xref: /openbsd/gnu/gcc/gcc/tree-flow-inline.h (revision 404b540a)
1 /* Inline functions for tree-flow.h
2    Copyright (C) 2001, 2003, 2005, 2006 Free Software Foundation, Inc.
3    Contributed by Diego Novillo <dnovillo@redhat.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11 
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA.  */
21 
22 #ifndef _TREE_FLOW_INLINE_H
23 #define _TREE_FLOW_INLINE_H 1
24 
25 /* Inline functions for manipulating various data structures defined in
26    tree-flow.h.  See tree-flow.h for documentation.  */
27 
28 /* Initialize the hashtable iterator HTI to point to hashtable TABLE */
29 
30 static inline void *
first_htab_element(htab_iterator * hti,htab_t table)31 first_htab_element (htab_iterator *hti, htab_t table)
32 {
33   hti->htab = table;
34   hti->slot = table->entries;
35   hti->limit = hti->slot + htab_size (table);
36   do
37     {
38       PTR x = *(hti->slot);
39       if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
40 	break;
41     } while (++(hti->slot) < hti->limit);
42 
43   if (hti->slot < hti->limit)
44     return *(hti->slot);
45   return NULL;
46 }
47 
48 /* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
49    or NULL if we have  reached the end.  */
50 
51 static inline bool
end_htab_p(htab_iterator * hti)52 end_htab_p (htab_iterator *hti)
53 {
54   if (hti->slot >= hti->limit)
55     return true;
56   return false;
57 }
58 
59 /* Advance the hashtable iterator pointed to by HTI to the next element of the
60    hashtable.  */
61 
62 static inline void *
next_htab_element(htab_iterator * hti)63 next_htab_element (htab_iterator *hti)
64 {
65   while (++(hti->slot) < hti->limit)
66     {
67       PTR x = *(hti->slot);
68       if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
69 	return x;
70     };
71   return NULL;
72 }
73 
74 /* Initialize ITER to point to the first referenced variable in the
75    referenced_vars hashtable, and return that variable.  */
76 
77 static inline tree
first_referenced_var(referenced_var_iterator * iter)78 first_referenced_var (referenced_var_iterator *iter)
79 {
80   struct int_tree_map *itm;
81   itm = (struct int_tree_map *) first_htab_element (&iter->hti,
82                                                     referenced_vars);
83   if (!itm)
84     return NULL;
85   return itm->to;
86 }
87 
88 /* Return true if we have hit the end of the referenced variables ITER is
89    iterating through.  */
90 
91 static inline bool
end_referenced_vars_p(referenced_var_iterator * iter)92 end_referenced_vars_p (referenced_var_iterator *iter)
93 {
94   return end_htab_p (&iter->hti);
95 }
96 
97 /* Make ITER point to the next referenced_var in the referenced_var hashtable,
98    and return that variable.  */
99 
100 static inline tree
next_referenced_var(referenced_var_iterator * iter)101 next_referenced_var (referenced_var_iterator *iter)
102 {
103   struct int_tree_map *itm;
104   itm = (struct int_tree_map *) next_htab_element (&iter->hti);
105   if (!itm)
106     return NULL;
107   return itm->to;
108 }
109 
110 /* Fill up VEC with the variables in the referenced vars hashtable.  */
111 
112 static inline void
fill_referenced_var_vec(VEC (tree,heap)** vec)113 fill_referenced_var_vec (VEC (tree, heap) **vec)
114 {
115   referenced_var_iterator rvi;
116   tree var;
117   *vec = NULL;
118   FOR_EACH_REFERENCED_VAR (var, rvi)
119     VEC_safe_push (tree, heap, *vec, var);
120 }
121 
122 /* Return the variable annotation for T, which must be a _DECL node.
123    Return NULL if the variable annotation doesn't already exist.  */
124 static inline var_ann_t
var_ann(tree t)125 var_ann (tree t)
126 {
127   gcc_assert (t);
128   gcc_assert (DECL_P (t));
129   gcc_assert (TREE_CODE (t) != FUNCTION_DECL);
130   gcc_assert (!t->common.ann || t->common.ann->common.type == VAR_ANN);
131 
132   return (var_ann_t) t->common.ann;
133 }
134 
135 /* Return the variable annotation for T, which must be a _DECL node.
136    Create the variable annotation if it doesn't exist.  */
137 static inline var_ann_t
get_var_ann(tree var)138 get_var_ann (tree var)
139 {
140   var_ann_t ann = var_ann (var);
141   return (ann) ? ann : create_var_ann (var);
142 }
143 
144 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
145    Return NULL if the function annotation doesn't already exist.  */
146 static inline function_ann_t
function_ann(tree t)147 function_ann (tree t)
148 {
149   gcc_assert (t);
150   gcc_assert (TREE_CODE (t) == FUNCTION_DECL);
151   gcc_assert (!t->common.ann || t->common.ann->common.type == FUNCTION_ANN);
152 
153   return (function_ann_t) t->common.ann;
154 }
155 
156 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
157    Create the function annotation if it doesn't exist.  */
158 static inline function_ann_t
get_function_ann(tree var)159 get_function_ann (tree var)
160 {
161   function_ann_t ann = function_ann (var);
162   gcc_assert (!var->common.ann || var->common.ann->common.type == FUNCTION_ANN);
163   return (ann) ? ann : create_function_ann (var);
164 }
165 
166 /* Return the statement annotation for T, which must be a statement
167    node.  Return NULL if the statement annotation doesn't exist.  */
168 static inline stmt_ann_t
stmt_ann(tree t)169 stmt_ann (tree t)
170 {
171 #ifdef ENABLE_CHECKING
172   gcc_assert (is_gimple_stmt (t));
173 #endif
174   gcc_assert (!t->common.ann || t->common.ann->common.type == STMT_ANN);
175   return (stmt_ann_t) t->common.ann;
176 }
177 
178 /* Return the statement annotation for T, which must be a statement
179    node.  Create the statement annotation if it doesn't exist.  */
180 static inline stmt_ann_t
get_stmt_ann(tree stmt)181 get_stmt_ann (tree stmt)
182 {
183   stmt_ann_t ann = stmt_ann (stmt);
184   return (ann) ? ann : create_stmt_ann (stmt);
185 }
186 
187 /* Return the annotation type for annotation ANN.  */
188 static inline enum tree_ann_type
ann_type(tree_ann_t ann)189 ann_type (tree_ann_t ann)
190 {
191   return ann->common.type;
192 }
193 
194 /* Return the basic block for statement T.  */
195 static inline basic_block
bb_for_stmt(tree t)196 bb_for_stmt (tree t)
197 {
198   stmt_ann_t ann;
199 
200   if (TREE_CODE (t) == PHI_NODE)
201     return PHI_BB (t);
202 
203   ann = stmt_ann (t);
204   return ann ? ann->bb : NULL;
205 }
206 
207 /* Return the may_aliases varray for variable VAR, or NULL if it has
