xref: /netbsd/sys/fs/hfs/libhfs.c (revision 1ea4aa55)
1 /*	$NetBSD: libhfs.c,v 1.18 2023/06/19 08:40:30 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2005, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Yevgeny Binder, Dieter Baron, and Pelle Johansson.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  *  All functions and variable types have the prefix "hfs_". All constants
34  *  have the prefix "HFS_".
35  *
36  *  Naming convention for functions which read/write raw, linear data
37  *	into/from a structured form:
38  *
39  *  hfs_read/write[d][a]_foo_bar
40  *      [d] - read/write from/to [d]isk instead of a memory buffer
41  *      [a] - [a]llocate output buffer instead of using an existing one
42  *            (not applicable for writing functions)
43  *
44  *  Most functions do not have either of these options, so they will read from
45  *	or write to a memory buffer, which has been previously allocated by the
46  *	caller.
47  */
48 
49 #include <sys/cdefs.h>
50 __KERNEL_RCSID(0, "$NetBSD: libhfs.c,v 1.18 2023/06/19 08:40:30 msaitoh Exp $");
51 
52 #include "libhfs.h"
53 
54 /* global private file/folder keys */
55 hfs_catalog_key_t hfs_gMetadataDirectoryKey; /* contains HFS+ inodes */
56 hfs_catalog_key_t hfs_gJournalInfoBlockFileKey;
57 hfs_catalog_key_t hfs_gJournalBufferFileKey;
58 hfs_catalog_key_t* hfs_gPrivateObjectKeys[4] = {
59 	&hfs_gMetadataDirectoryKey,
60 	&hfs_gJournalInfoBlockFileKey,
61 	&hfs_gJournalBufferFileKey,
62 	NULL
63 };
64 
65 
66 extern uint16_t be16tohp(void** inout_ptr);
67 extern uint32_t be32tohp(void** inout_ptr);
68 extern uint64_t be64tohp(void** inout_ptr);
69 
70 hfs_callbacks	hfs_gcb;	/* global callbacks */
71 
72 /*
73  * global case folding table
74  * (lazily initialized; see comments at bottom of hfs_open_volume())
75  */
76 unichar_t* hfs_gcft;
77 
78 
79 int hfslib_create_casefolding_table(void);
80 
81 #ifdef DLO_DEBUG
82 #include <stdio.h>
83 void
dlo_print_key(hfs_catalog_key_t * key)84 dlo_print_key(hfs_catalog_key_t *key)
85 {
86 	int i;
87 
88 	printf("%ld:[", (long)key->parent_cnid);
89 	for (i=0; i<key->name.length; i++) {
90 		if (key->name.unicode[i] < 256
91 		    && isprint(key->name.unicode[i]))
92 			putchar(key->name.unicode[i]);
93 		else
94 			printf("<%04x>", key->name.unicode[i]);
95 	}
96 	printf("]");
97 }
98 #endif
99 
100 void
hfslib_init(hfs_callbacks * in_callbacks)101 hfslib_init(hfs_callbacks* in_callbacks)
102 {
103 	unichar_t	temp[256];
104 
105 	if (in_callbacks != NULL)
106 		memcpy(&hfs_gcb, in_callbacks, sizeof(hfs_callbacks));
107 
108 	hfs_gcft = NULL;
109 
110 	/*
111 	 * Create keys for the HFS+ "private" files so we can reuse them whenever
112 	 * we perform a user-visible operation, such as listing directory contents.
113 	 */
114 
115 #define ATOU(str, len) /* quick & dirty ascii-to-unicode conversion */ \
116 	do{ int i; for(i=0; i<len; i++) temp[i]=str[i]; } \
117 	while( /*CONSTCOND*/ 0)
118 
119 	ATOU("\0\0\0\0HFS+ Private Data", 21);
120 	hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 21, temp,
121 		&hfs_gMetadataDirectoryKey);
122 
123 	ATOU(".journal_info_block", 19);
124 	hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 19, temp,
125 		&hfs_gJournalInfoBlockFileKey);
126 
127 	ATOU(".journal", 8);
128 	hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 8, temp,
129 		&hfs_gJournalBufferFileKey);
130 
131 #undef ATOU
132 }
133 
134 void
hfslib_done(void)135 hfslib_done(void)
136 {
137 	hfs_callback_args	cbargs;
138 
139 	if (hfs_gcft != NULL) {
140 		hfslib_init_cbargs(&cbargs);
141 		hfslib_free(hfs_gcft, &cbargs);
142 		hfs_gcft = NULL;
143 	}
144 
145 	return;
146 }
147 
148 void
hfslib_init_cbargs(hfs_callback_args * ptr)149 hfslib_init_cbargs(hfs_callback_args* ptr)
150 {
151 	memset(ptr, 0, sizeof(hfs_callback_args));
152 }
153 
154 #if 0
155 #pragma mark -
156 #pragma mark High-Level Routines
157 #endif
158 
159 int
hfslib_open_volume(const char * in_device,int in_readonly,hfs_volume * out_vol,hfs_callback_args * cbargs)160 hfslib_open_volume(
161 	const char* in_device,
162 	int in_readonly,
163 	hfs_volume* out_vol,
164 	hfs_callback_args* cbargs)
165 {
166 	hfs_catalog_key_t		rootkey;
167 	hfs_thread_record_t	rootthread;
168 	hfs_hfs_master_directory_block_t mdb;
169 	uint16_t	node_rec_sizes[1];
170 	void*		node_recs[1];
171 	void*		buffer;
172 	void*		buffer2;	/* used as temporary pointer for realloc() */
173 	int			result;
174 	int		isopen = 0;
175 
176 	result = 1;
177 	buffer = NULL;
178 
179 	if (in_device == NULL || out_vol == NULL)
180 		return 1;
181 
182 	out_vol->readonly = in_readonly;
183 	out_vol->offset = 0;
184 
185 	if (hfslib_openvoldevice(out_vol, in_device, cbargs) != 0)
186 		HFS_LIBERR("could not open device");
187 	isopen = 1;
188 
189 	/*
190 	 * Read the volume header.
191 	 */
192 	buffer = hfslib_malloc(max(sizeof(hfs_volume_header_t),
193 		sizeof(hfs_hfs_master_directory_block_t)), cbargs);
194 	if (buffer == NULL)
195 		HFS_LIBERR("could not allocate volume header");
196 	if (hfslib_readd(out_vol, buffer, max(sizeof(hfs_volume_header_t),
197 	    sizeof(hfs_hfs_master_directory_block_t)),
198 	    HFS_VOLUME_HEAD_RESERVE_SIZE, cbargs) != 0)
199 		HFS_LIBERR("could not read volume header");
200 
201 	if (be16toh(*((uint16_t *)buffer)) == HFS_SIG_HFS) {
202 		if (hfslib_read_master_directory_block(buffer, &mdb) == 0)
203 			HFS_LIBERR("could not parse master directory block");
204 		if (mdb.embedded_signature == HFS_SIG_HFSP) {
205 			/* XXX: is 512 always correct? */
206 			out_vol->offset =
207 			    mdb.first_block * 512
208 			    + mdb.embedded_extent.start_block
209 			    * (uint64_t)mdb.block_size;
210 
211 			if (hfslib_readd(out_vol, buffer,
212 			    sizeof(hfs_volume_header_t),
213 			    HFS_VOLUME_HEAD_RESERVE_SIZE, cbargs) != 0)
214 				HFS_LIBERR("could not read volume header");
215 		} else
216 			HFS_LIBERR("Plain HFS volumes not currently supported");
217 	}
218 
219 	if (hfslib_read_volume_header(buffer, &(out_vol->vh)) == 0)
220 		HFS_LIBERR("could not parse volume header");
221 
222 	/*
223 	 * Check the volume signature to see if this is a legitimate HFS+ or HFSX
224 	 * volume. If so, set the key comparison function pointers appropriately.
225 	 */
226 	switch(out_vol->vh.signature) {
227 		case HFS_SIG_HFSP:
228 			out_vol->keycmp = hfslib_compare_catalog_keys_cf;
229 			break;
230 		case HFS_SIG_HFSX:
231 			out_vol->keycmp = NULL; /* will be set below */
232 			break;
233 		default:
234 			/* HFS_LIBERR("unrecognized volume format"); */
235 			goto error;
236 			break;
237 	}
238 
239 	/*
240 	 * Read the catalog header.
241 	 */
242 	buffer2 = hfslib_realloc(buffer, 512, cbargs);
243 	if (buffer2 == NULL)
244 		HFS_LIBERR("could not allocate catalog header node");
245 	buffer = buffer2;
246 
247 	/*
248 	 * We are only interested in the node header, so read the first
249 	 * 512 bytes and construct the node descriptor by hand.
250 	 */
251 	if (hfslib_readd(out_vol, buffer, 512,
252 	    out_vol->vh.catalog_file.extents[0].start_block *
253 	    (uint64_t)out_vol->vh.block_size, cbargs) != 0)
254 		HFS_LIBERR("could not read catalog header node");
255 	node_recs[0] = (char *)buffer+14;
256 	node_rec_sizes[0] = 120;
257 	if (hfslib_read_header_node(node_recs, node_rec_sizes, 1,
258 	    &out_vol->chr, NULL, NULL) == 0)
259 		HFS_LIBERR("could not parse catalog header node");
260 
261 	/*
262 	 * If this is an HFSX volume, the catalog header specifies the type of
263 	 * key comparison method (case-folding or binary compare) we should
264 	 * use.
265 	 */
266 	if (out_vol->keycmp == NULL) {
267 		if (out_vol->chr.keycomp_type == HFS_KEY_CASEFOLD)
268 			out_vol->keycmp = hfslib_compare_catalog_keys_cf;
269 		else if (out_vol->chr.keycomp_type == HFS_KEY_BINARY)
270 			out_vol->keycmp = hfslib_compare_catalog_keys_bc;
271 		else
272 			HFS_LIBERR("undefined key compare method");
273 	}
274 
275 	out_vol->catkeysizefieldsize
276 	    = (out_vol->chr.attributes & HFS_BIG_KEYS_MASK) ?
277 	    sizeof(uint16_t) : sizeof(uint8_t);
278 
279 	/*
280 	 * Read the extent overflow header.
281 	 */
282 	/*
283 	 * We are only interested in the node header, so read the first
284 	 * 512 bytes and construct the node descriptor by hand.
285 	 * buffer is already 512 bytes long.
286 	 */
287 	if (hfslib_readd(out_vol, buffer, 512,
288 	    out_vol->vh.extents_file.extents[0].start_block *
289 	    (uint64_t)out_vol->vh.block_size, cbargs) != 0)
290 		HFS_LIBERR("could not read extent header node");
291 
292 	node_recs[0] = (char *)buffer+14;
293 	node_rec_sizes[0] = 120;
294 	if (hfslib_read_header_node(node_recs, node_rec_sizes, 1,
295 	    &out_vol->ehr, NULL, NULL) == 0)
296 		HFS_LIBERR("could not parse extent header node");
297 	out_vol->extkeysizefieldsize
298 	    = (out_vol->ehr.attributes & HFS_BIG_KEYS_MASK) ?
299 	    sizeof(uint16_t):sizeof(uint8_t);
300 	/*
301 	 * Read the journal info block and journal header (if volume journaled).
302 	 */
303 	if (out_vol->vh.attributes & (1<<HFS_VOL_JOURNALED)) {
304 		/* journal info block */
305 		buffer2 = hfslib_realloc(buffer, sizeof(hfs_journal_info_t), cbargs);
306 		if (buffer2 == NULL)
307 			HFS_LIBERR("could not allocate journal info block");
308 		buffer = buffer2;
309 
310 		if (hfslib_readd(out_vol, buffer, sizeof(hfs_journal_info_t),
311 		    out_vol->vh.journal_info_block * out_vol->vh.block_size,
312 		    cbargs) != 0)
313 			HFS_LIBERR("could not read journal info block");
314 
315 		if (hfslib_read_journal_info(buffer, &out_vol->jib) == 0)
316 			HFS_LIBERR("could not parse journal info block");
317 
318 		/* journal header */
319 		buffer2 = hfslib_realloc(buffer, sizeof(hfs_journal_header_t), cbargs);
320 		if (buffer2 == NULL)
321 			HFS_LIBERR("could not allocate journal header");
322 		buffer = buffer2;
323 
324 		if (hfslib_readd(out_vol, buffer, sizeof(hfs_journal_header_t),
325 		    out_vol->jib.offset, cbargs) != 0)
326 			HFS_LIBERR("could not read journal header");
327 
328 		if (hfslib_read_journal_header(buffer, &out_vol->jh) == 0)
329 			HFS_LIBERR("could not parse journal header");
330 
331 		out_vol->journaled = 1;
332 	} else {
333 		out_vol->journaled = 0;
334 	}
335 
336 	/*
337 	 * If this volume uses case-folding comparison and the folding table hasn't
338 	 * been created yet, do that here. (We don't do this in hfslib_init()
339 	 * because the table is large and we might never even need to use it.)
340 	 */
341 	if (out_vol->keycmp == hfslib_compare_catalog_keys_cf && hfs_gcft == NULL)
342 		result = hfslib_create_casefolding_table();
343 	else
344 		result = 0;
345 
346 	/*
347 	 * Find and store the volume name.
