1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2019 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #include "habanalabs.h"
9 
10 #include <linux/slab.h>
11 
12 /*
13  * hl_queue_add_ptr - add to pi or ci and checks if it wraps around
14  *
15  * @ptr: the current pi/ci value
16  * @val: the amount to add
17  *
18  * Add val to ptr. It can go until twice the queue length.
19  */
hl_hw_queue_add_ptr(u32 ptr,u16 val)20 inline u32 hl_hw_queue_add_ptr(u32 ptr, u16 val)
21 {
22 	ptr += val;
23 	ptr &= ((HL_QUEUE_LENGTH << 1) - 1);
24 	return ptr;
25 }
queue_ci_get(atomic_t * ci,u32 queue_len)26 static inline int queue_ci_get(atomic_t *ci, u32 queue_len)
27 {
28 	return atomic_read(ci) & ((queue_len << 1) - 1);
29 }
30 
queue_free_slots(struct hl_hw_queue * q,u32 queue_len)31 static inline int queue_free_slots(struct hl_hw_queue *q, u32 queue_len)
32 {
33 	int delta = (q->pi - queue_ci_get(&q->ci, queue_len));
34 
35 	if (delta >= 0)
36 		return (queue_len - delta);
37 	else
38 		return (abs(delta) - queue_len);
39 }
40 
hl_hw_queue_update_ci(struct hl_cs * cs)41 void hl_hw_queue_update_ci(struct hl_cs *cs)
42 {
43 	struct hl_device *hdev = cs->ctx->hdev;
44 	struct hl_hw_queue *q;
45 	int i;
46 
47 	if (hdev->disabled)
48 		return;
49 
50 	q = &hdev->kernel_queues[0];
51 
52 	/* There are no internal queues if H/W queues are being used */
53 	if (!hdev->asic_prop.max_queues || q->queue_type == QUEUE_TYPE_HW)
54 		return;
55 
56 	/* We must increment CI for every queue that will never get a
57 	 * completion, there are 2 scenarios this can happen:
58 	 * 1. All queues of a non completion CS will never get a completion.
59 	 * 2. Internal queues never gets completion.
60 	 */
61 	for (i = 0 ; i < hdev->asic_prop.max_queues ; i++, q++) {
62 		if (!cs_needs_completion(cs) || q->queue_type == QUEUE_TYPE_INT)
63 			atomic_add(cs->jobs_in_queue_cnt[i], &q->ci);
64 	}
65 }
66 
67 /*
68  * hl_hw_queue_submit_bd() - Submit a buffer descriptor to an external or a
69  *                                H/W queue.
70  * @hdev: pointer to habanalabs device structure
71  * @q: pointer to habanalabs queue structure
72  * @ctl: BD's control word
73  * @len: BD's length
74  * @ptr: BD's pointer
75  *
76  * This function assumes there is enough space on the queue to submit a new
77  * BD to it. It initializes the next BD and calls the device specific
78  * function to set the pi (and doorbell)
79  *
80  * This function must be called when the scheduler mutex is taken
81  *
82  */
hl_hw_queue_submit_bd(struct hl_device * hdev,struct hl_hw_queue * q,u32 ctl,u32 len,u64 ptr)83 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
84 		u32 ctl, u32 len, u64 ptr)
85 {
86 	struct hl_bd *bd;
87 	u64 addr;
88 	int i;
89 
90 	bd = q->kernel_address;
91 	bd += hl_pi_2_offset(q->pi);
92 	bd->ctl = cpu_to_le32(ctl);
93 	bd->len = cpu_to_le32(len);
94 	bd->ptr = cpu_to_le64(ptr);
95 
96 	if (q->dram_bd)
97 		for (i = 0 ; i < 2 ; i++) {
98 			addr = q->pq_dram_address +
99 			((hl_pi_2_offset(q->pi) * sizeof(struct hl_bd))	+ (i * sizeof(u64)));
100 			hdev->asic_funcs->access_dev_mem(hdev, PCI_REGION_DRAM,	addr,
101 						(u64 *)(bd) + i, DEBUGFS_WRITE64);
102 		}
103 
104 	q->pi = hl_queue_inc_ptr(q->pi);
105 
106 	hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
107 }
108 
109 /*
110  * ext_queue_sanity_checks - perform some sanity checks on external queue
111  *
112  * @hdev              : pointer to hl_device structure
113  * @q                 :	pointer to hl_hw_queue structure
114  * @num_of_entries    : how many entries to check for space
115  * @reserve_cq_entry  :	whether to reserve an entry in the cq
116  *
117  * H/W queues spinlock should be taken before calling this function
118  *
119  * Perform the following:
120  * - Make sure we have enough space in the h/w queue
121  * - Make sure we have enough space in the completion queue
122  * - Reserve space in the completion queue (needs to be reversed if there
123  *   is a failure down the road before the actual submission of work). Only
124  *   do this action if reserve_cq_entry is true
125  *
126  */
ext_queue_sanity_checks(struct hl_device * hdev,struct hl_hw_queue * q,int num_of_entries,bool reserve_cq_entry)127 static int ext_queue_sanity_checks(struct hl_device *hdev,
128 				struct hl_hw_queue *q, int num_of_entries,
129 				bool reserve_cq_entry)
130 {
131 	atomic_t *free_slots =
132 			&hdev->completion_queue[q->cq_id].free_slots_cnt;
133 	int free_slots_cnt;
134 
135 	/* Check we have enough space in the queue */
136 	free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
137 
138 	if (free_slots_cnt < num_of_entries) {
139 		dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
140 			q->hw_queue_id, num_of_entries);
141 		return -EAGAIN;
142 	}
143 
144 	if (reserve_cq_entry) {
145 		/*
146 		 * Check we have enough space in the completion queue
147 		 * Add -1 to counter (decrement) unless counter was already 0
148 		 * In that case, CQ is full so we can't submit a new CB because
149 		 * we won't get ack on its completion
150 		 * atomic_add_unless will return 0 if counter was already 0
151 		 */