208    no may aliases.  */
VEC(tree,gc)209 static inline VEC(tree, gc) *
210 may_aliases (tree var)
211 {
212   var_ann_t ann = var_ann (var);
213   return ann ? ann->may_aliases : NULL;
214 }
215 
216 /* Return the line number for EXPR, or return -1 if we have no line
217    number information for it.  */
218 static inline int
get_lineno(tree expr)219 get_lineno (tree expr)
220 {
221   if (expr == NULL_TREE)
222     return -1;
223 
224   if (TREE_CODE (expr) == COMPOUND_EXPR)
225     expr = TREE_OPERAND (expr, 0);
226 
227   if (! EXPR_HAS_LOCATION (expr))
228     return -1;
229 
230   return EXPR_LINENO (expr);
231 }
232 
233 /* Return the file name for EXPR, or return "???" if we have no
234    filename information.  */
235 static inline const char *
get_filename(tree expr)236 get_filename (tree expr)
237 {
238   const char *filename;
239   if (expr == NULL_TREE)
240     return "???";
241 
242   if (TREE_CODE (expr) == COMPOUND_EXPR)
243     expr = TREE_OPERAND (expr, 0);
244 
245   if (EXPR_HAS_LOCATION (expr) && (filename = EXPR_FILENAME (expr)))
246     return filename;
247   else
248     return "???";
249 }
250 
251 /* Return true if T is a noreturn call.  */
252 static inline bool
noreturn_call_p(tree t)253 noreturn_call_p (tree t)
254 {
255   tree call = get_call_expr_in (t);
256   return call != 0 && (call_expr_flags (call) & ECF_NORETURN) != 0;
257 }
258 
259 /* Mark statement T as modified.  */
260 static inline void
mark_stmt_modified(tree t)261 mark_stmt_modified (tree t)
262 {
263   stmt_ann_t ann;
264   if (TREE_CODE (t) == PHI_NODE)
265     return;
266 
267   ann = stmt_ann (t);
268   if (ann == NULL)
269     ann = create_stmt_ann (t);
270   else if (noreturn_call_p (t))
271     VEC_safe_push (tree, gc, modified_noreturn_calls, t);
272   ann->modified = 1;
273 }
274 
275 /* Mark statement T as modified, and update it.  */
276 static inline void
update_stmt(tree t)277 update_stmt (tree t)
278 {
279   if (TREE_CODE (t) == PHI_NODE)
280     return;
281   mark_stmt_modified (t);
282   update_stmt_operands (t);
283 }
284 
285 static inline void
update_stmt_if_modified(tree t)286 update_stmt_if_modified (tree t)
287 {
288   if (stmt_modified_p (t))
289     update_stmt_operands (t);
290 }
291 
292 /* Return true if T is marked as modified, false otherwise.  */
293 static inline bool
stmt_modified_p(tree t)294 stmt_modified_p (tree t)
295 {
296   stmt_ann_t ann = stmt_ann (t);
297 
298   /* Note that if the statement doesn't yet have an annotation, we consider it
299      modified.  This will force the next call to update_stmt_operands to scan
300      the statement.  */
301   return ann ? ann->modified : true;
302 }
303 
304 /* Delink an immediate_uses node from its chain.  */
305 static inline void
delink_imm_use(ssa_use_operand_t * linknode)306 delink_imm_use (ssa_use_operand_t *linknode)
307 {
308   /* Return if this node is not in a list.  */
309   if (linknode->prev == NULL)
310     return;
311 
312   linknode->prev->next = linknode->next;
313   linknode->next->prev = linknode->prev;
314   linknode->prev = NULL;
315   linknode->next = NULL;
316 }
317 
318 /* Link ssa_imm_use node LINKNODE into the chain for LIST.  */
319 static inline void
link_imm_use_to_list(ssa_use_operand_t * linknode,ssa_use_operand_t * list)320 link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list)
321 {
322   /* Link the new node at the head of the list.  If we are in the process of
323      traversing the list, we won't visit any new nodes added to it.  */
324   linknode->prev = list;
325   linknode->next = list->next;
326   list->next->prev = linknode;
327   list->next = linknode;
328 }
329 
330 /* Link ssa_imm_use node LINKNODE into the chain for DEF.  */
331 static inline void
link_imm_use(ssa_use_operand_t * linknode,tree def)332 link_imm_use (ssa_use_operand_t *linknode, tree def)
333 {
334   ssa_use_operand_t *root;
335 
336   if (!def || TREE_CODE (def) != SSA_NAME)
337     linknode->prev = NULL;
338   else
339     {
340       root = &(SSA_NAME_IMM_USE_NODE (def));
341 #ifdef ENABLE_CHECKING
342       if (linknode->use)
343         gcc_assert (*(linknode->use) == def);
344 #endif
345       link_imm_use_to_list (linknode, root);
346     }
347 }
348 
349 /* Set the value of a use pointed to by USE to VAL.  */
350 static inline void
set_ssa_use_from_ptr(use_operand_p use,tree val)351 set_ssa_use_from_ptr (use_operand_p use, tree val)
352 {
353   delink_imm_use (use);
354   *(use->use) = val;
355   link_imm_use (use, val);
356 }
357 
358 /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
359    in STMT.  */
360 static inline void
link_imm_use_stmt(ssa_use_operand_t * linknode,tree def,tree stmt)361 link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, tree stmt)
362 {
363   if (stmt)
364     link_imm_use (linknode, def);
365   else
366     link_imm_use (linknode, NULL);
367   linknode->stmt = stmt;
368 }
369 
370 /* Relink a new node in place of an old node in the list.  */
371 static inline void
relink_imm_use(ssa_use_operand_t * node,ssa_use_operand_t * old)372 relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old)
373 {
374   /* The node one had better be in the same list.  */
375   gcc_assert (*(old->use) == *(node->use));
376   node->prev = old->prev;
377   node->next = old->next;
378   if (old->prev)
379     {
380       old->prev->next = node;
381       old->next->prev = node;
382       /* Remove the old node from the list.  */
383       old->prev = NULL;
384     }
385 }
386 
387 /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
388    in STMT.  */
389 static inline void
relink_imm_use_stmt(ssa_use_operand_t * linknode,ssa_use_operand_t * old,tree stmt)390 relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, tree stmt)
391 {
392   if (stmt)
393     relink_imm_use (linknode, old);
394   else
395     link_imm_use (linknode, NULL);
396   linknode->stmt = stmt;
397 }
398 
399 
400 /* Return true is IMM has reached the end of the immediate use list.  */
401 static inline bool
end_readonly_imm_use_p(imm_use_iterator * imm)402 end_readonly_imm_use_p (imm_use_iterator *imm)
403 {
404   return (imm->imm_use == imm->end_p);
405 }
406 
407 /* Initialize iterator IMM to process the list for VAR.  */
408 static inline use_operand_p
first_readonly_imm_use(imm_use_iterator * imm,tree var)409 first_readonly_imm_use (imm_use_iterator *imm, tree var)
