones. Degrading like this
809 // is acceptable because section merging is optional.
810 if (auto *ms = dyn_cast<MergeInputSection>(s)) {
811 s = makeThreadLocal<InputSection>(
812 ms->file, ms->flags, ms->type, ms->addralign,
813 ms->contentMaybeDecompress(), ms->name);
814 sections[info] = s;
815 }
816
817 if (s->relSecIdx != 0)
818 error(
819 toString(s) +
820 ": multiple relocation sections to one section are not supported");
821 s->relSecIdx = i;
822
823 // Relocation sections are usually removed from the output, so return
824 // `nullptr` for the normal case. However, if -r or --emit-relocs is
825 // specified, we need to copy them to the output. (Some post link analysis
826 // tools specify --emit-relocs to obtain the information.)
827 if (config->copyRelocs) {
828 auto *isec = makeThreadLocal<InputSection>(
829 *this, sec, check(obj.getSectionName(sec, shstrtab)));
830 // If the relocated section is discarded (due to /DISCARD/ or
831 // --gc-sections), the relocation section should be discarded as well.
832 s->dependentSections.push_back(isec);
833 sections[i] = isec;
834 }
835 continue;
836 }
837
838 // A SHF_LINK_ORDER section with sh_link=0 is handled as if it did not have
839 // the flag.
840 if (!sec.sh_link || !(sec.sh_flags & SHF_LINK_ORDER))
841 continue;
842
843 InputSectionBase *linkSec = nullptr;
844 if (sec.sh_link < size)
845 linkSec = this->sections[sec.sh_link];
846 if (!linkSec)
847 fatal(toString(this) + ": invalid sh_link index: " + Twine(sec.sh_link));
848
849 // A SHF_LINK_ORDER section is discarded if its linked-to section is
850 // discarded.
851 InputSection *isec = cast<InputSection>(this->sections[i]);
852 linkSec->dependentSections.push_back(isec);
853 if (!isa<InputSection>(linkSec))
854 error("a section " + isec->name +
855 " with SHF_LINK_ORDER should not refer a non-regular section: " +
856 toString(linkSec));
857 }
858
859 for (ArrayRef<Elf_Word> entries : selectedGroups)
860 handleSectionGroup<ELFT>(this->sections, entries);
861 }
862
863 // If a source file is compiled with x86 hardware-assisted call flow control
864 // enabled, the generated object file contains feature flags indicating that
865 // fact. This function reads the feature flags and returns it.
866 //
867 // Essentially we want to read a single 32-bit value in this function, but this
868 // function is rather complicated because the value is buried deep inside a
869 // .note.gnu.property section.
870 //
871 // The section consists of one or more NOTE records. Each NOTE record consists
872 // of zero or more type-length-value fields. We want to find a field of a
873 // certain type. It seems a bit too much to just store a 32-bit value, perhaps
874 // the ABI is unnecessarily complicated.
readAndFeatures(const InputSection & sec)875 template <class ELFT> static uint32_t readAndFeatures(const InputSection &sec) {
876 using Elf_Nhdr = typename ELFT::Nhdr;
877 using Elf_Note = typename ELFT::Note;
878
879 uint32_t featuresSet = 0;
880 ArrayRef<uint8_t> data = sec.content();
881 auto reportFatal = [&](const uint8_t *place, const char *msg) {
882 fatal(toString(sec.file) + ":(" + sec.name + "+0x" +
883 Twine::utohexstr(place - sec.content().data()) + "): " + msg);
884 };
885 while (!data.empty()) {
886 // Read one NOTE record.
887 auto *nhdr = reinterpret_cast<const Elf_Nhdr *>(data.data());
888 if (data.size() < sizeof(Elf_Nhdr) || data.size() < nhdr->getSize())
889 reportFatal(data.data(), "data is too short");
890
891 Elf_Note note(*nhdr);
892 if (nhdr->n_type != NT_GNU_PROPERTY_TYPE_0 || note.getName() != "GNU") {
893 data = data.slice(nhdr->getSize());
894 continue;
895 }
896
897 uint32_t featureAndType = config->emachine == EM_AARCH64
898 ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
899 : GNU_PROPERTY_X86_FEATURE_1_AND;
900
901 // Read a body of a NOTE record, which consists of type-length-value fields.
902 ArrayRef<uint8_t> desc = note.getDesc();
903 while (!desc.empty()) {
904 const uint8_t *place = desc.data();
905 if (desc.size() < 8)
906 reportFatal(place, "program property is too short");
907 uint32_t type = read32<ELFT::TargetEndianness>(desc.data());
908 uint32_t size = read32<ELFT::TargetEndianness>(desc.data() + 4);
909 desc = desc.slice(8);
910 if (desc.size() < size)
911 reportFatal(place, "program property is too short");
912
913 if (type == featureAndType) {
914 // We found a FEATURE_1_AND field. There may be more than one of these
915 // in a .note.gnu.property section, for a relocatable object we
916 // accumulate the bits set.
917 if (size < 4)
918 reportFatal(place, "FEATURE_1_AND entry is too short");
919 featuresSet |= read32<ELFT::TargetEndianness>(desc.data());
920 }
921
922 // Padding is present in the note descriptor, if necessary.
923 desc = desc.slice(alignTo<(ELFT::Is64Bits ? 8 : 4)>(size));
924 }
925
926 // Go to next NOTE record to look for more FEATURE_1_AND descriptions.
927 data = data.slice(nhdr->getSize());
928 }
929
930 return featuresSet;
931 }
932
933 template <class ELFT>
getRelocTarget(uint32_t idx,const Elf_Shdr & sec,uint32_t info)934 InputSectionBase *ObjFile<ELFT>::getRelocTarget(uint32_t idx,
935 const Elf_Shdr &sec,
936 uint32_t info) {
937 if (info < this->sections.size()) {
938 InputSectionBase *target = this->sections[info];
939
940 // Strictly speaking, a relocation section must be included in the
941 // group of the section it relocates. However, LLVM 3.3 and earlier
942 // would fail to do so, so we gracefully handle that case.
