1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 #include <linux/padata.h>
39
40 #include <asm/page.h>
41 #include <asm/pgalloc.h>
42 #include <asm/tlb.h>
43
44 #include <linux/io.h>
45 #include <linux/hugetlb.h>
46 #include <linux/hugetlb_cgroup.h>
47 #include <linux/node.h>
48 #include <linux/page_owner.h>
49 #include "internal.h"
50 #include "hugetlb_vmemmap.h"
51
52 int hugetlb_max_hstate __read_mostly;
53 unsigned int default_hstate_idx;
54 struct hstate hstates[HUGE_MAX_HSTATE];
55
56 #ifdef CONFIG_CMA
57 static struct cma *hugetlb_cma[MAX_NUMNODES];
58 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
59 #endif
60 static unsigned long hugetlb_cma_size __initdata;
61
62 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
63
64 /* for command line parsing */
65 static struct hstate * __initdata parsed_hstate;
66 static unsigned long __initdata default_hstate_max_huge_pages;
67 static bool __initdata parsed_valid_hugepagesz = true;
68 static bool __initdata parsed_default_hugepagesz;
69 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
70
71 /*
72 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
73 * free_huge_pages, and surplus_huge_pages.
74 */
75 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
76
77 /*
78 * Serializes faults on the same logical page. This is used to
79 * prevent spurious OOMs when the hugepage pool is fully utilized.
80 */
81 static int num_fault_mutexes __ro_after_init;
82 struct mutex *hugetlb_fault_mutex_table __ro_after_init;
83
84 /* Forward declaration */
85 static int hugetlb_acct_memory(struct hstate *h, long delta);
86 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
87 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
88 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
89 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
90 unsigned long start, unsigned long end);
91 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
92
hugetlb_free_folio(struct folio * folio)93 static void hugetlb_free_folio(struct folio *folio)
94 {
95 #ifdef CONFIG_CMA
96 int nid = folio_nid(folio);
97
98 if (cma_free_folio(hugetlb_cma[nid], folio))
99 return;
100 #endif
101 folio_put(folio);
102 }
103
subpool_is_free(struct hugepage_subpool * spool)104 static inline bool subpool_is_free(struct hugepage_subpool *spool)
105 {
106 if (spool->count)
107 return false;
108 if (spool->max_hpages != -1)
109 return spool->used_hpages == 0;
110 if (spool->min_hpages != -1)
111 return spool->rsv_hpages == spool->min_hpages;
112
113 return true;
114 }
115
unlock_or_release_subpool(struct hugepage_subpool * spool,unsigned long irq_flags)116 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
117 unsigned long irq_flags)
118 {
119 spin_unlock_irqrestore(&spool->lock, irq_flags);
120
121 /* If no pages are used, and no other handles to the subpool
122 * remain, give up any reservations based on minimum size and
123 * free the subpool */
124 if (subpool_is_free(spool)) {
125 if (spool->min_hpages != -1)
126 hugetlb_acct_memory(spool->hstate,
127 -spool->min_hpages);
128 kfree(spool);
129 }
130 }
131
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)132 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
133 long min_hpages)
134 {
135 struct hugepage_subpool *spool;
136
137 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
138 if (!spool)
139 return NULL;
140
141 spin_lock_init(&spool->lock);
142 spool->count = 1;
143 spool->max_hpages = max_hpages;
144 spool->hstate = h;
145 spool->min_hpages = min_hpages;
146
147 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
148 kfree(spool);
149 return NULL;
150 }
151 spool->rsv_hpages = min_hpages;
152
153 return spool;
154 }
155
hugepage_put_subpool(struct hugepage_subpool * spool)156 void hugepage_put_subpool(struct hugepage_subpool *spool)
157 {
158 unsigned long flags;
159
160 spin_lock_irqsave(&spool->lock, flags);
161 BUG_ON(!spool->count);
162 spool->count--;
163 unlock_or_release_subpool(spool, flags);
164 }
165
166 /*
167 * Subpool accounting for allocating and reserving pages.
168 * Return -ENOMEM if there are not enough resources to satisfy the
169 * request. Otherwise, return the number of pages by which the
170 * global pools must be adjusted (upward). The returned value may
171 * only be different than the passed value (delta) in the case where
172 * a subpool minimum size must be maintained.
173 */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)174 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
175 long delta)
176 {
177 long ret = delta;
178
179 if (!spool)
180 return ret;
181
182 spin_lock_irq(&spool->lock);
183
184 if (spool->max_hpages != -1) { /* maximum size accounting */
185 if ((spool->used_hpages + delta) <= spool->max_hpages)
186 spool->used_hpages += delta;
187 else {
188 ret = -ENOMEM;
189 goto unlock_ret;
190 }
191 }
192
193 /* minimum size accounting */
194 if (spool->min_hpages != -1 && spool->rsv_hpages) {
195 if (delta > spool->rsv_hpages) {
196 /*
197 * Asking for more reserves than those already taken on
198 * behalf of subpool. Return difference.
199 */
200 ret = delta - spool->rsv_hpages;
201 spool->rsv_hpages = 0;
202 } else {
203 ret = 0; /* reserves already accounted for */
204 spool->rsv_hpages -= delta;
205 }
206 }
207
208 unlock_ret:
209 spin_unlock_irq(&spool->lock);
210 return ret;
211 }
212
213 /*
214 * Subpool accounting for freeing and unreserving pages.
215 * Return the number of global page reservations that must be dropped.
216 * The return value may only be different than the passed value (delta)
217 * in the case where a subpool minimum size must be maintained.
218 */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)219 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
220 long delta)
221 {
222 long ret = delta;
223 unsigned long flags;
224
225 if (!spool)
226 return delta;
227
228 spin_lock_irqsave(&spool->lock, flags);
229
230 if (spool->max_hpages != -1) /* maximum size accounting */
231 spool->used_hpages -= delta;
232
233 /* minimum size accounting */
234 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
235 if (spool->rsv_hpages + delta <= spool->min_hpages)
236 ret = 0;
237 else
238 ret = spool->rsv_hpages + delta - spool->min_hpages;
239
240 spool->rsv_hpages += delta;
241 if (spool->rsv_hpages > spool->min_hpages)
242 spool->rsv_hpages = spool->min_hpages;
243 }
244
245 /*
246 * If hugetlbfs_put_super couldn't free spool due to an outstanding
247 * quota reference, free it now.
248 */
249 unlock_or_release_subpool(spool, flags);
250
251 return ret;
252 }
253
subpool_inode(struct inode * inode)254 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
255 {
256 return HUGETLBFS_SB(inode->i_sb)->spool;
257 }
258
subpool_vma(struct vm_area_struct * vma)259 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
260 {
261 return subpool_inode(file_inode(vma->vm_file));
262 }
263
264 /*
265 * hugetlb vma_lock helper routines
266 */
hugetlb_vma_lock_read(struct vm_area_struct * vma)267 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
268 {
269 if (__vma_shareable_lock(vma)) {
270 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
271
272 down_read(&vma_lock->rw_sema);
273 } else if (__vma_private_lock(vma)) {
274 struct resv_map *resv_map = vma_resv_map(vma);
275
276 down_read(&resv_map->rw_sema);
277 }
278 }
279
hugetlb_vma_unlock_read(struct vm_area_struct * vma)280 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
281 {
282 if (__vma_shareable_lock(vma)) {
283 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
284
285 up_read(&vma_lock->rw_sema);
286 } else if (__vma_private_lock(vma)) {
287 struct resv_map *resv_map = vma_resv_map(vma);
288
289 up_read(&resv_map->rw_sema);
290 }
291 }
292
hugetlb_vma_lock_write(struct vm_area_struct * vma)293 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
294 {
295 if (__vma_shareable_lock(vma)) {
296 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
297
298 down_write(&vma_lock->rw_sema);
299 } else if (__vma_private_lock(vma)) {
300 struct resv_map *resv_map = vma_resv_map(vma);
301
302 down_write(&resv_map->rw_sema);
303 }
304 }
305
hugetlb_vma_unlock_write(struct vm_area_struct * vma)306 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
307 {
308 if (__vma_shareable_lock(vma)) {
309 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
310
311 up_write(&vma_lock->rw_sema);
312 } else if (__vma_private_lock(vma)) {
313 struct resv_map *resv_map = vma_resv_map(vma);
314
315 up_write(&resv_map->rw_sema);
316 }
317 }
318
hugetlb_vma_trylock_write(struct vm_area_struct * vma)319 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
320 {
321
322 if (__vma_shareable_lock(vma)) {
323 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
324
325 return down_write_trylock(&vma_lock->rw_sema);
326 } else if (__vma_private_lock(vma)) {
327 struct resv_map *resv_map = vma_resv_map(vma);
328
329 return down_write_trylock(&resv_map->rw_sema);
330 }
331
332 return 1;
333 }
334
hugetlb_vma_assert_locked(struct vm_area_struct * vma)335 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
336 {
337 if (__vma_shareable_lock(vma)) {
338 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
339
340 lockdep_assert_held(&vma_lock->rw_sema);
341 } else if (__vma_private_lock(vma)) {
342 struct resv_map *resv_map = vma_resv_map(vma);
343
344 lockdep_assert_held(&resv_map->rw_sema);
345 }
346 }
347
hugetlb_vma_lock_release(struct kref * kref)348 void hugetlb_vma_lock_release(struct kref *kref)
349 {
350 struct hugetlb_vma_lock *vma_lock = container_of(kref,
351 struct hugetlb_vma_lock, refs);
352
353 kfree(vma_lock);
354 }
355
__hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock * vma_lock)356 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
357 {
358 struct vm_area_struct *vma = vma_lock->vma;
359
360 /*
361 * vma_lock structure may or not be released as a result of put,
362 * it certainly will no longer be attached to vma so clear pointer.
363 * Semaphore synchronizes access to vma_lock->vma field.
364 */
365 vma_lock->vma = NULL;
366 vma->vm_private_data = NULL;
367 up_write(&vma_lock->rw_sema);
368 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
369 }
370
__hugetlb_vma_unlock_write_free(struct vm_area_struct * vma)371 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
372 {
373 if (__vma_shareable_lock(vma)) {
374 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
375
376 __hugetlb_vma_unlock_write_put(vma_lock);
377 } else if (__vma_private_lock(vma)) {
378 struct resv_map *resv_map = vma_resv_map(vma);
379
380 /* no free for anon vmas, but still need to unlock */
381 up_write(&resv_map->rw_sema);
382 }
383 }
384
hugetlb_vma_lock_free(struct vm_area_struct * vma)385 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
386 {
387 /*
388 * Only present in sharable vmas.
389 */
390 if (!vma || !__vma_shareable_lock(vma))
391 return;
392
393 if (vma->vm_private_data) {
394 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
395
396 down_write(&vma_lock->rw_sema);
397 __hugetlb_vma_unlock_write_put(vma_lock);
398 }
399 }
400
hugetlb_vma_lock_alloc(struct vm_area_struct * vma)401 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
402 {
403 struct hugetlb_vma_lock *vma_lock;
404
405 /* Only establish in (flags) sharable vmas */
406 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
407 return;
408
409 /* Should never get here with non-NULL vm_private_data */
410 if (vma->vm_private_data)
411 return;
412
413 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
414 if (!vma_lock) {
415 /*
416 * If we can not allocate structure, then vma can not
417 * participate in pmd sharing. This is only a possible
418 * performance enhancement and memory saving issue.
419 * However, the lock is also used to synchronize page
420 * faults with truncation. If the lock is not present,
421 * unlikely races could leave pages in a file past i_size
422 * until the file is removed. Warn in the unlikely case of
423 * allocation failure.
424 */
425 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
426 return;
427 }
428
429 kref_init(&vma_lock->refs);
430 init_rwsem(&vma_lock->rw_sema);
431 vma_lock->vma = vma;
432 vma->vm_private_data = vma_lock;
433 }
434
435 /* Helper that removes a struct file_region from the resv_map cache and returns
436 * it for use.
437 */
438 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)439 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
440 {
441 struct file_region *nrg;
442
443 VM_BUG_ON(resv->region_cache_count <= 0);
444
445 resv->region_cache_count--;
446 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
447 list_del(&nrg->link);
448
449 nrg->from = from;
450 nrg->to = to;
451
452 return nrg;
453 }
454
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)455 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
456 struct file_region *rg)
457 {
458 #ifdef CONFIG_CGROUP_HUGETLB
459 nrg->reservation_counter = rg->reservation_counter;
460 nrg->css = rg->css;
461 if (rg->css)
462 css_get(rg->css);
463 #endif
464 }
465
466 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)467 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
468 struct hstate *h,
469 struct resv_map *resv,
470 struct file_region *nrg)
471 {
472 #ifdef CONFIG_CGROUP_HUGETLB
473 if (h_cg) {
474 nrg->reservation_counter =
475 &h_cg->rsvd_hugepage[hstate_index(h)];
476 nrg->css = &h_cg->css;
477 /*
478 * The caller will hold exactly one h_cg->css reference for the
479 * whole contiguous reservation region. But this area might be
480 * scattered when there are already some file_regions reside in
481 * it. As a result, many file_regions may share only one css
482 * reference. In order to ensure that one file_region must hold
483 * exactly one h_cg->css reference, we should do css_get for
484 * each file_region and leave the reference held by caller
485 * untouched.
486 */
487 css_get(&h_cg->css);
488 if (!resv->pages_per_hpage)
489 resv->pages_per_hpage = pages_per_huge_page(h);
490 /* pages_per_hpage should be the same for all entries in
491 * a resv_map.
492 */
493 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
494 } else {
495 nrg->reservation_counter = NULL;
496 nrg->css = NULL;
497 }
498 #endif
499 }
500
put_uncharge_info(struct file_region * rg)501 static void put_uncharge_info(struct file_region *rg)
502 {
503 #ifdef CONFIG_CGROUP_HUGETLB
504 if (rg->css)
505 css_put(rg->css);
506 #endif
507 }
508
has_same_uncharge_info(struct file_region * rg,struct file_region * org)509 static bool has_same_uncharge_info(struct file_region *rg,
510 struct file_region *org)
511 {
512 #ifdef CONFIG_CGROUP_HUGETLB
513 return rg->reservation_counter == org->reservation_counter &&
514 rg->css == org->css;
515
516 #else
517 return true;
518 #endif
519 }
520
coalesce_file_region(struct resv_map * resv,struct file_region * rg)521 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
522 {
523 struct file_region *nrg, *prg;
524
525 prg = list_prev_entry(rg, link);
526 if (&prg->link != &resv->regions && prg->to == rg->from &&
527 has_same_uncharge_info(prg, rg)) {
528 prg->to = rg->to;
529
530 list_del(&rg->link);
531 put_uncharge_info(rg);
532 kfree(rg);
533
534 rg = prg;
535 }
536
537 nrg = list_next_entry(rg, link);
538 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
539 has_same_uncharge_info(nrg, rg)) {
540 nrg->from = rg->from;
541
542 list_del(&rg->link);
543 put_uncharge_info(rg);
544 kfree(rg);
545 }
546 }
547
548 static inline long
hugetlb_resv_map_add(struct resv_map * map,struct list_head * rg,long from,long to,struct hstate * h,struct hugetlb_cgroup * cg,long * regions_needed)549 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
550 long to, struct hstate *h, struct hugetlb_cgroup *cg,
551 long *regions_needed)
552 {
553 struct file_region *nrg;
554
555 if (!regions_needed) {
556 nrg = get_file_region_entry_from_cache(map, from, to);
557 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
558 list_add(&nrg->link, rg);
559 coalesce_file_region(map, nrg);
560 } else
561 *regions_needed += 1;
562
563 return to - from;
564 }
565
566 /*
567 * Must be called with resv->lock held.
568 *
569 * Calling this with regions_needed != NULL will count the number of pages
570 * to be added but will not modify the linked list. And regions_needed will
571 * indicate the number of file_regions needed in the cache to carry out to add
572 * the regions for this range.
573 */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)574 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
575 struct hugetlb_cgroup *h_cg,
576 struct hstate *h, long *regions_needed)
577 {
578 long add = 0;
579 struct list_head *head = &resv->regions;
580 long last_accounted_offset = f;
581 struct file_region *iter, *trg = NULL;
582 struct list_head *rg = NULL;
583
584 if (regions_needed)
585 *regions_needed = 0;
586
587 /* In this loop, we essentially handle an entry for the range
588 * [last_accounted_offset, iter->from), at every iteration, with some
589 * bounds checking.
590 */
591 list_for_each_entry_safe(iter, trg, head, link) {
592 /* Skip irrelevant regions that start before our range. */
593 if (iter->from < f) {
594 /* If this region ends after the last accounted offset,
595 * then we need to update last_accounted_offset.
596 */
597 if (iter->to > last_accounted_offset)
598 last_accounted_offset = iter->to;
599 continue;
600 }
601
602 /* When we find a region that starts beyond our range, we've
603 * finished.
604 */
605 if (iter->from >= t) {
606 rg = iter->link.prev;
607 break;
608 }
609
610 /* Add an entry for last_accounted_offset -> iter->from, and
611 * update last_accounted_offset.
612 */
613 if (iter->from > last_accounted_offset)
614 add += hugetlb_resv_map_add(resv, iter->link.prev,
615 last_accounted_offset,
616 iter->from, h, h_cg,
617 regions_needed);
618
619 last_accounted_offset = iter->to;
620 }
621
622 /* Handle the case where our range extends beyond
623 * last_accounted_offset.
624 */
625 if (!rg)
626 rg = head->prev;
627 if (last_accounted_offset < t)
628 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
629 t, h, h_cg, regions_needed);
630
631 return add;
632 }
633
634 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
635 */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)636 static int allocate_file_region_entries(struct resv_map *resv,
637 int regions_needed)
638 __must_hold(&resv->lock)
639 {
640 LIST_HEAD(allocated_regions);
641 int to_allocate = 0, i = 0;
642 struct file_region *trg = NULL, *rg = NULL;
643
644 VM_BUG_ON(regions_needed < 0);
645
646 /*
647 * Check for sufficient descriptors in the cache to accommodate
648 * the number of in progress add operations plus regions_needed.
649 *
650 * This is a while loop because when we drop the lock, some other call
651 * to region_add or region_del may have consumed some region_entries,
652 * so we keep looping here until we finally have enough entries for
653 * (adds_in_progress + regions_needed).
654 */
655 while (resv->region_cache_count <
656 (resv->adds_in_progress + regions_needed)) {
657 to_allocate = resv->adds_in_progress + regions_needed -
658 resv->region_cache_count;
659
660 /* At this point, we should have enough entries in the cache
661 * for all the existing adds_in_progress. We should only be
662 * needing to allocate for regions_needed.
663 */
664 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
665
666 spin_unlock(&resv->lock);
667 for (i = 0; i < to_allocate; i++) {
668 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
669 if (!trg)
670 goto out_of_memory;
671 list_add(&trg->link, &allocated_regions);
672 }
673
674 spin_lock(&resv->lock);
675
676 list_splice(&allocated_regions, &resv->region_cache);
677 resv->region_cache_count += to_allocate;
678 }
679
680 return 0;
681
682 out_of_memory:
683 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
684 list_del(&rg->link);
685 kfree(rg);
686 }
687 return -ENOMEM;
688 }
689
690 /*
691 * Add the huge page range represented by [f, t) to the reserve
692 * map. Regions will be taken from the cache to fill in this range.
693 * Sufficient regions should exist in the cache due to the previous
694 * call to region_chg with the same range, but in some cases the cache will not
695 * have sufficient entries due to races with other code doing region_add or
696 * region_del. The extra needed entries will be allocated.
697 *
698 * regions_needed is the out value provided by a previous call to region_chg.
699 *
700 * Return the number of new huge pages added to the map. This number is greater
701 * than or equal to zero. If file_region entries needed to be allocated for
702 * this operation and we were not able to allocate, it returns -ENOMEM.
703 * region_add of regions of length 1 never allocate file_regions and cannot
704 * fail; region_chg will always allocate at least 1 entry and a region_add for
705 * 1 page will only require at most 1 entry.
706 */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)707 static long region_add(struct resv_map *resv, long f, long t,
708 long in_regions_needed, struct hstate *h,
709 struct hugetlb_cgroup *h_cg)
710 {
711 long add = 0, actual_regions_needed = 0;
712
713 spin_lock(&resv->lock);
714 retry:
715
716 /* Count how many regions are actually needed to execute this add. */
717 add_reservation_in_range(resv, f, t, NULL, NULL,
718 &actual_regions_needed);
719
720 /*
721 * Check for sufficient descriptors in the cache to accommodate
722 * this add operation. Note that actual_regions_needed may be greater
723 * than in_regions_needed, as the resv_map may have been modified since
724 * the region_chg call. In this case, we need to make sure that we
725 * allocate extra entries, such that we have enough for all the
726 * existing adds_in_progress, plus the excess needed for this
727 * operation.
728 */
729 if (actual_regions_needed > in_regions_needed &&
730 resv->region_cache_count <
731 resv->adds_in_progress +
732 (actual_regions_needed - in_regions_needed)) {
733 /* region_add operation of range 1 should never need to
734 * allocate file_region entries.
735 */
736 VM_BUG_ON(t - f <= 1);
737
738 if (allocate_file_region_entries(
739 resv, actual_regions_needed - in_regions_needed)) {
740 return -ENOMEM;
741 }
742
743 goto retry;
744 }
745
746 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
747
748 resv->adds_in_progress -= in_regions_needed;
749
750 spin_unlock(&resv->lock);
751 return add;
752 }
753
754 /*
755 * Examine the existing reserve map and determine how many
756 * huge pages in the specified range [f, t) are NOT currently
757 * represented. This routine is called before a subsequent
758 * call to region_add that will actually modify the reserve
759 * map to add the specified range [f, t). region_chg does
760 * not change the number of huge pages represented by the
761 * map. A number of new file_region structures is added to the cache as a
762 * placeholder, for the subsequent region_add call to use. At least 1
763 * file_region structure is added.
764 *
765 * out_regions_needed is the number of regions added to the
766 * resv->adds_in_progress. This value needs to be provided to a follow up call
767 * to region_add or region_abort for proper accounting.
768 *
769 * Returns the number of huge pages that need to be added to the existing
770 * reservation map for the range [f, t). This number is greater or equal to
771 * zero. -ENOMEM is returned if a new file_region structure or cache entry
772 * is needed and can not be allocated.
773 */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)774 static long region_chg(struct resv_map *resv, long f, long t,
775 long *out_regions_needed)
776 {
777 long chg = 0;
778
779 spin_lock(&resv->lock);
780
781 /* Count how many hugepages in this range are NOT represented. */
782 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
783 out_regions_needed);
784
785 if (*out_regions_needed == 0)
786 *out_regions_needed = 1;
787
788 if (allocate_file_region_entries(resv, *out_regions_needed))
789 return -ENOMEM;
790
791 resv->adds_in_progress += *out_regions_needed;
792
793 spin_unlock(&resv->lock);
794 return chg;
795 }
796
797 /*
798 * Abort the in progress add operation. The adds_in_progress field
799 * of the resv_map keeps track of the operations in progress between
800 * calls to region_chg and region_add. Operations are sometimes
801 * aborted after the call to region_chg. In such cases, region_abort
802 * is called to decrement the adds_in_progress counter. regions_needed
803 * is the value returned by the region_chg call, it is used to decrement
804 * the adds_in_progress counter.
805 *
806 * NOTE: The range arguments [f, t) are not needed or used in this
807 * routine. They are kept to make reading the calling code easier as
808 * arguments will match the associated region_chg call.
809 */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)810 static void region_abort(struct resv_map *resv, long f, long t,
811 long regions_needed)
812 {
813 spin_lock(&resv->lock);
814 VM_BUG_ON(!resv->region_cache_count);
815 resv->adds_in_progress -= regions_needed;
816 spin_unlock(&resv->lock);
817 }
818
819 /*
820 * Delete the specified range [f, t) from the reserve map. If the
821 * t parameter is LONG_MAX, this indicates that ALL regions after f
822 * should be deleted. Locate the regions which intersect [f, t)
823 * and either trim, delete or split the existing regions.
