1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclgevf_regs.h"
10 #include "hclge_mbx.h"
11 #include "hnae3.h"
12 #include "hclgevf_devlink.h"
13 #include "hclge_comm_rss.h"
14 #include "hclgevf_trace.h"
15
16 #define HCLGEVF_NAME "hclgevf"
17
18 #define HCLGEVF_RESET_MAX_FAIL_CNT 5
19
20 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
21 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
22 unsigned long delay);
23
24 static struct hnae3_ae_algo ae_algovf;
25
26 static struct workqueue_struct *hclgevf_wq;
27
28 static const struct pci_device_id ae_algovf_pci_tbl[] = {
29 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
30 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
31 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
32 /* required last entry */
33 {0, }
34 };
35
36 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
37
38 /* hclgevf_cmd_send - send command to command queue
39 * @hw: pointer to the hw struct
40 * @desc: prefilled descriptor for describing the command
41 * @num : the number of descriptors to be sent
42 *
43 * This is the main send command for command queue, it
44 * sends the queue, cleans the queue, etc
45 */
hclgevf_cmd_send(struct hclgevf_hw * hw,struct hclge_desc * desc,int num)46 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num)
47 {
48 return hclge_comm_cmd_send(&hw->hw, desc, num);
49 }
50
hclgevf_trace_cmd_send(struct hclge_comm_hw * hw,struct hclge_desc * desc,int num,bool is_special)51 static void hclgevf_trace_cmd_send(struct hclge_comm_hw *hw, struct hclge_desc *desc,
52 int num, bool is_special)
53 {
54 int i;
55
56 trace_hclge_vf_cmd_send(hw, desc, 0, num);
57
58 if (is_special)
59 return;
60
61 for (i = 1; i < num; i++)
62 trace_hclge_vf_cmd_send(hw, &desc[i], i, num);
63 }
64
hclgevf_trace_cmd_get(struct hclge_comm_hw * hw,struct hclge_desc * desc,int num,bool is_special)65 static void hclgevf_trace_cmd_get(struct hclge_comm_hw *hw, struct hclge_desc *desc,
66 int num, bool is_special)
67 {
68 int i;
69
70 if (!HCLGE_COMM_SEND_SYNC(le16_to_cpu(desc->flag)))
71 return;
72
73 trace_hclge_vf_cmd_get(hw, desc, 0, num);
74
75 if (is_special)
76 return;
77
78 for (i = 1; i < num; i++)
79 trace_hclge_vf_cmd_get(hw, &desc[i], i, num);
80 }
81
82 static const struct hclge_comm_cmq_ops hclgevf_cmq_ops = {
83 .trace_cmd_send = hclgevf_trace_cmd_send,
84 .trace_cmd_get = hclgevf_trace_cmd_get,
85 };
86
hclgevf_arq_init(struct hclgevf_dev * hdev)87 void hclgevf_arq_init(struct hclgevf_dev *hdev)
88 {
89 struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq;
90
91 spin_lock(&cmdq->crq.lock);
92 /* initialize the pointers of async rx queue of mailbox */
93 hdev->arq.hdev = hdev;
94 hdev->arq.head = 0;
95 hdev->arq.tail = 0;
96 atomic_set(&hdev->arq.count, 0);
97 spin_unlock(&cmdq->crq.lock);
98 }
99
hclgevf_ae_get_hdev(struct hnae3_handle * handle)100 struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
101 {
102 if (!handle->client)
103 return container_of(handle, struct hclgevf_dev, nic);
104 else if (handle->client->type == HNAE3_CLIENT_ROCE)
105 return container_of(handle, struct hclgevf_dev, roce);
106 else
107 return container_of(handle, struct hclgevf_dev, nic);
108 }
109
hclgevf_update_stats(struct hnae3_handle * handle)110 static void hclgevf_update_stats(struct hnae3_handle *handle)
111 {
112 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
113 int status;
114
115 status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
116 if (status)
117 dev_err(&hdev->pdev->dev,
118 "VF update of TQPS stats fail, status = %d.\n",
119 status);
120 }
121
hclgevf_get_sset_count(struct hnae3_handle * handle,int strset)122 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
123 {
124 if (strset == ETH_SS_TEST)
125 return -EOPNOTSUPP;
126 else if (strset == ETH_SS_STATS)
127 return hclge_comm_tqps_get_sset_count(handle);
128
129 return 0;
130 }
131
hclgevf_get_strings(struct hnae3_handle * handle,u32 strset,u8 * data)132 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
133 u8 *data)
134 {
135 u8 *p = (char *)data;
136
137 if (strset == ETH_SS_STATS)
138 p = hclge_comm_tqps_get_strings(handle, p);
139 }
140
hclgevf_get_stats(struct hnae3_handle * handle,u64 * data)141 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
142 {
143 hclge_comm_tqps_get_stats(handle, data);
144 }
145
hclgevf_build_send_msg(struct hclge_vf_to_pf_msg * msg,u8 code,u8 subcode)146 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
147 u8 subcode)
148 {
149 if (msg) {
150 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
151 msg->code = code;
152 msg->subcode = subcode;
153 }
154 }
155
hclgevf_get_basic_info(struct hclgevf_dev * hdev)156 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
157 {
158 struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
159 u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
160 struct hclge_basic_info *basic_info;
161 struct hclge_vf_to_pf_msg send_msg;
162 unsigned long caps;
163 int status;
164
165 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
166 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
167 sizeof(resp_msg));
168 if (status) {
169 dev_err(&hdev->pdev->dev,
170 "failed to get basic info from pf, ret = %d", status);
171 return status;
172 }
173
174 basic_info = (struct hclge_basic_info *)resp_msg;
175
176 hdev->hw_tc_map = basic_info->hw_tc_map;
177 hdev->mbx_api_version = le16_to_cpu(basic_info->mbx_api_version);
178 caps = le32_to_cpu(basic_info->pf_caps);
179 if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
180 set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
181
182 return 0;
183 }
184
hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev * hdev)185 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
186 {
187 struct hnae3_handle *nic = &hdev->nic;
188 struct hclge_vf_to_pf_msg send_msg;
189 u8 resp_msg;
190 int ret;
191
192 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
193 HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
194 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
195 sizeof(u8));
196 if (ret) {
197 dev_err(&hdev->pdev->dev,
198 "VF request to get port based vlan state failed %d",
199 ret);
200 return ret;
201 }
202
203 nic->port_base_vlan_state = resp_msg;
204
205 return 0;
206 }
207
hclgevf_get_queue_info(struct hclgevf_dev * hdev)208 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
209 {
210 #define HCLGEVF_TQPS_RSS_INFO_LEN 6
211
212 struct hclge_mbx_vf_queue_info *queue_info;
213 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
214 struct hclge_vf_to_pf_msg send_msg;
215 int status;
216
217 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
218 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
219 HCLGEVF_TQPS_RSS_INFO_LEN);
220 if (status) {
221 dev_err(&hdev->pdev->dev,
222 "VF request to get tqp info from PF failed %d",
223 status);
224 return status;
225 }
226
227 queue_info = (struct hclge_mbx_vf_queue_info *)resp_msg;
228 hdev->num_tqps = le16_to_cpu(queue_info->num_tqps);
229 hdev->rss_size_max = le16_to_cpu(queue_info->rss_size);
230 hdev->rx_buf_len = le16_to_cpu(queue_info->rx_buf_len);
231
232 return 0;
233 }
234
hclgevf_get_queue_depth(struct hclgevf_dev * hdev)235 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
236 {
237 #define HCLGEVF_TQPS_DEPTH_INFO_LEN 4
238
239 struct hclge_mbx_vf_queue_depth *queue_depth;
240 u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
241 struct hclge_vf_to_pf_msg send_msg;
242 int ret;
243
244 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
245 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
246 HCLGEVF_TQPS_DEPTH_INFO_LEN);
247 if (ret) {
248 dev_err(&hdev->pdev->dev,
249 "VF request to get tqp depth info from PF failed %d",
250 ret);
251 return ret;
252 }
253
254 queue_depth = (struct hclge_mbx_vf_queue_depth *)resp_msg;
255 hdev->num_tx_desc = le16_to_cpu(queue_depth->num_tx_desc);
256 hdev->num_rx_desc = le16_to_cpu(queue_depth->num_rx_desc);
257
258 return 0;
259 }
260
hclgevf_get_qid_global(struct hnae3_handle * handle,u16 queue_id)261 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
262 {
263 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
264 struct hclge_vf_to_pf_msg send_msg;
265 u16 qid_in_pf = 0;
266 u8 resp_data[2];
267 int ret;
268
269 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
270 *(__le16 *)send_msg.data = cpu_to_le16(queue_id);
271 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
272 sizeof(resp_data));
273 if (!ret)
274 qid_in_pf = le16_to_cpu(*(__le16 *)resp_data);
275
276 return qid_in_pf;
277 }
278
hclgevf_get_pf_media_type(struct hclgevf_dev * hdev)279 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
280 {
281 struct hclge_vf_to_pf_msg send_msg;
282 u8 resp_msg[2];
283 int ret;
284
285 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
286 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
287 sizeof(resp_msg));
288 if (ret) {
289 dev_err(&hdev->pdev->dev,
290 "VF request to get the pf port media type failed %d",
291 ret);
292 return ret;
293 }
294
295 hdev->hw.mac.media_type = resp_msg[0];
296 hdev->hw.mac.module_type = resp_msg[1];
297
298 return 0;
299 }
300
hclgevf_alloc_tqps(struct hclgevf_dev * hdev)301 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
302 {
303 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
304 struct hclge_comm_tqp *tqp;
305 int i;
306
307 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
308 sizeof(struct hclge_comm_tqp), GFP_KERNEL);
309 if (!hdev->htqp)
310 return -ENOMEM;
311
312 tqp = hdev->htqp;
313
314 for (i = 0; i < hdev->num_tqps; i++) {
315 tqp->dev = &hdev->pdev->dev;
316 tqp->index = i;
317
318 tqp->q.ae_algo = &ae_algovf;
319 tqp->q.buf_size = hdev->rx_buf_len;
320 tqp->q.tx_desc_num = hdev->num_tx_desc;
321 tqp->q.rx_desc_num = hdev->num_rx_desc;
322
323 /* need an extended offset to configure queues >=
324 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
325 */
326 if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
327 tqp->q.io_base = hdev->hw.hw.io_base +
328 HCLGEVF_TQP_REG_OFFSET +
329 i * HCLGEVF_TQP_REG_SIZE;
330 else
331 tqp->q.io_base = hdev->hw.hw.io_base +
332 HCLGEVF_TQP_REG_OFFSET +
333 HCLGEVF_TQP_EXT_REG_OFFSET +
334 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
335 HCLGEVF_TQP_REG_SIZE;
336
337 /* when device supports tx push and has device memory,
338 * the queue can execute push mode or doorbell mode on
339 * device memory.