152 		if (atomic_add_negative(num_of_entries * -1, free_slots)) {
153 			dev_dbg(hdev->dev, "No space for %d on CQ %d\n",
154 				num_of_entries, q->hw_queue_id);
155 			atomic_add(num_of_entries, free_slots);
156 			return -EAGAIN;
157 		}
158 	}
159 
160 	return 0;
161 }
162 
163 /*
164  * int_queue_sanity_checks - perform some sanity checks on internal queue
165  *
166  * @hdev              : pointer to hl_device structure
167  * @q                 :	pointer to hl_hw_queue structure
168  * @num_of_entries    : how many entries to check for space
169  *
170  * H/W queues spinlock should be taken before calling this function
171  *
172  * Perform the following:
173  * - Make sure we have enough space in the h/w queue
174  *
175  */
int_queue_sanity_checks(struct hl_device * hdev,struct hl_hw_queue * q,int num_of_entries)176 static int int_queue_sanity_checks(struct hl_device *hdev,
177 					struct hl_hw_queue *q,
178 					int num_of_entries)
179 {
180 	int free_slots_cnt;
181 
182 	if (num_of_entries > q->int_queue_len) {
183 		dev_err(hdev->dev,
184 			"Cannot populate queue %u with %u jobs\n",
185 			q->hw_queue_id, num_of_entries);
186 		return -ENOMEM;
187 	}
188 
189 	/* Check we have enough space in the queue */
190 	free_slots_cnt = queue_free_slots(q, q->int_queue_len);
191 
192 	if (free_slots_cnt < num_of_entries) {
193 		dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
194 			q->hw_queue_id, num_of_entries);
195 		return -EAGAIN;
196 	}
197 
198 	return 0;
199 }
200 
201 /*
202  * hw_queue_sanity_checks() - Make sure we have enough space in the h/w queue
203  * @hdev: Pointer to hl_device structure.
204  * @q: Pointer to hl_hw_queue structure.
205  * @num_of_entries: How many entries to check for space.
206  *
207  * Notice: We do not reserve queue entries so this function mustn't be called
208  *         more than once per CS for the same queue
209  *
210  */
hw_queue_sanity_checks(struct hl_device * hdev,struct hl_hw_queue * q,int num_of_entries)211 static int hw_queue_sanity_checks(struct hl_device *hdev, struct hl_hw_queue *q,
212 					int num_of_entries)
213 {
214 	int free_slots_cnt;
215 
216 	/* Check we have enough space in the queue */
217 	free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
218 
219 	if (free_slots_cnt < num_of_entries) {
220 		dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
221 			q->hw_queue_id, num_of_entries);
222 		return -EAGAIN;
223 	}
224 
225 	return 0;
226 }
227 
228 /*
229  * hl_hw_queue_send_cb_no_cmpl - send a single CB (not a JOB) without completion
230  *
231  * @hdev: pointer to hl_device structure
232  * @hw_queue_id: Queue's type
233  * @cb_size: size of CB
234  * @cb_ptr: pointer to CB location
235  *
236  * This function sends a single CB, that must NOT generate a completion entry.
237  * Sending CPU messages can be done instead via 'hl_hw_queue_submit_bd()'
238  */
hl_hw_queue_send_cb_no_cmpl(struct hl_device * hdev,u32 hw_queue_id,u32 cb_size,u64 cb_ptr)239 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
240 				u32 cb_size, u64 cb_ptr)
241 {
242 	struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
243 	int rc = 0;
244 
245 	hdev->asic_funcs->hw_queues_lock(hdev);
246 
247 	if (hdev->disabled) {
248 		rc = -EPERM;
249 		goto out;
250 	}
251 
252 	/*
253 	 * hl_hw_queue_send_cb_no_cmpl() is called for queues of a H/W queue
254 	 * type only on init phase, when the queues are empty and being tested,
255 	 * so there is no need for sanity checks.
256 	 */
257 	if (q->queue_type != QUEUE_TYPE_HW) {
258 		rc = ext_queue_sanity_checks(hdev, q, 1, false);
259 		if (rc)
260 			goto out;
261 	}
262 
263 	hl_hw_queue_submit_bd(hdev, q, 0, cb_size, cb_ptr);
264 
265 out:
266 	hdev->asic_funcs->hw_queues_unlock(hdev);
267 
268 	return rc;
269 }
270 
271 /*
272  * ext_queue_schedule_job - submit a JOB to an external queue
273  *
274  * @job: pointer to the job that needs to be submitted to the queue
275  *
276  * This function must be called when the scheduler mutex is taken
277  *
278  */
ext_queue_schedule_job(struct hl_cs_job * job)279 static void ext_queue_schedule_job(struct hl_cs_job *job)
280 {
281 	struct hl_device *hdev = job->cs->ctx->hdev;
282 	struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
283 	struct hl_cq_entry cq_pkt;
284 	struct hl_cq *cq;
285 	u64 cq_addr;
286 	struct hl_cb *cb;
287 	u32 ctl;
288 	u32 len;
289 	u64 ptr;
290 
291 	/*
292 	 * Update the JOB ID inside the BD CTL so the device would know what
293 	 * to write in the completion queue
294 	 */
295 	ctl = ((q->pi << BD_CTL_SHADOW_INDEX_SHIFT) & BD_CTL_SHADOW_INDEX_MASK);
296 
297 	cb = job->patched_cb;
298 	len = job->job_cb_size;
299 	ptr = cb->bus_address;
300 
301 	/* Skip completion flow in case this is a non completion CS */
302 	if (!cs_needs_completion(job->cs))
303 		goto submit_bd;
304 
305 	cq_pkt.data = cpu_to_le32(
306 			((q->pi << CQ_ENTRY_SHADOW_INDEX_SHIFT)
307 				& CQ_ENTRY_SHADOW_INDEX_MASK) |
308 			FIELD_PREP(CQ_ENTRY_SHADOW_INDEX_VALID_MASK, 1) |
309 			FIELD_PREP(CQ_ENTRY_READY_MASK, 1));
310 
311 	/*
312 	 * No need to protect pi_offset because scheduling to the
313 	 * H/W queues is done under the scheduler mutex
