1 #ifndef HALIDE_HALIDERUNTIME_H 2 #define HALIDE_HALIDERUNTIME_H 3 4 #ifndef COMPILING_HALIDE_RUNTIME 5 #include <stdbool.h> 6 #include <stddef.h> 7 #include <stdint.h> 8 #include <string.h> 9 #else 10 #include "runtime_internal.h" 11 #endif 12 13 #ifdef __cplusplus 14 // Forward declare type to allow naming typed handles. 15 // See Type.h for documentation. 16 template<typename T> 17 struct halide_handle_traits; 18 #endif 19 20 #ifdef __cplusplus 21 extern "C" { 22 #endif 23 24 #ifdef _MSC_VER 25 // Note that (for MSVC) you should not use "inline" along with HALIDE_ALWAYS_INLINE; 26 // it is not necessary, and may produce warnings for some build configurations. 27 #define HALIDE_ALWAYS_INLINE __forceinline 28 #define HALIDE_NEVER_INLINE __declspec(noinline) 29 #else 30 // Note that (for Posixy compilers) you should always use "inline" along with HALIDE_ALWAYS_INLINE; 31 // otherwise some corner-case scenarios may erroneously report link errors. 32 #define HALIDE_ALWAYS_INLINE inline __attribute__((always_inline)) 33 #define HALIDE_NEVER_INLINE __attribute__((noinline)) 34 #endif 35 36 #ifndef HALIDE_MUST_USE_RESULT 37 #ifdef __has_attribute 38 #if __has_attribute(nodiscard) 39 // C++17 or later 40 #define HALIDE_MUST_USE_RESULT [[nodiscard]] 41 #elif __has_attribute(warn_unused_result) 42 // Clang/GCC 43 #define HALIDE_MUST_USE_RESULT __attribute__((warn_unused_result)) 44 #else 45 #define HALIDE_MUST_USE_RESULT 46 #endif 47 #else 48 #define HALIDE_MUST_USE_RESULT 49 #endif 50 #endif 51 52 /** \file 53 * 54 * This file declares the routines used by Halide internally in its 55 * runtime. On platforms that support weak linking, these can be 56 * replaced with user-defined versions by defining an extern "C" 57 * function with the same name and signature. 58 * 59 * When doing Just In Time (JIT) compilation methods on the Func being 60 * compiled must be called instead. The corresponding methods are 61 * documented below. 62 * 63 * All of these functions take a "void *user_context" parameter as their 64 * first argument; if the Halide kernel that calls back to any of these 65 * functions has been compiled with the UserContext feature set on its Target, 66 * then the value of that pointer passed from the code that calls the 67 * Halide kernel is piped through to the function. 68 * 69 * Some of these are also useful to call when using the default 70 * implementation. E.g. halide_shutdown_thread_pool. 71 * 72 * Note that even on platforms with weak linking, some linker setups 73 * may not respect the override you provide. E.g. if the override is 74 * in a shared library and the halide object files are linked directly 75 * into the output, the builtin versions of the runtime functions will 76 * be called. See your linker documentation for more details. On 77 * Linux, LD_DYNAMIC_WEAK=1 may help. 78 * 79 */ 80 81 // Forward-declare to suppress warnings if compiling as C. 82 struct halide_buffer_t; 83 84 /** Print a message to stderr. Main use is to support tracing 85 * functionality, print, and print_when calls. Also called by the default 86 * halide_error. This function can be replaced in JITed code by using 87 * halide_custom_print and providing an implementation of halide_print 88 * in AOT code. See Func::set_custom_print. 89 */ 90 // @{ 91 extern void halide_print(void *user_context, const char *); 92 extern void halide_default_print(void *user_context, const char *); 93 typedef void (*halide_print_t)(void *, const char *); 94 extern halide_print_t halide_set_custom_print(halide_print_t print); 95 // @} 96 97 /** Halide calls this function on runtime errors (for example bounds 98 * checking failures). This function can be replaced in JITed code by 99 * using Func::set_error_handler, or in AOT code by calling 100 * halide_set_error_handler. In AOT code on platforms that support 101 * weak linking (i.e. not Windows), you can also override it by simply 102 * defining your own halide_error. 103 */ 104 // @{ 105 extern void halide_error(void *user_context, const char *); 106 extern void halide_default_error(void *user_context, const char *); 107 typedef void (*halide_error_handler_t)(void *, const char *); 108 extern halide_error_handler_t halide_set_error_handler(halide_error_handler_t handler); 109 // @} 110 111 /** Cross-platform mutex. Must be initialized with zero and implementation 112 * must treat zero as an unlocked mutex with no waiters, etc. 113 */ 114 struct halide_mutex { 115 uintptr_t _private[1]; 116 }; 117 118 /** Cross platform condition variable. Must be initialized to 0. */ 119 struct halide_cond { 120 uintptr_t _private[1]; 121 }; 122 123 /** A basic set of mutex and condition variable functions, which call 124 * platform specific code for mutual exclusion. Equivalent to posix 125 * calls. */ 126 //@{ 127 extern void halide_mutex_lock(struct halide_mutex *mutex); 128 extern void halide_mutex_unlock(struct halide_mutex *mutex); 129 extern void halide_cond_signal(struct halide_cond *cond); 130 extern void halide_cond_broadcast(struct halide_cond *cond); 131 extern void halide_cond_wait(struct halide_cond *cond, struct halide_mutex *mutex); 132 //@} 133 134 /** Functions for constructing/destroying/locking/unlocking arrays of mutexes. */ 135 struct halide_mutex_array; 136 //@{ 137 extern struct halide_mutex_array *halide_mutex_array_create(int sz); 138 extern void halide_mutex_array_destroy(void *user_context, void *array); 139 extern int halide_mutex_array_lock(struct halide_mutex_array *array, int entry); 140 extern int halide_mutex_array_unlock(struct halide_mutex_array *array, int entry); 141 //@} 142 143 /** Define halide_do_par_for to replace the default thread pool 144 * implementation. halide_shutdown_thread_pool can also be called to 145 * release resources used by the default thread pool on platforms 146 * where it makes sense. (E.g. On Mac OS, Grand Central Dispatch is 147 * used so %Halide does not own the threads backing the pool and they 148 * cannot be released.) See Func::set_custom_do_task and 149 * Func::set_custom_do_par_for. Should return zero if all the jobs 150 * return zero, or an arbitrarily chosen return value from one of the 151 * jobs otherwise. 152 */ 153 //@{ 154 typedef int (*halide_task_t)(void *user_context, int task_number, uint8_t *closure); 155 extern int halide_do_par_for(void *user_context, 156 halide_task_t task, 157 int min, int size, uint8_t *closure); 158 extern void halide_shutdown_thread_pool(); 159 //@} 160 161 /** Set a custom method for performing a parallel for loop. Returns 162 * the old do_par_for handler. */ 163 typedef int (*halide_do_par_for_t)(void *, halide_task_t, int, int, uint8_t *); 164 extern halide_do_par_for_t halide_set_custom_do_par_for(halide_do_par_for_t do_par_for); 165 166 /** An opaque struct representing a semaphore. Used by the task system for async tasks. */ 167 struct halide_semaphore_t { 168 uint64_t _private[2]; 169 }; 170 171 /** A struct representing a semaphore and a number of items that must 172 * be acquired from it. Used in halide_parallel_task_t below. */ 173 struct halide_semaphore_acquire_t { 174 struct halide_semaphore_t *semaphore; 175 int count; 176 }; 177 extern int halide_semaphore_init(struct halide_semaphore_t *, int n); 178 extern int halide_semaphore_release(struct halide_semaphore_t *, int n); 179 extern bool halide_semaphore_try_acquire(struct halide_semaphore_t *, int n); 180 typedef int (*halide_semaphore_init_t)(struct halide_semaphore_t *, int); 181 typedef int (*halide_semaphore_release_t)(struct halide_semaphore_t *, int); 182 typedef bool (*halide_semaphore_try_acquire_t)(struct halide_semaphore_t *, int); 183 184 /** A task representing a serial for loop evaluated over some range. 185 * Note that task_parent is a pass through argument that should be 186 * passed to any dependent taks that are invokved using halide_do_parallel_tasks 187 * underneath this call. */ 188 typedef int (*halide_loop_task_t)(void *user_context, int min, int extent, 189 uint8_t *closure, void *task_parent); 190 191 /** A parallel task to be passed to halide_do_parallel_tasks. This 192 * task may recursively call halide_do_parallel_tasks, and there may 193 * be complex dependencies between seemingly unrelated tasks expressed 194 * using semaphores. If you are using a custom task system, care must 195 * be taken to avoid potential deadlock. This can be done by carefully 196 * respecting the static metadata at the end of the task struct.*/ 197 struct halide_parallel_task_t { 198 // The function to call. It takes a user context, a min and 199 // extent, a closure, and a task system pass through argument. 200 halide_loop_task_t fn; 201 202 // The closure to pass it 203 uint8_t *closure; 204 205 // The name of the function to be called. For debugging purposes only. 206 const char *name; 207 208 // An array of semaphores that must be acquired before the 209 // function is called. Must be reacquired for every call made. 210 struct halide_semaphore_acquire_t *semaphores; 211 int num_semaphores; 212 213 // The entire range the function should be called over. This range 214 // may be sliced up and the function called multiple times. 215 int min, extent; 216 217 // A parallel task provides several pieces of metadata to prevent 218 // unbounded resource usage or deadlock. 219 220 // The first is the minimum number of execution contexts (call 221 // stacks or threads) necessary for the function to run to 222 // completion. This may be greater than one when there is nested 223 // parallelism with internal producer-consumer relationships 224 // (calling the function recursively spawns and blocks on parallel 225 // sub-tasks that communicate with each other via semaphores). If 226 // a parallel runtime calls the function when fewer than this many 227 // threads are idle, it may need to create more threads to 228 // complete the task, or else risk deadlock due to committing all 229 // threads to tasks that cannot complete without more. 230 // 231 // FIXME: Note that extern stages are assumed to only require a 232 // single thread to complete. If the extern stage is itself a 233 // Halide pipeline, this may be an underestimate. 