1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Copyright 2016-2019 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8 #include "habanalabs.h"
9
10 #include <linux/slab.h>
11
12 /*
13 * hl_queue_add_ptr - add to pi or ci and checks if it wraps around
14 *
15 * @ptr: the current pi/ci value
16 * @val: the amount to add
17 *
18 * Add val to ptr. It can go until twice the queue length.
19 */
hl_hw_queue_add_ptr(u32 ptr,u16 val)20 inline u32 hl_hw_queue_add_ptr(u32 ptr, u16 val)
21 {
22 ptr += val;
23 ptr &= ((HL_QUEUE_LENGTH << 1) - 1);
24 return ptr;
25 }
queue_ci_get(atomic_t * ci,u32 queue_len)26 static inline int queue_ci_get(atomic_t *ci, u32 queue_len)
27 {
28 return atomic_read(ci) & ((queue_len << 1) - 1);
29 }
30
queue_free_slots(struct hl_hw_queue * q,u32 queue_len)31 static inline int queue_free_slots(struct hl_hw_queue *q, u32 queue_len)
32 {
33 int delta = (q->pi - queue_ci_get(&q->ci, queue_len));
34
35 if (delta >= 0)
36 return (queue_len - delta);
37 else
38 return (abs(delta) - queue_len);
39 }
40
hl_hw_queue_update_ci(struct hl_cs * cs)41 void hl_hw_queue_update_ci(struct hl_cs *cs)
42 {
43 struct hl_device *hdev = cs->ctx->hdev;
44 struct hl_hw_queue *q;
45 int i;
46
47 if (hdev->disabled)
48 return;
49
50 q = &hdev->kernel_queues[0];
51
52 /* There are no internal queues if H/W queues are being used */
53 if (!hdev->asic_prop.max_queues || q->queue_type == QUEUE_TYPE_HW)
54 return;
55
56 /* We must increment CI for every queue that will never get a
57 * completion, there are 2 scenarios this can happen:
58 * 1. All queues of a non completion CS will never get a completion.
59 * 2. Internal queues never gets completion.
60 */
61 for (i = 0 ; i < hdev->asic_prop.max_queues ; i++, q++) {
62 if (!cs_needs_completion(cs) || q->queue_type == QUEUE_TYPE_INT)
63 atomic_add(cs->jobs_in_queue_cnt[i], &q->ci);
64 }
65 }
66
67 /*
68 * hl_hw_queue_submit_bd() - Submit a buffer descriptor to an external or a
69 * H/W queue.
70 * @hdev: pointer to habanalabs device structure
71 * @q: pointer to habanalabs queue structure
72 * @ctl: BD's control word
73 * @len: BD's length
74 * @ptr: BD's pointer
75 *
76 * This function assumes there is enough space on the queue to submit a new
77 * BD to it. It initializes the next BD and calls the device specific
78 * function to set the pi (and doorbell)
79 *
80 * This function must be called when the scheduler mutex is taken
81 *
82 */
hl_hw_queue_submit_bd(struct hl_device * hdev,struct hl_hw_queue * q,u32 ctl,u32 len,u64 ptr)83 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
84 u32 ctl, u32 len, u64 ptr)
85 {
86 struct hl_bd *bd;
87 u64 addr;
88 int i;
89
90 bd = q->kernel_address;
91 bd += hl_pi_2_offset(q->pi);
92 bd->ctl = cpu_to_le32(ctl);
93 bd->len = cpu_to_le32(len);
94 bd->ptr = cpu_to_le64(ptr);
95
96 if (q->dram_bd)
97 for (i = 0 ; i < 2 ; i++) {
98 addr = q->pq_dram_address +
99 ((hl_pi_2_offset(q->pi) * sizeof(struct hl_bd)) + (i * sizeof(u64)));
100 hdev->asic_funcs->access_dev_mem(hdev, PCI_REGION_DRAM, addr,
101 (u64 *)(bd) + i, DEBUGFS_WRITE64);
102 }
103
104 q->pi = hl_queue_inc_ptr(q->pi);
105
106 hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
107 }
108
109 /*
110 * ext_queue_sanity_checks - perform some sanity checks on external queue
111 *
112 * @hdev : pointer to hl_device structure
113 * @q : pointer to hl_hw_queue structure
114 * @num_of_entries : how many entries to check for space
115 * @reserve_cq_entry : whether to reserve an entry in the cq
116 *
117 * H/W queues spinlock should be taken before calling this function
118 *
119 * Perform the following:
120 * - Make sure we have enough space in the h/w queue
121 * - Make sure we have enough space in the completion queue
122 * - Reserve space in the completion queue (needs to be reversed if there
123 * is a failure down the road before the actual submission of work). Only
124 * do this action if reserve_cq_entry is true
125 *
126 */
ext_queue_sanity_checks(struct hl_device * hdev,struct hl_hw_queue * q,int num_of_entries,bool reserve_cq_entry)127 static int ext_queue_sanity_checks(struct hl_device *hdev,