348 	 */
349 	if (hfslib_make_catalog_key(HFS_CNID_ROOT_FOLDER, 0, NULL, &rootkey) == 0)
350 		HFS_LIBERR("could not make root search key");
351 
352 	if (hfslib_find_catalog_record_with_key(out_vol, &rootkey,
353 	    (hfs_catalog_keyed_record_t*)&rootthread, cbargs)!=0)
354 		HFS_LIBERR("could not find root parent");
355 
356 	memcpy(&out_vol->name, &rootthread.name, sizeof(hfs_unistr255_t));
357 
358 	/* FALLTHROUGH */
359 error:
360 	if (result != 0 && isopen)
361 		hfslib_close_volume(out_vol, cbargs);
362 	if (buffer != NULL)
363 		hfslib_free(buffer, cbargs);
364 	return result;
365 }
366 
367 void
hfslib_close_volume(hfs_volume * in_vol,hfs_callback_args * cbargs)368 hfslib_close_volume(hfs_volume* in_vol, hfs_callback_args* cbargs)
369 {
370 	if (in_vol == NULL)
371 		return;
372 	hfslib_closevoldevice(in_vol, cbargs);
373 }
374 
375 int
hfslib_path_to_cnid(hfs_volume * in_vol,hfs_cnid_t in_cnid,char ** out_unicode,uint16_t * out_length,hfs_callback_args * cbargs)376 hfslib_path_to_cnid(hfs_volume* in_vol,
377 	hfs_cnid_t in_cnid,
378 	char** out_unicode,
379 	uint16_t* out_length,
380 	hfs_callback_args* cbargs)
381 {
382 	hfs_thread_record_t	parent_thread;
383 	hfs_cnid_t	parent_cnid, child_cnid;
384 	char*		newpath;
385 	char*		path;
386 	int			path_offset = 0;
387 	int			result;
388 	uint16_t*	ptr;	/* dummy var */
389 	uint16_t	uchar;	/* dummy var */
390 	uint16_t	total_path_length;
391 
392 	if (in_vol == NULL || in_cnid == 0 || out_unicode == NULL ||
393 	    out_length == NULL)
394 		return 1;
395 
396 	result = 1;
397 	*out_unicode = NULL;
398 	*out_length = 0;
399 	path = NULL;
400 	total_path_length = 0;
401 
402 	path = hfslib_malloc(514, cbargs); /* 256 unichars plus a forward slash */
403 	if (path == NULL)
404 		return 1;
405 
406 	child_cnid = in_cnid;
407 	parent_cnid = child_cnid; /* skips loop in case in_cnid is root id */
408 	while (parent_cnid != HFS_CNID_ROOT_FOLDER &&
409 	    parent_cnid != HFS_CNID_ROOT_PARENT)
410 	{
411 		if (child_cnid != in_cnid) {
412 			newpath = hfslib_realloc(path, 514 + total_path_length*2, cbargs);
413 			if (newpath == NULL)
414 				goto exit;
415 			path = newpath;
416 			memmove(path + 514, path + path_offset, total_path_length*2);
417 		}
418 
419 		parent_cnid = hfslib_find_parent_thread(in_vol, child_cnid,
420 		    &parent_thread, cbargs);
421 		if (parent_cnid == 0)
422 			goto exit;
423 
424 		path_offset = 512 - parent_thread.name.length*2;
425 
426 		memcpy(path + path_offset, parent_thread.name.unicode,
427 			parent_thread.name.length*2);
428 
429 		/* Add a forward slash. The unicode string was specified in big endian
430 		 * format, so convert to core format if necessary. */
431 		path[512] = 0x00;
432 		path[513] = 0x2F;
433 
434 		ptr = (uint16_t*)path + 256;
435 		uchar = be16tohp((void*)&ptr);
436 		*(ptr-1) = uchar;
437 
438 		total_path_length += parent_thread.name.length + 1;
439 		child_cnid = parent_cnid;
440 	}
441 
442 	/*
443 	 * At this point, 'path' holds a sequence of unicode characters which
444 	 * represent the absolute path to the given cnid. This string is missing
445 	 * a terminating null char and an initial forward slash that represents
446 	 * the root of the filesystem. It most likely also has extra space in
447 	 * the beginning, due to the fact that we reserve 512 bytes for each path
448 	 * component and won't usually use all that space. So, we allocate the
449 	 * final string based on the actual length of the absolute path, plus four
450 	 * additional bytes (two unichars) for the forward slash and the null char.
451 	 */
452 
453 	*out_unicode = hfslib_malloc((total_path_length+2)*2, cbargs);
454 	if (*out_unicode == NULL)
455 		goto exit;
456 
457 	/* copy only the bytes that are actually used */
458 	memcpy(*out_unicode + 2, path + path_offset, total_path_length*2);
459 
460 	/* insert forward slash at start */
461 	uchar = be16toh(0x2F);
462 	memcpy(*out_unicode, &uchar, sizeof(uchar));
463 
464 	/* insert null char at end */
465 	(*out_unicode)[total_path_length*2+2] = 0x00;
466 	(*out_unicode)[total_path_length*2+3] = 0x00;
467 
468 	*out_length = total_path_length + 1 /* extra for forward slash */ ;
469 
470 	result = 0;
471 
472 exit:
473 	if (path != NULL)
474 		hfslib_free(path, cbargs);
475 	return result;
476 }
477 
478 hfs_cnid_t
hfslib_find_parent_thread(hfs_volume * in_vol,hfs_cnid_t in_child,hfs_thread_record_t * out_thread,hfs_callback_args * cbargs)479 hfslib_find_parent_thread(
480 	hfs_volume* in_vol,
481 	hfs_cnid_t in_child,
482 	hfs_thread_record_t* out_thread,
483 	hfs_callback_args* cbargs)
484 {
485 	hfs_catalog_key_t	childkey;
486 
487 	if (in_vol == NULL || in_child == 0 || out_thread == NULL)
488 		return 0;
489 
490 	if (hfslib_make_catalog_key(in_child, 0, NULL, &childkey) == 0)
491 		return 0;
492 
493 	if (hfslib_find_catalog_record_with_key(in_vol, &childkey,
494 		(hfs_catalog_keyed_record_t*)out_thread, cbargs) != 0)
495 		return 0;
496 
497 	return out_thread->parent_cnid;
498 }
499 
500 /*
501  * hfslib_find_catalog_record_with_cnid()
502  *
503  * Looks up a catalog record by calling hfslib_find_parent_thread() and
504  * hfslib_find_catalog_record_with_key(). out_key may be NULL; if not, the key
505  * corresponding to this cnid is stuffed in it. Returns 0 on success.
506  */
507 int
hfslib_find_catalog_record_with_cnid(hfs_volume * in_vol,hfs_cnid_t in_cnid,hfs_catalog_keyed_record_t * out_rec,hfs_catalog_key_t * out_key,hfs_callback_args * cbargs)508 hfslib_find_catalog_record_with_cnid(
509 	hfs_volume* in_vol,
510 	hfs_cnid_t in_cnid,
511 	hfs_catalog_keyed_record_t* out_rec,
512 	hfs_catalog_key_t* out_key,
513 	hfs_callback_args* cbargs)
514 {
515 	hfs_cnid_t					parentcnid;
516 	hfs_thread_record_t		parentthread;
517 	hfs_catalog_key_t			key;
518 
519 	if (in_vol == NULL || in_cnid == 0 || out_rec == NULL)
520 		return 0;
521 
522 	parentcnid =
523 		hfslib_find_parent_thread(in_vol, in_cnid, &parentthread, cbargs);
524 	if (parentcnid == 0)
525 		HFS_LIBERR("could not find parent thread for cnid %i", in_cnid);
526 
527 	if (hfslib_make_catalog_key(parentthread.parent_cnid,
528 		parentthread.name.length, parentthread.name.unicode, &key) == 0)
529 		HFS_LIBERR("could not make catalog search key");
530 
531 	if (out_key != NULL)
532 		memcpy(out_key, &key, sizeof(key));
533 
534 	return hfslib_find_catalog_record_with_key(in_vol, &key, out_rec, cbargs);
535 
536 error:
537 	return 1;
538 }
539 
540 /* Returns 0 on success, 1 on error, and -1 if record was not found. */
541 int
hfslib_find_catalog_record_with_key(hfs_volume * in_vol,hfs_catalog_key_t * in_key,hfs_catalog_keyed_record_t * out_rec,hfs_callback_args * cbargs)542 hfslib_find_catalog_record_with_key(
543 	hfs_volume* in_vol,
544 	hfs_catalog_key_t* in_key,
545 	hfs_catalog_keyed_record_t* out_rec,
546 	hfs_callback_args* cbargs)
547 {
548 	hfs_node_descriptor_t			nd;
549 	hfs_extent_descriptor_t*		extents;
550 	hfs_catalog_keyed_record_t		lastrec;
551 	hfs_catalog_key_t*	curkey;
552 	void**				recs;
553 	void*				buffer;
554 	uint64_t			bytesread;
555 	uint32_t			curnode;
556 	uint16_t*			recsizes;
557 	uint16_t			numextents;
558 	uint16_t			recnum;
559 	int16_t				leaftype;
560 	int					keycompare;
561 	int					result;
562 
563 	if (in_key == NULL || out_rec == NULL || in_vol == NULL)
564 		return 1;
565 
566 	result = 1;
567 	buffer = NULL;
568 	curkey = NULL;
569 	extents = NULL;
570 	recs = NULL;
571 	recsizes = NULL;
572 
573 	/* The key takes up over half a kb of ram, which is a lot for the BSD
574 	 * kernel stack. So allocate it in the heap instead to play it safe. */
575 	curkey = hfslib_malloc(sizeof(hfs_catalog_key_t), cbargs);
576 	if (curkey == NULL)
577 		HFS_LIBERR("could not allocate catalog search key");
578 
579 	buffer = hfslib_malloc(in_vol->chr.node_size, cbargs);
580 	if (buffer == NULL)
581 		HFS_LIBERR("could not allocate node buffer");
582 
583 	numextents = hfslib_get_file_extents(in_vol, HFS_CNID_CATALOG,
584 		HFS_DATAFORK, &extents, cbargs);
585 	if (numextents == 0)
586 		HFS_LIBERR("could not locate fork extents");
587 
588 	nd.num_recs = 0;
589 	curnode = in_vol->chr.root_node;
590 
591 #ifdef DLO_DEBUG
592 	printf("-> key ");
593 	dlo_print_key(in_key);
594 	printf("\n");
595 #endif
596 
597 	do {
598 #ifdef DLO_DEBUG
599 		printf("--> node %d\n", curnode);
600 #endif
601 
602 		if (hfslib_readd_with_extents(in_vol, buffer,
603 			&bytesread,in_vol->chr.node_size, curnode * in_vol->chr.node_size,
604 			extents, numextents, cbargs) != 0)
605 			HFS_LIBERR("could not read catalog node #%i", curnode);
606 
607 		if (hfslib_reada_node(buffer, &nd, &recs, &recsizes, HFS_CATALOG_FILE,
608 			in_vol, cbargs) == 0)
609 			HFS_LIBERR("could not parse catalog node #%i", curnode);
610 
611 		for (recnum = 0; recnum < nd.num_recs; recnum++)
612 		{
613 			leaftype = nd.kind;
614 			if (hfslib_read_catalog_keyed_record(recs[recnum], out_rec,
615 				&leaftype, curkey, in_vol) == 0)
616 				HFS_LIBERR("could not read catalog record #%i",recnum);
617 
618 #ifdef DLO_DEBUG
619 			printf("---> record %d: ", recnum);
620 			dlo_print_key(curkey);
621 			fflush(stdout);
622 #endif
623 			keycompare = in_vol->keycmp(in_key, curkey);
624 #ifdef DLO_DEBUG
625 			printf(" %c\n",
626 			       keycompare < 0 ? '<'
627 			       : keycompare == 0 ? '=' : '>');
628 #endif
629 
630 			if (keycompare < 0) {
631 				/* Check if key is less than *every* record, which should never
632 				 * happen if the volume is consistent and the key legit. */
633 				if (recnum == 0)
634 					HFS_LIBERR("all records greater than key");
635 
636 				/* Otherwise, we've found the first record that exceeds our key,
637 				 * so retrieve the previous record, which is still less... */
638 				memcpy(out_rec, &lastrec,
639 					sizeof(hfs_catalog_keyed_record_t));
640 
641 				/* ...unless this is a leaf node, which means we've gone from
642 				 * a key which is smaller than the search key, in the previous
643 				 * loop, to a key which is larger, in this loop, and that
644 				 * implies that our search key does not exist on the volume. */
645 				if (nd.kind == HFS_LEAFNODE)
646 					result = -1;
647 				break;
648 			} else if (keycompare == 0) {
649 				/* If leaf node, found an exact match. */
650 				result = 0;
651 				break;
652 			} else if (recnum == nd.num_recs-1 && keycompare > 0) {
653 				/* If leaf node, we've reached the last record with no match,
654 				 * which means this key is not present on the volume. */
655 				result = -1;
656 				break;
657 			}
658 
659 			memcpy(&lastrec, out_rec, sizeof(hfs_catalog_keyed_record_t));
660 		}
661 
662 		if (nd.kind == HFS_INDEXNODE)
663 			curnode = out_rec->child;
664 		else if (nd.kind == HFS_LEAFNODE)
665 			break;
666 		hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
667 	} while (nd.kind != HFS_LEAFNODE);
668 
669 	/* FALLTHROUGH */
670 error:
671 	if (extents != NULL)
672 		hfslib_free(extents, cbargs);
673 	hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
674 	if (curkey != NULL)
675 		hfslib_free(curkey, cbargs);
676 	if (buffer != NULL)
677 		hfslib_free(buffer, cbargs);
678 	return result;
679 }
680 
681 /* returns 0 on success */
682 /* XXX Need to look this over and make sure it gracefully handles cases where
683  * XXX the key is not found. */
684 int
hfslib_find_extent_record_with_key(hfs_volume * in_vol,hfs_extent_key_t * in_key,hfs_extent_record_t * out_rec,hfs_callback_args * cbargs)685 hfslib_find_extent_record_with_key(hfs_volume* in_vol,
686 	hfs_extent_key_t* in_key,
687 	hfs_extent_record_t* out_rec,