234 int min_threads; 235 236 // The calls to the function should be in serial order from min to min+extent-1, with only 237 // one executing at a time. If false, any order is fine, and 238 // concurrency is fine. 239 bool serial; 240 }; 241 242 /** Enqueue some number of the tasks described above and wait for them 243 * to complete. While waiting, the calling threads assists with either 244 * the tasks enqueued, or other non-blocking tasks in the task 245 * system. Note that task_parent should be NULL for top-level calls 246 * and the pass through argument if this call is being made from 247 * another task. */ 248 extern int halide_do_parallel_tasks(void *user_context, int num_tasks, 249 struct halide_parallel_task_t *tasks, 250 void *task_parent); 251 252 /** If you use the default do_par_for, you can still set a custom 253 * handler to perform each individual task. Returns the old handler. */ 254 //@{ 255 typedef int (*halide_do_task_t)(void *, halide_task_t, int, uint8_t *); 256 extern halide_do_task_t halide_set_custom_do_task(halide_do_task_t do_task); 257 extern int halide_do_task(void *user_context, halide_task_t f, int idx, 258 uint8_t *closure); 259 //@} 260 261 /** The version of do_task called for loop tasks. By default calls the 262 * loop task with the same arguments. */ 263 // @{ 264 typedef int (*halide_do_loop_task_t)(void *, halide_loop_task_t, int, int, uint8_t *, void *); 265 extern halide_do_loop_task_t halide_set_custom_do_loop_task(halide_do_loop_task_t do_task); 266 extern int halide_do_loop_task(void *user_context, halide_loop_task_t f, int min, int extent, 267 uint8_t *closure, void *task_parent); 268 //@} 269 270 /** Provide an entire custom tasking runtime via function 271 * pointers. Note that do_task and semaphore_try_acquire are only ever 272 * called by halide_default_do_par_for and 273 * halide_default_do_parallel_tasks, so it's only necessary to provide 274 * those if you are mixing in the default implementations of 275 * do_par_for and do_parallel_tasks. */ 276 // @{ 277 typedef int (*halide_do_parallel_tasks_t)(void *, int, struct halide_parallel_task_t *, 278 void *task_parent); 279 extern void halide_set_custom_parallel_runtime( 280 halide_do_par_for_t, 281 halide_do_task_t, 282 halide_do_loop_task_t, 283 halide_do_parallel_tasks_t, 284 halide_semaphore_init_t, 285 halide_semaphore_try_acquire_t, 286 halide_semaphore_release_t); 287 // @} 288 289 /** The default versions of the parallel runtime functions. */ 290 // @{ 291 extern int halide_default_do_par_for(void *user_context, 292 halide_task_t task, 293 int min, int size, uint8_t *closure); 294 extern int halide_default_do_parallel_tasks(void *user_context, 295 int num_tasks, 296 struct halide_parallel_task_t *tasks, 297 void *task_parent); 298 extern int halide_default_do_task(void *user_context, halide_task_t f, int idx, 299 uint8_t *closure); 300 extern int halide_default_do_loop_task(void *user_context, halide_loop_task_t f, 301 int min, int extent, 302 uint8_t *closure, void *task_parent); 303 extern int halide_default_semaphore_init(struct halide_semaphore_t *, int n); 304 extern int halide_default_semaphore_release(struct halide_semaphore_t *, int n); 305 extern bool halide_default_semaphore_try_acquire(struct halide_semaphore_t *, int n); 306 // @} 307 308 struct halide_thread; 309 310 /** Spawn a thread. Returns a handle to the thread for the purposes of 311 * joining it. The thread must be joined in order to clean up any 312 * resources associated with it. */ 313 extern struct halide_thread *halide_spawn_thread(void (*f)(void *), void *closure); 314 315 /** Join a thread. */ 316 extern void halide_join_thread(struct halide_thread *); 317 318 /** Set the number of threads used by Halide's thread pool. Returns 319 * the old number. 320 * 321 * n < 0 : error condition 322 * n == 0 : use a reasonable system default (typically, number of cpus online). 323 * n == 1 : use exactly one thread; this will always enforce serial execution 324 * n > 1 : use a pool of exactly n threads. 325 * 326 * (Note that this is only guaranteed when using the default implementations 327 * of halide_do_par_for(); custom implementations may completely ignore values 328 * passed to halide_set_num_threads().) 329 */ 330 extern int halide_set_num_threads(int n); 331 332 /** Halide calls these functions to allocate and free memory. To 333 * replace in AOT code, use the halide_set_custom_malloc and 334 * halide_set_custom_free, or (on platforms that support weak 335 * linking), simply define these functions yourself. In JIT-compiled 336 * code use Func::set_custom_allocator. 337 * 338 * If you override them, and find yourself wanting to call the default 339 * implementation from within your override, use 340 * halide_default_malloc/free. 341 * 342 * Note that halide_malloc must return a pointer aligned to the 343 * maximum meaningful alignment for the platform for the purpose of 344 * vector loads and stores. The default implementation uses 32-byte 345 * alignment, which is safe for arm and x86. Additionally, it must be 346 * safe to read at least 8 bytes before the start and beyond the 347 * end. 348 */ 349 //@{ 350 extern void *halide_malloc(void *user_context, size_t x); 351 extern void halide_free(void *user_context, void *ptr); 352 extern void *halide_default_malloc(void *user_context, size_t x); 353 extern void halide_default_free(void *user_context, void *ptr); 354 typedef void *(*halide_malloc_t)(void *, size_t); 355 typedef void (*halide_free_t)(void *, void *); 356 extern halide_malloc_t halide_set_custom_malloc(halide_malloc_t user_malloc); 357 extern halide_free_t halide_set_custom_free(halide_free_t user_free); 358 //@} 359 360 /** Halide calls these functions to interact with the underlying 361 * system runtime functions. To replace in AOT code on platforms that 362 * support weak linking, define these functions yourself, or use 363 * the halide_set_custom_load_library() and halide_set_custom_get_library_symbol() 364 * functions. In JIT-compiled code, use JITSharedRuntime::set_default_handlers(). 365 * 366 * halide_load_library and halide_get_library_symbol are equivalent to 367 * dlopen and dlsym. halide_get_symbol(sym) is equivalent to 368 * dlsym(RTLD_DEFAULT, sym). 369 */ 370 //@{ 371 extern void *halide_get_symbol(const char *name); 372 extern void *halide_load_library(const char *name); 373 extern void *halide_get_library_symbol(void *lib, const char *name); 374 extern void *halide_default_get_symbol(const char *name); 375 extern void *halide_default_load_library(const char *name); 376 extern void *halide_default_get_library_symbol(void *lib, const char *name); 377 typedef void *(*halide_get_symbol_t)(const char *name); 378 typedef void *(*halide_load_library_t)(const char *name); 379 typedef void *(*halide_get_library_symbol_t)(void *lib, const char *name); 380 extern halide_get_symbol_t halide_set_custom_get_symbol(halide_get_symbol_t user_get_symbol); 381 extern halide_load_library_t halide_set_custom_load_library(halide_load_library_t user_load_library); 382 extern halide_get_library_symbol_t halide_set_custom_get_library_symbol(halide_get_library_symbol_t user_get_library_symbol); 383 //@} 384 385 /** Called when debug_to_file is used inside %Halide code. See 386 * Func::debug_to_file for how this is called 387 * 388 * Cannot be replaced in JITted code at present. 389 */ 390 extern int32_t halide_debug_to_file(void *user_context, const char *filename, 391 int32_t type_code, 392 struct halide_buffer_t *buf); 393 394 /** Types in the halide type system. They can be ints, unsigned ints, 395 * or floats (of various bit-widths), or a handle (which is always 64-bits). 396 * Note that the int/uint/float values do not imply a specific bit width 397 * (the bit width is expected to be encoded in a separate value). 398 */ 399 typedef enum halide_type_code_t 400 #if __cplusplus >= 201103L 401 : uint8_t 402 #endif 403 { 404 halide_type_int = 0, ///< signed integers 405 halide_type_uint = 1, ///< unsigned integers 406 halide_type_float = 2, ///< IEEE floating point numbers 407 halide_type_handle = 3, ///< opaque pointer type (void *) 408 halide_type_bfloat = 4, ///< floating point numbers in the bfloat format 409 } halide_type_code_t; 410 411 // Note that while __attribute__ can go before or after the declaration, 412 // __declspec apparently is only allowed before. 413 #ifndef HALIDE_ATTRIBUTE_ALIGN 414 #ifdef _MSC_VER 415 #define HALIDE_ATTRIBUTE_ALIGN(x) __declspec(align(x)) 416 #else 417 #define HALIDE_ATTRIBUTE_ALIGN(x) __attribute__((aligned(x))) 418 #endif 419 #endif 420 421 /** A runtime tag for a type in the halide type system. Can be ints, 422 * unsigned ints, or floats of various bit-widths (the 'bits' 423 * field). Can also be vectors of the same (by setting the 'lanes' 424 * field to something larger than one). This struct should be 425 * exactly 32-bits in size. */ 426 struct halide_type_t { 427 /** The basic type code: signed integer, unsigned integer, or floating point. */ 428 #if __cplusplus >= 201103L 429 HALIDE_ATTRIBUTE_ALIGN(1) 430 halide_type_code_t code; // halide_type_code_t 431 #else 432 HALIDE_ATTRIBUTE_ALIGN(1) 433 uint8_t code; // halide_type_code_t 434 #endif 435 436 /** The number of bits of precision of a single scalar value of this type. */ 437 HALIDE_ATTRIBUTE_ALIGN(1) 438 uint8_t bits; 439 440 /** How many elements in a vector. This is 1 for scalar types. */ 441 HALIDE_ATTRIBUTE_ALIGN(2) 442 uint16_t lanes; 443 444 #ifdef __cplusplus 445 /** Construct a runtime representation of a Halide type from: 446 * code: The fundamental type from an enum. 447 * bits: The bit size of one element. 448 * lanes: The number of vector elements in the type. */ 449 HALIDE_ALWAYS_INLINE halide_type_t(halide_type_code_t code, uint8_t bits, uint16_t lanes = 1) codehalide_type_t450 : code(code), bits(bits), lanes(lanes) { 451 } 452 453 /** Default constructor is required e.g. to declare halide_trace_event 454 * instances. */ halide_type_thalide_type_t455 HALIDE_ALWAYS_INLINE halide_type_t() 456 : code((halide_type_code_t)0), bits(0), lanes(0) { 457 } 458 with_laneshalide_type_t459 HALIDE_ALWAYS_INLINE halide_type_t with_lanes(uint16_t new_lanes) const { 460 return halide_type_t((halide_type_code_t)code, bits, new_lanes); 461 } 462 463 /** Compare two types for equality. */ 464 HALIDE_ALWAYS_INLINE bool operator==(const halide_type_t &other) const { 465 return as_u32() == other.as_u32(); 466 } 467 468 HALIDE_ALWAYS_INLINE bool operator!=(const halide_type_t &other) const { 469 return !(*this == other); 470 } 471 472 HALIDE_ALWAYS_INLINE bool operator<(const halide_type_t &other) const { 473 return as_u32() < other.as_u32(); 474 } 475 476 /** Size in bytes for a single element, even if width is not 1, of this type. */ byteshalide_type_t477 HALIDE_ALWAYS_INLINE int bytes() const { 478 return (bits + 7) / 8; 479 } 480 as_u32halide_type_t481 HALIDE_ALWAYS_INLINE uint32_t as_u32() const { 482 uint32_t u; 483 memcpy(&u, this, sizeof(u)); 484 return u; 485 } 486 #endif 487 }; 488 489 enum halide_trace_event_code_t { halide_trace_load = 0, 490 halide_trace_store = 1, 491 halide_trace_begin_realization = 2, 492 halide_trace_end_realization = 3, 493 halide_trace_produce = 4, 494 halide_trace_end_produce = 5, 495 halide_trace_consume = 6, 496 halide_trace_end_consume = 7, 497 halide_trace_begin_pipeline = 8, 498 halide_trace_end_pipeline = 9, 499 halide_trace_tag = 10 }; 500 501 struct halide_trace_event_t { 502 /** The name of the Func or Pipeline that this event refers to */ 503 const char *func; 504 505 /** If the event type is a load or a store, this points to the 506 * value being loaded or stored. Use the type field to safely cast 507 * this to a concrete pointer type and retrieve it. For other 508 * events this is null. */ 509 void *value; 510 511 /** For loads and stores, an array which contains the location 512 * being accessed. For vector loads or stores it is an array of 513 * vectors of coordinates (the vector dimension is innermost). 514 * 515 * For realization or production-related events, this will contain 516 * the mins and extents of the region being accessed, in the order 517 * min0, extent0, min1, extent1, ... 