340 */
341 if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
342 tqp->q.mem_base = hdev->hw.hw.mem_base +
343 HCLGEVF_TQP_MEM_OFFSET(hdev, i);
344
345 tqp++;
346 }
347
348 return 0;
349 }
350
hclgevf_knic_setup(struct hclgevf_dev * hdev)351 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
352 {
353 struct hnae3_handle *nic = &hdev->nic;
354 struct hnae3_knic_private_info *kinfo;
355 u16 new_tqps = hdev->num_tqps;
356 unsigned int i;
357 u8 num_tc = 0;
358
359 kinfo = &nic->kinfo;
360 kinfo->num_tx_desc = hdev->num_tx_desc;
361 kinfo->num_rx_desc = hdev->num_rx_desc;
362 kinfo->rx_buf_len = hdev->rx_buf_len;
363 for (i = 0; i < HCLGE_COMM_MAX_TC_NUM; i++)
364 if (hdev->hw_tc_map & BIT(i))
365 num_tc++;
366
367 num_tc = num_tc ? num_tc : 1;
368 kinfo->tc_info.num_tc = num_tc;
369 kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
370 new_tqps = kinfo->rss_size * num_tc;
371 kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
372
373 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
374 sizeof(struct hnae3_queue *), GFP_KERNEL);
375 if (!kinfo->tqp)
376 return -ENOMEM;
377
378 for (i = 0; i < kinfo->num_tqps; i++) {
379 hdev->htqp[i].q.handle = &hdev->nic;
380 hdev->htqp[i].q.tqp_index = i;
381 kinfo->tqp[i] = &hdev->htqp[i].q;
382 }
383
384 /* after init the max rss_size and tqps, adjust the default tqp numbers
385 * and rss size with the actual vector numbers
386 */
387 kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
388 kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
389 kinfo->rss_size);
390
391 return 0;
392 }
393
hclgevf_request_link_info(struct hclgevf_dev * hdev)394 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
395 {
396 struct hclge_vf_to_pf_msg send_msg;
397 int status;
398
399 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
400 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
401 if (status)
402 dev_err(&hdev->pdev->dev,
403 "VF failed to fetch link status(%d) from PF", status);
404 }
405
hclgevf_update_link_status(struct hclgevf_dev * hdev,int link_state)406 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
407 {
408 struct hnae3_handle *rhandle = &hdev->roce;
409 struct hnae3_handle *handle = &hdev->nic;
410 struct hnae3_client *rclient;
411 struct hnae3_client *client;
412
413 if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
414 return;
415
416 client = handle->client;
417 rclient = hdev->roce_client;
418
419 link_state =
420 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
421 if (link_state != hdev->hw.mac.link) {
422 hdev->hw.mac.link = link_state;
423 client->ops->link_status_change(handle, !!link_state);
424 if (rclient && rclient->ops->link_status_change)
425 rclient->ops->link_status_change(rhandle, !!link_state);
426 }
427
428 clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
429 }
430
hclgevf_update_link_mode(struct hclgevf_dev * hdev)431 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
432 {
433 #define HCLGEVF_ADVERTISING 0
434 #define HCLGEVF_SUPPORTED 1
435
436 struct hclge_vf_to_pf_msg send_msg;
437
438 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
439 send_msg.data[0] = HCLGEVF_ADVERTISING;
440 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
441 send_msg.data[0] = HCLGEVF_SUPPORTED;
442 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
443 }
444
hclgevf_set_handle_info(struct hclgevf_dev * hdev)445 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
446 {
447 struct hnae3_handle *nic = &hdev->nic;
448 int ret;
449
450 nic->ae_algo = &ae_algovf;
451 nic->pdev = hdev->pdev;
452 bitmap_copy(nic->numa_node_mask.bits, hdev->numa_node_mask.bits,
453 MAX_NUMNODES);
454 nic->flags |= HNAE3_SUPPORT_VF;
455 nic->kinfo.io_base = hdev->hw.hw.io_base;
456
457 ret = hclgevf_knic_setup(hdev);
458 if (ret)
459 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
460 ret);
461 return ret;
462 }
463
hclgevf_free_vector(struct hclgevf_dev * hdev,int vector_id)464 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
465 {
466 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
467 dev_warn(&hdev->pdev->dev,
468 "vector(vector_id %d) has been freed.\n", vector_id);
469 return;
470 }
471
472 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
473 hdev->num_msi_left += 1;
474 hdev->num_msi_used -= 1;
475 }
476
hclgevf_get_vector(struct hnae3_handle * handle,u16 vector_num,struct hnae3_vector_info * vector_info)477 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
478 struct hnae3_vector_info *vector_info)
479 {
480 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
481 struct hnae3_vector_info *vector = vector_info;
482 int alloc = 0;
483 int i, j;
484
485 vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
486 vector_num = min(hdev->num_msi_left, vector_num);
487
488 for (j = 0; j < vector_num; j++) {
489 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
490 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
491 vector->vector = pci_irq_vector(hdev->pdev, i);
492 vector->io_addr = hdev->hw.hw.io_base +
493 HCLGEVF_VECTOR_REG_BASE +
494 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
495 hdev->vector_status[i] = 0;
496 hdev->vector_irq[i] = vector->vector;
497
498 vector++;
499 alloc++;
500
501 break;
502 }
503 }
504 }
505 hdev->num_msi_left -= alloc;
506 hdev->num_msi_used += alloc;
507
508 return alloc;
509 }
510
hclgevf_get_vector_index(struct hclgevf_dev * hdev,int vector)511 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
512 {
513 int i;
514
515 for (i = 0; i < hdev->num_msi; i++)
516 if (vector == hdev->vector_irq[i])
517 return i;
518
519 return -EINVAL;
520 }
521
522 /* for revision 0x20, vf shared the same rss config with pf */
hclgevf_get_rss_hash_key(struct hclgevf_dev * hdev)523 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
524 {
525 #define HCLGEVF_RSS_MBX_RESP_LEN 8
526 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
527 u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
528 struct hclge_vf_to_pf_msg send_msg;
529 u16 msg_num, hash_key_index;
530 u8 index;
531 int ret;
532
533 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
534 msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
535 HCLGEVF_RSS_MBX_RESP_LEN;
536 for (index = 0; index < msg_num; index++) {
537 send_msg.data[0] = index;
538 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
539 HCLGEVF_RSS_MBX_RESP_LEN);
540 if (ret) {
541 dev_err(&hdev->pdev->dev,
542 "VF get rss hash key from PF failed, ret=%d",
543 ret);
544 return ret;
545 }
546
547 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
548 if (index == msg_num - 1)
549 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
550 &resp_msg[0],
551 HCLGE_COMM_RSS_KEY_SIZE - hash_key_index);
552 else
553 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
554 &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
555 }
556
557 return 0;
558 }
559
hclgevf_get_rss(struct hnae3_handle * handle,u32 * indir,u8 * key,u8 * hfunc)560 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
561 u8 *hfunc)
562 {
563 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
564 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
565 int ret;
566
567 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
568 hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);
569 } else {
570 if (hfunc)
571 *hfunc = ETH_RSS_HASH_TOP;
572 if (key) {
573 ret = hclgevf_get_rss_hash_key(hdev);
574 if (ret)
575 return ret;
576 memcpy(key, rss_cfg->rss_hash_key,
577 HCLGE_COMM_RSS_KEY_SIZE);
578 }
579 }
580
581 hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
582 hdev->ae_dev->dev_specs.rss_ind_tbl_size);
583
584 return 0;
585 }
586
hclgevf_set_rss(struct hnae3_handle * handle,const u32 * indir,const u8 * key,const u8 hfunc)587 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
588 const u8 *key, const u8 hfunc)
589 {
590 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
591 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
592 int ret, i;
593
594 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
595 ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key,
596 hfunc);
597 if (ret)
598 return ret;
599 }
600
601 /* update the shadow RSS table with user specified qids */
602 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
603 rss_cfg->rss_indirection_tbl[i] = indir[i];
604
605 /* update the hardware */
606 return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
607 rss_cfg->rss_indirection_tbl);
608 }
609
hclgevf_set_rss_tuple(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc)610 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
611 struct ethtool_rxnfc *nfc)
612 {
613 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
614 int ret;
615
616 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
617 return -EOPNOTSUPP;
618
619 ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw,
620 &hdev->rss_cfg, nfc);
621 if (ret)
622 dev_err(&hdev->pdev->dev,
623 "failed to set rss tuple, ret = %d.\n", ret);
624
625 return ret;
626 }
627
hclgevf_get_rss_tuple(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc)628 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
629 struct ethtool_rxnfc *nfc)
630 {
631 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
632 u8 tuple_sets;
633 int ret;
634
635 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
636 return -EOPNOTSUPP;
637
638 nfc->data = 0;
639
640 ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type,
641 &tuple_sets);
642 if (ret || !tuple_sets)
643 return ret;
644
645 nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);
646
647 return 0;
648 }
649
hclgevf_get_tc_size(struct hnae3_handle * handle)650 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
651 {
652 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
653 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
654
655 return rss_cfg->rss_size;
656 }
657
hclgevf_bind_ring_to_vector(struct hnae3_handle * handle,bool en,int vector_id,struct hnae3_ring_chain_node * ring_chain)658 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
659 int vector_id,
660 struct hnae3_ring_chain_node *ring_chain)
661 {
662 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
663 struct hclge_vf_to_pf_msg send_msg;
664 struct hnae3_ring_chain_node *node;
665 int status;
666 int i = 0;
667
668 memset(&send_msg, 0, sizeof(send_msg));
669 send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
670 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
671 send_msg.vector_id = vector_id;
672
673 for (node = ring_chain; node; node = node->next) {
674 send_msg.param[i].ring_type =
675 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
676
677 send_msg.param[i].tqp_index = node->tqp_index;
678 send_msg.param[i].int_gl_index =
679 hnae3_get_field(node->int_gl_idx,
680 HNAE3_RING_GL_IDX_M,
681 HNAE3_RING_GL_IDX_S);
682
683 i++;
684 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
685 send_msg.ring_num = i;
686
687 status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
688 NULL, 0);
689 if (status) {
690 dev_err(&hdev->pdev->dev,
691 "Map TQP fail, status is %d.\n",
692 status);
693 return status;
694 }
695 i = 0;
696 }
697 }
698
699 return 0;
700 }
701
hclgevf_map_ring_to_vector(struct hnae3_handle * handle,int vector,struct hnae3_ring_chain_node * ring_chain)702 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
703 struct hnae3_ring_chain_node *ring_chain)
704 {
705 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
706 int vector_id;
707
708 vector_id = hclgevf_get_vector_index(hdev, vector);
709 if (vector_id < 0) {
710 dev_err(&handle->pdev->dev,
711 "Get vector index fail. ret =%d\n", vector_id);
712 return vector_id;
713 }
714
715 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
716 }
717
hclgevf_unmap_ring_from_vector(struct hnae3_handle * handle,int vector,struct hnae3_ring_chain_node * ring_chain)718 static int hclgevf_unmap_ring_from_vector(
719 struct hnae3_handle *handle,
720 int vector,
721 struct hnae3_ring_chain_node *ring_chain)
722 {
723 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
724 int ret, vector_id;
725
726 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
727 return 0;
728
729 vector_id = hclgevf_get_vector_index(hdev, vector);
730 if (vector_id < 0) {
731 dev_err(&handle->pdev->dev,
732 "Get vector index fail. ret =%d\n", vector_id);
733 return vector_id;
734 }
735
736 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
737 if (ret)
738 dev_err(&handle->pdev->dev,
739 "Unmap ring from vector fail. vector=%d, ret =%d\n",
740 vector_id,
741 ret);
742
743 return ret;
744 }
745
hclgevf_put_vector(struct hnae3_handle * handle,int vector)746 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
747 {
748 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
749 int vector_id;
750
751 vector_id = hclgevf_get_vector_index(hdev, vector);
752 if (vector_id < 0) {
753 dev_err(&handle->pdev->dev,
754 "hclgevf_put_vector get vector index fail. ret =%d\n",
755 vector_id);
756 return vector_id;
757 }
758
759 hclgevf_free_vector(hdev, vector_id);
760
761 return 0;
762 }
763
hclgevf_cmd_set_promisc_mode(struct hclgevf_dev * hdev,bool en_uc_pmc,bool en_mc_pmc,bool en_bc_pmc)764 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
765 bool en_uc_pmc, bool en_mc_pmc,
766 bool en_bc_pmc)
767 {
768 struct hnae3_handle *handle = &hdev->nic;
769 struct hclge_vf_to_pf_msg send_msg;
770 int ret;
771
772 memset(&send_msg, 0, sizeof(send_msg));
773 send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
774 send_msg.en_bc = en_bc_pmc ? 1 : 0;
775 send_msg.en_uc = en_uc_pmc ? 1 : 0;
776 send_msg.en_mc = en_mc_pmc ? 1 : 0;
777 send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
778 &handle->priv_flags) ? 1 : 0;
779
780 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
781 if (ret)
782 dev_err(&hdev->pdev->dev,
783 "Set promisc mode fail, status is %d.\n", ret);
784
785 return ret;
786 }
787
hclgevf_set_promisc_mode(struct hnae3_handle * handle,bool en_uc_pmc,bool en_mc_pmc)788 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
789 bool en_mc_pmc)
790 {
791 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
792 bool en_bc_pmc;
793
794 en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
795
796 return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
797 en_bc_pmc);
798 }
799
hclgevf_request_update_promisc_mode(struct hnae3_handle * handle)800 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
801 {
802 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
803
804 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
805 hclgevf_task_schedule(hdev, 0);
806 }
807
hclgevf_sync_promisc_mode(struct hclgevf_dev * hdev)808 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
809 {
810 struct hnae3_handle *handle = &hdev->nic;
811 bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
812 bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
813 int ret;
814
815 if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
816 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
817 if (!ret)
818 clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
819 }
820 }
821
hclgevf_tqp_enable_cmd_send(struct hclgevf_dev * hdev,u16 tqp_id,u16 stream_id,bool enable)822 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
823 u16 stream_id, bool enable)
824 {
825 struct hclgevf_cfg_com_tqp_queue_cmd *req;
826 struct hclge_desc desc;
827
828 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
829
830 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false);
831 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
832 req->stream_id = cpu_to_le16(stream_id);
833 if (enable)
834 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
835
836 return hclgevf_cmd_send(&hdev->hw, &desc, 1);
837 }
838
hclgevf_tqp_enable(struct hnae3_handle * handle,bool enable)839 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
840 {
841 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
842 int ret;
843 u16 i;
844
845 for (i = 0; i < handle->kinfo.num_tqps; i++) {
846 ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
847 if (ret)
848 return ret;
849 }
850
851 return 0;
852 }
853
hclgevf_get_host_mac_addr(struct hclgevf_dev * hdev,u8 * p)854 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
855 {
856 struct hclge_vf_to_pf_msg send_msg;
857 u8 host_mac[ETH_ALEN];
858 int status;
859
860 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
861 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
862 ETH_ALEN);
863 if (status) {
864 dev_err(&hdev->pdev->dev,
865 "fail to get VF MAC from host %d", status);
866 return status;
867 }
868
869 ether_addr_copy(p, host_mac);
870
871 return 0;
872 }
873
hclgevf_get_mac_addr(struct hnae3_handle * handle,u8 * p)874 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
875 {
876 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
877 u8 host_mac_addr[ETH_ALEN];
878
879 if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
880 return;
881
882 hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
883 if (hdev->has_pf_mac)
884 ether_addr_copy(p, host_mac_addr);
885 else
886 ether_addr_copy(p, hdev->hw.mac.mac_addr);
887 }
888
hclgevf_set_mac_addr(struct hnae3_handle * handle,const void * p,bool is_first)889 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p,
890 bool is_first)
891 {
892 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
893 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
894 struct hclge_vf_to_pf_msg send_msg;
895 u8 *new_mac_addr = (u8 *)p;
896 int status;
897
898 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
899 send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
900 ether_addr_copy(send_msg.data, new_mac_addr);
901 if (is_first && !hdev->has_pf_mac)
902 eth_zero_addr(&send_msg.data[ETH_ALEN]);
903 else
904 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
905 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
906 if (!status)
907 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
908
909 return status;
910 }
911
912 static struct hclgevf_mac_addr_node *
hclgevf_find_mac_node(struct list_head * list,const u8 * mac_addr)913 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
914 {
915 struct hclgevf_mac_addr_node *mac_node, *tmp;
916
917 list_for_each_entry_safe(mac_node, tmp, list, node)
918 if (ether_addr_equal(mac_addr, mac_node->mac_addr))
919 return mac_node;
920
921 return NULL;
922 }
923
hclgevf_update_mac_node(struct hclgevf_mac_addr_node * mac_node,enum HCLGEVF_MAC_NODE_STATE state)924 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
925 enum HCLGEVF_MAC_NODE_STATE state)
926 {
927 switch (state) {
928 /* from set_rx_mode or tmp_add_list */
929 case HCLGEVF_MAC_TO_ADD:
930 if (mac_node->state == HCLGEVF_MAC_TO_DEL)
931 mac_node->state = HCLGEVF_MAC_ACTIVE;
932 break;
933 /* only from set_rx_mode */
934 case HCLGEVF_MAC_TO_DEL:
935 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
936 list_del(&mac_node->node);
937 kfree(mac_node);
938 } else {
939 mac_node->state = HCLGEVF_MAC_TO_DEL;
940 }
941 break;
942 /* only from tmp_add_list, the mac_node->state won't be
943 * HCLGEVF_MAC_ACTIVE
944 */
945 case HCLGEVF_MAC_ACTIVE:
946 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
947 mac_node->state = HCLGEVF_MAC_ACTIVE;
948 break;
949 }
950 }
951
hclgevf_update_mac_list(struct hnae3_handle * handle,enum HCLGEVF_MAC_NODE_STATE state,enum HCLGEVF_MAC_ADDR_TYPE mac_type,const unsigned char * addr)952 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
953 enum HCLGEVF_MAC_NODE_STATE state,
954 enum HCLGEVF_MAC_ADDR_TYPE mac_type,
955 const unsigned char *addr)
956 {
957 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
958 struct hclgevf_mac_addr_node *mac_node;
959 struct list_head *list;
960
961 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
962 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
963
964 spin_lock_bh(&hdev->mac_table.mac_list_lock);
965
966 /* if the mac addr is already in the mac list, no need to add a new
967 * one into it, just check the mac addr state, convert it to a new
968 * state, or just remove it, or do nothing.