128 struct hl_hw_queue *q, int num_of_entries,
129 bool reserve_cq_entry)
130 {
131 atomic_t *free_slots =
132 &hdev->completion_queue[q->cq_id].free_slots_cnt;
133 int free_slots_cnt;
134
135 /* Check we have enough space in the queue */
136 free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
137
138 if (free_slots_cnt < num_of_entries) {
139 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
140 q->hw_queue_id, num_of_entries);
141 return -EAGAIN;
142 }
143
144 if (reserve_cq_entry) {
145 /*
146 * Check we have enough space in the completion queue
147 * Add -1 to counter (decrement) unless counter was already 0
148 * In that case, CQ is full so we can't submit a new CB because
149 * we won't get ack on its completion
150 * atomic_add_unless will return 0 if counter was already 0
151 */
152 if (atomic_add_negative(num_of_entries * -1, free_slots)) {
153 dev_dbg(hdev->dev, "No space for %d on CQ %d\n",
154 num_of_entries, q->hw_queue_id);
155 atomic_add(num_of_entries, free_slots);
156 return -EAGAIN;
157 }
158 }
159
160 return 0;
161 }
162
163 /*
164 * int_queue_sanity_checks - perform some sanity checks on internal queue
165 *
166 * @hdev : pointer to hl_device structure
167 * @q : pointer to hl_hw_queue structure
168 * @num_of_entries : how many entries to check for space
169 *
170 * H/W queues spinlock should be taken before calling this function
171 *
172 * Perform the following:
173 * - Make sure we have enough space in the h/w queue
174 *
175 */
int_queue_sanity_checks(struct hl_device * hdev,struct hl_hw_queue * q,int num_of_entries)176 static int int_queue_sanity_checks(struct hl_device *hdev,
177 struct hl_hw_queue *q,
178 int num_of_entries)
179 {
180 int free_slots_cnt;
181
182 if (num_of_entries > q->int_queue_len) {
183 dev_err(hdev->dev,
184 "Cannot populate queue %u with %u jobs\n",
185 q->hw_queue_id, num_of_entries);
186 return -ENOMEM;
187 }
188
189 /* Check we have enough space in the queue */
190 free_slots_cnt = queue_free_slots(q, q->int_queue_len);
191
192 if (free_slots_cnt < num_of_entries) {
193 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
194 q->hw_queue_id, num_of_entries);
195 return -EAGAIN;
196 }
197
198 return 0;
199 }
200
201 /*
202 * hw_queue_sanity_checks() - Make sure we have enough space in the h/w queue
203 * @hdev: Pointer to hl_device structure.
204 * @q: Pointer to hl_hw_queue structure.
205 * @num_of_entries: How many entries to check for space.
206 *
207 * Notice: We do not reserve queue entries so this function mustn't be called
208 * more than once per CS for the same queue
209 *
210 */
hw_queue_sanity_checks(struct hl_device * hdev,struct hl_hw_queue * q,int num_of_entries)211 static int hw_queue_sanity_checks(struct hl_device *hdev, struct hl_hw_queue *q,
212 int num_of_entries)
213 {
214 int free_slots_cnt;
215
216 /* Check we have enough space in the queue */
217 free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
218
219 if (free_slots_cnt < num_of_entries) {
220 dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
221 q->hw_queue_id, num_of_entries);
222 return -EAGAIN;
223 }
224
225 return 0;
226 }
227
228 /*
229 * hl_hw_queue_send_cb_no_cmpl - send a single CB (not a JOB) without completion
230 *
231 * @hdev: pointer to hl_device structure
232 * @hw_queue_id: Queue's type
233 * @cb_size: size of CB
234 * @cb_ptr: pointer to CB location
235 *
236 * This function sends a single CB, that must NOT generate a completion entry.
237 * Sending CPU messages can be done instead via 'hl_hw_queue_submit_bd()'
238 */
hl_hw_queue_send_cb_no_cmpl(struct hl_device * hdev,u32 hw_queue_id,u32 cb_size,u64 cb_ptr)239 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
240 u32 cb_size, u64 cb_ptr)
241 {
242 struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
243 int rc = 0;
244
245 hdev->asic_funcs->hw_queues_lock(hdev);
246
247 if (hdev->disabled) {
248 rc = -EPERM;
249 goto out;
250 }
251
252 /*
253 * hl_hw_queue_send_cb_no_cmpl() is called for queues of a H/W queue
254 * type only on init phase, when the queues are empty and being tested,
255 * so there is no need for sanity checks.