518 * 519 * For pipeline-related events, this will be null. 520 */ 521 int32_t *coordinates; 522 523 /** For halide_trace_tag, this points to a read-only null-terminated string 524 * of arbitrary text. For all other events, this will be null. 525 */ 526 const char *trace_tag; 527 528 /** If the event type is a load or a store, this is the type of 529 * the data. Otherwise, the value is meaningless. */ 530 struct halide_type_t type; 531 532 /** The type of event */ 533 enum halide_trace_event_code_t event; 534 535 /* The ID of the parent event (see below for an explanation of 536 * event ancestry). */ 537 int32_t parent_id; 538 539 /** If this was a load or store of a Tuple-valued Func, this is 540 * which tuple element was accessed. */ 541 int32_t value_index; 542 543 /** The length of the coordinates array */ 544 int32_t dimensions; 545 546 #ifdef __cplusplus 547 // If we don't explicitly mark the default ctor as inline, 548 // certain build configurations can fail (notably iOS) halide_trace_event_thalide_trace_event_t549 HALIDE_ALWAYS_INLINE halide_trace_event_t() { 550 } 551 #endif 552 }; 553 554 /** Called when Funcs are marked as trace_load, trace_store, or 555 * trace_realization. See Func::set_custom_trace. The default 556 * implementation either prints events via halide_print, or if 557 * HL_TRACE_FILE is defined, dumps the trace to that file in a 558 * sequence of trace packets. The header for a trace packet is defined 559 * below. If the trace is going to be large, you may want to make the 560 * file a named pipe, and then read from that pipe into gzip. 561 * 562 * halide_trace returns a unique ID which will be passed to future 563 * events that "belong" to the earlier event as the parent id. The 564 * ownership hierarchy looks like: 565 * 566 * begin_pipeline 567 * +--trace_tag (if any) 568 * +--trace_tag (if any) 569 * ... 570 * +--begin_realization 571 * | +--produce 572 * | | +--load/store 573 * | | +--end_produce 574 * | +--consume 575 * | | +--load 576 * | | +--end_consume 577 * | +--end_realization 578 * +--end_pipeline 579 * 580 * Threading means that ownership cannot be inferred from the ordering 581 * of events. There can be many active realizations of a given 582 * function, or many active productions for a single 583 * realization. Within a single production, the ordering of events is 584 * meaningful. 585 * 586 * Note that all trace_tag events (if any) will occur just after the begin_pipeline 587 * event, but before any begin_realization events. All trace_tags for a given Func 588 * will be emitted in the order added. 589 */ 590 // @} 591 extern int32_t halide_trace(void *user_context, const struct halide_trace_event_t *event); 592 extern int32_t halide_default_trace(void *user_context, const struct halide_trace_event_t *event); 593 typedef int32_t (*halide_trace_t)(void *user_context, const struct halide_trace_event_t *); 594 extern halide_trace_t halide_set_custom_trace(halide_trace_t trace); 595 // @} 596 597 /** The header of a packet in a binary trace. All fields are 32-bit. */ 598 struct halide_trace_packet_t { 599 /** The total size of this packet in bytes. Always a multiple of 600 * four. Equivalently, the number of bytes until the next 601 * packet. */ 602 uint32_t size; 603 604 /** The id of this packet (for the purpose of parent_id). */ 605 int32_t id; 606 607 /** The remaining fields are equivalent to those in halide_trace_event_t */ 608 // @{ 609 struct halide_type_t type; 610 enum halide_trace_event_code_t event; 611 int32_t parent_id; 612 int32_t value_index; 613 int32_t dimensions; 614 // @} 615 616 #ifdef __cplusplus 617 // If we don't explicitly mark the default ctor as inline, 618 // certain build configurations can fail (notably iOS) halide_trace_packet_thalide_trace_packet_t619 HALIDE_ALWAYS_INLINE halide_trace_packet_t() { 620 } 621 622 /** Get the coordinates array, assuming this packet is laid out in 623 * memory as it was written. The coordinates array comes 624 * immediately after the packet header. */ coordinateshalide_trace_packet_t625 HALIDE_ALWAYS_INLINE const int *coordinates() const { 626 return (const int *)(this + 1); 627 } 628 coordinateshalide_trace_packet_t629 HALIDE_ALWAYS_INLINE int *coordinates() { 630 return (int *)(this + 1); 631 } 632 633 /** Get the value, assuming this packet is laid out in memory as 634 * it was written. The packet comes immediately after the coordinates 635 * array. */ valuehalide_trace_packet_t636 HALIDE_ALWAYS_INLINE const void *value() const { 637 return (const void *)(coordinates() + dimensions); 638 } 639 valuehalide_trace_packet_t640 HALIDE_ALWAYS_INLINE void *value() { 641 return (void *)(coordinates() + dimensions); 642 } 643 644 /** Get the func name, assuming this packet is laid out in memory 645 * as it was written. It comes after the value. */ funchalide_trace_packet_t646 HALIDE_ALWAYS_INLINE const char *func() const { 647 return (const char *)value() + type.lanes * type.bytes(); 648 } 649 funchalide_trace_packet_t650 HALIDE_ALWAYS_INLINE char *func() { 651 return (char *)value() + type.lanes * type.bytes(); 652 } 653 654 /** Get the trace_tag (if any), assuming this packet is laid out in memory 655 * as it was written. It comes after the func name. If there is no trace_tag, 656 * this will return a pointer to an empty string. */ trace_taghalide_trace_packet_t657 HALIDE_ALWAYS_INLINE const char *trace_tag() const { 658 const char *f = func(); 659 // strlen may not be available here 660 while (*f++) { 661 // nothing 662 } 663 return f; 664 } 665 trace_taghalide_trace_packet_t666 HALIDE_ALWAYS_INLINE char *trace_tag() { 667 char *f = func(); 668 // strlen may not be available here 669 while (*f++) { 670 // nothing 671 } 672 return f; 673 } 674 #endif 675 }; 676 677 /** Set the file descriptor that Halide should write binary trace 678 * events to. If called with 0 as the argument, Halide outputs trace 679 * information to stdout in a human-readable format. If never called, 680 * Halide checks the for existence of an environment variable called 681 * HL_TRACE_FILE and opens that file. If HL_TRACE_FILE is not defined, 682 * it outputs trace information to stdout in a human-readable 683 * format. */ 684 extern void halide_set_trace_file(int fd); 685 686 /** Halide calls this to retrieve the file descriptor to write binary 687 * trace events to. The default implementation returns the value set 688 * by halide_set_trace_file. Implement it yourself if you wish to use 689 * a custom file descriptor per user_context. Return zero from your 690 * implementation to tell Halide to print human-readable trace 691 * information to stdout. */ 692 extern int halide_get_trace_file(void *user_context); 693 694 /** If tracing is writing to a file. This call closes that file 695 * (flushing the trace). Returns zero on success. */ 696 extern int halide_shutdown_trace(); 697 698 /** All Halide GPU or device backend implementations provide an 699 * interface to be used with halide_device_malloc, etc. This is 700 * accessed via the functions below. 701 */ 702 703 /** An opaque struct containing per-GPU API implementations of the 704 * device functions. */ 705 struct halide_device_interface_impl_t; 706 707 /** Each GPU API provides a halide_device_interface_t struct pointing 708 * to the code that manages device allocations. You can access these 709 * functions directly from the struct member function pointers, or by 710 * calling the functions declared below. Note that the global 711 * functions are not available when using Halide as a JIT compiler. 712 * If you are using raw halide_buffer_t in that context you must use 713 * the function pointers in the device_interface struct. 714 * 715 * The function pointers below are currently the same for every GPU 716 * API; only the impl field varies. These top-level functions do the 717 * bookkeeping that is common across all GPU APIs, and then dispatch 718 * to more API-specific functions via another set of function pointers 719 * hidden inside the impl field. 720 */ 721 struct halide_device_interface_t { 722 int (*device_malloc)(void *user_context, struct halide_buffer_t *buf, 723 const struct halide_device_interface_t *device_interface); 724 int (*device_free)(void *user_context, struct halide_buffer_t *buf); 725 int (*device_sync)(void *user_context, struct halide_buffer_t *buf); 726 void (*device_release)(void *user_context, 727 const struct halide_device_interface_t *device_interface); 728 int (*copy_to_host)(void *user_context, struct halide_buffer_t *buf); 729 int (*copy_to_device)(void *user_context, struct halide_buffer_t *buf, 730 const struct halide_device_interface_t *device_interface); 731 int (*device_and_host_malloc)(void *user_context, struct halide_buffer_t *buf, 732 const struct halide_device_interface_t *device_interface); 733 int (*device_and_host_free)(void *user_context, struct halide_buffer_t *buf); 734 int (*buffer_copy)(void *user_context, struct halide_buffer_t *src, 735 const struct halide_device_interface_t *dst_device_interface, struct halide_buffer_t *dst); 736 int (*device_crop)(void *user_context, const struct halide_buffer_t *src, 737 struct halide_buffer_t *dst); 738 int (*device_slice)(void *user_context, const struct halide_buffer_t *src, 739 int slice_dim, int slice_pos, struct halide_buffer_t *dst); 740 int (*device_release_crop)(void *user_context, struct halide_buffer_t *buf); 741 int (*wrap_native)(void *user_context, struct halide_buffer_t *buf, uint64_t handle, 742 const struct halide_device_interface_t *device_interface); 743 int (*detach_native)(void *user_context, struct halide_buffer_t *buf); 744 int (*compute_capability)(void *user_context, int *major, int *minor); 745 const struct halide_device_interface_impl_t *impl; 746 }; 747 748 /** Release all data associated with the given device interface, in 749 * particular all resources (memory, texture, context handles) 750 * allocated by Halide. Must be called explicitly when using AOT 751 * compilation. This is *not* thread-safe with respect to actively 752 * running Halide code. Ensure all pipelines are finished before 753 * calling this. */ 754 extern void halide_device_release(void *user_context, 755 const struct halide_device_interface_t *device_interface); 756 757 /** Copy image data from device memory to host memory. This must be called 758 * explicitly to copy back the results of a GPU-based filter. */ 759 extern int halide_copy_to_host(void *user_context, struct halide_buffer_t *buf); 760 761 /** Copy image data from host memory to device memory. This should not 762 * be called directly; Halide handles copying to the device 763 * automatically. If interface is NULL and the buf has a non-zero dev 764 * field, the device associated with the dev handle will be 765 * used. Otherwise if the dev field is 0 and interface is NULL, an 766 * error is returned. */ 767 extern int halide_copy_to_device(void *user_context, struct halide_buffer_t *buf, 768 const struct halide_device_interface_t *device_interface); 769 770 /** Copy data from one buffer to another. The buffers may have 771 * different shapes and sizes, but the destination buffer's shape must 772 * be contained within the source buffer's shape. That is, for each 773 * dimension, the min on the destination buffer must be greater than 774 * or equal to the min on the source buffer, and min+extent on the 775 * destination buffer must be less that or equal to min+extent on the 776 * source buffer. The source data is pulled from either device or 777 * host memory on the source, depending on the dirty flags. host is 778 * preferred if both are valid. The dst_device_interface parameter 779 * controls the destination memory space. NULL means host memory. */ 780 extern int halide_buffer_copy(void *user_context, struct halide_buffer_t *src, 781 const struct halide_device_interface_t *dst_device_interface, 782 struct halide_buffer_t *dst); 783 784 /** Give the destination buffer a device allocation which is an alias 785 * for the same coordinate range in the source buffer. Modifies the 786 * device, device_interface, and the device_dirty flag only. Only 787 * supported by some device APIs (others will return 788 * halide_error_code_device_crop_unsupported). Call 789 * halide_device_release_crop instead of halide_device_free to clean 790 * up resources associated with the cropped view. Do not free the 791 * device allocation on the source buffer while the destination buffer 792 * still lives. Note that the two buffers do not share dirty flags, so 793 * care must be taken to update them together as needed. Note that src 794 * and dst are required to have the same number of dimensions. 