410 {
411   gcc_assert (TREE_CODE (var) == SSA_NAME);
412 
413   imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
414   imm->imm_use = imm->end_p->next;
415 #ifdef ENABLE_CHECKING
416   imm->iter_node.next = imm->imm_use->next;
417 #endif
418   if (end_readonly_imm_use_p (imm))
419     return NULL_USE_OPERAND_P;
420   return imm->imm_use;
421 }
422 
423 /* Bump IMM to the next use in the list.  */
424 static inline use_operand_p
next_readonly_imm_use(imm_use_iterator * imm)425 next_readonly_imm_use (imm_use_iterator *imm)
426 {
427   use_operand_p old = imm->imm_use;
428 
429 #ifdef ENABLE_CHECKING
430   /* If this assertion fails, it indicates the 'next' pointer has changed
431      since we the last bump.  This indicates that the list is being modified
432      via stmt changes, or SET_USE, or somesuch thing, and you need to be
433      using the SAFE version of the iterator.  */
434   gcc_assert (imm->iter_node.next == old->next);
435   imm->iter_node.next = old->next->next;
436 #endif
437 
438   imm->imm_use = old->next;
439   if (end_readonly_imm_use_p (imm))
440     return old;
441   return imm->imm_use;
442 }
443 
444 /* Return true if VAR has no uses.  */
445 static inline bool
has_zero_uses(tree var)446 has_zero_uses (tree var)
447 {
448   ssa_use_operand_t *ptr;
449   ptr = &(SSA_NAME_IMM_USE_NODE (var));
450   /* A single use means there is no items in the list.  */
451   return (ptr == ptr->next);
452 }
453 
454 /* Return true if VAR has a single use.  */
455 static inline bool
has_single_use(tree var)456 has_single_use (tree var)
457 {
458   ssa_use_operand_t *ptr;
459   ptr = &(SSA_NAME_IMM_USE_NODE (var));
460   /* A single use means there is one item in the list.  */
461   return (ptr != ptr->next && ptr == ptr->next->next);
462 }
463 
464 /* If VAR has only a single immediate use, return true, and set USE_P and STMT
465    to the use pointer and stmt of occurrence.  */
466 static inline bool
single_imm_use(tree var,use_operand_p * use_p,tree * stmt)467 single_imm_use (tree var, use_operand_p *use_p, tree *stmt)
468 {
469   ssa_use_operand_t *ptr;
470 
471   ptr = &(SSA_NAME_IMM_USE_NODE (var));
472   if (ptr != ptr->next && ptr == ptr->next->next)
473     {
474       *use_p = ptr->next;
475       *stmt = ptr->next->stmt;
476       return true;
477     }
478   *use_p = NULL_USE_OPERAND_P;
479   *stmt = NULL_TREE;
480   return false;
481 }
482 
483 /* Return the number of immediate uses of VAR.  */
484 static inline unsigned int
num_imm_uses(tree var)485 num_imm_uses (tree var)
486 {
487   ssa_use_operand_t *ptr, *start;
488   unsigned int num;
489 
490   start = &(SSA_NAME_IMM_USE_NODE (var));
491   num = 0;
492   for (ptr = start->next; ptr != start; ptr = ptr->next)
493      num++;
494 
495   return num;
496 }
497 
498 
499 /* Return the tree pointer to by USE.  */
500 static inline tree
get_use_from_ptr(use_operand_p use)501 get_use_from_ptr (use_operand_p use)
502 {
503   return *(use->use);
504 }
505 
506 /* Return the tree pointer to by DEF.  */
507 static inline tree
get_def_from_ptr(def_operand_p def)508 get_def_from_ptr (def_operand_p def)
509 {
510   return *def;
511 }
512 
513 /* Return a def_operand_p pointer for the result of PHI.  */
514 static inline def_operand_p
get_phi_result_ptr(tree phi)515 get_phi_result_ptr (tree phi)
516 {
517   return &(PHI_RESULT_TREE (phi));
518 }
519 
520 /* Return a use_operand_p pointer for argument I of phinode PHI.  */
521 static inline use_operand_p
get_phi_arg_def_ptr(tree phi,int i)522 get_phi_arg_def_ptr (tree phi, int i)
523 {
524   return &(PHI_ARG_IMM_USE_NODE (phi,i));
525 }
526 
527 
528 /* Return the bitmap of addresses taken by STMT, or NULL if it takes
529    no addresses.  */
530 static inline bitmap
addresses_taken(tree stmt)531 addresses_taken (tree stmt)
532 {
533   stmt_ann_t ann = stmt_ann (stmt);
534   return ann ? ann->addresses_taken : NULL;
535 }
536 
537 /* Return the PHI nodes for basic block BB, or NULL if there are no
538    PHI nodes.  */
539 static inline tree
phi_nodes(basic_block bb)540 phi_nodes (basic_block bb)
541 {
542   return bb->phi_nodes;
543 }
544 
545 /* Set list of phi nodes of a basic block BB to L.  */
546 
547 static inline void
set_phi_nodes(basic_block bb,tree l)548 set_phi_nodes (basic_block bb, tree l)
549 {
550   tree phi;
551 
552   bb->phi_nodes = l;
553   for (phi = l; phi; phi = PHI_CHAIN (phi))
554     set_bb_for_stmt (phi, bb);
555 }
556 
557 /* Return the phi argument which contains the specified use.  */
558 
559 static inline int
phi_arg_index_from_use(use_operand_p use)560 phi_arg_index_from_use (use_operand_p use)
561 {
562   struct phi_arg_d *element, *root;
563   int index;
564   tree phi;
565 
566   /* Since the use is the first thing in a PHI argument element, we can
567      calculate its index based on casting it to an argument, and performing
568      pointer arithmetic.  */
569 
570   phi = USE_STMT (use);
571   gcc_assert (TREE_CODE (phi) == PHI_NODE);
572 
573   element = (struct phi_arg_d *)use;
574   root = &(PHI_ARG_ELT (phi, 0));
575   index = element - root;
576 
577 #ifdef ENABLE_CHECKING
578   /* Make sure the calculation doesn't have any leftover bytes.  If it does,
579      then imm_use is likely not the first element in phi_arg_d.  */
580   gcc_assert (
581 	  (((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0);
582   gcc_assert (index >= 0 && index < PHI_ARG_CAPACITY (phi));
583 #endif
584 
585  return index;
586 }
587 
588 /* Mark VAR as used, so that it'll be preserved during rtl expansion.  */
589 
590 static inline void
set_is_used(tree var)591 set_is_used (tree var)
592 {
593   var_ann_t ann = get_var_ann (var);
594   ann->used = 1;
595 }
596 
597 
598 /*  -----------------------------------------------------------------------  */
599 
600 /* Return true if T is an executable statement.  */
601 static inline bool
is_exec_stmt(tree t)602 is_exec_stmt (tree t)
603 {
604   return (t && !IS_EMPTY_STMT (t) && t != error_mark_node);
605 }
606 
607 
608 /* Return true if this stmt can be the target of a control transfer stmt such
609    as a goto.  */
610 static inline bool
is_label_stmt(tree t)611 is_label_stmt (tree t)
612 {
613   if (t)
614     switch (TREE_CODE (t))
615       {
616 	case LABEL_DECL:
617 	case LABEL_EXPR:
618 	case CASE_LABEL_EXPR:
619 	  return true;
