1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
4 * {mikejc|engebret}@us.ibm.com
5 *
6 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 *
8 * SMP scalability work:
9 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
10 *
11 * Module name: htab.c
12 *
13 * Description:
14 * PowerPC Hashed Page Table functions
15 */
16
17 #undef DEBUG
18 #undef DEBUG_LOW
19
20 #define pr_fmt(fmt) "hash-mmu: " fmt
21 #include <linux/spinlock.h>
22 #include <linux/errno.h>
23 #include <linux/sched/mm.h>
24 #include <linux/proc_fs.h>
25 #include <linux/stat.h>
26 #include <linux/sysctl.h>
27 #include <linux/export.h>
28 #include <linux/ctype.h>
29 #include <linux/cache.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/memblock.h>
33 #include <linux/context_tracking.h>
34 #include <linux/libfdt.h>
35 #include <linux/pkeys.h>
36 #include <linux/hugetlb.h>
37 #include <linux/cpu.h>
38 #include <linux/pgtable.h>
39 #include <linux/debugfs.h>
40 #include <linux/random.h>
41 #include <linux/elf-randomize.h>
42 #include <linux/of_fdt.h>
43
44 #include <asm/interrupt.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/mmu_context.h>
48 #include <asm/page.h>
49 #include <asm/types.h>
50 #include <linux/uaccess.h>
51 #include <asm/machdep.h>
52 #include <asm/io.h>
53 #include <asm/eeh.h>
54 #include <asm/tlb.h>
55 #include <asm/cacheflush.h>
56 #include <asm/cputable.h>
57 #include <asm/sections.h>
58 #include <asm/copro.h>
59 #include <asm/udbg.h>
60 #include <asm/code-patching.h>
61 #include <asm/fadump.h>
62 #include <asm/firmware.h>
63 #include <asm/tm.h>
64 #include <asm/trace.h>
65 #include <asm/ps3.h>
66 #include <asm/pte-walk.h>
67 #include <asm/asm-prototypes.h>
68 #include <asm/ultravisor.h>
69
70 #include <mm/mmu_decl.h>
71
72 #include "internal.h"
73
74
75 #ifdef DEBUG
76 #define DBG(fmt...) udbg_printf(fmt)
77 #else
78 #define DBG(fmt...)
79 #endif
80
81 #ifdef DEBUG_LOW
82 #define DBG_LOW(fmt...) udbg_printf(fmt)
83 #else
84 #define DBG_LOW(fmt...)
85 #endif
86
87 #define KB (1024)
88 #define MB (1024*KB)
89 #define GB (1024L*MB)
90
91 /*
92 * Note: pte --> Linux PTE
93 * HPTE --> PowerPC Hashed Page Table Entry
94 *
95 * Execution context:
96 * htab_initialize is called with the MMU off (of course), but
97 * the kernel has been copied down to zero so it can directly
98 * reference global data. At this point it is very difficult
99 * to print debug info.
100 *
101 */
102
103 static unsigned long _SDR1;
104
105 u8 hpte_page_sizes[1 << LP_BITS];
106 EXPORT_SYMBOL_GPL(hpte_page_sizes);
107
108 struct hash_pte *htab_address;
109 unsigned long htab_size_bytes;
110 unsigned long htab_hash_mask;
111 EXPORT_SYMBOL_GPL(htab_hash_mask);
112 int mmu_linear_psize = MMU_PAGE_4K;
113 EXPORT_SYMBOL_GPL(mmu_linear_psize);
114 int mmu_virtual_psize = MMU_PAGE_4K;
115 int mmu_vmalloc_psize = MMU_PAGE_4K;
116 EXPORT_SYMBOL_GPL(mmu_vmalloc_psize);
117 int mmu_io_psize = MMU_PAGE_4K;
118 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
119 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
120 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
121 u16 mmu_slb_size = 64;
122 EXPORT_SYMBOL_GPL(mmu_slb_size);
123 #ifdef CONFIG_PPC_64K_PAGES
124 int mmu_ci_restrictions;
125 #endif
126 static u8 *linear_map_hash_slots;
127 static unsigned long linear_map_hash_count;
128 struct mmu_hash_ops mmu_hash_ops __ro_after_init;
129 EXPORT_SYMBOL(mmu_hash_ops);
130
131 /*
132 * These are definitions of page sizes arrays to be used when none
133 * is provided by the firmware.
134 */
135
136 /*
137 * Fallback (4k pages only)
138 */
139 static struct mmu_psize_def mmu_psize_defaults[] = {
140 [MMU_PAGE_4K] = {
141 .shift = 12,
142 .sllp = 0,
143 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
144 .avpnm = 0,
145 .tlbiel = 0,
146 },
147 };
148
149 /*
150 * POWER4, GPUL, POWER5
151 *
152 * Support for 16Mb large pages
153 */
154 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
155 [MMU_PAGE_4K] = {
156 .shift = 12,
157 .sllp = 0,
158 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
159 .avpnm = 0,
160 .tlbiel = 1,
161 },
162 [MMU_PAGE_16M] = {
163 .shift = 24,
164 .sllp = SLB_VSID_L,
165 .penc = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
166 [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
167 .avpnm = 0x1UL,
168 .tlbiel = 0,
169 },
170 };
171
tlbiel_hash_set_isa206(unsigned int set,unsigned int is)172 static inline void tlbiel_hash_set_isa206(unsigned int set, unsigned int is)
173 {
174 unsigned long rb;
175
176 rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
177
178 asm volatile("tlbiel %0" : : "r" (rb));
179 }
180
181 /*
182 * tlbiel instruction for hash, set invalidation
183 * i.e., r=1 and is=01 or is=10 or is=11
184 */
tlbiel_hash_set_isa300(unsigned int set,unsigned int is,unsigned int pid,unsigned int ric,unsigned int prs)185 static __always_inline void tlbiel_hash_set_isa300(unsigned int set, unsigned int is,
186 unsigned int pid,
187 unsigned int ric, unsigned int prs)
188 {
189 unsigned long rb;
190 unsigned long rs;
191 unsigned int r = 0; /* hash format */
192
193 rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
194 rs = ((unsigned long)pid << PPC_BITLSHIFT(31));
195
196 asm volatile(PPC_TLBIEL(%0, %1, %2, %3, %4)
197 : : "r"(rb), "r"(rs), "i"(ric), "i"(prs), "i"(r)
198 : "memory");
199 }
200
201
tlbiel_all_isa206(unsigned int num_sets,unsigned int is)202 static void tlbiel_all_isa206(unsigned int num_sets, unsigned int is)
203 {
204 unsigned int set;
205
206 asm volatile("ptesync": : :"memory");
207
208 for (set = 0; set < num_sets; set++)
209 tlbiel_hash_set_isa206(set, is);
210
211 ppc_after_tlbiel_barrier();
212 }
213
tlbiel_all_isa300(unsigned int num_sets,unsigned int is)214 static void tlbiel_all_isa300(unsigned int num_sets, unsigned int is)
215 {
216 unsigned int set;
217
218 asm volatile("ptesync": : :"memory");
219
220 /*
221 * Flush the partition table cache if this is HV mode.
222 */
223 if (early_cpu_has_feature(CPU_FTR_HVMODE))
224 tlbiel_hash_set_isa300(0, is, 0, 2, 0);
225
226 /*
227 * Now invalidate the process table cache. UPRT=0 HPT modes (what
228 * current hardware implements) do not use the process table, but
229 * add the flushes anyway.
230 *
231 * From ISA v3.0B p. 1078:
232 * The following forms are invalid.
233 * * PRS=1, R=0, and RIC!=2 (The only process-scoped
234 * HPT caching is of the Process Table.)
235 */
236 tlbiel_hash_set_isa300(0, is, 0, 2, 1);
237
238 /*
239 * Then flush the sets of the TLB proper. Hash mode uses
240 * partition scoped TLB translations, which may be flushed
241 * in !HV mode.
242 */
243 for (set = 0; set < num_sets; set++)
244 tlbiel_hash_set_isa300(set, is, 0, 0, 0);
245
246 ppc_after_tlbiel_barrier();
247
248 asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT "; isync" : : :"memory");
249 }
250
hash__tlbiel_all(unsigned int action)251 void hash__tlbiel_all(unsigned int action)
252 {
253 unsigned int is;
254
255 switch (action) {
256 case TLB_INVAL_SCOPE_GLOBAL:
257 is = 3;
258 break;
259 case TLB_INVAL_SCOPE_LPID:
260 is = 2;
261 break;
262 default:
263 BUG();
264 }
265
266 if (early_cpu_has_feature(CPU_FTR_ARCH_300))
267 tlbiel_all_isa300(POWER9_TLB_SETS_HASH, is);
268 else if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
269 tlbiel_all_isa206(POWER8_TLB_SETS, is);
270 else if (early_cpu_has_feature(CPU_FTR_ARCH_206))
271 tlbiel_all_isa206(POWER7_TLB_SETS, is);
272 else
273 WARN(1, "%s called on pre-POWER7 CPU\n", __func__);
274 }
275
276 /*
277 * 'R' and 'C' update notes:
278 * - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
279 * create writeable HPTEs without C set, because the hcall H_PROTECT
280 * that we use in that case will not update C
281 * - The above is however not a problem, because we also don't do that
282 * fancy "no flush" variant of eviction and we use H_REMOVE which will
283 * do the right thing and thus we don't have the race I described earlier
284 *
285 * - Under bare metal, we do have the race, so we need R and C set
286 * - We make sure R is always set and never lost
287 * - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
288 */
htab_convert_pte_flags(unsigned long pteflags,unsigned long flags)289 unsigned long htab_convert_pte_flags(unsigned long pteflags, unsigned long flags)
290 {
291 unsigned long rflags = 0;
292
293 /* _PAGE_EXEC -> NOEXEC */
294 if ((pteflags & _PAGE_EXEC) == 0)
295 rflags |= HPTE_R_N;
296 /*
297 * PPP bits:
298 * Linux uses slb key 0 for kernel and 1 for user.