943 if (target == &InputSection::discarded)
944 return nullptr;
945
946 if (target != nullptr)
947 return target;
948 }
949
950 error(toString(this) + Twine(": relocation section (index ") + Twine(idx) +
951 ") has invalid sh_info (" + Twine(info) + ")");
952 return nullptr;
953 }
954
955 // The function may be called concurrently for different input files. For
956 // allocation, prefer makeThreadLocal which does not require holding a lock.
957 template <class ELFT>
createInputSection(uint32_t idx,const Elf_Shdr & sec,StringRef name)958 InputSectionBase *ObjFile<ELFT>::createInputSection(uint32_t idx,
959 const Elf_Shdr &sec,
960 StringRef name) {
961 if (name.startswith(".n")) {
962 // The GNU linker uses .note.GNU-stack section as a marker indicating
963 // that the code in the object file does not expect that the stack is
964 // executable (in terms of NX bit). If all input files have the marker,
965 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to
966 // make the stack non-executable. Most object files have this section as
967 // of 2017.
968 //
969 // But making the stack non-executable is a norm today for security
970 // reasons. Failure to do so may result in a serious security issue.
971 // Therefore, we make LLD always add PT_GNU_STACK unless it is
972 // explicitly told to do otherwise (by -z execstack). Because the stack
973 // executable-ness is controlled solely by command line options,
974 // .note.GNU-stack sections are simply ignored.
975 if (name == ".note.GNU-stack")
976 return &InputSection::discarded;
977
978 // Object files that use processor features such as Intel Control-Flow
979 // Enforcement (CET) or AArch64 Branch Target Identification BTI, use a
980 // .note.gnu.property section containing a bitfield of feature bits like the
981 // GNU_PROPERTY_X86_FEATURE_1_IBT flag. Read a bitmap containing the flag.
982 //
983 // Since we merge bitmaps from multiple object files to create a new
984 // .note.gnu.property containing a single AND'ed bitmap, we discard an input
985 // file's .note.gnu.property section.
986 if (name == ".note.gnu.property") {
987 this->andFeatures = readAndFeatures<ELFT>(InputSection(*this, sec, name));
988 return &InputSection::discarded;
989 }
990
991 // Split stacks is a feature to support a discontiguous stack,
992 // commonly used in the programming language Go. For the details,
993 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled
994 // for split stack will include a .note.GNU-split-stack section.
995 if (name == ".note.GNU-split-stack") {
996 if (config->relocatable) {
997 error(
998 "cannot mix split-stack and non-split-stack in a relocatable link");
999 return &InputSection::discarded;
1000 }
1001 this->splitStack = true;
1002 return &InputSection::discarded;
1003 }
1004
1005 // An object file compiled for split stack, but where some of the
1006 // functions were compiled with the no_split_stack_attribute will
1007 // include a .note.GNU-no-split-stack section.
1008 if (name == ".note.GNU-no-split-stack") {
1009 this->someNoSplitStack = true;
1010 return &InputSection::discarded;
1011 }
1012
1013 // Strip existing .note.gnu.build-id sections so that the output won't have
1014 // more than one build-id. This is not usually a problem because input
1015 // object files normally don't have .build-id sections, but you can create
1016 // such files by "ld.{bfd,gold,lld} -r --build-id", and we want to guard
1017 // against it.
1018 if (name == ".note.gnu.build-id")
1019 return &InputSection::discarded;
1020 }
1021
1022 // The linker merges EH (exception handling) frames and creates a
1023 // .eh_frame_hdr section for runtime. So we handle them with a special
1024 // class. For relocatable outputs, they are just passed through.
1025 if (name == ".eh_frame" && !config->relocatable)
1026 return makeThreadLocal<EhInputSection>(*this, sec, name);
1027
1028 if ((sec.sh_flags & SHF_MERGE) && shouldMerge(sec, name))
1029 return makeThreadLocal<MergeInputSection>(*this, sec, name);
1030 return makeThreadLocal<InputSection>(*this, sec, name);
1031 }
1032
1033 // Initialize this->Symbols. this->Symbols is a parallel array as
1034 // its corresponding ELF symbol table.
1035 template <class ELFT>
initializeSymbols(const object::ELFFile<ELFT> & obj)1036 void ObjFile<ELFT>::initializeSymbols(const object::ELFFile<ELFT> &obj) {
1037 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1038 if (numSymbols == 0) {
1039 numSymbols = eSyms.size();
1040 symbols = std::make_unique<Symbol *[]>(numSymbols);
1041 }
1042
1043 // Some entries have been filled by LazyObjFile.
1044 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i)
1045 if (!symbols[i])
1046 symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this));
1047
1048 // Perform symbol resolution on non-local symbols.
1049 SmallVector<unsigned, 32> undefineds;
1050 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1051 const Elf_Sym &eSym = eSyms[i];
1052 uint32_t secIdx = eSym.st_shndx;
1053 if (secIdx == SHN_UNDEF) {
1054 undefineds.push_back(i);
1055 continue;
1056 }
1057
1058 uint8_t binding = eSym.getBinding();
1059 uint8_t stOther = eSym.st_other;
1060 uint8_t type = eSym.getType();
1061 uint64_t value = eSym.st_value;
1062 uint64_t size = eSym.st_size;
1063
1064 Symbol *sym = symbols[i];
1065 sym->isUsedInRegularObj = true;
1066 if (LLVM_UNLIKELY(eSym.st_shndx == SHN_COMMON)) {
1067 if (value == 0 || value >= UINT32_MAX)
1068 fatal(toString(this) + ": common symbol '" + sym->getName() +
1069 "' has invalid alignment: " + Twine(value));
1070 hasCommonSyms = true;
1071 sym->resolve(
1072 CommonSymbol{this, StringRef(), binding, stOther, type, value, size});
1073 continue;
1074 }
1075
1076 // Handle global defined symbols. Defined::section will be set in postParse.
1077 sym->resolve(Defined{this, StringRef(), binding, stOther, type, value, size,
1078 nullptr});
1079 }
1080
1081 // Undefined symbols (excluding those defined relative to non-prevailing
1082 // sections) can trigger recursive extract. Process defined symbols first so
1083 // that the relative order between a defined symbol and an undefined symbol
1084 // does not change the symbol resolution behavior. In addition, a set of
1085 // interconnected symbols will all be resolved to the same file, instead of
1086 // being resolved to different files.