620 	default:
621 	  return false;
622       }
623   return false;
624 }
625 
626 /* PHI nodes should contain only ssa_names and invariants.  A test
627    for ssa_name is definitely simpler; don't let invalid contents
628    slip in in the meantime.  */
629 
630 static inline bool
phi_ssa_name_p(tree t)631 phi_ssa_name_p (tree t)
632 {
633   if (TREE_CODE (t) == SSA_NAME)
634     return true;
635 #ifdef ENABLE_CHECKING
636   gcc_assert (is_gimple_min_invariant (t));
637 #endif
638   return false;
639 }
640 
641 /*  -----------------------------------------------------------------------  */
642 
643 /* Return a block_stmt_iterator that points to beginning of basic
644    block BB.  */
645 static inline block_stmt_iterator
bsi_start(basic_block bb)646 bsi_start (basic_block bb)
647 {
648   block_stmt_iterator bsi;
649   if (bb->stmt_list)
650     bsi.tsi = tsi_start (bb->stmt_list);
651   else
652     {
653       gcc_assert (bb->index < NUM_FIXED_BLOCKS);
654       bsi.tsi.ptr = NULL;
655       bsi.tsi.container = NULL;
656     }
657   bsi.bb = bb;
658   return bsi;
659 }
660 
661 /* Return a block statement iterator that points to the first non-label
662    statement in block BB.  */
663 
664 static inline block_stmt_iterator
bsi_after_labels(basic_block bb)665 bsi_after_labels (basic_block bb)
666 {
667   block_stmt_iterator bsi = bsi_start (bb);
668 
669   while (!bsi_end_p (bsi) && TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
670     bsi_next (&bsi);
671 
672   return bsi;
673 }
674 
675 /* Return a block statement iterator that points to the end of basic
676    block BB.  */
677 static inline block_stmt_iterator
bsi_last(basic_block bb)678 bsi_last (basic_block bb)
679 {
680   block_stmt_iterator bsi;
681   if (bb->stmt_list)
682     bsi.tsi = tsi_last (bb->stmt_list);
683   else
684     {
685       gcc_assert (bb->index < NUM_FIXED_BLOCKS);
686       bsi.tsi.ptr = NULL;
687       bsi.tsi.container = NULL;
688     }
689   bsi.bb = bb;
690   return bsi;
691 }
692 
693 /* Return true if block statement iterator I has reached the end of
694    the basic block.  */
695 static inline bool
bsi_end_p(block_stmt_iterator i)696 bsi_end_p (block_stmt_iterator i)
697 {
698   return tsi_end_p (i.tsi);
699 }
700 
701 /* Modify block statement iterator I so that it is at the next
702    statement in the basic block.  */
703 static inline void
bsi_next(block_stmt_iterator * i)704 bsi_next (block_stmt_iterator *i)
705 {
706   tsi_next (&i->tsi);
707 }
708 
709 /* Modify block statement iterator I so that it is at the previous
710    statement in the basic block.  */
711 static inline void
bsi_prev(block_stmt_iterator * i)712 bsi_prev (block_stmt_iterator *i)
713 {
714   tsi_prev (&i->tsi);
715 }
716 
717 /* Return the statement that block statement iterator I is currently
718    at.  */
719 static inline tree
bsi_stmt(block_stmt_iterator i)720 bsi_stmt (block_stmt_iterator i)
721 {
722   return tsi_stmt (i.tsi);
723 }
724 
725 /* Return a pointer to the statement that block statement iterator I
726    is currently at.  */
727 static inline tree *
bsi_stmt_ptr(block_stmt_iterator i)728 bsi_stmt_ptr (block_stmt_iterator i)
729 {
730   return tsi_stmt_ptr (i.tsi);
731 }
732 
733 /* Returns the loop of the statement STMT.  */
734 
735 static inline struct loop *
loop_containing_stmt(tree stmt)736 loop_containing_stmt (tree stmt)
737 {
738   basic_block bb = bb_for_stmt (stmt);
739   if (!bb)
740     return NULL;
741 
742   return bb->loop_father;
743 }
744 
745 /* Return true if VAR is a clobbered by function calls.  */
746 static inline bool
is_call_clobbered(tree var)747 is_call_clobbered (tree var)
748 {
749   if (!MTAG_P (var))
750     return DECL_CALL_CLOBBERED (var);
751   else
752     return bitmap_bit_p (call_clobbered_vars, DECL_UID (var));
753 }
754 
755 /* Mark variable VAR as being clobbered by function calls.  */
756 static inline void
mark_call_clobbered(tree var,unsigned int escape_type)757 mark_call_clobbered (tree var, unsigned int escape_type)
758 {
759   var_ann (var)->escape_mask |= escape_type;
760   if (!MTAG_P (var))
761     DECL_CALL_CLOBBERED (var) = true;
762   bitmap_set_bit (call_clobbered_vars, DECL_UID (var));
763 }
764 
765 /* Clear the call-clobbered attribute from variable VAR.  */
766 static inline void
clear_call_clobbered(tree var)767 clear_call_clobbered (tree var)
768 {
769   var_ann_t ann = var_ann (var);
770   ann->escape_mask = 0;
771   if (MTAG_P (var) && TREE_CODE (var) != STRUCT_FIELD_TAG)
772     MTAG_GLOBAL (var) = 0;
773   if (!MTAG_P (var))
774     DECL_CALL_CLOBBERED (var) = false;
775   bitmap_clear_bit (call_clobbered_vars, DECL_UID (var));
776 }
777 
778 /* Mark variable VAR as being non-addressable.  */
779 static inline void
mark_non_addressable(tree var)780 mark_non_addressable (tree var)
781 {
782   if (!MTAG_P (var))
783     DECL_CALL_CLOBBERED (var) = false;
784   bitmap_clear_bit (call_clobbered_vars, DECL_UID (var));
785   TREE_ADDRESSABLE (var) = 0;
786 }
787 
788 /* Return the common annotation for T.  Return NULL if the annotation
789    doesn't already exist.  */
790 static inline tree_ann_common_t
tree_common_ann(tree t)791 tree_common_ann (tree t)
792 {
793   return &t->common.ann->common;
794 }
795 
796 /* Return a common annotation for T.  Create the constant annotation if it
797    doesn't exist.  */
798 static inline tree_ann_common_t
get_tree_common_ann(tree t)799 get_tree_common_ann (tree t)
800 {
801   tree_ann_common_t ann = tree_common_ann (t);
802   return (ann) ? ann : create_tree_common_ann (t);
803 }
804 
805 /*  -----------------------------------------------------------------------  */
806 
807 /* The following set of routines are used to iterator over various type of
808    SSA operands.  */
809 
810 /* Return true if PTR is finished iterating.  */
811 static inline bool
op_iter_done(ssa_op_iter * ptr)812 op_iter_done (ssa_op_iter *ptr)
813 {
814   return ptr->done;
815 }
816 
817 /* Get the next iterator use value for PTR.  */
818 static inline use_operand_p
op_iter_next_use(ssa_op_iter * ptr)819 op_iter_next_use (ssa_op_iter *ptr)
820 {
821   use_operand_p use_p;
822 #ifdef ENABLE_CHECKING
823   gcc_assert (ptr->iter_type == ssa_op_iter_use);
824 #endif
825   if (ptr->uses)
826     {
827       use_p = USE_OP_PTR (ptr->uses);
828       ptr->uses = ptr->uses->next;