795 * 796 * Note also that (in theory) device interfaces which support cropping may 797 * still not support cropping a crop (instead, create a new crop of the parent 798 * buffer); in practice, no known implementation has this limitation, although 799 * it is possible that some future implementations may require it. */ 800 extern int halide_device_crop(void *user_context, 801 const struct halide_buffer_t *src, 802 struct halide_buffer_t *dst); 803 804 /** Give the destination buffer a device allocation which is an alias 805 * for a similar coordinate range in the source buffer, but with one dimension 806 * sliced away in the dst. Modifies the device, device_interface, and the 807 * device_dirty flag only. Only supported by some device APIs (others will return 808 * halide_error_code_device_crop_unsupported). Call 809 * halide_device_release_crop instead of halide_device_free to clean 810 * up resources associated with the sliced view. Do not free the 811 * device allocation on the source buffer while the destination buffer 812 * still lives. Note that the two buffers do not share dirty flags, so 813 * care must be taken to update them together as needed. Note that the dst buffer 814 * must have exactly one fewer dimension than the src buffer, and that slice_dim 815 * and slice_pos must be valid within src. */ 816 extern int halide_device_slice(void *user_context, 817 const struct halide_buffer_t *src, 818 int slice_dim, int slice_pos, 819 struct halide_buffer_t *dst); 820 821 /** Release any resources associated with a cropped/sliced view of another 822 * buffer. */ 823 extern int halide_device_release_crop(void *user_context, 824 struct halide_buffer_t *buf); 825 826 /** Wait for current GPU operations to complete. Calling this explicitly 827 * should rarely be necessary, except maybe for profiling. */ 828 extern int halide_device_sync(void *user_context, struct halide_buffer_t *buf); 829 830 /** Allocate device memory to back a halide_buffer_t. */ 831 extern int halide_device_malloc(void *user_context, struct halide_buffer_t *buf, 832 const struct halide_device_interface_t *device_interface); 833 834 /** Free device memory. */ 835 extern int halide_device_free(void *user_context, struct halide_buffer_t *buf); 836 837 /** Wrap or detach a native device handle, setting the device field 838 * and device_interface field as appropriate for the given GPU 839 * API. The meaning of the opaque handle is specific to the device 840 * interface, so if you know the device interface in use, call the 841 * more specific functions in the runtime headers for your specific 842 * device API instead (e.g. HalideRuntimeCuda.h). */ 843 // @{ 844 extern int halide_device_wrap_native(void *user_context, 845 struct halide_buffer_t *buf, 846 uint64_t handle, 847 const struct halide_device_interface_t *device_interface); 848 extern int halide_device_detach_native(void *user_context, struct halide_buffer_t *buf); 849 // @} 850 851 /** Selects which gpu device to use. 0 is usually the display 852 * device. If never called, Halide uses the environment variable 853 * HL_GPU_DEVICE. If that variable is unset, Halide uses the last 854 * device. Set this to -1 to use the last device. */ 855 extern void halide_set_gpu_device(int n); 856 857 /** Halide calls this to get the desired halide gpu device 858 * setting. Implement this yourself to use a different gpu device per 859 * user_context. The default implementation returns the value set by 860 * halide_set_gpu_device, or the environment variable 861 * HL_GPU_DEVICE. */ 862 extern int halide_get_gpu_device(void *user_context); 863 864 /** Set the soft maximum amount of memory, in bytes, that the LRU 865 * cache will use to memoize Func results. This is not a strict 866 * maximum in that concurrency and simultaneous use of memoized 867 * reults larger than the cache size can both cause it to 868 * temporariliy be larger than the size specified here. 869 */ 870 extern void halide_memoization_cache_set_size(int64_t size); 871 872 /** Given a cache key for a memoized result, currently constructed 873 * from the Func name and top-level Func name plus the arguments of 874 * the computation, determine if the result is in the cache and 875 * return it if so. (The internals of the cache key should be 876 * considered opaque by this function.) If this routine returns true, 877 * it is a cache miss. Otherwise, it will return false and the 878 * buffers passed in will be filled, via copying, with memoized 879 * data. The last argument is a list if halide_buffer_t pointers which 880 * represents the outputs of the memoized Func. If the Func does not 881 * return a Tuple, there will only be one halide_buffer_t in the list. The 882 * tuple_count parameters determines the length of the list. 883 * 884 * The return values are: 885 * -1: Signals an error. 886 * 0: Success and cache hit. 887 * 1: Success and cache miss. 888 */ 889 extern int halide_memoization_cache_lookup(void *user_context, const uint8_t *cache_key, int32_t size, 890 struct halide_buffer_t *realized_bounds, 891 int32_t tuple_count, struct halide_buffer_t **tuple_buffers); 892 893 /** Given a cache key for a memoized result, currently constructed 894 * from the Func name and top-level Func name plus the arguments of 895 * the computation, store the result in the cache for futre access by 896 * halide_memoization_cache_lookup. (The internals of the cache key 897 * should be considered opaque by this function.) Data is copied out 898 * from the inputs and inputs are unmodified. The last argument is a 899 * list if halide_buffer_t pointers which represents the outputs of the 900 * memoized Func. If the Func does not return a Tuple, there will 901 * only be one halide_buffer_t in the list. The tuple_count parameters 902 * determines the length of the list. 903 * 904 * If there is a memory allocation failure, the store does not store 905 * the data into the cache. 906 */ 907 extern int halide_memoization_cache_store(void *user_context, const uint8_t *cache_key, int32_t size, 908 struct halide_buffer_t *realized_bounds, 909 int32_t tuple_count, 910 struct halide_buffer_t **tuple_buffers); 911 912 /** If halide_memoization_cache_lookup succeeds, 913 * halide_memoization_cache_release must be called to signal the 914 * storage is no longer being used by the caller. It will be passed 915 * the host pointer of one the buffers returned by 916 * halide_memoization_cache_lookup. That is 917 * halide_memoization_cache_release will be called multiple times for 918 * the case where halide_memoization_cache_lookup is handling multiple 919 * buffers. (This corresponds to memoizing a Tuple in Halide.) Note 920 * that the host pointer must be sufficient to get to all information 921 * the relase operation needs. The default Halide cache impleemntation 922 * accomplishes this by storing extra data before the start of the user 923 * modifiable host storage. 924 * 925 * This call is like free and does not have a failure return. 926 */ 927 extern void halide_memoization_cache_release(void *user_context, void *host); 928 929 /** Free all memory and resources associated with the memoization cache. 930 * Must be called at a time when no other threads are accessing the cache. 931 */ 932 extern void halide_memoization_cache_cleanup(); 933 934 /** Verify that a given range of memory has been initialized; only used when Target::MSAN is enabled. 935 * 936 * The default implementation simply calls the LLVM-provided __msan_check_mem_is_initialized() function. 937 * 938 * The return value should always be zero. 939 */ 940 extern int halide_msan_check_memory_is_initialized(void *user_context, const void *ptr, uint64_t len, const char *name); 941 942 /** Verify that the data pointed to by the halide_buffer_t is initialized (but *not* the halide_buffer_t itself), 943 * using halide_msan_check_memory_is_initialized() for checking. 944 * 945 * The default implementation takes pains to only check the active memory ranges 946 * (skipping padding), and sorting into ranges to always check the smallest number of 947 * ranges, in monotonically increasing memory order. 948 * 949 * Most client code should never need to replace the default implementation. 950 * 951 * The return value should always be zero. 952 */ 953 extern int halide_msan_check_buffer_is_initialized(void *user_context, struct halide_buffer_t *buffer, const char *buf_name); 954 955 /** Annotate that a given range of memory has been initialized; 956 * only used when Target::MSAN is enabled. 957 * 958 * The default implementation simply calls the LLVM-provided __msan_unpoison() function. 959 * 960 * The return value should always be zero. 961 */ 962 extern int halide_msan_annotate_memory_is_initialized(void *user_context, const void *ptr, uint64_t len); 963 964 /** Mark the data pointed to by the halide_buffer_t as initialized (but *not* the halide_buffer_t itself), 965 * using halide_msan_annotate_memory_is_initialized() for marking. 966 * 967 * The default implementation takes pains to only mark the active memory ranges 968 * (skipping padding), and sorting into ranges to always mark the smallest number of 969 * ranges, in monotonically increasing memory order. 970 * 971 * Most client code should never need to replace the default implementation. 