1087 for (unsigned i : undefineds) {
1088 const Elf_Sym &eSym = eSyms[i];
1089 Symbol *sym = symbols[i];
1090 sym->resolve(Undefined{this, StringRef(), eSym.getBinding(), eSym.st_other,
1091 eSym.getType()});
1092 sym->isUsedInRegularObj = true;
1093 sym->referenced = true;
1094 }
1095 }
1096
1097 template <class ELFT>
initSectionsAndLocalSyms(bool ignoreComdats)1098 void ObjFile<ELFT>::initSectionsAndLocalSyms(bool ignoreComdats) {
1099 if (!justSymbols)
1100 initializeSections(ignoreComdats, getObj());
1101
1102 if (!firstGlobal)
1103 return;
1104 SymbolUnion *locals = makeThreadLocalN<SymbolUnion>(firstGlobal);
1105 memset(locals, 0, sizeof(SymbolUnion) * firstGlobal);
1106
1107 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1108 for (size_t i = 0, end = firstGlobal; i != end; ++i) {
1109 const Elf_Sym &eSym = eSyms[i];
1110 uint32_t secIdx = eSym.st_shndx;
1111 if (LLVM_UNLIKELY(secIdx == SHN_XINDEX))
1112 secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable));
1113 else if (secIdx >= SHN_LORESERVE)
1114 secIdx = 0;
1115 if (LLVM_UNLIKELY(secIdx >= sections.size()))
1116 fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1117 if (LLVM_UNLIKELY(eSym.getBinding() != STB_LOCAL))
1118 error(toString(this) + ": non-local symbol (" + Twine(i) +
1119 ") found at index < .symtab's sh_info (" + Twine(end) + ")");
1120
1121 InputSectionBase *sec = sections[secIdx];
1122 uint8_t type = eSym.getType();
1123 if (type == STT_FILE)
1124 sourceFile = CHECK(eSym.getName(stringTable), this);
1125 if (LLVM_UNLIKELY(stringTable.size() <= eSym.st_name))
1126 fatal(toString(this) + ": invalid symbol name offset");
1127 StringRef name(stringTable.data() + eSym.st_name);
1128
1129 symbols[i] = reinterpret_cast<Symbol *>(locals + i);
1130 if (eSym.st_shndx == SHN_UNDEF || sec == &InputSection::discarded)
1131 new (symbols[i]) Undefined(this, name, STB_LOCAL, eSym.st_other, type,
1132 /*discardedSecIdx=*/secIdx);
1133 else
1134 new (symbols[i]) Defined(this, name, STB_LOCAL, eSym.st_other, type,
1135 eSym.st_value, eSym.st_size, sec);
1136 symbols[i]->partition = 1;
1137 symbols[i]->isUsedInRegularObj = true;
1138 }
1139 }
1140
1141 // Called after all ObjFile::parse is called for all ObjFiles. This checks
1142 // duplicate symbols and may do symbol property merge in the future.
postParse()1143 template <class ELFT> void ObjFile<ELFT>::postParse() {
1144 static std::mutex mu;
1145 ArrayRef<Elf_Sym> eSyms = this->getELFSyms<ELFT>();
1146 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1147 const Elf_Sym &eSym = eSyms[i];
1148 Symbol &sym = *symbols[i];
1149 uint32_t secIdx = eSym.st_shndx;
1150 uint8_t binding = eSym.getBinding();
1151 if (LLVM_UNLIKELY(binding != STB_GLOBAL && binding != STB_WEAK &&
1152 binding != STB_GNU_UNIQUE))
1153 errorOrWarn(toString(this) + ": symbol (" + Twine(i) +
1154 ") has invalid binding: " + Twine((int)binding));
1155
1156 // st_value of STT_TLS represents the assigned offset, not the actual
1157 // address which is used by STT_FUNC and STT_OBJECT. STT_TLS symbols can
1158 // only be referenced by special TLS relocations. It is usually an error if
1159 // a STT_TLS symbol is replaced by a non-STT_TLS symbol, vice versa.
1160 if (LLVM_UNLIKELY(sym.isTls()) && eSym.getType() != STT_TLS &&
1161 eSym.getType() != STT_NOTYPE)
1162 errorOrWarn("TLS attribute mismatch: " + toString(sym) + "\n>>> in " +
1163 toString(sym.file) + "\n>>> in " + toString(this));
1164
1165 // Handle non-COMMON defined symbol below. !sym.file allows a symbol
1166 // assignment to redefine a symbol without an error.
1167 if (!sym.file || !sym.isDefined() || secIdx == SHN_UNDEF ||
1168 secIdx == SHN_COMMON)
1169 continue;
1170
1171 if (LLVM_UNLIKELY(secIdx == SHN_XINDEX))
1172 secIdx = check(getExtendedSymbolTableIndex<ELFT>(eSym, i, shndxTable));
1173 else if (secIdx >= SHN_LORESERVE)
1174 secIdx = 0;
1175 if (LLVM_UNLIKELY(secIdx >= sections.size()))
1176 fatal(toString(this) + ": invalid section index: " + Twine(secIdx));
1177 InputSectionBase *sec = sections[secIdx];
1178 if (sec == &InputSection::discarded) {
1179 if (sym.traced) {
1180 printTraceSymbol(Undefined{this, sym.getName(), sym.binding,
1181 sym.stOther, sym.type, secIdx},
1182 sym.getName());
1183 }
1184 if (sym.file == this) {
1185 std::lock_guard<std::mutex> lock(mu);
1186 ctx.nonPrevailingSyms.emplace_back(&sym, secIdx);
1187 }
1188 continue;
1189 }
1190
1191 if (sym.file == this) {
1192 cast<Defined>(sym).section = sec;
1193 continue;
1194 }
1195
1196 if (sym.binding == STB_WEAK || binding == STB_WEAK)
1197 continue;
1198 std::lock_guard<std::mutex> lock(mu);
1199 ctx.duplicates.push_back({&sym, this, sec, eSym.st_value});
1200 }
1201 }
1202
1203 // The handling of tentative definitions (COMMON symbols) in archives is murky.