829       return use_p;
830     }
831   if (ptr->vuses)
832     {
833       use_p = VUSE_OP_PTR (ptr->vuses);
834       ptr->vuses = ptr->vuses->next;
835       return use_p;
836     }
837   if (ptr->mayuses)
838     {
839       use_p = MAYDEF_OP_PTR (ptr->mayuses);
840       ptr->mayuses = ptr->mayuses->next;
841       return use_p;
842     }
843   if (ptr->mustkills)
844     {
845       use_p = MUSTDEF_KILL_PTR (ptr->mustkills);
846       ptr->mustkills = ptr->mustkills->next;
847       return use_p;
848     }
849   if (ptr->phi_i < ptr->num_phi)
850     {
851       return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++);
852     }
853   ptr->done = true;
854   return NULL_USE_OPERAND_P;
855 }
856 
857 /* Get the next iterator def value for PTR.  */
858 static inline def_operand_p
op_iter_next_def(ssa_op_iter * ptr)859 op_iter_next_def (ssa_op_iter *ptr)
860 {
861   def_operand_p def_p;
862 #ifdef ENABLE_CHECKING
863   gcc_assert (ptr->iter_type == ssa_op_iter_def);
864 #endif
865   if (ptr->defs)
866     {
867       def_p = DEF_OP_PTR (ptr->defs);
868       ptr->defs = ptr->defs->next;
869       return def_p;
870     }
871   if (ptr->mustdefs)
872     {
873       def_p = MUSTDEF_RESULT_PTR (ptr->mustdefs);
874       ptr->mustdefs = ptr->mustdefs->next;
875       return def_p;
876     }
877   if (ptr->maydefs)
878     {
879       def_p = MAYDEF_RESULT_PTR (ptr->maydefs);
880       ptr->maydefs = ptr->maydefs->next;
881       return def_p;
882     }
883   ptr->done = true;
884   return NULL_DEF_OPERAND_P;
885 }
886 
887 /* Get the next iterator tree value for PTR.  */
888 static inline tree
op_iter_next_tree(ssa_op_iter * ptr)889 op_iter_next_tree (ssa_op_iter *ptr)
890 {
891   tree val;
892 #ifdef ENABLE_CHECKING
893   gcc_assert (ptr->iter_type == ssa_op_iter_tree);
894 #endif
895   if (ptr->uses)
896     {
897       val = USE_OP (ptr->uses);
898       ptr->uses = ptr->uses->next;
899       return val;
900     }
901   if (ptr->vuses)
902     {
903       val = VUSE_OP (ptr->vuses);
904       ptr->vuses = ptr->vuses->next;
905       return val;
906     }
907   if (ptr->mayuses)
908     {
909       val = MAYDEF_OP (ptr->mayuses);
910       ptr->mayuses = ptr->mayuses->next;
911       return val;
912     }
913   if (ptr->mustkills)
914     {
915       val = MUSTDEF_KILL (ptr->mustkills);
916       ptr->mustkills = ptr->mustkills->next;
917       return val;
918     }
919   if (ptr->defs)
920     {
921       val = DEF_OP (ptr->defs);
922       ptr->defs = ptr->defs->next;
923       return val;
924     }
925   if (ptr->mustdefs)
926     {
927       val = MUSTDEF_RESULT (ptr->mustdefs);
928       ptr->mustdefs = ptr->mustdefs->next;
929       return val;
930     }
931   if (ptr->maydefs)
932     {
933       val = MAYDEF_RESULT (ptr->maydefs);
934       ptr->maydefs = ptr->maydefs->next;
935       return val;
936     }
937 
938   ptr->done = true;
939   return NULL_TREE;
940 
941 }
942 
943 
944 /* This functions clears the iterator PTR, and marks it done.  This is normally
945    used to prevent warnings in the compile about might be uninitialized
946    components.  */
947 
948 static inline void
clear_and_done_ssa_iter(ssa_op_iter * ptr)949 clear_and_done_ssa_iter (ssa_op_iter *ptr)
950 {
951   ptr->defs = NULL;
952   ptr->uses = NULL;
953   ptr->vuses = NULL;
954   ptr->maydefs = NULL;
955   ptr->mayuses = NULL;
956   ptr->mustdefs = NULL;
957   ptr->mustkills = NULL;
958   ptr->iter_type = ssa_op_iter_none;
959   ptr->phi_i = 0;
960   ptr->num_phi = 0;
961   ptr->phi_stmt = NULL_TREE;
962   ptr->done = true;
963 }
964 
965 /* Initialize the iterator PTR to the virtual defs in STMT.  */
966 static inline void
op_iter_init(ssa_op_iter * ptr,tree stmt,int flags)967 op_iter_init (ssa_op_iter *ptr, tree stmt, int flags)
968 {
969 #ifdef ENABLE_CHECKING
970   gcc_assert (stmt_ann (stmt));
971 #endif
972 
973   ptr->defs = (flags & SSA_OP_DEF) ? DEF_OPS (stmt) : NULL;
974   ptr->uses = (flags & SSA_OP_USE) ? USE_OPS (stmt) : NULL;
975   ptr->vuses = (flags & SSA_OP_VUSE) ? VUSE_OPS (stmt) : NULL;
976   ptr->maydefs = (flags & SSA_OP_VMAYDEF) ? MAYDEF_OPS (stmt) : NULL;
977   ptr->mayuses = (flags & SSA_OP_VMAYUSE) ? MAYDEF_OPS (stmt) : NULL;
978   ptr->mustdefs = (flags & SSA_OP_VMUSTDEF) ? MUSTDEF_OPS (stmt) : NULL;
979   ptr->mustkills = (flags & SSA_OP_VMUSTKILL) ? MUSTDEF_OPS (stmt) : NULL;
980   ptr->done = false;
981 
982   ptr->phi_i = 0;
983   ptr->num_phi = 0;
984   ptr->phi_stmt = NULL_TREE;
985 }
986 
987 /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
988    the first use.  */
989 static inline use_operand_p
op_iter_init_use(ssa_op_iter * ptr,tree stmt,int flags)990 op_iter_init_use (ssa_op_iter *ptr, tree stmt, int flags)
991 {
992   gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0);
993   op_iter_init (ptr, stmt, flags);
994   ptr->iter_type = ssa_op_iter_use;
995   return op_iter_next_use (ptr);
996 }
997 
998 /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
999    the first def.  */
1000 static inline def_operand_p
op_iter_init_def(ssa_op_iter * ptr,tree stmt,int flags)1001 op_iter_init_def (ssa_op_iter *ptr, tree stmt, int flags)
1002 {
1003   gcc_assert ((flags & (SSA_OP_ALL_USES | SSA_OP_VIRTUAL_KILLS)) == 0);
1004   op_iter_init (ptr, stmt, flags);
1005   ptr->iter_type = ssa_op_iter_def;
1006   return op_iter_next_def (ptr);
1007 }
1008 
1009 /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
1010    the first operand as a tree.  */
1011 static inline tree
op_iter_init_tree(ssa_op_iter * ptr,tree stmt,int flags)1012 op_iter_init_tree (ssa_op_iter *ptr, tree stmt, int flags)
1013 {
1014   op_iter_init (ptr, stmt, flags);
1015   ptr->iter_type = ssa_op_iter_tree;
1016   return op_iter_next_tree (ptr);
1017 }
1018 
1019 /* Get the next iterator mustdef value for PTR, returning the mustdef values in
1020    KILL and DEF.  */
1021 static inline void
op_iter_next_maymustdef(use_operand_p * use,def_operand_p * def,ssa_op_iter * ptr)1022 op_iter_next_maymustdef (use_operand_p *use, def_operand_p *def,
1023 			 ssa_op_iter *ptr)
1024 {
1025 #ifdef ENABLE_CHECKING
1026   gcc_assert (ptr->iter_type == ssa_op_iter_maymustdef);
1027 #endif
1028   if (ptr->mayuses)
1029     {
1030       *def = MAYDEF_RESULT_PTR (ptr->mayuses);
1031       *use = MAYDEF_OP_PTR (ptr->mayuses);
1032       ptr->mayuses = ptr->mayuses->next;