969 */
970 mac_node = hclgevf_find_mac_node(list, addr);
971 if (mac_node) {
972 hclgevf_update_mac_node(mac_node, state);
973 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
974 return 0;
975 }
976 /* if this address is never added, unnecessary to delete */
977 if (state == HCLGEVF_MAC_TO_DEL) {
978 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
979 return -ENOENT;
980 }
981
982 mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
983 if (!mac_node) {
984 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
985 return -ENOMEM;
986 }
987
988 mac_node->state = state;
989 ether_addr_copy(mac_node->mac_addr, addr);
990 list_add_tail(&mac_node->node, list);
991
992 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
993 return 0;
994 }
995
hclgevf_add_uc_addr(struct hnae3_handle * handle,const unsigned char * addr)996 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
997 const unsigned char *addr)
998 {
999 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1000 HCLGEVF_MAC_ADDR_UC, addr);
1001 }
1002
hclgevf_rm_uc_addr(struct hnae3_handle * handle,const unsigned char * addr)1003 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1004 const unsigned char *addr)
1005 {
1006 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1007 HCLGEVF_MAC_ADDR_UC, addr);
1008 }
1009
hclgevf_add_mc_addr(struct hnae3_handle * handle,const unsigned char * addr)1010 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1011 const unsigned char *addr)
1012 {
1013 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1014 HCLGEVF_MAC_ADDR_MC, addr);
1015 }
1016
hclgevf_rm_mc_addr(struct hnae3_handle * handle,const unsigned char * addr)1017 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1018 const unsigned char *addr)
1019 {
1020 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1021 HCLGEVF_MAC_ADDR_MC, addr);
1022 }
1023
hclgevf_add_del_mac_addr(struct hclgevf_dev * hdev,struct hclgevf_mac_addr_node * mac_node,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1024 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1025 struct hclgevf_mac_addr_node *mac_node,
1026 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1027 {
1028 struct hclge_vf_to_pf_msg send_msg;
1029 u8 code, subcode;
1030
1031 if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1032 code = HCLGE_MBX_SET_UNICAST;
1033 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1034 subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1035 else
1036 subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1037 } else {
1038 code = HCLGE_MBX_SET_MULTICAST;
1039 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1040 subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1041 else
1042 subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1043 }
1044
1045 hclgevf_build_send_msg(&send_msg, code, subcode);
1046 ether_addr_copy(send_msg.data, mac_node->mac_addr);
1047 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1048 }
1049
hclgevf_config_mac_list(struct hclgevf_dev * hdev,struct list_head * list,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1050 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1051 struct list_head *list,
1052 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1053 {
1054 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
1055 struct hclgevf_mac_addr_node *mac_node, *tmp;
1056 int ret;
1057
1058 list_for_each_entry_safe(mac_node, tmp, list, node) {
1059 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1060 if (ret) {
1061 hnae3_format_mac_addr(format_mac_addr,
1062 mac_node->mac_addr);
1063 dev_err(&hdev->pdev->dev,
1064 "failed to configure mac %s, state = %d, ret = %d\n",
1065 format_mac_addr, mac_node->state, ret);
1066 return;
1067 }
1068 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1069 mac_node->state = HCLGEVF_MAC_ACTIVE;
1070 } else {
1071 list_del(&mac_node->node);
1072 kfree(mac_node);
1073 }
1074 }
1075 }
1076
hclgevf_sync_from_add_list(struct list_head * add_list,struct list_head * mac_list)1077 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1078 struct list_head *mac_list)
1079 {
1080 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1081
1082 list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1083 /* if the mac address from tmp_add_list is not in the
1084 * uc/mc_mac_list, it means have received a TO_DEL request
1085 * during the time window of sending mac config request to PF
1086 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1087 * then it will be removed at next time. If is TO_ADD, it means
1088 * send TO_ADD request failed, so just remove the mac node.
1089 */
1090 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1091 if (new_node) {
1092 hclgevf_update_mac_node(new_node, mac_node->state);
1093 list_del(&mac_node->node);
1094 kfree(mac_node);
1095 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1096 mac_node->state = HCLGEVF_MAC_TO_DEL;
1097 list_move_tail(&mac_node->node, mac_list);
1098 } else {
1099 list_del(&mac_node->node);
1100 kfree(mac_node);
1101 }
1102 }
1103 }
1104
hclgevf_sync_from_del_list(struct list_head * del_list,struct list_head * mac_list)1105 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1106 struct list_head *mac_list)
1107 {
1108 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1109
1110 list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1111 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1112 if (new_node) {
1113 /* If the mac addr is exist in the mac list, it means
1114 * received a new request TO_ADD during the time window
1115 * of sending mac addr configurrequest to PF, so just
1116 * change the mac state to ACTIVE.
1117 */
1118 new_node->state = HCLGEVF_MAC_ACTIVE;
1119 list_del(&mac_node->node);
1120 kfree(mac_node);
1121 } else {
1122 list_move_tail(&mac_node->node, mac_list);
1123 }
1124 }
1125 }
1126
hclgevf_clear_list(struct list_head * list)1127 static void hclgevf_clear_list(struct list_head *list)
1128 {
1129 struct hclgevf_mac_addr_node *mac_node, *tmp;
1130
1131 list_for_each_entry_safe(mac_node, tmp, list, node) {
1132 list_del(&mac_node->node);
1133 kfree(mac_node);
1134 }
1135 }
1136
hclgevf_sync_mac_list(struct hclgevf_dev * hdev,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1137 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1138 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1139 {
1140 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1141 struct list_head tmp_add_list, tmp_del_list;
1142 struct list_head *list;
1143
1144 INIT_LIST_HEAD(&tmp_add_list);
1145 INIT_LIST_HEAD(&tmp_del_list);
1146
1147 /* move the mac addr to the tmp_add_list and tmp_del_list, then
1148 * we can add/delete these mac addr outside the spin lock
1149 */
1150 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1151 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1152
1153 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1154
1155 list_for_each_entry_safe(mac_node, tmp, list, node) {
1156 switch (mac_node->state) {
1157 case HCLGEVF_MAC_TO_DEL:
1158 list_move_tail(&mac_node->node, &tmp_del_list);
1159 break;
1160 case HCLGEVF_MAC_TO_ADD:
1161 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1162 if (!new_node)
1163 goto stop_traverse;
1164
1165 ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1166 new_node->state = mac_node->state;
1167 list_add_tail(&new_node->node, &tmp_add_list);
1168 break;
1169 default:
1170 break;
1171 }
1172 }
1173
1174 stop_traverse:
1175 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1176
1177 /* delete first, in order to get max mac table space for adding */
1178 hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1179 hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1180
1181 /* if some mac addresses were added/deleted fail, move back to the
1182 * mac_list, and retry at next time.
1183 */
1184 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1185
1186 hclgevf_sync_from_del_list(&tmp_del_list, list);
1187 hclgevf_sync_from_add_list(&tmp_add_list, list);
1188
1189 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1190 }
1191
hclgevf_sync_mac_table(struct hclgevf_dev * hdev)1192 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1193 {
1194 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1195 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1196 }
1197
hclgevf_uninit_mac_list(struct hclgevf_dev * hdev)1198 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1199 {
1200 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1201
1202 hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1203 hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1204
1205 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1206 }
1207
hclgevf_enable_vlan_filter(struct hnae3_handle * handle,bool enable)1208 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1209 {
1210 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1211 struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1212 struct hclge_vf_to_pf_msg send_msg;
1213
1214 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1215 return -EOPNOTSUPP;
1216
1217 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1218 HCLGE_MBX_ENABLE_VLAN_FILTER);
1219 send_msg.data[0] = enable ? 1 : 0;
1220
1221 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1222 }
1223
hclgevf_set_vlan_filter(struct hnae3_handle * handle,__be16 proto,u16 vlan_id,bool is_kill)1224 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1225 __be16 proto, u16 vlan_id,
1226 bool is_kill)
1227 {
1228 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1229 struct hclge_mbx_vlan_filter *vlan_filter;
1230 struct hclge_vf_to_pf_msg send_msg;
1231 int ret;
1232
1233 if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1234 return -EINVAL;
1235
1236 if (proto != htons(ETH_P_8021Q))
1237 return -EPROTONOSUPPORT;
1238
1239 /* When device is resetting or reset failed, firmware is unable to
1240 * handle mailbox. Just record the vlan id, and remove it after
1241 * reset finished.
1242 */
1243 if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1244 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1245 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1246 return -EBUSY;
1247 } else if (!is_kill && test_bit(vlan_id, hdev->vlan_del_fail_bmap)) {
1248 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1249 }
1250
1251 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1252 HCLGE_MBX_VLAN_FILTER);
1253 vlan_filter = (struct hclge_mbx_vlan_filter *)send_msg.data;
1254 vlan_filter->is_kill = is_kill;
1255 vlan_filter->vlan_id = cpu_to_le16(vlan_id);
1256 vlan_filter->proto = cpu_to_le16(be16_to_cpu(proto));
1257
1258 /* when remove hw vlan filter failed, record the vlan id,
1259 * and try to remove it from hw later, to be consistence
1260 * with stack.