1204 // A tentative definition will be promoted to a global definition if there are
1205 // no non-tentative definitions to dominate it. When we hold a tentative
1206 // definition to a symbol and are inspecting archive members for inclusion
1207 // there are 2 ways we can proceed:
1208 //
1209 // 1) Consider the tentative definition a 'real' definition (ie promotion from
1210 // tentative to real definition has already happened) and not inspect
1211 // archive members for Global/Weak definitions to replace the tentative
1212 // definition. An archive member would only be included if it satisfies some
1213 // other undefined symbol. This is the behavior Gold uses.
1214 //
1215 // 2) Consider the tentative definition as still undefined (ie the promotion to
1216 // a real definition happens only after all symbol resolution is done).
1217 // The linker searches archive members for STB_GLOBAL definitions to
1218 // replace the tentative definition with. This is the behavior used by
1219 // GNU ld.
1220 //
1221 // The second behavior is inherited from SysVR4, which based it on the FORTRAN
1222 // COMMON BLOCK model. This behavior is needed for proper initialization in old
1223 // (pre F90) FORTRAN code that is packaged into an archive.
1224 //
1225 // The following functions search archive members for definitions to replace
1226 // tentative definitions (implementing behavior 2).
isBitcodeNonCommonDef(MemoryBufferRef mb,StringRef symName,StringRef archiveName)1227 static bool isBitcodeNonCommonDef(MemoryBufferRef mb, StringRef symName,
1228 StringRef archiveName) {
1229 IRSymtabFile symtabFile = check(readIRSymtab(mb));
1230 for (const irsymtab::Reader::SymbolRef &sym :
1231 symtabFile.TheReader.symbols()) {
1232 if (sym.isGlobal() && sym.getName() == symName)
1233 return !sym.isUndefined() && !sym.isWeak() && !sym.isCommon();
1234 }
1235 return false;
1236 }
1237
1238 template <class ELFT>
isNonCommonDef(ELFKind ekind,MemoryBufferRef mb,StringRef symName,StringRef archiveName)1239 static bool isNonCommonDef(ELFKind ekind, MemoryBufferRef mb, StringRef symName,
1240 StringRef archiveName) {
1241 ObjFile<ELFT> *obj = make<ObjFile<ELFT>>(ekind, mb, archiveName);
1242 obj->init();
1243 StringRef stringtable = obj->getStringTable();
1244
1245 for (auto sym : obj->template getGlobalELFSyms<ELFT>()) {
1246 Expected<StringRef> name = sym.getName(stringtable);
1247 if (name && name.get() == symName)
1248 return sym.isDefined() && sym.getBinding() == STB_GLOBAL &&
1249 !sym.isCommon();
1250 }
1251 return false;
1252 }
1253
isNonCommonDef(MemoryBufferRef mb,StringRef symName,StringRef archiveName)1254 static bool isNonCommonDef(MemoryBufferRef mb, StringRef symName,
1255 StringRef archiveName) {
1256 switch (getELFKind(mb, archiveName)) {
1257 case ELF32LEKind:
1258 return isNonCommonDef<ELF32LE>(ELF32LEKind, mb, symName, archiveName);
1259 case ELF32BEKind:
1260 return isNonCommonDef<ELF32BE>(ELF32BEKind, mb, symName, archiveName);
1261 case ELF64LEKind:
1262 return isNonCommonDef<ELF64LE>(ELF64LEKind, mb, symName, archiveName);
1263 case ELF64BEKind:
1264 return isNonCommonDef<ELF64BE>(ELF64BEKind, mb, symName, archiveName);
1265 default:
1266 llvm_unreachable("getELFKind");
1267 }
1268 }
1269
1270 unsigned SharedFile::vernauxNum;
1271
SharedFile(MemoryBufferRef m,StringRef defaultSoName)1272 SharedFile::SharedFile(MemoryBufferRef m, StringRef defaultSoName)
1273 : ELFFileBase(SharedKind, getELFKind(m, ""), m), soName(defaultSoName),
1274 isNeeded(!config->asNeeded) {}
1275
1276 // Parse the version definitions in the object file if present, and return a
1277 // vector whose nth element contains a pointer to the Elf_Verdef for version
1278 // identifier n. Version identifiers that are not definitions map to nullptr.
1279 template <typename ELFT>
1280 static SmallVector<const void *, 0>
parseVerdefs(const uint8_t * base,const typename ELFT::Shdr * sec)1281 parseVerdefs(const uint8_t *base, const typename ELFT::Shdr *sec) {
1282 if (!sec)
1283 return {};
1284
1285 // Build the Verdefs array by following the chain of Elf_Verdef objects
1286 // from the start of the .gnu.version_d section.
1287 SmallVector<const void *, 0> verdefs;
1288 const uint8_t *verdef = base + sec->sh_offset;
1289 for (unsigned i = 0, e = sec->sh_info; i != e; ++i) {
1290 auto *curVerdef = reinterpret_cast<const typename ELFT::Verdef *>(verdef);
1291 verdef += curVerdef->vd_next;
1292 unsigned verdefIndex = curVerdef->vd_ndx;
1293 if (verdefIndex >= verdefs.size())
1294 verdefs.resize(verdefIndex + 1);
1295 verdefs[verdefIndex] = curVerdef;
1296 }
1297 return verdefs;
1298 }
1299
1300 // Parse SHT_GNU_verneed to properly set the name of a versioned undefined
1301 // symbol. We detect fatal issues which would cause vulnerabilities, but do not
1302 // implement sophisticated error checking like in llvm-readobj because the value
1303 // of such diagnostics is low.