972 * 973 * The return value should always be zero. 974 */ 975 extern int halide_msan_annotate_buffer_is_initialized(void *user_context, struct halide_buffer_t *buffer); 976 extern void halide_msan_annotate_buffer_is_initialized_as_destructor(void *user_context, void *buffer); 977 978 /** The error codes that may be returned by a Halide pipeline. */ 979 enum halide_error_code_t { 980 /** There was no error. This is the value returned by Halide on success. */ 981 halide_error_code_success = 0, 982 983 /** An uncategorized error occurred. Refer to the string passed to halide_error. */ 984 halide_error_code_generic_error = -1, 985 986 /** A Func was given an explicit bound via Func::bound, but this 987 * was not large enough to encompass the region that is used of 988 * the Func by the rest of the pipeline. */ 989 halide_error_code_explicit_bounds_too_small = -2, 990 991 /** The elem_size field of a halide_buffer_t does not match the size in 992 * bytes of the type of that ImageParam. Probable type mismatch. */ 993 halide_error_code_bad_type = -3, 994 995 /** A pipeline would access memory outside of the halide_buffer_t passed 996 * in. */ 997 halide_error_code_access_out_of_bounds = -4, 998 999 /** A halide_buffer_t was given that spans more than 2GB of memory. */ 1000 halide_error_code_buffer_allocation_too_large = -5, 1001 1002 /** A halide_buffer_t was given with extents that multiply to a number 1003 * greater than 2^31-1 */ 1004 halide_error_code_buffer_extents_too_large = -6, 1005 1006 /** Applying explicit constraints on the size of an input or 1007 * output buffer shrank the size of that buffer below what will be 1008 * accessed by the pipeline. */ 1009 halide_error_code_constraints_make_required_region_smaller = -7, 1010 1011 /** A constraint on a size or stride of an input or output buffer 1012 * was not met by the halide_buffer_t passed in. */ 1013 halide_error_code_constraint_violated = -8, 1014 1015 /** A scalar parameter passed in was smaller than its minimum 1016 * declared value. */ 1017 halide_error_code_param_too_small = -9, 1018 1019 /** A scalar parameter passed in was greater than its minimum 1020 * declared value. */ 1021 halide_error_code_param_too_large = -10, 1022 1023 /** A call to halide_malloc returned NULL. */ 1024 halide_error_code_out_of_memory = -11, 1025 1026 /** A halide_buffer_t pointer passed in was NULL. */ 1027 halide_error_code_buffer_argument_is_null = -12, 1028 1029 /** debug_to_file failed to open or write to the specified 1030 * file. */ 1031 halide_error_code_debug_to_file_failed = -13, 1032 1033 /** The Halide runtime encountered an error while trying to copy 1034 * from device to host. Turn on -debug in your target string to 1035 * see more details. */ 1036 halide_error_code_copy_to_host_failed = -14, 1037 1038 /** The Halide runtime encountered an error while trying to copy 1039 * from host to device. Turn on -debug in your target string to 1040 * see more details. */ 1041 halide_error_code_copy_to_device_failed = -15, 1042 1043 /** The Halide runtime encountered an error while trying to 1044 * allocate memory on device. Turn on -debug in your target string 1045 * to see more details. */ 1046 halide_error_code_device_malloc_failed = -16, 1047 1048 /** The Halide runtime encountered an error while trying to 1049 * synchronize with a device. Turn on -debug in your target string 1050 * to see more details. */ 1051 halide_error_code_device_sync_failed = -17, 1052 1053 /** The Halide runtime encountered an error while trying to free a 1054 * device allocation. Turn on -debug in your target string to see 1055 * more details. */ 1056 halide_error_code_device_free_failed = -18, 1057 1058 /** Buffer has a non-zero device but no device interface, which 1059 * violates a Halide invariant. */ 1060 halide_error_code_no_device_interface = -19, 1061 1062 /** An error occurred when attempting to initialize the Matlab 1063 * runtime. */ 1064 halide_error_code_matlab_init_failed = -20, 1065 1066 /** The type of an mxArray did not match the expected type. */ 1067 halide_error_code_matlab_bad_param_type = -21, 1068 1069 /** There is a bug in the Halide compiler. */ 1070 halide_error_code_internal_error = -22, 1071 1072 /** The Halide runtime encountered an error while trying to launch 1073 * a GPU kernel. Turn on -debug in your target string to see more 1074 * details. */ 1075 halide_error_code_device_run_failed = -23, 1076 1077 /** The Halide runtime encountered a host pointer that violated 1078 * the alignment set for it by way of a call to 1079 * set_host_alignment */ 1080 halide_error_code_unaligned_host_ptr = -24, 1081 1082 /** A fold_storage directive was used on a dimension that is not 1083 * accessed in a monotonically increasing or decreasing fashion. */ 1084 halide_error_code_bad_fold = -25, 1085 1086 /** A fold_storage directive was used with a fold factor that was 1087 * too small to store all the values of a producer needed by the 1088 * consumer. */ 1089 halide_error_code_fold_factor_too_small = -26, 1090 1091 /** User-specified require() expression was not satisfied. */ 1092 halide_error_code_requirement_failed = -27, 1093 1094 /** At least one of the buffer's extents are negative. */ 1095 halide_error_code_buffer_extents_negative = -28, 1096 1097 halide_error_code_unused_29 = -29, 1098 1099 halide_error_code_unused_30 = -30, 1100 1101 /** A specialize_fail() schedule branch was selected at runtime. */ 1102 halide_error_code_specialize_fail = -31, 1103 1104 /** The Halide runtime encountered an error while trying to wrap a 1105 * native device handle. Turn on -debug in your target string to 1106 * see more details. */ 1107 halide_error_code_device_wrap_native_failed = -32, 1108 1109 /** The Halide runtime encountered an error while trying to detach 1110 * a native device handle. Turn on -debug in your target string 1111 * to see more details. */ 1112 halide_error_code_device_detach_native_failed = -33, 1113 1114 /** The host field on an input or output was null, the device 1115 * field was not zero, and the pipeline tries to use the buffer on 1116 * the host. You may be passing a GPU-only buffer to a pipeline 1117 * which is scheduled to use it on the CPU. */ 1118 halide_error_code_host_is_null = -34, 1119 1120 /** A folded buffer was passed to an extern stage, but the region 1121 * touched wraps around the fold boundary. */ 1122 halide_error_code_bad_extern_fold = -35, 1123 1124 /** Buffer has a non-null device_interface but device is 0, which 1125 * violates a Halide invariant. */ 1126 halide_error_code_device_interface_no_device = -36, 1127 1128 /** Buffer has both host and device dirty bits set, which violates 1129 * a Halide invariant. */ 1130 halide_error_code_host_and_device_dirty = -37, 1131 1132 /** The halide_buffer_t * passed to a halide runtime routine is 1133 * nullptr and this is not allowed. */ 1134 halide_error_code_buffer_is_null = -38, 1135 1136 /** The Halide runtime encountered an error while trying to copy 1137 * from one buffer to another. Turn on -debug in your target 1138 * string to see more details. */ 1139 halide_error_code_device_buffer_copy_failed = -39, 1140 1141 /** Attempted to make cropped/sliced alias of a buffer with a device 1142 * field, but the device_interface does not support cropping. */ 1143 halide_error_code_device_crop_unsupported = -40, 1144 1145 /** Cropping/slicing a buffer failed for some other reason. Turn on -debug 1146 * in your target string. */ 1147 halide_error_code_device_crop_failed = -41, 1148 1149 /** An operation on a buffer required an allocation on a 1150 * particular device interface, but a device allocation already 1151 * existed on a different device interface. Free the old one 1152 * first. */ 1153 halide_error_code_incompatible_device_interface = -42, 1154 1155 /** The dimensions field of a halide_buffer_t does not match the dimensions of that ImageParam. */ 1156 halide_error_code_bad_dimensions = -43, 1157 1158 /** An expression that would perform an integer division or modulo 1159 * by zero was evaluated. */ 1160 halide_error_code_device_dirty_with_no_device_support = -44, 1161 1162 }; 1163 1164 /** Halide calls the functions below on various error conditions. The 1165 * default implementations construct an error message, call 1166 * halide_error, then return the matching error code above. On 1167 * platforms that support weak linking, you can override these to 1168 * catch the errors individually. */ 1169 1170 /** A call into an extern stage for the purposes of bounds inference 1171 * failed. Returns the error code given by the extern stage. */ 1172 extern int halide_error_bounds_inference_call_failed(void *user_context, const char *extern_stage_name, int result); 1173 1174 /** A call to an extern stage failed. Returned the error code given by 1175 * the extern stage. */ 1176 extern int halide_error_extern_stage_failed(void *user_context, const char *extern_stage_name, int result); 1177 1178 /** Various other error conditions. See the enum above for a 1179 * description of each. */ 1180 // @{ 1181 extern int halide_error_explicit_bounds_too_small(void *user_context, const char *func_name, const char *var_name, 1182 int min_bound, int max_bound, int min_required, int max_required); 1183 extern int halide_error_bad_type(void *user_context, const char *func_name, 1184 uint32_t type_given, uint32_t correct_type); // N.B. The last two args are the bit representation of a halide_type_t 1185 extern int halide_error_bad_dimensions(void *user_context, const char *func_name, 1186 int32_t dimensions_given, int32_t correct_dimensions); 1187 extern int halide_error_access_out_of_bounds(void *user_context, const char *func_name, 1188 int dimension, int min_touched, int max_touched, 1189 int min_valid, int max_valid); 1190 extern int halide_error_buffer_allocation_too_large(void *user_context, const char *buffer_name, 1191 uint64_t allocation_size, uint64_t max_size); 1192 extern int halide_error_buffer_extents_negative(void *user_context, const char *buffer_name, int dimension, int extent); 1193 extern int halide_error_buffer_extents_too_large(void *user_context, const char *buffer_name, 1194 int64_t actual_size, int64_t max_size); 1195 extern int halide_error_constraints_make_required_region_smaller(void *user_context, const char *buffer_name, 1196 int dimension, 1197 int constrained_min, int constrained_extent, 1198 int required_min, int required_extent); 1199 extern int halide_error_constraint_violated(void *user_context, const char *var, int val, 1200 const char *constrained_var, int constrained_val); 1201 extern int halide_error_param_too_small_i64(void *user_context, const char *param_name, 1202 int64_t val, int64_t min_val); 1203 extern int halide_error_param_too_small_u64(void *user_context, const char *param_name, 1204 uint64_t val, uint64_t min_val); 1205 extern int halide_error_param_too_small_f64(void *user_context, const char *param_name, 1206 double val, double min_val); 1207 extern int halide_error_param_too_large_i64(void *user_context, const char *param_name, 1208 int64_t val, int64_t max_val); 1209 extern int halide_error_param_too_large_u64(void *user_context, const char *param_name, 1210 uint64_t val, uint64_t max_val); 1211 extern int halide_error_param_too_large_f64(void *user_context, const char *param_name, 1212 double val, double max_val); 1213 extern int halide_error_out_of_memory(void *user_context); 1214 extern int halide_error_buffer_argument_is_null(void *user_context, const char *buffer_name); 1215 extern int halide_error_debug_to_file_failed(void *user_context, const char *func, 1216 const char *filename, int error_code); 1217 extern int halide_error_unaligned_host_ptr(void *user_context, const char *func_name, int alignment); 1218 extern int halide_error_host_is_null(void *user_context, const char *func_name); 1219 extern int halide_error_bad_fold(void *user_context, const char *func_name, const char *var_name, 1220 const char *loop_name); 1221 extern int halide_error_bad_extern_fold(void *user_context, const char *func_name, 1222 int dim, int min, int extent, int valid_min, int fold_factor); 1223 1224 extern int halide_error_fold_factor_too_small(void *user_context, const char *func_name, const char *var_name, 1225 int fold_factor, const char *loop_name, int required_extent); 1226 extern int halide_error_requirement_failed(void *user_context, const char *condition, const char *message); 1227 extern int halide_error_specialize_fail(void *user_context, const char *message); 1228 extern int halide_error_no_device_interface(void *user_context); 1229 extern int halide_error_device_interface_no_device(void *user_context); 1230 extern int halide_error_host_and_device_dirty(void *user_context); 1231 extern int halide_error_buffer_is_null(void *user_context, const char *routine); 1232 extern int halide_error_device_dirty_with_no_device_support(void *user_context, const char *buffer_name); 1233 // @} 1234 1235 /** Optional features a compilation Target can have. 1236 * Be sure to keep this in sync with the Feature enum in Target.h and the implementation of 1237 * get_runtime_compatible_target in Target.cpp if you add a new feature. 