256 */
257 if (q->queue_type != QUEUE_TYPE_HW) {
258 rc = ext_queue_sanity_checks(hdev, q, 1, false);
259 if (rc)
260 goto out;
261 }
262
263 hl_hw_queue_submit_bd(hdev, q, 0, cb_size, cb_ptr);
264
265 out:
266 hdev->asic_funcs->hw_queues_unlock(hdev);
267
268 return rc;
269 }
270
271 /*
272 * ext_queue_schedule_job - submit a JOB to an external queue
273 *
274 * @job: pointer to the job that needs to be submitted to the queue
275 *
276 * This function must be called when the scheduler mutex is taken
277 *
278 */
ext_queue_schedule_job(struct hl_cs_job * job)279 static void ext_queue_schedule_job(struct hl_cs_job *job)
280 {
281 struct hl_device *hdev = job->cs->ctx->hdev;
282 struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
283 struct hl_cq_entry cq_pkt;
284 struct hl_cq *cq;
285 u64 cq_addr;
286 struct hl_cb *cb;
287 u32 ctl;
288 u32 len;
289 u64 ptr;
290
291 /*
292 * Update the JOB ID inside the BD CTL so the device would know what
293 * to write in the completion queue
294 */
295 ctl = ((q->pi << BD_CTL_SHADOW_INDEX_SHIFT) & BD_CTL_SHADOW_INDEX_MASK);
296
297 cb = job->patched_cb;
298 len = job->job_cb_size;
299 ptr = cb->bus_address;
300
301 /* Skip completion flow in case this is a non completion CS */
302 if (!cs_needs_completion(job->cs))
303 goto submit_bd;
304
305 cq_pkt.data = cpu_to_le32(
306 ((q->pi << CQ_ENTRY_SHADOW_INDEX_SHIFT)
307 & CQ_ENTRY_SHADOW_INDEX_MASK) |
308 FIELD_PREP(CQ_ENTRY_SHADOW_INDEX_VALID_MASK, 1) |
309 FIELD_PREP(CQ_ENTRY_READY_MASK, 1));
310
311 /*
312 * No need to protect pi_offset because scheduling to the
313 * H/W queues is done under the scheduler mutex
314 *
315 * No need to check if CQ is full because it was already
316 * checked in ext_queue_sanity_checks
317 */
318 cq = &hdev->completion_queue[q->cq_id];
319 cq_addr = cq->bus_address + cq->pi * sizeof(struct hl_cq_entry);
320
321 hdev->asic_funcs->add_end_of_cb_packets(hdev, cb->kernel_address, len,
322 job->user_cb_size,
323 cq_addr,
324 le32_to_cpu(cq_pkt.data),
325 q->msi_vec,
326 job->contains_dma_pkt);
327
328 q->shadow_queue[hl_pi_2_offset(q->pi)] = job;
329
330 cq->pi = hl_cq_inc_ptr(cq->pi);
331
332 submit_bd:
333 hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
334 }
335
336 /*
337 * int_queue_schedule_job - submit a JOB to an internal queue
338 *
339 * @job: pointer to the job that needs to be submitted to the queue
340 *
341 * This function must be called when the scheduler mutex is taken
342 *
343 */
int_queue_schedule_job(struct hl_cs_job * job)344 static void int_queue_schedule_job(struct hl_cs_job *job)
345 {
346 struct hl_device *hdev = job->cs->ctx->hdev;
347 struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
348 struct hl_bd bd;
349 __le64 *pi;
350
351 bd.ctl = 0;
352 bd.len = cpu_to_le32(job->job_cb_size);
353
354 if (job->is_kernel_allocated_cb)
355 /* bus_address is actually a mmu mapped address
356 * allocated from an internal pool
357 */
358 bd.ptr = cpu_to_le64(job->user_cb->bus_address);
359 else
360 bd.ptr = cpu_to_le64((u64) (uintptr_t) job->user_cb);
361
362 pi = q->kernel_address + (q->pi & (q->int_queue_len - 1)) * sizeof(bd);
363
364 q->pi++;
365 q->pi &= ((q->int_queue_len << 1) - 1);
366
367 hdev->asic_funcs->pqe_write(hdev, pi, &bd);
368
369 hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
370 }
371
372 /*
373 * hw_queue_schedule_job - submit a JOB to a H/W queue
374 *
375 * @job: pointer to the job that needs to be submitted to the queue
376 *
377 * This function must be called when the scheduler mutex is taken
378 *
379 */
hw_queue_schedule_job(struct hl_cs_job * job)380 static void hw_queue_schedule_job(struct hl_cs_job *job)
381 {
382 struct hl_device *hdev = job->cs->ctx->hdev;
383 struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
384 u64 ptr;
385 u32 offset, ctl, len;
386
387 /*
388 * Upon PQE completion, COMP_DATA is used as the write data to the
389 * completion queue (QMAN HBW message), and COMP_OFFSET is used as the
390 * write address offset in the SM block (QMAN LBW message).
391 * The write address offset is calculated as "COMP_OFFSET << 2".
392 */
393 offset = job->cs->sequence & (hdev->asic_prop.max_pending_cs - 1);
394 ctl = ((offset << BD_CTL_COMP_OFFSET_SHIFT) & BD_CTL_COMP_OFFSET_MASK) |
395 ((q->pi << BD_CTL_COMP_DATA_SHIFT) & BD_CTL_COMP_DATA_MASK);
396
397 len = job->job_cb_size;
398
399 /*
400 * A patched CB is created only if a user CB was allocated by driver and
401 * MMU is disabled. If MMU is enabled, the user CB should be used
402 * instead. If the user CB wasn't allocated by driver, assume that it
403 * holds an address.
404 */
405 if (job->patched_cb)
406 ptr = job->patched_cb->bus_address;
407 else if (job->is_kernel_allocated_cb)
408 ptr = job->user_cb->bus_address;
409 else
410 ptr = (u64) (uintptr_t) job->user_cb;
411
412 hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
413 }
414
init_signal_cs(struct hl_device * hdev,struct hl_cs_job * job,struct hl_cs_compl * cs_cmpl)415 static int init_signal_cs(struct hl_device *hdev,
416 struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
417 {
418 struct hl_sync_stream_properties *prop;
419 struct hl_hw_sob *hw_sob;
420 u32 q_idx;
421 int rc = 0;
422
423 q_idx = job->hw_queue_id;
424 prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
425 hw_sob = &prop->hw_sob[prop->curr_sob_offset];
426
427 cs_cmpl->hw_sob = hw_sob;
428 cs_cmpl->sob_val = prop->next_sob_val;
429
430 dev_dbg(hdev->dev,
431 "generate signal CB, sob_id: %d, sob val: %u, q_idx: %d, seq: %llu\n",
432 cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val, q_idx,
433 cs_cmpl->cs_seq);
434
435 /* we set an EB since we must make sure all oeprations are done
436 * when sending the signal
437 */
438 hdev->asic_funcs->gen_signal_cb(hdev, job->patched_cb,
439 cs_cmpl->hw_sob->sob_id, 0, true);
440
441 rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, 1,
442 false);
443
444 job->cs->sob_addr_offset = hw_sob->sob_addr;
445 job->cs->initial_sob_count = prop->next_sob_val - 1;
446
447 return rc;
448 }
449
hl_hw_queue_encaps_sig_set_sob_info(struct hl_device * hdev,struct hl_cs * cs,struct hl_cs_job * job,struct hl_cs_compl * cs_cmpl)450 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
451 struct hl_cs *cs, struct hl_cs_job *job,
452 struct hl_cs_compl *cs_cmpl)
453 {
454 struct hl_cs_encaps_sig_handle *handle = cs->encaps_sig_hdl;
455 u32 offset = 0;
456
457 cs_cmpl->hw_sob = handle->hw_sob;
458
459 /* Note that encaps_sig_wait_offset was validated earlier in the flow
460 * for offset value which exceeds the max reserved signal count.