1033       return;
1034     }
1035 
1036   if (ptr->mustkills)
1037     {
1038       *def = MUSTDEF_RESULT_PTR (ptr->mustkills);
1039       *use = MUSTDEF_KILL_PTR (ptr->mustkills);
1040       ptr->mustkills = ptr->mustkills->next;
1041       return;
1042     }
1043 
1044   *def = NULL_DEF_OPERAND_P;
1045   *use = NULL_USE_OPERAND_P;
1046   ptr->done = true;
1047   return;
1048 }
1049 
1050 
1051 /* Initialize iterator PTR to the operands in STMT.  Return the first operands
1052    in USE and DEF.  */
1053 static inline void
op_iter_init_maydef(ssa_op_iter * ptr,tree stmt,use_operand_p * use,def_operand_p * def)1054 op_iter_init_maydef (ssa_op_iter *ptr, tree stmt, use_operand_p *use,
1055 		     def_operand_p *def)
1056 {
1057   gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1058 
1059   op_iter_init (ptr, stmt, SSA_OP_VMAYUSE);
1060   ptr->iter_type = ssa_op_iter_maymustdef;
1061   op_iter_next_maymustdef (use, def, ptr);
1062 }
1063 
1064 
1065 /* Initialize iterator PTR to the operands in STMT.  Return the first operands
1066    in KILL and DEF.  */
1067 static inline void
op_iter_init_mustdef(ssa_op_iter * ptr,tree stmt,use_operand_p * kill,def_operand_p * def)1068 op_iter_init_mustdef (ssa_op_iter *ptr, tree stmt, use_operand_p *kill,
1069 		     def_operand_p *def)
1070 {
1071   gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1072 
1073   op_iter_init (ptr, stmt, SSA_OP_VMUSTKILL);
1074   ptr->iter_type = ssa_op_iter_maymustdef;
1075   op_iter_next_maymustdef (kill, def, ptr);
1076 }
1077 
1078 /* Initialize iterator PTR to the operands in STMT.  Return the first operands
1079    in KILL and DEF.  */
1080 static inline void
op_iter_init_must_and_may_def(ssa_op_iter * ptr,tree stmt,use_operand_p * kill,def_operand_p * def)1081 op_iter_init_must_and_may_def (ssa_op_iter *ptr, tree stmt,
1082 			       use_operand_p *kill, def_operand_p *def)
1083 {
1084   gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1085 
1086   op_iter_init (ptr, stmt, SSA_OP_VMUSTKILL|SSA_OP_VMAYUSE);
1087   ptr->iter_type = ssa_op_iter_maymustdef;
1088   op_iter_next_maymustdef (kill, def, ptr);
1089 }
1090 
1091 
1092 /* If there is a single operand in STMT matching FLAGS, return it.  Otherwise
1093    return NULL.  */
1094 static inline tree
single_ssa_tree_operand(tree stmt,int flags)1095 single_ssa_tree_operand (tree stmt, int flags)
1096 {
1097   tree var;
1098   ssa_op_iter iter;
1099 
1100   var = op_iter_init_tree (&iter, stmt, flags);
1101   if (op_iter_done (&iter))
1102     return NULL_TREE;
1103   op_iter_next_tree (&iter);
1104   if (op_iter_done (&iter))
1105     return var;
1106   return NULL_TREE;
1107 }
1108 
1109 
1110 /* If there is a single operand in STMT matching FLAGS, return it.  Otherwise
1111    return NULL.  */
1112 static inline use_operand_p
single_ssa_use_operand(tree stmt,int flags)1113 single_ssa_use_operand (tree stmt, int flags)
1114 {
1115   use_operand_p var;
1116   ssa_op_iter iter;
1117 
1118   var = op_iter_init_use (&iter, stmt, flags);
1119   if (op_iter_done (&iter))
1120     return NULL_USE_OPERAND_P;
1121   op_iter_next_use (&iter);
1122   if (op_iter_done (&iter))
1123     return var;
1124   return NULL_USE_OPERAND_P;
1125 }
1126 
1127 
1128 
1129 /* If there is a single operand in STMT matching FLAGS, return it.  Otherwise
1130    return NULL.  */
1131 static inline def_operand_p
single_ssa_def_operand(tree stmt,int flags)1132 single_ssa_def_operand (tree stmt, int flags)
1133 {
1134   def_operand_p var;
1135   ssa_op_iter iter;
1136 
1137   var = op_iter_init_def (&iter, stmt, flags);
1138   if (op_iter_done (&iter))
1139     return NULL_DEF_OPERAND_P;
1140   op_iter_next_def (&iter);
1141   if (op_iter_done (&iter))
1142     return var;
1143   return NULL_DEF_OPERAND_P;
1144 }
1145 
1146 
1147 /* Return true if there are zero operands in STMT matching the type
1148    given in FLAGS.  */
1149 static inline bool
zero_ssa_operands(tree stmt,int flags)1150 zero_ssa_operands (tree stmt, int flags)
1151 {
1152   ssa_op_iter iter;
1153 
1154   op_iter_init_tree (&iter, stmt, flags);
1155   return op_iter_done (&iter);
1156 }
1157 
1158 
1159 /* Return the number of operands matching FLAGS in STMT.  */
1160 static inline int
num_ssa_operands(tree stmt,int flags)1161 num_ssa_operands (tree stmt, int flags)
1162 {
1163   ssa_op_iter iter;
1164   tree t;
1165   int num = 0;
1166 
1167   FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags)
1168     num++;
1169   return num;
1170 }
1171 
1172 
1173 /* Delink all immediate_use information for STMT.  */
1174 static inline void
delink_stmt_imm_use(tree stmt)1175 delink_stmt_imm_use (tree stmt)
1176 {
1177    ssa_op_iter iter;
1178    use_operand_p use_p;
1179 
1180    if (ssa_operands_active ())
1181      FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
1182 			       (SSA_OP_ALL_USES | SSA_OP_ALL_KILLS))
1183        delink_imm_use (use_p);
1184 }
1185 
1186 
1187 /* This routine will compare all the operands matching FLAGS in STMT1 to those
1188    in STMT2.  TRUE is returned if they are the same.  STMTs can be NULL.  */
1189 static inline bool
compare_ssa_operands_equal(tree stmt1,tree stmt2,int flags)1190 compare_ssa_operands_equal (tree stmt1, tree stmt2, int flags)
1191 {
1192   ssa_op_iter iter1, iter2;
1193   tree op1 = NULL_TREE;
1194   tree op2 = NULL_TREE;
1195   bool look1, look2;
1196 
1197   if (stmt1 == stmt2)
1198     return true;
1199 
1200   look1 = stmt1 && stmt_ann (stmt1);
1201   look2 = stmt2 && stmt_ann (stmt2);
1202 
1203   if (look1)
1204     {
1205       op1 = op_iter_init_tree (&iter1, stmt1, flags);
1206       if (!look2)
1207         return op_iter_done (&iter1);
1208     }
1209   else
1210     clear_and_done_ssa_iter (&iter1);
1211 
1212   if (look2)
1213     {
1214       op2 = op_iter_init_tree (&iter2, stmt2, flags);
1215       if (!look1)
1216         return op_iter_done (&iter2);
1217     }
1218   else
1219     clear_and_done_ssa_iter (&iter2);
1220 
1221   while (!op_iter_done (&iter1) && !op_iter_done (&iter2))
1222     {
1223       if (op1 != op2)
1224 	return false;
1225       op1 = op_iter_next_tree (&iter1);
1226       op2 = op_iter_next_tree (&iter2);
1227     }
1228 
1229   return (op_iter_done (&iter1) && op_iter_done (&iter2));
1230 }
1231 
1232 
1233 /* If there is a single DEF in the PHI node which matches FLAG, return it.