299 * kernel RW areas are mapped with PPP=0b000
300 * User area is mapped with PPP=0b010 for read/write
301 * or PPP=0b011 for read-only (including writeable but clean pages).
302 */
303 if (pteflags & _PAGE_PRIVILEGED) {
304 /*
305 * Kernel read only mapped with ppp bits 0b110
306 */
307 if (!(pteflags & _PAGE_WRITE)) {
308 if (mmu_has_feature(MMU_FTR_KERNEL_RO))
309 rflags |= (HPTE_R_PP0 | 0x2);
310 else
311 rflags |= 0x3;
312 }
313 VM_WARN_ONCE(!(pteflags & _PAGE_RWX), "no-access mapping request");
314 } else {
315 if (pteflags & _PAGE_RWX)
316 rflags |= 0x2;
317 /*
318 * We should never hit this in normal fault handling because
319 * a permission check (check_pte_access()) will bubble this
320 * to higher level linux handler even for PAGE_NONE.
321 */
322 VM_WARN_ONCE(!(pteflags & _PAGE_RWX), "no-access mapping request");
323 if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
324 rflags |= 0x1;
325 }
326 /*
327 * We can't allow hardware to update hpte bits. Hence always
328 * set 'R' bit and set 'C' if it is a write fault
329 */
330 rflags |= HPTE_R_R;
331
332 if (pteflags & _PAGE_DIRTY)
333 rflags |= HPTE_R_C;
334 /*
335 * Add in WIG bits
336 */
337
338 if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
339 rflags |= HPTE_R_I;
340 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
341 rflags |= (HPTE_R_I | HPTE_R_G);
342 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
343 rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
344 else
345 /*
346 * Add memory coherence if cache inhibited is not set
347 */
348 rflags |= HPTE_R_M;
349
350 rflags |= pte_to_hpte_pkey_bits(pteflags, flags);
351 return rflags;
352 }
353
htab_bolt_mapping(unsigned long vstart,unsigned long vend,unsigned long pstart,unsigned long prot,int psize,int ssize)354 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
355 unsigned long pstart, unsigned long prot,
356 int psize, int ssize)
357 {
358 unsigned long vaddr, paddr;
359 unsigned int step, shift;
360 int ret = 0;
361
362 shift = mmu_psize_defs[psize].shift;
363 step = 1 << shift;
364
365 prot = htab_convert_pte_flags(prot, HPTE_USE_KERNEL_KEY);
366
367 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
368 vstart, vend, pstart, prot, psize, ssize);
369
370 /* Carefully map only the possible range */
371 vaddr = ALIGN(vstart, step);
372 paddr = ALIGN(pstart, step);
373 vend = ALIGN_DOWN(vend, step);
374
375 for (; vaddr < vend; vaddr += step, paddr += step) {
376 unsigned long hash, hpteg;
377 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
378 unsigned long vpn = hpt_vpn(vaddr, vsid, ssize);
379 unsigned long tprot = prot;
380 bool secondary_hash = false;
381
382 /*
383 * If we hit a bad address return error.
384 */
385 if (!vsid)
386 return -1;
387 /* Make kernel text executable */
388 if (overlaps_kernel_text(vaddr, vaddr + step))
389 tprot &= ~HPTE_R_N;
390
391 /*
392 * If relocatable, check if it overlaps interrupt vectors that
393 * are copied down to real 0. For relocatable kernel
394 * (e.g. kdump case) we copy interrupt vectors down to real
395 * address 0. Mark that region as executable. This is
396 * because on p8 system with relocation on exception feature
397 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
398 * in order to execute the interrupt handlers in virtual
399 * mode the vector region need to be marked as executable.
400 */
401 if ((PHYSICAL_START > MEMORY_START) &&
402 overlaps_interrupt_vector_text(vaddr, vaddr + step))
403 tprot &= ~HPTE_R_N;
404
405 hash = hpt_hash(vpn, shift, ssize);
406 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
407
408 BUG_ON(!mmu_hash_ops.hpte_insert);
409 repeat:
410 ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
411 HPTE_V_BOLTED, psize, psize,
412 ssize);
413 if (ret == -1) {
414 /*
415 * Try to keep bolted entries in primary.
416 * Remove non bolted entries and try insert again
417 */
418 ret = mmu_hash_ops.hpte_remove(hpteg);
419 if (ret != -1)
420 ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
421 HPTE_V_BOLTED, psize, psize,
422 ssize);
423 if (ret == -1 && !secondary_hash) {
424 secondary_hash = true;
425 hpteg = ((~hash & htab_hash_mask) * HPTES_PER_GROUP);
426 goto repeat;
427 }
428 }
429
430 if (ret < 0)
431 break;
432
433 cond_resched();
434 if (debug_pagealloc_enabled_or_kfence() &&
435 (paddr >> PAGE_SHIFT) < linear_map_hash_count)
436 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
437 }
438 return ret < 0 ? ret : 0;
439 }
440
htab_remove_mapping(unsigned long vstart,unsigned long vend,int psize,int ssize)441 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
442 int psize, int ssize)
443 {
444 unsigned long vaddr, time_limit;
445 unsigned int step, shift;
446 int rc;
447 int ret = 0;
448
449 shift = mmu_psize_defs[psize].shift;
450 step = 1 << shift;
451
452 if (!mmu_hash_ops.hpte_removebolted)
453 return -ENODEV;
454
455 /* Unmap the full range specificied */
456 vaddr = ALIGN_DOWN(vstart, step);
457 time_limit = jiffies + HZ;
458
459 for (;vaddr < vend; vaddr += step) {
460 rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
461
462 /*
463 * For large number of mappings introduce a cond_resched()
464 * to prevent softlockup warnings.
465 */
466 if (time_after(jiffies, time_limit)) {
467 cond_resched();
468 time_limit = jiffies + HZ;
469 }
470 if (rc == -ENOENT) {
471 ret = -ENOENT;
472 continue;
473 }
474 if (rc < 0)
475 return rc;
476 }
477
478 return ret;
479 }
480
481 static bool disable_1tb_segments __ro_after_init;
482
parse_disable_1tb_segments(char * p)483 static int __init parse_disable_1tb_segments(char *p)
484 {
485 disable_1tb_segments = true;
486 return 0;
487 }
488 early_param("disable_1tb_segments", parse_disable_1tb_segments);
489
490 bool stress_hpt_enabled __initdata;
491
parse_stress_hpt(char * p)492 static int __init parse_stress_hpt(char *p)
493 {
494 stress_hpt_enabled = true;
495 return 0;
496 }
497 early_param("stress_hpt", parse_stress_hpt);
498
499 __ro_after_init DEFINE_STATIC_KEY_FALSE(stress_hpt_key);
500
501 /*
502 * per-CPU array allocated if we enable stress_hpt.
503 */
504 #define STRESS_MAX_GROUPS 16
505 struct stress_hpt_struct {
506 unsigned long last_group[STRESS_MAX_GROUPS];
507 };
508
stress_nr_groups(void)509 static inline int stress_nr_groups(void)
510 {
511 /*
512 * LPAR H_REMOVE flushes TLB, so need some number > 1 of entries
513 * to allow practical forward progress. Bare metal returns 1, which
514 * seems to help uncover more bugs.
515 */
516 if (firmware_has_feature(FW_FEATURE_LPAR))
517 return STRESS_MAX_GROUPS;
518 else
519 return 1;
520 }
521
522 static struct stress_hpt_struct *stress_hpt_struct;
523
htab_dt_scan_seg_sizes(unsigned long node,const char * uname,int depth,void * data)524 static int __init htab_dt_scan_seg_sizes(unsigned long node,
525 const char *uname, int depth,
526 void *data)
527 {
528 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
529 const __be32 *prop;
530 int size = 0;
531
532 /* We are scanning "cpu" nodes only */
533 if (type == NULL || strcmp(type, "cpu") != 0)
534 return 0;
535
536 prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
537 if (prop == NULL)
538 return 0;
539 for (; size >= 4; size -= 4, ++prop) {
540 if (be32_to_cpu(prop[0]) == 40) {
541 DBG("1T segment support detected\n");
542
543 if (disable_1tb_segments) {
544 DBG("1T segments disabled by command line\n");
545 break;
546 }
547
548 cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
549 return 1;
550 }
551 }
552 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
553 return 0;
554 }
555
get_idx_from_shift(unsigned int shift)556 static int __init get_idx_from_shift(unsigned int shift)
557 {
558 int idx = -1;
559
560 switch (shift) {
561 case 0xc:
562 idx = MMU_PAGE_4K;
563 break;
564 case 0x10:
565 idx = MMU_PAGE_64K;
566 break;
567 case 0x14:
568 idx = MMU_PAGE_1M;
569 break;
570 case 0x18:
571 idx = MMU_PAGE_16M;
572 break;
573 case 0x22:
574 idx = MMU_PAGE_16G;
575 break;
576 }
577 return idx;
578 }
579
htab_dt_scan_page_sizes(unsigned long node,const char * uname,int depth,void * data)580 static int __init htab_dt_scan_page_sizes(unsigned long node,
581 const char *uname, int depth,
582 void *data)
583 {
584 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
585 const __be32 *prop;
586 int size = 0;
587
588 /* We are scanning "cpu" nodes only */
589 if (type == NULL || strcmp(type, "cpu") != 0)
590 return 0;
591
592 prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
593 if (!prop)
594 return 0;
595
596 pr_info("Page sizes from device-tree:\n");
597 size /= 4;
598 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
599 while(size > 0) {
600 unsigned int base_shift = be32_to_cpu(prop[0]);
601 unsigned int slbenc = be32_to_cpu(prop[1]);
602 unsigned int lpnum = be32_to_cpu(prop[2]);
603 struct mmu_psize_def *def;
604 int idx, base_idx;
605
606 size -= 3; prop += 3;
607 base_idx = get_idx_from_shift(base_shift);
608 if (base_idx < 0) {
609 /* skip the pte encoding also */
610 prop += lpnum * 2; size -= lpnum * 2;
611 continue;
612 }
613 def = &mmu_psize_defs[base_idx];
614 if (base_idx == MMU_PAGE_16M)
615 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
616
617 def->shift = base_shift;
618 if (base_shift <= 23)
619 def->avpnm = 0;
620 else
621 def->avpnm = (1 << (base_shift - 23)) - 1;
622 def->sllp = slbenc;
623 /*
624 * We don't know for sure what's up with tlbiel, so
625 * for now we only set it for 4K and 64K pages
626 */
627 if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
628 def->tlbiel = 1;
629 else
630 def->tlbiel = 0;
631
632 while (size > 0 && lpnum) {
633 unsigned int shift = be32_to_cpu(prop[0]);
634 int penc = be32_to_cpu(prop[1]);
635
636 prop += 2; size -= 2;
637 lpnum--;
638
639 idx = get_idx_from_shift(shift);
640 if (idx < 0)
641 continue;
642
643 if (penc == -1)
644 pr_err("Invalid penc for base_shift=%d "
645 "shift=%d\n", base_shift, shift);
646
647 def->penc[idx] = penc;
648 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
649 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
650 base_shift, shift, def->sllp,
651 def->avpnm, def->tlbiel, def->penc[idx]);
652 }
653 }
654
655 return 1;
656 }
657
658 #ifdef CONFIG_HUGETLB_PAGE
659 /*
660 * Scan for 16G memory blocks that have been set aside for huge pages
661 * and reserve those blocks for 16G huge pages.