824 *
825 * Returns the number of huge pages deleted from the reserve map.
826 * In the normal case, the return value is zero or more. In the
827 * case where a region must be split, a new region descriptor must
828 * be allocated. If the allocation fails, -ENOMEM will be returned.
829 * NOTE: If the parameter t == LONG_MAX, then we will never split
830 * a region and possibly return -ENOMEM. Callers specifying
831 * t == LONG_MAX do not need to check for -ENOMEM error.
832 */
region_del(struct resv_map * resv,long f,long t)833 static long region_del(struct resv_map *resv, long f, long t)
834 {
835 struct list_head *head = &resv->regions;
836 struct file_region *rg, *trg;
837 struct file_region *nrg = NULL;
838 long del = 0;
839
840 retry:
841 spin_lock(&resv->lock);
842 list_for_each_entry_safe(rg, trg, head, link) {
843 /*
844 * Skip regions before the range to be deleted. file_region
845 * ranges are normally of the form [from, to). However, there
846 * may be a "placeholder" entry in the map which is of the form
847 * (from, to) with from == to. Check for placeholder entries
848 * at the beginning of the range to be deleted.
849 */
850 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
851 continue;
852
853 if (rg->from >= t)
854 break;
855
856 if (f > rg->from && t < rg->to) { /* Must split region */
857 /*
858 * Check for an entry in the cache before dropping
859 * lock and attempting allocation.
860 */
861 if (!nrg &&
862 resv->region_cache_count > resv->adds_in_progress) {
863 nrg = list_first_entry(&resv->region_cache,
864 struct file_region,
865 link);
866 list_del(&nrg->link);
867 resv->region_cache_count--;
868 }
869
870 if (!nrg) {
871 spin_unlock(&resv->lock);
872 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
873 if (!nrg)
874 return -ENOMEM;
875 goto retry;
876 }
877
878 del += t - f;
879 hugetlb_cgroup_uncharge_file_region(
880 resv, rg, t - f, false);
881
882 /* New entry for end of split region */
883 nrg->from = t;
884 nrg->to = rg->to;
885
886 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
887
888 INIT_LIST_HEAD(&nrg->link);
889
890 /* Original entry is trimmed */
891 rg->to = f;
892
893 list_add(&nrg->link, &rg->link);
894 nrg = NULL;
895 break;
896 }
897
898 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
899 del += rg->to - rg->from;
900 hugetlb_cgroup_uncharge_file_region(resv, rg,
901 rg->to - rg->from, true);
902 list_del(&rg->link);
903 kfree(rg);
904 continue;
905 }
906
907 if (f <= rg->from) { /* Trim beginning of region */
908 hugetlb_cgroup_uncharge_file_region(resv, rg,
909 t - rg->from, false);
910
911 del += t - rg->from;
912 rg->from = t;
913 } else { /* Trim end of region */
914 hugetlb_cgroup_uncharge_file_region(resv, rg,
915 rg->to - f, false);
916
917 del += rg->to - f;
918 rg->to = f;
919 }
920 }
921
922 spin_unlock(&resv->lock);
923 kfree(nrg);
924 return del;
925 }
926
927 /*
928 * A rare out of memory error was encountered which prevented removal of
929 * the reserve map region for a page. The huge page itself was free'ed
930 * and removed from the page cache. This routine will adjust the subpool
931 * usage count, and the global reserve count if needed. By incrementing
932 * these counts, the reserve map entry which could not be deleted will
933 * appear as a "reserved" entry instead of simply dangling with incorrect
934 * counts.
935 */
hugetlb_fix_reserve_counts(struct inode * inode)936 void hugetlb_fix_reserve_counts(struct inode *inode)
937 {
938 struct hugepage_subpool *spool = subpool_inode(inode);
939 long rsv_adjust;
940 bool reserved = false;
941
942 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
943 if (rsv_adjust > 0) {
944 struct hstate *h = hstate_inode(inode);
945
946 if (!hugetlb_acct_memory(h, 1))
947 reserved = true;
948 } else if (!rsv_adjust) {
949 reserved = true;
950 }
951
952 if (!reserved)
953 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
954 }
955
956 /*
957 * Count and return the number of huge pages in the reserve map
958 * that intersect with the range [f, t).
959 */
region_count(struct resv_map * resv,long f,long t)960 static long region_count(struct resv_map *resv, long f, long t)
961 {
962 struct list_head *head = &resv->regions;
963 struct file_region *rg;
964 long chg = 0;
965
966 spin_lock(&resv->lock);
967 /* Locate each segment we overlap with, and count that overlap. */
968 list_for_each_entry(rg, head, link) {
969 long seg_from;
970 long seg_to;
971
972 if (rg->to <= f)
973 continue;
974 if (rg->from >= t)
975 break;
976
977 seg_from = max(rg->from, f);
978 seg_to = min(rg->to, t);
979
980 chg += seg_to - seg_from;
981 }
982 spin_unlock(&resv->lock);
983
984 return chg;
985 }
986
987 /*
988 * Convert the address within this vma to the page offset within
989 * the mapping, huge page units here.
990 */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)991 static pgoff_t vma_hugecache_offset(struct hstate *h,
992 struct vm_area_struct *vma, unsigned long address)
993 {
994 return ((address - vma->vm_start) >> huge_page_shift(h)) +
995 (vma->vm_pgoff >> huge_page_order(h));
996 }
997
998 /**
999 * vma_kernel_pagesize - Page size granularity for this VMA.
1000 * @vma: The user mapping.
1001 *
1002 * Folios in this VMA will be aligned to, and at least the size of the
1003 * number of bytes returned by this function.
1004 *
1005 * Return: The default size of the folios allocated when backing a VMA.
1006 */
vma_kernel_pagesize(struct vm_area_struct * vma)1007 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1008 {
1009 if (vma->vm_ops && vma->vm_ops->pagesize)
1010 return vma->vm_ops->pagesize(vma);
1011 return PAGE_SIZE;
1012 }
1013 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1014
1015 /*
1016 * Return the page size being used by the MMU to back a VMA. In the majority
1017 * of cases, the page size used by the kernel matches the MMU size. On
1018 * architectures where it differs, an architecture-specific 'strong'
1019 * version of this symbol is required.
1020 */
vma_mmu_pagesize(struct vm_area_struct * vma)1021 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1022 {
1023 return vma_kernel_pagesize(vma);
1024 }
1025
1026 /*
1027 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1028 * bits of the reservation map pointer, which are always clear due to
1029 * alignment.
1030 */
1031 #define HPAGE_RESV_OWNER (1UL << 0)
1032 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1033 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1034
1035 /*
1036 * These helpers are used to track how many pages are reserved for
1037 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1038 * is guaranteed to have their future faults succeed.
1039 *
1040 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1041 * the reserve counters are updated with the hugetlb_lock held. It is safe
1042 * to reset the VMA at fork() time as it is not in use yet and there is no
1043 * chance of the global counters getting corrupted as a result of the values.
1044 *
1045 * The private mapping reservation is represented in a subtly different
1046 * manner to a shared mapping. A shared mapping has a region map associated
1047 * with the underlying file, this region map represents the backing file
1048 * pages which have ever had a reservation assigned which this persists even
1049 * after the page is instantiated. A private mapping has a region map
1050 * associated with the original mmap which is attached to all VMAs which
1051 * reference it, this region map represents those offsets which have consumed
1052 * reservation ie. where pages have been instantiated.
1053 */
get_vma_private_data(struct vm_area_struct * vma)1054 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1055 {
1056 return (unsigned long)vma->vm_private_data;
1057 }
1058
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)1059 static void set_vma_private_data(struct vm_area_struct *vma,
1060 unsigned long value)
1061 {
1062 vma->vm_private_data = (void *)value;
1063 }
1064
1065 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)1066 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1067 struct hugetlb_cgroup *h_cg,
1068 struct hstate *h)
1069 {
1070 #ifdef CONFIG_CGROUP_HUGETLB
1071 if (!h_cg || !h) {
1072 resv_map->reservation_counter = NULL;
1073 resv_map->pages_per_hpage = 0;
1074 resv_map->css = NULL;
1075 } else {
1076 resv_map->reservation_counter =
1077 &h_cg->rsvd_hugepage[hstate_index(h)];
1078 resv_map->pages_per_hpage = pages_per_huge_page(h);
1079 resv_map->css = &h_cg->css;
1080 }
1081 #endif
1082 }
1083
resv_map_alloc(void)1084 struct resv_map *resv_map_alloc(void)
1085 {
1086 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1087 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1088
1089 if (!resv_map || !rg) {
1090 kfree(resv_map);
1091 kfree(rg);
1092 return NULL;
1093 }
1094
1095 kref_init(&resv_map->refs);
1096 spin_lock_init(&resv_map->lock);
1097 INIT_LIST_HEAD(&resv_map->regions);
1098 init_rwsem(&resv_map->rw_sema);
1099
1100 resv_map->adds_in_progress = 0;
1101 /*
1102 * Initialize these to 0. On shared mappings, 0's here indicate these
1103 * fields don't do cgroup accounting. On private mappings, these will be
1104 * re-initialized to the proper values, to indicate that hugetlb cgroup
1105 * reservations are to be un-charged from here.
1106 */
1107 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1108
1109 INIT_LIST_HEAD(&resv_map->region_cache);
1110 list_add(&rg->link, &resv_map->region_cache);
1111 resv_map->region_cache_count = 1;
1112
1113 return resv_map;
1114 }
1115
resv_map_release(struct kref * ref)1116 void resv_map_release(struct kref *ref)
1117 {
1118 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1119 struct list_head *head = &resv_map->region_cache;
1120 struct file_region *rg, *trg;
1121
1122 /* Clear out any active regions before we release the map. */
1123 region_del(resv_map, 0, LONG_MAX);
1124
1125 /* ... and any entries left in the cache */
1126 list_for_each_entry_safe(rg, trg, head, link) {
1127 list_del(&rg->link);
1128 kfree(rg);
1129 }
1130
1131 VM_BUG_ON(resv_map->adds_in_progress);
1132
1133 kfree(resv_map);
1134 }
1135
inode_resv_map(struct inode * inode)1136 static inline struct resv_map *inode_resv_map(struct inode *inode)
1137 {
1138 /*
1139 * At inode evict time, i_mapping may not point to the original
1140 * address space within the inode. This original address space
1141 * contains the pointer to the resv_map. So, always use the
1142 * address space embedded within the inode.
1143 * The VERY common case is inode->mapping == &inode->i_data but,
1144 * this may not be true for device special inodes.
1145 */
1146 return (struct resv_map *)(&inode->i_data)->i_private_data;
1147 }
1148
vma_resv_map(struct vm_area_struct * vma)1149 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1150 {
1151 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1152 if (vma->vm_flags & VM_MAYSHARE) {
1153 struct address_space *mapping = vma->vm_file->f_mapping;
1154 struct inode *inode = mapping->host;
1155
1156 return inode_resv_map(inode);
1157
1158 } else {
1159 return (struct resv_map *)(get_vma_private_data(vma) &
1160 ~HPAGE_RESV_MASK);
1161 }
1162 }
1163
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)1164 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1165 {
1166 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1167 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1168
1169 set_vma_private_data(vma, (unsigned long)map);
1170 }
1171
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)1172 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1173 {
1174 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1175 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1176
1177 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1178 }
1179
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)1180 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1181 {
1182 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1183
1184 return (get_vma_private_data(vma) & flag) != 0;
1185 }
1186
__vma_private_lock(struct vm_area_struct * vma)1187 bool __vma_private_lock(struct vm_area_struct *vma)
1188 {
1189 return !(vma->vm_flags & VM_MAYSHARE) &&
1190 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1191 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1192 }
1193
hugetlb_dup_vma_private(struct vm_area_struct * vma)1194 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1195 {
1196 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1197 /*
1198 * Clear vm_private_data
1199 * - For shared mappings this is a per-vma semaphore that may be
1200 * allocated in a subsequent call to hugetlb_vm_op_open.
1201 * Before clearing, make sure pointer is not associated with vma
1202 * as this will leak the structure. This is the case when called
1203 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1204 * been called to allocate a new structure.
1205 * - For MAP_PRIVATE mappings, this is the reserve map which does
1206 * not apply to children. Faults generated by the children are
1207 * not guaranteed to succeed, even if read-only.
1208 */
1209 if (vma->vm_flags & VM_MAYSHARE) {
1210 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1211
1212 if (vma_lock && vma_lock->vma != vma)
1213 vma->vm_private_data = NULL;
1214 } else
1215 vma->vm_private_data = NULL;
1216 }
1217
1218 /*
1219 * Reset and decrement one ref on hugepage private reservation.
1220 * Called with mm->mmap_lock writer semaphore held.
1221 * This function should be only used by move_vma() and operate on
1222 * same sized vma. It should never come here with last ref on the
1223 * reservation.
1224 */
clear_vma_resv_huge_pages(struct vm_area_struct * vma)1225 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1226 {
1227 /*
1228 * Clear the old hugetlb private page reservation.
1229 * It has already been transferred to new_vma.
1230 *
1231 * During a mremap() operation of a hugetlb vma we call move_vma()
1232 * which copies vma into new_vma and unmaps vma. After the copy
1233 * operation both new_vma and vma share a reference to the resv_map
1234 * struct, and at that point vma is about to be unmapped. We don't
1235 * want to return the reservation to the pool at unmap of vma because
1236 * the reservation still lives on in new_vma, so simply decrement the
1237 * ref here and remove the resv_map reference from this vma.
1238 */
1239 struct resv_map *reservations = vma_resv_map(vma);
1240
1241 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1242 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1243 kref_put(&reservations->refs, resv_map_release);
1244 }
1245
1246 hugetlb_dup_vma_private(vma);
1247 }
1248
1249 /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma,long chg)1250 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1251 {
1252 if (vma->vm_flags & VM_NORESERVE) {
1253 /*
1254 * This address is already reserved by other process(chg == 0),
1255 * so, we should decrement reserved count. Without decrementing,
1256 * reserve count remains after releasing inode, because this
1257 * allocated page will go into page cache and is regarded as
1258 * coming from reserved pool in releasing step. Currently, we
1259 * don't have any other solution to deal with this situation
1260 * properly, so add work-around here.
1261 */
1262 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1263 return true;
1264 else
1265 return false;
1266 }
1267
1268 /* Shared mappings always use reserves */
1269 if (vma->vm_flags & VM_MAYSHARE) {
1270 /*
1271 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1272 * be a region map for all pages. The only situation where
1273 * there is no region map is if a hole was punched via
1274 * fallocate. In this case, there really are no reserves to
1275 * use. This situation is indicated if chg != 0.
1276 */
1277 if (chg)
1278 return false;
1279 else
1280 return true;
1281 }
1282
1283 /*
1284 * Only the process that called mmap() has reserves for
1285 * private mappings.
1286 */
1287 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1288 /*
1289 * Like the shared case above, a hole punch or truncate
1290 * could have been performed on the private mapping.
1291 * Examine the value of chg to determine if reserves
1292 * actually exist or were previously consumed.
1293 * Very Subtle - The value of chg comes from a previous
1294 * call to vma_needs_reserves(). The reserve map for
1295 * private mappings has different (opposite) semantics
1296 * than that of shared mappings. vma_needs_reserves()
1297 * has already taken this difference in semantics into
1298 * account. Therefore, the meaning of chg is the same
1299 * as in the shared case above. Code could easily be
1300 * combined, but keeping it separate draws attention to
1301 * subtle differences.
1302 */
1303 if (chg)
1304 return false;
1305 else
1306 return true;
1307 }
1308
1309 return false;
1310 }
1311
enqueue_hugetlb_folio(struct hstate * h,struct folio * folio)1312 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1313 {
1314 int nid = folio_nid(folio);
1315
1316 lockdep_assert_held(&hugetlb_lock);
1317 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1318
1319 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1320 h->free_huge_pages++;
1321 h->free_huge_pages_node[nid]++;
1322 folio_set_hugetlb_freed(folio);
1323 }
1324
dequeue_hugetlb_folio_node_exact(struct hstate * h,int nid)1325 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1326 int nid)
1327 {
1328 struct folio *folio;
1329 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1330
1331 lockdep_assert_held(&hugetlb_lock);
1332 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1333 if (pin && !folio_is_longterm_pinnable(folio))
1334 continue;
1335
1336 if (folio_test_hwpoison(folio))
1337 continue;
1338
1339 list_move(&folio->lru, &h->hugepage_activelist);
1340 folio_ref_unfreeze(folio, 1);
1341 folio_clear_hugetlb_freed(folio);
1342 h->free_huge_pages--;
1343 h->free_huge_pages_node[nid]--;
1344 return folio;
1345 }
1346
1347 return NULL;
1348 }
1349
dequeue_hugetlb_folio_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1350 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1351 int nid, nodemask_t *nmask)
1352 {
1353 unsigned int cpuset_mems_cookie;
1354 struct zonelist *zonelist;
1355 struct zone *zone;
1356 struct zoneref *z;
1357 int node = NUMA_NO_NODE;
1358
1359 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1360 if (nid == NUMA_NO_NODE)
1361 nid = numa_node_id();
1362
1363 zonelist = node_zonelist(nid, gfp_mask);
1364
1365 retry_cpuset:
1366 cpuset_mems_cookie = read_mems_allowed_begin();
1367 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1368 struct folio *folio;
1369
1370 if (!cpuset_zone_allowed(zone, gfp_mask))
1371 continue;
1372 /*
1373 * no need to ask again on the same node. Pool is node rather than
1374 * zone aware
1375 */
1376 if (zone_to_nid(zone) == node)
1377 continue;
1378 node = zone_to_nid(zone);
1379
1380 folio = dequeue_hugetlb_folio_node_exact(h, node);
1381 if (folio)
1382 return folio;
1383 }
1384 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1385 goto retry_cpuset;
1386
1387 return NULL;
1388 }
1389
available_huge_pages(struct hstate * h)1390 static unsigned long available_huge_pages(struct hstate *h)
1391 {
1392 return h->free_huge_pages - h->resv_huge_pages;
1393 }
1394
dequeue_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,int avoid_reserve,long chg)1395 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1396 struct vm_area_struct *vma,
1397 unsigned long address, int avoid_reserve,
1398 long chg)
1399 {
1400 struct folio *folio = NULL;
1401 struct mempolicy *mpol;
1402 gfp_t gfp_mask;
1403 nodemask_t *nodemask;
1404 int nid;
1405
1406 /*
1407 * A child process with MAP_PRIVATE mappings created by their parent
1408 * have no page reserves. This check ensures that reservations are
1409 * not "stolen". The child may still get SIGKILLed
1410 */
1411 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1412 goto err;
1413
1414 /* If reserves cannot be used, ensure enough pages are in the pool */
1415 if (avoid_reserve && !available_huge_pages(h))
1416 goto err;
1417
1418 gfp_mask = htlb_alloc_mask(h);
1419 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1420
1421 if (mpol_is_preferred_many(mpol)) {
1422 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1423 nid, nodemask);
1424
1425 /* Fallback to all nodes if page==NULL */
1426 nodemask = NULL;
1427 }
1428
1429 if (!folio)
1430 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1431 nid, nodemask);
1432
1433 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1434 folio_set_hugetlb_restore_reserve(folio);
1435 h->resv_huge_pages--;
1436 }
1437
1438 mpol_cond_put(mpol);
1439 return folio;
1440
1441 err:
1442 return NULL;
1443 }
1444
1445 /*
1446 * common helper functions for hstate_next_node_to_{alloc|free}.
1447 * We may have allocated or freed a huge page based on a different
1448 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1449 * be outside of *nodes_allowed. Ensure that we use an allowed
1450 * node for alloc or free.
1451 */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1452 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1453 {
1454 nid = next_node_in(nid, *nodes_allowed);
1455 VM_BUG_ON(nid >= MAX_NUMNODES);
1456
1457 return nid;
1458 }
1459
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1460 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1461 {
1462 if (!node_isset(nid, *nodes_allowed))
1463 nid = next_node_allowed(nid, nodes_allowed);
1464 return nid;
1465 }
1466
1467 /*
1468 * returns the previously saved node ["this node"] from which to
1469 * allocate a persistent huge page for the pool and advance the
1470 * next node from which to allocate, handling wrap at end of node
1471 * mask.
1472 */
hstate_next_node_to_alloc(int * next_node,nodemask_t * nodes_allowed)1473 static int hstate_next_node_to_alloc(int *next_node,
1474 nodemask_t *nodes_allowed)
1475 {
1476 int nid;
1477
1478 VM_BUG_ON(!nodes_allowed);
1479
1480 nid = get_valid_node_allowed(*next_node, nodes_allowed);
1481 *next_node = next_node_allowed(nid, nodes_allowed);
1482
1483 return nid;
1484 }
1485
1486 /*
1487 * helper for remove_pool_hugetlb_folio() - return the previously saved
1488 * node ["this node"] from which to free a huge page. Advance the
1489 * next node id whether or not we find a free huge page to free so
1490 * that the next attempt to free addresses the next node.
1491 */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1492 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1493 {
1494 int nid;
1495
1496 VM_BUG_ON(!nodes_allowed);
1497
1498 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1499 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1500
1501 return nid;
1502 }
1503
1504 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \
1505 for (nr_nodes = nodes_weight(*mask); \
1506 nr_nodes > 0 && \
1507 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \
1508 nr_nodes--)
1509
1510 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1511 for (nr_nodes = nodes_weight(*mask); \
1512 nr_nodes > 0 && \
1513 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1514 nr_nodes--)
1515
1516 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1517 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1518 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1519 int nid, nodemask_t *nodemask)
1520 {
1521 struct folio *folio;
1522 int order = huge_page_order(h);
1523 bool retried = false;
1524
1525 if (nid == NUMA_NO_NODE)
1526 nid = numa_mem_id();
1527 retry:
1528 folio = NULL;
1529 #ifdef CONFIG_CMA
1530 {
1531 int node;
1532
1533 if (hugetlb_cma[nid])
1534 folio = cma_alloc_folio(hugetlb_cma[nid], order, gfp_mask);
1535
1536 if (!folio && !(gfp_mask & __GFP_THISNODE)) {
1537 for_each_node_mask(node, *nodemask) {
1538 if (node == nid || !hugetlb_cma[node])
1539 continue;
1540
1541 folio = cma_alloc_folio(hugetlb_cma[node], order, gfp_mask);
1542 if (folio)
1543 break;
1544 }
1545 }
1546 }
1547 #endif
1548 if (!folio) {
1549 folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
1550 if (!folio)
1551 return NULL;
1552 }
1553
1554 if (folio_ref_freeze(folio, 1))
1555 return folio;
1556
1557 pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
1558 hugetlb_free_folio(folio);
1559 if (!retried) {
1560 retried = true;
1561 goto retry;
1562 }
1563 return NULL;
1564 }
1565
1566 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1567 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1568 int nid, nodemask_t *nodemask)
1569 {
1570 return NULL;
1571 }
1572 #endif /* CONFIG_CONTIG_ALLOC */
1573
1574 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1575 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1576 int nid, nodemask_t *nodemask)
1577 {
1578 return NULL;
1579 }
1580 #endif
1581
1582 /*
1583 * Remove hugetlb folio from lists.
1584 * If vmemmap exists for the folio, clear the hugetlb flag so that the
1585 * folio appears as just a compound page. Otherwise, wait until after
1586 * allocating vmemmap to clear the flag.
1587 *
1588 * Must be called with hugetlb lock held.