314 	 *
315 	 * No need to check if CQ is full because it was already
316 	 * checked in ext_queue_sanity_checks
317 	 */
318 	cq = &hdev->completion_queue[q->cq_id];
319 	cq_addr = cq->bus_address + cq->pi * sizeof(struct hl_cq_entry);
320 
321 	hdev->asic_funcs->add_end_of_cb_packets(hdev, cb->kernel_address, len,
322 						job->user_cb_size,
323 						cq_addr,
324 						le32_to_cpu(cq_pkt.data),
325 						q->msi_vec,
326 						job->contains_dma_pkt);
327 
328 	q->shadow_queue[hl_pi_2_offset(q->pi)] = job;
329 
330 	cq->pi = hl_cq_inc_ptr(cq->pi);
331 
332 submit_bd:
333 	hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
334 }
335 
336 /*
337  * int_queue_schedule_job - submit a JOB to an internal queue
338  *
339  * @job: pointer to the job that needs to be submitted to the queue
340  *
341  * This function must be called when the scheduler mutex is taken
342  *
343  */
int_queue_schedule_job(struct hl_cs_job * job)344 static void int_queue_schedule_job(struct hl_cs_job *job)
345 {
346 	struct hl_device *hdev = job->cs->ctx->hdev;
347 	struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
348 	struct hl_bd bd;
349 	__le64 *pi;
350 
351 	bd.ctl = 0;
352 	bd.len = cpu_to_le32(job->job_cb_size);
353 
354 	if (job->is_kernel_allocated_cb)
355 		/* bus_address is actually a mmu mapped address
356 		 * allocated from an internal pool
357 		 */
358 		bd.ptr = cpu_to_le64(job->user_cb->bus_address);
359 	else
360 		bd.ptr = cpu_to_le64((u64) (uintptr_t) job->user_cb);
361 
362 	pi = q->kernel_address + (q->pi & (q->int_queue_len - 1)) * sizeof(bd);
363 
364 	q->pi++;
365 	q->pi &= ((q->int_queue_len << 1) - 1);
366 
367 	hdev->asic_funcs->pqe_write(hdev, pi, &bd);
368 
369 	hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
370 }
371 
372 /*
373  * hw_queue_schedule_job - submit a JOB to a H/W queue
374  *
375  * @job: pointer to the job that needs to be submitted to the queue
376  *
377  * This function must be called when the scheduler mutex is taken
378  *
379  */
hw_queue_schedule_job(struct hl_cs_job * job)380 static void hw_queue_schedule_job(struct hl_cs_job *job)
381 {
382 	struct hl_device *hdev = job->cs->ctx->hdev;
383 	struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
384 	u64 ptr;
385 	u32 offset, ctl, len;
386 
387 	/*
388 	 * Upon PQE completion, COMP_DATA is used as the write data to the
389 	 * completion queue (QMAN HBW message), and COMP_OFFSET is used as the
390 	 * write address offset in the SM block (QMAN LBW message).
391 	 * The write address offset is calculated as "COMP_OFFSET << 2".
392 	 */
393 	offset = job->cs->sequence & (hdev->asic_prop.max_pending_cs - 1);
394 	ctl = ((offset << BD_CTL_COMP_OFFSET_SHIFT) & BD_CTL_COMP_OFFSET_MASK) |
395 		((q->pi << BD_CTL_COMP_DATA_SHIFT) & BD_CTL_COMP_DATA_MASK);
396 
397 	len = job->job_cb_size;
398 
399 	/*
400 	 * A patched CB is created only if a user CB was allocated by driver and
401 	 * MMU is disabled. If MMU is enabled, the user CB should be used
402 	 * instead. If the user CB wasn't allocated by driver, assume that it
403 	 * holds an address.
404 	 */
405 	if (job->patched_cb)
406 		ptr = job->patched_cb->bus_address;
407 	else if (job->is_kernel_allocated_cb)
408 		ptr = job->user_cb->bus_address;
409 	else
410 		ptr = (u64) (uintptr_t) job->user_cb;
411 
412 	hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr);
413 }
414 
init_signal_cs(struct hl_device * hdev,struct hl_cs_job * job,struct hl_cs_compl * cs_cmpl)415 static int init_signal_cs(struct hl_device *hdev,
416 		struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
417 {
418 	struct hl_sync_stream_properties *prop;
419 	struct hl_hw_sob *hw_sob;
420 	u32 q_idx;
421 	int rc = 0;
422 
423 	q_idx = job->hw_queue_id;
424 	prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
425 	hw_sob = &prop->hw_sob[prop->curr_sob_offset];
426 
427 	cs_cmpl->hw_sob = hw_sob;
428 	cs_cmpl->sob_val = prop->next_sob_val;
429 
430 	dev_dbg(hdev->dev,
431 		"generate signal CB, sob_id: %d, sob val: %u, q_idx: %d, seq: %llu\n",
432 		cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val, q_idx,
433 		cs_cmpl->cs_seq);
434 
435 	/* we set an EB since we must make sure all oeprations are done
436 	 * when sending the signal
437 	 */
438 	hdev->asic_funcs->gen_signal_cb(hdev, job->patched_cb,
439 				cs_cmpl->hw_sob->sob_id, 0, true);
440 
441 	rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, 1,
442 								false);
443 
444 	job->cs->sob_addr_offset = hw_sob->sob_addr;
445 	job->cs->initial_sob_count = prop->next_sob_val - 1;
446 
447 	return rc;
448 }
449 
hl_hw_queue_encaps_sig_set_sob_info(struct hl_device * hdev,struct hl_cs * cs,struct hl_cs_job * job,struct hl_cs_compl * cs_cmpl)450 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
451 			struct hl_cs *cs, struct hl_cs_job *job,
452 			struct hl_cs_compl *cs_cmpl)
453 {
454 	struct hl_cs_encaps_sig_handle *handle = cs->encaps_sig_hdl;
455 	u32 offset = 0;
456 
457 	cs_cmpl->hw_sob = handle->hw_sob;
458 
459 	/* Note that encaps_sig_wait_offset was validated earlier in the flow
460 	 * for offset value which exceeds the max reserved signal count.