662 */
htab_dt_scan_hugepage_blocks(unsigned long node,const char * uname,int depth,void * data)663 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
664 const char *uname, int depth,
665 void *data) {
666 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
667 const __be64 *addr_prop;
668 const __be32 *page_count_prop;
669 unsigned int expected_pages;
670 long unsigned int phys_addr;
671 long unsigned int block_size;
672
673 /* We are scanning "memory" nodes only */
674 if (type == NULL || strcmp(type, "memory") != 0)
675 return 0;
676
677 /*
678 * This property is the log base 2 of the number of virtual pages that
679 * will represent this memory block.
680 */
681 page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
682 if (page_count_prop == NULL)
683 return 0;
684 expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
685 addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
686 if (addr_prop == NULL)
687 return 0;
688 phys_addr = be64_to_cpu(addr_prop[0]);
689 block_size = be64_to_cpu(addr_prop[1]);
690 if (block_size != (16 * GB))
691 return 0;
692 printk(KERN_INFO "Huge page(16GB) memory: "
693 "addr = 0x%lX size = 0x%lX pages = %d\n",
694 phys_addr, block_size, expected_pages);
695 if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
696 memblock_reserve(phys_addr, block_size * expected_pages);
697 pseries_add_gpage(phys_addr, block_size, expected_pages);
698 }
699 return 0;
700 }
701 #endif /* CONFIG_HUGETLB_PAGE */
702
mmu_psize_set_default_penc(void)703 static void __init mmu_psize_set_default_penc(void)
704 {
705 int bpsize, apsize;
706 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
707 for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
708 mmu_psize_defs[bpsize].penc[apsize] = -1;
709 }
710
711 #ifdef CONFIG_PPC_64K_PAGES
712
might_have_hea(void)713 static bool __init might_have_hea(void)
714 {
715 /*
716 * The HEA ethernet adapter requires awareness of the
717 * GX bus. Without that awareness we can easily assume
718 * we will never see an HEA ethernet device.
719 */
720 #ifdef CONFIG_IBMEBUS
721 return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
722 firmware_has_feature(FW_FEATURE_SPLPAR);
723 #else
724 return false;
725 #endif
726 }
727
728 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
729
htab_scan_page_sizes(void)730 static void __init htab_scan_page_sizes(void)
731 {
732 int rc;
733
734 /* se the invalid penc to -1 */
735 mmu_psize_set_default_penc();
736
737 /* Default to 4K pages only */
738 memcpy(mmu_psize_defs, mmu_psize_defaults,
739 sizeof(mmu_psize_defaults));
740
741 /*
742 * Try to find the available page sizes in the device-tree
743 */
744 rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
745 if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
746 /*
747 * Nothing in the device-tree, but the CPU supports 16M pages,
748 * so let's fallback on a known size list for 16M capable CPUs.
749 */
750 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
751 sizeof(mmu_psize_defaults_gp));
752 }
753
754 #ifdef CONFIG_HUGETLB_PAGE
755 if (!hugetlb_disabled && !early_radix_enabled() ) {
756 /* Reserve 16G huge page memory sections for huge pages */
757 of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
758 }
759 #endif /* CONFIG_HUGETLB_PAGE */
760 }
761
762 /*
763 * Fill in the hpte_page_sizes[] array.
764 * We go through the mmu_psize_defs[] array looking for all the
765 * supported base/actual page size combinations. Each combination
766 * has a unique pagesize encoding (penc) value in the low bits of
767 * the LP field of the HPTE. For actual page sizes less than 1MB,
768 * some of the upper LP bits are used for RPN bits, meaning that
769 * we need to fill in several entries in hpte_page_sizes[].
770 *
771 * In diagrammatic form, with r = RPN bits and z = page size bits:
772 * PTE LP actual page size
773 * rrrr rrrz >=8KB
774 * rrrr rrzz >=16KB
775 * rrrr rzzz >=32KB
776 * rrrr zzzz >=64KB
777 * ...
778 *
779 * The zzzz bits are implementation-specific but are chosen so that
780 * no encoding for a larger page size uses the same value in its
781 * low-order N bits as the encoding for the 2^(12+N) byte page size
782 * (if it exists).
783 */
init_hpte_page_sizes(void)784 static void __init init_hpte_page_sizes(void)
785 {
786 long int ap, bp;
787 long int shift, penc;
788
789 for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
790 if (!mmu_psize_defs[bp].shift)
791 continue; /* not a supported page size */
792 for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
793 penc = mmu_psize_defs[bp].penc[ap];
794 if (penc == -1 || !mmu_psize_defs[ap].shift)
795 continue;
796 shift = mmu_psize_defs[ap].shift - LP_SHIFT;
797 if (shift <= 0)
798 continue; /* should never happen */
799 /*
800 * For page sizes less than 1MB, this loop
801 * replicates the entry for all possible values
802 * of the rrrr bits.
803 */
804 while (penc < (1 << LP_BITS)) {
805 hpte_page_sizes[penc] = (ap << 4) | bp;
806 penc += 1 << shift;
807 }
808 }
809 }
810 }
811
htab_init_page_sizes(void)812 static void __init htab_init_page_sizes(void)
813 {
814 bool aligned = true;
815 init_hpte_page_sizes();
816
817 if (!debug_pagealloc_enabled_or_kfence()) {
818 /*
819 * Pick a size for the linear mapping. Currently, we only
820 * support 16M, 1M and 4K which is the default
821 */
822 if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) &&
823 (unsigned long)_stext % 0x1000000) {
824 if (mmu_psize_defs[MMU_PAGE_16M].shift)
825 pr_warn("Kernel not 16M aligned, disabling 16M linear map alignment\n");
826 aligned = false;
827 }
828
829 if (mmu_psize_defs[MMU_PAGE_16M].shift && aligned)
830 mmu_linear_psize = MMU_PAGE_16M;
831 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
832 mmu_linear_psize = MMU_PAGE_1M;
833 }
834
835 #ifdef CONFIG_PPC_64K_PAGES
836 /*
837 * Pick a size for the ordinary pages. Default is 4K, we support
838 * 64K for user mappings and vmalloc if supported by the processor.
839 * We only use 64k for ioremap if the processor
840 * (and firmware) support cache-inhibited large pages.
841 * If not, we use 4k and set mmu_ci_restrictions so that
842 * hash_page knows to switch processes that use cache-inhibited
843 * mappings to 4k pages.
844 */
845 if (mmu_psize_defs[MMU_PAGE_64K].shift) {
846 mmu_virtual_psize = MMU_PAGE_64K;
847 mmu_vmalloc_psize = MMU_PAGE_64K;
848 if (mmu_linear_psize == MMU_PAGE_4K)
849 mmu_linear_psize = MMU_PAGE_64K;
850 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
851 /*
852 * When running on pSeries using 64k pages for ioremap
853 * would stop us accessing the HEA ethernet. So if we
854 * have the chance of ever seeing one, stay at 4k.
855 */
856 if (!might_have_hea())
857 mmu_io_psize = MMU_PAGE_64K;
858 } else
859 mmu_ci_restrictions = 1;
860 }
861 #endif /* CONFIG_PPC_64K_PAGES */
862
863 #ifdef CONFIG_SPARSEMEM_VMEMMAP
864 /*
865 * We try to use 16M pages for vmemmap if that is supported
866 * and we have at least 1G of RAM at boot
867 */
868 if (mmu_psize_defs[MMU_PAGE_16M].shift &&
869 memblock_phys_mem_size() >= 0x40000000)
870 mmu_vmemmap_psize = MMU_PAGE_16M;
871 else
872 mmu_vmemmap_psize = mmu_virtual_psize;
873 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
874
875 printk(KERN_DEBUG "Page orders: linear mapping = %d, "
876 "virtual = %d, io = %d"
877 #ifdef CONFIG_SPARSEMEM_VMEMMAP
878 ", vmemmap = %d"
879 #endif
880 "\n",
881 mmu_psize_defs[mmu_linear_psize].shift,
882 mmu_psize_defs[mmu_virtual_psize].shift,
883 mmu_psize_defs[mmu_io_psize].shift
884 #ifdef CONFIG_SPARSEMEM_VMEMMAP
885 ,mmu_psize_defs[mmu_vmemmap_psize].shift
886 #endif
887 );
888 }
889
htab_dt_scan_pftsize(unsigned long node,const char * uname,int depth,void * data)890 static int __init htab_dt_scan_pftsize(unsigned long node,
891 const char *uname, int depth,
892 void *data)
893 {
894 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
895 const __be32 *prop;
896
897 /* We are scanning "cpu" nodes only */
898 if (type == NULL || strcmp(type, "cpu") != 0)
899 return 0;
900
901 prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
902 if (prop != NULL) {
903 /* pft_size[0] is the NUMA CEC cookie */
904 ppc64_pft_size = be32_to_cpu(prop[1]);
905 return 1;
906 }
907 return 0;
908 }
909
htab_shift_for_mem_size(unsigned long mem_size)910 unsigned htab_shift_for_mem_size(unsigned long mem_size)
911 {
912 unsigned memshift = __ilog2(mem_size);
913 unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
914 unsigned pteg_shift;
915
916 /* round mem_size up to next power of 2 */
917 if ((1UL << memshift) < mem_size)
918 memshift += 1;
919
920 /* aim for 2 pages / pteg */
921 pteg_shift = memshift - (pshift + 1);
922
923 /*
924 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
925 * size permitted by the architecture.