1304 template <typename ELFT>
parseVerneed(const ELFFile<ELFT> & obj,const typename ELFT::Shdr * sec)1305 std::vector<uint32_t> SharedFile::parseVerneed(const ELFFile<ELFT> &obj,
1306 const typename ELFT::Shdr *sec) {
1307 if (!sec)
1308 return {};
1309 std::vector<uint32_t> verneeds;
1310 ArrayRef<uint8_t> data = CHECK(obj.getSectionContents(*sec), this);
1311 const uint8_t *verneedBuf = data.begin();
1312 for (unsigned i = 0; i != sec->sh_info; ++i) {
1313 if (verneedBuf + sizeof(typename ELFT::Verneed) > data.end())
1314 fatal(toString(this) + " has an invalid Verneed");
1315 auto *vn = reinterpret_cast<const typename ELFT::Verneed *>(verneedBuf);
1316 const uint8_t *vernauxBuf = verneedBuf + vn->vn_aux;
1317 for (unsigned j = 0; j != vn->vn_cnt; ++j) {
1318 if (vernauxBuf + sizeof(typename ELFT::Vernaux) > data.end())
1319 fatal(toString(this) + " has an invalid Vernaux");
1320 auto *aux = reinterpret_cast<const typename ELFT::Vernaux *>(vernauxBuf);
1321 if (aux->vna_name >= this->stringTable.size())
1322 fatal(toString(this) + " has a Vernaux with an invalid vna_name");
1323 uint16_t version = aux->vna_other & VERSYM_VERSION;
1324 if (version >= verneeds.size())
1325 verneeds.resize(version + 1);
1326 verneeds[version] = aux->vna_name;
1327 vernauxBuf += aux->vna_next;
1328 }
1329 verneedBuf += vn->vn_next;
1330 }
1331 return verneeds;
1332 }
1333
1334 // We do not usually care about alignments of data in shared object
1335 // files because the loader takes care of it. However, if we promote a
1336 // DSO symbol to point to .bss due to copy relocation, we need to keep
1337 // the original alignment requirements. We infer it in this function.
1338 template <typename ELFT>
getAlignment(ArrayRef<typename ELFT::Shdr> sections,const typename ELFT::Sym & sym)1339 static uint64_t getAlignment(ArrayRef<typename ELFT::Shdr> sections,
1340 const typename ELFT::Sym &sym) {
1341 uint64_t ret = UINT64_MAX;
1342 if (sym.st_value)
1343 ret = 1ULL << countTrailingZeros((uint64_t)sym.st_value);
1344 if (0 < sym.st_shndx && sym.st_shndx < sections.size())
1345 ret = std::min<uint64_t>(ret, sections[sym.st_shndx].sh_addralign);
1346 return (ret > UINT32_MAX) ? 0 : ret;
1347 }
1348
1349 // Fully parse the shared object file.
1350 //
1351 // This function parses symbol versions. If a DSO has version information,
1352 // the file has a ".gnu.version_d" section which contains symbol version
1353 // definitions. Each symbol is associated to one version through a table in
1354 // ".gnu.version" section. That table is a parallel array for the symbol
1355 // table, and each table entry contains an index in ".gnu.version_d".
1356 //
1357 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for
1358 // VER_NDX_GLOBAL. There's no table entry for these special versions in
1359 // ".gnu.version_d".
1360 //
1361 // The file format for symbol versioning is perhaps a bit more complicated
1362 // than necessary, but you can easily understand the code if you wrap your
1363 // head around the data structure described above.
parse()1364 template <class ELFT> void SharedFile::parse() {
1365 using Elf_Dyn = typename ELFT::Dyn;
1366 using Elf_Shdr = typename ELFT::Shdr;
1367 using Elf_Sym = typename ELFT::Sym;
1368 using Elf_Verdef = typename ELFT::Verdef;
1369 using Elf_Versym = typename ELFT::Versym;
1370
1371 ArrayRef<Elf_Dyn> dynamicTags;
1372 const ELFFile<ELFT> obj = this->getObj<ELFT>();
1373 ArrayRef<Elf_Shdr> sections = getELFShdrs<ELFT>();
1374
1375 StringRef sectionStringTable =
1376 CHECK(obj.getSectionStringTable(sections), this);
1377
1378 const Elf_Shdr *versymSec = nullptr;
1379 const Elf_Shdr *verdefSec = nullptr;
1380 const Elf_Shdr *verneedSec = nullptr;
1381
1382 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d.
1383 for (const Elf_Shdr &sec : sections) {
1384 switch (sec.sh_type) {
1385 default:
1386 continue;
1387 case SHT_DYNAMIC:
1388 dynamicTags =
1389 CHECK(obj.template getSectionContentsAsArray<Elf_Dyn>(sec), this);
1390 break;
1391 case SHT_GNU_versym:
1392 versymSec = &sec;
1393 break;
1394 case SHT_GNU_verdef:
1395 verdefSec = &sec;
1396 break;
1397 case SHT_GNU_verneed:
1398 verneedSec = &sec;
1399 break;
1400 case SHT_PROGBITS: {
1401 StringRef name = CHECK(obj.getSectionName(sec, sectionStringTable), this);
1402 ArrayRef<char> data =
1403 CHECK(obj.template getSectionContentsAsArray<char>(sec), this);
1404 parseGNUWarning(name, data, sec.sh_size);
1405 break;
1406 }
1407 }
1408 }
1409
1410 if (versymSec && numELFSyms == 0) {
1411 error("SHT_GNU_versym should be associated with symbol table");
1412 return;
1413 }
1414
1415 // Search for a DT_SONAME tag to initialize this->soName.
1416 for (const Elf_Dyn &dyn : dynamicTags) {
1417 if (dyn.d_tag == DT_NEEDED) {
1418 uint64_t val = dyn.getVal();
1419 if (val >= this->stringTable.size())
1420 fatal(toString(this) + ": invalid DT_NEEDED entry");
1421 dtNeeded.push_back(this->stringTable.data() + val);
1422 } else if (dyn.d_tag == DT_SONAME) {
1423 uint64_t val = dyn.getVal();
1424 if (val >= this->stringTable.size())
1425 fatal(toString(this) + ": invalid DT_SONAME entry");
1426 soName = this->stringTable.data() + val;
1427 }
1428 }
1429
1430 // DSOs are uniquified not by filename but by soname.