1589 */
remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1590 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1591 bool adjust_surplus)
1592 {
1593 int nid = folio_nid(folio);
1594
1595 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1596 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1597
1598 lockdep_assert_held(&hugetlb_lock);
1599 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1600 return;
1601
1602 list_del(&folio->lru);
1603
1604 if (folio_test_hugetlb_freed(folio)) {
1605 folio_clear_hugetlb_freed(folio);
1606 h->free_huge_pages--;
1607 h->free_huge_pages_node[nid]--;
1608 }
1609 if (adjust_surplus) {
1610 h->surplus_huge_pages--;
1611 h->surplus_huge_pages_node[nid]--;
1612 }
1613
1614 /*
1615 * We can only clear the hugetlb flag after allocating vmemmap
1616 * pages. Otherwise, someone (memory error handling) may try to write
1617 * to tail struct pages.
1618 */
1619 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1620 __folio_clear_hugetlb(folio);
1621
1622 h->nr_huge_pages--;
1623 h->nr_huge_pages_node[nid]--;
1624 }
1625
add_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1626 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1627 bool adjust_surplus)
1628 {
1629 int nid = folio_nid(folio);
1630
1631 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1632
1633 lockdep_assert_held(&hugetlb_lock);
1634
1635 INIT_LIST_HEAD(&folio->lru);
1636 h->nr_huge_pages++;
1637 h->nr_huge_pages_node[nid]++;
1638
1639 if (adjust_surplus) {
1640 h->surplus_huge_pages++;
1641 h->surplus_huge_pages_node[nid]++;
1642 }
1643
1644 __folio_set_hugetlb(folio);
1645 folio_change_private(folio, NULL);
1646 /*
1647 * We have to set hugetlb_vmemmap_optimized again as above
1648 * folio_change_private(folio, NULL) cleared it.
1649 */
1650 folio_set_hugetlb_vmemmap_optimized(folio);
1651
1652 arch_clear_hugetlb_flags(folio);
1653 enqueue_hugetlb_folio(h, folio);
1654 }
1655
__update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio)1656 static void __update_and_free_hugetlb_folio(struct hstate *h,
1657 struct folio *folio)
1658 {
1659 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1660
1661 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1662 return;
1663
1664 /*
1665 * If we don't know which subpages are hwpoisoned, we can't free
1666 * the hugepage, so it's leaked intentionally.
1667 */
1668 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1669 return;
1670
1671 /*
1672 * If folio is not vmemmap optimized (!clear_flag), then the folio
1673 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio
1674 * can only be passed hugetlb pages and will BUG otherwise.
1675 */
1676 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1677 spin_lock_irq(&hugetlb_lock);
1678 /*
1679 * If we cannot allocate vmemmap pages, just refuse to free the
1680 * page and put the page back on the hugetlb free list and treat
1681 * as a surplus page.
1682 */
1683 add_hugetlb_folio(h, folio, true);
1684 spin_unlock_irq(&hugetlb_lock);
1685 return;
1686 }
1687
1688 /*
1689 * If vmemmap pages were allocated above, then we need to clear the
1690 * hugetlb flag under the hugetlb lock.
1691 */
1692 if (folio_test_hugetlb(folio)) {
1693 spin_lock_irq(&hugetlb_lock);
1694 __folio_clear_hugetlb(folio);
1695 spin_unlock_irq(&hugetlb_lock);
1696 }
1697
1698 /*
1699 * Move PageHWPoison flag from head page to the raw error pages,
1700 * which makes any healthy subpages reusable.
1701 */
1702 if (unlikely(folio_test_hwpoison(folio)))
1703 folio_clear_hugetlb_hwpoison(folio);
1704
1705 folio_ref_unfreeze(folio, 1);
1706
1707 INIT_LIST_HEAD(&folio->_deferred_list);
1708 hugetlb_free_folio(folio);
1709 }
1710
1711 /*
1712 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1713 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1714 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1715 * the vmemmap pages.
1716 *
1717 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1718 * freed and frees them one-by-one. As the page->mapping pointer is going
1719 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1720 * structure of a lockless linked list of huge pages to be freed.
1721 */
1722 static LLIST_HEAD(hpage_freelist);
1723
free_hpage_workfn(struct work_struct * work)1724 static void free_hpage_workfn(struct work_struct *work)
1725 {
1726 struct llist_node *node;
1727
1728 node = llist_del_all(&hpage_freelist);
1729
1730 while (node) {
1731 struct folio *folio;
1732 struct hstate *h;
1733
1734 folio = container_of((struct address_space **)node,
1735 struct folio, mapping);
1736 node = node->next;
1737 folio->mapping = NULL;
1738 /*
1739 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1740 * folio_hstate() is going to trigger because a previous call to
1741 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1742 * not use folio_hstate() directly.
1743 */
1744 h = size_to_hstate(folio_size(folio));
1745
1746 __update_and_free_hugetlb_folio(h, folio);
1747
1748 cond_resched();
1749 }
1750 }
1751 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1752
flush_free_hpage_work(struct hstate * h)1753 static inline void flush_free_hpage_work(struct hstate *h)
1754 {
1755 if (hugetlb_vmemmap_optimizable(h))
1756 flush_work(&free_hpage_work);
1757 }
1758
update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio,bool atomic)1759 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1760 bool atomic)
1761 {
1762 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1763 __update_and_free_hugetlb_folio(h, folio);
1764 return;
1765 }
1766
1767 /*
1768 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1769 *
1770 * Only call schedule_work() if hpage_freelist is previously
1771 * empty. Otherwise, schedule_work() had been called but the workfn
1772 * hasn't retrieved the list yet.
1773 */
1774 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1775 schedule_work(&free_hpage_work);
1776 }
1777
bulk_vmemmap_restore_error(struct hstate * h,struct list_head * folio_list,struct list_head * non_hvo_folios)1778 static void bulk_vmemmap_restore_error(struct hstate *h,
1779 struct list_head *folio_list,
1780 struct list_head *non_hvo_folios)
1781 {
1782 struct folio *folio, *t_folio;
1783
1784 if (!list_empty(non_hvo_folios)) {
1785 /*
1786 * Free any restored hugetlb pages so that restore of the
1787 * entire list can be retried.
1788 * The idea is that in the common case of ENOMEM errors freeing
1789 * hugetlb pages with vmemmap we will free up memory so that we
1790 * can allocate vmemmap for more hugetlb pages.
1791 */
1792 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1793 list_del(&folio->lru);
1794 spin_lock_irq(&hugetlb_lock);
1795 __folio_clear_hugetlb(folio);
1796 spin_unlock_irq(&hugetlb_lock);
1797 update_and_free_hugetlb_folio(h, folio, false);
1798 cond_resched();
1799 }
1800 } else {
1801 /*
1802 * In the case where there are no folios which can be
1803 * immediately freed, we loop through the list trying to restore
1804 * vmemmap individually in the hope that someone elsewhere may
1805 * have done something to cause success (such as freeing some
1806 * memory). If unable to restore a hugetlb page, the hugetlb
1807 * page is made a surplus page and removed from the list.
1808 * If are able to restore vmemmap and free one hugetlb page, we
1809 * quit processing the list to retry the bulk operation.
1810 */
1811 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1812 if (hugetlb_vmemmap_restore_folio(h, folio)) {
1813 list_del(&folio->lru);
1814 spin_lock_irq(&hugetlb_lock);
1815 add_hugetlb_folio(h, folio, true);
1816 spin_unlock_irq(&hugetlb_lock);
1817 } else {
1818 list_del(&folio->lru);
1819 spin_lock_irq(&hugetlb_lock);
1820 __folio_clear_hugetlb(folio);
1821 spin_unlock_irq(&hugetlb_lock);
1822 update_and_free_hugetlb_folio(h, folio, false);
1823 cond_resched();
1824 break;
1825 }
1826 }
1827 }
1828
update_and_free_pages_bulk(struct hstate * h,struct list_head * folio_list)1829 static void update_and_free_pages_bulk(struct hstate *h,
1830 struct list_head *folio_list)
1831 {
1832 long ret;
1833 struct folio *folio, *t_folio;
1834 LIST_HEAD(non_hvo_folios);
1835
1836 /*
1837 * First allocate required vmemmmap (if necessary) for all folios.
1838 * Carefully handle errors and free up any available hugetlb pages
1839 * in an effort to make forward progress.
1840 */
1841 retry:
1842 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1843 if (ret < 0) {
1844 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1845 goto retry;
1846 }
1847
1848 /*
1849 * At this point, list should be empty, ret should be >= 0 and there
1850 * should only be pages on the non_hvo_folios list.
1851 * Do note that the non_hvo_folios list could be empty.
1852 * Without HVO enabled, ret will be 0 and there is no need to call
1853 * __folio_clear_hugetlb as this was done previously.
1854 */
1855 VM_WARN_ON(!list_empty(folio_list));
1856 VM_WARN_ON(ret < 0);
1857 if (!list_empty(&non_hvo_folios) && ret) {
1858 spin_lock_irq(&hugetlb_lock);
1859 list_for_each_entry(folio, &non_hvo_folios, lru)
1860 __folio_clear_hugetlb(folio);
1861 spin_unlock_irq(&hugetlb_lock);
1862 }
1863
1864 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1865 update_and_free_hugetlb_folio(h, folio, false);
1866 cond_resched();
1867 }
1868 }
1869
size_to_hstate(unsigned long size)1870 struct hstate *size_to_hstate(unsigned long size)
1871 {
1872 struct hstate *h;
1873
1874 for_each_hstate(h) {
1875 if (huge_page_size(h) == size)
1876 return h;
1877 }
1878 return NULL;
1879 }
1880
free_huge_folio(struct folio * folio)1881 void free_huge_folio(struct folio *folio)
1882 {
1883 /*
1884 * Can't pass hstate in here because it is called from the
1885 * generic mm code.
1886 */
1887 struct hstate *h = folio_hstate(folio);
1888 int nid = folio_nid(folio);
1889 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1890 bool restore_reserve;
1891 unsigned long flags;
1892
1893 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1894 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1895
1896 hugetlb_set_folio_subpool(folio, NULL);
1897 if (folio_test_anon(folio))
1898 __ClearPageAnonExclusive(&folio->page);
1899 folio->mapping = NULL;
1900 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1901 folio_clear_hugetlb_restore_reserve(folio);
1902
1903 /*
1904 * If HPageRestoreReserve was set on page, page allocation consumed a
1905 * reservation. If the page was associated with a subpool, there
1906 * would have been a page reserved in the subpool before allocation
1907 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1908 * reservation, do not call hugepage_subpool_put_pages() as this will
1909 * remove the reserved page from the subpool.
1910 */
1911 if (!restore_reserve) {
1912 /*
1913 * A return code of zero implies that the subpool will be
1914 * under its minimum size if the reservation is not restored
1915 * after page is free. Therefore, force restore_reserve
1916 * operation.
1917 */
1918 if (hugepage_subpool_put_pages(spool, 1) == 0)
1919 restore_reserve = true;
1920 }
1921
1922 spin_lock_irqsave(&hugetlb_lock, flags);
1923 folio_clear_hugetlb_migratable(folio);
1924 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1925 pages_per_huge_page(h), folio);
1926 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1927 pages_per_huge_page(h), folio);
1928 mem_cgroup_uncharge(folio);
1929 if (restore_reserve)
1930 h->resv_huge_pages++;
1931
1932 if (folio_test_hugetlb_temporary(folio)) {
1933 remove_hugetlb_folio(h, folio, false);
1934 spin_unlock_irqrestore(&hugetlb_lock, flags);
1935 update_and_free_hugetlb_folio(h, folio, true);
1936 } else if (h->surplus_huge_pages_node[nid]) {
1937 /* remove the page from active list */
1938 remove_hugetlb_folio(h, folio, true);
1939 spin_unlock_irqrestore(&hugetlb_lock, flags);
1940 update_and_free_hugetlb_folio(h, folio, true);
1941 } else {
1942 arch_clear_hugetlb_flags(folio);
1943 enqueue_hugetlb_folio(h, folio);
1944 spin_unlock_irqrestore(&hugetlb_lock, flags);
1945 }
1946 }
1947
1948 /*
1949 * Must be called with the hugetlb lock held
1950 */
__prep_account_new_huge_page(struct hstate * h,int nid)1951 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1952 {
1953 lockdep_assert_held(&hugetlb_lock);
1954 h->nr_huge_pages++;
1955 h->nr_huge_pages_node[nid]++;
1956 }
1957
init_new_hugetlb_folio(struct hstate * h,struct folio * folio)1958 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1959 {
1960 __folio_set_hugetlb(folio);
1961 INIT_LIST_HEAD(&folio->lru);
1962 hugetlb_set_folio_subpool(folio, NULL);
1963 set_hugetlb_cgroup(folio, NULL);
1964 set_hugetlb_cgroup_rsvd(folio, NULL);
1965 }
1966
__prep_new_hugetlb_folio(struct hstate * h,struct folio * folio)1967 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1968 {
1969 init_new_hugetlb_folio(h, folio);
1970 hugetlb_vmemmap_optimize_folio(h, folio);
1971 }
1972
prep_new_hugetlb_folio(struct hstate * h,struct folio * folio,int nid)1973 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1974 {
1975 __prep_new_hugetlb_folio(h, folio);
1976 spin_lock_irq(&hugetlb_lock);
1977 __prep_account_new_huge_page(h, nid);
1978 spin_unlock_irq(&hugetlb_lock);
1979 }
1980
1981 /*
1982 * Find and lock address space (mapping) in write mode.
1983 *
1984 * Upon entry, the folio is locked which means that folio_mapping() is
1985 * stable. Due to locking order, we can only trylock_write. If we can
1986 * not get the lock, simply return NULL to caller.
1987 */
hugetlb_folio_mapping_lock_write(struct folio * folio)1988 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
1989 {
1990 struct address_space *mapping = folio_mapping(folio);
1991
1992 if (!mapping)
1993 return mapping;
1994
1995 if (i_mmap_trylock_write(mapping))
1996 return mapping;
1997
1998 return NULL;
1999 }
2000
alloc_buddy_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)2001 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2002 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2003 nodemask_t *node_alloc_noretry)
2004 {
2005 int order = huge_page_order(h);
2006 struct folio *folio;
2007 bool alloc_try_hard = true;
2008 bool retry = true;
2009
2010 /*
2011 * By default we always try hard to allocate the folio with
2012 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in
2013 * a loop (to adjust global huge page counts) and previous allocation
2014 * failed, do not continue to try hard on the same node. Use the
2015 * node_alloc_noretry bitmap to manage this state information.
2016 */
2017 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2018 alloc_try_hard = false;
2019 if (alloc_try_hard)
2020 gfp_mask |= __GFP_RETRY_MAYFAIL;
2021 if (nid == NUMA_NO_NODE)
2022 nid = numa_mem_id();
2023 retry:
2024 folio = __folio_alloc(gfp_mask, order, nid, nmask);
2025 /* Ensure hugetlb folio won't have large_rmappable flag set. */
2026 if (folio)
2027 folio_clear_large_rmappable(folio);
2028
2029 if (folio && !folio_ref_freeze(folio, 1)) {
2030 folio_put(folio);
2031 if (retry) { /* retry once */
2032 retry = false;
2033 goto retry;
2034 }
2035 /* WOW! twice in a row. */
2036 pr_warn("HugeTLB unexpected inflated folio ref count\n");
2037 folio = NULL;
2038 }
2039
2040 /*
2041 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
2042 * folio this indicates an overall state change. Clear bit so
2043 * that we resume normal 'try hard' allocations.
2044 */
2045 if (node_alloc_noretry && folio && !alloc_try_hard)
2046 node_clear(nid, *node_alloc_noretry);
2047
2048 /*
2049 * If we tried hard to get a folio but failed, set bit so that
2050 * subsequent attempts will not try as hard until there is an
2051 * overall state change.
2052 */
2053 if (node_alloc_noretry && !folio && alloc_try_hard)
2054 node_set(nid, *node_alloc_noretry);
2055
2056 if (!folio) {
2057 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2058 return NULL;
2059 }
2060
2061 __count_vm_event(HTLB_BUDDY_PGALLOC);
2062 return folio;
2063 }
2064
only_alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)2065 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2066 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2067 nodemask_t *node_alloc_noretry)
2068 {
2069 struct folio *folio;
2070
2071 if (hstate_is_gigantic(h))
2072 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2073 else
2074 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry);
2075 if (folio)
2076 init_new_hugetlb_folio(h, folio);
2077 return folio;
2078 }
2079
2080 /*
2081 * Common helper to allocate a fresh hugetlb page. All specific allocators
2082 * should use this function to get new hugetlb pages
2083 *
2084 * Note that returned page is 'frozen': ref count of head page and all tail
2085 * pages is zero.
2086 */
alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2087 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2088 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2089 {
2090 struct folio *folio;
2091
2092 if (hstate_is_gigantic(h))
2093 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2094 else
2095 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2096 if (!folio)
2097 return NULL;
2098
2099 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2100 return folio;
2101 }
2102
prep_and_add_allocated_folios(struct hstate * h,struct list_head * folio_list)2103 static void prep_and_add_allocated_folios(struct hstate *h,
2104 struct list_head *folio_list)
2105 {
2106 unsigned long flags;
2107 struct folio *folio, *tmp_f;
2108
2109 /* Send list for bulk vmemmap optimization processing */
2110 hugetlb_vmemmap_optimize_folios(h, folio_list);
2111
2112 /* Add all new pool pages to free lists in one lock cycle */
2113 spin_lock_irqsave(&hugetlb_lock, flags);
2114 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2115 __prep_account_new_huge_page(h, folio_nid(folio));
2116 enqueue_hugetlb_folio(h, folio);
2117 }
2118 spin_unlock_irqrestore(&hugetlb_lock, flags);
2119 }
2120
2121 /*
2122 * Allocates a fresh hugetlb page in a node interleaved manner. The page
2123 * will later be added to the appropriate hugetlb pool.
2124 */
alloc_pool_huge_folio(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry,int * next_node)2125 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2126 nodemask_t *nodes_allowed,
2127 nodemask_t *node_alloc_noretry,
2128 int *next_node)
2129 {
2130 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2131 int nr_nodes, node;
2132
2133 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2134 struct folio *folio;
2135
2136 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2137 nodes_allowed, node_alloc_noretry);
2138 if (folio)
2139 return folio;
2140 }
2141
2142 return NULL;
2143 }
2144
2145 /*
2146 * Remove huge page from pool from next node to free. Attempt to keep
2147 * persistent huge pages more or less balanced over allowed nodes.
2148 * This routine only 'removes' the hugetlb page. The caller must make
2149 * an additional call to free the page to low level allocators.
2150 * Called with hugetlb_lock locked.
2151 */
remove_pool_hugetlb_folio(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)2152 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2153 nodemask_t *nodes_allowed, bool acct_surplus)
2154 {
2155 int nr_nodes, node;
2156 struct folio *folio = NULL;
2157
2158 lockdep_assert_held(&hugetlb_lock);
2159 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2160 /*
2161 * If we're returning unused surplus pages, only examine
2162 * nodes with surplus pages.
2163 */
2164 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2165 !list_empty(&h->hugepage_freelists[node])) {
2166 folio = list_entry(h->hugepage_freelists[node].next,
2167 struct folio, lru);
2168 remove_hugetlb_folio(h, folio, acct_surplus);
2169 break;
2170 }
2171 }
2172
2173 return folio;
2174 }
2175
2176 /*
2177 * Dissolve a given free hugetlb folio into free buddy pages. This function
2178 * does nothing for in-use hugetlb folios and non-hugetlb folios.
2179 * This function returns values like below:
2180 *
2181 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2182 * when the system is under memory pressure and the feature of
2183 * freeing unused vmemmap pages associated with each hugetlb page
2184 * is enabled.
2185 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2186 * (allocated or reserved.)
2187 * 0: successfully dissolved free hugepages or the page is not a
2188 * hugepage (considered as already dissolved)
2189 */
dissolve_free_hugetlb_folio(struct folio * folio)2190 int dissolve_free_hugetlb_folio(struct folio *folio)
2191 {
2192 int rc = -EBUSY;
2193
2194 retry:
2195 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2196 if (!folio_test_hugetlb(folio))
2197 return 0;
2198
2199 spin_lock_irq(&hugetlb_lock);
2200 if (!folio_test_hugetlb(folio)) {
2201 rc = 0;
2202 goto out;
2203 }
2204
2205 if (!folio_ref_count(folio)) {
2206 struct hstate *h = folio_hstate(folio);
2207 if (!available_huge_pages(h))
2208 goto out;
2209
2210 /*
2211 * We should make sure that the page is already on the free list
2212 * when it is dissolved.
2213 */
2214 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2215 spin_unlock_irq(&hugetlb_lock);
2216 cond_resched();
2217
2218 /*
2219 * Theoretically, we should return -EBUSY when we
2220 * encounter this race. In fact, we have a chance
2221 * to successfully dissolve the page if we do a
2222 * retry. Because the race window is quite small.
2223 * If we seize this opportunity, it is an optimization
2224 * for increasing the success rate of dissolving page.
2225 */
2226 goto retry;
2227 }
2228
2229 remove_hugetlb_folio(h, folio, false);
2230 h->max_huge_pages--;
2231 spin_unlock_irq(&hugetlb_lock);
2232
2233 /*
2234 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2235 * before freeing the page. update_and_free_hugtlb_folio will fail to
2236 * free the page if it can not allocate required vmemmap. We
2237 * need to adjust max_huge_pages if the page is not freed.
2238 * Attempt to allocate vmemmmap here so that we can take
2239 * appropriate action on failure.
2240 *
2241 * The folio_test_hugetlb check here is because
2242 * remove_hugetlb_folio will clear hugetlb folio flag for
2243 * non-vmemmap optimized hugetlb folios.
2244 */
2245 if (folio_test_hugetlb(folio)) {
2246 rc = hugetlb_vmemmap_restore_folio(h, folio);
2247 if (rc) {
2248 spin_lock_irq(&hugetlb_lock);
2249 add_hugetlb_folio(h, folio, false);
2250 h->max_huge_pages++;
2251 goto out;
2252 }
2253 } else
2254 rc = 0;
2255
2256 update_and_free_hugetlb_folio(h, folio, false);
2257 return rc;
2258 }
2259 out:
2260 spin_unlock_irq(&hugetlb_lock);
2261 return rc;
2262 }
2263
2264 /*
2265 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2266 * make specified memory blocks removable from the system.
2267 * Note that this will dissolve a free gigantic hugepage completely, if any
2268 * part of it lies within the given range.
2269 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2270 * free hugetlb folios that were dissolved before that error are lost.
2271 */
dissolve_free_hugetlb_folios(unsigned long start_pfn,unsigned long end_pfn)2272 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2273 {
2274 unsigned long pfn;
2275 struct folio *folio;
2276 int rc = 0;
2277 unsigned int order;
2278 struct hstate *h;
2279
2280 if (!hugepages_supported())
2281 return rc;
2282
2283 order = huge_page_order(&default_hstate);
2284 for_each_hstate(h)
2285 order = min(order, huge_page_order(h));
2286
2287 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2288 folio = pfn_folio(pfn);
2289 rc = dissolve_free_hugetlb_folio(folio);
2290 if (rc)
2291 break;
2292 }
2293
2294 return rc;
2295 }
2296
2297 /*
2298 * Allocates a fresh surplus page from the page allocator.
2299 */
alloc_surplus_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2300 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2301 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2302 {
2303 struct folio *folio = NULL;
2304
2305 if (hstate_is_gigantic(h))
2306 return NULL;
2307
2308 spin_lock_irq(&hugetlb_lock);
2309 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2310 goto out_unlock;
2311 spin_unlock_irq(&hugetlb_lock);
2312
2313 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2314 if (!folio)
2315 return NULL;
2316
2317 spin_lock_irq(&hugetlb_lock);
2318 /*
2319 * We could have raced with the pool size change.