926 */
927 return max(pteg_shift + 7, 18U);
928 }
929
htab_get_table_size(void)930 static unsigned long __init htab_get_table_size(void)
931 {
932 /*
933 * If hash size isn't already provided by the platform, we try to
934 * retrieve it from the device-tree. If it's not there neither, we
935 * calculate it now based on the total RAM size
936 */
937 if (ppc64_pft_size == 0)
938 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
939 if (ppc64_pft_size)
940 return 1UL << ppc64_pft_size;
941
942 return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
943 }
944
945 #ifdef CONFIG_MEMORY_HOTPLUG
resize_hpt_for_hotplug(unsigned long new_mem_size)946 static int resize_hpt_for_hotplug(unsigned long new_mem_size)
947 {
948 unsigned target_hpt_shift;
949
950 if (!mmu_hash_ops.resize_hpt)
951 return 0;
952
953 target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
954
955 /*
956 * To avoid lots of HPT resizes if memory size is fluctuating
957 * across a boundary, we deliberately have some hysterisis
958 * here: we immediately increase the HPT size if the target
959 * shift exceeds the current shift, but we won't attempt to
960 * reduce unless the target shift is at least 2 below the
961 * current shift
962 */
963 if (target_hpt_shift > ppc64_pft_size ||
964 target_hpt_shift < ppc64_pft_size - 1)
965 return mmu_hash_ops.resize_hpt(target_hpt_shift);
966
967 return 0;
968 }
969
hash__create_section_mapping(unsigned long start,unsigned long end,int nid,pgprot_t prot)970 int hash__create_section_mapping(unsigned long start, unsigned long end,
971 int nid, pgprot_t prot)
972 {
973 int rc;
974
975 if (end >= H_VMALLOC_START) {
976 pr_warn("Outside the supported range\n");
977 return -1;
978 }
979
980 resize_hpt_for_hotplug(memblock_phys_mem_size());
981
982 rc = htab_bolt_mapping(start, end, __pa(start),
983 pgprot_val(prot), mmu_linear_psize,
984 mmu_kernel_ssize);
985
986 if (rc < 0) {
987 int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
988 mmu_kernel_ssize);
989 BUG_ON(rc2 && (rc2 != -ENOENT));
990 }
991 return rc;
992 }
993
hash__remove_section_mapping(unsigned long start,unsigned long end)994 int hash__remove_section_mapping(unsigned long start, unsigned long end)
995 {
996 int rc = htab_remove_mapping(start, end, mmu_linear_psize,
997 mmu_kernel_ssize);
998
999 if (resize_hpt_for_hotplug(memblock_phys_mem_size()) == -ENOSPC)
1000 pr_warn("Hash collision while resizing HPT\n");
1001
1002 return rc;
1003 }
1004 #endif /* CONFIG_MEMORY_HOTPLUG */
1005
hash_init_partition_table(phys_addr_t hash_table,unsigned long htab_size)1006 static void __init hash_init_partition_table(phys_addr_t hash_table,
1007 unsigned long htab_size)
1008 {
1009 mmu_partition_table_init();
1010
1011 /*
1012 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
1013 * For now, UPRT is 0 and we have no segment table.
1014 */
1015 htab_size = __ilog2(htab_size) - 18;
1016 mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false);
1017 pr_info("Partition table %p\n", partition_tb);
1018 }
1019
1020 void hpt_clear_stress(void);
1021 static struct timer_list stress_hpt_timer;
stress_hpt_timer_fn(struct timer_list * timer)1022 static void stress_hpt_timer_fn(struct timer_list *timer)
1023 {
1024 int next_cpu;
1025
1026 hpt_clear_stress();
1027 if (!firmware_has_feature(FW_FEATURE_LPAR))
1028 tlbiel_all();
1029
1030 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
1031 if (next_cpu >= nr_cpu_ids)
1032 next_cpu = cpumask_first(cpu_online_mask);
1033 stress_hpt_timer.expires = jiffies + msecs_to_jiffies(10);
1034 add_timer_on(&stress_hpt_timer, next_cpu);
1035 }
1036
htab_initialize(void)1037 static void __init htab_initialize(void)
1038 {
1039 unsigned long table;
1040 unsigned long pteg_count;
1041 unsigned long prot;
1042 phys_addr_t base = 0, size = 0, end;
1043 u64 i;
1044
1045 DBG(" -> htab_initialize()\n");
1046
1047 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
1048 mmu_kernel_ssize = MMU_SEGSIZE_1T;
1049 mmu_highuser_ssize = MMU_SEGSIZE_1T;
1050 printk(KERN_INFO "Using 1TB segments\n");
1051 }
1052
1053 if (stress_slb_enabled)
1054 static_branch_enable(&stress_slb_key);
1055
1056 if (stress_hpt_enabled) {
1057 unsigned long tmp;
1058 static_branch_enable(&stress_hpt_key);
1059 // Too early to use nr_cpu_ids, so use NR_CPUS
1060 tmp = memblock_phys_alloc_range(sizeof(struct stress_hpt_struct) * NR_CPUS,
1061 __alignof__(struct stress_hpt_struct),
1062 0, MEMBLOCK_ALLOC_ANYWHERE);
1063 memset((void *)tmp, 0xff, sizeof(struct stress_hpt_struct) * NR_CPUS);
1064 stress_hpt_struct = __va(tmp);
1065
1066 timer_setup(&stress_hpt_timer, stress_hpt_timer_fn, 0);
1067 stress_hpt_timer.expires = jiffies + msecs_to_jiffies(10);
1068 add_timer(&stress_hpt_timer);
1069 }
1070
1071 /*
1072 * Calculate the required size of the htab. We want the number of
1073 * PTEGs to equal one half the number of real pages.
1074 */
1075 htab_size_bytes = htab_get_table_size();
1076 pteg_count = htab_size_bytes >> 7;
1077
1078 htab_hash_mask = pteg_count - 1;
1079
1080 if (firmware_has_feature(FW_FEATURE_LPAR) ||
1081 firmware_has_feature(FW_FEATURE_PS3_LV1)) {
1082 /* Using a hypervisor which owns the htab */
1083 htab_address = NULL;
1084 _SDR1 = 0;
1085 #ifdef CONFIG_FA_DUMP
1086 /*
1087 * If firmware assisted dump is active firmware preserves
1088 * the contents of htab along with entire partition memory.
1089 * Clear the htab if firmware assisted dump is active so
1090 * that we dont end up using old mappings.
1091 */
1092 if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
1093 mmu_hash_ops.hpte_clear_all();
1094 #endif
1095 } else {
1096 unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
1097
1098 #ifdef CONFIG_PPC_CELL
1099 /*
1100 * Cell may require the hash table down low when using the
1101 * Axon IOMMU in order to fit the dynamic region over it, see
1102 * comments in cell/iommu.c
1103 */
1104 if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
1105 limit = 0x80000000;
1106 pr_info("Hash table forced below 2G for Axon IOMMU\n");
1107 }
1108 #endif /* CONFIG_PPC_CELL */
1109
1110 table = memblock_phys_alloc_range(htab_size_bytes,
1111 htab_size_bytes,
1112 0, limit);
1113 if (!table)
1114 panic("ERROR: Failed to allocate %pa bytes below %pa\n",
1115 &htab_size_bytes, &limit);
1116
1117 DBG("Hash table allocated at %lx, size: %lx\n", table,
1118 htab_size_bytes);
1119
1120 htab_address = __va(table);
1121
1122 /* htab absolute addr + encoded htabsize */
1123 _SDR1 = table + __ilog2(htab_size_bytes) - 18;
1124
1125 /* Initialize the HPT with no entries */
1126 memset((void *)table, 0, htab_size_bytes);
1127
1128 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1129 /* Set SDR1 */
1130 mtspr(SPRN_SDR1, _SDR1);
1131 else
1132 hash_init_partition_table(table, htab_size_bytes);
1133 }
1134
1135 prot = pgprot_val(PAGE_KERNEL);
1136
1137 if (debug_pagealloc_enabled_or_kfence()) {
1138 linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
1139 linear_map_hash_slots = memblock_alloc_try_nid(
1140 linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
1141 ppc64_rma_size, NUMA_NO_NODE);
1142 if (!linear_map_hash_slots)
1143 panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
1144 __func__, linear_map_hash_count, &ppc64_rma_size);
1145 }
1146
1147 /* create bolted the linear mapping in the hash table */
1148 for_each_mem_range(i, &base, &end) {
1149 size = end - base;
1150 base = (unsigned long)__va(base);
1151
1152 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
1153 base, size, prot);
1154
1155 if ((base + size) >= H_VMALLOC_START) {
1156 pr_warn("Outside the supported range\n");
1157 continue;
1158 }
1159
1160 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
1161 prot, mmu_linear_psize, mmu_kernel_ssize));
1162 }
1163 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
1164
1165 /*
1166 * If we have a memory_limit and we've allocated TCEs then we need to
1167 * explicitly map the TCE area at the top of RAM. We also cope with the
1168 * case that the TCEs start below memory_limit.