1431 DenseMap<CachedHashStringRef, SharedFile *>::iterator it;
1432 bool wasInserted;
1433 std::tie(it, wasInserted) =
1434 symtab.soNames.try_emplace(CachedHashStringRef(soName), this);
1435
1436 // If a DSO appears more than once on the command line with and without
1437 // --as-needed, --no-as-needed takes precedence over --as-needed because a
1438 // user can add an extra DSO with --no-as-needed to force it to be added to
1439 // the dependency list.
1440 it->second->isNeeded |= isNeeded;
1441 if (!wasInserted)
1442 return;
1443
1444 ctx.sharedFiles.push_back(this);
1445
1446 verdefs = parseVerdefs<ELFT>(obj.base(), verdefSec);
1447 std::vector<uint32_t> verneeds = parseVerneed<ELFT>(obj, verneedSec);
1448
1449 // Parse ".gnu.version" section which is a parallel array for the symbol
1450 // table. If a given file doesn't have a ".gnu.version" section, we use
1451 // VER_NDX_GLOBAL.
1452 size_t size = numELFSyms - firstGlobal;
1453 std::vector<uint16_t> versyms(size, VER_NDX_GLOBAL);
1454 if (versymSec) {
1455 ArrayRef<Elf_Versym> versym =
1456 CHECK(obj.template getSectionContentsAsArray<Elf_Versym>(*versymSec),
1457 this)
1458 .slice(firstGlobal);
1459 for (size_t i = 0; i < size; ++i)
1460 versyms[i] = versym[i].vs_index;
1461 }
1462
1463 // System libraries can have a lot of symbols with versions. Using a
1464 // fixed buffer for computing the versions name (foo@ver) can save a
1465 // lot of allocations.
1466 SmallString<0> versionedNameBuffer;
1467
1468 // Add symbols to the symbol table.
1469 ArrayRef<Elf_Sym> syms = this->getGlobalELFSyms<ELFT>();
1470 for (size_t i = 0, e = syms.size(); i != e; ++i) {
1471 const Elf_Sym &sym = syms[i];
1472
1473 // ELF spec requires that all local symbols precede weak or global
1474 // symbols in each symbol table, and the index of first non-local symbol
1475 // is stored to sh_info. If a local symbol appears after some non-local
1476 // symbol, that's a violation of the spec.
1477 StringRef name = CHECK(sym.getName(stringTable), this);
1478 if (sym.getBinding() == STB_LOCAL) {
1479 errorOrWarn(toString(this) + ": invalid local symbol '" + name +
1480 "' in global part of symbol table");
1481 continue;
1482 }
1483
1484 const uint16_t ver = versyms[i], idx = ver & ~VERSYM_HIDDEN;
1485 if (sym.isUndefined()) {
1486 // For unversioned undefined symbols, VER_NDX_GLOBAL makes more sense but
1487 // as of binutils 2.34, GNU ld produces VER_NDX_LOCAL.
1488 if (ver != VER_NDX_LOCAL && ver != VER_NDX_GLOBAL) {
1489 if (idx >= verneeds.size()) {
1490 error("corrupt input file: version need index " + Twine(idx) +
1491 " for symbol " + name + " is out of bounds\n>>> defined in " +
1492 toString(this));
1493 continue;
1494 }
1495 StringRef verName = stringTable.data() + verneeds[idx];
1496 versionedNameBuffer.clear();
1497 name = saver().save(
1498 (name + "@" + verName).toStringRef(versionedNameBuffer));
1499 }
1500 Symbol *s = symtab.addSymbol(
1501 Undefined{this, name, sym.getBinding(), sym.st_other, sym.getType()});
1502 s->exportDynamic = true;
1503 if (s->isUndefined() && sym.getBinding() != STB_WEAK &&
1504 config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore)
1505 requiredSymbols.push_back(s);
1506 continue;
1507 }
1508
1509 if (ver == VER_NDX_LOCAL ||
1510 (ver != VER_NDX_GLOBAL && idx >= verdefs.size())) {
1511 // In GNU ld < 2.31 (before 3be08ea4728b56d35e136af4e6fd3086ade17764), the
1512 // MIPS port puts _gp_disp symbol into DSO files and incorrectly assigns
1513 // VER_NDX_LOCAL. Workaround this bug.
1514 if (config->emachine == EM_MIPS && name == "_gp_disp")
1515 continue;
1516 error("corrupt input file: version definition index " + Twine(idx) +
1517 " for symbol " + name + " is out of bounds\n>>> defined in " +
1518 toString(this));
1519 continue;
1520 }
1521
1522 uint32_t alignment = getAlignment<ELFT>(sections, sym);
1523 if (ver == idx) {
1524 auto *s = symtab.addSymbol(
1525 SharedSymbol{*this, name, sym.getBinding(), sym.st_other,
1526 sym.getType(), sym.st_value, sym.st_size, alignment});
1527 if (s->file == this)
1528 s->verdefIndex = ver;
1529 }
1530
1531 // Also add the symbol with the versioned name to handle undefined symbols
1532 // with explicit versions.