1234    Otherwise return NULL_DEF_OPERAND_P.  */
1235 static inline tree
single_phi_def(tree stmt,int flags)1236 single_phi_def (tree stmt, int flags)
1237 {
1238   tree def = PHI_RESULT (stmt);
1239   if ((flags & SSA_OP_DEF) && is_gimple_reg (def))
1240     return def;
1241   if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def))
1242     return def;
1243   return NULL_TREE;
1244 }
1245 
1246 /* Initialize the iterator PTR for uses matching FLAGS in PHI.  FLAGS should
1247    be either SSA_OP_USES or SSA_OP_VIRTUAL_USES.  */
1248 static inline use_operand_p
op_iter_init_phiuse(ssa_op_iter * ptr,tree phi,int flags)1249 op_iter_init_phiuse (ssa_op_iter *ptr, tree phi, int flags)
1250 {
1251   tree phi_def = PHI_RESULT (phi);
1252   int comp;
1253 
1254   clear_and_done_ssa_iter (ptr);
1255   ptr->done = false;
1256 
1257   gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0);
1258 
1259   comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
1260 
1261   /* If the PHI node doesn't the operand type we care about, we're done.  */
1262   if ((flags & comp) == 0)
1263     {
1264       ptr->done = true;
1265       return NULL_USE_OPERAND_P;
1266     }
1267 
1268   ptr->phi_stmt = phi;
1269   ptr->num_phi = PHI_NUM_ARGS (phi);
1270   ptr->iter_type = ssa_op_iter_use;
1271   return op_iter_next_use (ptr);
1272 }
1273 
1274 
1275 /* Start an iterator for a PHI definition.  */
1276 
1277 static inline def_operand_p
op_iter_init_phidef(ssa_op_iter * ptr,tree phi,int flags)1278 op_iter_init_phidef (ssa_op_iter *ptr, tree phi, int flags)
1279 {
1280   tree phi_def = PHI_RESULT (phi);
1281   int comp;
1282 
1283   clear_and_done_ssa_iter (ptr);
1284   ptr->done = false;
1285 
1286   gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0);
1287 
1288   comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS);
1289 
1290   /* If the PHI node doesn't the operand type we care about, we're done.  */
1291   if ((flags & comp) == 0)
1292     {
1293       ptr->done = true;
1294       return NULL_USE_OPERAND_P;
1295     }
1296 
1297   ptr->iter_type = ssa_op_iter_def;
1298   /* The first call to op_iter_next_def will terminate the iterator since
1299      all the fields are NULL.  Simply return the result here as the first and
1300      therefore only result.  */
1301   return PHI_RESULT_PTR (phi);
1302 }
1303 
1304 /* Return true is IMM has reached the end of the immediate use stmt list.  */
1305 
1306 static inline bool
end_imm_use_stmt_p(imm_use_iterator * imm)1307 end_imm_use_stmt_p (imm_use_iterator *imm)
1308 {
1309   return (imm->imm_use == imm->end_p);
1310 }
1311 
1312 /* Finished the traverse of an immediate use stmt list IMM by removing the
1313    placeholder node from the list.  */
1314 
1315 static inline void
end_imm_use_stmt_traverse(imm_use_iterator * imm)1316 end_imm_use_stmt_traverse (imm_use_iterator *imm)
1317 {
1318   delink_imm_use (&(imm->iter_node));
1319 }
1320 
1321 /* Immediate use traversal of uses within a stmt require that all the
1322    uses on a stmt be sequentially listed.  This routine is used to build up
1323    this sequential list by adding USE_P to the end of the current list
1324    currently delimited by HEAD and LAST_P.  The new LAST_P value is
1325    returned.  */
1326 
1327 static inline use_operand_p
move_use_after_head(use_operand_p use_p,use_operand_p head,use_operand_p last_p)1328 move_use_after_head (use_operand_p use_p, use_operand_p head,
1329 		      use_operand_p last_p)
1330 {
1331   gcc_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head));
1332   /* Skip head when we find it.  */
1333   if (use_p != head)
1334     {
1335       /* If use_p is already linked in after last_p, continue.  */
1336       if (last_p->next == use_p)
1337 	last_p = use_p;
1338       else
1339 	{
1340 	  /* Delink from current location, and link in at last_p.  */
1341 	  delink_imm_use (use_p);
1342 	  link_imm_use_to_list (use_p, last_p);
1343 	  last_p = use_p;
1344 	}
1345     }
1346   return last_p;
1347 }
1348 
1349 
1350 /* This routine will relink all uses with the same stmt as HEAD into the list
1351    immediately following HEAD for iterator IMM.  */
1352 
1353 static inline void
link_use_stmts_after(use_operand_p head,imm_use_iterator * imm)1354 link_use_stmts_after (use_operand_p head, imm_use_iterator *imm)
1355 {
1356   use_operand_p use_p;
1357   use_operand_p last_p = head;
1358   tree head_stmt = USE_STMT (head);
1359   tree use = USE_FROM_PTR (head);
1360   ssa_op_iter op_iter;
1361   int flag;
1362 
1363   /* Only look at virtual or real uses, depending on the type of HEAD.  */
1364   flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
1365 
1366   if (TREE_CODE (head_stmt) == PHI_NODE)
1367     {
1368       FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag)
1369 	if (USE_FROM_PTR (use_p) == use)
1370 	  last_p = move_use_after_head (use_p, head, last_p);
1371     }
1372   else
1373     {
1374       FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag)
1375 	if (USE_FROM_PTR (use_p) == use)
1376 	  last_p = move_use_after_head (use_p, head, last_p);
1377     }
1378   /* LInk iter node in after last_p.  */
1379   if (imm->iter_node.prev != NULL)
1380     delink_imm_use (&imm->iter_node);
1381   link_imm_use_to_list (&(imm->iter_node), last_p);
1382 }
1383 
1384 /* Initialize IMM to traverse over uses of VAR.  Return the first statement.  */
1385 static inline tree
first_imm_use_stmt(imm_use_iterator * imm,tree var)1386 first_imm_use_stmt (imm_use_iterator *imm, tree var)
1387 {
1388   gcc_assert (TREE_CODE (var) == SSA_NAME);
1389 
1390   imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
1391   imm->imm_use = imm->end_p->next;
1392   imm->next_imm_name = NULL_USE_OPERAND_P;
1393 
1394   /* iter_node is used as a marker within the immediate use list to indicate
1395      where the end of the current stmt's uses are.  Initialize it to NULL
1396      stmt and use, which indicates a marker node.  */
1397   imm->iter_node.prev = NULL_USE_OPERAND_P;
1398   imm->iter_node.next = NULL_USE_OPERAND_P;
1399   imm->iter_node.stmt = NULL_TREE;
1400   imm->iter_node.use = NULL_USE_OPERAND_P;
1401 
1402   if (end_imm_use_stmt_p (imm))
1403     return NULL_TREE;
1404 
1405   link_use_stmts_after (imm->imm_use, imm);
1406 
1407   return USE_STMT (imm->imm_use);
1408 }
1409 
1410 /* Bump IMM to the next stmt which has a use of var.  */
1411 
1412 static inline tree
next_imm_use_stmt(imm_use_iterator * imm)1413 next_imm_use_stmt (imm_use_iterator *imm)