688 	hfs_callback_args* cbargs)
689 {
690 	hfs_node_descriptor_t		nd;
691 	hfs_extent_descriptor_t*	extents;
692 	hfs_extent_record_t		lastrec;
693 	hfs_extent_key_t	curkey;
694 	void**				recs;
695 	void*				buffer;
696 	uint64_t			bytesread;
697 	uint32_t			curnode;
698 	uint16_t*			recsizes;
699 	uint16_t			numextents;
700 	uint16_t			recnum;
701 	int					keycompare;
702 	int					result;
703 
704 	if (in_vol == NULL || in_key == NULL || out_rec == NULL)
705 		return 1;
706 
707 	result = 1;
708 	buffer = NULL;
709 	extents = NULL;
710 	recs = NULL;
711 	recsizes = NULL;
712 
713 	buffer = hfslib_malloc(in_vol->ehr.node_size, cbargs);
714 	if (buffer == NULL)
715 		HFS_LIBERR("could not allocate node buffer");
716 
717 	numextents = hfslib_get_file_extents(in_vol, HFS_CNID_EXTENTS,
718 		HFS_DATAFORK, &extents, cbargs);
719 	if (numextents == 0)
720 		HFS_LIBERR("could not locate fork extents");
721 
722 	nd.num_recs = 0;
723 	curnode = in_vol->ehr.root_node;
724 
725 	do {
726 		hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
727 		recnum = 0;
728 
729 		if (hfslib_readd_with_extents(in_vol, buffer, &bytesread,
730 			in_vol->ehr.node_size, curnode * in_vol->ehr.node_size, extents,
731 			numextents, cbargs) != 0)
732 			HFS_LIBERR("could not read extents overflow node #%i", curnode);
733 
734 		if (hfslib_reada_node(buffer, &nd, &recs, &recsizes, HFS_EXTENTS_FILE,
735 			in_vol, cbargs) == 0)
736 			HFS_LIBERR("could not parse extents overflow node #%i",curnode);
737 
738 		for (recnum = 0; recnum < nd.num_recs; recnum++) {
739 			memcpy(&lastrec, out_rec, sizeof(hfs_extent_record_t));
740 
741 			if (hfslib_read_extent_record(recs[recnum], out_rec, nd.kind,
742 				&curkey, in_vol) == 0)
743 				HFS_LIBERR("could not read extents record #%i",recnum);
744 
745 			keycompare = hfslib_compare_extent_keys(in_key, &curkey);
746 			if (keycompare < 0) {
747 				/* this should never happen for any legitimate key */
748 				if (recnum == 0)
749 					return 1;
750 				memcpy(out_rec, &lastrec, sizeof(hfs_extent_record_t));
751 				break;
752 			} else if (keycompare == 0 ||
753 			    (recnum == nd.num_recs-1 && keycompare > 0))
754 				break;
755 		}
756 
757 		if (nd.kind == HFS_INDEXNODE)
758 			curnode = *((uint32_t *)out_rec); /* out_rec is a node ptr in this case */
759 		else if (nd.kind == HFS_LEAFNODE)
760 			break;
761 		else
762 		    HFS_LIBERR("unknown node type for extents overflow node #%i",curnode);
763 	} while (nd.kind != HFS_LEAFNODE);
764 
765 	result = 0;
766 
767 	/* FALLTHROUGH */
768 
769 error:
770 	if (buffer != NULL)
771 		hfslib_free(buffer, cbargs);
772 	if (extents != NULL)
773 		hfslib_free(extents, cbargs);
774 	hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
775 	return result;
776 }
777 
778 /* out_extents may be NULL. */
779 uint16_t
hfslib_get_file_extents(hfs_volume * in_vol,hfs_cnid_t in_cnid,uint8_t in_forktype,hfs_extent_descriptor_t ** out_extents,hfs_callback_args * cbargs)780 hfslib_get_file_extents(hfs_volume* in_vol,
781 	hfs_cnid_t in_cnid,
782 	uint8_t in_forktype,
783 	hfs_extent_descriptor_t** out_extents,
784 	hfs_callback_args* cbargs)
785 {
786 	hfs_extent_descriptor_t*	dummy;
787 	hfs_extent_key_t		extentkey;
788 	hfs_file_record_t		file;
789 	hfs_catalog_key_t		filekey;
790 	hfs_thread_record_t	fileparent;
791 	hfs_fork_t		fork = {.logical_size = 0};
792 	hfs_extent_record_t	nextextentrec;
793 	uint32_t	numblocks;
794 	uint16_t	numextents, n;
795 
796 	if (in_vol == NULL || in_cnid == 0)
797 		return 0;
798 
799 	if (out_extents != NULL) {
800 		*out_extents = hfslib_malloc(sizeof(hfs_extent_descriptor_t), cbargs);
801 		if (*out_extents == NULL)
802 			return 0;
803 	}
804 
805 	switch(in_cnid)
806 	{
807 		case HFS_CNID_CATALOG:
808 			fork = in_vol->vh.catalog_file;
809 			break;
810 
811 		case HFS_CNID_EXTENTS:
812 			fork = in_vol->vh.extents_file;
813 			break;
814 
815 		case HFS_CNID_ALLOCATION:
816 			fork = in_vol->vh.allocation_file;
817 			break;
818 
819 		case HFS_CNID_ATTRIBUTES:
820 			fork = in_vol->vh.attributes_file;
821 			break;
822 
823 		case HFS_CNID_STARTUP:
824 			fork = in_vol->vh.startup_file;
825 			break;
826 
827 		default:
828 			if (hfslib_find_parent_thread(in_vol, in_cnid, &fileparent,
829 				cbargs) == 0)
830 				goto error;
831 
832 			if (hfslib_make_catalog_key(fileparent.parent_cnid,
833 				fileparent.name.length, fileparent.name.unicode, &filekey) == 0)
834 				goto error;
835 
836 			if (hfslib_find_catalog_record_with_key(in_vol, &filekey,
837 				(hfs_catalog_keyed_record_t*)&file, cbargs) != 0)
838 				goto error;
839 
840 			/* only files have extents, not folders or threads */
841 			if (file.rec_type != HFS_REC_FILE)
842 				goto error;
843 
844 			if (in_forktype == HFS_DATAFORK)
845 				fork = file.data_fork;
846 			else if (in_forktype == HFS_RSRCFORK)
847 				fork = file.rsrc_fork;
848 	}
849 
850 	numextents = 0;
851 	numblocks = 0;
852 	memcpy(&nextextentrec, &fork.extents, sizeof(hfs_extent_record_t));
853 
854 	while (1) {
855 		for (n = 0; n < 8; n++) {
856 			if (nextextentrec[n].block_count == 0)
857 				break;
858 			numblocks += nextextentrec[n].block_count;
859 		}
860 		if (out_extents != NULL) {
861 			dummy = hfslib_realloc(*out_extents,
862 			    (numextents+n) * sizeof(hfs_extent_descriptor_t),
863 			    cbargs);
864 			if (dummy == NULL)
865 				goto error;
866 			*out_extents = dummy;
867 
868 			memcpy(*out_extents + numextents,
869 			    &nextextentrec, n*sizeof(hfs_extent_descriptor_t));
870 		}
871 		numextents += n;
872 
873 		if (numblocks >= fork.total_blocks)
874 			break;
875 
876 		if (hfslib_make_extent_key(in_cnid, in_forktype, numblocks,
877 			&extentkey) == 0)
878 			goto error;
879 
880 		if (hfslib_find_extent_record_with_key(in_vol, &extentkey,
881 			&nextextentrec, cbargs) != 0)
882 			goto error;
883 	}
884 
885 	goto exit;
886 
887 error:
888 	if (out_extents != NULL && *out_extents != NULL) {
889 		hfslib_free(*out_extents, cbargs);
890 		*out_extents = NULL;
891 	}
892 	return 0;
893 
894 exit:
895 	return numextents;
896 }
897 
898 /*
899  * hfslib_get_directory_contents()
900  *
901  * Finds the immediate children of a given directory CNID and places their
902  * CNIDs in an array allocated here. The first child is found by doing a
903  * catalog search that only compares parent CNIDs (ignoring file/folder names)
904  * and skips over thread records. Then the remaining children are listed in
905  * ascending order by name, according to the HFS+ spec, so just read off each
906  * successive leaf node until a different parent CNID is found.
907  *
908  * If out_childnames is not NULL, it will be allocated and set to an array of
909  * hfs_unistr255_t's which correspond to the name of the child with that same
910  * index.
911  *
912  * out_children may be NULL.
913  *
914  * Returns 0 on success.
915  */
916 int
hfslib_get_directory_contents(hfs_volume * in_vol,hfs_cnid_t in_dir,hfs_catalog_keyed_record_t ** out_children,hfs_unistr255_t ** out_childnames,uint32_t * out_numchildren,hfs_callback_args * cbargs)917 hfslib_get_directory_contents(
918 	hfs_volume* in_vol,
919 	hfs_cnid_t in_dir,
920 	hfs_catalog_keyed_record_t** out_children,
921 	hfs_unistr255_t** out_childnames,
922 	uint32_t* out_numchildren,
923 	hfs_callback_args* cbargs)
924 {
925 	hfs_node_descriptor_t			nd;
926 	hfs_extent_descriptor_t*		extents;
927 	hfs_catalog_keyed_record_t		currec;
928 	hfs_catalog_key_t	curkey;
929 	void**				recs;
930 	void*				buffer;
931 	void*				ptr; /* temporary pointer for realloc() */
932 	uint64_t			bytesread;
933 	uint32_t			curnode;
934 	uint32_t			lastnode;
935 	uint16_t*			recsizes;
936 	uint16_t			numextents;
937 	uint16_t			recnum;
938 	int16_t				leaftype;
939 	int					keycompare;
940 	int					result;
941 
942 	if (in_vol == NULL || in_dir == 0 || out_numchildren == NULL)
943 		return 1;
944 
945 	result = 1;
946 	buffer = NULL;
947 	extents = NULL;
948 	lastnode = 0;
949 	recs = NULL;
950 	recsizes = NULL;
951 	*out_numchildren = 0;
952 	if (out_children != NULL)
953 		*out_children = NULL;
954 	if (out_childnames != NULL)
955 		*out_childnames = NULL;
956 
957 	buffer = hfslib_malloc(in_vol->chr.node_size, cbargs);
958 	if (buffer == NULL)
959 		HFS_LIBERR("could not allocate node buffer");
960 
961 	numextents = hfslib_get_file_extents(in_vol, HFS_CNID_CATALOG,
962 		HFS_DATAFORK, &extents, cbargs);
963 	if (numextents == 0)
964 		HFS_LIBERR("could not locate fork extents");
965 
966 	nd.num_recs = 0;
967 	curnode = in_vol->chr.root_node;
968 
969 	while (1)
970 	{
971 		hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
972 		recnum = 0;
973 
974 		if (hfslib_readd_with_extents(in_vol, buffer, &bytesread,
975 			in_vol->chr.node_size, curnode * in_vol->chr.node_size, extents,
976 			numextents, cbargs) != 0)
977 			HFS_LIBERR("could not read catalog node #%i", curnode);
978 
979 		if (hfslib_reada_node(buffer, &nd, &recs, &recsizes, HFS_CATALOG_FILE,
980 			in_vol, cbargs) == 0)
981 			HFS_LIBERR("could not parse catalog node #%i", curnode);
982 
983 		for (recnum = 0; recnum < nd.num_recs; recnum++)
984 		{
985 			leaftype = nd.kind; /* needed b/c leaftype might be modified now */
986 			if (hfslib_read_catalog_keyed_record(recs[recnum], &currec,
987 				&leaftype, &curkey, in_vol) == 0)
988 				HFS_LIBERR("could not read cat record %i:%i", curnode, recnum);
989 
990 			if (nd.kind == HFS_INDEXNODE)
991 			{
992 				keycompare = in_dir - curkey.parent_cnid;
993 				if (keycompare < 0) {
994 					/* Check if key is less than *every* record, which should
995 					 * never happen if the volume and key are good. */
996 					if (recnum == 0)
997 						HFS_LIBERR("all records greater than key");
998 
999 					/* Otherwise, we've found the first record that exceeds our
1000 					 * key, so retrieve the previous, lesser record. */
1001 					curnode = lastnode;
1002 					break;
1003 				} else if (keycompare == 0) {
1004 					/*
1005 					 * Normally, if we were doing a typical catalog lookup with
1006 					 * both a parent cnid AND a name, keycompare==0 would be an
1007 					 * exact match. However, since we are ignoring object names
1008 					 * in this case and only comparing parent cnids, a direct
1009 					 * match on only a parent cnid could mean that we've found
1010 					 * an object with that parent cnid BUT which is NOT the
1011 					 * first object (according to the HFS+ spec) with that
1012 					 * parent cnid. Thus, when we find a parent cnid match, we
1013 					 * still go back to the previously found leaf node and start
1014 					 * checking it for a possible prior instance of an object
1015 					 * with our desired parent cnid.
1016 					 */
1017 					curnode = lastnode;
1018 					break;
1019 				} else if (recnum == nd.num_recs-1 && keycompare > 0) {
1020 					/* Descend to child node if we found an exact match, or if
1021 					 * this is the last pointer record. */
1022 					curnode = currec.child;
1023 					break;
1024 				}
1025 
1026 				lastnode = currec.child;
1027 			} else {
1028 				/*
1029 				 * We have now descended down the hierarchy of index nodes into
1030 				 * the leaf node that contains the first catalog record with a
1031 				 * matching parent CNID. Since all leaf nodes are chained
1032 				 * through their flink/blink, we can simply walk forward through
1033 				 * this chain, copying every matching non-thread record, until
1034 				 * we hit a record with a different parent CNID. At that point,
1035 				 * we've retrieved all of our directory's items, if any.