461 	 * always decrement 1 of the offset since when the user
462 	 * set offset 1 for example he mean to wait only for the first
463 	 * signal only, which will be pre_sob_val, and if he set offset 2
464 	 * then the value required is (pre_sob_val + 1) and so on...
465 	 * if user set wait offset to 0, then treat it as legacy wait cs,
466 	 * wait for the next signal.
467 	 */
468 	if (job->encaps_sig_wait_offset)
469 		offset = job->encaps_sig_wait_offset - 1;
470 
471 	cs_cmpl->sob_val = handle->pre_sob_val + offset;
472 }
473 
init_wait_cs(struct hl_device * hdev,struct hl_cs * cs,struct hl_cs_job * job,struct hl_cs_compl * cs_cmpl)474 static int init_wait_cs(struct hl_device *hdev, struct hl_cs *cs,
475 		struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
476 {
477 	struct hl_gen_wait_properties wait_prop;
478 	struct hl_sync_stream_properties *prop;
479 	struct hl_cs_compl *signal_cs_cmpl;
480 	u32 q_idx;
481 
482 	q_idx = job->hw_queue_id;
483 	prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
484 
485 	signal_cs_cmpl = container_of(cs->signal_fence,
486 					struct hl_cs_compl,
487 					base_fence);
488 
489 	if (cs->encaps_signals) {
490 		/* use the encaps signal handle stored earlier in the flow
491 		 * and set the SOB information from the encaps
492 		 * signals handle
493 		 */
494 		hl_hw_queue_encaps_sig_set_sob_info(hdev, cs, job, cs_cmpl);
495 
496 		dev_dbg(hdev->dev, "Wait for encaps signals handle, qidx(%u), CS sequence(%llu), sob val: 0x%x, offset: %u\n",
497 				cs->encaps_sig_hdl->q_idx,
498 				cs->encaps_sig_hdl->cs_seq,
499 				cs_cmpl->sob_val,
500 				job->encaps_sig_wait_offset);
501 	} else {
502 		/* Copy the SOB id and value of the signal CS */
503 		cs_cmpl->hw_sob = signal_cs_cmpl->hw_sob;
504 		cs_cmpl->sob_val = signal_cs_cmpl->sob_val;
505 	}
506 
507 	/* check again if the signal cs already completed.
508 	 * if yes then don't send any wait cs since the hw_sob
509 	 * could be in reset already. if signal is not completed
510 	 * then get refcount to hw_sob to prevent resetting the sob
511 	 * while wait cs is not submitted.
512 	 * note that this check is protected by two locks,
513 	 * hw queue lock and completion object lock,
514 	 * and the same completion object lock also protects
515 	 * the hw_sob reset handler function.
516 	 * The hw_queue lock prevent out of sync of hw_sob
517 	 * refcount value, changed by signal/wait flows.
518 	 */
519 	spin_lock(&signal_cs_cmpl->lock);
520 
521 	if (completion_done(&cs->signal_fence->completion)) {
522 		spin_unlock(&signal_cs_cmpl->lock);
523 		return -EINVAL;
524 	}
525 
526 	kref_get(&cs_cmpl->hw_sob->kref);
527 
528 	spin_unlock(&signal_cs_cmpl->lock);
529 
530 	dev_dbg(hdev->dev,
531 		"generate wait CB, sob_id: %d, sob_val: 0x%x, mon_id: %d, q_idx: %d, seq: %llu\n",
532 		cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val,
533 		prop->base_mon_id, q_idx, cs->sequence);
534 
535 	wait_prop.data = (void *) job->patched_cb;
536 	wait_prop.sob_base = cs_cmpl->hw_sob->sob_id;
537 	wait_prop.sob_mask = 0x1;
538 	wait_prop.sob_val = cs_cmpl->sob_val;
539 	wait_prop.mon_id = prop->base_mon_id;
540 	wait_prop.q_idx = q_idx;
541 	wait_prop.size = 0;
542 
543 	hdev->asic_funcs->gen_wait_cb(hdev, &wait_prop);
544 
545 	mb();
546 	hl_fence_put(cs->signal_fence);
547 	cs->signal_fence = NULL;
548 
549 	return 0;
550 }
551 
552 /*
553  * init_signal_wait_cs - initialize a signal/wait CS
554  * @cs: pointer to the signal/wait CS
555  *
556  * H/W queues spinlock should be taken before calling this function
557  */
init_signal_wait_cs(struct hl_cs * cs)558 static int init_signal_wait_cs(struct hl_cs *cs)
559 {
560 	struct hl_ctx *ctx = cs->ctx;
561 	struct hl_device *hdev = ctx->hdev;
562 	struct hl_cs_job *job;
563 	struct hl_cs_compl *cs_cmpl =
564 			container_of(cs->fence, struct hl_cs_compl, base_fence);
565 	int rc = 0;
566 
567 	/* There is only one job in a signal/wait CS */
568 	job = list_first_entry(&cs->job_list, struct hl_cs_job,
569 				cs_node);
570 
571 	if (cs->type & CS_TYPE_SIGNAL)
572 		rc = init_signal_cs(hdev, job, cs_cmpl);
573 	else if (cs->type & CS_TYPE_WAIT)
574 		rc = init_wait_cs(hdev, cs, job, cs_cmpl);
575 
576 	return rc;
577 }
578 
encaps_sig_first_staged_cs_handler(struct hl_device * hdev,struct hl_cs * cs)579 static int encaps_sig_first_staged_cs_handler
580 			(struct hl_device *hdev, struct hl_cs *cs)
581 {
582 	struct hl_cs_compl *cs_cmpl =
583 			container_of(cs->fence,
584 					struct hl_cs_compl, base_fence);
585 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
586 	struct hl_encaps_signals_mgr *mgr;
587 	int rc = 0;
588 
589 	mgr = &cs->ctx->sig_mgr;
590 
591 	spin_lock(&mgr->lock);
592 	encaps_sig_hdl = idr_find(&mgr->handles, cs->encaps_sig_hdl_id);
593 	if (encaps_sig_hdl) {
594 		/*
595 		 * Set handler CS sequence,
596 		 * the CS which contains the encapsulated signals.