1238 */ 1239 typedef enum halide_target_feature_t { 1240 halide_target_feature_jit = 0, ///< Generate code that will run immediately inside the calling process. 1241 halide_target_feature_debug, ///< Turn on debug info and output for runtime code. 1242 halide_target_feature_no_asserts, ///< Disable all runtime checks, for slightly tighter code. 1243 halide_target_feature_no_bounds_query, ///< Disable the bounds querying functionality. 1244 1245 halide_target_feature_sse41, ///< Use SSE 4.1 and earlier instructions. Only relevant on x86. 1246 halide_target_feature_avx, ///< Use AVX 1 instructions. Only relevant on x86. 1247 halide_target_feature_avx2, ///< Use AVX 2 instructions. Only relevant on x86. 1248 halide_target_feature_fma, ///< Enable x86 FMA instruction 1249 halide_target_feature_fma4, ///< Enable x86 (AMD) FMA4 instruction set 1250 halide_target_feature_f16c, ///< Enable x86 16-bit float support 1251 1252 halide_target_feature_armv7s, ///< Generate code for ARMv7s. Only relevant for 32-bit ARM. 1253 halide_target_feature_no_neon, ///< Avoid using NEON instructions. Only relevant for 32-bit ARM. 1254 1255 halide_target_feature_vsx, ///< Use VSX instructions. Only relevant on POWERPC. 1256 halide_target_feature_power_arch_2_07, ///< Use POWER ISA 2.07 new instructions. Only relevant on POWERPC. 1257 1258 halide_target_feature_cuda, ///< Enable the CUDA runtime. Defaults to compute capability 2.0 (Fermi) 1259 halide_target_feature_cuda_capability30, ///< Enable CUDA compute capability 3.0 (Kepler) 1260 halide_target_feature_cuda_capability32, ///< Enable CUDA compute capability 3.2 (Tegra K1) 1261 halide_target_feature_cuda_capability35, ///< Enable CUDA compute capability 3.5 (Kepler) 1262 halide_target_feature_cuda_capability50, ///< Enable CUDA compute capability 5.0 (Maxwell) 1263 halide_target_feature_cuda_capability61, ///< Enable CUDA compute capability 6.1 (Pascal) 1264 halide_target_feature_cuda_capability70, ///< Enable CUDA compute capability 7.0 (Volta) 1265 halide_target_feature_cuda_capability75, ///< Enable CUDA compute capability 7.5 (Turing) 1266 halide_target_feature_cuda_capability80, ///< Enable CUDA compute capability 8.0 (Ampere) 1267 1268 halide_target_feature_opencl, ///< Enable the OpenCL runtime. 1269 halide_target_feature_cl_doubles, ///< Enable double support on OpenCL targets 1270 halide_target_feature_cl_atomic64, ///< Enable 64-bit atomics operations on OpenCL targets 1271 1272 halide_target_feature_opengl, ///< Enable the OpenGL runtime. 1273 halide_target_feature_openglcompute, ///< Enable OpenGL Compute runtime. 1274 1275 halide_target_feature_user_context, ///< Generated code takes a user_context pointer as first argument 1276 1277 halide_target_feature_matlab, ///< Generate a mexFunction compatible with Matlab mex libraries. See tools/mex_halide.m. 1278 1279 halide_target_feature_profile, ///< Launch a sampling profiler alongside the Halide pipeline that monitors and reports the runtime used by each Func 1280 halide_target_feature_no_runtime, ///< Do not include a copy of the Halide runtime in any generated object file or assembly 1281 1282 halide_target_feature_metal, ///< Enable the (Apple) Metal runtime. 1283 1284 halide_target_feature_c_plus_plus_mangling, ///< Generate C++ mangled names for result function, et al 1285 1286 halide_target_feature_large_buffers, ///< Enable 64-bit buffer indexing to support buffers > 2GB. Ignored if bits != 64. 1287 1288 halide_target_feature_hvx_64, ///< Enable HVX 64 byte mode. 1289 halide_target_feature_hvx_128, ///< Enable HVX 128 byte mode. 1290 halide_target_feature_hvx_v62, ///< Enable Hexagon v62 architecture. 1291 halide_target_feature_fuzz_float_stores, ///< On every floating point store, set the last bit of the mantissa to zero. Pipelines for which the output is very different with this feature enabled may also produce very different output on different processors. 1292 halide_target_feature_soft_float_abi, ///< Enable soft float ABI. This only enables the soft float ABI calling convention, which does not necessarily use soft floats. 1293 halide_target_feature_msan, ///< Enable hooks for MSAN support. 1294 halide_target_feature_avx512, ///< Enable the base AVX512 subset supported by all AVX512 architectures. The specific feature sets are AVX-512F and AVX512-CD. See https://en.wikipedia.org/wiki/AVX-512 for a description of each AVX subset. 1295 halide_target_feature_avx512_knl, ///< Enable the AVX512 features supported by Knight's Landing chips, such as the Xeon Phi x200. This includes the base AVX512 set, and also AVX512-CD and AVX512-ER. 1296 halide_target_feature_avx512_skylake, ///< Enable the AVX512 features supported by Skylake Xeon server processors. This adds AVX512-VL, AVX512-BW, and AVX512-DQ to the base set. The main difference from the base AVX512 set is better support for small integer ops. Note that this does not include the Knight's Landing features. Note also that these features are not available on Skylake desktop and mobile processors. 1297 halide_target_feature_avx512_cannonlake, ///< Enable the AVX512 features expected to be supported by future Cannonlake processors. This includes all of the Skylake features, plus AVX512-IFMA and AVX512-VBMI. 1298 halide_target_feature_hvx_use_shared_object, ///< Deprecated 1299 halide_target_feature_trace_loads, ///< Trace all loads done by the pipeline. Equivalent to calling Func::trace_loads on every non-inlined Func. 1300 halide_target_feature_trace_stores, ///< Trace all stores done by the pipeline. Equivalent to calling Func::trace_stores on every non-inlined Func. 1301 halide_target_feature_trace_realizations, ///< Trace all realizations done by the pipeline. Equivalent to calling Func::trace_realizations on every non-inlined Func. 1302 halide_target_feature_trace_pipeline, ///< Trace the pipeline. 1303 halide_target_feature_hvx_v65, ///< Enable Hexagon v65 architecture. 1304 halide_target_feature_hvx_v66, ///< Enable Hexagon v66 architecture. 1305 halide_target_feature_cl_half, ///< Enable half support on OpenCL targets 1306 halide_target_feature_strict_float, ///< Turn off all non-IEEE floating-point optimization. Currently applies only to LLVM targets. 1307 halide_target_feature_tsan, ///< Enable hooks for TSAN support. 1308 halide_target_feature_asan, ///< Enable hooks for ASAN support. 1309 halide_target_feature_d3d12compute, ///< Enable Direct3D 12 Compute runtime. 1310 halide_target_feature_check_unsafe_promises, ///< Insert assertions for promises. 1311 halide_target_feature_hexagon_dma, ///< Enable Hexagon DMA buffers. 1312 halide_target_feature_embed_bitcode, ///< Emulate clang -fembed-bitcode flag. 1313 halide_target_feature_enable_llvm_loop_opt, ///< Enable loop vectorization + unrolling in LLVM. Overrides halide_target_feature_disable_llvm_loop_opt. (Ignored for non-LLVM targets.) 1314 halide_target_feature_disable_llvm_loop_opt, ///< Disable loop vectorization + unrolling in LLVM. (Ignored for non-LLVM targets.) 1315 halide_target_feature_wasm_simd128, ///< Enable +simd128 instructions for WebAssembly codegen. 1316 halide_target_feature_wasm_signext, ///< Enable +sign-ext instructions for WebAssembly codegen. 1317 halide_target_feature_wasm_sat_float_to_int, ///< Enable saturating (nontrapping) float-to-int instructions for WebAssembly codegen. 1318 halide_target_feature_sve, ///< Enable ARM Scalable Vector Extensions 1319 halide_target_feature_sve2, ///< Enable ARM Scalable Vector Extensions v2 1320 halide_target_feature_egl, ///< Force use of EGL support. 1321 1322 halide_target_feature_arm_dot_prod, ///< Enable ARMv8.2-a dotprod extension (i.e. udot and sdot instructions) 1323 halide_target_feature_end ///< A sentinel. Every target is considered to have this feature, and setting this feature does nothing. 1324 } halide_target_feature_t; 1325 1326 /** This function is called internally by Halide in some situations to determine 1327 * if the current execution environment can support the given set of 1328 * halide_target_feature_t flags. The implementation must do the following: 1329 * 1330 * -- If there are flags set in features that the function knows *cannot* be supported, return 0. 1331 * -- Otherwise, return 1. 1332 * -- Note that any flags set in features that the function doesn't know how to test should be ignored; 1333 * this implies that a return value of 1 means "not known to be bad" rather than "known to be good". 1334 * 1335 * In other words: a return value of 0 means "It is not safe to use code compiled with these features", 1336 * while a return value of 1 means "It is not obviously unsafe to use code compiled with these features". 1337 * 1338 * The default implementation simply calls halide_default_can_use_target_features. 1339 * 1340 * Note that `features` points to an array of `count` uint64_t; this array must contain enough 1341 * bits to represent all the currently known features. Any excess bits must be set to zero. 1342 */ 1343 // @{ 1344 extern int halide_can_use_target_features(int count, const uint64_t *features); 1345 typedef int (*halide_can_use_target_features_t)(int count, const uint64_t *features); 1346 extern halide_can_use_target_features_t halide_set_custom_can_use_target_features(halide_can_use_target_features_t); 1347 // @} 1348 1349 /** 1350 * This is the default implementation of halide_can_use_target_features; it is provided 1351 * for convenience of user code that may wish to extend halide_can_use_target_features 1352 * but continue providing existing support, e.g. 1353 * 1354 * int halide_can_use_target_features(int count, const uint64_t *features) { 1355 * if (features[halide_target_somefeature >> 6] & (1LL << (halide_target_somefeature & 63))) { 1356 * if (!can_use_somefeature()) { 1357 * return 0; 1358 * } 1359 * } 1360 * return halide_default_can_use_target_features(count, features); 1361 * } 1362 */ 1363 extern int halide_default_can_use_target_features(int count, const uint64_t *features); 1364 1365 typedef struct halide_dimension_t { 1366 int32_t min, extent, stride; 1367 1368 // Per-dimension flags. None are defined yet (This is reserved for future use). 