461 * always decrement 1 of the offset since when the user
462 * set offset 1 for example he mean to wait only for the first
463 * signal only, which will be pre_sob_val, and if he set offset 2
464 * then the value required is (pre_sob_val + 1) and so on...
465 * if user set wait offset to 0, then treat it as legacy wait cs,
466 * wait for the next signal.
467 */
468 if (job->encaps_sig_wait_offset)
469 offset = job->encaps_sig_wait_offset - 1;
470
471 cs_cmpl->sob_val = handle->pre_sob_val + offset;
472 }
473
init_wait_cs(struct hl_device * hdev,struct hl_cs * cs,struct hl_cs_job * job,struct hl_cs_compl * cs_cmpl)474 static int init_wait_cs(struct hl_device *hdev, struct hl_cs *cs,
475 struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
476 {
477 struct hl_gen_wait_properties wait_prop;
478 struct hl_sync_stream_properties *prop;
479 struct hl_cs_compl *signal_cs_cmpl;
480 u32 q_idx;
481
482 q_idx = job->hw_queue_id;
483 prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
484
485 signal_cs_cmpl = container_of(cs->signal_fence,
486 struct hl_cs_compl,
487 base_fence);
488
489 if (cs->encaps_signals) {
490 /* use the encaps signal handle stored earlier in the flow
491 * and set the SOB information from the encaps
492 * signals handle
493 */
494 hl_hw_queue_encaps_sig_set_sob_info(hdev, cs, job, cs_cmpl);
495
496 dev_dbg(hdev->dev, "Wait for encaps signals handle, qidx(%u), CS sequence(%llu), sob val: 0x%x, offset: %u\n",
497 cs->encaps_sig_hdl->q_idx,
498 cs->encaps_sig_hdl->cs_seq,
499 cs_cmpl->sob_val,
500 job->encaps_sig_wait_offset);
501 } else {
502 /* Copy the SOB id and value of the signal CS */
503 cs_cmpl->hw_sob = signal_cs_cmpl->hw_sob;
504 cs_cmpl->sob_val = signal_cs_cmpl->sob_val;
505 }
506
507 /* check again if the signal cs already completed.
508 * if yes then don't send any wait cs since the hw_sob
509 * could be in reset already. if signal is not completed
510 * then get refcount to hw_sob to prevent resetting the sob
511 * while wait cs is not submitted.
512 * note that this check is protected by two locks,
513 * hw queue lock and completion object lock,
514 * and the same completion object lock also protects
515 * the hw_sob reset handler function.
516 * The hw_queue lock prevent out of sync of hw_sob
517 * refcount value, changed by signal/wait flows.
518 */
519 spin_lock(&signal_cs_cmpl->lock);
520
521 if (completion_done(&cs->signal_fence->completion)) {
522 spin_unlock(&signal_cs_cmpl->lock);
523 return -EINVAL;
524 }
525
526 kref_get(&cs_cmpl->hw_sob->kref);
527
528 spin_unlock(&signal_cs_cmpl->lock);
529
530 dev_dbg(hdev->dev,
531 "generate wait CB, sob_id: %d, sob_val: 0x%x, mon_id: %d, q_idx: %d, seq: %llu\n",
532 cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val,
533 prop->base_mon_id, q_idx, cs->sequence);
534
535 wait_prop.data = (void *) job->patched_cb;
536 wait_prop.sob_base = cs_cmpl->hw_sob->sob_id;
537 wait_prop.sob_mask = 0x1;
538 wait_prop.sob_val = cs_cmpl->sob_val;
539 wait_prop.mon_id = prop->base_mon_id;
540 wait_prop.q_idx = q_idx;
541 wait_prop.size = 0;
542
543 hdev->asic_funcs->gen_wait_cb(hdev, &wait_prop);
544
545 mb();
546 hl_fence_put(cs->signal_fence);
547 cs->signal_fence = NULL;
548
549 return 0;
550 }
551
552 /*
553 * init_signal_wait_cs - initialize a signal/wait CS
554 * @cs: pointer to the signal/wait CS
555 *
556 * H/W queues spinlock should be taken before calling this function
557 */
init_signal_wait_cs(struct hl_cs * cs)558 static int init_signal_wait_cs(struct hl_cs *cs)
559 {
560 struct hl_ctx *ctx = cs->ctx;
561 struct hl_device *hdev = ctx->hdev;
562 struct hl_cs_job *job;
563 struct hl_cs_compl *cs_cmpl =
564 container_of(cs->fence, struct hl_cs_compl, base_fence);
565 int rc = 0;
566
567 /* There is only one job in a signal/wait CS */
568 job = list_first_entry(&cs->job_list, struct hl_cs_job,
569 cs_node);
570
571 if (cs->type & CS_TYPE_SIGNAL)
572 rc = init_signal_cs(hdev, job, cs_cmpl);
573 else if (cs->type & CS_TYPE_WAIT)
574 rc = init_wait_cs(hdev, cs, job, cs_cmpl);
575
576 return rc;
577 }
578
encaps_sig_first_staged_cs_handler(struct hl_device * hdev,struct hl_cs * cs)579 static int encaps_sig_first_staged_cs_handler
580 (struct hl_device *hdev, struct hl_cs *cs)
581 {
582 struct hl_cs_compl *cs_cmpl =
583 container_of(cs->fence,
584 struct hl_cs_compl, base_fence);
585 struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
586 struct hl_encaps_signals_mgr *mgr;
587 int rc = 0;
588
589 mgr = &cs->ctx->sig_mgr;
590
591 spin_lock(&mgr->lock);
592 encaps_sig_hdl = idr_find(&mgr->handles, cs->encaps_sig_hdl_id);
593 if (encaps_sig_hdl) {
594 /*
595 * Set handler CS sequence,
596 * the CS which contains the encapsulated signals.