597 		 */
598 		encaps_sig_hdl->cs_seq = cs->sequence;
599 		/* store the handle and set encaps signal indication,
600 		 * to be used later in cs_do_release to put the last
601 		 * reference to encaps signals handlers.
602 		 */
603 		cs_cmpl->encaps_signals = true;
604 		cs_cmpl->encaps_sig_hdl = encaps_sig_hdl;
605 
606 		/* set hw_sob pointer in completion object
607 		 * since it's used in cs_do_release flow to put
608 		 * refcount to sob
609 		 */
610 		cs_cmpl->hw_sob = encaps_sig_hdl->hw_sob;
611 		cs_cmpl->sob_val = encaps_sig_hdl->pre_sob_val +
612 						encaps_sig_hdl->count;
613 
614 		dev_dbg(hdev->dev, "CS seq (%llu) added to encaps signal handler id (%u), count(%u), qidx(%u), sob(%u), val(%u)\n",
615 				cs->sequence, encaps_sig_hdl->id,
616 				encaps_sig_hdl->count,
617 				encaps_sig_hdl->q_idx,
618 				cs_cmpl->hw_sob->sob_id,
619 				cs_cmpl->sob_val);
620 
621 	} else {
622 		dev_err(hdev->dev, "encaps handle id(%u) wasn't found!\n",
623 				cs->encaps_sig_hdl_id);
624 		rc = -EINVAL;
625 	}
626 
627 	spin_unlock(&mgr->lock);
628 
629 	return rc;
630 }
631 
632 /*
633  * hl_hw_queue_schedule_cs - schedule a command submission
634  * @cs: pointer to the CS
635  */
hl_hw_queue_schedule_cs(struct hl_cs * cs)636 int hl_hw_queue_schedule_cs(struct hl_cs *cs)
637 {
638 	enum hl_device_status status;
639 	struct hl_cs_counters_atomic *cntr;
640 	struct hl_ctx *ctx = cs->ctx;
641 	struct hl_device *hdev = ctx->hdev;
642 	struct hl_cs_job *job, *tmp;
643 	struct hl_hw_queue *q;
644 	int rc = 0, i, cq_cnt;
645 	bool first_entry;
646 	u32 max_queues;
647 
648 	cntr = &hdev->aggregated_cs_counters;
649 
650 	hdev->asic_funcs->hw_queues_lock(hdev);
651 
652 	if (!hl_device_operational(hdev, &status)) {
653 		atomic64_inc(&cntr->device_in_reset_drop_cnt);
654 		atomic64_inc(&ctx->cs_counters.device_in_reset_drop_cnt);
655 		dev_err(hdev->dev,
656 			"device is %s, CS rejected!\n", hdev->status[status]);
657 		rc = -EPERM;
658 		goto out;
659 	}
660 
661 	max_queues = hdev->asic_prop.max_queues;
662 
663 	q = &hdev->kernel_queues[0];
664 	for (i = 0, cq_cnt = 0 ; i < max_queues ; i++, q++) {
665 		if (cs->jobs_in_queue_cnt[i]) {
666 			switch (q->queue_type) {
667 			case QUEUE_TYPE_EXT:
668 				rc = ext_queue_sanity_checks(hdev, q,
669 						cs->jobs_in_queue_cnt[i],
670 						cs_needs_completion(cs) ?