1369 uint32_t flags; 1370 1371 #ifdef __cplusplus halide_dimension_thalide_dimension_t1372 HALIDE_ALWAYS_INLINE halide_dimension_t() 1373 : min(0), extent(0), stride(0), flags(0) { 1374 } 1375 HALIDE_ALWAYS_INLINE halide_dimension_t(int32_t m, int32_t e, int32_t s, uint32_t f = 0) minhalide_dimension_t1376 : min(m), extent(e), stride(s), flags(f) { 1377 } 1378 1379 HALIDE_ALWAYS_INLINE bool operator==(const halide_dimension_t &other) const { 1380 return (min == other.min) && 1381 (extent == other.extent) && 1382 (stride == other.stride) && 1383 (flags == other.flags); 1384 } 1385 1386 HALIDE_ALWAYS_INLINE bool operator!=(const halide_dimension_t &other) const { 1387 return !(*this == other); 1388 } 1389 #endif 1390 } halide_dimension_t; 1391 1392 #ifdef __cplusplus 1393 } // extern "C" 1394 #endif 1395 1396 typedef enum { halide_buffer_flag_host_dirty = 1, 1397 halide_buffer_flag_device_dirty = 2 } halide_buffer_flags; 1398 1399 /** 1400 * The raw representation of an image passed around by generated 1401 * Halide code. It includes some stuff to track whether the image is 1402 * not actually in main memory, but instead on a device (like a 1403 * GPU). For a more convenient C++ wrapper, use Halide::Buffer<T>. */ 1404 typedef struct halide_buffer_t { 1405 /** A device-handle for e.g. GPU memory used to back this buffer. */ 1406 uint64_t device; 1407 1408 /** The interface used to interpret the above handle. */ 1409 const struct halide_device_interface_t *device_interface; 1410 1411 /** A pointer to the start of the data in main memory. In terms of 1412 * the Halide coordinate system, this is the address of the min 1413 * coordinates (defined below). */ 1414 uint8_t *host; 1415 1416 /** flags with various meanings. */ 1417 uint64_t flags; 1418 1419 /** The type of each buffer element. */ 1420 struct halide_type_t type; 1421 1422 /** The dimensionality of the buffer. */ 1423 int32_t dimensions; 1424 1425 /** The shape of the buffer. Halide does not own this array - you 1426 * must manage the memory for it yourself. */ 1427 halide_dimension_t *dim; 1428 1429 /** Pads the buffer up to a multiple of 8 bytes */ 1430 void *padding; 1431 1432 #ifdef __cplusplus 1433 /** Convenience methods for accessing the flags */ 1434 // @{ get_flaghalide_buffer_t1435 HALIDE_ALWAYS_INLINE bool get_flag(halide_buffer_flags flag) const { 1436 return (flags & flag) != 0; 1437 } 1438 set_flaghalide_buffer_t1439 HALIDE_ALWAYS_INLINE void set_flag(halide_buffer_flags flag, bool value) { 1440 if (value) { 1441 flags |= flag; 1442 } else { 1443 flags &= ~flag; 1444 } 1445 } 1446 host_dirtyhalide_buffer_t1447 HALIDE_ALWAYS_INLINE bool host_dirty() const { 1448 return get_flag(halide_buffer_flag_host_dirty); 1449 } 1450 device_dirtyhalide_buffer_t1451 HALIDE_ALWAYS_INLINE bool device_dirty() const { 1452 return get_flag(halide_buffer_flag_device_dirty); 1453 } 1454 1455 HALIDE_ALWAYS_INLINE void set_host_dirty(bool v = true) { 1456 set_flag(halide_buffer_flag_host_dirty, v); 1457 } 1458 1459 HALIDE_ALWAYS_INLINE void set_device_dirty(bool v = true) { 1460 set_flag(halide_buffer_flag_device_dirty, v); 1461 } 1462 // @} 1463 1464 /** The total number of elements this buffer represents. Equal to 1465 * the product of the extents */ number_of_elementshalide_buffer_t1466 HALIDE_ALWAYS_INLINE size_t number_of_elements() const { 1467 size_t s = 1; 1468 for (int i = 0; i < dimensions; i++) { 1469 s *= dim[i].extent; 1470 } 1471 return s; 1472 } 1473 1474 /** A pointer to the element with the lowest address. If all 1475 * strides are positive, equal to the host pointer. */ beginhalide_buffer_t1476 HALIDE_ALWAYS_INLINE uint8_t *begin() const { 1477 ptrdiff_t index = 0; 1478 for (int i = 0; i < dimensions; i++) { 1479 if (dim[i].stride < 0) { 1480 index += dim[i].stride * (dim[i].extent - 1); 1481 } 1482 } 1483 return host + index * type.bytes(); 1484 } 1485 1486 /** A pointer to one beyond the element with the highest address. */ endhalide_buffer_t1487 HALIDE_ALWAYS_INLINE uint8_t *end() const { 1488 ptrdiff_t index = 0; 1489 for (int i = 0; i < dimensions; i++) { 1490 if (dim[i].stride > 0) { 1491 index += dim[i].stride * (dim[i].extent - 1); 1492 } 1493 } 1494 index += 1; 1495 return host + index * type.bytes(); 1496 } 1497 1498 /** The total number of bytes spanned by the data in memory. */ size_in_byteshalide_buffer_t1499 HALIDE_ALWAYS_INLINE size_t size_in_bytes() const { 1500 return (size_t)(end() - begin()); 1501 } 1502 1503 /** A pointer to the element at the given location. */ address_ofhalide_buffer_t1504 HALIDE_ALWAYS_INLINE uint8_t *address_of(const int *pos) const { 1505 ptrdiff_t index = 0; 1506 for (int i = 0; i < dimensions; i++) { 1507 index += dim[i].stride * (pos[i] - dim[i].min); 1508 } 1509 return host + index * type.bytes(); 1510 } 1511 1512 /** Attempt to call device_sync for the buffer. If the buffer 1513 * has no device_interface (or no device_sync), this is a quiet no-op. 1514 * Calling this explicitly should rarely be necessary, except for profiling. */ 1515 HALIDE_ALWAYS_INLINE int device_sync(void *ctx = NULL) { 1516 if (device_interface && device_interface->device_sync) { 1517 return device_interface->device_sync(ctx, this); 1518 } 1519 return 0; 1520 } 1521 1522 /** Check if an input buffer passed extern stage is a querying 1523 * bounds. Compared to doing the host pointer check directly, 1524 * this both adds clarity to code and will facilitate moving to 1525 * another representation for bounds query arguments. */ is_bounds_queryhalide_buffer_t1526 HALIDE_ALWAYS_INLINE bool is_bounds_query() const { 1527 return host == NULL && device == 0; 1528 } 1529 1530 #endif 1531 } halide_buffer_t; 1532 1533 #ifdef __cplusplus 1534 extern "C" { 1535 #endif 1536 1537 #ifndef HALIDE_ATTRIBUTE_DEPRECATED 1538 #ifdef HALIDE_ALLOW_DEPRECATED 1539 #define HALIDE_ATTRIBUTE_DEPRECATED(x) 1540 #else 1541 #ifdef _MSC_VER 1542 #define HALIDE_ATTRIBUTE_DEPRECATED(x) __declspec(deprecated(x)) 1543 #else 1544 #define HALIDE_ATTRIBUTE_DEPRECATED(x) __attribute__((deprecated(x))) 1545 #endif 1546 #endif 1547 #endif 1548 1549 /** halide_scalar_value_t is a simple union able to represent all the well-known 1550 * scalar values in a filter argument. Note that it isn't tagged with a type; 1551 * you must ensure you know the proper type before accessing. Most user 1552 * code will never need to create instances of this struct; its primary use 1553 * is to hold def/min/max values in a halide_filter_argument_t. (Note that 1554 * this is conceptually just a union; it's wrapped in a struct to ensure 1555 * that it doesn't get anonymized by LLVM.) 1556 */ 1557 struct halide_scalar_value_t { 1558 union { 1559 bool b; 1560 int8_t i8; 1561 int16_t i16; 1562 int32_t i32; 1563 int64_t i64; 1564 uint8_t u8; 1565 uint16_t u16; 1566 uint32_t u32; 1567 uint64_t u64; 1568 float f32; 1569 double f64; 1570 void *handle; 1571 } u; 1572 #ifdef __cplusplus halide_scalar_value_thalide_scalar_value_t1573 HALIDE_ALWAYS_INLINE halide_scalar_value_t() { 1574 u.u64 = 0; 1575 } 1576 #endif 1577 }; 1578 1579 enum halide_argument_kind_t { 1580 halide_argument_kind_input_scalar = 0, 1581 halide_argument_kind_input_buffer = 1, 1582 halide_argument_kind_output_buffer = 2 1583 }; 1584 1585 /* 1586 These structs must be robust across different compilers and settings; when 1587 modifying them, strive for the following rules: 1588 1589 1) All fields are explicitly sized. I.e. must use int32_t and not "int" 1590 2) All fields must land on an alignment boundary that is the same as their size 1591 3) Explicit padding is added to make that so 1592 4) The sizeof the struct is padded out to a multiple of the largest natural size thing in the struct 1593 5) don't forget that 32 and 64 bit pointers are different sizes 1594 */ 1595 1596 /** 1597 * Obsolete version of halide_filter_argument_t; only present in 1598 * code that wrote halide_filter_metadata_t version 0. 1599 */ 1600 struct halide_filter_argument_t_v0 { 1601 const char *name; 1602 int32_t kind; 1603 int32_t dimensions; 1604 struct halide_type_t type; 1605 const struct halide_scalar_value_t *def, *min, *max; 1606 }; 1607 1608 /** 1609 * halide_filter_argument_t is essentially a plain-C-struct equivalent to 1610 * Halide::Argument; most user code will never need to create one. 1611 */ 1612 struct halide_filter_argument_t { 1613 const char *name; // name of the argument; will never be null or empty. 1614 int32_t kind; // actually halide_argument_kind_t 1615 int32_t dimensions; // always zero for scalar arguments 1616 struct halide_type_t type; 1617 // These pointers should always be null for buffer arguments, 1618 // and *may* be null for scalar arguments. (A null value means 1619 // there is no def/min/max/estimate specified for this argument.) 1620 const struct halide_scalar_value_t *scalar_def, *scalar_min, *scalar_max, *scalar_estimate; 1621 // This pointer should always be null for scalar arguments, 1622 // and *may* be null for buffer arguments. If not null, it should always 1623 // point to an array of dimensions*2 pointers, which will be the (min, extent) 1624 // estimates for each dimension of the buffer. (Note that any of the pointers 1625 // may be null as well.) 1626 int64_t const *const *buffer_estimates; 1627 }; 1628 1629 struct halide_filter_metadata_t { 1630 #ifdef __cplusplus 1631 static const int32_t VERSION = 1; 1632 #endif 1633 1634 /** version of this metadata; currently always 1. */ 1635 int32_t version; 1636 1637 /** The number of entries in the arguments field. This is always >= 1. */ 1638 int32_t num_arguments; 1639 1640 /** An array of the filters input and output arguments; this will never be 1641 * null. The order of arguments is not guaranteed (input and output arguments 1642 * may come in any order); however, it is guaranteed that all arguments 1643 * will have a unique name within a given filter. */ 1644 const struct halide_filter_argument_t *arguments; 1645 1646 /** The Target for which the filter was compiled. This is always 1647 * a canonical Target string (ie a product of Target::to_string). */ 1648 const char *target; 1649 1650 /** The function name of the filter. */ 1651 const char *name; 1652 }; 1653 1654 /** halide_register_argv_and_metadata() is a **user-defined** function that 1655 * must be provided in order to use the registration.cc files produced 1656 * by Generators when the 'registration' output is requested. Each registration.cc 1657 * file provides a static initializer that calls this function with the given 1658 * filter's argv-call variant, its metadata, and (optionally) and additional 1659 * textual data that the build system chooses to tack on for its own purposes. 