2320 * Double check that and simply deallocate the new page
2321 * if we would end up overcommiting the surpluses. Abuse
2322 * temporary page to workaround the nasty free_huge_folio
2323 * codeflow
2324 */
2325 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2326 folio_set_hugetlb_temporary(folio);
2327 spin_unlock_irq(&hugetlb_lock);
2328 free_huge_folio(folio);
2329 return NULL;
2330 }
2331
2332 h->surplus_huge_pages++;
2333 h->surplus_huge_pages_node[folio_nid(folio)]++;
2334
2335 out_unlock:
2336 spin_unlock_irq(&hugetlb_lock);
2337
2338 return folio;
2339 }
2340
alloc_migrate_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2341 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2342 int nid, nodemask_t *nmask)
2343 {
2344 struct folio *folio;
2345
2346 if (hstate_is_gigantic(h))
2347 return NULL;
2348
2349 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2350 if (!folio)
2351 return NULL;
2352
2353 /* fresh huge pages are frozen */
2354 folio_ref_unfreeze(folio, 1);
2355 /*
2356 * We do not account these pages as surplus because they are only
2357 * temporary and will be released properly on the last reference
2358 */
2359 folio_set_hugetlb_temporary(folio);
2360
2361 return folio;
2362 }
2363
2364 /*
2365 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2366 */
2367 static
alloc_buddy_hugetlb_folio_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2368 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2369 struct vm_area_struct *vma, unsigned long addr)
2370 {
2371 struct folio *folio = NULL;
2372 struct mempolicy *mpol;
2373 gfp_t gfp_mask = htlb_alloc_mask(h);
2374 int nid;
2375 nodemask_t *nodemask;
2376
2377 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2378 if (mpol_is_preferred_many(mpol)) {
2379 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2380
2381 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2382
2383 /* Fallback to all nodes if page==NULL */
2384 nodemask = NULL;
2385 }
2386
2387 if (!folio)
2388 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2389 mpol_cond_put(mpol);
2390 return folio;
2391 }
2392
alloc_hugetlb_folio_reserve(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)2393 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
2394 nodemask_t *nmask, gfp_t gfp_mask)
2395 {
2396 struct folio *folio;
2397
2398 spin_lock_irq(&hugetlb_lock);
2399 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
2400 nmask);
2401 if (folio) {
2402 VM_BUG_ON(!h->resv_huge_pages);
2403 h->resv_huge_pages--;
2404 }
2405
2406 spin_unlock_irq(&hugetlb_lock);
2407 return folio;
2408 }
2409
2410 /* folio migration callback function */
alloc_hugetlb_folio_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask,bool allow_alloc_fallback)2411 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2412 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2413 {
2414 spin_lock_irq(&hugetlb_lock);
2415 if (available_huge_pages(h)) {
2416 struct folio *folio;
2417
2418 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2419 preferred_nid, nmask);
2420 if (folio) {
2421 spin_unlock_irq(&hugetlb_lock);
2422 return folio;
2423 }
2424 }
2425 spin_unlock_irq(&hugetlb_lock);
2426
2427 /* We cannot fallback to other nodes, as we could break the per-node pool. */
2428 if (!allow_alloc_fallback)
2429 gfp_mask |= __GFP_THISNODE;
2430
2431 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2432 }
2433
policy_mbind_nodemask(gfp_t gfp)2434 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2435 {
2436 #ifdef CONFIG_NUMA
2437 struct mempolicy *mpol = get_task_policy(current);
2438
2439 /*
2440 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2441 * (from policy_nodemask) specifically for hugetlb case
2442 */
2443 if (mpol->mode == MPOL_BIND &&
2444 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
2445 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2446 return &mpol->nodes;
2447 #endif
2448 return NULL;
2449 }
2450
2451 /*
2452 * Increase the hugetlb pool such that it can accommodate a reservation
2453 * of size 'delta'.
2454 */
gather_surplus_pages(struct hstate * h,long delta)2455 static int gather_surplus_pages(struct hstate *h, long delta)
2456 __must_hold(&hugetlb_lock)
2457 {
2458 LIST_HEAD(surplus_list);
2459 struct folio *folio, *tmp;
2460 int ret;
2461 long i;
2462 long needed, allocated;
2463 bool alloc_ok = true;
2464 int node;
2465 nodemask_t *mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2466
2467 lockdep_assert_held(&hugetlb_lock);
2468 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2469 if (needed <= 0) {
2470 h->resv_huge_pages += delta;
2471 return 0;
2472 }
2473
2474 allocated = 0;
2475
2476 ret = -ENOMEM;
2477 retry:
2478 spin_unlock_irq(&hugetlb_lock);
2479 for (i = 0; i < needed; i++) {
2480 folio = NULL;
2481 for_each_node_mask(node, cpuset_current_mems_allowed) {
2482 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) {
2483 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2484 node, NULL);
2485 if (folio)
2486 break;
2487 }
2488 }
2489 if (!folio) {
2490 alloc_ok = false;
2491 break;
2492 }
2493 list_add(&folio->lru, &surplus_list);
2494 cond_resched();
2495 }
2496 allocated += i;
2497
2498 /*
2499 * After retaking hugetlb_lock, we need to recalculate 'needed'
2500 * because either resv_huge_pages or free_huge_pages may have changed.
2501 */
2502 spin_lock_irq(&hugetlb_lock);
2503 needed = (h->resv_huge_pages + delta) -
2504 (h->free_huge_pages + allocated);
2505 if (needed > 0) {
2506 if (alloc_ok)
2507 goto retry;
2508 /*
2509 * We were not able to allocate enough pages to
2510 * satisfy the entire reservation so we free what
2511 * we've allocated so far.
2512 */
2513 goto free;
2514 }
2515 /*
2516 * The surplus_list now contains _at_least_ the number of extra pages
2517 * needed to accommodate the reservation. Add the appropriate number
2518 * of pages to the hugetlb pool and free the extras back to the buddy
2519 * allocator. Commit the entire reservation here to prevent another
2520 * process from stealing the pages as they are added to the pool but
2521 * before they are reserved.
2522 */
2523 needed += allocated;
2524 h->resv_huge_pages += delta;
2525 ret = 0;
2526
2527 /* Free the needed pages to the hugetlb pool */
2528 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2529 if ((--needed) < 0)
2530 break;
2531 /* Add the page to the hugetlb allocator */
2532 enqueue_hugetlb_folio(h, folio);
2533 }
2534 free:
2535 spin_unlock_irq(&hugetlb_lock);
2536
2537 /*
2538 * Free unnecessary surplus pages to the buddy allocator.
2539 * Pages have no ref count, call free_huge_folio directly.
2540 */
2541 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2542 free_huge_folio(folio);
2543 spin_lock_irq(&hugetlb_lock);
2544
2545 return ret;
2546 }
2547
2548 /*
2549 * This routine has two main purposes:
2550 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2551 * in unused_resv_pages. This corresponds to the prior adjustments made
2552 * to the associated reservation map.
2553 * 2) Free any unused surplus pages that may have been allocated to satisfy
2554 * the reservation. As many as unused_resv_pages may be freed.
2555 */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2556 static void return_unused_surplus_pages(struct hstate *h,
2557 unsigned long unused_resv_pages)
2558 {
2559 unsigned long nr_pages;
2560 LIST_HEAD(page_list);
2561
2562 lockdep_assert_held(&hugetlb_lock);
2563 /* Uncommit the reservation */
2564 h->resv_huge_pages -= unused_resv_pages;
2565
2566 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2567 goto out;
2568
2569 /*
2570 * Part (or even all) of the reservation could have been backed
2571 * by pre-allocated pages. Only free surplus pages.
2572 */
2573 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2574
2575 /*
2576 * We want to release as many surplus pages as possible, spread
2577 * evenly across all nodes with memory. Iterate across these nodes
2578 * until we can no longer free unreserved surplus pages. This occurs
2579 * when the nodes with surplus pages have no free pages.
2580 * remove_pool_hugetlb_folio() will balance the freed pages across the
2581 * on-line nodes with memory and will handle the hstate accounting.
2582 */
2583 while (nr_pages--) {
2584 struct folio *folio;
2585
2586 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2587 if (!folio)
2588 goto out;
2589
2590 list_add(&folio->lru, &page_list);
2591 }
2592
2593 out:
2594 spin_unlock_irq(&hugetlb_lock);
2595 update_and_free_pages_bulk(h, &page_list);
2596 spin_lock_irq(&hugetlb_lock);
2597 }
2598
2599
2600 /*
2601 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2602 * are used by the huge page allocation routines to manage reservations.
2603 *
2604 * vma_needs_reservation is called to determine if the huge page at addr
2605 * within the vma has an associated reservation. If a reservation is
2606 * needed, the value 1 is returned. The caller is then responsible for
2607 * managing the global reservation and subpool usage counts. After
2608 * the huge page has been allocated, vma_commit_reservation is called
2609 * to add the page to the reservation map. If the page allocation fails,
2610 * the reservation must be ended instead of committed. vma_end_reservation
2611 * is called in such cases.
2612 *
2613 * In the normal case, vma_commit_reservation returns the same value
2614 * as the preceding vma_needs_reservation call. The only time this
2615 * is not the case is if a reserve map was changed between calls. It
2616 * is the responsibility of the caller to notice the difference and
2617 * take appropriate action.
2618 *
2619 * vma_add_reservation is used in error paths where a reservation must
2620 * be restored when a newly allocated huge page must be freed. It is
2621 * to be called after calling vma_needs_reservation to determine if a
2622 * reservation exists.
2623 *
2624 * vma_del_reservation is used in error paths where an entry in the reserve
2625 * map was created during huge page allocation and must be removed. It is to
2626 * be called after calling vma_needs_reservation to determine if a reservation
2627 * exists.
2628 */
2629 enum vma_resv_mode {
2630 VMA_NEEDS_RESV,
2631 VMA_COMMIT_RESV,
2632 VMA_END_RESV,
2633 VMA_ADD_RESV,
2634 VMA_DEL_RESV,
2635 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2636 static long __vma_reservation_common(struct hstate *h,
2637 struct vm_area_struct *vma, unsigned long addr,
2638 enum vma_resv_mode mode)
2639 {
2640 struct resv_map *resv;
2641 pgoff_t idx;
2642 long ret;
2643 long dummy_out_regions_needed;
2644
2645 resv = vma_resv_map(vma);
2646 if (!resv)
2647 return 1;
2648
2649 idx = vma_hugecache_offset(h, vma, addr);
2650 switch (mode) {
2651 case VMA_NEEDS_RESV:
2652 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2653 /* We assume that vma_reservation_* routines always operate on
2654 * 1 page, and that adding to resv map a 1 page entry can only
2655 * ever require 1 region.
2656 */
2657 VM_BUG_ON(dummy_out_regions_needed != 1);
2658 break;
2659 case VMA_COMMIT_RESV:
2660 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2661 /* region_add calls of range 1 should never fail. */
2662 VM_BUG_ON(ret < 0);
2663 break;
2664 case VMA_END_RESV:
2665 region_abort(resv, idx, idx + 1, 1);
2666 ret = 0;
2667 break;
2668 case VMA_ADD_RESV:
2669 if (vma->vm_flags & VM_MAYSHARE) {
2670 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2671 /* region_add calls of range 1 should never fail. */
2672 VM_BUG_ON(ret < 0);
2673 } else {
2674 region_abort(resv, idx, idx + 1, 1);
2675 ret = region_del(resv, idx, idx + 1);
2676 }
2677 break;
2678 case VMA_DEL_RESV:
2679 if (vma->vm_flags & VM_MAYSHARE) {
2680 region_abort(resv, idx, idx + 1, 1);
2681 ret = region_del(resv, idx, idx + 1);
2682 } else {
2683 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2684 /* region_add calls of range 1 should never fail. */
2685 VM_BUG_ON(ret < 0);
2686 }
2687 break;
2688 default:
2689 BUG();
2690 }
2691
2692 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2693 return ret;
2694 /*
2695 * We know private mapping must have HPAGE_RESV_OWNER set.
2696 *
2697 * In most cases, reserves always exist for private mappings.
2698 * However, a file associated with mapping could have been
2699 * hole punched or truncated after reserves were consumed.
2700 * As subsequent fault on such a range will not use reserves.
2701 * Subtle - The reserve map for private mappings has the
2702 * opposite meaning than that of shared mappings. If NO
2703 * entry is in the reserve map, it means a reservation exists.
2704 * If an entry exists in the reserve map, it means the
2705 * reservation has already been consumed. As a result, the
2706 * return value of this routine is the opposite of the
2707 * value returned from reserve map manipulation routines above.
2708 */
2709 if (ret > 0)
2710 return 0;
2711 if (ret == 0)
2712 return 1;
2713 return ret;
2714 }
2715
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2716 static long vma_needs_reservation(struct hstate *h,
2717 struct vm_area_struct *vma, unsigned long addr)
2718 {
2719 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2720 }
2721
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2722 static long vma_commit_reservation(struct hstate *h,
2723 struct vm_area_struct *vma, unsigned long addr)
2724 {
2725 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2726 }
2727
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2728 static void vma_end_reservation(struct hstate *h,
2729 struct vm_area_struct *vma, unsigned long addr)
2730 {
2731 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2732 }
2733
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2734 static long vma_add_reservation(struct hstate *h,
2735 struct vm_area_struct *vma, unsigned long addr)
2736 {
2737 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2738 }
2739
vma_del_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2740 static long vma_del_reservation(struct hstate *h,
2741 struct vm_area_struct *vma, unsigned long addr)
2742 {
2743 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2744 }
2745
2746 /*
2747 * This routine is called to restore reservation information on error paths.
2748 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2749 * and the hugetlb mutex should remain held when calling this routine.
2750 *
2751 * It handles two specific cases:
2752 * 1) A reservation was in place and the folio consumed the reservation.
2753 * hugetlb_restore_reserve is set in the folio.
2754 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2755 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2756 *
2757 * In case 1, free_huge_folio later in the error path will increment the
2758 * global reserve count. But, free_huge_folio does not have enough context
2759 * to adjust the reservation map. This case deals primarily with private
2760 * mappings. Adjust the reserve map here to be consistent with global
2761 * reserve count adjustments to be made by free_huge_folio. Make sure the
2762 * reserve map indicates there is a reservation present.
2763 *
2764 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2765 */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct folio * folio)2766 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2767 unsigned long address, struct folio *folio)
2768 {
2769 long rc = vma_needs_reservation(h, vma, address);
2770
2771 if (folio_test_hugetlb_restore_reserve(folio)) {
2772 if (unlikely(rc < 0))
2773 /*
2774 * Rare out of memory condition in reserve map
2775 * manipulation. Clear hugetlb_restore_reserve so
2776 * that global reserve count will not be incremented
2777 * by free_huge_folio. This will make it appear
2778 * as though the reservation for this folio was
2779 * consumed. This may prevent the task from
2780 * faulting in the folio at a later time. This
2781 * is better than inconsistent global huge page
2782 * accounting of reserve counts.
2783 */
2784 folio_clear_hugetlb_restore_reserve(folio);
2785 else if (rc)
2786 (void)vma_add_reservation(h, vma, address);
2787 else
2788 vma_end_reservation(h, vma, address);
2789 } else {
2790 if (!rc) {
2791 /*
2792 * This indicates there is an entry in the reserve map
2793 * not added by alloc_hugetlb_folio. We know it was added
2794 * before the alloc_hugetlb_folio call, otherwise
2795 * hugetlb_restore_reserve would be set on the folio.
2796 * Remove the entry so that a subsequent allocation
2797 * does not consume a reservation.
2798 */
2799 rc = vma_del_reservation(h, vma, address);
2800 if (rc < 0)
2801 /*
2802 * VERY rare out of memory condition. Since
2803 * we can not delete the entry, set
2804 * hugetlb_restore_reserve so that the reserve
2805 * count will be incremented when the folio
2806 * is freed. This reserve will be consumed
2807 * on a subsequent allocation.
2808 */
2809 folio_set_hugetlb_restore_reserve(folio);
2810 } else if (rc < 0) {
2811 /*
2812 * Rare out of memory condition from
2813 * vma_needs_reservation call. Memory allocation is
2814 * only attempted if a new entry is needed. Therefore,
2815 * this implies there is not an entry in the
2816 * reserve map.
2817 *
2818 * For shared mappings, no entry in the map indicates
2819 * no reservation. We are done.
2820 */
2821 if (!(vma->vm_flags & VM_MAYSHARE))
2822 /*
2823 * For private mappings, no entry indicates
2824 * a reservation is present. Since we can
2825 * not add an entry, set hugetlb_restore_reserve
2826 * on the folio so reserve count will be
2827 * incremented when freed. This reserve will
2828 * be consumed on a subsequent allocation.
2829 */
2830 folio_set_hugetlb_restore_reserve(folio);
2831 } else
2832 /*
2833 * No reservation present, do nothing
2834 */
2835 vma_end_reservation(h, vma, address);
2836 }
2837 }
2838
2839 /*
2840 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2841 * the old one
2842 * @h: struct hstate old page belongs to
2843 * @old_folio: Old folio to dissolve
2844 * @list: List to isolate the page in case we need to
2845 * Returns 0 on success, otherwise negated error.
2846 */
alloc_and_dissolve_hugetlb_folio(struct hstate * h,struct folio * old_folio,struct list_head * list)2847 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2848 struct folio *old_folio, struct list_head *list)
2849 {
2850 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2851 int nid = folio_nid(old_folio);
2852 struct folio *new_folio = NULL;
2853 int ret = 0;
2854
2855 retry:
2856 spin_lock_irq(&hugetlb_lock);
2857 if (!folio_test_hugetlb(old_folio)) {
2858 /*
2859 * Freed from under us. Drop new_folio too.
2860 */
2861 goto free_new;
2862 } else if (folio_ref_count(old_folio)) {
2863 bool isolated;
2864
2865 /*
2866 * Someone has grabbed the folio, try to isolate it here.
2867 * Fail with -EBUSY if not possible.
2868 */
2869 spin_unlock_irq(&hugetlb_lock);
2870 isolated = isolate_hugetlb(old_folio, list);
2871 ret = isolated ? 0 : -EBUSY;
2872 spin_lock_irq(&hugetlb_lock);
2873 goto free_new;
2874 } else if (!folio_test_hugetlb_freed(old_folio)) {
2875 /*
2876 * Folio's refcount is 0 but it has not been enqueued in the
2877 * freelist yet. Race window is small, so we can succeed here if
2878 * we retry.
2879 */
2880 spin_unlock_irq(&hugetlb_lock);
2881 cond_resched();
2882 goto retry;
2883 } else {
2884 if (!new_folio) {
2885 spin_unlock_irq(&hugetlb_lock);
2886 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
2887 NULL, NULL);
2888 if (!new_folio)
2889 return -ENOMEM;
2890 __prep_new_hugetlb_folio(h, new_folio);
2891 goto retry;
2892 }
2893
2894 /*
2895 * Ok, old_folio is still a genuine free hugepage. Remove it from
2896 * the freelist and decrease the counters. These will be
2897 * incremented again when calling __prep_account_new_huge_page()
2898 * and enqueue_hugetlb_folio() for new_folio. The counters will
2899 * remain stable since this happens under the lock.
2900 */
2901 remove_hugetlb_folio(h, old_folio, false);
2902
2903 /*
2904 * Ref count on new_folio is already zero as it was dropped
2905 * earlier. It can be directly added to the pool free list.
2906 */
2907 __prep_account_new_huge_page(h, nid);
2908 enqueue_hugetlb_folio(h, new_folio);
2909
2910 /*
2911 * Folio has been replaced, we can safely free the old one.
2912 */
2913 spin_unlock_irq(&hugetlb_lock);
2914 update_and_free_hugetlb_folio(h, old_folio, false);
2915 }
2916
2917 return ret;
2918
2919 free_new:
2920 spin_unlock_irq(&hugetlb_lock);
2921 if (new_folio)
2922 update_and_free_hugetlb_folio(h, new_folio, false);
2923
2924 return ret;
2925 }
2926
isolate_or_dissolve_huge_page(struct page * page,struct list_head * list)2927 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2928 {
2929 struct hstate *h;
2930 struct folio *folio = page_folio(page);
2931 int ret = -EBUSY;
2932
2933 /*
2934 * The page might have been dissolved from under our feet, so make sure
2935 * to carefully check the state under the lock.
2936 * Return success when racing as if we dissolved the page ourselves.
2937 */
2938 spin_lock_irq(&hugetlb_lock);
2939 if (folio_test_hugetlb(folio)) {
2940 h = folio_hstate(folio);
2941 } else {
2942 spin_unlock_irq(&hugetlb_lock);
2943 return 0;
2944 }
2945 spin_unlock_irq(&hugetlb_lock);
2946
2947 /*
2948 * Fence off gigantic pages as there is a cyclic dependency between
2949 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2950 * of bailing out right away without further retrying.
2951 */
2952 if (hstate_is_gigantic(h))
2953 return -ENOMEM;
2954
2955 if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
2956 ret = 0;
2957 else if (!folio_ref_count(folio))
2958 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
2959
2960 return ret;
2961 }
2962
alloc_hugetlb_folio(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)2963 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
2964 unsigned long addr, int avoid_reserve)
2965 {
2966 struct hugepage_subpool *spool = subpool_vma(vma);
2967 struct hstate *h = hstate_vma(vma);
2968 struct folio *folio;
2969 long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
2970 long gbl_chg;
2971 int memcg_charge_ret, ret, idx;
2972 struct hugetlb_cgroup *h_cg = NULL;
2973 struct mem_cgroup *memcg;
2974 bool deferred_reserve;
2975 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
2976
2977 memcg = get_mem_cgroup_from_current();
2978 memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
2979 if (memcg_charge_ret == -ENOMEM) {
2980 mem_cgroup_put(memcg);
2981 return ERR_PTR(-ENOMEM);
2982 }
2983
2984 idx = hstate_index(h);
2985 /*
2986 * Examine the region/reserve map to determine if the process
2987 * has a reservation for the page to be allocated. A return
2988 * code of zero indicates a reservation exists (no change).
2989 */
2990 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2991 if (map_chg < 0) {
2992 if (!memcg_charge_ret)
2993 mem_cgroup_cancel_charge(memcg, nr_pages);
2994 mem_cgroup_put(memcg);
2995 return ERR_PTR(-ENOMEM);
2996 }
2997
2998 /*
2999 * Processes that did not create the mapping will have no
3000 * reserves as indicated by the region/reserve map. Check
3001 * that the allocation will not exceed the subpool limit.
3002 * Allocations for MAP_NORESERVE mappings also need to be
3003 * checked against any subpool limit.
3004 */
3005 if (map_chg || avoid_reserve) {
3006 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3007 if (gbl_chg < 0)
3008 goto out_end_reservation;
3009
3010 /*
3011 * Even though there was no reservation in the region/reserve
3012 * map, there could be reservations associated with the
3013 * subpool that can be used. This would be indicated if the
3014 * return value of hugepage_subpool_get_pages() is zero.
3015 * However, if avoid_reserve is specified we still avoid even
3016 * the subpool reservations.
3017 */
3018 if (avoid_reserve)
3019 gbl_chg = 1;
3020 }
3021
3022 /* If this allocation is not consuming a reservation, charge it now.
3023 */
3024 deferred_reserve = map_chg || avoid_reserve;
3025 if (deferred_reserve) {
3026 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3027 idx, pages_per_huge_page(h), &h_cg);
3028 if (ret)
3029 goto out_subpool_put;
3030 }
3031
3032 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3033 if (ret)
3034 goto out_uncharge_cgroup_reservation;
3035
3036 spin_lock_irq(&hugetlb_lock);
3037 /*
3038 * glb_chg is passed to indicate whether or not a page must be taken
3039 * from the global free pool (global change). gbl_chg == 0 indicates
3040 * a reservation exists for the allocation.
3041 */
3042 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3043 if (!folio) {
3044 spin_unlock_irq(&hugetlb_lock);
3045 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3046 if (!folio)
3047 goto out_uncharge_cgroup;
3048 spin_lock_irq(&hugetlb_lock);
3049 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3050 folio_set_hugetlb_restore_reserve(folio);
3051 h->resv_huge_pages--;
3052 }
3053 list_add(&folio->lru, &h->hugepage_activelist);
3054 folio_ref_unfreeze(folio, 1);
3055 /* Fall through */
3056 }
3057
3058 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3059 /* If allocation is not consuming a reservation, also store the
3060 * hugetlb_cgroup pointer on the page.