671 								true : false);
672 				break;
673 			case QUEUE_TYPE_INT:
674 				rc = int_queue_sanity_checks(hdev, q,
675 						cs->jobs_in_queue_cnt[i]);
676 				break;
677 			case QUEUE_TYPE_HW:
678 				rc = hw_queue_sanity_checks(hdev, q,
679 						cs->jobs_in_queue_cnt[i]);
680 				break;
681 			default:
682 				dev_err(hdev->dev, "Queue type %d is invalid\n",
683 					q->queue_type);
684 				rc = -EINVAL;
685 				break;
686 			}
687 
688 			if (rc) {
689 				atomic64_inc(
690 					&ctx->cs_counters.queue_full_drop_cnt);
691 				atomic64_inc(&cntr->queue_full_drop_cnt);
692 				goto unroll_cq_resv;
693 			}
694 
695 			if (q->queue_type == QUEUE_TYPE_EXT)
696 				cq_cnt++;
697 		}
698 	}
699 
700 	if ((cs->type == CS_TYPE_SIGNAL) || (cs->type == CS_TYPE_WAIT)) {
701 		rc = init_signal_wait_cs(cs);
702 		if (rc)
703 			goto unroll_cq_resv;
704 	} else if (cs->type == CS_TYPE_COLLECTIVE_WAIT) {
705 		rc = hdev->asic_funcs->collective_wait_init_cs(cs);
706 		if (rc)
707 			goto unroll_cq_resv;
708 	}
709 
710 	rc = hdev->asic_funcs->pre_schedule_cs(cs);
711 	if (rc) {
712 		dev_err(hdev->dev,
713 			"Failed in pre-submission operations of CS %d.%llu\n",
714 			ctx->asid, cs->sequence);
715 		goto unroll_cq_resv;
716 	}
717 
718 	hdev->shadow_cs_queue[cs->sequence &
719 				(hdev->asic_prop.max_pending_cs - 1)] = cs;
720 
721 	if (cs->encaps_signals && cs->staged_first) {
722 		rc = encaps_sig_first_staged_cs_handler(hdev, cs);
723 		if (rc)
724 			goto unroll_cq_resv;
725 	}
726 
727 	spin_lock(&hdev->cs_mirror_lock);
728 
729 	/* Verify staged CS exists and add to the staged list */
730 	if (cs->staged_cs && !cs->staged_first) {
731 		struct hl_cs *staged_cs;
732 
733 		staged_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence);
734 		if (!staged_cs) {
735 			dev_err(hdev->dev,
736 				"Cannot find staged submission sequence %llu",
737 				cs->staged_sequence);
738 			rc = -EINVAL;
739 			goto unlock_cs_mirror;
740 		}
741 
742 		if (is_staged_cs_last_exists(hdev, staged_cs)) {
743 			dev_err(hdev->dev,
744 				"Staged submission sequence %llu already submitted",
745 				cs->staged_sequence);
746 			rc = -EINVAL;
747 			goto unlock_cs_mirror;
748 		}
749 
750 		list_add_tail(&cs->staged_cs_node, &staged_cs->staged_cs_node);
751 
752 		/* update stream map of the first CS */
753 		if (hdev->supports_wait_for_multi_cs)
754 			staged_cs->fence->stream_master_qid_map |=
755 					cs->fence->stream_master_qid_map;
756 	}
757 
758 	list_add_tail(&cs->mirror_node, &hdev->cs_mirror_list);
759 
760 	/* Queue TDR if the CS is the first entry and if timeout is wanted */
761 	first_entry = list_first_entry(&hdev->cs_mirror_list,
762 					struct hl_cs, mirror_node) == cs;
763 	if ((hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT) &&
764 				first_entry && cs_needs_timeout(cs)) {
765 		cs->tdr_active = true;
766 		schedule_delayed_work(&cs->work_tdr, cs->timeout_jiffies);
767 
768 	}
769 
770 	spin_unlock(&hdev->cs_mirror_lock);
771 
772 	list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
773 		switch (job->queue_type) {
774 		case QUEUE_TYPE_EXT:
775 			ext_queue_schedule_job(job);
776 			break;
777 		case QUEUE_TYPE_INT:
778 			int_queue_schedule_job(job);
779 			break;
780 		case QUEUE_TYPE_HW:
781 			hw_queue_schedule_job(job);
782 			break;
783 		default:
784 			break;
785 		}
786 
787 	cs->submitted = true;
788 
789 	goto out;
790 
791 unlock_cs_mirror:
792 	spin_unlock(&hdev->cs_mirror_lock);
793 unroll_cq_resv:
794 	q = &hdev->kernel_queues[0];
795 	for (i = 0 ; (i < max_queues) && (cq_cnt > 0) ; i++, q++) {
796 		if ((q->queue_type == QUEUE_TYPE_EXT) &&
797 						(cs->jobs_in_queue_cnt[i])) {
798 			atomic_t *free_slots =
799 				&hdev->completion_queue[i].free_slots_cnt;
800 			atomic_add(cs->jobs_in_queue_cnt[i], free_slots);
801 			cq_cnt--;
802 		}
803 	}
804 
805 out:
806 	hdev->asic_funcs->hw_queues_unlock(hdev);
807 
808 	return rc;
809 }
810 
811 /*
812  * hl_hw_queue_inc_ci_kernel - increment ci for kernel's queue
813  *
814  * @hdev: pointer to hl_device structure
815  * @hw_queue_id: which queue to increment its ci
816  */
hl_hw_queue_inc_ci_kernel(struct hl_device * hdev,u32 hw_queue_id)817 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id)
818 {
819 	struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
820 
821 	atomic_inc(&q->ci);
822 }
823 
ext_and_cpu_queue_init(struct hl_device * hdev,struct hl_hw_queue * q,bool is_cpu_queue)824 static int ext_and_cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
825 					bool is_cpu_queue)
826 {
827 	void *p;
828 	int rc;
829 
830 	if (is_cpu_queue)
831 		p = hl_cpu_accessible_dma_pool_alloc(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address);
832 	else
833 		p = hl_asic_dma_alloc_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address,
834 						GFP_KERNEL | __GFP_ZERO);
835 	if (!p)
836 		return -ENOMEM;
837 