1261 */
1262 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1263 if (is_kill && ret)
1264 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1265
1266 return ret;
1267 }
1268
hclgevf_sync_vlan_filter(struct hclgevf_dev * hdev)1269 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1270 {
1271 #define HCLGEVF_MAX_SYNC_COUNT 60
1272 struct hnae3_handle *handle = &hdev->nic;
1273 int ret, sync_cnt = 0;
1274 u16 vlan_id;
1275
1276 if (bitmap_empty(hdev->vlan_del_fail_bmap, VLAN_N_VID))
1277 return;
1278
1279 rtnl_lock();
1280 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1281 while (vlan_id != VLAN_N_VID) {
1282 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1283 vlan_id, true);
1284 if (ret)
1285 break;
1286
1287 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1288 sync_cnt++;
1289 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1290 break;
1291
1292 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1293 }
1294 rtnl_unlock();
1295 }
1296
hclgevf_en_hw_strip_rxvtag(struct hnae3_handle * handle,bool enable)1297 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1298 {
1299 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1300 struct hclge_vf_to_pf_msg send_msg;
1301
1302 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1303 HCLGE_MBX_VLAN_RX_OFF_CFG);
1304 send_msg.data[0] = enable ? 1 : 0;
1305 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1306 }
1307
hclgevf_reset_tqp(struct hnae3_handle * handle)1308 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1309 {
1310 #define HCLGEVF_RESET_ALL_QUEUE_DONE 1U
1311 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1312 struct hclge_vf_to_pf_msg send_msg;
1313 u8 return_status = 0;
1314 int ret;
1315 u16 i;
1316
1317 /* disable vf queue before send queue reset msg to PF */
1318 ret = hclgevf_tqp_enable(handle, false);
1319 if (ret) {
1320 dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1321 ret);
1322 return ret;
1323 }
1324
1325 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1326
1327 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1328 sizeof(return_status));
1329 if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1330 return ret;
1331
1332 for (i = 1; i < handle->kinfo.num_tqps; i++) {
1333 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1334 *(__le16 *)send_msg.data = cpu_to_le16(i);
1335 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1336 if (ret)
1337 return ret;
1338 }
1339
1340 return 0;
1341 }
1342
hclgevf_set_mtu(struct hnae3_handle * handle,int new_mtu)1343 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1344 {
1345 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1346 struct hclge_mbx_mtu_info *mtu_info;
1347 struct hclge_vf_to_pf_msg send_msg;
1348
1349 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1350 mtu_info = (struct hclge_mbx_mtu_info *)send_msg.data;
1351 mtu_info->mtu = cpu_to_le32(new_mtu);
1352
1353 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1354 }
1355
hclgevf_notify_client(struct hclgevf_dev * hdev,enum hnae3_reset_notify_type type)1356 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1357 enum hnae3_reset_notify_type type)
1358 {
1359 struct hnae3_client *client = hdev->nic_client;
1360 struct hnae3_handle *handle = &hdev->nic;
1361 int ret;
1362
1363 if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1364 !client)
1365 return 0;
1366
1367 if (!client->ops->reset_notify)
1368 return -EOPNOTSUPP;
1369
1370 ret = client->ops->reset_notify(handle, type);
1371 if (ret)
1372 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1373 type, ret);
1374
1375 return ret;
1376 }
1377
hclgevf_notify_roce_client(struct hclgevf_dev * hdev,enum hnae3_reset_notify_type type)1378 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1379 enum hnae3_reset_notify_type type)
1380 {
1381 struct hnae3_client *client = hdev->roce_client;
1382 struct hnae3_handle *handle = &hdev->roce;
1383 int ret;
1384
1385 if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1386 return 0;
1387
1388 if (!client->ops->reset_notify)
1389 return -EOPNOTSUPP;
1390
1391 ret = client->ops->reset_notify(handle, type);
1392 if (ret)
1393 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1394 type, ret);
1395 return ret;
1396 }
1397
hclgevf_reset_wait(struct hclgevf_dev * hdev)1398 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1399 {
1400 #define HCLGEVF_RESET_WAIT_US 20000
1401 #define HCLGEVF_RESET_WAIT_CNT 2000
1402 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \
1403 (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1404
1405 u32 val;
1406 int ret;
1407
1408 if (hdev->reset_type == HNAE3_VF_RESET)
1409 ret = readl_poll_timeout(hdev->hw.hw.io_base +
1410 HCLGEVF_VF_RST_ING, val,
1411 !(val & HCLGEVF_VF_RST_ING_BIT),
1412 HCLGEVF_RESET_WAIT_US,
1413 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1414 else
1415 ret = readl_poll_timeout(hdev->hw.hw.io_base +
1416 HCLGEVF_RST_ING, val,
1417 !(val & HCLGEVF_RST_ING_BITS),
1418 HCLGEVF_RESET_WAIT_US,
1419 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1420
1421 /* hardware completion status should be available by this time */
1422 if (ret) {
1423 dev_err(&hdev->pdev->dev,
1424 "couldn't get reset done status from h/w, timeout!\n");
1425 return ret;
1426 }
1427
1428 /* we will wait a bit more to let reset of the stack to complete. This
1429 * might happen in case reset assertion was made by PF. Yes, this also
1430 * means we might end up waiting bit more even for VF reset.
1431 */
1432 if (hdev->reset_type == HNAE3_VF_FULL_RESET)
1433 msleep(5000);
1434 else
1435 msleep(500);
1436
1437 return 0;
1438 }
1439
hclgevf_reset_handshake(struct hclgevf_dev * hdev,bool enable)1440 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1441 {
1442 u32 reg_val;
1443
1444 reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
1445 if (enable)
1446 reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1447 else
1448 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1449
1450 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG,
1451 reg_val);
1452 }
1453
hclgevf_reset_stack(struct hclgevf_dev * hdev)1454 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1455 {
1456 int ret;
1457
1458 /* uninitialize the nic client */
1459 ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1460 if (ret)
1461 return ret;
1462
1463 /* re-initialize the hclge device */
1464 ret = hclgevf_reset_hdev(hdev);
1465 if (ret) {
1466 dev_err(&hdev->pdev->dev,
1467 "hclge device re-init failed, VF is disabled!\n");
1468 return ret;
1469 }
1470
1471 /* bring up the nic client again */
1472 ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1473 if (ret)
1474 return ret;
1475
1476 /* clear handshake status with IMP */
1477 hclgevf_reset_handshake(hdev, false);
1478
1479 /* bring up the nic to enable TX/RX again */
1480 return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1481 }
1482
hclgevf_reset_prepare_wait(struct hclgevf_dev * hdev)1483 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1484 {
1485 #define HCLGEVF_RESET_SYNC_TIME 100
1486
1487 if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1488 struct hclge_vf_to_pf_msg send_msg;
1489 int ret;
1490
1491 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1492 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1493 if (ret) {
1494 dev_err(&hdev->pdev->dev,
1495 "failed to assert VF reset, ret = %d\n", ret);
1496 return ret;
1497 }
1498 hdev->rst_stats.vf_func_rst_cnt++;
1499 }
1500
1501 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1502 /* inform hardware that preparatory work is done */
1503 msleep(HCLGEVF_RESET_SYNC_TIME);
1504 hclgevf_reset_handshake(hdev, true);
1505 dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1506 hdev->reset_type);
1507
1508 return 0;
1509 }
1510
hclgevf_dump_rst_info(struct hclgevf_dev * hdev)1511 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1512 {
1513 dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1514 hdev->rst_stats.vf_func_rst_cnt);
1515 dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1516 hdev->rst_stats.flr_rst_cnt);
1517 dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1518 hdev->rst_stats.vf_rst_cnt);
1519 dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1520 hdev->rst_stats.rst_done_cnt);
1521 dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1522 hdev->rst_stats.hw_rst_done_cnt);
1523 dev_info(&hdev->pdev->dev, "reset count: %u\n",
1524 hdev->rst_stats.rst_cnt);
1525 dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1526 hdev->rst_stats.rst_fail_cnt);
1527 dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1528 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1529 dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1530 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG));
1531 dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1532 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG));
1533 dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1534 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1535 dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1536 }
1537
hclgevf_reset_err_handle(struct hclgevf_dev * hdev)1538 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1539 {
1540 /* recover handshake status with IMP when reset fail */
1541 hclgevf_reset_handshake(hdev, true);
1542 hdev->rst_stats.rst_fail_cnt++;
1543 dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1544 hdev->rst_stats.rst_fail_cnt);
1545
1546 if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1547 set_bit(hdev->reset_type, &hdev->reset_pending);
1548
1549 if (hclgevf_is_reset_pending(hdev)) {
1550 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1551 hclgevf_reset_task_schedule(hdev);
1552 } else {
1553 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1554 hclgevf_dump_rst_info(hdev);
1555 }
1556 }
1557
hclgevf_reset_prepare(struct hclgevf_dev * hdev)1558 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1559 {
1560 int ret;
1561
1562 hdev->rst_stats.rst_cnt++;
1563
1564 /* perform reset of the stack & ae device for a client */
1565 ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1566 if (ret)
1567 return ret;
1568
1569 rtnl_lock();
1570 /* bring down the nic to stop any ongoing TX/RX */
1571 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1572 rtnl_unlock();
1573 if (ret)
1574 return ret;
1575
1576 return hclgevf_reset_prepare_wait(hdev);
1577 }
1578
hclgevf_reset_rebuild(struct hclgevf_dev * hdev)1579 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1580 {
1581 int ret;
1582
1583 hdev->rst_stats.hw_rst_done_cnt++;
1584 ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1585 if (ret)
1586 return ret;
1587
1588 rtnl_lock();
1589 /* now, re-initialize the nic client and ae device */
1590 ret = hclgevf_reset_stack(hdev);
1591 rtnl_unlock();
1592 if (ret) {
1593 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1594 return ret;
1595 }
1596
1597 ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1598 /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1599 * times
1600 */
1601 if (ret &&
1602 hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1603 return ret;
1604
1605 ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1606 if (ret)
1607 return ret;
1608
1609 hdev->last_reset_time = jiffies;
1610 hdev->rst_stats.rst_done_cnt++;
1611 hdev->rst_stats.rst_fail_cnt = 0;
1612 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1613
1614 return 0;
1615 }
1616
hclgevf_reset(struct hclgevf_dev * hdev)1617 static void hclgevf_reset(struct hclgevf_dev *hdev)
1618 {
1619 if (hclgevf_reset_prepare(hdev))
1620 goto err_reset;
1621
1622 /* check if VF could successfully fetch the hardware reset completion
1623 * status from the hardware
1624 */
1625 if (hclgevf_reset_wait(hdev)) {
1626 /* can't do much in this situation, will disable VF */
1627 dev_err(&hdev->pdev->dev,
1628 "failed to fetch H/W reset completion status\n");
1629 goto err_reset;
1630 }
1631
1632 if (hclgevf_reset_rebuild(hdev))
1633 goto err_reset;
1634
1635 return;
1636
1637 err_reset:
1638 hclgevf_reset_err_handle(hdev);
1639 }
1640
hclgevf_get_reset_level(unsigned long * addr)1641 static enum hnae3_reset_type hclgevf_get_reset_level(unsigned long *addr)
1642 {
1643 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1644
1645 /* return the highest priority reset level amongst all */
1646 if (test_bit(HNAE3_VF_RESET, addr)) {
1647 rst_level = HNAE3_VF_RESET;
1648 clear_bit(HNAE3_VF_RESET, addr);
1649 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1650 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1651 } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1652 rst_level = HNAE3_VF_FULL_RESET;
1653 clear_bit(HNAE3_VF_FULL_RESET, addr);
1654 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1655 } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1656 rst_level = HNAE3_VF_PF_FUNC_RESET;
1657 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1658 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1659 } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1660 rst_level = HNAE3_VF_FUNC_RESET;
1661 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1662 } else if (test_bit(HNAE3_FLR_RESET, addr)) {
1663 rst_level = HNAE3_FLR_RESET;
1664 clear_bit(HNAE3_FLR_RESET, addr);
1665 }
1666
1667 return rst_level;
1668 }
1669
hclgevf_reset_event(struct pci_dev * pdev,struct hnae3_handle * handle)1670 static void hclgevf_reset_event(struct pci_dev *pdev,
1671 struct hnae3_handle *handle)
1672 {
1673 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1674 struct hclgevf_dev *hdev = ae_dev->priv;
1675
1676 dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1677
1678 if (hdev->default_reset_request)
1679 hdev->reset_level =
1680 hclgevf_get_reset_level(&hdev->default_reset_request);
1681 else
1682 hdev->reset_level = HNAE3_VF_FUNC_RESET;
1683
1684 /* reset of this VF requested */
1685 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1686 hclgevf_reset_task_schedule(hdev);
1687
1688 hdev->last_reset_time = jiffies;
1689 }
1690
hclgevf_set_def_reset_request(struct hnae3_ae_dev * ae_dev,enum hnae3_reset_type rst_type)1691 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1692 enum hnae3_reset_type rst_type)
1693 {
1694 struct hclgevf_dev *hdev = ae_dev->priv;
1695
1696 set_bit(rst_type, &hdev->default_reset_request);
1697 }
1698
hclgevf_enable_vector(struct hclgevf_misc_vector * vector,bool en)1699 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1700 {
1701 writel(en ? 1 : 0, vector->addr);
1702 }
1703
hclgevf_reset_prepare_general(struct hnae3_ae_dev * ae_dev,enum hnae3_reset_type rst_type)1704 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
1705 enum hnae3_reset_type rst_type)
1706 {
1707 #define HCLGEVF_RESET_RETRY_WAIT_MS 500
1708 #define HCLGEVF_RESET_RETRY_CNT 5
1709
1710 struct hclgevf_dev *hdev = ae_dev->priv;
1711 int retry_cnt = 0;
1712 int ret;
1713
1714 while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
1715 down(&hdev->reset_sem);
1716 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1717 hdev->reset_type = rst_type;
1718 ret = hclgevf_reset_prepare(hdev);
1719 if (!ret && !hdev->reset_pending)
1720 break;
1721
1722 dev_err(&hdev->pdev->dev,
1723 "failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
1724 ret, hdev->reset_pending, retry_cnt);
1725 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1726 up(&hdev->reset_sem);
1727 msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
1728 }
1729
1730 /* disable misc vector before reset done */
1731 hclgevf_enable_vector(&hdev->misc_vector, false);
1732
1733 if (hdev->reset_type == HNAE3_FLR_RESET)
1734 hdev->rst_stats.flr_rst_cnt++;
1735 }
1736
hclgevf_reset_done(struct hnae3_ae_dev * ae_dev)1737 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
1738 {
1739 struct hclgevf_dev *hdev = ae_dev->priv;
1740 int ret;
1741
1742 hclgevf_enable_vector(&hdev->misc_vector, true);
1743
1744 ret = hclgevf_reset_rebuild(hdev);
1745 if (ret)
1746 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
1747 ret);
1748
1749 hdev->reset_type = HNAE3_NONE_RESET;
1750 if (test_and_clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1751 up(&hdev->reset_sem);
1752 }
1753
hclgevf_get_fw_version(struct hnae3_handle * handle)1754 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1755 {
1756 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1757
1758 return hdev->fw_version;
1759 }
1760
hclgevf_get_misc_vector(struct hclgevf_dev * hdev)1761 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1762 {
1763 struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1764
1765 vector->vector_irq = pci_irq_vector(hdev->pdev,
1766 HCLGEVF_MISC_VECTOR_NUM);
1767 vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1768 /* vector status always valid for Vector 0 */
1769 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1770 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1771
1772 hdev->num_msi_left -= 1;
1773 hdev->num_msi_used += 1;
1774 }
1775
hclgevf_reset_task_schedule(struct hclgevf_dev * hdev)1776 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1777 {
1778 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1779 test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) &&
1780 !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
1781 &hdev->state))
1782 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1783 }
1784
hclgevf_mbx_task_schedule(struct hclgevf_dev * hdev)1785 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1786 {
1787 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1788 !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
1789 &hdev->state))
1790 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1791 }
1792
hclgevf_task_schedule(struct hclgevf_dev * hdev,unsigned long delay)1793 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
1794 unsigned long delay)
1795 {
1796 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1797 !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1798 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
1799 }
1800
hclgevf_reset_service_task(struct hclgevf_dev * hdev)1801 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
1802 {
1803 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT 3
1804
1805 if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
1806 return;
1807
1808 down(&hdev->reset_sem);
1809 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1810
1811 if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1812 &hdev->reset_state)) {
1813 /* PF has intimated that it is about to reset the hardware.