1169 * tce_alloc_start/end are 16MB aligned so the mapping should work
1170 * for either 4K or 16MB pages.
1171 */
1172 if (tce_alloc_start) {
1173 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
1174 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
1175
1176 if (base + size >= tce_alloc_start)
1177 tce_alloc_start = base + size + 1;
1178
1179 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
1180 __pa(tce_alloc_start), prot,
1181 mmu_linear_psize, mmu_kernel_ssize));
1182 }
1183
1184
1185 DBG(" <- htab_initialize()\n");
1186 }
1187 #undef KB
1188 #undef MB
1189
hash__early_init_devtree(void)1190 void __init hash__early_init_devtree(void)
1191 {
1192 /* Initialize segment sizes */
1193 of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
1194
1195 /* Initialize page sizes */
1196 htab_scan_page_sizes();
1197 }
1198
1199 static struct hash_mm_context init_hash_mm_context;
hash__early_init_mmu(void)1200 void __init hash__early_init_mmu(void)
1201 {
1202 #ifndef CONFIG_PPC_64K_PAGES
1203 /*
1204 * We have code in __hash_page_4K() and elsewhere, which assumes it can
1205 * do the following:
1206 * new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
1207 *
1208 * Where the slot number is between 0-15, and values of 8-15 indicate
1209 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
1210 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
1211 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
1212 * with a BUILD_BUG_ON().
1213 */
1214 BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul << (H_PAGE_F_GIX_SHIFT + 3)));
1215 #endif /* CONFIG_PPC_64K_PAGES */
1216
1217 htab_init_page_sizes();
1218
1219 /*
1220 * initialize page table size
1221 */
1222 __pte_frag_nr = H_PTE_FRAG_NR;
1223 __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1224 __pmd_frag_nr = H_PMD_FRAG_NR;
1225 __pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
1226
1227 __pte_index_size = H_PTE_INDEX_SIZE;
1228 __pmd_index_size = H_PMD_INDEX_SIZE;
1229 __pud_index_size = H_PUD_INDEX_SIZE;
1230 __pgd_index_size = H_PGD_INDEX_SIZE;
1231 __pud_cache_index = H_PUD_CACHE_INDEX;
1232 __pte_table_size = H_PTE_TABLE_SIZE;
1233 __pmd_table_size = H_PMD_TABLE_SIZE;
1234 __pud_table_size = H_PUD_TABLE_SIZE;
1235 __pgd_table_size = H_PGD_TABLE_SIZE;
1236 __pmd_val_bits = HASH_PMD_VAL_BITS;
1237 __pud_val_bits = HASH_PUD_VAL_BITS;
1238 __pgd_val_bits = HASH_PGD_VAL_BITS;
1239
1240 __kernel_virt_start = H_KERN_VIRT_START;
1241 __vmalloc_start = H_VMALLOC_START;
1242 __vmalloc_end = H_VMALLOC_END;
1243 __kernel_io_start = H_KERN_IO_START;
1244 __kernel_io_end = H_KERN_IO_END;
1245 vmemmap = (struct page *)H_VMEMMAP_START;
1246 ioremap_bot = IOREMAP_BASE;
1247
1248 #ifdef CONFIG_PCI
1249 pci_io_base = ISA_IO_BASE;
1250 #endif
1251
1252 /* Select appropriate backend */
1253 if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1254 ps3_early_mm_init();
1255 else if (firmware_has_feature(FW_FEATURE_LPAR))
1256 hpte_init_pseries();
1257 else if (IS_ENABLED(CONFIG_PPC_HASH_MMU_NATIVE))
1258 hpte_init_native();
1259
1260 if (!mmu_hash_ops.hpte_insert)
1261 panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1262
1263 /*
1264 * Initialize the MMU Hash table and create the linear mapping
1265 * of memory. Has to be done before SLB initialization as this is
1266 * currently where the page size encoding is obtained.
1267 */
1268 htab_initialize();
1269
1270 init_mm.context.hash_context = &init_hash_mm_context;
1271 mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
1272
1273 pr_info("Initializing hash mmu with SLB\n");
1274 /* Initialize SLB management */
1275 slb_initialize();
1276
1277 if (cpu_has_feature(CPU_FTR_ARCH_206)
1278 && cpu_has_feature(CPU_FTR_HVMODE))
1279 tlbiel_all();
1280 }
1281
1282 #ifdef CONFIG_SMP
hash__early_init_mmu_secondary(void)1283 void hash__early_init_mmu_secondary(void)
1284 {
1285 /* Initialize hash table for that CPU */
1286 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1287
1288 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1289 mtspr(SPRN_SDR1, _SDR1);
1290 else
1291 set_ptcr_when_no_uv(__pa(partition_tb) |
1292 (PATB_SIZE_SHIFT - 12));
1293 }
1294 /* Initialize SLB */
1295 slb_initialize();
1296
1297 if (cpu_has_feature(CPU_FTR_ARCH_206)
1298 && cpu_has_feature(CPU_FTR_HVMODE))
1299 tlbiel_all();
1300
1301 #ifdef CONFIG_PPC_MEM_KEYS
1302 if (mmu_has_feature(MMU_FTR_PKEY))
1303 mtspr(SPRN_UAMOR, default_uamor);
1304 #endif
1305 }
1306 #endif /* CONFIG_SMP */
1307
1308 /*
1309 * Called by asm hashtable.S for doing lazy icache flush
1310 */
hash_page_do_lazy_icache(unsigned int pp,pte_t pte,int trap)1311 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1312 {
1313 struct folio *folio;
1314
1315 if (!pfn_valid(pte_pfn(pte)))
1316 return pp;
1317
1318 folio = page_folio(pte_page(pte));
1319
1320 /* page is dirty */
1321 if (!test_bit(PG_dcache_clean, &folio->flags) &&
1322 !folio_test_reserved(folio)) {
1323 if (trap == INTERRUPT_INST_STORAGE) {
1324 flush_dcache_icache_folio(folio);
1325 set_bit(PG_dcache_clean, &folio->flags);
1326 } else
1327 pp |= HPTE_R_N;
1328 }
1329 return pp;
1330 }
1331
get_paca_psize(unsigned long addr)1332 static unsigned int get_paca_psize(unsigned long addr)
1333 {
1334 unsigned char *psizes;
1335 unsigned long index, mask_index;
1336
1337 if (addr < SLICE_LOW_TOP) {
1338 psizes = get_paca()->mm_ctx_low_slices_psize;
1339 index = GET_LOW_SLICE_INDEX(addr);
1340 } else {
1341 psizes = get_paca()->mm_ctx_high_slices_psize;
1342 index = GET_HIGH_SLICE_INDEX(addr);
1343 }
1344 mask_index = index & 0x1;
1345 return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1346 }
1347
1348
1349 /*
1350 * Demote a segment to using 4k pages.
1351 * For now this makes the whole process use 4k pages.
1352 */
1353 #ifdef CONFIG_PPC_64K_PAGES
demote_segment_4k(struct mm_struct * mm,unsigned long addr)1354 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1355 {
1356 if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1357 return;
1358 slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1359 copro_flush_all_slbs(mm);
1360 if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1361
1362 copy_mm_to_paca(mm);
1363 slb_flush_and_restore_bolted();
1364 }
1365 }
1366 #endif /* CONFIG_PPC_64K_PAGES */
1367
1368 #ifdef CONFIG_PPC_SUBPAGE_PROT
1369 /*
1370 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1371 * Userspace sets the subpage permissions using the subpage_prot system call.
1372 *
1373 * Result is 0: full permissions, _PAGE_RW: read-only,
1374 * _PAGE_RWX: no access.
1375 */
subpage_protection(struct mm_struct * mm,unsigned long ea)1376 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1377 {
1378 struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
1379 u32 spp = 0;
1380 u32 **sbpm, *sbpp;
1381
1382 if (!spt)
1383 return 0;
1384
1385 if (ea >= spt->maxaddr)
1386 return 0;
1387 if (ea < 0x100000000UL) {
1388 /* addresses below 4GB use spt->low_prot */
1389 sbpm = spt->low_prot;
1390 } else {
1391 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1392 if (!sbpm)
1393 return 0;
1394 }
1395 sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1396 if (!sbpp)
1397 return 0;
1398 spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1399
1400 /* extract 2-bit bitfield for this 4k subpage */
1401 spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1402
1403 /*
1404 * 0 -> full permission
1405 * 1 -> Read only
1406 * 2 -> no access.
1407 * We return the flag that need to be cleared.