1036 				 */
1037 				curnode = nd.flink;
1038 
1039 				if (curkey.parent_cnid < in_dir) {
1040 					continue;
1041 				} else if (curkey.parent_cnid == in_dir) {
1042 					/* Hide files/folders which are supposed to be invisible
1043 					 * to users, according to the hfs+ spec. */
1044 					if (hfslib_is_private_file(&curkey))
1045 						continue;
1046 
1047 					/* leaftype has now been set to the catalog record type */
1048 					if (leaftype == HFS_REC_FLDR || leaftype == HFS_REC_FILE)
1049 					{
1050 						(*out_numchildren)++;
1051 
1052 						if (out_children != NULL) {
1053 							ptr = hfslib_realloc(*out_children,
1054 								*out_numchildren *
1055 								sizeof(hfs_catalog_keyed_record_t), cbargs);
1056 							if (ptr == NULL)
1057 								HFS_LIBERR("could not allocate child record");
1058 							*out_children = ptr;
1059 
1060 							memcpy(&((*out_children)[*out_numchildren-1]),
1061 								&currec, sizeof(hfs_catalog_keyed_record_t));
1062 						}
1063 
1064 						if (out_childnames != NULL) {
1065 							ptr = hfslib_realloc(*out_childnames,
1066 								*out_numchildren * sizeof(hfs_unistr255_t),
1067 								cbargs);
1068 							if (ptr == NULL)
1069 								HFS_LIBERR("could not allocate child name");
1070 							*out_childnames = ptr;
1071 
1072 							memcpy(&((*out_childnames)[*out_numchildren-1]),
1073 								&curkey.name, sizeof(hfs_unistr255_t));
1074 						}
1075 					}
1076 				} else {
1077 					result = 0;
1078 					/* We have just now passed the last item in the desired
1079 					 * folder (or the folder was empty), so exit. */
1080 					goto exit;
1081 				}
1082 			}
1083 		}
1084 	}
1085 
1086 	result = 0;
1087 	goto exit;
1088 
1089 error:
1090 	if (out_children != NULL && *out_children != NULL)
1091 		hfslib_free(*out_children, cbargs);
1092 	if (out_childnames != NULL && *out_childnames != NULL)
1093 		hfslib_free(*out_childnames, cbargs);
1094 	/* FALLTHROUGH */
1095 
1096 exit:
1097 	if (extents != NULL)
1098 		hfslib_free(extents, cbargs);
1099 	hfslib_free_recs(&recs, &recsizes, &nd.num_recs, cbargs);
1100 	if (buffer != NULL)
1101 		hfslib_free(buffer, cbargs);
1102 	return result;
1103 }
1104 
1105 int
hfslib_is_journal_clean(hfs_volume * in_vol)1106 hfslib_is_journal_clean(hfs_volume* in_vol)
1107 {
1108 	if (in_vol == NULL)
1109 		return 0;
1110 
1111 	/* return true if no journal */
1112 	if (!(in_vol->vh.attributes & (1<<HFS_VOL_JOURNALED)))
1113 		return 1;
1114 
1115 	return (in_vol->jh.start == in_vol->jh.end);
1116 }
1117 
1118 /*
1119  * hfslib_is_private_file()
1120  *
1121  * Given a file/folder's key and parent CNID, determines if it should be hidden
1122  * from the user (e.g., the journal header file or the HFS+ Private Data folder)
1123  */
1124 int
hfslib_is_private_file(hfs_catalog_key_t * filekey)1125 hfslib_is_private_file(hfs_catalog_key_t *filekey)
1126 {
1127 	hfs_catalog_key_t* curkey = NULL;
1128 	int i = 0;
1129 
1130 	/*
1131 	 * According to the HFS+ spec to date, all special objects are located in
1132 	 * the root directory of the volume, so don't bother going further if the
1133 	 * requested object is not.
1134 	 */
1135 	if (filekey->parent_cnid != HFS_CNID_ROOT_FOLDER)
1136 		return 0;
1137 
1138 	while ((curkey = hfs_gPrivateObjectKeys[i]) != NULL) {
1139 		/* XXX Always use binary compare here, or use volume's specific key
1140 		 * XXX comparison routine? */
1141 		if (filekey->name.length == curkey->name.length &&
1142 		    memcmp(filekey->name.unicode, curkey->name.unicode,
1143 				2 * curkey->name.length) == 0)
1144 			return 1;
1145 		i++;
1146 	}
1147 
1148 	return 0;
1149 }
1150 
1151 
1152 /* bool
1153 hfslib_is_journal_valid(hfs_volume* in_vol)
1154 {
1155 	- check magic numbers
1156 	- check Other Things
1157 }*/
1158 
1159 #if 0
1160 #pragma mark -
1161 #pragma mark Major Structures
1162 #endif
1163 
1164 /*
1165  *	hfslib_read_volume_header()
1166  *
1167  *	Reads in_bytes, formats the data appropriately, and places the result
1168  *	in out_header, which is assumed to be previously allocated. Returns number
1169  *	of bytes read, 0 if failed.
1170  */
1171 
1172 size_t
hfslib_read_volume_header(void * in_bytes,hfs_volume_header_t * out_header)1173 hfslib_read_volume_header(void* in_bytes, hfs_volume_header_t* out_header)
1174 {
1175 	void*	ptr;
1176 	size_t	last_bytes_read;
1177 	int		i;
1178 
1179 	if (in_bytes == NULL || out_header == NULL)
1180 		return 0;
1181 
1182 	ptr = in_bytes;
1183 
1184 	out_header->signature = be16tohp(&ptr);
1185 	out_header->version = be16tohp(&ptr);
1186 	out_header->attributes = be32tohp(&ptr);
1187 	out_header->last_mounting_version = be32tohp(&ptr);
1188 	out_header->journal_info_block = be32tohp(&ptr);
1189 
1190 	out_header->date_created = be32tohp(&ptr);
1191 	out_header->date_modified = be32tohp(&ptr);
1192 	out_header->date_backedup = be32tohp(&ptr);
1193 	out_header->date_checked = be32tohp(&ptr);
1194 
1195 	out_header->file_count = be32tohp(&ptr);
1196 	out_header->folder_count = be32tohp(&ptr);
1197 
1198 	out_header->block_size = be32tohp(&ptr);
1199 	out_header->total_blocks = be32tohp(&ptr);
1200 	out_header->free_blocks = be32tohp(&ptr);
1201 	out_header->next_alloc_block = be32tohp(&ptr);
1202 	out_header->rsrc_clump_size = be32tohp(&ptr);
1203 	out_header->data_clump_size = be32tohp(&ptr);
1204 	out_header->next_cnid = be32tohp(&ptr);
1205 
1206 	out_header->write_count = be32tohp(&ptr);
1207 	out_header->encodings = be64tohp(&ptr);
1208 
1209 	for (i =0 ; i < 8; i++)
1210 		out_header->finder_info[i] = be32tohp(&ptr);
1211 
1212 	if ((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1213 		&out_header->allocation_file)) == 0)
1214 		return 0;
1215 	ptr = (uint8_t*)ptr + last_bytes_read;
1216 
1217 	if ((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1218 		&out_header->extents_file)) == 0)
1219 		return 0;
1220 	ptr = (uint8_t*)ptr + last_bytes_read;
1221 
1222 	if ((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1223 		&out_header->catalog_file)) == 0)
1224 		return 0;
1225 	ptr = (uint8_t*)ptr + last_bytes_read;
1226 
1227 	if ((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1228 		&out_header->attributes_file)) == 0)
1229 		return 0;
1230 	ptr = (uint8_t*)ptr + last_bytes_read;
1231 
1232 	if ((last_bytes_read = hfslib_read_fork_descriptor(ptr,
1233 		&out_header->startup_file)) == 0)
1234 		return 0;
1235 	ptr = (uint8_t*)ptr + last_bytes_read;
1236 
1237 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1238 }
1239 
1240 /*
1241  *      hfsplib_read_master_directory_block()
1242  *
1243  *      Reads in_bytes, formats the data appropriately, and places the result
1244  *      in out_header, which is assumed to be previously allocated. Returns numb
1245 er
1246  *      of bytes read, 0 if failed.
1247  */
1248 
1249 size_t
hfslib_read_master_directory_block(void * in_bytes,hfs_hfs_master_directory_block_t * out_mdr)1250 hfslib_read_master_directory_block(void* in_bytes,
1251     hfs_hfs_master_directory_block_t* out_mdr)
1252 {
1253 	void*   ptr;
1254 	int     i;
1255 
1256 	if (in_bytes == NULL || out_mdr == NULL)
1257 		return 0;
1258 
1259 	ptr = in_bytes;
1260 
1261 	out_mdr->signature = be16tohp(&ptr);
1262 
1263 	out_mdr->date_created = be32tohp(&ptr);
1264 	out_mdr->date_modified = be32tohp(&ptr);
1265 
1266 	out_mdr->attributes = be16tohp(&ptr);
1267 	out_mdr->root_file_count = be16tohp(&ptr);
1268 	out_mdr->volume_bitmap = be16tohp(&ptr);
1269 
1270 	out_mdr->next_alloc_block = be16tohp(&ptr);
1271 	out_mdr->total_blocks = be16tohp(&ptr);
1272 	out_mdr->block_size = be32tohp(&ptr);
1273 
1274 	out_mdr->clump_size = be32tohp(&ptr);
1275 	out_mdr->first_block = be16tohp(&ptr);
1276 	out_mdr->next_cnid = be32tohp(&ptr);
1277 	out_mdr->free_blocks = be16tohp(&ptr);
1278 
1279 	memcpy(out_mdr->volume_name, ptr, 28);
1280 	ptr = (char *)ptr + 28;
1281 
1282 	out_mdr->date_backedup = be32tohp(&ptr);
1283 	out_mdr->backup_seqnum = be16tohp(&ptr);
1284 
1285 	out_mdr->write_count = be32tohp(&ptr);
1286 
1287 	out_mdr->extents_clump_size = be32tohp(&ptr);
1288 	out_mdr->catalog_clump_size = be32tohp(&ptr);
1289 
1290 	out_mdr->root_folder_count = be16tohp(&ptr);
1291 	out_mdr->file_count = be32tohp(&ptr);
1292 	out_mdr->folder_count = be32tohp(&ptr);
1293 
1294 	for (i = 0; i < 8; i++)
1295 		out_mdr->finder_info[i] = be32tohp(&ptr);
1296 
1297 	out_mdr->embedded_signature = be16tohp(&ptr);
1298 	out_mdr->embedded_extent.start_block = be16tohp(&ptr);
1299 	out_mdr->embedded_extent.block_count = be16tohp(&ptr);
1300 
1301 	out_mdr->extents_size = be32tohp(&ptr);
1302 	for (i = 0; i < 3; i++) {
1303 		out_mdr->extents_extents[i].start_block = be16tohp(&ptr);
1304 		out_mdr->extents_extents[i].block_count = be16tohp(&ptr);
1305 	}
1306 
1307 	out_mdr->catalog_size = be32tohp(&ptr);
1308 	for (i = 0; i < 3; i++) {
1309 		out_mdr->catalog_extents[i].start_block = be16tohp(&ptr);
1310 		out_mdr->catalog_extents[i].block_count = be16tohp(&ptr);
1311 	}
1312 
1313 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1314 }
1315 
1316 /*
1317  *	hfslib_reada_node()
1318  *
1319  *	Given the pointer to and size of a buffer containing the entire, raw
1320  *	contents of any b-tree node from the disk, this function will:
1321  *
1322  *		1.	determine the type of node and read its contents
1323  *		2.	allocate memory for each record and fill it appropriately
1324  *		3.	set out_record_ptrs_array to point to an array (which it allocates)
1325  *			which has out_node_descriptor->num_recs many pointers to the
1326  *			records themselves
1327  *		4.	allocate out_record_ptr_sizes_array and fill it with the sizes of
1328  *			each record
1329  *		5.	return the number of bytes read (i.e., the size of the node)
1330  *			or 0 on failure
1331  *
1332  *	out_node_descriptor must be allocated by the caller and may not be NULL.
1333  *
1334  *	out_record_ptrs_array and out_record_ptr_sizes_array must both be specified,
1335  *	or both be NULL if the caller is not interested in reading the records.
1336  *
1337  *	out_record_ptr_sizes_array may be NULL if the caller is not interested in
1338  *	reading the records, but must not be NULL if out_record_ptrs_array is not.
1339  *
1340  *	in_parent_file is HFS_CATALOG_FILE, HFS_EXTENTS_FILE, or
1341  *	HFS_ATTRIBUTES_FILE, depending on the special file in which this node
1342  *	resides.
1343  *
1344  *	inout_volume must have its catnodesize or extnodesize field (depending on
1345  *	the parent file) set to the correct value if this is an index, leaf, or map
1346  *	node. If this is a header node, the field will be set to its correct value.
1347  */
1348 size_t
hfslib_reada_node(void * in_bytes,hfs_node_descriptor_t * out_node_descriptor,void ** out_record_ptrs_array[],uint16_t * out_record_ptr_sizes_array[],hfs_btree_file_type in_parent_file,hfs_volume * inout_volume,hfs_callback_args * cbargs)1349 hfslib_reada_node(void* in_bytes,
1350 	hfs_node_descriptor_t* out_node_descriptor,
1351 	void** out_record_ptrs_array[],
1352 	uint16_t* out_record_ptr_sizes_array[],
1353 	hfs_btree_file_type in_parent_file,
1354 	hfs_volume* inout_volume,
1355 	hfs_callback_args* cbargs)
1356 {
1357 	void*		ptr;
1358 	uint16_t*	rec_offsets;
1359 	size_t		last_bytes_read;
1360 	uint16_t	nodesize;
1361 	uint16_t	numrecords;
1362 	uint16_t	free_space_offset;	/* offset to free space in node */
1363 	int			keysizefieldsize;
1364 	int			i;
1365 
1366 	numrecords = 0;
1367 	rec_offsets = NULL;
1368 	if (out_record_ptrs_array != NULL)
1369 		*out_record_ptrs_array = NULL;
1370 	if (out_record_ptr_sizes_array != NULL)
1371 		*out_record_ptr_sizes_array = NULL;
1372 
1373 	if (in_bytes == NULL || inout_volume == NULL || out_node_descriptor == NULL
1374 		|| (out_record_ptrs_array == NULL && out_record_ptr_sizes_array != NULL)
1375 		|| (out_record_ptrs_array != NULL && out_record_ptr_sizes_array == NULL) )
1376 		goto error;
1377 
1378 	ptr = in_bytes;
1379 
1380 	out_node_descriptor->flink = be32tohp(&ptr);
1381 	out_node_descriptor->blink = be32tohp(&ptr);
1382 	out_node_descriptor->kind = *(((int8_t*)ptr));
1383 	ptr = (uint8_t*)ptr + 1;
1384 	out_node_descriptor->height = *(((uint8_t*)ptr));
1385 	ptr = (uint8_t*)ptr + 1;
1386 	out_node_descriptor->num_recs = be16tohp(&ptr);
1387 	out_node_descriptor->reserved = be16tohp(&ptr);
1388 
1389 	numrecords = out_node_descriptor->num_recs;
1390 
1391 	/*
1392 	 *	To go any further, we will need to know the size of this node, as well
1393 	 *	as the width of keyed records' key_len parameters for this btree. If
1394 	 *	this is an index, leaf, or map node, inout_volume already has the node
1395 	 *	size set in its catnodesize or extnodesize field and the key length set
1396 	 *	in the catkeysizefieldsize or extkeysizefieldsize for catalog files and
1397 	 *	extent files, respectively. However, if this is a header node, this
1398 	 *	information has not yet been determined, so this is the place to do it.