597 */
598 encaps_sig_hdl->cs_seq = cs->sequence;
599 /* store the handle and set encaps signal indication,
600 * to be used later in cs_do_release to put the last
601 * reference to encaps signals handlers.
602 */
603 cs_cmpl->encaps_signals = true;
604 cs_cmpl->encaps_sig_hdl = encaps_sig_hdl;
605
606 /* set hw_sob pointer in completion object
607 * since it's used in cs_do_release flow to put
608 * refcount to sob
609 */
610 cs_cmpl->hw_sob = encaps_sig_hdl->hw_sob;
611 cs_cmpl->sob_val = encaps_sig_hdl->pre_sob_val +
612 encaps_sig_hdl->count;
613
614 dev_dbg(hdev->dev, "CS seq (%llu) added to encaps signal handler id (%u), count(%u), qidx(%u), sob(%u), val(%u)\n",
615 cs->sequence, encaps_sig_hdl->id,
616 encaps_sig_hdl->count,
617 encaps_sig_hdl->q_idx,
618 cs_cmpl->hw_sob->sob_id,
619 cs_cmpl->sob_val);
620
621 } else {
622 dev_err(hdev->dev, "encaps handle id(%u) wasn't found!\n",
623 cs->encaps_sig_hdl_id);
624 rc = -EINVAL;
625 }
626
627 spin_unlock(&mgr->lock);
628
629 return rc;
630 }
631
632 /*
633 * hl_hw_queue_schedule_cs - schedule a command submission
634 * @cs: pointer to the CS
635 */
hl_hw_queue_schedule_cs(struct hl_cs * cs)636 int hl_hw_queue_schedule_cs(struct hl_cs *cs)
637 {
638 enum hl_device_status status;
639 struct hl_cs_counters_atomic *cntr;
640 struct hl_ctx *ctx = cs->ctx;
641 struct hl_device *hdev = ctx->hdev;
642 struct hl_cs_job *job, *tmp;
643 struct hl_hw_queue *q;
644 int rc = 0, i, cq_cnt;
645 bool first_entry;
646 u32 max_queues;
647
648 cntr = &hdev->aggregated_cs_counters;
649
650 hdev->asic_funcs->hw_queues_lock(hdev);
651
652 if (!hl_device_operational(hdev, &status)) {
653 atomic64_inc(&cntr->device_in_reset_drop_cnt);
654 atomic64_inc(&ctx->cs_counters.device_in_reset_drop_cnt);
655 dev_err(hdev->dev,
656 "device is %s, CS rejected!\n", hdev->status[status]);
657 rc = -EPERM;
658 goto out;
659 }
660
661 max_queues = hdev->asic_prop.max_queues;
662
663 q = &hdev->kernel_queues[0];
664 for (i = 0, cq_cnt = 0 ; i < max_queues ; i++, q++) {
665 if (cs->jobs_in_queue_cnt[i]) {
666 switch (q->queue_type) {
667 case QUEUE_TYPE_EXT:
668 rc = ext_queue_sanity_checks(hdev, q,
669 cs->jobs_in_queue_cnt[i],
670 cs_needs_completion(cs) ?