1533 if (ver == VER_NDX_GLOBAL)
1534 continue;
1535
1536 StringRef verName =
1537 stringTable.data() +
1538 reinterpret_cast<const Elf_Verdef *>(verdefs[idx])->getAux()->vda_name;
1539 versionedNameBuffer.clear();
1540 name = (name + "@" + verName).toStringRef(versionedNameBuffer);
1541 auto *s = symtab.addSymbol(
1542 SharedSymbol{*this, saver().save(name), sym.getBinding(), sym.st_other,
1543 sym.getType(), sym.st_value, sym.st_size, alignment});
1544 if (s->file == this)
1545 s->verdefIndex = idx;
1546 }
1547 }
1548
getBitcodeELFKind(const Triple & t)1549 static ELFKind getBitcodeELFKind(const Triple &t) {
1550 if (t.isLittleEndian())
1551 return t.isArch64Bit() ? ELF64LEKind : ELF32LEKind;
1552 return t.isArch64Bit() ? ELF64BEKind : ELF32BEKind;
1553 }
1554
getBitcodeMachineKind(StringRef path,const Triple & t)1555 static uint16_t getBitcodeMachineKind(StringRef path, const Triple &t) {
1556 switch (t.getArch()) {
1557 case Triple::aarch64:
1558 case Triple::aarch64_be:
1559 return EM_AARCH64;
1560 case Triple::amdgcn:
1561 case Triple::r600:
1562 return EM_AMDGPU;
1563 case Triple::arm:
1564 case Triple::thumb:
1565 return EM_ARM;
1566 case Triple::avr:
1567 return EM_AVR;
1568 case Triple::hexagon:
1569 return EM_HEXAGON;
1570 case Triple::mips:
1571 case Triple::mipsel:
1572 case Triple::mips64:
1573 case Triple::mips64el:
1574 return EM_MIPS;
1575 case Triple::msp430:
1576 return EM_MSP430;
1577 case Triple::ppc:
1578 case Triple::ppcle:
1579 return EM_PPC;
1580 case Triple::ppc64:
1581 case Triple::ppc64le:
1582 return EM_PPC64;
1583 case Triple::riscv32:
1584 case Triple::riscv64:
1585 return EM_RISCV;
1586 case Triple::x86:
1587 return t.isOSIAMCU() ? EM_IAMCU : EM_386;
1588 case Triple::x86_64:
1589 return EM_X86_64;
1590 default:
1591 error(path + ": could not infer e_machine from bitcode target triple " +
1592 t.str());
1593 return EM_NONE;
1594 }
1595 }
1596
getOsAbi(const Triple & t)1597 static uint8_t getOsAbi(const Triple &t) {
1598 switch (t.getOS()) {
1599 case Triple::AMDHSA:
1600 return ELF::ELFOSABI_AMDGPU_HSA;
1601 case Triple::AMDPAL:
1602 return ELF::ELFOSABI_AMDGPU_PAL;
1603 case Triple::Mesa3D:
1604 return ELF::ELFOSABI_AMDGPU_MESA3D;
1605 default:
1606 return ELF::ELFOSABI_NONE;
1607 }
1608 }
1609
BitcodeFile(MemoryBufferRef mb,StringRef archiveName,uint64_t offsetInArchive,bool lazy)1610 BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
1611 uint64_t offsetInArchive, bool lazy)
1612 : InputFile(BitcodeKind, mb) {
1613 this->archiveName = archiveName;
1614 this->lazy = lazy;
1615
1616 std::string path = mb.getBufferIdentifier().str();
1617 if (config->thinLTOIndexOnly)
1618 path = replaceThinLTOSuffix(mb.getBufferIdentifier());
1619
1620 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1621 // name. If two archives define two members with the same name, this
1622 // causes a collision which result in only one of the objects being taken
1623 // into consideration at LTO time (which very likely causes undefined
1624 // symbols later in the link stage). So we append file offset to make
1625 // filename unique.
1626 StringRef name = archiveName.empty()
1627 ? saver().save(path)
1628 : saver().save(archiveName + "(" + path::filename(path) +
1629 " at " + utostr(offsetInArchive) + ")");
1630 MemoryBufferRef mbref(mb.getBuffer(), name);
1631
1632 obj = CHECK(lto::InputFile::create(mbref), this);
1633
1634 Triple t(obj->getTargetTriple());
1635 ekind = getBitcodeELFKind(t);
1636 emachine = getBitcodeMachineKind(mb.getBufferIdentifier(), t);
1637 osabi = getOsAbi(t);
1638 }
1639
mapVisibility(GlobalValue::VisibilityTypes gvVisibility)1640 static uint8_t mapVisibility(GlobalValue::VisibilityTypes gvVisibility) {
1641 switch (gvVisibility) {
1642 case GlobalValue::DefaultVisibility:
1643 return STV_DEFAULT;
1644 case GlobalValue::HiddenVisibility:
1645 return STV_HIDDEN;
1646 case GlobalValue::ProtectedVisibility:
1647 return STV_PROTECTED;
1648 }
1649 llvm_unreachable("unknown visibility");
1650 }
1651
1652 static void
createBitcodeSymbol(Symbol * & sym,const std::vector<bool> & keptComdats,const lto::InputFile::Symbol & objSym,BitcodeFile & f)1653 createBitcodeSymbol(Symbol *&sym, const std::vector<bool> &keptComdats,
1654 const lto::InputFile::Symbol &objSym, BitcodeFile &f) {
1655 uint8_t binding = objSym.isWeak() ? STB_WEAK : STB_GLOBAL;
1656 uint8_t type = objSym.isTLS() ? STT_TLS : STT_NOTYPE;
1657 uint8_t visibility = mapVisibility(objSym.getVisibility());
1658
1659 if (!sym)
1660 sym = symtab.insert(saver().save(objSym.getName()));
1661
1662 int c = objSym.getComdatIndex();
1663 if (objSym.isUndefined() || (c != -1 && !keptComdats[c])) {
1664 Undefined newSym(&f, StringRef(), binding, visibility, type);
1665 sym->resolve(newSym);
1666 sym->referenced = true;
1667 return;
1668 }
1669
1670 if (objSym.isCommon()) {
1671 sym->resolve(CommonSymbol{&f, StringRef(), binding, visibility, STT_OBJECT,
1672 objSym.getCommonAlignment(),
1673 objSym.getCommonSize()});
1674 } else {
1675 Defined newSym(&f, StringRef(), binding, visibility, type, 0, 0, nullptr);
1676 if (objSym.canBeOmittedFromSymbolTable())
1677 newSym.exportDynamic = false;
1678 sym->resolve(newSym);
1679 }
1680 }
1681
parse()1682 void BitcodeFile::parse() {
1683 for (std::pair<StringRef, Comdat::SelectionKind> s : obj->getComdatTable()) {
1684 keptComdats.push_back(
1685 s.second == Comdat::NoDeduplicate ||
1686 symtab.comdatGroups.try_emplace(CachedHashStringRef(s.first), this)
1687 .second);
1688 }
1689
1690 if (numSymbols == 0) {
1691 numSymbols = obj->symbols().size();
1692 symbols = std::make_unique<Symbol *[]>(numSymbols);
1693 }
1694 // Process defined symbols first. See the comment in
1695 // ObjFile<ELFT>::initializeSymbols.