3061 */
3062 if (deferred_reserve) {
3063 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3064 h_cg, folio);
3065 }
3066
3067 spin_unlock_irq(&hugetlb_lock);
3068
3069 hugetlb_set_folio_subpool(folio, spool);
3070
3071 map_commit = vma_commit_reservation(h, vma, addr);
3072 if (unlikely(map_chg > map_commit)) {
3073 /*
3074 * The page was added to the reservation map between
3075 * vma_needs_reservation and vma_commit_reservation.
3076 * This indicates a race with hugetlb_reserve_pages.
3077 * Adjust for the subpool count incremented above AND
3078 * in hugetlb_reserve_pages for the same page. Also,
3079 * the reservation count added in hugetlb_reserve_pages
3080 * no longer applies.
3081 */
3082 long rsv_adjust;
3083
3084 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3085 hugetlb_acct_memory(h, -rsv_adjust);
3086 if (deferred_reserve) {
3087 spin_lock_irq(&hugetlb_lock);
3088 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3089 pages_per_huge_page(h), folio);
3090 spin_unlock_irq(&hugetlb_lock);
3091 }
3092 }
3093
3094 if (!memcg_charge_ret)
3095 mem_cgroup_commit_charge(folio, memcg);
3096 mem_cgroup_put(memcg);
3097
3098 return folio;
3099
3100 out_uncharge_cgroup:
3101 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3102 out_uncharge_cgroup_reservation:
3103 if (deferred_reserve)
3104 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3105 h_cg);
3106 out_subpool_put:
3107 if (map_chg || avoid_reserve)
3108 hugepage_subpool_put_pages(spool, 1);
3109 out_end_reservation:
3110 vma_end_reservation(h, vma, addr);
3111 if (!memcg_charge_ret)
3112 mem_cgroup_cancel_charge(memcg, nr_pages);
3113 mem_cgroup_put(memcg);
3114 return ERR_PTR(-ENOSPC);
3115 }
3116
3117 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3118 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h,int nid)3119 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3120 {
3121 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3122 int nr_nodes, node = nid;
3123
3124 /* do node specific alloc */
3125 if (nid != NUMA_NO_NODE) {
3126 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3127 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3128 if (!m)
3129 return 0;
3130 goto found;
3131 }
3132 /* allocate from next node when distributing huge pages */
3133 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3134 m = memblock_alloc_try_nid_raw(
3135 huge_page_size(h), huge_page_size(h),
3136 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3137 /*
3138 * Use the beginning of the huge page to store the
3139 * huge_bootmem_page struct (until gather_bootmem
3140 * puts them into the mem_map).
3141 */
3142 if (!m)
3143 return 0;
3144 goto found;
3145 }
3146
3147 found:
3148
3149 /*
3150 * Only initialize the head struct page in memmap_init_reserved_pages,
3151 * rest of the struct pages will be initialized by the HugeTLB
3152 * subsystem itself.
3153 * The head struct page is used to get folio information by the HugeTLB
3154 * subsystem like zone id and node id.
3155 */
3156 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3157 huge_page_size(h) - PAGE_SIZE);
3158 /* Put them into a private list first because mem_map is not up yet */
3159 INIT_LIST_HEAD(&m->list);
3160 list_add(&m->list, &huge_boot_pages[node]);
3161 m->hstate = h;
3162 return 1;
3163 }
3164
3165 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
hugetlb_folio_init_tail_vmemmap(struct folio * folio,unsigned long start_page_number,unsigned long end_page_number)3166 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3167 unsigned long start_page_number,
3168 unsigned long end_page_number)
3169 {
3170 enum zone_type zone = zone_idx(folio_zone(folio));
3171 int nid = folio_nid(folio);
3172 unsigned long head_pfn = folio_pfn(folio);
3173 unsigned long pfn, end_pfn = head_pfn + end_page_number;
3174 int ret;
3175
3176 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3177 struct page *page = pfn_to_page(pfn);
3178
3179 __ClearPageReserved(folio_page(folio, pfn - head_pfn));
3180 __init_single_page(page, pfn, zone, nid);
3181 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3182 ret = page_ref_freeze(page, 1);
3183 VM_BUG_ON(!ret);
3184 }
3185 }
3186
hugetlb_folio_init_vmemmap(struct folio * folio,struct hstate * h,unsigned long nr_pages)3187 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3188 struct hstate *h,
3189 unsigned long nr_pages)
3190 {
3191 int ret;
3192
3193 /* Prepare folio head */
3194 __folio_clear_reserved(folio);
3195 __folio_set_head(folio);
3196 ret = folio_ref_freeze(folio, 1);
3197 VM_BUG_ON(!ret);
3198 /* Initialize the necessary tail struct pages */
3199 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3200 prep_compound_head((struct page *)folio, huge_page_order(h));
3201 }
3202
prep_and_add_bootmem_folios(struct hstate * h,struct list_head * folio_list)3203 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3204 struct list_head *folio_list)
3205 {
3206 unsigned long flags;
3207 struct folio *folio, *tmp_f;
3208
3209 /* Send list for bulk vmemmap optimization processing */
3210 hugetlb_vmemmap_optimize_folios(h, folio_list);
3211
3212 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3213 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3214 /*
3215 * If HVO fails, initialize all tail struct pages
3216 * We do not worry about potential long lock hold
3217 * time as this is early in boot and there should
3218 * be no contention.
3219 */
3220 hugetlb_folio_init_tail_vmemmap(folio,
3221 HUGETLB_VMEMMAP_RESERVE_PAGES,
3222 pages_per_huge_page(h));
3223 }
3224 /* Subdivide locks to achieve better parallel performance */
3225 spin_lock_irqsave(&hugetlb_lock, flags);
3226 __prep_account_new_huge_page(h, folio_nid(folio));
3227 enqueue_hugetlb_folio(h, folio);
3228 spin_unlock_irqrestore(&hugetlb_lock, flags);
3229 }
3230 }
3231
3232 /*
3233 * Put bootmem huge pages into the standard lists after mem_map is up.
3234 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3235 */
gather_bootmem_prealloc_node(unsigned long nid)3236 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3237 {
3238 LIST_HEAD(folio_list);
3239 struct huge_bootmem_page *m;
3240 struct hstate *h = NULL, *prev_h = NULL;
3241
3242 list_for_each_entry(m, &huge_boot_pages[nid], list) {
3243 struct page *page = virt_to_page(m);
3244 struct folio *folio = (void *)page;
3245
3246 h = m->hstate;
3247 /*
3248 * It is possible to have multiple huge page sizes (hstates)
3249 * in this list. If so, process each size separately.
3250 */
3251 if (h != prev_h && prev_h != NULL)
3252 prep_and_add_bootmem_folios(prev_h, &folio_list);
3253 prev_h = h;
3254
3255 VM_BUG_ON(!hstate_is_gigantic(h));
3256 WARN_ON(folio_ref_count(folio) != 1);
3257
3258 hugetlb_folio_init_vmemmap(folio, h,
3259 HUGETLB_VMEMMAP_RESERVE_PAGES);
3260 init_new_hugetlb_folio(h, folio);
3261 list_add(&folio->lru, &folio_list);
3262
3263 /*
3264 * We need to restore the 'stolen' pages to totalram_pages
3265 * in order to fix confusing memory reports from free(1) and
3266 * other side-effects, like CommitLimit going negative.
3267 */
3268 adjust_managed_page_count(page, pages_per_huge_page(h));
3269 cond_resched();
3270 }
3271
3272 prep_and_add_bootmem_folios(h, &folio_list);
3273 }
3274
gather_bootmem_prealloc_parallel(unsigned long start,unsigned long end,void * arg)3275 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3276 unsigned long end, void *arg)
3277 {
3278 int nid;
3279
3280 for (nid = start; nid < end; nid++)
3281 gather_bootmem_prealloc_node(nid);
3282 }
3283
gather_bootmem_prealloc(void)3284 static void __init gather_bootmem_prealloc(void)
3285 {
3286 struct padata_mt_job job = {
3287 .thread_fn = gather_bootmem_prealloc_parallel,
3288 .fn_arg = NULL,
3289 .start = 0,
3290 .size = num_node_state(N_MEMORY),
3291 .align = 1,
3292 .min_chunk = 1,
3293 .max_threads = num_node_state(N_MEMORY),
3294 .numa_aware = true,
3295 };
3296
3297 padata_do_multithreaded(&job);
3298 }
3299
hugetlb_hstate_alloc_pages_onenode(struct hstate * h,int nid)3300 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3301 {
3302 unsigned long i;
3303 char buf[32];
3304
3305 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3306 if (hstate_is_gigantic(h)) {
3307 if (!alloc_bootmem_huge_page(h, nid))
3308 break;
3309 } else {
3310 struct folio *folio;
3311 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3312
3313 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3314 &node_states[N_MEMORY]);
3315 if (!folio)
3316 break;
3317 free_huge_folio(folio); /* free it into the hugepage allocator */
3318 }
3319 cond_resched();
3320 }
3321 if (i == h->max_huge_pages_node[nid])
3322 return;
3323
3324 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3325 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3326 h->max_huge_pages_node[nid], buf, nid, i);
3327 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3328 h->max_huge_pages_node[nid] = i;
3329 }
3330
hugetlb_hstate_alloc_pages_specific_nodes(struct hstate * h)3331 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3332 {
3333 int i;
3334 bool node_specific_alloc = false;
3335
3336 for_each_online_node(i) {
3337 if (h->max_huge_pages_node[i] > 0) {
3338 hugetlb_hstate_alloc_pages_onenode(h, i);
3339 node_specific_alloc = true;
3340 }
3341 }
3342
3343 return node_specific_alloc;
3344 }
3345
hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated,struct hstate * h)3346 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3347 {
3348 if (allocated < h->max_huge_pages) {
3349 char buf[32];
3350
3351 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3352 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3353 h->max_huge_pages, buf, allocated);
3354 h->max_huge_pages = allocated;
3355 }
3356 }
3357
hugetlb_pages_alloc_boot_node(unsigned long start,unsigned long end,void * arg)3358 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3359 {
3360 struct hstate *h = (struct hstate *)arg;
3361 int i, num = end - start;
3362 nodemask_t node_alloc_noretry;
3363 LIST_HEAD(folio_list);
3364 int next_node = first_online_node;
3365
3366 /* Bit mask controlling how hard we retry per-node allocations.*/
3367 nodes_clear(node_alloc_noretry);
3368
3369 for (i = 0; i < num; ++i) {
3370 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3371 &node_alloc_noretry, &next_node);
3372 if (!folio)
3373 break;
3374
3375 list_move(&folio->lru, &folio_list);
3376 cond_resched();
3377 }
3378
3379 prep_and_add_allocated_folios(h, &folio_list);
3380 }
3381
hugetlb_gigantic_pages_alloc_boot(struct hstate * h)3382 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3383 {
3384 unsigned long i;
3385
3386 for (i = 0; i < h->max_huge_pages; ++i) {
3387 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3388 break;
3389 cond_resched();
3390 }
3391
3392 return i;
3393 }
3394
hugetlb_pages_alloc_boot(struct hstate * h)3395 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3396 {
3397 struct padata_mt_job job = {
3398 .fn_arg = h,
3399 .align = 1,
3400 .numa_aware = true
3401 };
3402
3403 job.thread_fn = hugetlb_pages_alloc_boot_node;
3404 job.start = 0;
3405 job.size = h->max_huge_pages;
3406
3407 /*
3408 * job.max_threads is twice the num_node_state(N_MEMORY),
3409 *
3410 * Tests below indicate that a multiplier of 2 significantly improves
3411 * performance, and although larger values also provide improvements,
3412 * the gains are marginal.
3413 *
3414 * Therefore, choosing 2 as the multiplier strikes a good balance between
3415 * enhancing parallel processing capabilities and maintaining efficient
3416 * resource management.
3417 *
3418 * +------------+-------+-------+-------+-------+-------+
3419 * | multiplier | 1 | 2 | 3 | 4 | 5 |
3420 * +------------+-------+-------+-------+-------+-------+
3421 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3422 * | 2T 4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3423 * | 50G 2node | 71ms | 44ms | 37ms | 30ms | 31ms |
3424 * +------------+-------+-------+-------+-------+-------+
3425 */
3426 job.max_threads = num_node_state(N_MEMORY) * 2;
3427 job.min_chunk = h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3428 padata_do_multithreaded(&job);
3429
3430 return h->nr_huge_pages;
3431 }
3432
3433 /*
3434 * NOTE: this routine is called in different contexts for gigantic and
3435 * non-gigantic pages.
3436 * - For gigantic pages, this is called early in the boot process and
3437 * pages are allocated from memblock allocated or something similar.
3438 * Gigantic pages are actually added to pools later with the routine
3439 * gather_bootmem_prealloc.
3440 * - For non-gigantic pages, this is called later in the boot process after
3441 * all of mm is up and functional. Pages are allocated from buddy and
3442 * then added to hugetlb pools.
3443 */
hugetlb_hstate_alloc_pages(struct hstate * h)3444 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3445 {
3446 unsigned long allocated;
3447 static bool initialized __initdata;
3448
3449 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3450 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3451 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3452 return;
3453 }
3454
3455 /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3456 if (!initialized) {
3457 int i = 0;
3458
3459 for (i = 0; i < MAX_NUMNODES; i++)
3460 INIT_LIST_HEAD(&huge_boot_pages[i]);
3461 initialized = true;
3462 }
3463
3464 /* do node specific alloc */
3465 if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3466 return;
3467
3468 /* below will do all node balanced alloc */
3469 if (hstate_is_gigantic(h))
3470 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3471 else
3472 allocated = hugetlb_pages_alloc_boot(h);
3473
3474 hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3475 }
3476
hugetlb_init_hstates(void)3477 static void __init hugetlb_init_hstates(void)
3478 {
3479 struct hstate *h, *h2;
3480
3481 for_each_hstate(h) {
3482 /* oversize hugepages were init'ed in early boot */
3483 if (!hstate_is_gigantic(h))
3484 hugetlb_hstate_alloc_pages(h);
3485
3486 /*
3487 * Set demote order for each hstate. Note that
3488 * h->demote_order is initially 0.
3489 * - We can not demote gigantic pages if runtime freeing
3490 * is not supported, so skip this.
3491 * - If CMA allocation is possible, we can not demote
3492 * HUGETLB_PAGE_ORDER or smaller size pages.
3493 */
3494 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3495 continue;
3496 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3497 continue;
3498 for_each_hstate(h2) {
3499 if (h2 == h)
3500 continue;
3501 if (h2->order < h->order &&
3502 h2->order > h->demote_order)
3503 h->demote_order = h2->order;
3504 }
3505 }
3506 }
3507
report_hugepages(void)3508 static void __init report_hugepages(void)
3509 {
3510 struct hstate *h;
3511
3512 for_each_hstate(h) {
3513 char buf[32];
3514
3515 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3516 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3517 buf, h->free_huge_pages);
3518 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3519 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3520 }
3521 }
3522
3523 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3524 static void try_to_free_low(struct hstate *h, unsigned long count,
3525 nodemask_t *nodes_allowed)
3526 {
3527 int i;
3528 LIST_HEAD(page_list);
3529
3530 lockdep_assert_held(&hugetlb_lock);
3531 if (hstate_is_gigantic(h))
3532 return;
3533
3534 /*
3535 * Collect pages to be freed on a list, and free after dropping lock
3536 */
3537 for_each_node_mask(i, *nodes_allowed) {
3538 struct folio *folio, *next;
3539 struct list_head *freel = &h->hugepage_freelists[i];
3540 list_for_each_entry_safe(folio, next, freel, lru) {
3541 if (count >= h->nr_huge_pages)
3542 goto out;
3543 if (folio_test_highmem(folio))
3544 continue;
3545 remove_hugetlb_folio(h, folio, false);
3546 list_add(&folio->lru, &page_list);
3547 }
3548 }
3549
3550 out:
3551 spin_unlock_irq(&hugetlb_lock);
3552 update_and_free_pages_bulk(h, &page_list);
3553 spin_lock_irq(&hugetlb_lock);
3554 }
3555 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3556 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3557 nodemask_t *nodes_allowed)
3558 {
3559 }
3560 #endif
3561
3562 /*
3563 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3564 * balanced by operating on them in a round-robin fashion.
3565 * Returns 1 if an adjustment was made.
3566 */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)3567 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3568 int delta)
3569 {
3570 int nr_nodes, node;
3571
3572 lockdep_assert_held(&hugetlb_lock);
3573 VM_BUG_ON(delta != -1 && delta != 1);
3574
3575 if (delta < 0) {
3576 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3577 if (h->surplus_huge_pages_node[node])
3578 goto found;
3579 }
3580 } else {
3581 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3582 if (h->surplus_huge_pages_node[node] <
3583 h->nr_huge_pages_node[node])
3584 goto found;
3585 }
3586 }
3587 return 0;
3588
3589 found:
3590 h->surplus_huge_pages += delta;
3591 h->surplus_huge_pages_node[node] += delta;
3592 return 1;
3593 }
3594
3595 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)3596 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3597 nodemask_t *nodes_allowed)
3598 {
3599 unsigned long min_count;
3600 unsigned long allocated;
3601 struct folio *folio;
3602 LIST_HEAD(page_list);
3603 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3604
3605 /*
3606 * Bit mask controlling how hard we retry per-node allocations.
3607 * If we can not allocate the bit mask, do not attempt to allocate
3608 * the requested huge pages.
3609 */
3610 if (node_alloc_noretry)
3611 nodes_clear(*node_alloc_noretry);
3612 else
3613 return -ENOMEM;
3614
3615 /*
3616 * resize_lock mutex prevents concurrent adjustments to number of
3617 * pages in hstate via the proc/sysfs interfaces.
3618 */
3619 mutex_lock(&h->resize_lock);
3620 flush_free_hpage_work(h);
3621 spin_lock_irq(&hugetlb_lock);
3622
3623 /*
3624 * Check for a node specific request.
3625 * Changing node specific huge page count may require a corresponding
3626 * change to the global count. In any case, the passed node mask
3627 * (nodes_allowed) will restrict alloc/free to the specified node.
3628 */
3629 if (nid != NUMA_NO_NODE) {
3630 unsigned long old_count = count;
3631
3632 count += persistent_huge_pages(h) -
3633 (h->nr_huge_pages_node[nid] -
3634 h->surplus_huge_pages_node[nid]);
3635 /*
3636 * User may have specified a large count value which caused the
3637 * above calculation to overflow. In this case, they wanted
3638 * to allocate as many huge pages as possible. Set count to
3639 * largest possible value to align with their intention.
3640 */
3641 if (count < old_count)
3642 count = ULONG_MAX;
3643 }
3644
3645 /*
3646 * Gigantic pages runtime allocation depend on the capability for large
3647 * page range allocation.
3648 * If the system does not provide this feature, return an error when
3649 * the user tries to allocate gigantic pages but let the user free the
3650 * boottime allocated gigantic pages.
3651 */
3652 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3653 if (count > persistent_huge_pages(h)) {
3654 spin_unlock_irq(&hugetlb_lock);
3655 mutex_unlock(&h->resize_lock);
3656 NODEMASK_FREE(node_alloc_noretry);
3657 return -EINVAL;
3658 }
3659 /* Fall through to decrease pool */
3660 }
3661
3662 /*
3663 * Increase the pool size
3664 * First take pages out of surplus state. Then make up the
3665 * remaining difference by allocating fresh huge pages.
3666 *
3667 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3668 * to convert a surplus huge page to a normal huge page. That is
3669 * not critical, though, it just means the overall size of the
3670 * pool might be one hugepage larger than it needs to be, but
3671 * within all the constraints specified by the sysctls.
3672 */
3673 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3674 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3675 break;
3676 }
3677
3678 allocated = 0;
3679 while (count > (persistent_huge_pages(h) + allocated)) {
3680 /*
3681 * If this allocation races such that we no longer need the
3682 * page, free_huge_folio will handle it by freeing the page
3683 * and reducing the surplus.
3684 */
3685 spin_unlock_irq(&hugetlb_lock);
3686
3687 /* yield cpu to avoid soft lockup */
3688 cond_resched();
3689
3690 folio = alloc_pool_huge_folio(h, nodes_allowed,
3691 node_alloc_noretry,
3692 &h->next_nid_to_alloc);
3693 if (!folio) {
3694 prep_and_add_allocated_folios(h, &page_list);
3695 spin_lock_irq(&hugetlb_lock);
3696 goto out;
3697 }
3698
3699 list_add(&folio->lru, &page_list);
3700 allocated++;
3701
3702 /* Bail for signals. Probably ctrl-c from user */
3703 if (signal_pending(current)) {
3704 prep_and_add_allocated_folios(h, &page_list);
3705 spin_lock_irq(&hugetlb_lock);
3706 goto out;
3707 }
3708
3709 spin_lock_irq(&hugetlb_lock);
3710 }
3711
3712 /* Add allocated pages to the pool */
3713 if (!list_empty(&page_list)) {
3714 spin_unlock_irq(&hugetlb_lock);
3715 prep_and_add_allocated_folios(h, &page_list);
3716 spin_lock_irq(&hugetlb_lock);
3717 }
3718
3719 /*
3720 * Decrease the pool size
3721 * First return free pages to the buddy allocator (being careful
3722 * to keep enough around to satisfy reservations). Then place
3723 * pages into surplus state as needed so the pool will shrink
3724 * to the desired size as pages become free.
3725 *
3726 * By placing pages into the surplus state independent of the
3727 * overcommit value, we are allowing the surplus pool size to
3728 * exceed overcommit. There are few sane options here. Since
3729 * alloc_surplus_hugetlb_folio() is checking the global counter,
3730 * though, we'll note that we're not allowed to exceed surplus
3731 * and won't grow the pool anywhere else. Not until one of the
3732 * sysctls are changed, or the surplus pages go out of use.
3733 */
3734 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3735 min_count = max(count, min_count);
3736 try_to_free_low(h, min_count, nodes_allowed);
3737
3738 /*
3739 * Collect pages to be removed on list without dropping lock
3740 */
3741 while (min_count < persistent_huge_pages(h)) {
3742 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3743 if (!folio)
3744 break;
3745
3746 list_add(&folio->lru, &page_list);
3747 }
3748 /* free the pages after dropping lock */
3749 spin_unlock_irq(&hugetlb_lock);
3750 update_and_free_pages_bulk(h, &page_list);
3751 flush_free_hpage_work(h);
3752 spin_lock_irq(&hugetlb_lock);
3753
3754 while (count < persistent_huge_pages(h)) {
3755 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3756 break;
3757 }
3758 out:
3759 h->max_huge_pages = persistent_huge_pages(h);
3760 spin_unlock_irq(&hugetlb_lock);
3761 mutex_unlock(&h->resize_lock);
3762
3763 NODEMASK_FREE(node_alloc_noretry);
3764
3765 return 0;
3766 }
3767
demote_free_hugetlb_folios(struct hstate * src,struct hstate * dst,struct list_head * src_list)3768 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
3769 struct list_head *src_list)
3770 {
3771 long rc;
3772 struct folio *folio, *next;
3773 LIST_HEAD(dst_list);
3774 LIST_HEAD(ret_list);
3775
3776 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
3777 list_splice_init(&ret_list, src_list);
3778
3779 /*
3780 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3781 * Without the mutex, pages added to target hstate could be marked
3782 * as surplus.
3783 *
3784 * Note that we already hold src->resize_lock. To prevent deadlock,
3785 * use the convention of always taking larger size hstate mutex first.