1814 * We now have to poll & check if hardware has actually
1815 * completed the reset sequence. On hardware reset completion,
1816 * VF needs to reset the client and ae device.
1817 */
1818 hdev->reset_attempts = 0;
1819
1820 hdev->last_reset_time = jiffies;
1821 hdev->reset_type =
1822 hclgevf_get_reset_level(&hdev->reset_pending);
1823 if (hdev->reset_type != HNAE3_NONE_RESET)
1824 hclgevf_reset(hdev);
1825 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1826 &hdev->reset_state)) {
1827 /* we could be here when either of below happens:
1828 * 1. reset was initiated due to watchdog timeout caused by
1829 * a. IMP was earlier reset and our TX got choked down and
1830 * which resulted in watchdog reacting and inducing VF
1831 * reset. This also means our cmdq would be unreliable.
1832 * b. problem in TX due to other lower layer(example link
1833 * layer not functioning properly etc.)
1834 * 2. VF reset might have been initiated due to some config
1835 * change.
1836 *
1837 * NOTE: Theres no clear way to detect above cases than to react
1838 * to the response of PF for this reset request. PF will ack the
1839 * 1b and 2. cases but we will not get any intimation about 1a
1840 * from PF as cmdq would be in unreliable state i.e. mailbox
1841 * communication between PF and VF would be broken.
1842 *
1843 * if we are never geting into pending state it means either:
1844 * 1. PF is not receiving our request which could be due to IMP
1845 * reset
1846 * 2. PF is screwed
1847 * We cannot do much for 2. but to check first we can try reset
1848 * our PCIe + stack and see if it alleviates the problem.
1849 */
1850 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1851 /* prepare for full reset of stack + pcie interface */
1852 set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1853
1854 /* "defer" schedule the reset task again */
1855 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1856 } else {
1857 hdev->reset_attempts++;
1858
1859 set_bit(hdev->reset_level, &hdev->reset_pending);
1860 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1861 }
1862 hclgevf_reset_task_schedule(hdev);
1863 }
1864
1865 hdev->reset_type = HNAE3_NONE_RESET;
1866 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1867 up(&hdev->reset_sem);
1868 }
1869
hclgevf_mailbox_service_task(struct hclgevf_dev * hdev)1870 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
1871 {
1872 if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
1873 return;
1874
1875 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1876 return;
1877
1878 hclgevf_mbx_async_handler(hdev);
1879
1880 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1881 }
1882
hclgevf_keep_alive(struct hclgevf_dev * hdev)1883 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
1884 {
1885 struct hclge_vf_to_pf_msg send_msg;
1886 int ret;
1887
1888 if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1889 return;
1890
1891 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
1892 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1893 if (ret)
1894 dev_err(&hdev->pdev->dev,
1895 "VF sends keep alive cmd failed(=%d)\n", ret);
1896 }
1897
hclgevf_periodic_service_task(struct hclgevf_dev * hdev)1898 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
1899 {
1900 unsigned long delta = round_jiffies_relative(HZ);
1901 struct hnae3_handle *handle = &hdev->nic;
1902
1903 if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state) ||
1904 test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1905 return;
1906
1907 if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
1908 delta = jiffies - hdev->last_serv_processed;
1909
1910 if (delta < round_jiffies_relative(HZ)) {
1911 delta = round_jiffies_relative(HZ) - delta;
1912 goto out;
1913 }
1914 }
1915
1916 hdev->serv_processed_cnt++;
1917 if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
1918 hclgevf_keep_alive(hdev);
1919
1920 if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
1921 hdev->last_serv_processed = jiffies;
1922 goto out;
1923 }
1924
1925 if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
1926 hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
1927
1928 /* VF does not need to request link status when this bit is set, because
1929 * PF will push its link status to VFs when link status changed.
1930 */
1931 if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
1932 hclgevf_request_link_info(hdev);
1933
1934 hclgevf_update_link_mode(hdev);
1935
1936 hclgevf_sync_vlan_filter(hdev);
1937
1938 hclgevf_sync_mac_table(hdev);
1939
1940 hclgevf_sync_promisc_mode(hdev);
1941
1942 hdev->last_serv_processed = jiffies;
1943
1944 out:
1945 hclgevf_task_schedule(hdev, delta);
1946 }
1947
hclgevf_service_task(struct work_struct * work)1948 static void hclgevf_service_task(struct work_struct *work)
1949 {
1950 struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
1951 service_task.work);
1952
1953 hclgevf_reset_service_task(hdev);
1954 hclgevf_mailbox_service_task(hdev);
1955 hclgevf_periodic_service_task(hdev);
1956
1957 /* Handle reset and mbx again in case periodical task delays the
1958 * handling by calling hclgevf_task_schedule() in
1959 * hclgevf_periodic_service_task()
1960 */
1961 hclgevf_reset_service_task(hdev);
1962 hclgevf_mailbox_service_task(hdev);
1963 }
1964
hclgevf_clear_event_cause(struct hclgevf_dev * hdev,u32 regclr)1965 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1966 {
1967 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr);
1968 }
1969
hclgevf_check_evt_cause(struct hclgevf_dev * hdev,u32 * clearval)1970 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1971 u32 *clearval)
1972 {
1973 u32 val, cmdq_stat_reg, rst_ing_reg;
1974
1975 /* fetch the events from their corresponding regs */
1976 cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
1977 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG);
1978 if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1979 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1980 dev_info(&hdev->pdev->dev,
1981 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1982 set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1983 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1984 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1985 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
1986 hdev->rst_stats.vf_rst_cnt++;
1987 /* set up VF hardware reset status, its PF will clear
1988 * this status when PF has initialized done.
1989 */
1990 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
1991 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
1992 val | HCLGEVF_VF_RST_ING_BIT);
1993 return HCLGEVF_VECTOR0_EVENT_RST;
1994 }
1995
1996 /* check for vector0 mailbox(=CMDQ RX) event source */
1997 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1998 /* for revision 0x21, clearing interrupt is writing bit 0
1999 * to the clear register, writing bit 1 means to keep the
2000 * old value.
2001 * for revision 0x20, the clear register is a read & write
2002 * register, so we should just write 0 to the bit we are
2003 * handling, and keep other bits as cmdq_stat_reg.
2004 */
2005 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2006 *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2007 else
2008 *clearval = cmdq_stat_reg &
2009 ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2010
2011 return HCLGEVF_VECTOR0_EVENT_MBX;
2012 }
2013
2014 /* print other vector0 event source */
2015 dev_info(&hdev->pdev->dev,
2016 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2017 cmdq_stat_reg);
2018
2019 return HCLGEVF_VECTOR0_EVENT_OTHER;
2020 }
2021
hclgevf_reset_timer(struct timer_list * t)2022 static void hclgevf_reset_timer(struct timer_list *t)
2023 {
2024 struct hclgevf_dev *hdev = from_timer(hdev, t, reset_timer);
2025
2026 hclgevf_clear_event_cause(hdev, HCLGEVF_VECTOR0_EVENT_RST);
2027 hclgevf_reset_task_schedule(hdev);
2028 }
2029
hclgevf_misc_irq_handle(int irq,void * data)2030 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2031 {
2032 #define HCLGEVF_RESET_DELAY 5
2033
2034 enum hclgevf_evt_cause event_cause;
2035 struct hclgevf_dev *hdev = data;
2036 u32 clearval;
2037
2038 hclgevf_enable_vector(&hdev->misc_vector, false);
2039 event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2040 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2041 hclgevf_clear_event_cause(hdev, clearval);
2042
2043 switch (event_cause) {
2044 case HCLGEVF_VECTOR0_EVENT_RST:
2045 mod_timer(&hdev->reset_timer,
2046 jiffies + msecs_to_jiffies(HCLGEVF_RESET_DELAY));
2047 break;
2048 case HCLGEVF_VECTOR0_EVENT_MBX:
2049 hclgevf_mbx_handler(hdev);
2050 break;
2051 default:
2052 break;
2053 }
2054
2055 hclgevf_enable_vector(&hdev->misc_vector, true);
2056
2057 return IRQ_HANDLED;
2058 }
2059
hclgevf_configure(struct hclgevf_dev * hdev)2060 static int hclgevf_configure(struct hclgevf_dev *hdev)
2061 {
2062 int ret;
2063
2064 hdev->gro_en = true;
2065
2066 ret = hclgevf_get_basic_info(hdev);
2067 if (ret)
2068 return ret;
2069
2070 /* get current port based vlan state from PF */
2071 ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2072 if (ret)
2073 return ret;
2074
2075 /* get queue configuration from PF */
2076 ret = hclgevf_get_queue_info(hdev);
2077 if (ret)
2078 return ret;
2079
2080 /* get queue depth info from PF */
2081 ret = hclgevf_get_queue_depth(hdev);
2082 if (ret)
2083 return ret;
2084
2085 return hclgevf_get_pf_media_type(hdev);
2086 }
2087
hclgevf_alloc_hdev(struct hnae3_ae_dev * ae_dev)2088 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2089 {
2090 struct pci_dev *pdev = ae_dev->pdev;
2091 struct hclgevf_dev *hdev;
2092
2093 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2094 if (!hdev)
2095 return -ENOMEM;
2096
2097 hdev->pdev = pdev;
2098 hdev->ae_dev = ae_dev;
2099 ae_dev->priv = hdev;
2100
2101 return 0;
2102 }
2103
hclgevf_init_roce_base_info(struct hclgevf_dev * hdev)2104 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2105 {
2106 struct hnae3_handle *roce = &hdev->roce;
2107 struct hnae3_handle *nic = &hdev->nic;
2108
2109 roce->rinfo.num_vectors = hdev->num_roce_msix;
2110
2111 if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2112 hdev->num_msi_left == 0)
2113 return -EINVAL;
2114
2115 roce->rinfo.base_vector = hdev->roce_base_msix_offset;
2116
2117 roce->rinfo.netdev = nic->kinfo.netdev;
2118 roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2119 roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2120
2121 roce->pdev = nic->pdev;
2122 roce->ae_algo = nic->ae_algo;
2123 bitmap_copy(roce->numa_node_mask.bits, nic->numa_node_mask.bits,
2124 MAX_NUMNODES);
2125 return 0;
2126 }
2127
hclgevf_config_gro(struct hclgevf_dev * hdev)2128 static int hclgevf_config_gro(struct hclgevf_dev *hdev)
2129 {
2130 struct hclgevf_cfg_gro_status_cmd *req;
2131 struct hclge_desc desc;
2132 int ret;
2133
2134 if (!hnae3_ae_dev_gro_supported(hdev->ae_dev))
2135 return 0;
2136
2137 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG,
2138 false);
2139 req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2140
2141 req->gro_en = hdev->gro_en ? 1 : 0;
2142
2143 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2144 if (ret)
2145 dev_err(&hdev->pdev->dev,
2146 "VF GRO hardware config cmd failed, ret = %d.\n", ret);
2147
2148 return ret;
2149 }
2150
hclgevf_rss_init_hw(struct hclgevf_dev * hdev)2151 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2152 {
2153 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
2154 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
2155 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
2156 u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
2157 int ret;
2158
2159 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2160 ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw,
2161 rss_cfg->rss_algo,
2162 rss_cfg->rss_hash_key);
2163 if (ret)
2164 return ret;
2165
2166 ret = hclge_comm_set_rss_input_tuple(&hdev->hw.hw, rss_cfg);
2167 if (ret)
2168 return ret;
2169 }
2170
2171 ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
2172 rss_cfg->rss_indirection_tbl);
2173 if (ret)
2174 return ret;
2175
2176 hclge_comm_get_rss_tc_info(rss_cfg->rss_size, hdev->hw_tc_map,
2177 tc_offset, tc_valid, tc_size);
2178
2179 return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
2180 tc_valid, tc_size);
2181 }
2182
hclgevf_init_vlan_config(struct hclgevf_dev * hdev)2183 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2184 {
2185 struct hnae3_handle *nic = &hdev->nic;
2186 int ret;
2187
2188 ret = hclgevf_en_hw_strip_rxvtag(nic, true);
2189 if (ret) {
2190 dev_err(&hdev->pdev->dev,
2191 "failed to enable rx vlan offload, ret = %d\n", ret);
2192 return ret;
2193 }
2194
2195 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2196 false);
2197 }
2198
hclgevf_flush_link_update(struct hclgevf_dev * hdev)2199 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2200 {
2201 #define HCLGEVF_FLUSH_LINK_TIMEOUT 100000
2202
2203 unsigned long last = hdev->serv_processed_cnt;
2204 int i = 0;
2205
2206 while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2207 i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2208 last == hdev->serv_processed_cnt)
2209 usleep_range(1, 1);
2210 }
2211
hclgevf_set_timer_task(struct hnae3_handle * handle,bool enable)2212 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2213 {
2214 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2215
2216 if (enable) {
2217 hclgevf_task_schedule(hdev, 0);
2218 } else {
2219 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2220
2221 smp_mb__after_atomic(); /* flush memory to make sure DOWN is seen by service task */