1408 */
1409 spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1410 return spp;
1411 }
1412
1413 #else /* CONFIG_PPC_SUBPAGE_PROT */
subpage_protection(struct mm_struct * mm,unsigned long ea)1414 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1415 {
1416 return 0;
1417 }
1418 #endif
1419
hash_failure_debug(unsigned long ea,unsigned long access,unsigned long vsid,unsigned long trap,int ssize,int psize,int lpsize,unsigned long pte)1420 void hash_failure_debug(unsigned long ea, unsigned long access,
1421 unsigned long vsid, unsigned long trap,
1422 int ssize, int psize, int lpsize, unsigned long pte)
1423 {
1424 if (!printk_ratelimit())
1425 return;
1426 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1427 ea, access, current->comm);
1428 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1429 trap, vsid, ssize, psize, lpsize, pte);
1430 }
1431
check_paca_psize(unsigned long ea,struct mm_struct * mm,int psize,bool user_region)1432 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1433 int psize, bool user_region)
1434 {
1435 if (user_region) {
1436 if (psize != get_paca_psize(ea)) {
1437 copy_mm_to_paca(mm);
1438 slb_flush_and_restore_bolted();
1439 }
1440 } else if (get_paca()->vmalloc_sllp !=
1441 mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1442 get_paca()->vmalloc_sllp =
1443 mmu_psize_defs[mmu_vmalloc_psize].sllp;
1444 slb_vmalloc_update();
1445 }
1446 }
1447
1448 /*
1449 * Result code is:
1450 * 0 - handled
1451 * 1 - normal page fault
1452 * -1 - critical hash insertion error
1453 * -2 - access not permitted by subpage protection mechanism
1454 */
hash_page_mm(struct mm_struct * mm,unsigned long ea,unsigned long access,unsigned long trap,unsigned long flags)1455 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1456 unsigned long access, unsigned long trap,
1457 unsigned long flags)
1458 {
1459 bool is_thp;
1460 pgd_t *pgdir;
1461 unsigned long vsid;
1462 pte_t *ptep;
1463 unsigned hugeshift;
1464 int rc, user_region = 0;
1465 int psize, ssize;
1466
1467 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1468 ea, access, trap);
1469 trace_hash_fault(ea, access, trap);
1470
1471 /* Get region & vsid */
1472 switch (get_region_id(ea)) {
1473 case USER_REGION_ID:
1474 user_region = 1;
1475 if (! mm) {
1476 DBG_LOW(" user region with no mm !\n");
1477 rc = 1;
1478 goto bail;
1479 }
1480 psize = get_slice_psize(mm, ea);
1481 ssize = user_segment_size(ea);
1482 vsid = get_user_vsid(&mm->context, ea, ssize);
1483 break;
1484 case VMALLOC_REGION_ID:
1485 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1486 psize = mmu_vmalloc_psize;
1487 ssize = mmu_kernel_ssize;
1488 flags |= HPTE_USE_KERNEL_KEY;
1489 break;
1490
1491 case IO_REGION_ID:
1492 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1493 psize = mmu_io_psize;
1494 ssize = mmu_kernel_ssize;
1495 flags |= HPTE_USE_KERNEL_KEY;
1496 break;
1497 default:
1498 /*
1499 * Not a valid range
1500 * Send the problem up to do_page_fault()
1501 */
1502 rc = 1;
1503 goto bail;
1504 }
1505 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1506
1507 /* Bad address. */
1508 if (!vsid) {
1509 DBG_LOW("Bad address!\n");
1510 rc = 1;
1511 goto bail;
1512 }
1513 /* Get pgdir */
1514 pgdir = mm->pgd;
1515 if (pgdir == NULL) {
1516 rc = 1;
1517 goto bail;
1518 }
1519
1520 /* Check CPU locality */
1521 if (user_region && mm_is_thread_local(mm))
1522 flags |= HPTE_LOCAL_UPDATE;
1523
1524 #ifndef CONFIG_PPC_64K_PAGES
1525 /*
1526 * If we use 4K pages and our psize is not 4K, then we might
1527 * be hitting a special driver mapping, and need to align the
1528 * address before we fetch the PTE.
1529 *
1530 * It could also be a hugepage mapping, in which case this is
1531 * not necessary, but it's not harmful, either.
1532 */
1533 if (psize != MMU_PAGE_4K)
1534 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1535 #endif /* CONFIG_PPC_64K_PAGES */
1536
1537 /* Get PTE and page size from page tables */
1538 ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1539 if (ptep == NULL || !pte_present(*ptep)) {
1540 DBG_LOW(" no PTE !\n");
1541 rc = 1;
1542 goto bail;
1543 }
1544
1545 if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !radix_enabled()) {
1546 if (hugeshift == PMD_SHIFT && psize == MMU_PAGE_16M)
1547 hugeshift = mmu_psize_defs[MMU_PAGE_16M].shift;
1548 if (hugeshift == PUD_SHIFT && psize == MMU_PAGE_16G)
1549 hugeshift = mmu_psize_defs[MMU_PAGE_16G].shift;
1550 }
1551
1552 /*
1553 * Add _PAGE_PRESENT to the required access perm. If there are parallel
1554 * updates to the pte that can possibly clear _PAGE_PTE, catch that too.
1555 *
1556 * We can safely use the return pte address in rest of the function
1557 * because we do set H_PAGE_BUSY which prevents further updates to pte
1558 * from generic code.
1559 */
1560 access |= _PAGE_PRESENT | _PAGE_PTE;
1561
1562 /*
1563 * Pre-check access permissions (will be re-checked atomically
1564 * in __hash_page_XX but this pre-check is a fast path
1565 */
1566 if (!check_pte_access(access, pte_val(*ptep))) {
1567 DBG_LOW(" no access !\n");
1568 rc = 1;
1569 goto bail;
1570 }
1571
1572 if (hugeshift) {
1573 if (is_thp)
1574 rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1575 trap, flags, ssize, psize);
1576 #ifdef CONFIG_HUGETLB_PAGE
1577 else
1578 rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1579 flags, ssize, hugeshift, psize);
1580 #else
1581 else {
1582 /*
1583 * if we have hugeshift, and is not transhuge with
1584 * hugetlb disabled, something is really wrong.
1585 */
1586 rc = 1;
1587 WARN_ON(1);
1588 }
1589 #endif
1590 if (current->mm == mm)
1591 check_paca_psize(ea, mm, psize, user_region);
1592
1593 goto bail;
1594 }
1595
1596 #ifndef CONFIG_PPC_64K_PAGES
1597 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1598 #else
1599 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1600 pte_val(*(ptep + PTRS_PER_PTE)));
1601 #endif
1602 /* Do actual hashing */
1603 #ifdef CONFIG_PPC_64K_PAGES
1604 /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1605 if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1606 demote_segment_4k(mm, ea);
1607 psize = MMU_PAGE_4K;
1608 }
1609
1610 /*
1611 * If this PTE is non-cacheable and we have restrictions on
1612 * using non cacheable large pages, then we switch to 4k
1613 */
1614 if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1615 if (user_region) {
1616 demote_segment_4k(mm, ea);
1617 psize = MMU_PAGE_4K;
1618 } else if (ea < VMALLOC_END) {
1619 /*
1620 * some driver did a non-cacheable mapping
1621 * in vmalloc space, so switch vmalloc
1622 * to 4k pages
1623 */
1624 printk(KERN_ALERT "Reducing vmalloc segment "
1625 "to 4kB pages because of "
1626 "non-cacheable mapping\n");
1627 psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1628 copro_flush_all_slbs(mm);
1629 }
1630 }
1631
1632 #endif /* CONFIG_PPC_64K_PAGES */
1633
1634 if (current->mm == mm)
1635 check_paca_psize(ea, mm, psize, user_region);
1636
1637 #ifdef CONFIG_PPC_64K_PAGES
1638 if (psize == MMU_PAGE_64K)
1639 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1640 flags, ssize);
1641 else
1642 #endif /* CONFIG_PPC_64K_PAGES */
1643 {
1644 int spp = subpage_protection(mm, ea);
1645 if (access & spp)
1646 rc = -2;
1647 else
1648 rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1649 flags, ssize, spp);
1650 }
1651
1652 /*
1653 * Dump some info in case of hash insertion failure, they should
1654 * never happen so it is really useful to know if/when they do
1655 */
1656 if (rc == -1)
1657 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1658 psize, pte_val(*ptep));
1659 #ifndef CONFIG_PPC_64K_PAGES
1660 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1661 #else
1662 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1663 pte_val(*(ptep + PTRS_PER_PTE)));
1664 #endif
1665 DBG_LOW(" -> rc=%d\n", rc);
1666
1667 bail:
1668 return rc;
1669 }
1670 EXPORT_SYMBOL_GPL(hash_page_mm);
1671
hash_page(unsigned long ea,unsigned long access,unsigned long trap,unsigned long dsisr)1672 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1673 unsigned long dsisr)
1674 {
1675 unsigned long flags = 0;
1676 struct mm_struct *mm = current->mm;
1677
1678 if ((get_region_id(ea) == VMALLOC_REGION_ID) ||
1679 (get_region_id(ea) == IO_REGION_ID))
1680 mm = &init_mm;
1681
1682 if (dsisr & DSISR_NOHPTE)
1683 flags |= HPTE_NOHPTE_UPDATE;
1684
1685 return hash_page_mm(mm, ea, access, trap, flags);
1686 }
1687 EXPORT_SYMBOL_GPL(hash_page);
1688
DEFINE_INTERRUPT_HANDLER(do_hash_fault)1689 DEFINE_INTERRUPT_HANDLER(do_hash_fault)
1690 {
1691 unsigned long ea = regs->dar;
1692 unsigned long dsisr = regs->dsisr;
1693 unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1694 unsigned long flags = 0;
1695 struct mm_struct *mm;
1696 unsigned int region_id;
1697 long err;
1698
1699 if (unlikely(dsisr & (DSISR_BAD_FAULT_64S | DSISR_KEYFAULT))) {
1700 hash__do_page_fault(regs);
1701 return;
1702 }
1703
1704 region_id = get_region_id(ea);
1705 if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID))
1706 mm = &init_mm;
1707 else
1708 mm = current->mm;
1709
1710 if (dsisr & DSISR_NOHPTE)
1711 flags |= HPTE_NOHPTE_UPDATE;
1712
1713 if (dsisr & DSISR_ISSTORE)
1714 access |= _PAGE_WRITE;
1715 /*
1716 * We set _PAGE_PRIVILEGED only when
1717 * kernel mode access kernel space.
1718 *
1719 * _PAGE_PRIVILEGED is NOT set
1720 * 1) when kernel mode access user space
1721 * 2) user space access kernel space.
1722 */
1723 access |= _PAGE_PRIVILEGED;
1724 if (user_mode(regs) || (region_id == USER_REGION_ID))
1725 access &= ~_PAGE_PRIVILEGED;
1726
1727 if (TRAP(regs) == INTERRUPT_INST_STORAGE)
1728 access |= _PAGE_EXEC;
1729
1730 err = hash_page_mm(mm, ea, access, TRAP(regs), flags);
1731 if (unlikely(err < 0)) {
1732 // failed to insert a hash PTE due to an hypervisor error
1733 if (user_mode(regs)) {
1734 if (IS_ENABLED(CONFIG_PPC_SUBPAGE_PROT) && err == -2)
1735 _exception(SIGSEGV, regs, SEGV_ACCERR, ea);
1736 else
1737 _exception(SIGBUS, regs, BUS_ADRERR, ea);
1738 } else {
1739 bad_page_fault(regs, SIGBUS);
1740 }
1741 err = 0;
1742
1743 } else if (err) {
1744 hash__do_page_fault(regs);
1745 }
1746 }
1747
should_hash_preload(struct mm_struct * mm,unsigned long ea)1748 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1749 {
1750 int psize = get_slice_psize(mm, ea);
1751
1752 /* We only prefault standard pages for now */
1753 if (unlikely(psize != mm_ctx_user_psize(&mm->context)))
1754 return false;
1755
1756 /*
1757 * Don't prefault if subpage protection is enabled for the EA.