1399 	 */
1400 	if (out_node_descriptor->kind == HFS_HEADERNODE)
1401 	{
1402 		hfs_header_record_t	hr;
1403 		void*		header_rec_offset[1];
1404 		uint16_t	header_rec_size[1];
1405 
1406 		/* sanity check to ensure this is a good header node */
1407 		if (numrecords != 3)
1408 			HFS_LIBERR("header node does not have exactly 3 records");
1409 
1410 		header_rec_offset[0] = ptr;
1411 		header_rec_size[0] = sizeof(hfs_header_record_t);
1412 
1413 		last_bytes_read = hfslib_read_header_node(header_rec_offset,
1414 			header_rec_size, 1, &hr, NULL, NULL);
1415 		if (last_bytes_read == 0)
1416 			HFS_LIBERR("could not read header node");
1417 
1418 		switch(in_parent_file)
1419 		{
1420 			case HFS_CATALOG_FILE:
1421 				inout_volume->chr.node_size = hr.node_size;
1422 				inout_volume->catkeysizefieldsize =
1423 					(hr.attributes & HFS_BIG_KEYS_MASK) ?
1424 						sizeof(uint16_t):sizeof(uint8_t);
1425 				break;
1426 
1427 			case HFS_EXTENTS_FILE:
1428 				inout_volume->ehr.node_size = hr.node_size;
1429 				inout_volume->extkeysizefieldsize =
1430 					(hr.attributes & HFS_BIG_KEYS_MASK) ?
1431 						sizeof(uint16_t):sizeof(uint8_t);
1432 				break;
1433 
1434 			case HFS_ATTRIBUTES_FILE:
1435 			default:
1436 				HFS_LIBERR("invalid parent file type specified");
1437 				/* NOTREACHED */
1438 		}
1439 	}
1440 
1441 	switch (in_parent_file)
1442 	{
1443 		case HFS_CATALOG_FILE:
1444 			nodesize = inout_volume->chr.node_size;
1445 			keysizefieldsize = inout_volume->catkeysizefieldsize;
1446 			break;
1447 
1448 		case HFS_EXTENTS_FILE:
1449 			nodesize = inout_volume->ehr.node_size;
1450 			keysizefieldsize = inout_volume->extkeysizefieldsize;
1451 			break;
1452 
1453 		case HFS_ATTRIBUTES_FILE:
1454 		default:
1455 			HFS_LIBERR("invalid parent file type specified");
1456 			/* NOTREACHED */
1457 	}
1458 
1459 	/*
1460 	 *	Don't care about records so just exit after getting the node descriptor.
1461 	 *	Note: This happens after the header node code, and not before it, in
1462 	 *	case the caller calls this function and ignores the record data just to
1463 	 *	get at the node descriptor, but then tries to call it again on a non-
1464 	 *	header node without first setting inout_volume->cat/extnodesize.
1465 	 */
1466 	if (out_record_ptrs_array == NULL)
1467 		return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1468 
1469 	rec_offsets = hfslib_malloc(numrecords * sizeof(uint16_t), cbargs);
1470 	*out_record_ptr_sizes_array =
1471 		hfslib_malloc(numrecords * sizeof(uint16_t), cbargs);
1472 	if (rec_offsets == NULL || *out_record_ptr_sizes_array == NULL)
1473 		HFS_LIBERR("could not allocate node record offsets");
1474 
1475 	*out_record_ptrs_array = hfslib_malloc(numrecords * sizeof(void*), cbargs);
1476 	if (*out_record_ptrs_array == NULL)
1477 		HFS_LIBERR("could not allocate node records");
1478 
1479 	last_bytes_read = hfslib_reada_node_offsets((uint8_t*)in_bytes + nodesize -
1480 			numrecords * sizeof(uint16_t), rec_offsets, numrecords);
1481 	if (last_bytes_read == 0)
1482 		HFS_LIBERR("could not read node record offsets");
1483 
1484 	/*	The size of the last record (i.e. the first one listed in the offsets)
1485 	 *	must be determined using the offset to the node's free space. */
1486 	free_space_offset = be16toh(*(uint16_t*)((uint8_t*)in_bytes + nodesize -
1487 			(numrecords+1) * sizeof(uint16_t)));
1488 
1489 	(*out_record_ptr_sizes_array)[numrecords-1] =
1490 		free_space_offset - rec_offsets[0];
1491 	for (i = 1; i < numrecords; i++) {
1492 		(*out_record_ptr_sizes_array)[numrecords-i-1] =
1493 			rec_offsets[i-1] - rec_offsets[i];
1494 	}
1495 
1496 	for (i = 0; i < numrecords; i++)
1497 	{
1498 		(*out_record_ptrs_array)[i] =
1499 			hfslib_malloc((*out_record_ptr_sizes_array)[i], cbargs);
1500 
1501 		if ((*out_record_ptrs_array)[i] == NULL)
1502 			HFS_LIBERR("could not allocate node record #%i",i);
1503 
1504 		/*
1505 		 *	If this is a keyed node (i.e., a leaf or index node), there are two
1506 		 *	boundary rules that each record must obey:
1507 		 *
1508 		 *		1.	A pad byte must be placed between the key and data if the
1509 		 *			size of the key plus the size of the key_len field is odd.
1510 		 *
1511 		 *		2.	A pad byte must be placed after the data if the data size
1512 		 *			is odd.
1513 		 *
1514 		 *	So in the first case we increment the starting point of the data
1515 		 *	and correspondingly decrement the record size. In the second case
1516 		 *	we decrement the record size.
1517 		 */
1518 		if (out_node_descriptor->kind == HFS_LEAFNODE ||
1519 		    out_node_descriptor->kind == HFS_INDEXNODE)
1520 		{
1521 			hfs_catalog_key_t	reckey;
1522 			uint16_t			rectype;
1523 
1524 			rectype = out_node_descriptor->kind;
1525 			last_bytes_read = hfslib_read_catalog_keyed_record(ptr, NULL,
1526 				&rectype, &reckey, inout_volume);
1527 			if (last_bytes_read == 0)
1528 				HFS_LIBERR("could not read node record");
1529 
1530 			if ((reckey.key_len + keysizefieldsize) % 2 == 1) {
1531 				ptr = (uint8_t*)ptr + 1;
1532 				(*out_record_ptr_sizes_array)[i]--;
1533 			}
1534 
1535 			if ((*out_record_ptr_sizes_array)[i] % 2 == 1)
1536 				(*out_record_ptr_sizes_array)[i]--;
1537 		}
1538 
1539 		memcpy((*out_record_ptrs_array)[i], ptr,
1540 				(*out_record_ptr_sizes_array)[i]);
1541 		ptr = (uint8_t*)ptr + (*out_record_ptr_sizes_array)[i];
1542 	}
1543 
1544 	goto exit;
1545 
1546 error:
1547 	hfslib_free_recs(out_record_ptrs_array, out_record_ptr_sizes_array,
1548 		&numrecords, cbargs);
1549 
1550 	ptr = in_bytes;
1551 
1552 	/* warn("error occurred in hfslib_reada_node()"); */
1553 
1554 	/* FALLTHROUGH */
1555 
1556 exit:
1557 	if (rec_offsets != NULL)
1558 		hfslib_free(rec_offsets, cbargs);
1559 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1560 }
1561 
1562 /*
1563  *	hfslib_reada_node_offsets()
1564  *
1565  *	Sets out_offset_array to contain the offsets to each record in the node,
1566  *	in reverse order. Does not read the free space offset.
1567  */
1568 size_t
hfslib_reada_node_offsets(void * in_bytes,uint16_t * out_offset_array,uint16_t numrecords)1569 hfslib_reada_node_offsets(void* in_bytes, uint16_t* out_offset_array,
1570     uint16_t numrecords)
1571 {
1572 	void*		ptr;
1573 
1574 	if (in_bytes == NULL || out_offset_array == NULL)
1575 		return 0;
1576 
1577 	ptr = in_bytes;
1578 
1579 	/*
1580 	 * The offset for record 0 (which is the very last offset in the node) is
1581 	 * always equal to 14, the size of the node descriptor. So, once we hit
1582 	 * offset=14, we know this is the last offset. In this way, we don't need
1583 	 * to know the number of records beforehand.
1584 	 */
1585 	do {
1586 		if (numrecords-- == 0)
1587 			return 0;
1588 		*out_offset_array = be16tohp(&ptr);
1589 	} while (*out_offset_array++ != (uint16_t)14);
1590 
1591 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1592 }
1593 
1594 /*	hfslib_read_header_node()
1595  *
1596  *	out_header_record and/or out_map_record may be NULL if the caller doesn't
1597  *	care about their contents.
1598  */
1599 size_t
hfslib_read_header_node(void ** in_recs,uint16_t * in_rec_sizes,uint16_t in_num_recs,hfs_header_record_t * out_hr,void * out_userdata,void * out_map)1600 hfslib_read_header_node(void** in_recs,
1601 	uint16_t* in_rec_sizes,
1602 	uint16_t in_num_recs,
1603 	hfs_header_record_t* out_hr,
1604 	void* out_userdata,
1605 	void* out_map)
1606 {
1607 	void*	ptr;
1608 	int		i;
1609 
1610 	KASSERT(out_hr != NULL);
1611 
1612 	if (in_recs == NULL || in_rec_sizes == NULL)
1613 		return 0;
1614 
1615 	ptr = in_recs[0];
1616 	out_hr->tree_depth = be16tohp(&ptr);
1617 	out_hr->root_node = be32tohp(&ptr);
1618 	out_hr->leaf_recs = be32tohp(&ptr);
1619 	out_hr->first_leaf = be32tohp(&ptr);
1620 	out_hr->last_leaf = be32tohp(&ptr);
1621 	out_hr->node_size = be16tohp(&ptr);
1622 	out_hr->max_key_len = be16tohp(&ptr);
1623 	out_hr->total_nodes = be32tohp(&ptr);
1624 	out_hr->free_nodes = be32tohp(&ptr);
1625 	out_hr->reserved = be16tohp(&ptr);
1626 	out_hr->clump_size = be32tohp(&ptr);
1627 	out_hr->btree_type = *(((uint8_t*)ptr));
1628 	ptr = (uint8_t*)ptr + 1;
1629 	out_hr->keycomp_type = *(((uint8_t*)ptr));
1630 	ptr = (uint8_t*)ptr + 1;
1631 	out_hr->attributes = be32tohp(&ptr);
1632 	for (i = 0; i < 16; i++)
1633 		out_hr->reserved2[i] = be32tohp(&ptr);
1634 
1635 	if (out_userdata != NULL) {
1636 		memcpy(out_userdata, in_recs[1], in_rec_sizes[1]);
1637 	}
1638 	ptr = (uint8_t*)ptr + in_rec_sizes[1];	/* size of user data record */
1639 
1640 	if (out_map != NULL) {
1641 		memcpy(out_map, in_recs[2], in_rec_sizes[2]);
1642 	}
1643 	ptr = (uint8_t*)ptr + in_rec_sizes[2];	/* size of map record */
1644 
1645 	return ((uint8_t*)ptr - (uint8_t*)in_recs[0]);
1646 }
1647 
1648 /*
1649  *	hfslib_read_catalog_keyed_record()
1650  *
1651  *	out_recdata can be NULL. inout_rectype must be set to either HFS_LEAFNODE
1652  *	or HFS_INDEXNODE upon calling this function, and will be set by the
1653  *	function to one of HFS_REC_FLDR, HFS_REC_FILE, HFS_REC_FLDR_THREAD, or
1654  *	HFS_REC_FLDR_THREAD upon return if the node is a leaf node. If it is an
1655  *	index node, inout_rectype will not be changed.