1414 {
1415   imm->imm_use = imm->iter_node.next;
1416   if (end_imm_use_stmt_p (imm))
1417     {
1418       if (imm->iter_node.prev != NULL)
1419 	delink_imm_use (&imm->iter_node);
1420       return NULL_TREE;
1421     }
1422 
1423   link_use_stmts_after (imm->imm_use, imm);
1424   return USE_STMT (imm->imm_use);
1425 
1426 }
1427 
1428 /* This routine will return the first use on the stmt IMM currently refers
1429    to.  */
1430 
1431 static inline use_operand_p
first_imm_use_on_stmt(imm_use_iterator * imm)1432 first_imm_use_on_stmt (imm_use_iterator *imm)
1433 {
1434   imm->next_imm_name = imm->imm_use->next;
1435   return imm->imm_use;
1436 }
1437 
1438 /*  Return TRUE if the last use on the stmt IMM refers to has been visited.  */
1439 
1440 static inline bool
end_imm_use_on_stmt_p(imm_use_iterator * imm)1441 end_imm_use_on_stmt_p (imm_use_iterator *imm)
1442 {
1443   return (imm->imm_use == &(imm->iter_node));
1444 }
1445 
1446 /* Bump to the next use on the stmt IMM refers to, return NULL if done.  */
1447 
1448 static inline use_operand_p
next_imm_use_on_stmt(imm_use_iterator * imm)1449 next_imm_use_on_stmt (imm_use_iterator *imm)
1450 {
1451   imm->imm_use = imm->next_imm_name;
1452   if (end_imm_use_on_stmt_p (imm))
1453     return NULL_USE_OPERAND_P;
1454   else
1455     {
1456       imm->next_imm_name = imm->imm_use->next;
1457       return imm->imm_use;
1458     }
1459 }
1460 
1461 /* Return true if VAR cannot be modified by the program.  */
1462 
1463 static inline bool
unmodifiable_var_p(tree var)1464 unmodifiable_var_p (tree var)
1465 {
1466   if (TREE_CODE (var) == SSA_NAME)
1467     var = SSA_NAME_VAR (var);
1468 
1469   if (MTAG_P (var))
1470     return TREE_READONLY (var) && (TREE_STATIC (var) || MTAG_GLOBAL (var));
1471 
1472   return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
1473 }
1474 
1475 /* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it.  */
1476 
1477 static inline bool
array_ref_contains_indirect_ref(tree ref)1478 array_ref_contains_indirect_ref (tree ref)
1479 {
1480   gcc_assert (TREE_CODE (ref) == ARRAY_REF);
1481 
1482   do {
1483     ref = TREE_OPERAND (ref, 0);
1484   } while (handled_component_p (ref));
1485 
1486   return TREE_CODE (ref) == INDIRECT_REF;
1487 }
1488 
1489 /* Return true if REF, a handled component reference, has an ARRAY_REF
1490    somewhere in it.  */
1491 
1492 static inline bool
ref_contains_array_ref(tree ref)1493 ref_contains_array_ref (tree ref)
1494 {
1495   gcc_assert (handled_component_p (ref));
1496 
1497   do {
1498     if (TREE_CODE (ref) == ARRAY_REF)
1499       return true;
1500     ref = TREE_OPERAND (ref, 0);
1501   } while (handled_component_p (ref));
1502 
1503   return false;
1504 }
1505 
1506 /* Given a variable VAR, lookup and return a pointer to the list of
1507    subvariables for it.  */
1508 
1509 static inline subvar_t *
lookup_subvars_for_var(tree var)1510 lookup_subvars_for_var (tree var)
1511 {
1512   var_ann_t ann = var_ann (var);
1513   gcc_assert (ann);
1514   return &ann->subvars;
1515 }
1516 
1517 /* Given a variable VAR, return a linked list of subvariables for VAR, or
1518    NULL, if there are no subvariables.  */
1519 
1520 static inline subvar_t
get_subvars_for_var(tree var)1521 get_subvars_for_var (tree var)
1522 {
1523   subvar_t subvars;
1524 
1525   gcc_assert (SSA_VAR_P (var));
1526 
1527   if (TREE_CODE (var) == SSA_NAME)
1528     subvars = *(lookup_subvars_for_var (SSA_NAME_VAR (var)));
1529   else
1530     subvars = *(lookup_subvars_for_var (var));
1531   return subvars;
1532 }
1533 
1534 /* Return the subvariable of VAR at offset OFFSET.  */
1535 
1536 static inline tree
get_subvar_at(tree var,unsigned HOST_WIDE_INT offset)1537 get_subvar_at (tree var, unsigned HOST_WIDE_INT offset)
1538 {
1539   subvar_t sv;
1540 
1541   for (sv = get_subvars_for_var (var); sv; sv = sv->next)
1542     if (SFT_OFFSET (sv->var) == offset)
1543       return sv->var;
1544 
1545   return NULL_TREE;
1546 }
1547 
1548 /* Return true if V is a tree that we can have subvars for.
1549    Normally, this is any aggregate type.  Also complex
1550    types which are not gimple registers can have subvars.  */
1551 
1552 static inline bool
var_can_have_subvars(tree v)1553 var_can_have_subvars (tree v)
1554 {
1555   /* Volatile variables should never have subvars.  */
1556   if (TREE_THIS_VOLATILE (v))
1557     return false;
1558 
1559   /* Non decls or memory tags can never have subvars.  */
1560   if (!DECL_P (v) || MTAG_P (v))
1561     return false;
1562 
1563   /* Aggregates can have subvars.  */
1564   if (AGGREGATE_TYPE_P (TREE_TYPE (v)))
1565     return true;
1566 
1567   /* Complex types variables which are not also a gimple register can
1568     have subvars. */
1569   if (TREE_CODE (TREE_TYPE (v)) == COMPLEX_TYPE
1570       && !DECL_COMPLEX_GIMPLE_REG_P (v))
1571     return true;
1572 
1573   return false;
1574 }
1575 
1576 
1577 /* Return true if OFFSET and SIZE define a range that overlaps with some
1578    portion of the range of SV, a subvar.  If there was an exact overlap,
1579    *EXACT will be set to true upon return. */
1580 
1581 static inline bool
overlap_subvar(unsigned HOST_WIDE_INT offset,unsigned HOST_WIDE_INT size,tree sv,bool * exact)1582 overlap_subvar (unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size,
1583 		tree sv,  bool *exact)
1584 {
1585   /* There are three possible cases of overlap.
1586      1. We can have an exact overlap, like so:
1587      |offset, offset + size             |
1588      |sv->offset, sv->offset + sv->size |
1589 
1590      2. We can have offset starting after sv->offset, like so:
1591 
1592            |offset, offset + size              |
1593      |sv->offset, sv->offset + sv->size  |
1594 
1595      3. We can have offset starting before sv->offset, like so:
1596 
1597      |offset, offset + size    |
1598        |sv->offset, sv->offset + sv->size|
1599   */
1600 
1601   if (exact)
1602     *exact = false;
1603   if (offset == SFT_OFFSET (sv) && size == SFT_SIZE (sv))
1604     {
1605       if (exact)
1606 	*exact = true;
1607       return true;
1608     }
1609   else if (offset >= SFT_OFFSET (sv)
1610 	   && offset < (SFT_OFFSET (sv) + SFT_SIZE (sv)))
1611     {
1612       return true;
1613     }
1614   else if (offset < SFT_OFFSET (sv)
1615 	   && (size > SFT_OFFSET (sv) - offset))
1616     {
1617       return true;
1618     }
1619   return false;
1620 
1621 }
1622 
1623 #endif /* _TREE_FLOW_INLINE_H  */
1624