1696 for (auto [i, irSym] : llvm::enumerate(obj->symbols()))
1697 if (!irSym.isUndefined())
1698 createBitcodeSymbol(symbols[i], keptComdats, irSym, *this);
1699 for (auto [i, irSym] : llvm::enumerate(obj->symbols()))
1700 if (irSym.isUndefined())
1701 createBitcodeSymbol(symbols[i], keptComdats, irSym, *this);
1702
1703 for (auto l : obj->getDependentLibraries())
1704 addDependentLibrary(l, this);
1705 }
1706
parseLazy()1707 void BitcodeFile::parseLazy() {
1708 numSymbols = obj->symbols().size();
1709 symbols = std::make_unique<Symbol *[]>(numSymbols);
1710 for (auto [i, irSym] : llvm::enumerate(obj->symbols()))
1711 if (!irSym.isUndefined()) {
1712 auto *sym = symtab.insert(saver().save(irSym.getName()));
1713 sym->resolve(LazyObject{*this});
1714 symbols[i] = sym;
1715 }
1716 }
1717
postParse()1718 void BitcodeFile::postParse() {
1719 for (auto [i, irSym] : llvm::enumerate(obj->symbols())) {
1720 const Symbol &sym = *symbols[i];
1721 if (sym.file == this || !sym.isDefined() || irSym.isUndefined() ||
1722 irSym.isCommon() || irSym.isWeak())
1723 continue;
1724 int c = irSym.getComdatIndex();
1725 if (c != -1 && !keptComdats[c])
1726 continue;
1727 reportDuplicate(sym, this, nullptr, 0);
1728 }
1729 }
1730
parse()1731 void BinaryFile::parse() {
1732 ArrayRef<uint8_t> data = arrayRefFromStringRef(mb.getBuffer());
1733 auto *section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
1734 8, data, ".data");
1735 sections.push_back(section);
1736
1737 // For each input file foo that is embedded to a result as a binary
1738 // blob, we define _binary_foo_{start,end,size} symbols, so that
1739 // user programs can access blobs by name. Non-alphanumeric
1740 // characters in a filename are replaced with underscore.
1741 std::string s = "_binary_" + mb.getBufferIdentifier().str();
1742 for (size_t i = 0; i < s.size(); ++i)
1743 if (!isAlnum(s[i]))
1744 s[i] = '_';
1745
1746 llvm::StringSaver &saver = lld::saver();
1747
1748 symtab.addAndCheckDuplicate(Defined{nullptr, saver.save(s + "_start"),
1749 STB_GLOBAL, STV_DEFAULT, STT_OBJECT, 0, 0,
1750 section});
1751 symtab.addAndCheckDuplicate(Defined{nullptr, saver.save(s + "_end"),
1752 STB_GLOBAL, STV_DEFAULT, STT_OBJECT,
1753 data.size(), 0, section});
1754 symtab.addAndCheckDuplicate(Defined{nullptr, saver.save(s + "_size"),
1755 STB_GLOBAL, STV_DEFAULT, STT_OBJECT,
1756 data.size(), 0, nullptr});
1757 }
1758
createObjFile(MemoryBufferRef mb,StringRef archiveName,bool lazy)1759 ELFFileBase *elf::createObjFile(MemoryBufferRef mb, StringRef archiveName,
1760 bool lazy) {
1761 ELFFileBase *f;
1762 switch (getELFKind(mb, archiveName)) {
1763 case ELF32LEKind:
1764 f = make<ObjFile<ELF32LE>>(ELF32LEKind, mb, archiveName);
1765 break;
1766 case ELF32BEKind:
1767 f = make<ObjFile<ELF32BE>>(ELF32BEKind, mb, archiveName);
1768 break;
1769 case ELF64LEKind:
1770 f = make<ObjFile<ELF64LE>>(ELF64LEKind, mb, archiveName);
1771 break;
1772 case ELF64BEKind:
1773 f = make<ObjFile<ELF64BE>>(ELF64BEKind, mb, archiveName);
1774 break;
1775 default:
1776 llvm_unreachable("getELFKind");
1777 }
1778 f->init();
1779 f->lazy = lazy;
1780 return f;
1781 }
1782
parseLazy()1783 template <class ELFT> void ObjFile<ELFT>::parseLazy() {
1784 const ArrayRef<typename ELFT::Sym> eSyms = this->getELFSyms<ELFT>();
1785 numSymbols = eSyms.size();
1786 symbols = std::make_unique<Symbol *[]>(numSymbols);
1787
1788 // resolve() may trigger this->extract() if an existing symbol is an undefined
1789 // symbol. If that happens, this function has served its purpose, and we can
1790 // exit from the loop early.
1791 for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1792 if (eSyms[i].st_shndx == SHN_UNDEF)
1793 continue;
1794 symbols[i] = symtab.insert(CHECK(eSyms[i].getName(stringTable), this));
1795 symbols[i]->resolve(LazyObject{*this});
1796 if (!lazy)
1797 break;
1798 }
1799 }
1800
shouldExtractForCommon(StringRef name)1801 bool InputFile::shouldExtractForCommon(StringRef name) {
1802 if (isa<BitcodeFile>(this))
1803 return isBitcodeNonCommonDef(mb, name, archiveName);
1804
1805 return isNonCommonDef(mb, name, archiveName);
1806 }
1807
replaceThinLTOSuffix(StringRef path)1808 std::string elf::replaceThinLTOSuffix(StringRef path) {
1809 auto [suffix, repl] = config->thinLTOObjectSuffixReplace;
1810 if (path.consume_back(suffix))
1811 return (path + repl).str();
1812 return std::string(path);
1813 }
1814
1815 template class elf::ObjFile<ELF32LE>;
1816 template class elf::ObjFile<ELF32BE>;
1817 template class elf::ObjFile<ELF64LE>;
1818 template class elf::ObjFile<ELF64BE>;
1819
1820 template void SharedFile::parse<ELF32LE>();
1821 template void SharedFile::parse<ELF32BE>();
1822 template void SharedFile::parse<ELF64LE>();
1823 template void SharedFile::parse<ELF64BE>();
1824