3786 */
3787 mutex_lock(&dst->resize_lock);
3788
3789 list_for_each_entry_safe(folio, next, src_list, lru) {
3790 int i;
3791
3792 if (folio_test_hugetlb_vmemmap_optimized(folio))
3793 continue;
3794
3795 list_del(&folio->lru);
3796
3797 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
3798 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
3799
3800 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
3801 struct page *page = folio_page(folio, i);
3802
3803 page->mapping = NULL;
3804 clear_compound_head(page);
3805 prep_compound_page(page, dst->order);
3806
3807 init_new_hugetlb_folio(dst, page_folio(page));
3808 list_add(&page->lru, &dst_list);
3809 }
3810 }
3811
3812 prep_and_add_allocated_folios(dst, &dst_list);
3813
3814 mutex_unlock(&dst->resize_lock);
3815
3816 return rc;
3817 }
3818
demote_pool_huge_page(struct hstate * src,nodemask_t * nodes_allowed,unsigned long nr_to_demote)3819 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
3820 unsigned long nr_to_demote)
3821 __must_hold(&hugetlb_lock)
3822 {
3823 int nr_nodes, node;
3824 struct hstate *dst;
3825 long rc = 0;
3826 long nr_demoted = 0;
3827
3828 lockdep_assert_held(&hugetlb_lock);
3829
3830 /* We should never get here if no demote order */
3831 if (!src->demote_order) {
3832 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3833 return -EINVAL; /* internal error */
3834 }
3835 dst = size_to_hstate(PAGE_SIZE << src->demote_order);
3836
3837 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
3838 LIST_HEAD(list);
3839 struct folio *folio, *next;
3840
3841 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
3842 if (folio_test_hwpoison(folio))
3843 continue;
3844
3845 remove_hugetlb_folio(src, folio, false);
3846 list_add(&folio->lru, &list);
3847
3848 if (++nr_demoted == nr_to_demote)
3849 break;
3850 }
3851
3852 spin_unlock_irq(&hugetlb_lock);
3853
3854 rc = demote_free_hugetlb_folios(src, dst, &list);
3855
3856 spin_lock_irq(&hugetlb_lock);
3857
3858 list_for_each_entry_safe(folio, next, &list, lru) {
3859 list_del(&folio->lru);
3860 add_hugetlb_folio(src, folio, false);
3861
3862 nr_demoted--;
3863 }
3864
3865 if (rc < 0 || nr_demoted == nr_to_demote)
3866 break;
3867 }
3868
3869 /*
3870 * Not absolutely necessary, but for consistency update max_huge_pages
3871 * based on pool changes for the demoted page.
3872 */
3873 src->max_huge_pages -= nr_demoted;
3874 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
3875
3876 if (rc < 0)
3877 return rc;
3878
3879 if (nr_demoted)
3880 return nr_demoted;
3881 /*
3882 * Only way to get here is if all pages on free lists are poisoned.
3883 * Return -EBUSY so that caller will not retry.
3884 */
3885 return -EBUSY;
3886 }
3887
3888 #define HSTATE_ATTR_RO(_name) \
3889 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3890
3891 #define HSTATE_ATTR_WO(_name) \
3892 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3893
3894 #define HSTATE_ATTR(_name) \
3895 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3896
3897 static struct kobject *hugepages_kobj;
3898 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3899
3900 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3901
kobj_to_hstate(struct kobject * kobj,int * nidp)3902 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3903 {
3904 int i;
3905
3906 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3907 if (hstate_kobjs[i] == kobj) {
3908 if (nidp)
3909 *nidp = NUMA_NO_NODE;
3910 return &hstates[i];
3911 }
3912
3913 return kobj_to_node_hstate(kobj, nidp);
3914 }
3915
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3916 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3917 struct kobj_attribute *attr, char *buf)
3918 {
3919 struct hstate *h;
3920 unsigned long nr_huge_pages;
3921 int nid;
3922
3923 h = kobj_to_hstate(kobj, &nid);
3924 if (nid == NUMA_NO_NODE)
3925 nr_huge_pages = h->nr_huge_pages;
3926 else
3927 nr_huge_pages = h->nr_huge_pages_node[nid];
3928
3929 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3930 }
3931
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)3932 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3933 struct hstate *h, int nid,
3934 unsigned long count, size_t len)
3935 {
3936 int err;
3937 nodemask_t nodes_allowed, *n_mask;
3938
3939 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3940 return -EINVAL;
3941
3942 if (nid == NUMA_NO_NODE) {
3943 /*
3944 * global hstate attribute
3945 */
3946 if (!(obey_mempolicy &&
3947 init_nodemask_of_mempolicy(&nodes_allowed)))
3948 n_mask = &node_states[N_MEMORY];
3949 else
3950 n_mask = &nodes_allowed;
3951 } else {
3952 /*
3953 * Node specific request. count adjustment happens in
3954 * set_max_huge_pages() after acquiring hugetlb_lock.
3955 */
3956 init_nodemask_of_node(&nodes_allowed, nid);
3957 n_mask = &nodes_allowed;
3958 }
3959
3960 err = set_max_huge_pages(h, count, nid, n_mask);
3961
3962 return err ? err : len;
3963 }
3964
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)3965 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3966 struct kobject *kobj, const char *buf,
3967 size_t len)
3968 {
3969 struct hstate *h;
3970 unsigned long count;
3971 int nid;
3972 int err;
3973
3974 err = kstrtoul(buf, 10, &count);
3975 if (err)
3976 return err;
3977
3978 h = kobj_to_hstate(kobj, &nid);
3979 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3980 }
3981
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3982 static ssize_t nr_hugepages_show(struct kobject *kobj,
3983 struct kobj_attribute *attr, char *buf)
3984 {
3985 return nr_hugepages_show_common(kobj, attr, buf);
3986 }
3987
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3988 static ssize_t nr_hugepages_store(struct kobject *kobj,
3989 struct kobj_attribute *attr, const char *buf, size_t len)
3990 {
3991 return nr_hugepages_store_common(false, kobj, buf, len);
3992 }
3993 HSTATE_ATTR(nr_hugepages);
3994
3995 #ifdef CONFIG_NUMA
3996
3997 /*
3998 * hstate attribute for optionally mempolicy-based constraint on persistent
3999 * huge page alloc/free.
4000 */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4001 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4002 struct kobj_attribute *attr,
4003 char *buf)
4004 {
4005 return nr_hugepages_show_common(kobj, attr, buf);
4006 }
4007
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4008 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4009 struct kobj_attribute *attr, const char *buf, size_t len)
4010 {
4011 return nr_hugepages_store_common(true, kobj, buf, len);
4012 }
4013 HSTATE_ATTR(nr_hugepages_mempolicy);
4014 #endif
4015
4016
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4017 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4018 struct kobj_attribute *attr, char *buf)
4019 {
4020 struct hstate *h = kobj_to_hstate(kobj, NULL);
4021 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4022 }
4023
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4024 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4025 struct kobj_attribute *attr, const char *buf, size_t count)
4026 {
4027 int err;
4028 unsigned long input;
4029 struct hstate *h = kobj_to_hstate(kobj, NULL);
4030
4031 if (hstate_is_gigantic(h))
4032 return -EINVAL;
4033
4034 err = kstrtoul(buf, 10, &input);
4035 if (err)
4036 return err;
4037
4038 spin_lock_irq(&hugetlb_lock);
4039 h->nr_overcommit_huge_pages = input;
4040 spin_unlock_irq(&hugetlb_lock);
4041
4042 return count;
4043 }
4044 HSTATE_ATTR(nr_overcommit_hugepages);
4045
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4046 static ssize_t free_hugepages_show(struct kobject *kobj,
4047 struct kobj_attribute *attr, char *buf)
4048 {
4049 struct hstate *h;
4050 unsigned long free_huge_pages;
4051 int nid;
4052
4053 h = kobj_to_hstate(kobj, &nid);
4054 if (nid == NUMA_NO_NODE)
4055 free_huge_pages = h->free_huge_pages;
4056 else
4057 free_huge_pages = h->free_huge_pages_node[nid];
4058
4059 return sysfs_emit(buf, "%lu\n", free_huge_pages);
4060 }
4061 HSTATE_ATTR_RO(free_hugepages);
4062
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4063 static ssize_t resv_hugepages_show(struct kobject *kobj,
4064 struct kobj_attribute *attr, char *buf)
4065 {
4066 struct hstate *h = kobj_to_hstate(kobj, NULL);
4067 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4068 }
4069 HSTATE_ATTR_RO(resv_hugepages);
4070
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4071 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4072 struct kobj_attribute *attr, char *buf)
4073 {
4074 struct hstate *h;
4075 unsigned long surplus_huge_pages;
4076 int nid;
4077
4078 h = kobj_to_hstate(kobj, &nid);
4079 if (nid == NUMA_NO_NODE)
4080 surplus_huge_pages = h->surplus_huge_pages;
4081 else
4082 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4083
4084 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4085 }
4086 HSTATE_ATTR_RO(surplus_hugepages);
4087
demote_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4088 static ssize_t demote_store(struct kobject *kobj,
4089 struct kobj_attribute *attr, const char *buf, size_t len)
4090 {
4091 unsigned long nr_demote;
4092 unsigned long nr_available;
4093 nodemask_t nodes_allowed, *n_mask;
4094 struct hstate *h;
4095 int err;
4096 int nid;
4097
4098 err = kstrtoul(buf, 10, &nr_demote);
4099 if (err)
4100 return err;
4101 h = kobj_to_hstate(kobj, &nid);
4102
4103 if (nid != NUMA_NO_NODE) {
4104 init_nodemask_of_node(&nodes_allowed, nid);
4105 n_mask = &nodes_allowed;
4106 } else {
4107 n_mask = &node_states[N_MEMORY];
4108 }
4109
4110 /* Synchronize with other sysfs operations modifying huge pages */
4111 mutex_lock(&h->resize_lock);
4112 spin_lock_irq(&hugetlb_lock);
4113
4114 while (nr_demote) {
4115 long rc;
4116
4117 /*
4118 * Check for available pages to demote each time thorough the
4119 * loop as demote_pool_huge_page will drop hugetlb_lock.
4120 */
4121 if (nid != NUMA_NO_NODE)
4122 nr_available = h->free_huge_pages_node[nid];
4123 else
4124 nr_available = h->free_huge_pages;
4125 nr_available -= h->resv_huge_pages;
4126 if (!nr_available)
4127 break;
4128
4129 rc = demote_pool_huge_page(h, n_mask, nr_demote);
4130 if (rc < 0) {
4131 err = rc;
4132 break;
4133 }
4134
4135 nr_demote -= rc;
4136 }
4137
4138 spin_unlock_irq(&hugetlb_lock);
4139 mutex_unlock(&h->resize_lock);
4140
4141 if (err)
4142 return err;
4143 return len;
4144 }
4145 HSTATE_ATTR_WO(demote);
4146
demote_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4147 static ssize_t demote_size_show(struct kobject *kobj,
4148 struct kobj_attribute *attr, char *buf)
4149 {
4150 struct hstate *h = kobj_to_hstate(kobj, NULL);
4151 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4152
4153 return sysfs_emit(buf, "%lukB\n", demote_size);
4154 }
4155
demote_size_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4156 static ssize_t demote_size_store(struct kobject *kobj,
4157 struct kobj_attribute *attr,
4158 const char *buf, size_t count)
4159 {
4160 struct hstate *h, *demote_hstate;
4161 unsigned long demote_size;
4162 unsigned int demote_order;
4163
4164 demote_size = (unsigned long)memparse(buf, NULL);
4165
4166 demote_hstate = size_to_hstate(demote_size);
4167 if (!demote_hstate)
4168 return -EINVAL;
4169 demote_order = demote_hstate->order;
4170 if (demote_order < HUGETLB_PAGE_ORDER)
4171 return -EINVAL;
4172
4173 /* demote order must be smaller than hstate order */
4174 h = kobj_to_hstate(kobj, NULL);
4175 if (demote_order >= h->order)
4176 return -EINVAL;
4177
4178 /* resize_lock synchronizes access to demote size and writes */
4179 mutex_lock(&h->resize_lock);
4180 h->demote_order = demote_order;
4181 mutex_unlock(&h->resize_lock);
4182
4183 return count;
4184 }
4185 HSTATE_ATTR(demote_size);
4186
4187 static struct attribute *hstate_attrs[] = {
4188 &nr_hugepages_attr.attr,
4189 &nr_overcommit_hugepages_attr.attr,
4190 &free_hugepages_attr.attr,
4191 &resv_hugepages_attr.attr,
4192 &surplus_hugepages_attr.attr,
4193 #ifdef CONFIG_NUMA
4194 &nr_hugepages_mempolicy_attr.attr,
4195 #endif
4196 NULL,
4197 };
4198
4199 static const struct attribute_group hstate_attr_group = {
4200 .attrs = hstate_attrs,
4201 };
4202
4203 static struct attribute *hstate_demote_attrs[] = {
4204 &demote_size_attr.attr,
4205 &demote_attr.attr,
4206 NULL,
4207 };
4208
4209 static const struct attribute_group hstate_demote_attr_group = {
4210 .attrs = hstate_demote_attrs,
4211 };
4212
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)4213 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4214 struct kobject **hstate_kobjs,
4215 const struct attribute_group *hstate_attr_group)
4216 {
4217 int retval;
4218 int hi = hstate_index(h);
4219
4220 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4221 if (!hstate_kobjs[hi])
4222 return -ENOMEM;
4223
4224 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4225 if (retval) {
4226 kobject_put(hstate_kobjs[hi]);
4227 hstate_kobjs[hi] = NULL;
4228 return retval;
4229 }
4230
4231 if (h->demote_order) {
4232 retval = sysfs_create_group(hstate_kobjs[hi],
4233 &hstate_demote_attr_group);
4234 if (retval) {
4235 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4236 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4237 kobject_put(hstate_kobjs[hi]);
4238 hstate_kobjs[hi] = NULL;
4239 return retval;
4240 }
4241 }
4242
4243 return 0;
4244 }
4245
4246 #ifdef CONFIG_NUMA
4247 static bool hugetlb_sysfs_initialized __ro_after_init;
4248
4249 /*
4250 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4251 * with node devices in node_devices[] using a parallel array. The array
4252 * index of a node device or _hstate == node id.
4253 * This is here to avoid any static dependency of the node device driver, in
4254 * the base kernel, on the hugetlb module.
4255 */
4256 struct node_hstate {
4257 struct kobject *hugepages_kobj;
4258 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4259 };
4260 static struct node_hstate node_hstates[MAX_NUMNODES];
4261
4262 /*
4263 * A subset of global hstate attributes for node devices
4264 */
4265 static struct attribute *per_node_hstate_attrs[] = {
4266 &nr_hugepages_attr.attr,
4267 &free_hugepages_attr.attr,
4268 &surplus_hugepages_attr.attr,
4269 NULL,
4270 };
4271
4272 static const struct attribute_group per_node_hstate_attr_group = {
4273 .attrs = per_node_hstate_attrs,
4274 };
4275
4276 /*
4277 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4278 * Returns node id via non-NULL nidp.
4279 */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4280 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4281 {
4282 int nid;
4283
4284 for (nid = 0; nid < nr_node_ids; nid++) {
4285 struct node_hstate *nhs = &node_hstates[nid];
4286 int i;
4287 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4288 if (nhs->hstate_kobjs[i] == kobj) {
4289 if (nidp)
4290 *nidp = nid;
4291 return &hstates[i];
4292 }
4293 }
4294
4295 BUG();
4296 return NULL;
4297 }
4298
4299 /*
4300 * Unregister hstate attributes from a single node device.
4301 * No-op if no hstate attributes attached.
4302 */
hugetlb_unregister_node(struct node * node)4303 void hugetlb_unregister_node(struct node *node)
4304 {
4305 struct hstate *h;
4306 struct node_hstate *nhs = &node_hstates[node->dev.id];
4307
4308 if (!nhs->hugepages_kobj)
4309 return; /* no hstate attributes */
4310
4311 for_each_hstate(h) {
4312 int idx = hstate_index(h);
4313 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4314
4315 if (!hstate_kobj)
4316 continue;
4317 if (h->demote_order)
4318 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4319 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4320 kobject_put(hstate_kobj);
4321 nhs->hstate_kobjs[idx] = NULL;
4322 }
4323
4324 kobject_put(nhs->hugepages_kobj);
4325 nhs->hugepages_kobj = NULL;
4326 }
4327
4328
4329 /*
4330 * Register hstate attributes for a single node device.
4331 * No-op if attributes already registered.
4332 */
hugetlb_register_node(struct node * node)4333 void hugetlb_register_node(struct node *node)
4334 {
4335 struct hstate *h;
4336 struct node_hstate *nhs = &node_hstates[node->dev.id];
4337 int err;
4338
4339 if (!hugetlb_sysfs_initialized)
4340 return;
4341
4342 if (nhs->hugepages_kobj)
4343 return; /* already allocated */
4344
4345 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4346 &node->dev.kobj);
4347 if (!nhs->hugepages_kobj)
4348 return;
4349
4350 for_each_hstate(h) {
4351 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4352 nhs->hstate_kobjs,
4353 &per_node_hstate_attr_group);
4354 if (err) {
4355 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4356 h->name, node->dev.id);
4357 hugetlb_unregister_node(node);
4358 break;
4359 }
4360 }
4361 }
4362
4363 /*
4364 * hugetlb init time: register hstate attributes for all registered node
4365 * devices of nodes that have memory. All on-line nodes should have
4366 * registered their associated device by this time.
4367 */
hugetlb_register_all_nodes(void)4368 static void __init hugetlb_register_all_nodes(void)
4369 {
4370 int nid;
4371
4372 for_each_online_node(nid)
4373 hugetlb_register_node(node_devices[nid]);
4374 }
4375 #else /* !CONFIG_NUMA */
4376
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4377 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4378 {
4379 BUG();
4380 if (nidp)
4381 *nidp = -1;
4382 return NULL;
4383 }
4384
hugetlb_register_all_nodes(void)4385 static void hugetlb_register_all_nodes(void) { }
4386
4387 #endif
4388
4389 #ifdef CONFIG_CMA
4390 static void __init hugetlb_cma_check(void);
4391 #else
hugetlb_cma_check(void)4392 static inline __init void hugetlb_cma_check(void)
4393 {
4394 }
4395 #endif
4396
hugetlb_sysfs_init(void)4397 static void __init hugetlb_sysfs_init(void)
4398 {
4399 struct hstate *h;
4400 int err;
4401
4402 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4403 if (!hugepages_kobj)
4404 return;
4405
4406 for_each_hstate(h) {
4407 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4408 hstate_kobjs, &hstate_attr_group);
4409 if (err)
4410 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4411 }
4412
4413 #ifdef CONFIG_NUMA
4414 hugetlb_sysfs_initialized = true;
4415 #endif
4416 hugetlb_register_all_nodes();
4417 }
4418
4419 #ifdef CONFIG_SYSCTL
4420 static void hugetlb_sysctl_init(void);
4421 #else
hugetlb_sysctl_init(void)4422 static inline void hugetlb_sysctl_init(void) { }
4423 #endif
4424
hugetlb_init(void)4425 static int __init hugetlb_init(void)
4426 {
4427 int i;
4428
4429 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4430 __NR_HPAGEFLAGS);
4431
4432 if (!hugepages_supported()) {
4433 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4434 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4435 return 0;
4436 }
4437
4438 /*
4439 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4440 * architectures depend on setup being done here.
4441 */
4442 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4443 if (!parsed_default_hugepagesz) {
4444 /*
4445 * If we did not parse a default huge page size, set
4446 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4447 * number of huge pages for this default size was implicitly
4448 * specified, set that here as well.
4449 * Note that the implicit setting will overwrite an explicit
4450 * setting. A warning will be printed in this case.
4451 */
4452 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4453 if (default_hstate_max_huge_pages) {
4454 if (default_hstate.max_huge_pages) {
4455 char buf[32];
4456
4457 string_get_size(huge_page_size(&default_hstate),
4458 1, STRING_UNITS_2, buf, 32);
4459 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4460 default_hstate.max_huge_pages, buf);
4461 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4462 default_hstate_max_huge_pages);
4463 }
4464 default_hstate.max_huge_pages =
4465 default_hstate_max_huge_pages;
4466
4467 for_each_online_node(i)
4468 default_hstate.max_huge_pages_node[i] =
4469 default_hugepages_in_node[i];
4470 }
4471 }
4472
4473 hugetlb_cma_check();
4474 hugetlb_init_hstates();
4475 gather_bootmem_prealloc();
4476 report_hugepages();
4477
4478 hugetlb_sysfs_init();
4479 hugetlb_cgroup_file_init();
4480 hugetlb_sysctl_init();
4481
4482 #ifdef CONFIG_SMP
4483 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4484 #else
4485 num_fault_mutexes = 1;
4486 #endif
4487 hugetlb_fault_mutex_table =
4488 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4489 GFP_KERNEL);
4490 BUG_ON(!hugetlb_fault_mutex_table);
4491
4492 for (i = 0; i < num_fault_mutexes; i++)
4493 mutex_init(&hugetlb_fault_mutex_table[i]);
4494 return 0;
4495 }
4496 subsys_initcall(hugetlb_init);
4497
4498 /* Overwritten by architectures with more huge page sizes */
__init(weak)4499 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4500 {
4501 return size == HPAGE_SIZE;
4502 }
4503
hugetlb_add_hstate(unsigned int order)4504 void __init hugetlb_add_hstate(unsigned int order)
4505 {
4506 struct hstate *h;
4507 unsigned long i;
4508
4509 if (size_to_hstate(PAGE_SIZE << order)) {
4510 return;
4511 }
4512 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4513 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4514 h = &hstates[hugetlb_max_hstate++];
4515 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4516 h->order = order;
4517 h->mask = ~(huge_page_size(h) - 1);
4518 for (i = 0; i < MAX_NUMNODES; ++i)
4519 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4520 INIT_LIST_HEAD(&h->hugepage_activelist);
4521 h->next_nid_to_alloc = first_memory_node;
4522 h->next_nid_to_free = first_memory_node;
4523 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4524 huge_page_size(h)/SZ_1K);
4525
4526 parsed_hstate = h;
4527 }
4528
hugetlb_node_alloc_supported(void)4529 bool __init __weak hugetlb_node_alloc_supported(void)
4530 {
4531 return true;
4532 }
4533
hugepages_clear_pages_in_node(void)4534 static void __init hugepages_clear_pages_in_node(void)
4535 {
4536 if (!hugetlb_max_hstate) {
4537 default_hstate_max_huge_pages = 0;
4538 memset(default_hugepages_in_node, 0,
4539 sizeof(default_hugepages_in_node));
4540 } else {
4541 parsed_hstate->max_huge_pages = 0;
4542 memset(parsed_hstate->max_huge_pages_node, 0,
4543 sizeof(parsed_hstate->max_huge_pages_node));
4544 }
4545 }
4546
4547 /*
4548 * hugepages command line processing
4549 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4550 * specification. If not, ignore the hugepages value. hugepages can also
4551 * be the first huge page command line option in which case it implicitly
4552 * specifies the number of huge pages for the default size.
4553 */
hugepages_setup(char * s)4554 static int __init hugepages_setup(char *s)
4555 {
4556 unsigned long *mhp;
4557 static unsigned long *last_mhp;
4558 int node = NUMA_NO_NODE;
4559 int count;
4560 unsigned long tmp;
4561 char *p = s;
4562
4563 if (!parsed_valid_hugepagesz) {
4564 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4565 parsed_valid_hugepagesz = true;
4566 return 1;
4567 }
4568
4569 /*
4570 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4571 * yet, so this hugepages= parameter goes to the "default hstate".
4572 * Otherwise, it goes with the previously parsed hugepagesz or
4573 * default_hugepagesz.