1758 */
1759 if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1760 return false;
1761
1762 return true;
1763 }
1764
hash_preload(struct mm_struct * mm,pte_t * ptep,unsigned long ea,bool is_exec,unsigned long trap)1765 static void hash_preload(struct mm_struct *mm, pte_t *ptep, unsigned long ea,
1766 bool is_exec, unsigned long trap)
1767 {
1768 unsigned long vsid;
1769 pgd_t *pgdir;
1770 int rc, ssize, update_flags = 0;
1771 unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0);
1772 unsigned long flags;
1773
1774 BUG_ON(get_region_id(ea) != USER_REGION_ID);
1775
1776 if (!should_hash_preload(mm, ea))
1777 return;
1778
1779 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1780 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1781
1782 /* Get Linux PTE if available */
1783 pgdir = mm->pgd;
1784 if (pgdir == NULL)
1785 return;
1786
1787 /* Get VSID */
1788 ssize = user_segment_size(ea);
1789 vsid = get_user_vsid(&mm->context, ea, ssize);
1790 if (!vsid)
1791 return;
1792
1793 #ifdef CONFIG_PPC_64K_PAGES
1794 /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1795 * a 64K kernel), then we don't preload, hash_page() will take
1796 * care of it once we actually try to access the page.
1797 * That way we don't have to duplicate all of the logic for segment
1798 * page size demotion here
1799 * Called with PTL held, hence can be sure the value won't change in
1800 * between.
1801 */
1802 if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1803 return;
1804 #endif /* CONFIG_PPC_64K_PAGES */
1805
1806 /*
1807 * __hash_page_* must run with interrupts off, including PMI interrupts
1808 * off, as it sets the H_PAGE_BUSY bit.
1809 *
1810 * It's otherwise possible for perf interrupts to hit at any time and
1811 * may take a hash fault reading the user stack, which could take a
1812 * hash miss and deadlock on the same H_PAGE_BUSY bit.
1813 *
1814 * Interrupts must also be off for the duration of the
1815 * mm_is_thread_local test and update, to prevent preempt running the
1816 * mm on another CPU (XXX: this may be racy vs kthread_use_mm).
1817 */
1818 powerpc_local_irq_pmu_save(flags);
1819
1820 /* Is that local to this CPU ? */
1821 if (mm_is_thread_local(mm))
1822 update_flags |= HPTE_LOCAL_UPDATE;
1823
1824 /* Hash it in */
1825 #ifdef CONFIG_PPC_64K_PAGES
1826 if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K)
1827 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1828 update_flags, ssize);
1829 else
1830 #endif /* CONFIG_PPC_64K_PAGES */
1831 rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1832 ssize, subpage_protection(mm, ea));
1833
1834 /* Dump some info in case of hash insertion failure, they should
1835 * never happen so it is really useful to know if/when they do
1836 */
1837 if (rc == -1)
1838 hash_failure_debug(ea, access, vsid, trap, ssize,
1839 mm_ctx_user_psize(&mm->context),
1840 mm_ctx_user_psize(&mm->context),
1841 pte_val(*ptep));
1842
1843 powerpc_local_irq_pmu_restore(flags);
1844 }
1845
1846 /*
1847 * This is called at the end of handling a user page fault, when the
1848 * fault has been handled by updating a PTE in the linux page tables.
1849 * We use it to preload an HPTE into the hash table corresponding to
1850 * the updated linux PTE.
1851 *
1852 * This must always be called with the pte lock held.
1853 */
__update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1854 void __update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
1855 pte_t *ptep)
1856 {
1857 /*
1858 * We don't need to worry about _PAGE_PRESENT here because we are
1859 * called with either mm->page_table_lock held or ptl lock held
1860 */
1861 unsigned long trap;
1862 bool is_exec;
1863
1864 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
1865 if (!pte_young(*ptep) || address >= TASK_SIZE)
1866 return;
1867
1868 /*
1869 * We try to figure out if we are coming from an instruction
1870 * access fault and pass that down to __hash_page so we avoid
1871 * double-faulting on execution of fresh text. We have to test
1872 * for regs NULL since init will get here first thing at boot.
1873 *
1874 * We also avoid filling the hash if not coming from a fault.
1875 */
1876
1877 trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL;
1878 switch (trap) {
1879 case 0x300:
1880 is_exec = false;
1881 break;
1882 case 0x400:
1883 is_exec = true;
1884 break;
1885 default:
1886 return;
1887 }
1888
1889 hash_preload(vma->vm_mm, ptep, address, is_exec, trap);
1890 }
1891
1892 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
tm_flush_hash_page(int local)1893 static inline void tm_flush_hash_page(int local)
1894 {
1895 /*
1896 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1897 * page back to a block device w/PIO could pick up transactional data
1898 * (bad!) so we force an abort here. Before the sync the page will be
1899 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1900 * kernel uses a page from userspace without unmapping it first, it may
1901 * see the speculated version.
1902 */
1903 if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1904 MSR_TM_ACTIVE(current->thread.regs->msr)) {
1905 tm_enable();
1906 tm_abort(TM_CAUSE_TLBI);
1907 }
1908 }
1909 #else
tm_flush_hash_page(int local)1910 static inline void tm_flush_hash_page(int local)
1911 {
1912 }
1913 #endif
1914
1915 /*
1916 * Return the global hash slot, corresponding to the given PTE, which contains
1917 * the HPTE.
1918 */
pte_get_hash_gslot(unsigned long vpn,unsigned long shift,int ssize,real_pte_t rpte,unsigned int subpg_index)1919 unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1920 int ssize, real_pte_t rpte, unsigned int subpg_index)
1921 {
1922 unsigned long hash, gslot, hidx;
1923
1924 hash = hpt_hash(vpn, shift, ssize);
1925 hidx = __rpte_to_hidx(rpte, subpg_index);
1926 if (hidx & _PTEIDX_SECONDARY)
1927 hash = ~hash;
1928 gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1929 gslot += hidx & _PTEIDX_GROUP_IX;
1930 return gslot;
1931 }
1932
flush_hash_page(unsigned long vpn,real_pte_t pte,int psize,int ssize,unsigned long flags)1933 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1934 unsigned long flags)
1935 {
1936 unsigned long index, shift, gslot;
1937 int local = flags & HPTE_LOCAL_UPDATE;
1938
1939 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1940 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1941 gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1942 DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1943 /*
1944 * We use same base page size and actual psize, because we don't
1945 * use these functions for hugepage
1946 */
1947 mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1948 ssize, local);
1949 } pte_iterate_hashed_end();
1950
1951 tm_flush_hash_page(local);
1952 }
1953
1954 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
flush_hash_hugepage(unsigned long vsid,unsigned long addr,pmd_t * pmdp,unsigned int psize,int ssize,unsigned long flags)1955 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1956 pmd_t *pmdp, unsigned int psize, int ssize,
1957 unsigned long flags)
1958 {
1959 int i, max_hpte_count, valid;
1960 unsigned long s_addr;
1961 unsigned char *hpte_slot_array;
1962 unsigned long hidx, shift, vpn, hash, slot;
1963 int local = flags & HPTE_LOCAL_UPDATE;
1964
1965 s_addr = addr & HPAGE_PMD_MASK;
1966 hpte_slot_array = get_hpte_slot_array(pmdp);
1967 /*
1968 * IF we try to do a HUGE PTE update after a withdraw is done.