1656  */
1657 size_t
hfslib_read_catalog_keyed_record(void * in_bytes,hfs_catalog_keyed_record_t * out_recdata,int16_t * inout_rectype,hfs_catalog_key_t * out_key,hfs_volume * in_volume)1658 hfslib_read_catalog_keyed_record(
1659 	void* in_bytes,
1660 	hfs_catalog_keyed_record_t* out_recdata,
1661 	int16_t* inout_rectype,
1662 	hfs_catalog_key_t* out_key,
1663 	hfs_volume* in_volume)
1664 {
1665 	void*		ptr;
1666 	size_t		last_bytes_read;
1667 
1668 	if (in_bytes == NULL || out_key == NULL || inout_rectype == NULL)
1669 		return 0;
1670 
1671 	ptr = in_bytes;
1672 
1673 	/*	For HFS+, the key length is always a 2-byte number. This is indicated
1674 	 *	by the HFS_BIG_KEYS_MASK bit in the attributes field of the catalog
1675 	 *	header record. However, we just assume this bit is set, since all HFS+
1676 	 *	volumes should have it set anyway. */
1677 	if (in_volume->catkeysizefieldsize == sizeof(uint16_t))
1678 		out_key->key_len = be16tohp(&ptr);
1679 	else if (in_volume->catkeysizefieldsize == sizeof(uint8_t)) {
1680 		out_key->key_len = *(((uint8_t*)ptr));
1681 		ptr = (uint8_t*)ptr + 1;
1682 	}
1683 
1684 	out_key->parent_cnid = be32tohp(&ptr);
1685 
1686 	last_bytes_read = hfslib_read_unistr255(ptr, &out_key->name);
1687 	if (last_bytes_read == 0)
1688 		return 0;
1689 	ptr = (uint8_t*)ptr + last_bytes_read;
1690 
1691 	/* don't waste time if the user just wanted the key and/or record type */
1692 	if (out_recdata == NULL) {
1693 		if (*inout_rectype == HFS_LEAFNODE)
1694 			*inout_rectype = be16tohp(&ptr);
1695 		else if (*inout_rectype != HFS_INDEXNODE)
1696 			return 0;	/* should not happen if we were given valid arguments */
1697 
1698 		return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1699 	}
1700 
1701 	if (*inout_rectype == HFS_INDEXNODE) {
1702 		out_recdata->child = be32tohp(&ptr);
1703 	} else {
1704 		/* first need to determine what kind of record this is */
1705 		*inout_rectype = be16tohp(&ptr);
1706 		out_recdata->type = *inout_rectype;
1707 
1708 		switch(out_recdata->type)
1709 		{
1710 			case HFS_REC_FLDR:
1711 			{
1712 				out_recdata->folder.flags = be16tohp(&ptr);
1713 				out_recdata->folder.valence = be32tohp(&ptr);
1714 				out_recdata->folder.cnid = be32tohp(&ptr);
1715 				out_recdata->folder.date_created = be32tohp(&ptr);
1716 				out_recdata->folder.date_content_mod = be32tohp(&ptr);
1717 				out_recdata->folder.date_attrib_mod = be32tohp(&ptr);
1718 				out_recdata->folder.date_accessed = be32tohp(&ptr);
1719 				out_recdata->folder.date_backedup = be32tohp(&ptr);
1720 
1721 				last_bytes_read = hfslib_read_bsd_data(ptr,
1722 					&out_recdata->folder.bsd);
1723 				if (last_bytes_read == 0)
1724 					return 0;
1725 				ptr = (uint8_t*)ptr + last_bytes_read;
1726 
1727 				last_bytes_read = hfslib_read_folder_userinfo(ptr,
1728 					&out_recdata->folder.user_info);
1729 				if (last_bytes_read == 0)
1730 					return 0;
1731 				ptr = (uint8_t*)ptr + last_bytes_read;
1732 
1733 				last_bytes_read = hfslib_read_folder_finderinfo(ptr,
1734 					&out_recdata->folder.finder_info);
1735 				if (last_bytes_read == 0)
1736 					return 0;
1737 				ptr = (uint8_t*)ptr + last_bytes_read;
1738 
1739 				out_recdata->folder.text_encoding = be32tohp(&ptr);
1740 				out_recdata->folder.reserved = be32tohp(&ptr);
1741 			}
1742 			break;
1743 
1744 			case HFS_REC_FILE:
1745 			{
1746 				out_recdata->file.flags = be16tohp(&ptr);
1747 				out_recdata->file.reserved = be32tohp(&ptr);
1748 				out_recdata->file.cnid = be32tohp(&ptr);
1749 				out_recdata->file.date_created = be32tohp(&ptr);
1750 				out_recdata->file.date_content_mod = be32tohp(&ptr);
1751 				out_recdata->file.date_attrib_mod = be32tohp(&ptr);
1752 				out_recdata->file.date_accessed = be32tohp(&ptr);
1753 				out_recdata->file.date_backedup = be32tohp(&ptr);
1754 
1755 				last_bytes_read = hfslib_read_bsd_data(ptr,
1756 					&out_recdata->file.bsd);
1757 				if (last_bytes_read == 0)
1758 					return 0;
1759 				ptr = (uint8_t*)ptr + last_bytes_read;
1760 
1761 				last_bytes_read = hfslib_read_file_userinfo(ptr,
1762 					&out_recdata->file.user_info);
1763 				if (last_bytes_read == 0)
1764 					return 0;
1765 				ptr = (uint8_t*)ptr + last_bytes_read;
1766 
1767 				last_bytes_read = hfslib_read_file_finderinfo(ptr,
1768 					&out_recdata->file.finder_info);
1769 				if (last_bytes_read == 0)
1770 					return 0;
1771 				ptr = (uint8_t*)ptr + last_bytes_read;
1772 
1773 				out_recdata->file.text_encoding = be32tohp(&ptr);
1774 				out_recdata->file.reserved2 = be32tohp(&ptr);
1775 
1776 				last_bytes_read = hfslib_read_fork_descriptor(ptr,
1777 					&out_recdata->file.data_fork);
1778 				if (last_bytes_read == 0)
1779 					return 0;
1780 				ptr = (uint8_t*)ptr + last_bytes_read;
1781 
1782 				last_bytes_read = hfslib_read_fork_descriptor(ptr,
1783 					&out_recdata->file.rsrc_fork);
1784 				if (last_bytes_read == 0)
1785 					return 0;
1786 				ptr = (uint8_t*)ptr + last_bytes_read;
1787 			}
1788 			break;
1789 
1790 			case HFS_REC_FLDR_THREAD:
1791 			case HFS_REC_FILE_THREAD:
1792 			{
1793 				out_recdata->thread.reserved = be16tohp(&ptr);
1794 				out_recdata->thread.parent_cnid = be32tohp(&ptr);
1795 
1796 				last_bytes_read = hfslib_read_unistr255(ptr,
1797 					&out_recdata->thread.name);
1798 				if (last_bytes_read == 0)
1799 					return 0;
1800 				ptr = (uint8_t*)ptr + last_bytes_read;
1801 			}
1802 			break;
1803 
1804 			default:
1805 				return 1;
1806 				/* NOTREACHED */
1807 		}
1808 	}
1809 
1810 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1811 }
1812 
1813 /* out_rec may be NULL */
1814 size_t
hfslib_read_extent_record(void * in_bytes,hfs_extent_record_t * out_rec,hfs_node_kind in_nodekind,hfs_extent_key_t * out_key,hfs_volume * in_volume)1815 hfslib_read_extent_record(
1816 	void* in_bytes,
1817 	hfs_extent_record_t* out_rec,
1818 	hfs_node_kind in_nodekind,
1819 	hfs_extent_key_t* out_key,
1820 	hfs_volume* in_volume)
1821 {
1822 	void*		ptr;
1823 	size_t		last_bytes_read;
1824 
1825 	if (in_bytes == NULL || out_key == NULL
1826 	    || (in_nodekind!=HFS_LEAFNODE && in_nodekind!=HFS_INDEXNODE))
1827 		return 0;
1828 
1829 	ptr = in_bytes;
1830 
1831 	/* For HFS+, the key length is always a 2-byte number. This is indicated
1832 	 * by the HFS_BIG_KEYS_MASK bit in the attributes field of the extent
1833 	 * overflow header record. However, we just assume this bit is set, since
1834 	 * all HFS+ volumes should have it set anyway. */
1835 	if (in_volume->extkeysizefieldsize == sizeof(uint16_t))
1836 		out_key->key_length = be16tohp(&ptr);
1837 	else if (in_volume->extkeysizefieldsize == sizeof(uint8_t)) {
1838 		out_key->key_length = *(((uint8_t*)ptr));
1839 		ptr = (uint8_t*)ptr + 1;
1840 	}
1841 
1842 	out_key->fork_type = *(((uint8_t*)ptr));
1843 	ptr = (uint8_t*)ptr + 1;
1844 	out_key->padding = *(((uint8_t*)ptr));
1845 	ptr = (uint8_t*)ptr + 1;
1846 	out_key->file_cnid = be32tohp(&ptr);
1847 	out_key->start_block = be32tohp(&ptr);
1848 
1849 	/* don't waste time if the user just wanted the key */
1850 	if (out_rec == NULL)
1851 		return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1852 
1853 	if (in_nodekind == HFS_LEAFNODE) {
1854 		last_bytes_read = hfslib_read_extent_descriptors(ptr, out_rec);
1855 		if (last_bytes_read == 0)
1856 			return 0;
1857 		ptr = (uint8_t*)ptr + last_bytes_read;
1858 	} else {
1859 		/* XXX: this is completely bogus */
1860 		/*      (uint32_t*)*out_rec = be32tohp(&ptr); */
1861 	    uint32_t *ptr_32 = (uint32_t *)out_rec;
1862 		*ptr_32 = be32tohp(&ptr);
1863 		/* (*out_rec)[0].start_block = be32tohp(&ptr); */
1864 	}
1865 
1866 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1867 }
1868 
1869 void
hfslib_free_recs(void *** inout_node_recs,uint16_t ** inout_rec_sizes,uint16_t * inout_num_recs,hfs_callback_args * cbargs)1870 hfslib_free_recs(
1871 	void*** inout_node_recs,
1872 	uint16_t** inout_rec_sizes,
1873 	uint16_t* inout_num_recs,
1874 	hfs_callback_args* cbargs)
1875 {
1876 	uint16_t	i;
1877 
1878 	if (inout_num_recs == NULL || *inout_num_recs == 0)
1879 		return;
1880 
1881 	if (inout_node_recs != NULL && *inout_node_recs != NULL) {
1882 		for (i = 0 ; i < *inout_num_recs; i++) {
1883 			if ((*inout_node_recs)[i] != NULL) {
1884 				hfslib_free((*inout_node_recs)[i], cbargs);
1885 				(*inout_node_recs)[i] = NULL;
1886 			}
1887 		}
1888 		hfslib_free(*inout_node_recs, cbargs);
1889 		*inout_node_recs = NULL;
1890 	}
1891 
1892 	if (inout_rec_sizes != NULL && *inout_rec_sizes != NULL) {
1893 		hfslib_free(*inout_rec_sizes, cbargs);
1894 		*inout_rec_sizes = NULL;
1895 	}
1896 
1897 	*inout_num_recs = 0;
1898 }
1899 
1900 #if 0
1901 #pragma mark -
1902 #pragma mark Individual Fields
1903 #endif
1904 
1905 size_t
hfslib_read_fork_descriptor(void * in_bytes,hfs_fork_t * out_forkdata)1906 hfslib_read_fork_descriptor(void* in_bytes, hfs_fork_t* out_forkdata)
1907 {
1908 	void*	ptr;
1909 	size_t	last_bytes_read;
1910 
1911 	if (in_bytes == NULL || out_forkdata == NULL)
1912 		return 0;
1913 
1914 	ptr = in_bytes;
1915 
1916 	out_forkdata->logical_size = be64tohp(&ptr);
1917 	out_forkdata->clump_size = be32tohp(&ptr);
1918 	out_forkdata->total_blocks = be32tohp(&ptr);
1919 
1920 	if ((last_bytes_read = hfslib_read_extent_descriptors(ptr,
1921 		&out_forkdata->extents)) == 0)
1922 		return 0;
1923 	ptr = (uint8_t*)ptr + last_bytes_read;
1924 
1925 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1926 }
1927 
1928 size_t
hfslib_read_extent_descriptors(void * in_bytes,hfs_extent_record_t * out_extentrecord)1929 hfslib_read_extent_descriptors(
1930 	void* in_bytes,
1931 	hfs_extent_record_t* out_extentrecord)
1932 {
1933 	void*	ptr;
1934 	int		i;
1935 
1936 	if (in_bytes == NULL || out_extentrecord == NULL)
1937 		return 0;
1938 
1939 	ptr = in_bytes;
1940 
1941 	for (i = 0; i < 8; i++) {
1942 		(((hfs_extent_descriptor_t*)*out_extentrecord)[i]).start_block =
1943 			be32tohp(&ptr);
1944 		(((hfs_extent_descriptor_t*)*out_extentrecord)[i]).block_count =
1945 			be32tohp(&ptr);
1946 	}
1947 
1948 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1949 }
1950 
1951 size_t
hfslib_read_unistr255(void * in_bytes,hfs_unistr255_t * out_string)1952 hfslib_read_unistr255(void* in_bytes, hfs_unistr255_t* out_string)
1953 {
1954 	void*		ptr;
1955 	uint16_t	i, length;
1956 
1957 	if (in_bytes == NULL || out_string == NULL)
1958 		return 0;
1959 
1960 	ptr = in_bytes;
1961 
1962 	length = be16tohp(&ptr);
1963 	if (length > 255)
1964 		length = 255; /* hfs+ folder/file names have a limit of 255 chars */
1965 	out_string->length = length;
1966 
1967 	for (i = 0; i < length; i++) {
1968 		out_string->unicode[i] = be16tohp(&ptr);
1969 	}
1970 
1971 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1972 }
1973 
1974 size_t
hfslib_read_bsd_data(void * in_bytes,hfs_bsd_data_t * out_perms)1975 hfslib_read_bsd_data(void* in_bytes, hfs_bsd_data_t* out_perms)
1976 {
1977 	void*	ptr;
1978 
1979 	if (in_bytes == NULL || out_perms == NULL)
1980 		return 0;
1981 
1982 	ptr = in_bytes;
1983 
1984 	out_perms->owner_id = be32tohp(&ptr);
1985 	out_perms->group_id = be32tohp(&ptr);
1986 	out_perms->admin_flags = *(((uint8_t*)ptr));
1987 	ptr = (uint8_t*)ptr + 1;
1988 	out_perms->owner_flags = *(((uint8_t*)ptr));
1989 	ptr = (uint8_t*)ptr + 1;
1990 	out_perms->file_mode = be16tohp(&ptr);
1991 	out_perms->special.inode_num = be32tohp(&ptr); /* this field is a union */
1992 
1993 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
1994 }
1995 
1996 size_t
hfslib_read_file_userinfo(void * in_bytes,hfs_macos_file_info_t * out_info)1997 hfslib_read_file_userinfo(void* in_bytes, hfs_macos_file_info_t* out_info)
1998 {
1999 	void*	ptr;
2000 
2001 	if (in_bytes == NULL || out_info == NULL)
2002 		return 0;
2003 
2004 	ptr = in_bytes;
2005 
2006 	out_info->file_type = be32tohp(&ptr);
2007 	out_info->file_creator = be32tohp(&ptr);
2008 	out_info->finder_flags = be16tohp(&ptr);
2009 	out_info->location.v = be16tohp(&ptr);
2010 	out_info->location.h = be16tohp(&ptr);
2011 	out_info->reserved = be16tohp(&ptr);
2012 
2013 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2014 }
2015 
2016 size_t
hfslib_read_file_finderinfo(void * in_bytes,hfs_macos_extended_file_info_t * out_info)2017 hfslib_read_file_finderinfo(
2018 	void* in_bytes,
2019 	hfs_macos_extended_file_info_t* out_info)
2020 {
2021 	void*	ptr;
2022 
2023 	if (in_bytes == NULL || out_info == NULL)
2024 		return 0;
2025 
2026 	ptr = in_bytes;
2027 
2028 #if 0
2029 	#pragma warn Fill in with real code!