4574 */
4575 else if (!hugetlb_max_hstate)
4576 mhp = &default_hstate_max_huge_pages;
4577 else
4578 mhp = &parsed_hstate->max_huge_pages;
4579
4580 if (mhp == last_mhp) {
4581 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4582 return 1;
4583 }
4584
4585 while (*p) {
4586 count = 0;
4587 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4588 goto invalid;
4589 /* Parameter is node format */
4590 if (p[count] == ':') {
4591 if (!hugetlb_node_alloc_supported()) {
4592 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4593 return 1;
4594 }
4595 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4596 goto invalid;
4597 node = array_index_nospec(tmp, MAX_NUMNODES);
4598 p += count + 1;
4599 /* Parse hugepages */
4600 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4601 goto invalid;
4602 if (!hugetlb_max_hstate)
4603 default_hugepages_in_node[node] = tmp;
4604 else
4605 parsed_hstate->max_huge_pages_node[node] = tmp;
4606 *mhp += tmp;
4607 /* Go to parse next node*/
4608 if (p[count] == ',')
4609 p += count + 1;
4610 else
4611 break;
4612 } else {
4613 if (p != s)
4614 goto invalid;
4615 *mhp = tmp;
4616 break;
4617 }
4618 }
4619
4620 /*
4621 * Global state is always initialized later in hugetlb_init.
4622 * But we need to allocate gigantic hstates here early to still
4623 * use the bootmem allocator.
4624 */
4625 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4626 hugetlb_hstate_alloc_pages(parsed_hstate);
4627
4628 last_mhp = mhp;
4629
4630 return 1;
4631
4632 invalid:
4633 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4634 hugepages_clear_pages_in_node();
4635 return 1;
4636 }
4637 __setup("hugepages=", hugepages_setup);
4638
4639 /*
4640 * hugepagesz command line processing
4641 * A specific huge page size can only be specified once with hugepagesz.
4642 * hugepagesz is followed by hugepages on the command line. The global
4643 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4644 * hugepagesz argument was valid.
4645 */
hugepagesz_setup(char * s)4646 static int __init hugepagesz_setup(char *s)
4647 {
4648 unsigned long size;
4649 struct hstate *h;
4650
4651 parsed_valid_hugepagesz = false;
4652 size = (unsigned long)memparse(s, NULL);
4653
4654 if (!arch_hugetlb_valid_size(size)) {
4655 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4656 return 1;
4657 }
4658
4659 h = size_to_hstate(size);
4660 if (h) {
4661 /*
4662 * hstate for this size already exists. This is normally
4663 * an error, but is allowed if the existing hstate is the
4664 * default hstate. More specifically, it is only allowed if
4665 * the number of huge pages for the default hstate was not
4666 * previously specified.
4667 */
4668 if (!parsed_default_hugepagesz || h != &default_hstate ||
4669 default_hstate.max_huge_pages) {
4670 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4671 return 1;
4672 }
4673
4674 /*
4675 * No need to call hugetlb_add_hstate() as hstate already
4676 * exists. But, do set parsed_hstate so that a following
4677 * hugepages= parameter will be applied to this hstate.
4678 */
4679 parsed_hstate = h;
4680 parsed_valid_hugepagesz = true;
4681 return 1;
4682 }
4683
4684 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4685 parsed_valid_hugepagesz = true;
4686 return 1;
4687 }
4688 __setup("hugepagesz=", hugepagesz_setup);
4689
4690 /*
4691 * default_hugepagesz command line input
4692 * Only one instance of default_hugepagesz allowed on command line.
4693 */
default_hugepagesz_setup(char * s)4694 static int __init default_hugepagesz_setup(char *s)
4695 {
4696 unsigned long size;
4697 int i;
4698
4699 parsed_valid_hugepagesz = false;
4700 if (parsed_default_hugepagesz) {
4701 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4702 return 1;
4703 }
4704
4705 size = (unsigned long)memparse(s, NULL);
4706
4707 if (!arch_hugetlb_valid_size(size)) {
4708 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4709 return 1;
4710 }
4711
4712 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4713 parsed_valid_hugepagesz = true;
4714 parsed_default_hugepagesz = true;
4715 default_hstate_idx = hstate_index(size_to_hstate(size));
4716
4717 /*
4718 * The number of default huge pages (for this size) could have been
4719 * specified as the first hugetlb parameter: hugepages=X. If so,
4720 * then default_hstate_max_huge_pages is set. If the default huge
4721 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4722 * allocated here from bootmem allocator.
4723 */
4724 if (default_hstate_max_huge_pages) {
4725 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4726 for_each_online_node(i)
4727 default_hstate.max_huge_pages_node[i] =
4728 default_hugepages_in_node[i];
4729 if (hstate_is_gigantic(&default_hstate))
4730 hugetlb_hstate_alloc_pages(&default_hstate);
4731 default_hstate_max_huge_pages = 0;
4732 }
4733
4734 return 1;
4735 }
4736 __setup("default_hugepagesz=", default_hugepagesz_setup);
4737
allowed_mems_nr(struct hstate * h)4738 static unsigned int allowed_mems_nr(struct hstate *h)
4739 {
4740 int node;
4741 unsigned int nr = 0;
4742 nodemask_t *mbind_nodemask;
4743 unsigned int *array = h->free_huge_pages_node;
4744 gfp_t gfp_mask = htlb_alloc_mask(h);
4745
4746 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4747 for_each_node_mask(node, cpuset_current_mems_allowed) {
4748 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4749 nr += array[node];
4750 }
4751
4752 return nr;
4753 }
4754
4755 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)4756 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
4757 void *buffer, size_t *length,
4758 loff_t *ppos, unsigned long *out)
4759 {
4760 struct ctl_table dup_table;
4761
4762 /*
4763 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4764 * can duplicate the @table and alter the duplicate of it.
4765 */
4766 dup_table = *table;
4767 dup_table.data = out;
4768
4769 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4770 }
4771
hugetlb_sysctl_handler_common(bool obey_mempolicy,const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4772 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4773 const struct ctl_table *table, int write,
4774 void *buffer, size_t *length, loff_t *ppos)
4775 {
4776 struct hstate *h = &default_hstate;
4777 unsigned long tmp = h->max_huge_pages;
4778 int ret;
4779
4780 if (!hugepages_supported())
4781 return -EOPNOTSUPP;
4782
4783 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4784 &tmp);
4785 if (ret)
4786 goto out;
4787
4788 if (write)
4789 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4790 NUMA_NO_NODE, tmp, *length);
4791 out:
4792 return ret;
4793 }
4794
hugetlb_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4795 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
4796 void *buffer, size_t *length, loff_t *ppos)
4797 {
4798
4799 return hugetlb_sysctl_handler_common(false, table, write,
4800 buffer, length, ppos);
4801 }
4802
4803 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4804 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
4805 void *buffer, size_t *length, loff_t *ppos)
4806 {
4807 return hugetlb_sysctl_handler_common(true, table, write,
4808 buffer, length, ppos);
4809 }
4810 #endif /* CONFIG_NUMA */
4811
hugetlb_overcommit_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4812 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
4813 void *buffer, size_t *length, loff_t *ppos)
4814 {
4815 struct hstate *h = &default_hstate;
4816 unsigned long tmp;
4817 int ret;
4818
4819 if (!hugepages_supported())
4820 return -EOPNOTSUPP;
4821
4822 tmp = h->nr_overcommit_huge_pages;
4823
4824 if (write && hstate_is_gigantic(h))
4825 return -EINVAL;
4826
4827 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4828 &tmp);
4829 if (ret)
4830 goto out;
4831
4832 if (write) {
4833 spin_lock_irq(&hugetlb_lock);
4834 h->nr_overcommit_huge_pages = tmp;
4835 spin_unlock_irq(&hugetlb_lock);
4836 }
4837 out:
4838 return ret;
4839 }
4840
4841 static struct ctl_table hugetlb_table[] = {
4842 {
4843 .procname = "nr_hugepages",
4844 .data = NULL,
4845 .maxlen = sizeof(unsigned long),
4846 .mode = 0644,
4847 .proc_handler = hugetlb_sysctl_handler,
4848 },
4849 #ifdef CONFIG_NUMA
4850 {
4851 .procname = "nr_hugepages_mempolicy",
4852 .data = NULL,
4853 .maxlen = sizeof(unsigned long),
4854 .mode = 0644,
4855 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
4856 },
4857 #endif
4858 {
4859 .procname = "hugetlb_shm_group",
4860 .data = &sysctl_hugetlb_shm_group,
4861 .maxlen = sizeof(gid_t),
4862 .mode = 0644,
4863 .proc_handler = proc_dointvec,
4864 },
4865 {
4866 .procname = "nr_overcommit_hugepages",
4867 .data = NULL,
4868 .maxlen = sizeof(unsigned long),
4869 .mode = 0644,
4870 .proc_handler = hugetlb_overcommit_handler,
4871 },
4872 };
4873
hugetlb_sysctl_init(void)4874 static void hugetlb_sysctl_init(void)
4875 {
4876 register_sysctl_init("vm", hugetlb_table);
4877 }
4878 #endif /* CONFIG_SYSCTL */
4879
hugetlb_report_meminfo(struct seq_file * m)4880 void hugetlb_report_meminfo(struct seq_file *m)
4881 {
4882 struct hstate *h;
4883 unsigned long total = 0;
4884
4885 if (!hugepages_supported())
4886 return;
4887
4888 for_each_hstate(h) {
4889 unsigned long count = h->nr_huge_pages;
4890
4891 total += huge_page_size(h) * count;
4892
4893 if (h == &default_hstate)
4894 seq_printf(m,
4895 "HugePages_Total: %5lu\n"
4896 "HugePages_Free: %5lu\n"
4897 "HugePages_Rsvd: %5lu\n"
4898 "HugePages_Surp: %5lu\n"
4899 "Hugepagesize: %8lu kB\n",
4900 count,
4901 h->free_huge_pages,
4902 h->resv_huge_pages,
4903 h->surplus_huge_pages,
4904 huge_page_size(h) / SZ_1K);
4905 }
4906
4907 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4908 }
4909
hugetlb_report_node_meminfo(char * buf,int len,int nid)4910 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4911 {
4912 struct hstate *h = &default_hstate;
4913
4914 if (!hugepages_supported())
4915 return 0;
4916
4917 return sysfs_emit_at(buf, len,
4918 "Node %d HugePages_Total: %5u\n"
4919 "Node %d HugePages_Free: %5u\n"
4920 "Node %d HugePages_Surp: %5u\n",
4921 nid, h->nr_huge_pages_node[nid],
4922 nid, h->free_huge_pages_node[nid],
4923 nid, h->surplus_huge_pages_node[nid]);
4924 }
4925
hugetlb_show_meminfo_node(int nid)4926 void hugetlb_show_meminfo_node(int nid)
4927 {
4928 struct hstate *h;
4929
4930 if (!hugepages_supported())
4931 return;
4932
4933 for_each_hstate(h)
4934 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4935 nid,
4936 h->nr_huge_pages_node[nid],
4937 h->free_huge_pages_node[nid],
4938 h->surplus_huge_pages_node[nid],
4939 huge_page_size(h) / SZ_1K);
4940 }
4941
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)4942 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4943 {
4944 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4945 K(atomic_long_read(&mm->hugetlb_usage)));
4946 }
4947
4948 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)4949 unsigned long hugetlb_total_pages(void)
4950 {
4951 struct hstate *h;
4952 unsigned long nr_total_pages = 0;
4953
4954 for_each_hstate(h)
4955 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4956 return nr_total_pages;
4957 }
4958
hugetlb_acct_memory(struct hstate * h,long delta)4959 static int hugetlb_acct_memory(struct hstate *h, long delta)
4960 {
4961 int ret = -ENOMEM;
4962
4963 if (!delta)
4964 return 0;
4965
4966 spin_lock_irq(&hugetlb_lock);
4967 /*
4968 * When cpuset is configured, it breaks the strict hugetlb page
4969 * reservation as the accounting is done on a global variable. Such
4970 * reservation is completely rubbish in the presence of cpuset because
4971 * the reservation is not checked against page availability for the
4972 * current cpuset. Application can still potentially OOM'ed by kernel
4973 * with lack of free htlb page in cpuset that the task is in.
4974 * Attempt to enforce strict accounting with cpuset is almost
4975 * impossible (or too ugly) because cpuset is too fluid that
4976 * task or memory node can be dynamically moved between cpusets.
4977 *
4978 * The change of semantics for shared hugetlb mapping with cpuset is
4979 * undesirable. However, in order to preserve some of the semantics,
4980 * we fall back to check against current free page availability as
4981 * a best attempt and hopefully to minimize the impact of changing
4982 * semantics that cpuset has.
4983 *
4984 * Apart from cpuset, we also have memory policy mechanism that
4985 * also determines from which node the kernel will allocate memory
4986 * in a NUMA system. So similar to cpuset, we also should consider
4987 * the memory policy of the current task. Similar to the description
4988 * above.
4989 */
4990 if (delta > 0) {
4991 if (gather_surplus_pages(h, delta) < 0)
4992 goto out;
4993
4994 if (delta > allowed_mems_nr(h)) {
4995 return_unused_surplus_pages(h, delta);
4996 goto out;
4997 }
4998 }
4999
5000 ret = 0;
5001 if (delta < 0)
5002 return_unused_surplus_pages(h, (unsigned long) -delta);
5003
5004 out:
5005 spin_unlock_irq(&hugetlb_lock);
5006 return ret;
5007 }
5008
hugetlb_vm_op_open(struct vm_area_struct * vma)5009 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5010 {
5011 struct resv_map *resv = vma_resv_map(vma);
5012
5013 /*
5014 * HPAGE_RESV_OWNER indicates a private mapping.
5015 * This new VMA should share its siblings reservation map if present.
5016 * The VMA will only ever have a valid reservation map pointer where
5017 * it is being copied for another still existing VMA. As that VMA
5018 * has a reference to the reservation map it cannot disappear until
5019 * after this open call completes. It is therefore safe to take a
5020 * new reference here without additional locking.
5021 */
5022 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5023 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5024 kref_get(&resv->refs);
5025 }
5026
5027 /*
5028 * vma_lock structure for sharable mappings is vma specific.
5029 * Clear old pointer (if copied via vm_area_dup) and allocate
5030 * new structure. Before clearing, make sure vma_lock is not
5031 * for this vma.
5032 */
5033 if (vma->vm_flags & VM_MAYSHARE) {
5034 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5035
5036 if (vma_lock) {
5037 if (vma_lock->vma != vma) {
5038 vma->vm_private_data = NULL;
5039 hugetlb_vma_lock_alloc(vma);
5040 } else
5041 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5042 } else
5043 hugetlb_vma_lock_alloc(vma);
5044 }
5045 }
5046
hugetlb_vm_op_close(struct vm_area_struct * vma)5047 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5048 {
5049 struct hstate *h = hstate_vma(vma);
5050 struct resv_map *resv;
5051 struct hugepage_subpool *spool = subpool_vma(vma);
5052 unsigned long reserve, start, end;
5053 long gbl_reserve;
5054
5055 hugetlb_vma_lock_free(vma);
5056
5057 resv = vma_resv_map(vma);
5058 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5059 return;
5060
5061 start = vma_hugecache_offset(h, vma, vma->vm_start);
5062 end = vma_hugecache_offset(h, vma, vma->vm_end);
5063
5064 reserve = (end - start) - region_count(resv, start, end);
5065 hugetlb_cgroup_uncharge_counter(resv, start, end);
5066 if (reserve) {
5067 /*
5068 * Decrement reserve counts. The global reserve count may be
5069 * adjusted if the subpool has a minimum size.
5070 */
5071 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5072 hugetlb_acct_memory(h, -gbl_reserve);
5073 }
5074
5075 kref_put(&resv->refs, resv_map_release);
5076 }
5077
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)5078 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5079 {
5080 if (addr & ~(huge_page_mask(hstate_vma(vma))))
5081 return -EINVAL;
5082
5083 /*
5084 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5085 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5086 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5087 */
5088 if (addr & ~PUD_MASK) {
5089 /*
5090 * hugetlb_vm_op_split is called right before we attempt to
5091 * split the VMA. We will need to unshare PMDs in the old and
5092 * new VMAs, so let's unshare before we split.
5093 */
5094 unsigned long floor = addr & PUD_MASK;
5095 unsigned long ceil = floor + PUD_SIZE;
5096
5097 if (floor >= vma->vm_start && ceil <= vma->vm_end)
5098 hugetlb_unshare_pmds(vma, floor, ceil);
5099 }
5100
5101 return 0;
5102 }
5103
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)5104 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5105 {
5106 return huge_page_size(hstate_vma(vma));
5107 }
5108
5109 /*
5110 * We cannot handle pagefaults against hugetlb pages at all. They cause
5111 * handle_mm_fault() to try to instantiate regular-sized pages in the
5112 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
5113 * this far.
5114 */
hugetlb_vm_op_fault(struct vm_fault * vmf)5115 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5116 {
5117 BUG();
5118 return 0;
5119 }
5120
5121 /*
5122 * When a new function is introduced to vm_operations_struct and added
5123 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5124 * This is because under System V memory model, mappings created via
5125 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5126 * their original vm_ops are overwritten with shm_vm_ops.
5127 */
5128 const struct vm_operations_struct hugetlb_vm_ops = {
5129 .fault = hugetlb_vm_op_fault,
5130 .open = hugetlb_vm_op_open,
5131 .close = hugetlb_vm_op_close,
5132 .may_split = hugetlb_vm_op_split,
5133 .pagesize = hugetlb_vm_op_pagesize,
5134 };
5135
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)5136 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5137 int writable)
5138 {
5139 pte_t entry;
5140 unsigned int shift = huge_page_shift(hstate_vma(vma));
5141
5142 if (writable) {
5143 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5144 vma->vm_page_prot)));
5145 } else {
5146 entry = huge_pte_wrprotect(mk_huge_pte(page,
5147 vma->vm_page_prot));
5148 }
5149 entry = pte_mkyoung(entry);
5150 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5151
5152 return entry;
5153 }
5154
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)5155 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5156 unsigned long address, pte_t *ptep)
5157 {
5158 pte_t entry;
5159
5160 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5161 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5162 update_mmu_cache(vma, address, ptep);
5163 }
5164
is_hugetlb_entry_migration(pte_t pte)5165 bool is_hugetlb_entry_migration(pte_t pte)
5166 {
5167 swp_entry_t swp;
5168
5169 if (huge_pte_none(pte) || pte_present(pte))
5170 return false;
5171 swp = pte_to_swp_entry(pte);
5172 if (is_migration_entry(swp))
5173 return true;
5174 else
5175 return false;
5176 }
5177
is_hugetlb_entry_hwpoisoned(pte_t pte)5178 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5179 {
5180 swp_entry_t swp;
5181
5182 if (huge_pte_none(pte) || pte_present(pte))
5183 return false;
5184 swp = pte_to_swp_entry(pte);
5185 if (is_hwpoison_entry(swp))
5186 return true;
5187 else
5188 return false;
5189 }
5190
5191 static void
hugetlb_install_folio(struct vm_area_struct * vma,pte_t * ptep,unsigned long addr,struct folio * new_folio,pte_t old,unsigned long sz)5192 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5193 struct folio *new_folio, pte_t old, unsigned long sz)
5194 {
5195 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5196
5197 __folio_mark_uptodate(new_folio);
5198 hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5199 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5200 newpte = huge_pte_mkuffd_wp(newpte);
5201 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5202 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5203 folio_set_hugetlb_migratable(new_folio);
5204 }
5205
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)5206 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5207 struct vm_area_struct *dst_vma,
5208 struct vm_area_struct *src_vma)
5209 {
5210 pte_t *src_pte, *dst_pte, entry;
5211 struct folio *pte_folio;
5212 unsigned long addr;
5213 bool cow = is_cow_mapping(src_vma->vm_flags);
5214 struct hstate *h = hstate_vma(src_vma);
5215 unsigned long sz = huge_page_size(h);
5216 unsigned long npages = pages_per_huge_page(h);
5217 struct mmu_notifier_range range;
5218 unsigned long last_addr_mask;
5219 int ret = 0;
5220
5221 if (cow) {
5222 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5223 src_vma->vm_start,
5224 src_vma->vm_end);
5225 mmu_notifier_invalidate_range_start(&range);
5226 vma_assert_write_locked(src_vma);
5227 raw_write_seqcount_begin(&src->write_protect_seq);
5228 } else {
5229 /*
5230 * For shared mappings the vma lock must be held before
5231 * calling hugetlb_walk() in the src vma. Otherwise, the
5232 * returned ptep could go away if part of a shared pmd and
5233 * another thread calls huge_pmd_unshare.
5234 */
5235 hugetlb_vma_lock_read(src_vma);
5236 }
5237
5238 last_addr_mask = hugetlb_mask_last_page(h);
5239 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5240 spinlock_t *src_ptl, *dst_ptl;
5241 src_pte = hugetlb_walk(src_vma, addr, sz);
5242 if (!src_pte) {
5243 addr |= last_addr_mask;
5244 continue;
5245 }
5246 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5247 if (!dst_pte) {
5248 ret = -ENOMEM;
5249 break;
5250 }
5251
5252 /*
5253 * If the pagetables are shared don't copy or take references.
5254 *
5255 * dst_pte == src_pte is the common case of src/dest sharing.
5256 * However, src could have 'unshared' and dst shares with
5257 * another vma. So page_count of ptep page is checked instead
5258 * to reliably determine whether pte is shared.
5259 */
5260 if (page_count(virt_to_page(dst_pte)) > 1) {
5261 addr |= last_addr_mask;
5262 continue;
5263 }
5264
5265 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5266 src_ptl = huge_pte_lockptr(h, src, src_pte);
5267 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5268 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5269 again:
5270 if (huge_pte_none(entry)) {
5271 /*
5272 * Skip if src entry none.
5273 */
5274 ;
5275 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5276 if (!userfaultfd_wp(dst_vma))
5277 entry = huge_pte_clear_uffd_wp(entry);
5278 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5279 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5280 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5281 bool uffd_wp = pte_swp_uffd_wp(entry);
5282
5283 if (!is_readable_migration_entry(swp_entry) && cow) {
5284 /*
5285 * COW mappings require pages in both
5286 * parent and child to be set to read.
5287 */
5288 swp_entry = make_readable_migration_entry(
5289 swp_offset(swp_entry));
5290 entry = swp_entry_to_pte(swp_entry);
5291 if (userfaultfd_wp(src_vma) && uffd_wp)
5292 entry = pte_swp_mkuffd_wp(entry);
5293 set_huge_pte_at(src, addr, src_pte, entry, sz);
5294 }
5295 if (!userfaultfd_wp(dst_vma))
5296 entry = huge_pte_clear_uffd_wp(entry);
5297 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5298 } else if (unlikely(is_pte_marker(entry))) {
5299 pte_marker marker = copy_pte_marker(
5300 pte_to_swp_entry(entry), dst_vma);
5301
5302 if (marker)
5303 set_huge_pte_at(dst, addr, dst_pte,
5304 make_pte_marker(marker), sz);
5305 } else {
5306 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5307 pte_folio = page_folio(pte_page(entry));
5308 folio_get(pte_folio);
5309
5310 /*
5311 * Failing to duplicate the anon rmap is a rare case
5312 * where we see pinned hugetlb pages while they're
5313 * prone to COW. We need to do the COW earlier during
5314 * fork.
5315 *
5316 * When pre-allocating the page or copying data, we
5317 * need to be without the pgtable locks since we could
5318 * sleep during the process.
5319 */
5320 if (!folio_test_anon(pte_folio)) {
5321 hugetlb_add_file_rmap(pte_folio);
5322 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5323 pte_t src_pte_old = entry;
5324 struct folio *new_folio;
5325
5326 spin_unlock(src_ptl);
5327 spin_unlock(dst_ptl);
5328 /* Do not use reserve as it's private owned */
5329 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5330 if (IS_ERR(new_folio)) {
5331 folio_put(pte_folio);
5332 ret = PTR_ERR(new_folio);
5333 break;
5334 }
5335 ret = copy_user_large_folio(new_folio, pte_folio,
5336 ALIGN_DOWN(addr, sz), dst_vma);
5337 folio_put(pte_folio);
5338 if (ret) {
5339 folio_put(new_folio);
5340 break;
5341 }
5342
5343 /* Install the new hugetlb folio if src pte stable */
5344 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5345 src_ptl = huge_pte_lockptr(h, src, src_pte);
5346 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5347 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5348 if (!pte_same(src_pte_old, entry)) {
5349 restore_reserve_on_error(h, dst_vma, addr,
5350 new_folio);
5351 folio_put(new_folio);
5352 /* huge_ptep of dst_pte won't change as in child */
5353 goto again;
5354 }
5355 hugetlb_install_folio(dst_vma, dst_pte, addr,
5356 new_folio, src_pte_old, sz);
5357 spin_unlock(src_ptl);
5358 spin_unlock(dst_ptl);
5359 continue;
5360 }
5361
5362 if (cow) {
5363 /*
5364 * No need to notify as we are downgrading page
5365 * table protection not changing it to point
5366 * to a new page.