1660 * Note that this will be called at static-initializer time (i.e., before 1661 * main() is called), and in an unpredictable order. Note that extra_key_value_pairs 1662 * may be nullptr; if it's not null, it's expected to be a null-terminated list 1663 * of strings, with an even number of entries. */ 1664 void halide_register_argv_and_metadata( 1665 int (*filter_argv_call)(void **), 1666 const struct halide_filter_metadata_t *filter_metadata, 1667 const char *const *extra_key_value_pairs); 1668 1669 /** The functions below here are relevant for pipelines compiled with 1670 * the -profile target flag, which runs a sampling profiler thread 1671 * alongside the pipeline. */ 1672 1673 /** Per-Func state tracked by the sampling profiler. */ 1674 struct halide_profiler_func_stats { 1675 /** Total time taken evaluating this Func (in nanoseconds). */ 1676 uint64_t time; 1677 1678 /** The current memory allocation of this Func. */ 1679 uint64_t memory_current; 1680 1681 /** The peak memory allocation of this Func. */ 1682 uint64_t memory_peak; 1683 1684 /** The total memory allocation of this Func. */ 1685 uint64_t memory_total; 1686 1687 /** The peak stack allocation of this Func's threads. */ 1688 uint64_t stack_peak; 1689 1690 /** The average number of thread pool worker threads active while computing this Func. */ 1691 uint64_t active_threads_numerator, active_threads_denominator; 1692 1693 /** The name of this Func. A global constant string. */ 1694 const char *name; 1695 1696 /** The total number of memory allocation of this Func. */ 1697 int num_allocs; 1698 }; 1699 1700 /** Per-pipeline state tracked by the sampling profiler. These exist 1701 * in a linked list. */ 1702 struct halide_profiler_pipeline_stats { 1703 /** Total time spent inside this pipeline (in nanoseconds) */ 1704 uint64_t time; 1705 1706 /** The current memory allocation of funcs in this pipeline. */ 1707 uint64_t memory_current; 1708 1709 /** The peak memory allocation of funcs in this pipeline. */ 1710 uint64_t memory_peak; 1711 1712 /** The total memory allocation of funcs in this pipeline. */ 1713 uint64_t memory_total; 1714 1715 /** The average number of thread pool worker threads doing useful 1716 * work while computing this pipeline. */ 1717 uint64_t active_threads_numerator, active_threads_denominator; 1718 1719 /** The name of this pipeline. A global constant string. */ 1720 const char *name; 1721 1722 /** An array containing states for each Func in this pipeline. */ 1723 struct halide_profiler_func_stats *funcs; 1724 1725 /** The next pipeline_stats pointer. It's a void * because types 1726 * in the Halide runtime may not currently be recursive. */ 1727 void *next; 1728 1729 /** The number of funcs in this pipeline. */ 1730 int num_funcs; 1731 1732 /** An internal base id used to identify the funcs in this pipeline. */ 1733 int first_func_id; 1734 1735 /** The number of times this pipeline has been run. */ 1736 int runs; 1737 1738 /** The total number of samples taken inside of this pipeline. */ 1739 int samples; 1740 1741 /** The total number of memory allocation of funcs in this pipeline. */ 1742 int num_allocs; 1743 }; 1744 1745 /** The global state of the profiler. */ 1746 1747 struct halide_profiler_state { 1748 /** Guards access to the fields below. If not locked, the sampling 1749 * profiler thread is free to modify things below (including 1750 * reordering the linked list of pipeline stats). */ 1751 struct halide_mutex lock; 1752 1753 /** The amount of time the profiler thread sleeps between samples 1754 * in milliseconds. Defaults to 1 */ 1755 int sleep_time; 1756 1757 /** An internal id used for bookkeeping. */ 1758 int first_free_id; 1759 1760 /** The id of the current running Func. Set by the pipeline, read 1761 * periodically by the profiler thread. */ 1762 int current_func; 1763 1764 /** The number of threads currently doing work. */ 1765 int active_threads; 1766 1767 /** A linked list of stats gathered for each pipeline. */ 1768 struct halide_profiler_pipeline_stats *pipelines; 1769 1770 /** Retrieve remote profiler state. Used so that the sampling 1771 * profiler can follow along with execution that occurs elsewhere, 1772 * e.g. on a DSP. If null, it reads from the int above instead. */ 1773 void (*get_remote_profiler_state)(int *func, int *active_workers); 1774 1775 /** Sampling thread reference to be joined at shutdown. */ 1776 struct halide_thread *sampling_thread; 1777 }; 1778 1779 /** Profiler func ids with special meanings. */ 1780 enum { 1781 /// current_func takes on this value when not inside Halide code 1782 halide_profiler_outside_of_halide = -1, 1783 /// Set current_func to this value to tell the profiling thread to 1784 /// halt. It will start up again next time you run a pipeline with 1785 /// profiling enabled. 1786 halide_profiler_please_stop = -2 1787 }; 1788 1789 /** Get a pointer to the global profiler state for programmatic 1790 * inspection. Lock it before using to pause the profiler. */ 1791 extern struct halide_profiler_state *halide_profiler_get_state(); 1792 1793 /** Get a pointer to the pipeline state associated with pipeline_name. 1794 * This function grabs the global profiler state's lock on entry. */ 1795 extern struct halide_profiler_pipeline_stats *halide_profiler_get_pipeline_state(const char *pipeline_name); 1796 1797 /** Reset profiler state cheaply. May leave threads running or some 1798 * memory allocated but all accumluated statistics are reset. 1799 * WARNING: Do NOT call this method while any halide pipeline is 1800 * running; halide_profiler_memory_allocate/free and 1801 * halide_profiler_stack_peak_update update the profiler pipeline's 1802 * state without grabbing the global profiler state's lock. */ 1803 extern void halide_profiler_reset(); 1804 1805 /** Reset all profiler state. 1806 * WARNING: Do NOT call this method while any halide pipeline is 1807 * running; halide_profiler_memory_allocate/free and 1808 * halide_profiler_stack_peak_update update the profiler pipeline's 1809 * state without grabbing the global profiler state's lock. */ 1810 void halide_profiler_shutdown(); 1811 1812 /** Print out timing statistics for everything run since the last 1813 * reset. Also happens at process exit. */ 1814 extern void halide_profiler_report(void *user_context); 1815 1816 /// \name "Float16" functions 1817 /// These functions operate of bits (``uint16_t``) representing a half 1818 /// precision floating point number (IEEE-754 2008 binary16). 1819 //{@ 1820 1821 /** Read bits representing a half precision floating point number and return 1822 * the float that represents the same value */ 1823 extern float halide_float16_bits_to_float(uint16_t); 1824 1825 /** Read bits representing a half precision floating point number and return 1826 * the double that represents the same value */ 1827 extern double halide_float16_bits_to_double(uint16_t); 1828 1829 // TODO: Conversion functions to half 1830 1831 //@} 1832 1833 // Allocating and freeing device memory is often very slow. The 1834 // methods below give Halide's runtime permission to hold onto device 1835 // memory to service future requests instead of returning it to the 1836 // underlying device API. The API does not manage an allocation pool, 1837 // all it does is provide access to a shared counter that acts as a 1838 // limit on the unused memory not yet returned to the underlying 1839 // device API. It makes callbacks to participants when memory needs to 1840 // be released because the limit is about to be exceeded (either 1841 // because the limit has been reduced, or because the memory owned by 1842 // some participant becomes unused). 1843 1844 /** Tell Halide whether or not it is permitted to hold onto device 1845 * allocations to service future requests instead of returning them 1846 * eagerly to the underlying device API. Many device allocators are 1847 * quite slow, so it can be beneficial to set this to true. The 1848 * default value for now is false. 1849 * 1850 * Note that if enabled, the eviction policy is very simplistic. The 1851 * 32 most-recently used allocations are preserved, regardless of 1852 * their size. Additionally, if a call to cuMalloc results in an 1853 * out-of-memory error, the entire cache is flushed and the allocation 1854 * is retried. See https://github.com/halide/Halide/issues/4093 1855 * 1856 * If set to false, releases all unused device allocations back to the 1857 * underlying device APIs. For finer-grained control, see specific 1858 * methods in each device api runtime. */ 1859 extern int halide_reuse_device_allocations(void *user_context, bool); 1860 1861 /** Determines whether on device_free the memory is returned 1862 * immediately to the device API, or placed on a free list for future 1863 * use. Override and switch based on the user_context for 1864 * finer-grained control. By default just returns the value most 1865 * recently set by the method above. */ 1866 extern bool halide_can_reuse_device_allocations(void *user_context); 1867 1868 struct halide_device_allocation_pool { 1869 int (*release_unused)(void *user_context); 1870 struct halide_device_allocation_pool *next; 1871 }; 1872 1873 /** Register a callback to be informed when 1874 * halide_reuse_device_allocations(false) is called, and all unused 1875 * device allocations must be released. The object passed should have 1876 * global lifetime, and its next field will be clobbered. */ 1877 extern void halide_register_device_allocation_pool(struct halide_device_allocation_pool *); 1878 1879 #ifdef __cplusplus 1880 } // End extern "C" 1881 #endif 1882 1883 #ifdef __cplusplus 1884 1885 namespace { 1886 template<typename T> 1887 struct check_is_pointer; 1888 template<typename T> 1889 struct check_is_pointer<T *> {}; 1890 } // namespace 1891 1892 /** Construct the halide equivalent of a C type */ 1893 template<typename T> 1894 HALIDE_ALWAYS_INLINE halide_type_t halide_type_of() { 1895 // Create a compile-time error if T is not a pointer (without 1896 // using any includes - this code goes into the runtime). 1897 check_is_pointer<T> check; 1898 (void)check; 1899 return halide_type_t(halide_type_handle, 64); 1900 } 1901 1902 template<> 1903 HALIDE_ALWAYS_INLINE halide_type_t halide_type_of<float>() { 1904 return halide_type_t(halide_type_float, 32); 1905 } 1906 1907 template<> 1908 HALIDE_ALWAYS_INLINE halide_type_t halide_type_of<double>() { 1909 return halide_type_t(halide_type_float, 64); 1910 } 1911 1912 template<> 1913 HALIDE_ALWAYS_INLINE halide_type_t halide_type_of<bool>() { 1914 return halide_type_t(halide_type_uint, 1); 1915 } 1916 1917 template<> 1918 HALIDE_ALWAYS_INLINE halide_type_t halide_type_of<uint8_t>() { 1919 return halide_type_t(halide_type_uint, 8); 1920 } 1921 1922 template<> 1923 HALIDE_ALWAYS_INLINE halide_type_t halide_type_of<uint16_t>() { 1924 return halide_type_t(halide_type_uint, 16); 1925 } 1926 1927 template<> 1928 HALIDE_ALWAYS_INLINE halide_type_t halide_type_of<uint32_t>() { 1929 return halide_type_t(halide_type_uint, 32); 1930 } 1931 1932 template<> 1933 HALIDE_ALWAYS_INLINE halide_type_t halide_type_of<uint64_t>() { 1934 return halide_type_t(halide_type_uint, 64); 1935 } 1936 1937 template<> 1938 HALIDE_ALWAYS_INLINE halide_type_t halide_type_of<int8_t>() { 1939 return halide_type_t(halide_type_int, 8); 1940 } 1941 1942 template<> 1943 HALIDE_ALWAYS_INLINE halide_type_t halide_type_of<int16_t>() { 1944 return halide_type_t(halide_type_int, 16); 1945 } 1946 1947 template<> 1948 HALIDE_ALWAYS_INLINE halide_type_t halide_type_of<int32_t>() { 1949 return halide_type_t(halide_type_int, 32); 1950 } 1951 1952 template<> 1953 HALIDE_ALWAYS_INLINE halide_type_t halide_type_of<int64_t>() { 1954 return halide_type_t(halide_type_int, 64); 1955 } 1956 1957 #endif 1958 1959 #endif // HALIDE_HALIDERUNTIME_H 1960