2030 #endif
2031 	/* FIXME: Fill in with real code! */
2032 	memset(out_info, 0, sizeof(*out_info));
2033 	ptr = (uint8_t*)ptr + sizeof(hfs_macos_extended_file_info_t);
2034 
2035 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2036 }
2037 
2038 size_t
hfslib_read_folder_userinfo(void * in_bytes,hfs_macos_folder_info_t * out_info)2039 hfslib_read_folder_userinfo(void* in_bytes, hfs_macos_folder_info_t* out_info)
2040 {
2041 	void*	ptr;
2042 
2043 	if (in_bytes == NULL || out_info == NULL)
2044 		return 0;
2045 
2046 	ptr = in_bytes;
2047 
2048 #if 0
2049 	#pragma warn Fill in with real code!
2050 #endif
2051 	/* FIXME: Fill in with real code! */
2052 	memset(out_info, 0, sizeof(*out_info));
2053 	ptr = (uint8_t*)ptr + sizeof(hfs_macos_folder_info_t);
2054 
2055 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2056 }
2057 
2058 size_t
hfslib_read_folder_finderinfo(void * in_bytes,hfs_macos_extended_folder_info_t * out_info)2059 hfslib_read_folder_finderinfo(
2060 	void* in_bytes,
2061 	hfs_macos_extended_folder_info_t* out_info)
2062 {
2063 	void*	ptr;
2064 
2065 	if (in_bytes == NULL || out_info == NULL)
2066 		return 0;
2067 
2068 	ptr = in_bytes;
2069 
2070 #if 0
2071 	#pragma warn Fill in with real code!
2072 #endif
2073 	/* FIXME: Fill in with real code! */
2074 	memset(out_info, 0, sizeof(*out_info));
2075 	ptr = (uint8_t*)ptr + sizeof(hfs_macos_extended_folder_info_t);
2076 
2077 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2078 }
2079 
2080 size_t
hfslib_read_journal_info(void * in_bytes,hfs_journal_info_t * out_info)2081 hfslib_read_journal_info(void* in_bytes, hfs_journal_info_t* out_info)
2082 {
2083 	void*	ptr;
2084 	int		i;
2085 
2086 	if (in_bytes == NULL || out_info == NULL)
2087 		return 0;
2088 
2089 	ptr = in_bytes;
2090 
2091 	out_info->flags = be32tohp(&ptr);
2092 	for (i = 0; i < 8; i++) {
2093 		out_info->device_signature[i] = be32tohp(&ptr);
2094 	}
2095 	out_info->offset = be64tohp(&ptr);
2096 	out_info->size = be64tohp(&ptr);
2097 	for (i = 0; i < 32; i++) {
2098 		out_info->reserved[i] = be64tohp(&ptr);
2099 	}
2100 
2101 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2102 }
2103 
2104 size_t
hfslib_read_journal_header(void * in_bytes,hfs_journal_header_t * out_header)2105 hfslib_read_journal_header(void* in_bytes, hfs_journal_header_t* out_header)
2106 {
2107 	void*	ptr;
2108 
2109 	if (in_bytes == NULL || out_header == NULL)
2110 		return 0;
2111 
2112 	ptr = in_bytes;
2113 
2114 	out_header->magic = be32tohp(&ptr);
2115 	out_header->endian = be32tohp(&ptr);
2116 	out_header->start = be64tohp(&ptr);
2117 	out_header->end = be64tohp(&ptr);
2118 	out_header->size = be64tohp(&ptr);
2119 	out_header->blocklist_header_size = be32tohp(&ptr);
2120 	out_header->checksum = be32tohp(&ptr);
2121 	out_header->journal_header_size = be32tohp(&ptr);
2122 
2123 	return ((uint8_t*)ptr - (uint8_t*)in_bytes);
2124 }
2125 
2126 #if 0
2127 #pragma mark -
2128 #pragma mark Disk Access
2129 #endif
2130 
2131 /*
2132  *	hfslib_readd_with_extents()
2133  *
2134  *	This function reads the contents of a file from the volume, given an array
2135  *	of extent descriptors which specify where every extent of the file is
2136  *	located (in addition to the usual pread() arguments). out_bytes is presumed
2137  *  to exist and be large enough to hold in_length number of bytes. Returns 0
2138  *	on success.
2139  */
2140 int
hfslib_readd_with_extents(hfs_volume * in_vol,void * out_bytes,uint64_t * out_bytesread,uint64_t in_length,uint64_t in_offset,hfs_extent_descriptor_t in_extents[],uint16_t in_numextents,hfs_callback_args * cbargs)2141 hfslib_readd_with_extents(
2142 	hfs_volume*	in_vol,
2143 	void*		out_bytes,
2144 	uint64_t*	out_bytesread,
2145 	uint64_t	in_length,
2146 	uint64_t	in_offset,
2147 	hfs_extent_descriptor_t in_extents[],
2148 	uint16_t	in_numextents,
2149 	hfs_callback_args*	cbargs)
2150 {
2151 	uint64_t	ext_length, last_offset;
2152 	uint16_t	i;
2153 	int			error;
2154 
2155 	if (in_vol == NULL || out_bytes == NULL || in_extents == NULL ||
2156 	    in_numextents == 0 || out_bytesread == NULL)
2157 		return -1;
2158 
2159 	*out_bytesread = 0;
2160 	last_offset = 0;
2161 
2162 	for (i = 0; i < in_numextents; i++)
2163 	{
2164 		if (in_extents[i].block_count == 0)
2165 			continue;
2166 
2167 		ext_length = in_extents[i].block_count * in_vol->vh.block_size;
2168 
2169 		if (in_offset < last_offset+ext_length
2170 			&& in_offset+in_length >= last_offset)
2171 		{
2172 			uint64_t	isect_start, isect_end;
2173 
2174 			isect_start = max(in_offset, last_offset);
2175 			isect_end = min(in_offset+in_length, last_offset+ext_length);
2176 			error = hfslib_readd(in_vol, out_bytes, isect_end-isect_start,
2177 				isect_start - last_offset + (uint64_t)in_extents[i].start_block
2178 					* in_vol->vh.block_size, cbargs);
2179 
2180 			if (error != 0)
2181 				return error;
2182 
2183 			*out_bytesread += isect_end-isect_start;
2184 			out_bytes = (uint8_t*)out_bytes + isect_end-isect_start;
2185 		}
2186 
2187 		last_offset += ext_length;
2188 	}
2189 
2190 	return 0;
2191 }
2192 
2193 #if 0
2194 #pragma mark -
2195 #pragma mark Callback Wrappers
2196 #endif
2197 
2198 void
hfslib_error(const char * in_format,const char * in_file,int in_line,...)2199 hfslib_error(const char* in_format, const char* in_file, int in_line, ...)
2200 {
2201 	va_list		ap;
2202 
2203 	if (in_format == NULL)
2204 		return;
2205 
2206 	if (hfs_gcb.error != NULL) {
2207 		va_start(ap, in_line);
2208 		hfs_gcb.error(in_format, in_file, in_line, ap);
2209 		va_end(ap);
2210 	}
2211 }
2212 
2213 void*
hfslib_malloc(size_t size,hfs_callback_args * cbargs)2214 hfslib_malloc(size_t size, hfs_callback_args* cbargs)
2215 {
2216 	if (hfs_gcb.allocmem != NULL)
2217 		return hfs_gcb.allocmem(size, cbargs);
2218 
2219 	return NULL;
2220 }
2221 
2222 void*
hfslib_realloc(void * ptr,size_t size,hfs_callback_args * cbargs)2223 hfslib_realloc(void* ptr, size_t size, hfs_callback_args* cbargs)
2224 {
2225 	if (hfs_gcb.reallocmem != NULL)
2226 		return hfs_gcb.reallocmem(ptr, size, cbargs);
2227 
2228 	return NULL;
2229 }
2230 
2231 void
hfslib_free(void * ptr,hfs_callback_args * cbargs)2232 hfslib_free(void* ptr, hfs_callback_args* cbargs)
2233 {
2234 	if (hfs_gcb.freemem != NULL && ptr != NULL)
2235 		hfs_gcb.freemem(ptr, cbargs);
2236 }
2237 
2238 int
hfslib_openvoldevice(hfs_volume * in_vol,const char * in_device,hfs_callback_args * cbargs)2239 hfslib_openvoldevice(
2240 	hfs_volume* in_vol,
2241 	const char* in_device,
2242 	hfs_callback_args* cbargs)
2243 {
2244 	if (hfs_gcb.openvol != NULL && in_device != NULL)
2245 		return hfs_gcb.openvol(in_vol, in_device, cbargs);
2246 
2247 	return 1;
2248 }
2249 
2250 void
hfslib_closevoldevice(hfs_volume * in_vol,hfs_callback_args * cbargs)2251 hfslib_closevoldevice(hfs_volume* in_vol, hfs_callback_args* cbargs)
2252 {
2253 	if (hfs_gcb.closevol != NULL)
2254 		hfs_gcb.closevol(in_vol, cbargs);
2255 }
2256 
2257 int
hfslib_readd(hfs_volume * in_vol,void * out_bytes,uint64_t in_length,uint64_t in_offset,hfs_callback_args * cbargs)2258 hfslib_readd(
2259 	hfs_volume* in_vol,
2260 	void* out_bytes,
2261 	uint64_t in_length,
2262 	uint64_t in_offset,
2263 	hfs_callback_args* cbargs)
2264 {
2265 	if (in_vol == NULL || out_bytes == NULL)
2266 		return -1;
2267 
2268 	if (hfs_gcb.read != NULL)
2269 		return hfs_gcb.read(in_vol, out_bytes, in_length, in_offset, cbargs);
2270 
2271 	return -1;
2272 }
2273 
2274 #if 0
2275 #pragma mark -
2276 #pragma mark Other
2277 #endif
2278 
2279 /* returns key length */
2280 uint16_t
hfslib_make_catalog_key(hfs_cnid_t in_parent_cnid,uint16_t in_name_len,unichar_t * in_unicode,hfs_catalog_key_t * out_key)2281 hfslib_make_catalog_key(
2282 	hfs_cnid_t in_parent_cnid,
2283 	uint16_t in_name_len,
2284 	unichar_t* in_unicode,
2285 	hfs_catalog_key_t* out_key)
2286 {
2287 	if (in_parent_cnid == 0 || (in_name_len > 0 && in_unicode == NULL) ||
2288 	    out_key == 0)
2289 		return 0;
2290 
2291 	if (in_name_len > 255)
2292 		in_name_len = 255;
2293 
2294 	out_key->key_len = 6 + 2 * in_name_len;
2295 	out_key->parent_cnid = in_parent_cnid;
2296 	out_key->name.length = in_name_len;
2297 	if (in_name_len > 0)
2298 		memcpy(&out_key->name.unicode, in_unicode, in_name_len*2);
2299 
2300 	return out_key->key_len;
2301 }
2302 
2303 /* returns key length */
2304 uint16_t
hfslib_make_extent_key(hfs_cnid_t in_cnid,uint8_t in_forktype,uint32_t in_startblock,hfs_extent_key_t * out_key)2305 hfslib_make_extent_key(
2306 	hfs_cnid_t in_cnid,
2307 	uint8_t in_forktype,
2308 	uint32_t in_startblock,
2309 	hfs_extent_key_t* out_key)
2310 {
2311 	if (in_cnid == 0 || out_key == 0)
2312 		return 0;
2313 
2314 	out_key->key_length = HFS_MAX_EXT_KEY_LEN;
2315 	out_key->fork_type = in_forktype;
2316 	out_key->padding = 0;
2317 	out_key->file_cnid = in_cnid;
2318 	out_key->start_block = in_startblock;
2319 
2320 	return out_key->key_length;
2321 }
2322 
2323 /* case-folding */
2324 int
hfslib_compare_catalog_keys_cf(const void * ap,const void * bp)2325 hfslib_compare_catalog_keys_cf (
2326 	const void *ap,
2327 	const void *bp)
2328 {
2329 	const hfs_catalog_key_t	*a, *b;
2330 	unichar_t	ac, bc; /* current character from a, b */
2331 	unichar_t	lc; /* lowercase version of current character */
2332 	uint8_t		apos, bpos; /* current character indices */
2333 
2334 	a = (const hfs_catalog_key_t*)ap;
2335 	b = (const hfs_catalog_key_t*)bp;
2336 
2337 	if (a->parent_cnid != b->parent_cnid) {
2338 		return (a->parent_cnid - b->parent_cnid);
2339 	} else {
2340 		/*
2341 		 * The following code implements the pseudocode suggested by
2342 		 * the HFS+ technote.
2343 		 */
2344 
2345 /*
2346  * XXX These need to be revised to be endian-independent!