2222 hclgevf_flush_link_update(hdev);
2223 }
2224 }
2225
hclgevf_ae_start(struct hnae3_handle * handle)2226 static int hclgevf_ae_start(struct hnae3_handle *handle)
2227 {
2228 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2229
2230 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2231 clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2232
2233 hclge_comm_reset_tqp_stats(handle);
2234
2235 hclgevf_request_link_info(hdev);
2236
2237 hclgevf_update_link_mode(hdev);
2238
2239 return 0;
2240 }
2241
hclgevf_ae_stop(struct hnae3_handle * handle)2242 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2243 {
2244 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2245
2246 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2247
2248 if (hdev->reset_type != HNAE3_VF_RESET)
2249 hclgevf_reset_tqp(handle);
2250
2251 hclge_comm_reset_tqp_stats(handle);
2252 hclgevf_update_link_status(hdev, 0);
2253 }
2254
hclgevf_set_alive(struct hnae3_handle * handle,bool alive)2255 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2256 {
2257 #define HCLGEVF_STATE_ALIVE 1
2258 #define HCLGEVF_STATE_NOT_ALIVE 0
2259
2260 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2261 struct hclge_vf_to_pf_msg send_msg;
2262
2263 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2264 send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2265 HCLGEVF_STATE_NOT_ALIVE;
2266 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2267 }
2268
hclgevf_client_start(struct hnae3_handle * handle)2269 static int hclgevf_client_start(struct hnae3_handle *handle)
2270 {
2271 return hclgevf_set_alive(handle, true);
2272 }
2273
hclgevf_client_stop(struct hnae3_handle * handle)2274 static void hclgevf_client_stop(struct hnae3_handle *handle)
2275 {
2276 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2277 int ret;
2278
2279 ret = hclgevf_set_alive(handle, false);
2280 if (ret)
2281 dev_warn(&hdev->pdev->dev,
2282 "%s failed %d\n", __func__, ret);
2283 }
2284
hclgevf_state_init(struct hclgevf_dev * hdev)2285 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2286 {
2287 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2288 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2289 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2290
2291 INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2292
2293 mutex_init(&hdev->mbx_resp.mbx_mutex);
2294 sema_init(&hdev->reset_sem, 1);
2295
2296 spin_lock_init(&hdev->mac_table.mac_list_lock);
2297 INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2298 INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2299
2300 /* bring the device down */
2301 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2302 }
2303
hclgevf_state_uninit(struct hclgevf_dev * hdev)2304 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2305 {
2306 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2307 set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2308
2309 if (hdev->service_task.work.func)
2310 cancel_delayed_work_sync(&hdev->service_task);
2311
2312 mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2313 }
2314
hclgevf_init_msi(struct hclgevf_dev * hdev)2315 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2316 {
2317 struct pci_dev *pdev = hdev->pdev;
2318 int vectors;
2319 int i;
2320
2321 if (hnae3_dev_roce_supported(hdev))
2322 vectors = pci_alloc_irq_vectors(pdev,
2323 hdev->roce_base_msix_offset + 1,
2324 hdev->num_msi,
2325 PCI_IRQ_MSIX);
2326 else
2327 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2328 hdev->num_msi,
2329 PCI_IRQ_MSI | PCI_IRQ_MSIX);
2330
2331 if (vectors < 0) {
2332 dev_err(&pdev->dev,
2333 "failed(%d) to allocate MSI/MSI-X vectors\n",
2334 vectors);
2335 return vectors;
2336 }
2337 if (vectors < hdev->num_msi)
2338 dev_warn(&hdev->pdev->dev,
2339 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2340 hdev->num_msi, vectors);
2341
2342 hdev->num_msi = vectors;
2343 hdev->num_msi_left = vectors;
2344
2345 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2346 sizeof(u16), GFP_KERNEL);
2347 if (!hdev->vector_status) {
2348 pci_free_irq_vectors(pdev);
2349 return -ENOMEM;
2350 }
2351
2352 for (i = 0; i < hdev->num_msi; i++)
2353 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2354
2355 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2356 sizeof(int), GFP_KERNEL);
2357 if (!hdev->vector_irq) {
2358 devm_kfree(&pdev->dev, hdev->vector_status);
2359 pci_free_irq_vectors(pdev);
2360 return -ENOMEM;
2361 }
2362
2363 return 0;
2364 }
2365
hclgevf_uninit_msi(struct hclgevf_dev * hdev)2366 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2367 {
2368 struct pci_dev *pdev = hdev->pdev;
2369
2370 devm_kfree(&pdev->dev, hdev->vector_status);
2371 devm_kfree(&pdev->dev, hdev->vector_irq);
2372 pci_free_irq_vectors(pdev);
2373 }
2374
hclgevf_misc_irq_init(struct hclgevf_dev * hdev)2375 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2376 {
2377 int ret;
2378
2379 hclgevf_get_misc_vector(hdev);
2380
2381 snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2382 HCLGEVF_NAME, pci_name(hdev->pdev));
2383 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2384 0, hdev->misc_vector.name, hdev);
2385 if (ret) {
2386 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2387 hdev->misc_vector.vector_irq);
2388 return ret;
2389 }
2390
2391 hclgevf_clear_event_cause(hdev, 0);
2392
2393 /* enable misc. vector(vector 0) */
2394 hclgevf_enable_vector(&hdev->misc_vector, true);
2395
2396 return ret;
2397 }
2398
hclgevf_misc_irq_uninit(struct hclgevf_dev * hdev)2399 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2400 {
2401 /* disable misc vector(vector 0) */
2402 hclgevf_enable_vector(&hdev->misc_vector, false);
2403 synchronize_irq(hdev->misc_vector.vector_irq);
2404 free_irq(hdev->misc_vector.vector_irq, hdev);
2405 hclgevf_free_vector(hdev, 0);
2406 }
2407
hclgevf_info_show(struct hclgevf_dev * hdev)2408 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2409 {
2410 struct device *dev = &hdev->pdev->dev;
2411
2412 dev_info(dev, "VF info begin:\n");
2413
2414 dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2415 dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2416 dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2417 dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2418 dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2419 dev_info(dev, "PF media type of this VF: %u\n",
2420 hdev->hw.mac.media_type);
2421
2422 dev_info(dev, "VF info end.\n");
2423 }
2424
hclgevf_init_nic_client_instance(struct hnae3_ae_dev * ae_dev,struct hnae3_client * client)2425 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2426 struct hnae3_client *client)
2427 {
2428 struct hclgevf_dev *hdev = ae_dev->priv;
2429 int rst_cnt = hdev->rst_stats.rst_cnt;
2430 int ret;
2431
2432 ret = client->ops->init_instance(&hdev->nic);
2433 if (ret)
2434 return ret;
2435
2436 set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2437 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2438 rst_cnt != hdev->rst_stats.rst_cnt) {
2439 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2440
2441 client->ops->uninit_instance(&hdev->nic, 0);
2442 return -EBUSY;
2443 }
2444
2445 hnae3_set_client_init_flag(client, ae_dev, 1);
2446
2447 if (netif_msg_drv(&hdev->nic))
2448 hclgevf_info_show(hdev);
2449
2450 return 0;
2451 }
2452
hclgevf_init_roce_client_instance(struct hnae3_ae_dev * ae_dev,struct hnae3_client * client)2453 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2454 struct hnae3_client *client)
2455 {
2456 struct hclgevf_dev *hdev = ae_dev->priv;
2457 int ret;
2458
2459 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2460 !hdev->nic_client)
2461 return 0;
2462
2463 ret = hclgevf_init_roce_base_info(hdev);
2464 if (ret)
2465 return ret;
2466
2467 ret = client->ops->init_instance(&hdev->roce);
2468 if (ret)
2469 return ret;
2470
2471 set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2472 hnae3_set_client_init_flag(client, ae_dev, 1);
2473
2474 return 0;
2475 }
2476
hclgevf_init_client_instance(struct hnae3_client * client,struct hnae3_ae_dev * ae_dev)2477 static int hclgevf_init_client_instance(struct hnae3_client *client,
2478 struct hnae3_ae_dev *ae_dev)
2479 {
2480 struct hclgevf_dev *hdev = ae_dev->priv;
2481 int ret;
2482
2483 switch (client->type) {
2484 case HNAE3_CLIENT_KNIC:
2485 hdev->nic_client = client;
2486 hdev->nic.client = client;
2487
2488 ret = hclgevf_init_nic_client_instance(ae_dev, client);
2489 if (ret)
2490 goto clear_nic;
2491
2492 ret = hclgevf_init_roce_client_instance(ae_dev,
2493 hdev->roce_client);
2494 if (ret)
2495 goto clear_roce;
2496
2497 break;
2498 case HNAE3_CLIENT_ROCE:
2499 if (hnae3_dev_roce_supported(hdev)) {
2500 hdev->roce_client = client;
2501 hdev->roce.client = client;
2502 }
2503
2504 ret = hclgevf_init_roce_client_instance(ae_dev, client);
2505 if (ret)
2506 goto clear_roce;
2507
2508 break;
2509 default:
2510 return -EINVAL;
2511 }
2512
2513 return 0;
2514
2515 clear_nic:
2516 hdev->nic_client = NULL;
2517 hdev->nic.client = NULL;
2518 return ret;
2519 clear_roce:
2520 hdev->roce_client = NULL;
2521 hdev->roce.client = NULL;
2522 return ret;
2523 }
2524
hclgevf_uninit_client_instance(struct hnae3_client * client,struct hnae3_ae_dev * ae_dev)2525 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2526 struct hnae3_ae_dev *ae_dev)
2527 {
2528 struct hclgevf_dev *hdev = ae_dev->priv;
2529
2530 /* un-init roce, if it exists */
2531 if (hdev->roce_client) {
2532 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2533 msleep(HCLGEVF_WAIT_RESET_DONE);
2534 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2535
2536 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2537 hdev->roce_client = NULL;
2538 hdev->roce.client = NULL;
2539 }
2540
2541 /* un-init nic/unic, if this was not called by roce client */
2542 if (client->ops->uninit_instance && hdev->nic_client &&
2543 client->type != HNAE3_CLIENT_ROCE) {
2544 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2545 msleep(HCLGEVF_WAIT_RESET_DONE);
2546 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2547
2548 client->ops->uninit_instance(&hdev->nic, 0);
2549 hdev->nic_client = NULL;
2550 hdev->nic.client = NULL;
2551 }
2552 }
2553
hclgevf_dev_mem_map(struct hclgevf_dev * hdev)2554 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2555 {
2556 struct pci_dev *pdev = hdev->pdev;
2557 struct hclgevf_hw *hw = &hdev->hw;
2558
2559 /* for device does not have device memory, return directly */
2560 if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2561 return 0;
2562
2563 hw->hw.mem_base =
2564 devm_ioremap_wc(&pdev->dev,
2565 pci_resource_start(pdev, HCLGEVF_MEM_BAR),
2566 pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2567 if (!hw->hw.mem_base) {
2568 dev_err(&pdev->dev, "failed to map device memory\n");
2569 return -EFAULT;
2570 }
2571
2572 return 0;
2573 }
2574
hclgevf_pci_init(struct hclgevf_dev * hdev)2575 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2576 {
2577 struct pci_dev *pdev = hdev->pdev;
2578 struct hclgevf_hw *hw;
2579 int ret;
2580
2581 ret = pci_enable_device(pdev);
2582 if (ret) {
2583 dev_err(&pdev->dev, "failed to enable PCI device\n");
2584 return ret;
2585 }
2586
2587 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2588 if (ret) {
2589 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2590 goto err_disable_device;
2591 }
2592
2593 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2594 if (ret) {
2595 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2596 goto err_disable_device;
2597 }
2598
2599 pci_set_master(pdev);
2600 hw = &hdev->hw;
2601 hw->hw.io_base = pci_iomap(pdev, 2, 0);
2602 if (!hw->hw.io_base) {
2603 dev_err(&pdev->dev, "can't map configuration register space\n");
2604 ret = -ENOMEM;
2605 goto err_release_regions;
2606 }
2607
2608 ret = hclgevf_dev_mem_map(hdev);
2609 if (ret)
2610 goto err_unmap_io_base;
2611
2612 return 0;
2613
2614 err_unmap_io_base:
2615 pci_iounmap(pdev, hdev->hw.hw.io_base);
2616 err_release_regions:
2617 pci_release_regions(pdev);
2618 err_disable_device:
2619 pci_disable_device(pdev);
2620
2621 return ret;
2622 }
2623
hclgevf_pci_uninit(struct hclgevf_dev * hdev)2624 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2625 {
2626 struct pci_dev *pdev = hdev->pdev;
2627
2628 if (hdev->hw.hw.mem_base)
2629 devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
2630
2631 pci_iounmap(pdev, hdev->hw.hw.io_base);
2632 pci_release_regions(pdev);
2633 pci_disable_device(pdev);
2634 }
2635
hclgevf_query_vf_resource(struct hclgevf_dev * hdev)2636 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2637 {
2638 struct hclgevf_query_res_cmd *req;
2639 struct hclge_desc desc;
2640 int ret;
2641
2642 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RSRC, true);
2643 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2644 if (ret) {
2645 dev_err(&hdev->pdev->dev,
2646 "query vf resource failed, ret = %d.\n", ret);
2647 return ret;
2648 }
2649
2650 req = (struct hclgevf_query_res_cmd *)desc.data;
2651
2652 if (hnae3_dev_roce_supported(hdev)) {
2653 hdev->roce_base_msix_offset =
2654 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2655 HCLGEVF_MSIX_OFT_ROCEE_M,
2656 HCLGEVF_MSIX_OFT_ROCEE_S);
2657 hdev->num_roce_msix =
2658 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2659 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2660
2661 /* nic's msix numbers is always equals to the roce's. */
2662 hdev->num_nic_msix = hdev->num_roce_msix;
2663
2664 /* VF should have NIC vectors and Roce vectors, NIC vectors
2665 * are queued before Roce vectors. The offset is fixed to 64.