671 true : false);
672 break;
673 case QUEUE_TYPE_INT:
674 rc = int_queue_sanity_checks(hdev, q,
675 cs->jobs_in_queue_cnt[i]);
676 break;
677 case QUEUE_TYPE_HW:
678 rc = hw_queue_sanity_checks(hdev, q,
679 cs->jobs_in_queue_cnt[i]);
680 break;
681 default:
682 dev_err(hdev->dev, "Queue type %d is invalid\n",
683 q->queue_type);
684 rc = -EINVAL;
685 break;
686 }
687
688 if (rc) {
689 atomic64_inc(
690 &ctx->cs_counters.queue_full_drop_cnt);
691 atomic64_inc(&cntr->queue_full_drop_cnt);
692 goto unroll_cq_resv;
693 }
694
695 if (q->queue_type == QUEUE_TYPE_EXT)
696 cq_cnt++;
697 }
698 }
699
700 if ((cs->type == CS_TYPE_SIGNAL) || (cs->type == CS_TYPE_WAIT)) {
701 rc = init_signal_wait_cs(cs);
702 if (rc)
703 goto unroll_cq_resv;
704 } else if (cs->type == CS_TYPE_COLLECTIVE_WAIT) {
705 rc = hdev->asic_funcs->collective_wait_init_cs(cs);
706 if (rc)
707 goto unroll_cq_resv;
708 }
709
710 rc = hdev->asic_funcs->pre_schedule_cs(cs);
711 if (rc) {
712 dev_err(hdev->dev,
713 "Failed in pre-submission operations of CS %d.%llu\n",
714 ctx->asid, cs->sequence);
715 goto unroll_cq_resv;
716 }
717
718 hdev->shadow_cs_queue[cs->sequence &
719 (hdev->asic_prop.max_pending_cs - 1)] = cs;
720
721 if (cs->encaps_signals && cs->staged_first) {
722 rc = encaps_sig_first_staged_cs_handler(hdev, cs);
723 if (rc)
724 goto unroll_cq_resv;
725 }
726
727 spin_lock(&hdev->cs_mirror_lock);
728
729 /* Verify staged CS exists and add to the staged list */
730 if (cs->staged_cs && !cs->staged_first) {
731 struct hl_cs *staged_cs;
732
733 staged_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence);
734 if (!staged_cs) {
735 dev_err(hdev->dev,
736 "Cannot find staged submission sequence %llu",
737 cs->staged_sequence);
738 rc = -EINVAL;
739 goto unlock_cs_mirror;
740 }
741
742 if (is_staged_cs_last_exists(hdev, staged_cs)) {
743 dev_err(hdev->dev,
744 "Staged submission sequence %llu already submitted",
745 cs->staged_sequence);
746 rc = -EINVAL;
747 goto unlock_cs_mirror;
748 }
749
750 list_add_tail(&cs->staged_cs_node, &staged_cs->staged_cs_node);
751
752 /* update stream map of the first CS */
753 if (hdev->supports_wait_for_multi_cs)
754 staged_cs->fence->stream_master_qid_map |=
755 cs->fence->stream_master_qid_map;
756 }
757
758 list_add_tail(&cs->mirror_node, &hdev->cs_mirror_list);
759
760 /* Queue TDR if the CS is the first entry and if timeout is wanted */
761 first_entry = list_first_entry(&hdev->cs_mirror_list,
762 struct hl_cs, mirror_node) == cs;
763 if ((hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT) &&
764 first_entry && cs_needs_timeout(cs)) {
765 cs->tdr_active = true;
766 schedule_delayed_work(&cs->work_tdr, cs->timeout_jiffies);
767
768 }
769
770 spin_unlock(&hdev->cs_mirror_lock);
771
772 list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
773 switch (job->queue_type) {
774 case QUEUE_TYPE_EXT:
775 ext_queue_schedule_job(job);
776 break;
777 case QUEUE_TYPE_INT:
778 int_queue_schedule_job(job);
779 break;
780 case QUEUE_TYPE_HW:
781 hw_queue_schedule_job(job);
782 break;
783 default:
784 break;
785 }
786
787 cs->submitted = true;
788
789 goto out;
790
791 unlock_cs_mirror:
792 spin_unlock(&hdev->cs_mirror_lock);
793 unroll_cq_resv:
794 q = &hdev->kernel_queues[0];
795 for (i = 0 ; (i < max_queues) && (cq_cnt > 0) ; i++, q++) {
796 if ((q->queue_type == QUEUE_TYPE_EXT) &&
797 (cs->jobs_in_queue_cnt[i])) {
798 atomic_t *free_slots =
799 &hdev->completion_queue[i].free_slots_cnt;
800 atomic_add(cs->jobs_in_queue_cnt[i], free_slots);
801 cq_cnt--;
802 }
803 }
804
805 out:
806 hdev->asic_funcs->hw_queues_unlock(hdev);
807
808 return rc;
809 }
810
811 /*
812 * hl_hw_queue_inc_ci_kernel - increment ci for kernel's queue
813 *
814 * @hdev: pointer to hl_device structure
815 * @hw_queue_id: which queue to increment its ci
816 */
hl_hw_queue_inc_ci_kernel(struct hl_device * hdev,u32 hw_queue_id)817 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id)
818 {
819 struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
820
821 atomic_inc(&q->ci);
822 }
823
ext_and_cpu_queue_init(struct hl_device * hdev,struct hl_hw_queue * q,bool is_cpu_queue)824 static int ext_and_cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
825 bool is_cpu_queue)
826 {
827 void *p;
828 int rc;
829
830 if (is_cpu_queue)
831 p = hl_cpu_accessible_dma_pool_alloc(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address);
832 else
833 p = hl_asic_dma_alloc_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address,
834 GFP_KERNEL | __GFP_ZERO);
835 if (!p)
836 return -ENOMEM;
837
838 q->kernel_address = p;
839