2347  */
2348 #define hbyte(x) ((x) >> 8)
2349 #define lbyte(x) ((x) & 0x00FF)
2350 
2351 		apos = bpos = 0;
2352 		while (1)
2353 		{
2354 			/* get next valid character from a */
2355 			for (lc = 0; lc == 0 && apos < a->name.length; apos++) {
2356 				ac = a->name.unicode[apos];
2357 				lc = hfs_gcft[hbyte(ac)];
2358 				if (lc == 0)
2359 					lc = ac;
2360 				else
2361 					lc = hfs_gcft[lc + lbyte(ac)];
2362 			};
2363 			ac = lc;
2364 
2365 			/* get next valid character from b */
2366 			for (lc = 0; lc == 0 && bpos < b->name.length; bpos++) {
2367 				bc = b->name.unicode[bpos];
2368 				lc = hfs_gcft[hbyte(bc)];
2369 				if (lc == 0)
2370 					lc = bc;
2371 				else
2372 					lc = hfs_gcft[lc + lbyte(bc)];
2373 			};
2374 			bc = lc;
2375 
2376 			/* on end of string ac/bc are 0, otherwise > 0 */
2377 			if (ac != bc || (ac == 0 && bc == 0))
2378 				return ac - bc;
2379 		}
2380 #undef hbyte
2381 #undef lbyte
2382 	}
2383 }
2384 
2385 /* binary compare (i.e., not case folding) */
2386 int
hfslib_compare_catalog_keys_bc(const void * ap,const void * bp)2387 hfslib_compare_catalog_keys_bc (
2388 	const void *ap,
2389 	const void *bp)
2390 {
2391 	int c;
2392 	const hfs_catalog_key_t *a, *b;
2393 
2394 	a = (const hfs_catalog_key_t *) ap;
2395 	b = (const hfs_catalog_key_t *) bp;
2396 
2397 	if (a->parent_cnid == b->parent_cnid)
2398 	{
2399 		if (a->name.length == 0 && b->name.length == 0)
2400 			return 0;
2401 
2402 		if (a->name.length == 0)
2403 			return -1;
2404 		if (b->name.length == 0)
2405 			return 1;
2406 
2407 		/* FIXME: This does a byte-per-byte comparison, whereas the HFS spec
2408 		 * mandates a uint16_t chunk comparison. */
2409 		c = memcmp(a->name.unicode, b->name.unicode,
2410 			sizeof(unichar_t)*min(a->name.length, b->name.length));
2411 		if (c != 0)
2412 			return c;
2413 		else
2414 			return (a->name.length - b->name.length);
2415 	} else {
2416 		return (a->parent_cnid - b->parent_cnid);
2417 	}
2418 }
2419 
2420 int
hfslib_compare_extent_keys(const void * ap,const void * bp)2421 hfslib_compare_extent_keys (
2422 	const void *ap,
2423 	const void *bp)
2424 {
2425 	/*
2426 	 *	Comparison order, in descending importance:
2427 	 *
2428 	 *		CNID -> fork type -> start block
2429 	 */
2430 
2431 	const hfs_extent_key_t *a, *b;
2432 	a = (const hfs_extent_key_t *) ap;
2433 	b = (const hfs_extent_key_t *) bp;
2434 
2435 	if (a->file_cnid == b->file_cnid)
2436 	{
2437 		if (a->fork_type == b->fork_type)
2438 		{
2439 			if (a->start_block == b->start_block)
2440 			{
2441 				return 0;
2442 			} else {
2443 				return (a->start_block - b->start_block);
2444 			}
2445 		} else {
2446 			return (a->fork_type - b->fork_type);
2447 		}
2448 	} else {
2449 		return (a->file_cnid - b->file_cnid);
2450 	}
2451 }
2452 
2453 /* 1+10 tables of 16 rows and 16 columns, each 2 bytes wide = 5632 bytes */
2454 int
hfslib_create_casefolding_table(void)2455 hfslib_create_casefolding_table(void)
2456 {
2457 	hfs_callback_args	cbargs;
2458 	unichar_t*	t; /* convenience */
2459 	uint16_t	s; /* current subtable * 256 */
2460 	uint16_t	i; /* current subtable index (0 to 255) */
2461 
2462 	if (hfs_gcft != NULL)
2463 		return 0; /* no sweat, table already exists */
2464 
2465 	hfslib_init_cbargs(&cbargs);
2466 	hfs_gcft = hfslib_malloc(5632, &cbargs);
2467 	if (hfs_gcft == NULL)
2468 		HFS_LIBERR("could not allocate case folding table");
2469 
2470 	t = hfs_gcft;	 /* easier to type :) */
2471 
2472 	/*
2473 	 * high byte indices
2474 	 */
2475 	s = 0 * 256;
2476 	memset(t, 0x00, 512);
2477 	t[s+  0] = 0x0100;
2478 	t[s+  1] = 0x0200;
2479 	t[s+  3] = 0x0300;
2480 	t[s+  4] = 0x0400;
2481 	t[s+  5] = 0x0500;
2482 	t[s+ 16] = 0x0600;
2483 	t[s+ 32] = 0x0700;
2484 	t[s+ 33] = 0x0800;
2485 	t[s+254] = 0x0900;
2486 	t[s+255] = 0x0a00;
2487 
2488 	/*
2489 	 * table 1 (high byte 0x00)
2490 	 */
2491 	s = 1 * 256;
2492 	for (i = 0; i < 65; i++)
2493 		t[s+i] = i;
2494 	t[s+  0] = 0xffff;
2495 	for (i = 65; i < 91; i++)
2496 		t[s+i] = i + 0x20;
2497 	for (i = 91; i < 256; i++)
2498 		t[s+i] = i;
2499 	t[s+198] = 0x00e6;
2500 	t[s+208] = 0x00f0;
2501 	t[s+216] = 0x00f8;
2502 	t[s+222] = 0x00fe;
2503 
2504 	/*
2505 	 * table 2 (high byte 0x01)
2506 	 */
2507 	s = 2 * 256;
2508 	for (i = 0; i < 256; i++)
2509 		t[s+i] = i + 0x0100;
2510 	t[s+ 16] = 0x0111;
2511 	t[s+ 38] = 0x0127;
2512 	t[s+ 50] = 0x0133;
2513 	t[s+ 63] = 0x0140;
2514 	t[s+ 65] = 0x0142;
2515 	t[s+ 74] = 0x014b;
2516 	t[s+ 82] = 0x0153;
2517 	t[s+102] = 0x0167;
2518 	t[s+129] = 0x0253;
2519 	t[s+130] = 0x0183;
2520 	t[s+132] = 0x0185;
2521 	t[s+134] = 0x0254;
2522 	t[s+135] = 0x0188;
2523 	t[s+137] = 0x0256;
2524 	t[s+138] = 0x0257;
2525 	t[s+139] = 0x018c;
2526 	t[s+142] = 0x01dd;
2527 	t[s+143] = 0x0259;
2528 	t[s+144] = 0x025b;
2529 	t[s+145] = 0x0192;
2530 	t[s+147] = 0x0260;
2531 	t[s+148] = 0x0263;
2532 	t[s+150] = 0x0269;
2533 	t[s+151] = 0x0268;
2534 	t[s+152] = 0x0199;
2535 	t[s+156] = 0x026f;
2536 	t[s+157] = 0x0272;
2537 	t[s+159] = 0x0275;
2538 	t[s+162] = 0x01a3;
2539 	t[s+164] = 0x01a5;
2540 	t[s+167] = 0x01a8;
2541 	t[s+169] = 0x0283;
2542 	t[s+172] = 0x01ad;
2543 	t[s+174] = 0x0288;
2544 	t[s+177] = 0x028a;
2545 	t[s+178] = 0x028b;
2546 	t[s+179] = 0x01b4;
2547 	t[s+181] = 0x01b6;
2548 	t[s+183] = 0x0292;
2549 	t[s+184] = 0x01b9;
2550 	t[s+188] = 0x01bd;
2551 	t[s+196] = 0x01c6;
2552 	t[s+197] = 0x01c6;
2553 	t[s+199] = 0x01c9;
2554 	t[s+200] = 0x01c9;
2555 	t[s+202] = 0x01cc;
2556 	t[s+203] = 0x01cc;
2557 	t[s+228] = 0x01e5;
2558 	t[s+241] = 0x01f3;
2559 	t[s+242] = 0x01f3;
2560 
2561 	/*
2562 	 * table 3 (high byte 0x03)
2563 	 */
2564 	s = 3 * 256;
2565 	for (i = 0; i < 145; i++)
2566 		t[s+i] = i + 0x0300;
2567 	for (i = 145; i < 170; i++)
2568 		t[s+i] = i + 0x0320;
2569 	t[s+162] = 0x03a2;
2570 	for (i = 170; i < 256; i++)
2571 		t[s+i] = i + 0x0300;
2572 
2573 	for (i = 226; i < 239; i += 2)
2574 		t[s+i] = i + 0x0301;
2575 
2576 	/*
2577 	 * table 4 (high byte 0x04)
2578 	 */
2579 	s = 4 * 256;
2580 	for (i = 0; i < 16; i++)
2581 		t[s+i] = i + 0x0400;
2582 	t[s+  2] = 0x0452;
2583 	t[s+  4] = 0x0454;
2584 	t[s+  5] = 0x0455;
2585 	t[s+  6] = 0x0456;
2586 	t[s+  8] = 0x0458;
2587 	t[s+  9] = 0x0459;
2588 	t[s+ 10] = 0x045a;
2589 	t[s+ 11] = 0x045b;
2590 	t[s+ 15] = 0x045f;
2591 
2592 	for (i = 16; i < 48; i++)
2593 		t[s+i] = i + 0x0420;
2594 	t[s+ 25] = 0x0419;
2595 	for (i = 48; i < 256; i++)
2596 		t[s+i] = i + 0x0400;
2597 	t[s+195] = 0x04c4;
2598 	t[s+199] = 0x04c8;
2599 	t[s+203] = 0x04cc;
2600 
2601 	for (i = 96; i < 129; i += 2)
2602 		t[s+i] = i + 0x0401;
2603 	t[s+118] = 0x0476;
2604 	for (i = 144; i < 191; i += 2)
2605 		t[s+i] = i + 0x0401;
2606 
2607 	/*
2608 	 * table 5 (high byte 0x05)
2609 	 */
2610 	s = 5 * 256;
2611 	for (i = 0; i < 49; i++)
2612 		t[s+i] = i + 0x0500;
2613 	for (i = 49; i < 87; i++)
2614 		t[s+i] = i + 0x0530;
2615 	for (i = 87; i < 256; i++)
2616 		t[s+i] = i + 0x0500;
2617 
2618 	/*
2619 	 * table 6 (high byte 0x10)
2620 	 */
2621 	s = 6 * 256;
2622 	for (i = 0; i < 160; i++)
2623 		t[s+i] = i + 0x1000;
2624 	for (i = 160; i < 198; i++)
2625 		t[s+i] = i + 0x1030;
2626 	for (i = 198; i < 256; i++)
2627 		t[s+i] = i + 0x1000;
2628 
2629 	/*
2630 	 * table 7 (high byte 0x20)
2631 	 */
2632 	s = 7 * 256;
2633 	for (i = 0; i < 256; i++)
2634 		t[s+i] = i + 0x2000;
2635 	{
2636 		uint8_t zi[15] = { 12,  13,  14,  15,
2637 						   42,  43,  44,  45,  46,
2638 						  106, 107, 108, 109, 110, 111};
2639 
2640 		for (i = 0; i < 15; i++)
2641 			t[s+zi[i]] = 0x0000;
2642 	}
2643 
2644 	/*
2645 	 * table 8 (high byte 0x21)
2646 	 */
2647 	s = 8 * 256;
2648 	for (i = 0; i < 96; i++)
2649 		t[s+i] = i + 0x2100;
2650 	for (i = 96; i < 112; i++)
2651 		t[s+i] = i + 0x2110;
2652 	for (i = 112; i < 256; i++)
2653 		t[s+i] = i + 0x2100;
2654 
2655 	/*
2656 	 * table 9 (high byte 0xFE)
2657 	 */
2658 	s = 9 * 256;
2659 	for (i = 0; i < 256; i++)
2660 		t[s+i] = i + 0xFE00;
2661 	t[s+255] = 0x0000;
2662 
2663 	/*
2664 	 * table 10 (high byte 0xFF)
2665 	 */
2666 	s = 10 * 256;
2667 	for (i = 0; i < 33; i++)
2668 		t[s+i] = i + 0xFF00;
2669 	for (i = 33; i < 59; i++)
2670 		t[s+i] = i + 0xFF20;
2671 	for (i = 59; i < 256; i++)
2672 		t[s+i] = i + 0xFF00;
2673 
2674 	return 0;
2675 
2676 error:
2677 	return 1;
2678 }
2679 
2680 int
hfslib_get_hardlink(hfs_volume * vol,uint32_t inode_num,hfs_catalog_keyed_record_t * rec,hfs_callback_args * cbargs)2681 hfslib_get_hardlink(hfs_volume *vol, uint32_t inode_num,
2682 		     hfs_catalog_keyed_record_t *rec,
2683 		     hfs_callback_args *cbargs)
2684 {
2685 	hfs_catalog_keyed_record_t metadata;
2686 	hfs_catalog_key_t key;
2687 	char name[16];
2688 	unichar_t name_uni[16];
2689 	int i, len;
2690 
2691 	/* XXX: cache this */
2692 	if (hfslib_find_catalog_record_with_key(vol,
2693 						 &hfs_gMetadataDirectoryKey,
2694 						 &metadata, cbargs) != 0
2695 		|| metadata.type != HFS_REC_FLDR)
2696 		return -1;
2697 
2698 	len = snprintf(name, sizeof(name), "iNode%d", inode_num);
2699 	for (i = 0; i < len; i++)
2700 		name_uni[i] = name[i];
2701 
2702 	if (hfslib_make_catalog_key(metadata.folder.cnid, len, name_uni,
2703 				     &key) == 0)
2704 		return -1;
2705 
2706 	return hfslib_find_catalog_record_with_key(vol, &key, rec, cbargs);
2707 }
2708