2666 */
2667 hdev->num_msi = hdev->num_roce_msix +
2668 hdev->roce_base_msix_offset;
2669 } else {
2670 hdev->num_msi =
2671 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2672 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2673
2674 hdev->num_nic_msix = hdev->num_msi;
2675 }
2676
2677 if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2678 dev_err(&hdev->pdev->dev,
2679 "Just %u msi resources, not enough for vf(min:2).\n",
2680 hdev->num_nic_msix);
2681 return -EINVAL;
2682 }
2683
2684 return 0;
2685 }
2686
hclgevf_set_default_dev_specs(struct hclgevf_dev * hdev)2687 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
2688 {
2689 #define HCLGEVF_MAX_NON_TSO_BD_NUM 8U
2690
2691 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2692
2693 ae_dev->dev_specs.max_non_tso_bd_num =
2694 HCLGEVF_MAX_NON_TSO_BD_NUM;
2695 ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2696 ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2697 ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2698 ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2699 }
2700
hclgevf_parse_dev_specs(struct hclgevf_dev * hdev,struct hclge_desc * desc)2701 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
2702 struct hclge_desc *desc)
2703 {
2704 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2705 struct hclgevf_dev_specs_0_cmd *req0;
2706 struct hclgevf_dev_specs_1_cmd *req1;
2707
2708 req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
2709 req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
2710
2711 ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
2712 ae_dev->dev_specs.rss_ind_tbl_size =
2713 le16_to_cpu(req0->rss_ind_tbl_size);
2714 ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
2715 ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
2716 ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
2717 ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
2718 }
2719
hclgevf_check_dev_specs(struct hclgevf_dev * hdev)2720 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
2721 {
2722 struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
2723
2724 if (!dev_specs->max_non_tso_bd_num)
2725 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
2726 if (!dev_specs->rss_ind_tbl_size)
2727 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2728 if (!dev_specs->rss_key_size)
2729 dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2730 if (!dev_specs->max_int_gl)
2731 dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2732 if (!dev_specs->max_frm_size)
2733 dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2734 }
2735
hclgevf_query_dev_specs(struct hclgevf_dev * hdev)2736 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
2737 {
2738 struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
2739 int ret;
2740 int i;
2741
2742 /* set default specifications as devices lower than version V3 do not
2743 * support querying specifications from firmware.
2744 */
2745 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
2746 hclgevf_set_default_dev_specs(hdev);
2747 return 0;
2748 }
2749
2750 for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2751 hclgevf_cmd_setup_basic_desc(&desc[i],
2752 HCLGE_OPC_QUERY_DEV_SPECS, true);
2753 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2754 }
2755 hclgevf_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true);
2756
2757 ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
2758 if (ret)
2759 return ret;
2760
2761 hclgevf_parse_dev_specs(hdev, desc);
2762 hclgevf_check_dev_specs(hdev);
2763
2764 return 0;
2765 }
2766
hclgevf_pci_reset(struct hclgevf_dev * hdev)2767 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2768 {
2769 struct pci_dev *pdev = hdev->pdev;
2770 int ret = 0;
2771
2772 if ((hdev->reset_type == HNAE3_VF_FULL_RESET ||
2773 hdev->reset_type == HNAE3_FLR_RESET) &&
2774 test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2775 hclgevf_misc_irq_uninit(hdev);
2776 hclgevf_uninit_msi(hdev);
2777 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2778 }
2779
2780 if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2781 pci_set_master(pdev);
2782 ret = hclgevf_init_msi(hdev);
2783 if (ret) {
2784 dev_err(&pdev->dev,
2785 "failed(%d) to init MSI/MSI-X\n", ret);
2786 return ret;
2787 }
2788
2789 ret = hclgevf_misc_irq_init(hdev);
2790 if (ret) {
2791 hclgevf_uninit_msi(hdev);
2792 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2793 ret);
2794 return ret;
2795 }
2796
2797 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2798 }
2799
2800 return ret;
2801 }
2802
hclgevf_clear_vport_list(struct hclgevf_dev * hdev)2803 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
2804 {
2805 struct hclge_vf_to_pf_msg send_msg;
2806
2807 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
2808 HCLGE_MBX_VPORT_LIST_CLEAR);
2809 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2810 }
2811
hclgevf_init_rxd_adv_layout(struct hclgevf_dev * hdev)2812 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
2813 {
2814 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2815 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
2816 }
2817
hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev * hdev)2818 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
2819 {
2820 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2821 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
2822 }
2823
hclgevf_reset_hdev(struct hclgevf_dev * hdev)2824 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2825 {
2826 struct pci_dev *pdev = hdev->pdev;
2827 int ret;
2828
2829 ret = hclgevf_pci_reset(hdev);
2830 if (ret) {
2831 dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2832 return ret;
2833 }
2834
2835 hclgevf_arq_init(hdev);
2836
2837 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2838 &hdev->fw_version, false,
2839 hdev->reset_pending);
2840 if (ret) {
2841 dev_err(&pdev->dev, "cmd failed %d\n", ret);
2842 return ret;
2843 }
2844
2845 ret = hclgevf_rss_init_hw(hdev);
2846 if (ret) {
2847 dev_err(&hdev->pdev->dev,
2848 "failed(%d) to initialize RSS\n", ret);
2849 return ret;
2850 }
2851
2852 ret = hclgevf_config_gro(hdev);
2853 if (ret)
2854 return ret;
2855
2856 ret = hclgevf_init_vlan_config(hdev);
2857 if (ret) {
2858 dev_err(&hdev->pdev->dev,
2859 "failed(%d) to initialize VLAN config\n", ret);
2860 return ret;
2861 }
2862
2863 /* get current port based vlan state from PF */
2864 ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2865 if (ret)
2866 return ret;
2867
2868 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
2869
2870 hclgevf_init_rxd_adv_layout(hdev);
2871
2872 dev_info(&hdev->pdev->dev, "Reset done\n");
2873
2874 return 0;
2875 }
2876
hclgevf_init_hdev(struct hclgevf_dev * hdev)2877 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2878 {
2879 struct pci_dev *pdev = hdev->pdev;
2880 int ret;
2881
2882 ret = hclgevf_pci_init(hdev);
2883 if (ret)
2884 return ret;
2885
2886 ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
2887 if (ret)
2888 goto err_cmd_queue_init;
2889
2890 hclgevf_arq_init(hdev);
2891
2892 hclge_comm_cmd_init_ops(&hdev->hw.hw, &hclgevf_cmq_ops);
2893 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2894 &hdev->fw_version, false,
2895 hdev->reset_pending);
2896 if (ret)
2897 goto err_cmd_init;
2898
2899 /* Get vf resource */
2900 ret = hclgevf_query_vf_resource(hdev);
2901 if (ret)
2902 goto err_cmd_init;
2903
2904 ret = hclgevf_query_dev_specs(hdev);
2905 if (ret) {
2906 dev_err(&pdev->dev,
2907 "failed to query dev specifications, ret = %d\n", ret);
2908 goto err_cmd_init;
2909 }
2910
2911 ret = hclgevf_init_msi(hdev);
2912 if (ret) {
2913 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2914 goto err_cmd_init;
2915 }
2916
2917 hclgevf_state_init(hdev);
2918 hdev->reset_level = HNAE3_VF_FUNC_RESET;
2919 hdev->reset_type = HNAE3_NONE_RESET;
2920
2921 ret = hclgevf_misc_irq_init(hdev);
2922 if (ret)
2923 goto err_misc_irq_init;
2924
2925 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2926
2927 ret = hclgevf_configure(hdev);
2928 if (ret) {
2929 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2930 goto err_config;
2931 }
2932
2933 ret = hclgevf_alloc_tqps(hdev);
2934 if (ret) {
2935 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2936 goto err_config;
2937 }
2938
2939 ret = hclgevf_set_handle_info(hdev);
2940 if (ret)
2941 goto err_config;
2942
2943 ret = hclgevf_config_gro(hdev);
2944 if (ret)
2945 goto err_config;
2946
2947 /* Initialize RSS for this VF */
2948 ret = hclge_comm_rss_init_cfg(&hdev->nic, hdev->ae_dev,
2949 &hdev->rss_cfg);
2950 if (ret) {
2951 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
2952 goto err_config;
2953 }
2954
2955 ret = hclgevf_rss_init_hw(hdev);
2956 if (ret) {
2957 dev_err(&hdev->pdev->dev,
2958 "failed(%d) to initialize RSS\n", ret);
2959 goto err_config;
2960 }
2961
2962 /* ensure vf tbl list as empty before init */
2963 ret = hclgevf_clear_vport_list(hdev);
2964 if (ret) {
2965 dev_err(&pdev->dev,
2966 "failed to clear tbl list configuration, ret = %d.\n",
2967 ret);
2968 goto err_config;
2969 }
2970
2971 ret = hclgevf_init_vlan_config(hdev);
2972 if (ret) {
2973 dev_err(&hdev->pdev->dev,
2974 "failed(%d) to initialize VLAN config\n", ret);
2975 goto err_config;
2976 }
2977
2978 hclgevf_init_rxd_adv_layout(hdev);
2979
2980 ret = hclgevf_devlink_init(hdev);
2981 if (ret)
2982 goto err_config;
2983
2984 set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state);
2985
2986 hdev->last_reset_time = jiffies;
2987 dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
2988 HCLGEVF_DRIVER_NAME);
2989
2990 hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
2991 timer_setup(&hdev->reset_timer, hclgevf_reset_timer, 0);
2992
2993 return 0;
2994
2995 err_config:
2996 hclgevf_misc_irq_uninit(hdev);
2997 err_misc_irq_init:
2998 hclgevf_state_uninit(hdev);
2999 hclgevf_uninit_msi(hdev);
3000 err_cmd_init:
3001 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3002 err_cmd_queue_init:
3003 hclgevf_pci_uninit(hdev);
3004 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3005 return ret;
3006 }
3007
hclgevf_uninit_hdev(struct hclgevf_dev * hdev)3008 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3009 {
3010 struct hclge_vf_to_pf_msg send_msg;
3011
3012 hclgevf_state_uninit(hdev);
3013 hclgevf_uninit_rxd_adv_layout(hdev);
3014
3015 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3016 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3017
3018 if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3019 hclgevf_misc_irq_uninit(hdev);
3020 hclgevf_uninit_msi(hdev);
3021 }
3022
3023 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3024 hclgevf_devlink_uninit(hdev);
3025 hclgevf_pci_uninit(hdev);
3026 hclgevf_uninit_mac_list(hdev);
3027 }
3028
hclgevf_init_ae_dev(struct hnae3_ae_dev * ae_dev)3029 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3030 {
3031 struct pci_dev *pdev = ae_dev->pdev;
3032 int ret;
3033
3034 ret = hclgevf_alloc_hdev(ae_dev);
3035 if (ret) {
3036 dev_err(&pdev->dev, "hclge device allocation failed\n");
3037 return ret;
3038 }
3039
3040 ret = hclgevf_init_hdev(ae_dev->priv);
3041 if (ret) {
3042 dev_err(&pdev->dev, "hclge device initialization failed\n");
3043 return ret;
3044 }
3045
3046 return 0;
3047 }
3048
hclgevf_uninit_ae_dev(struct hnae3_ae_dev * ae_dev)3049 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3050 {
3051 struct hclgevf_dev *hdev = ae_dev->priv;
3052
3053 hclgevf_uninit_hdev(hdev);
3054 ae_dev->priv = NULL;
3055 }
3056
hclgevf_get_max_channels(struct hclgevf_dev * hdev)3057 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3058 {
3059 struct hnae3_handle *nic = &hdev->nic;
3060 struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3061
3062 return min_t(u32, hdev->rss_size_max,
3063 hdev->num_tqps / kinfo->tc_info.num_tc);
3064 }
3065
3066 /**
3067 * hclgevf_get_channels - Get the current channels enabled and max supported.