840 q->shadow_queue = kmalloc_array(HL_QUEUE_LENGTH, sizeof(struct hl_cs_job *), GFP_KERNEL);
841 if (!q->shadow_queue) {
842 dev_err(hdev->dev,
843 "Failed to allocate shadow queue for H/W queue %d\n",
844 q->hw_queue_id);
845 rc = -ENOMEM;
846 goto free_queue;
847 }
848
849 /* Make sure read/write pointers are initialized to start of queue */
850 atomic_set(&q->ci, 0);
851 q->pi = 0;
852
853 return 0;
854
855 free_queue:
856 if (is_cpu_queue)
857 hl_cpu_accessible_dma_pool_free(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address);
858 else
859 hl_asic_dma_free_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address,
860 q->bus_address);
861
862 return rc;
863 }
864
int_queue_init(struct hl_device * hdev,struct hl_hw_queue * q)865 static int int_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
866 {
867 void *p;
868
869 p = hdev->asic_funcs->get_int_queue_base(hdev, q->hw_queue_id,
870 &q->bus_address, &q->int_queue_len);
871 if (!p) {
872 dev_err(hdev->dev,
873 "Failed to get base address for internal queue %d\n",
874 q->hw_queue_id);
875 return -EFAULT;
876 }
877
878 q->kernel_address = p;
879 q->pi = 0;
880 atomic_set(&q->ci, 0);
881
882 return 0;
883 }
884
cpu_queue_init(struct hl_device * hdev,struct hl_hw_queue * q)885 static int cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
886 {
887 return ext_and_cpu_queue_init(hdev, q, true);
888 }
889
ext_queue_init(struct hl_device * hdev,struct hl_hw_queue * q)890 static int ext_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
891 {
892 return ext_and_cpu_queue_init(hdev, q, false);
893 }
894
hw_queue_init(struct hl_device * hdev,struct hl_hw_queue * q)895 static int hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
896 {
897 void *p;
898
899 p = hl_asic_dma_alloc_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address,
900 GFP_KERNEL | __GFP_ZERO);
901 if (!p)
902 return -ENOMEM;
903
904 q->kernel_address = p;
905
906 /* Make sure read/write pointers are initialized to start of queue */
907 atomic_set(&q->ci, 0);
908 q->pi = 0;
909
910 return 0;
911 }
912
sync_stream_queue_init(struct hl_device * hdev,u32 q_idx)913 static void sync_stream_queue_init(struct hl_device *hdev, u32 q_idx)
914 {
915 struct hl_sync_stream_properties *sync_stream_prop;
916 struct asic_fixed_properties *prop = &hdev->asic_prop;
917 struct hl_hw_sob *hw_sob;
918 int sob, reserved_mon_idx, queue_idx;
919
920 sync_stream_prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
921
922 /* We use 'collective_mon_idx' as a running index in order to reserve
923 * monitors for collective master/slave queues.
924 * collective master queue gets 2 reserved monitors
925 * collective slave queue gets 1 reserved monitor
926 */
927 if (hdev->kernel_queues[q_idx].collective_mode ==
928 HL_COLLECTIVE_MASTER) {
929 reserved_mon_idx = hdev->collective_mon_idx;
930
931 /* reserve the first monitor for collective master queue */
932 sync_stream_prop->collective_mstr_mon_id[0] =
933 prop->collective_first_mon + reserved_mon_idx;
934
935 /* reserve the second monitor for collective master queue */
936 sync_stream_prop->collective_mstr_mon_id[1] =
937 prop->collective_first_mon + reserved_mon_idx + 1;
938
939 hdev->collective_mon_idx += HL_COLLECTIVE_RSVD_MSTR_MONS;
940 } else if (hdev->kernel_queues[q_idx].collective_mode ==
941 HL_COLLECTIVE_SLAVE) {
942 reserved_mon_idx = hdev->collective_mon_idx++;
943
944 /* reserve a monitor for collective slave queue */
945 sync_stream_prop->collective_slave_mon_id =
946 prop->collective_first_mon + reserved_mon_idx;
947 }
948
949 if (!hdev->kernel_queues[q_idx].supports_sync_stream)
950 return;
951
952 queue_idx = hdev->sync_stream_queue_idx++;
953
954 sync_stream_prop->base_sob_id = prop->sync_stream_first_sob +
955 (queue_idx * HL_RSVD_SOBS);
956 sync_stream_prop->base_mon_id = prop->sync_stream_first_mon +
957 (queue_idx * HL_RSVD_MONS);
958 sync_stream_prop->next_sob_val = 1;
959 sync_stream_prop->curr_sob_offset = 0;
960
961 for (sob = 0 ; sob < HL_RSVD_SOBS ; sob++) {
962 hw_sob = &sync_stream_prop->hw_sob[sob];
963 hw_sob->hdev = hdev;
964 hw_sob->sob_id = sync_stream_prop->base_sob_id + sob;
965 hw_sob->sob_addr =
966 hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id);
967 hw_sob->q_idx = q_idx;
968 kref_init(&hw_sob->kref);
969 }
970 }
971
sync_stream_queue_reset(struct hl_device * hdev,u32 q_idx)972 static void sync_stream_queue_reset(struct hl_device *hdev, u32 q_idx)
973 {
974 struct hl_sync_stream_properties *prop =
975 &hdev->kernel_queues[q_idx].sync_stream_prop;
976
977 /*
978 * In case we got here due to a stuck CS, the refcnt might be bigger
979 * than 1 and therefore we reset it.