1969 * we will find the below NULL. This happens when we do
1970 * split_huge_pmd
1971 */
1972 if (!hpte_slot_array)
1973 return;
1974
1975 if (mmu_hash_ops.hugepage_invalidate) {
1976 mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1977 psize, ssize, local);
1978 goto tm_abort;
1979 }
1980 /*
1981 * No bluk hpte removal support, invalidate each entry
1982 */
1983 shift = mmu_psize_defs[psize].shift;
1984 max_hpte_count = HPAGE_PMD_SIZE >> shift;
1985 for (i = 0; i < max_hpte_count; i++) {
1986 /*
1987 * 8 bits per each hpte entries
1988 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1989 */
1990 valid = hpte_valid(hpte_slot_array, i);
1991 if (!valid)
1992 continue;
1993 hidx = hpte_hash_index(hpte_slot_array, i);
1994
1995 /* get the vpn */
1996 addr = s_addr + (i * (1ul << shift));
1997 vpn = hpt_vpn(addr, vsid, ssize);
1998 hash = hpt_hash(vpn, shift, ssize);
1999 if (hidx & _PTEIDX_SECONDARY)
2000 hash = ~hash;
2001
2002 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
2003 slot += hidx & _PTEIDX_GROUP_IX;
2004 mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
2005 MMU_PAGE_16M, ssize, local);
2006 }
2007 tm_abort:
2008 tm_flush_hash_page(local);
2009 }
2010 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2011
flush_hash_range(unsigned long number,int local)2012 void flush_hash_range(unsigned long number, int local)
2013 {
2014 if (mmu_hash_ops.flush_hash_range)
2015 mmu_hash_ops.flush_hash_range(number, local);
2016 else {
2017 int i;
2018 struct ppc64_tlb_batch *batch =
2019 this_cpu_ptr(&ppc64_tlb_batch);
2020
2021 for (i = 0; i < number; i++)
2022 flush_hash_page(batch->vpn[i], batch->pte[i],
2023 batch->psize, batch->ssize, local);
2024 }
2025 }
2026
hpte_insert_repeating(unsigned long hash,unsigned long vpn,unsigned long pa,unsigned long rflags,unsigned long vflags,int psize,int ssize)2027 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
2028 unsigned long pa, unsigned long rflags,
2029 unsigned long vflags, int psize, int ssize)
2030 {
2031 unsigned long hpte_group;
2032 long slot;
2033
2034 repeat:
2035 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
2036
2037 /* Insert into the hash table, primary slot */
2038 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
2039 psize, psize, ssize);
2040
2041 /* Primary is full, try the secondary */
2042 if (unlikely(slot == -1)) {
2043 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
2044 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
2045 vflags | HPTE_V_SECONDARY,
2046 psize, psize, ssize);
2047 if (slot == -1) {
2048 if (mftb() & 0x1)
2049 hpte_group = (hash & htab_hash_mask) *
2050 HPTES_PER_GROUP;
2051
2052 mmu_hash_ops.hpte_remove(hpte_group);
2053 goto repeat;
2054 }
2055 }
2056
2057 return slot;
2058 }
2059
hpt_clear_stress(void)2060 void hpt_clear_stress(void)
2061 {
2062 int cpu = raw_smp_processor_id();
2063 int g;
2064
2065 for (g = 0; g < stress_nr_groups(); g++) {
2066 unsigned long last_group;
2067 last_group = stress_hpt_struct[cpu].last_group[g];
2068
2069 if (last_group != -1UL) {
2070 int i;
2071 for (i = 0; i < HPTES_PER_GROUP; i++) {
2072 if (mmu_hash_ops.hpte_remove(last_group) == -1)
2073 break;
2074 }
2075 stress_hpt_struct[cpu].last_group[g] = -1;
2076 }
2077 }
2078 }
2079
hpt_do_stress(unsigned long ea,unsigned long hpte_group)2080 void hpt_do_stress(unsigned long ea, unsigned long hpte_group)
2081 {
2082 unsigned long last_group;
2083 int cpu = raw_smp_processor_id();
2084
2085 last_group = stress_hpt_struct[cpu].last_group[stress_nr_groups() - 1];
2086 if (hpte_group == last_group)
2087 return;
2088
2089 if (last_group != -1UL) {
2090 int i;
2091 /*
2092 * Concurrent CPUs might be inserting into this group, so
2093 * give up after a number of iterations, to prevent a live
2094 * lock.
2095 */
2096 for (i = 0; i < HPTES_PER_GROUP; i++) {
2097 if (mmu_hash_ops.hpte_remove(last_group) == -1)
2098 break;
2099 }
2100 stress_hpt_struct[cpu].last_group[stress_nr_groups() - 1] = -1;
2101 }
2102
2103 if (ea >= PAGE_OFFSET) {
2104 /*
2105 * We would really like to prefetch to get the TLB loaded, then
2106 * remove the PTE before returning from fault interrupt, to
2107 * increase the hash fault rate.
2108 *
2109 * Unfortunately QEMU TCG does not model the TLB in a way that
2110 * makes this possible, and systemsim (mambo) emulator does not
2111 * bring in TLBs with prefetches (although loads/stores do
2112 * work for non-CI PTEs).
2113 *
2114 * So remember this PTE and clear it on the next hash fault.
2115 */
2116 memmove(&stress_hpt_struct[cpu].last_group[1],
2117 &stress_hpt_struct[cpu].last_group[0],
2118 (stress_nr_groups() - 1) * sizeof(unsigned long));
2119 stress_hpt_struct[cpu].last_group[0] = hpte_group;
2120 }
2121 }
2122
2123 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE)
2124 static DEFINE_RAW_SPINLOCK(linear_map_hash_lock);
2125
kernel_map_linear_page(unsigned long vaddr,unsigned long lmi)2126 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
2127 {
2128 unsigned long hash;
2129 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
2130 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
2131 unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY);
2132 long ret;
2133
2134 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
2135
2136 /* Don't create HPTE entries for bad address */
2137 if (!vsid)
2138 return;
2139
2140 if (linear_map_hash_slots[lmi] & 0x80)
2141 return;
2142
2143 ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
2144 HPTE_V_BOLTED,
2145 mmu_linear_psize, mmu_kernel_ssize);
2146
2147 BUG_ON (ret < 0);
2148 raw_spin_lock(&linear_map_hash_lock);
2149 BUG_ON(linear_map_hash_slots[lmi] & 0x80);
2150 linear_map_hash_slots[lmi] = ret | 0x80;
2151 raw_spin_unlock(&linear_map_hash_lock);
2152 }
2153
kernel_unmap_linear_page(unsigned long vaddr,unsigned long lmi)2154 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
2155 {
2156 unsigned long hash, hidx, slot;
2157 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
2158 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
2159
2160 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
2161 raw_spin_lock(&linear_map_hash_lock);
2162 if (!(linear_map_hash_slots[lmi] & 0x80)) {
2163 raw_spin_unlock(&linear_map_hash_lock);
2164 return;
2165 }
2166 hidx = linear_map_hash_slots[lmi] & 0x7f;
2167 linear_map_hash_slots[lmi] = 0;
2168 raw_spin_unlock(&linear_map_hash_lock);
2169 if (hidx & _PTEIDX_SECONDARY)
2170 hash = ~hash;
2171 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
2172 slot += hidx & _PTEIDX_GROUP_IX;
2173 mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
2174 mmu_linear_psize,
2175 mmu_kernel_ssize, 0);
2176 }
2177
hash__kernel_map_pages(struct page * page,int numpages,int enable)2178 int hash__kernel_map_pages(struct page *page, int numpages, int enable)
2179 {
2180 unsigned long flags, vaddr, lmi;
2181 int i;
2182
2183 local_irq_save(flags);
2184 for (i = 0; i < numpages; i++, page++) {
2185 vaddr = (unsigned long)page_address(page);
2186 lmi = __pa(vaddr) >> PAGE_SHIFT;
2187 if (lmi >= linear_map_hash_count)
2188 continue;
2189 if (enable)
2190 kernel_map_linear_page(vaddr, lmi);
2191 else
2192 kernel_unmap_linear_page(vaddr, lmi);
2193 }
2194 local_irq_restore(flags);
2195 return 0;
2196 }
2197 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_KFENCE */
2198
hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,phys_addr_t first_memblock_size)2199 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
2200 phys_addr_t first_memblock_size)
2201 {
2202 /*
2203 * We don't currently support the first MEMBLOCK not mapping 0
2204 * physical on those processors
2205 */
2206 BUG_ON(first_memblock_base != 0);
2207
2208 /*
2209 * On virtualized systems the first entry is our RMA region aka VRMA,
2210 * non-virtualized 64-bit hash MMU systems don't have a limitation
2211 * on real mode access.
2212 *
2213 * For guests on platforms before POWER9, we clamp the it limit to 1G
2214 * to avoid some funky things such as RTAS bugs etc...
2215 *
2216 * On POWER9 we limit to 1TB in case the host erroneously told us that
2217 * the RMA was >1TB. Effective address bits 0:23 are treated as zero
2218 * (meaning the access is aliased to zero i.e. addr = addr % 1TB)
2219 * for virtual real mode addressing and so it doesn't make sense to
2220 * have an area larger than 1TB as it can't be addressed.
2221 */
2222 if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
2223 ppc64_rma_size = first_memblock_size;
2224 if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
2225 ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
2226 else
2227 ppc64_rma_size = min_t(u64, ppc64_rma_size,
2228 1UL << SID_SHIFT_1T);
2229
2230 /* Finally limit subsequent allocations */
2231 memblock_set_current_limit(ppc64_rma_size);
2232 } else {
2233 ppc64_rma_size = ULONG_MAX;
2234 }
2235 }
2236
2237 #ifdef CONFIG_DEBUG_FS
2238
hpt_order_get(void * data,u64 * val)2239 static int hpt_order_get(void *data, u64 *val)
2240 {
2241 *val = ppc64_pft_size;
2242 return 0;
2243 }
2244
hpt_order_set(void * data,u64 val)2245 static int hpt_order_set(void *data, u64 val)
2246 {
2247 int ret;
2248
2249 if (!mmu_hash_ops.resize_hpt)
2250 return -ENODEV;
2251
2252 cpus_read_lock();
2253 ret = mmu_hash_ops.resize_hpt(val);
2254 cpus_read_unlock();
2255
2256 return ret;
2257 }
2258
2259 DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
2260
hash64_debugfs(void)2261 static int __init hash64_debugfs(void)
2262 {
2263 debugfs_create_file("hpt_order", 0600, arch_debugfs_dir, NULL,
2264 &fops_hpt_order);
2265 return 0;
2266 }
2267 machine_device_initcall(pseries, hash64_debugfs);
2268 #endif /* CONFIG_DEBUG_FS */
2269
print_system_hash_info(void)2270 void __init print_system_hash_info(void)
2271 {
2272 pr_info("ppc64_pft_size = 0x%llx\n", ppc64_pft_size);
2273
2274 if (htab_hash_mask)
2275 pr_info("htab_hash_mask = 0x%lx\n", htab_hash_mask);
2276 }
2277
arch_randomize_brk(struct mm_struct * mm)2278 unsigned long arch_randomize_brk(struct mm_struct *mm)
2279 {
2280 /*
2281 * If we are using 1TB segments and we are allowed to randomise
2282 * the heap, we can put it above 1TB so it is backed by a 1TB
2283 * segment. Otherwise the heap will be in the bottom 1TB
2284 * which always uses 256MB segments and this may result in a
2285 * performance penalty.
2286 */
2287 if (is_32bit_task())
2288 return randomize_page(mm->brk, SZ_32M);
2289 else if (!radix_enabled() && mmu_highuser_ssize == MMU_SEGSIZE_1T)
2290 return randomize_page(max_t(unsigned long, mm->brk, SZ_1T), SZ_1G);
2291 else
2292 return randomize_page(mm->brk, SZ_1G);
2293 }
2294