838 	q->kernel_address = p;
839 
840 	q->shadow_queue = kmalloc_array(HL_QUEUE_LENGTH, sizeof(struct hl_cs_job *), GFP_KERNEL);
841 	if (!q->shadow_queue) {
842 		dev_err(hdev->dev,
843 			"Failed to allocate shadow queue for H/W queue %d\n",
844 			q->hw_queue_id);
845 		rc = -ENOMEM;
846 		goto free_queue;
847 	}
848 
849 	/* Make sure read/write pointers are initialized to start of queue */
850 	atomic_set(&q->ci, 0);
851 	q->pi = 0;
852 
853 	return 0;
854 
855 free_queue:
856 	if (is_cpu_queue)
857 		hl_cpu_accessible_dma_pool_free(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address);
858 	else
859 		hl_asic_dma_free_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address,
860 						q->bus_address);
861 
862 	return rc;
863 }
864 
int_queue_init(struct hl_device * hdev,struct hl_hw_queue * q)865 static int int_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
866 {
867 	void *p;
868 
869 	p = hdev->asic_funcs->get_int_queue_base(hdev, q->hw_queue_id,
870 					&q->bus_address, &q->int_queue_len);
871 	if (!p) {
872 		dev_err(hdev->dev,
873 			"Failed to get base address for internal queue %d\n",
874 			q->hw_queue_id);
875 		return -EFAULT;
876 	}
877 
878 	q->kernel_address = p;
879 	q->pi = 0;
880 	atomic_set(&q->ci, 0);
881 
882 	return 0;
883 }
884 
cpu_queue_init(struct hl_device * hdev,struct hl_hw_queue * q)885 static int cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
886 {
887 	return ext_and_cpu_queue_init(hdev, q, true);
888 }
889 
ext_queue_init(struct hl_device * hdev,struct hl_hw_queue * q)890 static int ext_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
891 {
892 	return ext_and_cpu_queue_init(hdev, q, false);
893 }
894 
hw_queue_init(struct hl_device * hdev,struct hl_hw_queue * q)895 static int hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
896 {
897 	void *p;
898 
899 	p = hl_asic_dma_alloc_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address,
900 					GFP_KERNEL | __GFP_ZERO);
901 	if (!p)
902 		return -ENOMEM;
903 
904 	q->kernel_address = p;
905 
906 	/* Make sure read/write pointers are initialized to start of queue */
907 	atomic_set(&q->ci, 0);
908 	q->pi = 0;
909 
910 	return 0;
911 }
912 
sync_stream_queue_init(struct hl_device * hdev,u32 q_idx)913 static void sync_stream_queue_init(struct hl_device *hdev, u32 q_idx)
914 {
915 	struct hl_sync_stream_properties *sync_stream_prop;
916 	struct asic_fixed_properties *prop = &hdev->asic_prop;
917 	struct hl_hw_sob *hw_sob;
918 	int sob, reserved_mon_idx, queue_idx;
919 
920 	sync_stream_prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
921 
922 	/* We use 'collective_mon_idx' as a running index in order to reserve
923 	 * monitors for collective master/slave queues.
924 	 * collective master queue gets 2 reserved monitors
925 	 * collective slave queue gets 1 reserved monitor
926 	 */
927 	if (hdev->kernel_queues[q_idx].collective_mode ==
928 			HL_COLLECTIVE_MASTER) {
929 		reserved_mon_idx = hdev->collective_mon_idx;
930 
931 		/* reserve the first monitor for collective master queue */
932 		sync_stream_prop->collective_mstr_mon_id[0] =
933 			prop->collective_first_mon + reserved_mon_idx;
934 
935 		/* reserve the second monitor for collective master queue */
936 		sync_stream_prop->collective_mstr_mon_id[1] =
937 			prop->collective_first_mon + reserved_mon_idx + 1;
938 
939 		hdev->collective_mon_idx += HL_COLLECTIVE_RSVD_MSTR_MONS;
940 	} else if (hdev->kernel_queues[q_idx].collective_mode ==
941 			HL_COLLECTIVE_SLAVE) {
942 		reserved_mon_idx = hdev->collective_mon_idx++;
943 
944 		/* reserve a monitor for collective slave queue */
945 		sync_stream_prop->collective_slave_mon_id =
946 			prop->collective_first_mon + reserved_mon_idx;
947 	}
948 
949 	if (!hdev->kernel_queues[q_idx].supports_sync_stream)
950 		return;
951 
952 	queue_idx = hdev->sync_stream_queue_idx++;
953 
954 	sync_stream_prop->base_sob_id = prop->sync_stream_first_sob +
955 			(queue_idx * HL_RSVD_SOBS);
956 	sync_stream_prop->base_mon_id = prop->sync_stream_first_mon +
957 			(queue_idx * HL_RSVD_MONS);
958 	sync_stream_prop->next_sob_val = 1;
959 	sync_stream_prop->curr_sob_offset = 0;
960 
961 	for (sob = 0 ; sob < HL_RSVD_SOBS ; sob++) {
962 		hw_sob = &sync_stream_prop->hw_sob[sob];
963 		hw_sob->hdev = hdev;
964 		hw_sob->sob_id = sync_stream_prop->base_sob_id + sob;
965 		hw_sob->sob_addr =
966 			hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id);
967 		hw_sob->q_idx = q_idx;
968 		kref_init(&hw_sob->kref);
969 	}
970 }
971 
sync_stream_queue_reset(struct hl_device * hdev,u32 q_idx)972 static void sync_stream_queue_reset(struct hl_device *hdev, u32 q_idx)
973 {
974 	struct hl_sync_stream_properties *prop =
975 			&hdev->kernel_queues[q_idx].sync_stream_prop;
976 
977 	/*
978 	 * In case we got here due to a stuck CS, the refcnt might be bigger
979 	 * than 1 and therefore we reset it.