3068 * @handle: hardware information for network interface
3069 * @ch: ethtool channels structure
3070 *
3071 * We don't support separate tx and rx queues as channels. The other count
3072 * represents how many queues are being used for control. max_combined counts
3073 * how many queue pairs we can support. They may not be mapped 1 to 1 with
3074 * q_vectors since we support a lot more queue pairs than q_vectors.
3075 **/
hclgevf_get_channels(struct hnae3_handle * handle,struct ethtool_channels * ch)3076 static void hclgevf_get_channels(struct hnae3_handle *handle,
3077 struct ethtool_channels *ch)
3078 {
3079 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3080
3081 ch->max_combined = hclgevf_get_max_channels(hdev);
3082 ch->other_count = 0;
3083 ch->max_other = 0;
3084 ch->combined_count = handle->kinfo.rss_size;
3085 }
3086
hclgevf_get_tqps_and_rss_info(struct hnae3_handle * handle,u16 * alloc_tqps,u16 * max_rss_size)3087 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3088 u16 *alloc_tqps, u16 *max_rss_size)
3089 {
3090 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3091
3092 *alloc_tqps = hdev->num_tqps;
3093 *max_rss_size = hdev->rss_size_max;
3094 }
3095
hclgevf_update_rss_size(struct hnae3_handle * handle,u32 new_tqps_num)3096 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3097 u32 new_tqps_num)
3098 {
3099 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3100 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3101 u16 max_rss_size;
3102
3103 kinfo->req_rss_size = new_tqps_num;
3104
3105 max_rss_size = min_t(u16, hdev->rss_size_max,
3106 hdev->num_tqps / kinfo->tc_info.num_tc);
3107
3108 /* Use the user's configuration when it is not larger than
3109 * max_rss_size, otherwise, use the maximum specification value.
3110 */
3111 if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3112 kinfo->req_rss_size <= max_rss_size)
3113 kinfo->rss_size = kinfo->req_rss_size;
3114 else if (kinfo->rss_size > max_rss_size ||
3115 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3116 kinfo->rss_size = max_rss_size;
3117
3118 kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3119 }
3120
hclgevf_set_channels(struct hnae3_handle * handle,u32 new_tqps_num,bool rxfh_configured)3121 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3122 bool rxfh_configured)
3123 {
3124 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3125 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3126 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
3127 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
3128 u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
3129 u16 cur_rss_size = kinfo->rss_size;
3130 u16 cur_tqps = kinfo->num_tqps;
3131 u32 *rss_indir;
3132 unsigned int i;
3133 int ret;
3134
3135 hclgevf_update_rss_size(handle, new_tqps_num);
3136
3137 hclge_comm_get_rss_tc_info(kinfo->rss_size, hdev->hw_tc_map,
3138 tc_offset, tc_valid, tc_size);
3139 ret = hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
3140 tc_valid, tc_size);
3141 if (ret)
3142 return ret;
3143
3144 /* RSS indirection table has been configured by user */
3145 if (rxfh_configured)
3146 goto out;
3147
3148 /* Reinitializes the rss indirect table according to the new RSS size */
3149 rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3150 sizeof(u32), GFP_KERNEL);
3151 if (!rss_indir)
3152 return -ENOMEM;
3153
3154 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3155 rss_indir[i] = i % kinfo->rss_size;
3156
3157 hdev->rss_cfg.rss_size = kinfo->rss_size;
3158
3159 ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3160 if (ret)
3161 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3162 ret);
3163
3164 kfree(rss_indir);
3165
3166 out:
3167 if (!ret)
3168 dev_info(&hdev->pdev->dev,
3169 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3170 cur_rss_size, kinfo->rss_size,
3171 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3172
3173 return ret;
3174 }
3175
hclgevf_get_status(struct hnae3_handle * handle)3176 static int hclgevf_get_status(struct hnae3_handle *handle)
3177 {
3178 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3179
3180 return hdev->hw.mac.link;
3181 }
3182
hclgevf_get_ksettings_an_result(struct hnae3_handle * handle,u8 * auto_neg,u32 * speed,u8 * duplex,u32 * lane_num)3183 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3184 u8 *auto_neg, u32 *speed,
3185 u8 *duplex, u32 *lane_num)
3186 {
3187 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3188
3189 if (speed)
3190 *speed = hdev->hw.mac.speed;
3191 if (duplex)
3192 *duplex = hdev->hw.mac.duplex;
3193 if (auto_neg)
3194 *auto_neg = AUTONEG_DISABLE;
3195 }
3196
hclgevf_update_speed_duplex(struct hclgevf_dev * hdev,u32 speed,u8 duplex)3197 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3198 u8 duplex)
3199 {
3200 hdev->hw.mac.speed = speed;
3201 hdev->hw.mac.duplex = duplex;
3202 }
3203
hclgevf_gro_en(struct hnae3_handle * handle,bool enable)3204 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3205 {
3206 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3207 bool gro_en_old = hdev->gro_en;
3208 int ret;
3209
3210 hdev->gro_en = enable;
3211 ret = hclgevf_config_gro(hdev);
3212 if (ret)
3213 hdev->gro_en = gro_en_old;
3214
3215 return ret;
3216 }
3217
hclgevf_get_media_type(struct hnae3_handle * handle,u8 * media_type,u8 * module_type)3218 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3219 u8 *module_type)
3220 {
3221 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3222
3223 if (media_type)
3224 *media_type = hdev->hw.mac.media_type;
3225
3226 if (module_type)
3227 *module_type = hdev->hw.mac.module_type;
3228 }
3229
hclgevf_get_hw_reset_stat(struct hnae3_handle * handle)3230 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3231 {
3232 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3233
3234 return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3235 }
3236
hclgevf_get_cmdq_stat(struct hnae3_handle * handle)3237 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3238 {
3239 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3240
3241 return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3242 }
3243
hclgevf_ae_dev_resetting(struct hnae3_handle * handle)3244 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3245 {
3246 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3247
3248 return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3249 }
3250
hclgevf_ae_dev_reset_cnt(struct hnae3_handle * handle)3251 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3252 {
3253 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3254
3255 return hdev->rst_stats.hw_rst_done_cnt;
3256 }
3257
hclgevf_get_link_mode(struct hnae3_handle * handle,unsigned long * supported,unsigned long * advertising)3258 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3259 unsigned long *supported,
3260 unsigned long *advertising)
3261 {
3262 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3263
3264 *supported = hdev->hw.mac.supported;
3265 *advertising = hdev->hw.mac.advertising;
3266 }
3267
hclgevf_update_port_base_vlan_info(struct hclgevf_dev * hdev,u16 state,struct hclge_mbx_port_base_vlan * port_base_vlan)3268 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3269 struct hclge_mbx_port_base_vlan *port_base_vlan)
3270 {
3271 struct hnae3_handle *nic = &hdev->nic;
3272 struct hclge_vf_to_pf_msg send_msg;
3273 int ret;
3274
3275 rtnl_lock();
3276
3277 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3278 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3279 dev_warn(&hdev->pdev->dev,
3280 "is resetting when updating port based vlan info\n");
3281 rtnl_unlock();
3282 return;
3283 }
3284
3285 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3286 if (ret) {
3287 rtnl_unlock();
3288 return;
3289 }
3290
3291 /* send msg to PF and wait update port based vlan info */
3292 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3293 HCLGE_MBX_PORT_BASE_VLAN_CFG);
3294 memcpy(send_msg.data, port_base_vlan, sizeof(*port_base_vlan));
3295 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3296 if (!ret) {
3297 if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3298 nic->port_base_vlan_state = state;
3299 else
3300 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3301 }
3302
3303 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3304 rtnl_unlock();
3305 }
3306
3307 static const struct hnae3_ae_ops hclgevf_ops = {
3308 .init_ae_dev = hclgevf_init_ae_dev,
3309 .uninit_ae_dev = hclgevf_uninit_ae_dev,
3310 .reset_prepare = hclgevf_reset_prepare_general,
3311 .reset_done = hclgevf_reset_done,
3312 .init_client_instance = hclgevf_init_client_instance,
3313 .uninit_client_instance = hclgevf_uninit_client_instance,
3314 .start = hclgevf_ae_start,
3315 .stop = hclgevf_ae_stop,
3316 .client_start = hclgevf_client_start,
3317 .client_stop = hclgevf_client_stop,
3318 .map_ring_to_vector = hclgevf_map_ring_to_vector,
3319 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3320 .get_vector = hclgevf_get_vector,
3321 .put_vector = hclgevf_put_vector,
3322 .reset_queue = hclgevf_reset_tqp,
3323 .get_mac_addr = hclgevf_get_mac_addr,
3324 .set_mac_addr = hclgevf_set_mac_addr,
3325 .add_uc_addr = hclgevf_add_uc_addr,
3326 .rm_uc_addr = hclgevf_rm_uc_addr,
3327 .add_mc_addr = hclgevf_add_mc_addr,
3328 .rm_mc_addr = hclgevf_rm_mc_addr,
3329 .get_stats = hclgevf_get_stats,
3330 .update_stats = hclgevf_update_stats,
3331 .get_strings = hclgevf_get_strings,
3332 .get_sset_count = hclgevf_get_sset_count,
3333 .get_rss_key_size = hclge_comm_get_rss_key_size,
3334 .get_rss = hclgevf_get_rss,
3335 .set_rss = hclgevf_set_rss,
3336 .get_rss_tuple = hclgevf_get_rss_tuple,
3337 .set_rss_tuple = hclgevf_set_rss_tuple,
3338 .get_tc_size = hclgevf_get_tc_size,
3339 .get_fw_version = hclgevf_get_fw_version,
3340 .set_vlan_filter = hclgevf_set_vlan_filter,
3341 .enable_vlan_filter = hclgevf_enable_vlan_filter,
3342 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3343 .reset_event = hclgevf_reset_event,
3344 .set_default_reset_request = hclgevf_set_def_reset_request,
3345 .set_channels = hclgevf_set_channels,
3346 .get_channels = hclgevf_get_channels,
3347 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3348 .get_regs_len = hclgevf_get_regs_len,
3349 .get_regs = hclgevf_get_regs,
3350 .get_status = hclgevf_get_status,
3351 .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3352 .get_media_type = hclgevf_get_media_type,
3353 .get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3354 .ae_dev_resetting = hclgevf_ae_dev_resetting,
3355 .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3356 .set_gro_en = hclgevf_gro_en,
3357 .set_mtu = hclgevf_set_mtu,
3358 .get_global_queue_id = hclgevf_get_qid_global,
3359 .set_timer_task = hclgevf_set_timer_task,
3360 .get_link_mode = hclgevf_get_link_mode,
3361 .set_promisc_mode = hclgevf_set_promisc_mode,
3362 .request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3363 .get_cmdq_stat = hclgevf_get_cmdq_stat,
3364 };
3365
3366 static struct hnae3_ae_algo ae_algovf = {
3367 .ops = &hclgevf_ops,
3368 .pdev_id_table = ae_algovf_pci_tbl,
3369 };
3370
hclgevf_init(void)3371 static int __init hclgevf_init(void)
3372 {
3373 pr_info("%s is initializing\n", HCLGEVF_NAME);
3374
3375 hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME);
3376 if (!hclgevf_wq) {
3377 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3378 return -ENOMEM;
3379 }
3380
3381 hnae3_register_ae_algo(&ae_algovf);
3382
3383 return 0;
3384 }
3385
hclgevf_exit(void)3386 static void __exit hclgevf_exit(void)
3387 {
3388 hnae3_unregister_ae_algo(&ae_algovf);
3389 destroy_workqueue(hclgevf_wq);
3390 }
3391 module_init(hclgevf_init);
3392 module_exit(hclgevf_exit);
3393
3394 MODULE_LICENSE("GPL");
3395 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3396 MODULE_DESCRIPTION("HCLGEVF Driver");
3397 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3398