980 */
981 kref_init(&prop->hw_sob[prop->curr_sob_offset].kref);
982 prop->curr_sob_offset = 0;
983 prop->next_sob_val = 1;
984 }
985
986 /*
987 * queue_init - main initialization function for H/W queue object
988 *
989 * @hdev: pointer to hl_device device structure
990 * @q: pointer to hl_hw_queue queue structure
991 * @hw_queue_id: The id of the H/W queue
992 *
993 * Allocate dma-able memory for the queue and initialize fields
994 * Returns 0 on success
995 */
queue_init(struct hl_device * hdev,struct hl_hw_queue * q,u32 hw_queue_id)996 static int queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
997 u32 hw_queue_id)
998 {
999 int rc;
1000
1001 q->hw_queue_id = hw_queue_id;
1002
1003 switch (q->queue_type) {
1004 case QUEUE_TYPE_EXT:
1005 rc = ext_queue_init(hdev, q);
1006 break;
1007 case QUEUE_TYPE_INT:
1008 rc = int_queue_init(hdev, q);
1009 break;
1010 case QUEUE_TYPE_CPU:
1011 rc = cpu_queue_init(hdev, q);
1012 break;
1013 case QUEUE_TYPE_HW:
1014 rc = hw_queue_init(hdev, q);
1015 break;
1016 case QUEUE_TYPE_NA:
1017 q->valid = 0;
1018 return 0;
1019 default:
1020 dev_crit(hdev->dev, "wrong queue type %d during init\n",
1021 q->queue_type);
1022 rc = -EINVAL;
1023 break;
1024 }
1025
1026 sync_stream_queue_init(hdev, q->hw_queue_id);
1027
1028 if (rc)
1029 return rc;
1030
1031 q->valid = 1;
1032
1033 return 0;
1034 }
1035
1036 /*
1037 * hw_queue_fini - destroy queue
1038 *
1039 * @hdev: pointer to hl_device device structure
1040 * @q: pointer to hl_hw_queue queue structure
1041 *
1042 * Free the queue memory
1043 */
queue_fini(struct hl_device * hdev,struct hl_hw_queue * q)1044 static void queue_fini(struct hl_device *hdev, struct hl_hw_queue *q)
1045 {
1046 if (!q->valid)
1047 return;
1048
1049 /*
1050 * If we arrived here, there are no jobs waiting on this queue
1051 * so we can safely remove it.
1052 * This is because this function can only called when:
1053 * 1. Either a context is deleted, which only can occur if all its
1054 * jobs were finished
1055 * 2. A context wasn't able to be created due to failure or timeout,
1056 * which means there are no jobs on the queue yet
1057 *
1058 * The only exception are the queues of the kernel context, but
1059 * if they are being destroyed, it means that the entire module is
1060 * being removed. If the module is removed, it means there is no open
1061 * user context. It also means that if a job was submitted by
1062 * the kernel driver (e.g. context creation), the job itself was
1063 * released by the kernel driver when a timeout occurred on its
1064 * Completion. Thus, we don't need to release it again.
1065 */
1066
1067 if (q->queue_type == QUEUE_TYPE_INT)
1068 return;
1069
1070 kfree(q->shadow_queue);
1071
1072 if (q->queue_type == QUEUE_TYPE_CPU)
1073 hl_cpu_accessible_dma_pool_free(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address);
1074 else
1075 hl_asic_dma_free_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address,
1076 q->bus_address);
1077 }
1078
hl_hw_queues_create(struct hl_device * hdev)1079 int hl_hw_queues_create(struct hl_device *hdev)
1080 {
1081 struct asic_fixed_properties *asic = &hdev->asic_prop;
1082 struct hl_hw_queue *q;
1083 int i, rc, q_ready_cnt;
1084
1085 hdev->kernel_queues = kcalloc(asic->max_queues,
1086 sizeof(*hdev->kernel_queues), GFP_KERNEL);
1087
1088 if (!hdev->kernel_queues) {
1089 dev_err(hdev->dev, "Not enough memory for H/W queues\n");
1090 return -ENOMEM;
1091 }
1092
1093 /* Initialize the H/W queues */
1094 for (i = 0, q_ready_cnt = 0, q = hdev->kernel_queues;
1095 i < asic->max_queues ; i++, q_ready_cnt++, q++) {
1096
1097 q->queue_type = asic->hw_queues_props[i].type;
1098 q->supports_sync_stream =
1099 asic->hw_queues_props[i].supports_sync_stream;
1100 q->collective_mode = asic->hw_queues_props[i].collective_mode;
1101 q->dram_bd = asic->hw_queues_props[i].dram_bd;
1102
1103 rc = queue_init(hdev, q, i);
1104 if (rc) {
1105 dev_err(hdev->dev,
1106 "failed to initialize queue %d\n", i);
1107 goto release_queues;
1108 }
1109
1110 /* Set DRAM PQ address for the queue if it should be at DRAM */
1111 if (q->dram_bd)
1112 q->pq_dram_address = asic->hw_queues_props[i].q_dram_bd_address;
1113 }
1114
1115 return 0;
1116
1117 release_queues:
1118 for (i = 0, q = hdev->kernel_queues ; i < q_ready_cnt ; i++, q++)
1119 queue_fini(hdev, q);
1120
1121 kfree(hdev->kernel_queues);
1122
1123 return rc;
1124 }
1125
hl_hw_queues_destroy(struct hl_device * hdev)1126 void hl_hw_queues_destroy(struct hl_device *hdev)
1127 {
1128 struct hl_hw_queue *q;
1129 u32 max_queues = hdev->asic_prop.max_queues;
1130 int i;
1131
1132 for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++)
1133 queue_fini(hdev, q);
1134
1135 kfree(hdev->kernel_queues);
1136 }
1137
hl_hw_queue_reset(struct hl_device * hdev,bool hard_reset)1138 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset)
1139 {
1140 struct hl_hw_queue *q;
1141 u32 max_queues = hdev->asic_prop.max_queues;
1142 int i;
1143
1144 for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++) {
1145 if ((!q->valid) ||
1146 ((!hard_reset) && (q->queue_type == QUEUE_TYPE_CPU)))
1147 continue;
1148 q->pi = 0;
1149 atomic_set(&q->ci, 0);
1150
1151 if (q->supports_sync_stream)
1152 sync_stream_queue_reset(hdev, q->hw_queue_id);
1153 }
1154 }
1155