980 	 */
981 	kref_init(&prop->hw_sob[prop->curr_sob_offset].kref);
982 	prop->curr_sob_offset = 0;
983 	prop->next_sob_val = 1;
984 }
985 
986 /*
987  * queue_init - main initialization function for H/W queue object
988  *
989  * @hdev: pointer to hl_device device structure
990  * @q: pointer to hl_hw_queue queue structure
991  * @hw_queue_id: The id of the H/W queue
992  *
993  * Allocate dma-able memory for the queue and initialize fields
994  * Returns 0 on success
995  */
queue_init(struct hl_device * hdev,struct hl_hw_queue * q,u32 hw_queue_id)996 static int queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
997 			u32 hw_queue_id)
998 {
999 	int rc;
1000 
1001 	q->hw_queue_id = hw_queue_id;
1002 
1003 	switch (q->queue_type) {
1004 	case QUEUE_TYPE_EXT:
1005 		rc = ext_queue_init(hdev, q);
1006 		break;
1007 	case QUEUE_TYPE_INT:
1008 		rc = int_queue_init(hdev, q);
1009 		break;
1010 	case QUEUE_TYPE_CPU:
1011 		rc = cpu_queue_init(hdev, q);
1012 		break;
1013 	case QUEUE_TYPE_HW:
1014 		rc = hw_queue_init(hdev, q);
1015 		break;
1016 	case QUEUE_TYPE_NA:
1017 		q->valid = 0;
1018 		return 0;
1019 	default:
1020 		dev_crit(hdev->dev, "wrong queue type %d during init\n",
1021 			q->queue_type);
1022 		rc = -EINVAL;
1023 		break;
1024 	}
1025 
1026 	sync_stream_queue_init(hdev, q->hw_queue_id);
1027 
1028 	if (rc)
1029 		return rc;
1030 
1031 	q->valid = 1;
1032 
1033 	return 0;
1034 }
1035 
1036 /*
1037  * hw_queue_fini - destroy queue
1038  *
1039  * @hdev: pointer to hl_device device structure
1040  * @q: pointer to hl_hw_queue queue structure
1041  *
1042  * Free the queue memory
1043  */
queue_fini(struct hl_device * hdev,struct hl_hw_queue * q)1044 static void queue_fini(struct hl_device *hdev, struct hl_hw_queue *q)
1045 {
1046 	if (!q->valid)
1047 		return;
1048 
1049 	/*
1050 	 * If we arrived here, there are no jobs waiting on this queue
1051 	 * so we can safely remove it.
1052 	 * This is because this function can only called when:
1053 	 * 1. Either a context is deleted, which only can occur if all its
1054 	 *    jobs were finished
1055 	 * 2. A context wasn't able to be created due to failure or timeout,
1056 	 *    which means there are no jobs on the queue yet
1057 	 *
1058 	 * The only exception are the queues of the kernel context, but
1059 	 * if they are being destroyed, it means that the entire module is
1060 	 * being removed. If the module is removed, it means there is no open
1061 	 * user context. It also means that if a job was submitted by
1062 	 * the kernel driver (e.g. context creation), the job itself was
1063 	 * released by the kernel driver when a timeout occurred on its
1064 	 * Completion. Thus, we don't need to release it again.
1065 	 */
1066 
1067 	if (q->queue_type == QUEUE_TYPE_INT)
1068 		return;
1069 
1070 	kfree(q->shadow_queue);
1071 
1072 	if (q->queue_type == QUEUE_TYPE_CPU)
1073 		hl_cpu_accessible_dma_pool_free(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address);
1074 	else
1075 		hl_asic_dma_free_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address,
1076 						q->bus_address);
1077 }
1078 
hl_hw_queues_create(struct hl_device * hdev)1079 int hl_hw_queues_create(struct hl_device *hdev)
1080 {
1081 	struct asic_fixed_properties *asic = &hdev->asic_prop;
1082 	struct hl_hw_queue *q;
1083 	int i, rc, q_ready_cnt;
1084 
1085 	hdev->kernel_queues = kcalloc(asic->max_queues,
1086 				sizeof(*hdev->kernel_queues), GFP_KERNEL);
1087 
1088 	if (!hdev->kernel_queues) {
1089 		dev_err(hdev->dev, "Not enough memory for H/W queues\n");
1090 		return -ENOMEM;
1091 	}
1092 
1093 	/* Initialize the H/W queues */
1094 	for (i = 0, q_ready_cnt = 0, q = hdev->kernel_queues;
1095 			i < asic->max_queues ; i++, q_ready_cnt++, q++) {
1096 
1097 		q->queue_type = asic->hw_queues_props[i].type;
1098 		q->supports_sync_stream =
1099 				asic->hw_queues_props[i].supports_sync_stream;
1100 		q->collective_mode = asic->hw_queues_props[i].collective_mode;
1101 		q->dram_bd = asic->hw_queues_props[i].dram_bd;
1102 
1103 		rc = queue_init(hdev, q, i);
1104 		if (rc) {
1105 			dev_err(hdev->dev,
1106 				"failed to initialize queue %d\n", i);
1107 			goto release_queues;
1108 		}
1109 
1110 		/* Set DRAM PQ address for the queue if it should be at DRAM */
1111 		if (q->dram_bd)
1112 			q->pq_dram_address = asic->hw_queues_props[i].q_dram_bd_address;
1113 	}
1114 
1115 	return 0;
1116 
1117 release_queues:
1118 	for (i = 0, q = hdev->kernel_queues ; i < q_ready_cnt ; i++, q++)
1119 		queue_fini(hdev, q);
1120 
1121 	kfree(hdev->kernel_queues);
1122 
1123 	return rc;
1124 }
1125 
hl_hw_queues_destroy(struct hl_device * hdev)1126 void hl_hw_queues_destroy(struct hl_device *hdev)
1127 {
1128 	struct hl_hw_queue *q;
1129 	u32 max_queues = hdev->asic_prop.max_queues;
1130 	int i;
1131 
1132 	for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++)
1133 		queue_fini(hdev, q);
1134 
1135 	kfree(hdev->kernel_queues);
1136 }
1137 
hl_hw_queue_reset(struct hl_device * hdev,bool hard_reset)1138 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset)
1139 {
1140 	struct hl_hw_queue *q;
1141 	u32 max_queues = hdev->asic_prop.max_queues;
1142 	int i;
1143 
1144 	for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++) {
1145 		if ((!q->valid) ||
1146 			((!hard_reset) && (q->queue_type == QUEUE_TYPE_CPU)))
1147 			continue;
1148 		q->pi = 0;
1149 		atomic_set(&q->ci, 0);
1150 
1151 		if (q->supports_sync_stream)
1152 			sync_stream_queue_reset(hdev, q->hw_queue_id);
1153 	}
1154 }
1155