5367 *
5368 * See Documentation/mm/mmu_notifier.rst
5369 */
5370 huge_ptep_set_wrprotect(src, addr, src_pte);
5371 entry = huge_pte_wrprotect(entry);
5372 }
5373
5374 if (!userfaultfd_wp(dst_vma))
5375 entry = huge_pte_clear_uffd_wp(entry);
5376
5377 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5378 hugetlb_count_add(npages, dst);
5379 }
5380 spin_unlock(src_ptl);
5381 spin_unlock(dst_ptl);
5382 }
5383
5384 if (cow) {
5385 raw_write_seqcount_end(&src->write_protect_seq);
5386 mmu_notifier_invalidate_range_end(&range);
5387 } else {
5388 hugetlb_vma_unlock_read(src_vma);
5389 }
5390
5391 return ret;
5392 }
5393
move_huge_pte(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pte_t * src_pte,pte_t * dst_pte,unsigned long sz)5394 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5395 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5396 unsigned long sz)
5397 {
5398 struct hstate *h = hstate_vma(vma);
5399 struct mm_struct *mm = vma->vm_mm;
5400 spinlock_t *src_ptl, *dst_ptl;
5401 pte_t pte;
5402
5403 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5404 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5405
5406 /*
5407 * We don't have to worry about the ordering of src and dst ptlocks
5408 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5409 */
5410 if (src_ptl != dst_ptl)
5411 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5412
5413 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5414 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5415
5416 if (src_ptl != dst_ptl)
5417 spin_unlock(src_ptl);
5418 spin_unlock(dst_ptl);
5419 }
5420
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)5421 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5422 struct vm_area_struct *new_vma,
5423 unsigned long old_addr, unsigned long new_addr,
5424 unsigned long len)
5425 {
5426 struct hstate *h = hstate_vma(vma);
5427 struct address_space *mapping = vma->vm_file->f_mapping;
5428 unsigned long sz = huge_page_size(h);
5429 struct mm_struct *mm = vma->vm_mm;
5430 unsigned long old_end = old_addr + len;
5431 unsigned long last_addr_mask;
5432 pte_t *src_pte, *dst_pte;
5433 struct mmu_notifier_range range;
5434 bool shared_pmd = false;
5435
5436 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5437 old_end);
5438 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5439 /*
5440 * In case of shared PMDs, we should cover the maximum possible
5441 * range.
5442 */
5443 flush_cache_range(vma, range.start, range.end);
5444
5445 mmu_notifier_invalidate_range_start(&range);
5446 last_addr_mask = hugetlb_mask_last_page(h);
5447 /* Prevent race with file truncation */
5448 hugetlb_vma_lock_write(vma);
5449 i_mmap_lock_write(mapping);
5450 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5451 src_pte = hugetlb_walk(vma, old_addr, sz);
5452 if (!src_pte) {
5453 old_addr |= last_addr_mask;
5454 new_addr |= last_addr_mask;
5455 continue;
5456 }
5457 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5458 continue;
5459
5460 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5461 shared_pmd = true;
5462 old_addr |= last_addr_mask;
5463 new_addr |= last_addr_mask;
5464 continue;
5465 }
5466
5467 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5468 if (!dst_pte)
5469 break;
5470
5471 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5472 }
5473
5474 if (shared_pmd)
5475 flush_hugetlb_tlb_range(vma, range.start, range.end);
5476 else
5477 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5478 mmu_notifier_invalidate_range_end(&range);
5479 i_mmap_unlock_write(mapping);
5480 hugetlb_vma_unlock_write(vma);
5481
5482 return len + old_addr - old_end;
5483 }
5484
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5485 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5486 unsigned long start, unsigned long end,
5487 struct page *ref_page, zap_flags_t zap_flags)
5488 {
5489 struct mm_struct *mm = vma->vm_mm;
5490 unsigned long address;
5491 pte_t *ptep;
5492 pte_t pte;
5493 spinlock_t *ptl;
5494 struct page *page;
5495 struct hstate *h = hstate_vma(vma);
5496 unsigned long sz = huge_page_size(h);
5497 bool adjust_reservation = false;
5498 unsigned long last_addr_mask;
5499 bool force_flush = false;
5500
5501 WARN_ON(!is_vm_hugetlb_page(vma));
5502 BUG_ON(start & ~huge_page_mask(h));
5503 BUG_ON(end & ~huge_page_mask(h));
5504
5505 /*
5506 * This is a hugetlb vma, all the pte entries should point
5507 * to huge page.
5508 */
5509 tlb_change_page_size(tlb, sz);
5510 tlb_start_vma(tlb, vma);
5511
5512 last_addr_mask = hugetlb_mask_last_page(h);
5513 address = start;
5514 for (; address < end; address += sz) {
5515 ptep = hugetlb_walk(vma, address, sz);
5516 if (!ptep) {
5517 address |= last_addr_mask;
5518 continue;
5519 }
5520
5521 ptl = huge_pte_lock(h, mm, ptep);
5522 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5523 spin_unlock(ptl);
5524 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5525 force_flush = true;
5526 address |= last_addr_mask;
5527 continue;
5528 }
5529
5530 pte = huge_ptep_get(mm, address, ptep);
5531 if (huge_pte_none(pte)) {
5532 spin_unlock(ptl);
5533 continue;
5534 }
5535
5536 /*
5537 * Migrating hugepage or HWPoisoned hugepage is already
5538 * unmapped and its refcount is dropped, so just clear pte here.
5539 */
5540 if (unlikely(!pte_present(pte))) {
5541 /*
5542 * If the pte was wr-protected by uffd-wp in any of the
5543 * swap forms, meanwhile the caller does not want to
5544 * drop the uffd-wp bit in this zap, then replace the
5545 * pte with a marker.
5546 */
5547 if (pte_swp_uffd_wp_any(pte) &&
5548 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5549 set_huge_pte_at(mm, address, ptep,
5550 make_pte_marker(PTE_MARKER_UFFD_WP),
5551 sz);
5552 else
5553 huge_pte_clear(mm, address, ptep, sz);
5554 spin_unlock(ptl);
5555 continue;
5556 }
5557
5558 page = pte_page(pte);
5559 /*
5560 * If a reference page is supplied, it is because a specific
5561 * page is being unmapped, not a range. Ensure the page we
5562 * are about to unmap is the actual page of interest.
5563 */
5564 if (ref_page) {
5565 if (page != ref_page) {
5566 spin_unlock(ptl);
5567 continue;
5568 }
5569 /*
5570 * Mark the VMA as having unmapped its page so that
5571 * future faults in this VMA will fail rather than
5572 * looking like data was lost
5573 */
5574 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5575 }
5576
5577 pte = huge_ptep_get_and_clear(mm, address, ptep);
5578 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5579 if (huge_pte_dirty(pte))
5580 set_page_dirty(page);
5581 /* Leave a uffd-wp pte marker if needed */
5582 if (huge_pte_uffd_wp(pte) &&
5583 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5584 set_huge_pte_at(mm, address, ptep,
5585 make_pte_marker(PTE_MARKER_UFFD_WP),
5586 sz);
5587 hugetlb_count_sub(pages_per_huge_page(h), mm);
5588 hugetlb_remove_rmap(page_folio(page));
5589
5590 /*
5591 * Restore the reservation for anonymous page, otherwise the
5592 * backing page could be stolen by someone.
5593 * If there we are freeing a surplus, do not set the restore
5594 * reservation bit.
5595 */
5596 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5597 folio_test_anon(page_folio(page))) {
5598 folio_set_hugetlb_restore_reserve(page_folio(page));
5599 /* Reservation to be adjusted after the spin lock */
5600 adjust_reservation = true;
5601 }
5602
5603 spin_unlock(ptl);
5604
5605 /*
5606 * Adjust the reservation for the region that will have the
5607 * reserve restored. Keep in mind that vma_needs_reservation() changes
5608 * resv->adds_in_progress if it succeeds. If this is not done,
5609 * do_exit() will not see it, and will keep the reservation
5610 * forever.
5611 */
5612 if (adjust_reservation) {
5613 int rc = vma_needs_reservation(h, vma, address);
5614
5615 if (rc < 0)
5616 /* Pressumably allocate_file_region_entries failed
5617 * to allocate a file_region struct. Clear
5618 * hugetlb_restore_reserve so that global reserve
5619 * count will not be incremented by free_huge_folio.
5620 * Act as if we consumed the reservation.
5621 */
5622 folio_clear_hugetlb_restore_reserve(page_folio(page));
5623 else if (rc)
5624 vma_add_reservation(h, vma, address);
5625 }
5626
5627 tlb_remove_page_size(tlb, page, huge_page_size(h));
5628 /*
5629 * Bail out after unmapping reference page if supplied
5630 */
5631 if (ref_page)
5632 break;
5633 }
5634 tlb_end_vma(tlb, vma);
5635
5636 /*
5637 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5638 * could defer the flush until now, since by holding i_mmap_rwsem we
5639 * guaranteed that the last refernece would not be dropped. But we must
5640 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5641 * dropped and the last reference to the shared PMDs page might be
5642 * dropped as well.
5643 *
5644 * In theory we could defer the freeing of the PMD pages as well, but
5645 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5646 * detect sharing, so we cannot defer the release of the page either.
5647 * Instead, do flush now.
5648 */
5649 if (force_flush)
5650 tlb_flush_mmu_tlbonly(tlb);
5651 }
5652
__hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5653 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5654 unsigned long *start, unsigned long *end)
5655 {
5656 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5657 return;
5658
5659 adjust_range_if_pmd_sharing_possible(vma, start, end);
5660 hugetlb_vma_lock_write(vma);
5661 if (vma->vm_file)
5662 i_mmap_lock_write(vma->vm_file->f_mapping);
5663 }
5664
__hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)5665 void __hugetlb_zap_end(struct vm_area_struct *vma,
5666 struct zap_details *details)
5667 {
5668 zap_flags_t zap_flags = details ? details->zap_flags : 0;
5669
5670 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5671 return;
5672
5673 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5674 /*
5675 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5676 * When the vma_lock is freed, this makes the vma ineligible
5677 * for pmd sharing. And, i_mmap_rwsem is required to set up
5678 * pmd sharing. This is important as page tables for this
5679 * unmapped range will be asynchrously deleted. If the page
5680 * tables are shared, there will be issues when accessed by
5681 * someone else.
5682 */
5683 __hugetlb_vma_unlock_write_free(vma);
5684 } else {
5685 hugetlb_vma_unlock_write(vma);
5686 }
5687
5688 if (vma->vm_file)
5689 i_mmap_unlock_write(vma->vm_file->f_mapping);
5690 }
5691
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5692 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5693 unsigned long end, struct page *ref_page,
5694 zap_flags_t zap_flags)
5695 {
5696 struct mmu_notifier_range range;
5697 struct mmu_gather tlb;
5698
5699 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5700 start, end);
5701 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5702 mmu_notifier_invalidate_range_start(&range);
5703 tlb_gather_mmu(&tlb, vma->vm_mm);
5704
5705 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5706
5707 mmu_notifier_invalidate_range_end(&range);
5708 tlb_finish_mmu(&tlb);
5709 }
5710
5711 /*
5712 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5713 * mapping it owns the reserve page for. The intention is to unmap the page
5714 * from other VMAs and let the children be SIGKILLed if they are faulting the
5715 * same region.
5716 */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)5717 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5718 struct page *page, unsigned long address)
5719 {
5720 struct hstate *h = hstate_vma(vma);
5721 struct vm_area_struct *iter_vma;
5722 struct address_space *mapping;
5723 pgoff_t pgoff;
5724
5725 /*
5726 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5727 * from page cache lookup which is in HPAGE_SIZE units.
5728 */
5729 address = address & huge_page_mask(h);
5730 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5731 vma->vm_pgoff;
5732 mapping = vma->vm_file->f_mapping;
5733
5734 /*
5735 * Take the mapping lock for the duration of the table walk. As
5736 * this mapping should be shared between all the VMAs,
5737 * __unmap_hugepage_range() is called as the lock is already held
5738 */
5739 i_mmap_lock_write(mapping);
5740 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5741 /* Do not unmap the current VMA */
5742 if (iter_vma == vma)
5743 continue;
5744
5745 /*
5746 * Shared VMAs have their own reserves and do not affect
5747 * MAP_PRIVATE accounting but it is possible that a shared
5748 * VMA is using the same page so check and skip such VMAs.
5749 */
5750 if (iter_vma->vm_flags & VM_MAYSHARE)
5751 continue;
5752
5753 /*
5754 * Unmap the page from other VMAs without their own reserves.
5755 * They get marked to be SIGKILLed if they fault in these
5756 * areas. This is because a future no-page fault on this VMA
5757 * could insert a zeroed page instead of the data existing
5758 * from the time of fork. This would look like data corruption
5759 */
5760 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5761 unmap_hugepage_range(iter_vma, address,
5762 address + huge_page_size(h), page, 0);
5763 }
5764 i_mmap_unlock_write(mapping);
5765 }
5766
5767 /*
5768 * hugetlb_wp() should be called with page lock of the original hugepage held.
5769 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5770 * cannot race with other handlers or page migration.
5771 * Keep the pte_same checks anyway to make transition from the mutex easier.
5772 */
hugetlb_wp(struct folio * pagecache_folio,struct vm_fault * vmf)5773 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
5774 struct vm_fault *vmf)
5775 {
5776 struct vm_area_struct *vma = vmf->vma;
5777 struct mm_struct *mm = vma->vm_mm;
5778 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5779 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
5780 struct hstate *h = hstate_vma(vma);
5781 struct folio *old_folio;
5782 struct folio *new_folio;
5783 int outside_reserve = 0;
5784 vm_fault_t ret = 0;
5785 struct mmu_notifier_range range;
5786
5787 /*
5788 * Never handle CoW for uffd-wp protected pages. It should be only
5789 * handled when the uffd-wp protection is removed.
5790 *
5791 * Note that only the CoW optimization path (in hugetlb_no_page())
5792 * can trigger this, because hugetlb_fault() will always resolve
5793 * uffd-wp bit first.
5794 */
5795 if (!unshare && huge_pte_uffd_wp(pte))
5796 return 0;
5797
5798 /*
5799 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5800 * PTE mapped R/O such as maybe_mkwrite() would do.
5801 */
5802 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5803 return VM_FAULT_SIGSEGV;
5804
5805 /* Let's take out MAP_SHARED mappings first. */
5806 if (vma->vm_flags & VM_MAYSHARE) {
5807 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5808 return 0;
5809 }
5810
5811 old_folio = page_folio(pte_page(pte));
5812
5813 delayacct_wpcopy_start();
5814
5815 retry_avoidcopy:
5816 /*
5817 * If no-one else is actually using this page, we're the exclusive
5818 * owner and can reuse this page.
5819 *
5820 * Note that we don't rely on the (safer) folio refcount here, because
5821 * copying the hugetlb folio when there are unexpected (temporary)
5822 * folio references could harm simple fork()+exit() users when
5823 * we run out of free hugetlb folios: we would have to kill processes
5824 * in scenarios that used to work. As a side effect, there can still
5825 * be leaks between processes, for example, with FOLL_GET users.
5826 */
5827 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5828 if (!PageAnonExclusive(&old_folio->page)) {
5829 folio_move_anon_rmap(old_folio, vma);
5830 SetPageAnonExclusive(&old_folio->page);
5831 }
5832 if (likely(!unshare))
5833 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5834
5835 delayacct_wpcopy_end();
5836 return 0;
5837 }
5838 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5839 PageAnonExclusive(&old_folio->page), &old_folio->page);
5840
5841 /*
5842 * If the process that created a MAP_PRIVATE mapping is about to
5843 * perform a COW due to a shared page count, attempt to satisfy
5844 * the allocation without using the existing reserves. The pagecache
5845 * page is used to determine if the reserve at this address was
5846 * consumed or not. If reserves were used, a partial faulted mapping
5847 * at the time of fork() could consume its reserves on COW instead
5848 * of the full address range.
5849 */
5850 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5851 old_folio != pagecache_folio)
5852 outside_reserve = 1;
5853
5854 folio_get(old_folio);
5855
5856 /*
5857 * Drop page table lock as buddy allocator may be called. It will
5858 * be acquired again before returning to the caller, as expected.
5859 */
5860 spin_unlock(vmf->ptl);
5861 new_folio = alloc_hugetlb_folio(vma, vmf->address, outside_reserve);
5862
5863 if (IS_ERR(new_folio)) {
5864 /*
5865 * If a process owning a MAP_PRIVATE mapping fails to COW,
5866 * it is due to references held by a child and an insufficient
5867 * huge page pool. To guarantee the original mappers
5868 * reliability, unmap the page from child processes. The child
5869 * may get SIGKILLed if it later faults.
5870 */
5871 if (outside_reserve) {
5872 struct address_space *mapping = vma->vm_file->f_mapping;
5873 pgoff_t idx;
5874 u32 hash;
5875
5876 folio_put(old_folio);
5877 /*
5878 * Drop hugetlb_fault_mutex and vma_lock before
5879 * unmapping. unmapping needs to hold vma_lock
5880 * in write mode. Dropping vma_lock in read mode
5881 * here is OK as COW mappings do not interact with
5882 * PMD sharing.
5883 *
5884 * Reacquire both after unmap operation.
5885 */
5886 idx = vma_hugecache_offset(h, vma, vmf->address);
5887 hash = hugetlb_fault_mutex_hash(mapping, idx);
5888 hugetlb_vma_unlock_read(vma);
5889 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5890
5891 unmap_ref_private(mm, vma, &old_folio->page,
5892 vmf->address);
5893
5894 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5895 hugetlb_vma_lock_read(vma);
5896 spin_lock(vmf->ptl);
5897 vmf->pte = hugetlb_walk(vma, vmf->address,
5898 huge_page_size(h));
5899 if (likely(vmf->pte &&
5900 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
5901 goto retry_avoidcopy;
5902 /*
5903 * race occurs while re-acquiring page table
5904 * lock, and our job is done.
5905 */
5906 delayacct_wpcopy_end();
5907 return 0;
5908 }
5909
5910 ret = vmf_error(PTR_ERR(new_folio));
5911 goto out_release_old;
5912 }
5913
5914 /*
5915 * When the original hugepage is shared one, it does not have
5916 * anon_vma prepared.
5917 */
5918 ret = __vmf_anon_prepare(vmf);
5919 if (unlikely(ret))
5920 goto out_release_all;
5921
5922 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
5923 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
5924 goto out_release_all;
5925 }
5926 __folio_mark_uptodate(new_folio);
5927
5928 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
5929 vmf->address + huge_page_size(h));
5930 mmu_notifier_invalidate_range_start(&range);
5931
5932 /*
5933 * Retake the page table lock to check for racing updates
5934 * before the page tables are altered
5935 */
5936 spin_lock(vmf->ptl);
5937 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
5938 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
5939 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5940
5941 /* Break COW or unshare */
5942 huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
5943 hugetlb_remove_rmap(old_folio);
5944 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
5945 if (huge_pte_uffd_wp(pte))
5946 newpte = huge_pte_mkuffd_wp(newpte);
5947 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
5948 huge_page_size(h));
5949 folio_set_hugetlb_migratable(new_folio);
5950 /* Make the old page be freed below */
5951 new_folio = old_folio;
5952 }
5953 spin_unlock(vmf->ptl);
5954 mmu_notifier_invalidate_range_end(&range);
5955 out_release_all:
5956 /*
5957 * No restore in case of successful pagetable update (Break COW or
5958 * unshare)
5959 */
5960 if (new_folio != old_folio)
5961 restore_reserve_on_error(h, vma, vmf->address, new_folio);
5962 folio_put(new_folio);
5963 out_release_old:
5964 folio_put(old_folio);
5965
5966 spin_lock(vmf->ptl); /* Caller expects lock to be held */
5967
5968 delayacct_wpcopy_end();
5969 return ret;
5970 }
5971
5972 /*
5973 * Return whether there is a pagecache page to back given address within VMA.
5974 */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)5975 bool hugetlbfs_pagecache_present(struct hstate *h,
5976 struct vm_area_struct *vma, unsigned long address)
5977 {
5978 struct address_space *mapping = vma->vm_file->f_mapping;
5979 pgoff_t idx = linear_page_index(vma, address);
5980 struct folio *folio;
5981
5982 folio = filemap_get_folio(mapping, idx);
5983 if (IS_ERR(folio))
5984 return false;
5985 folio_put(folio);
5986 return true;
5987 }
5988
hugetlb_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t idx)5989 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5990 pgoff_t idx)
5991 {
5992 struct inode *inode = mapping->host;
5993 struct hstate *h = hstate_inode(inode);
5994 int err;
5995
5996 idx <<= huge_page_order(h);
5997 __folio_set_locked(folio);
5998 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5999
6000 if (unlikely(err)) {
6001 __folio_clear_locked(folio);
6002 return err;
6003 }
6004 folio_clear_hugetlb_restore_reserve(folio);
6005
6006 /*
6007 * mark folio dirty so that it will not be removed from cache/file
6008 * by non-hugetlbfs specific code paths.
6009 */
6010 folio_mark_dirty(folio);
6011
6012 spin_lock(&inode->i_lock);
6013 inode->i_blocks += blocks_per_huge_page(h);
6014 spin_unlock(&inode->i_lock);
6015 return 0;
6016 }
6017
hugetlb_handle_userfault(struct vm_fault * vmf,struct address_space * mapping,unsigned long reason)6018 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6019 struct address_space *mapping,
6020 unsigned long reason)
6021 {
6022 u32 hash;
6023
6024 /*
6025 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6026 * userfault. Also mmap_lock could be dropped due to handling
6027 * userfault, any vma operation should be careful from here.
6028 */
6029 hugetlb_vma_unlock_read(vmf->vma);
6030 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6031 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6032 return handle_userfault(vmf, reason);
6033 }
6034
6035 /*
6036 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
6037 * false if pte changed or is changing.
6038 */
hugetlb_pte_stable(struct hstate * h,struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t old_pte)6039 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6040 pte_t *ptep, pte_t old_pte)
6041 {
6042 spinlock_t *ptl;
6043 bool same;
6044
6045 ptl = huge_pte_lock(h, mm, ptep);
6046 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6047 spin_unlock(ptl);
6048
6049 return same;
6050 }
6051
hugetlb_no_page(struct address_space * mapping,struct vm_fault * vmf)6052 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6053 struct vm_fault *vmf)
6054 {
6055 struct vm_area_struct *vma = vmf->vma;
6056 struct mm_struct *mm = vma->vm_mm;
6057 struct hstate *h = hstate_vma(vma);
6058 vm_fault_t ret = VM_FAULT_SIGBUS;
6059 int anon_rmap = 0;
6060 unsigned long size;
6061 struct folio *folio;
6062 pte_t new_pte;
6063 bool new_folio, new_pagecache_folio = false;
6064 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6065
6066 /*
6067 * Currently, we are forced to kill the process in the event the
6068 * original mapper has unmapped pages from the child due to a failed
6069 * COW/unsharing. Warn that such a situation has occurred as it may not
6070 * be obvious.
6071 */
6072 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6073 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6074 current->pid);
6075 goto out;
6076 }
6077
6078 /*
6079 * Use page lock to guard against racing truncation
6080 * before we get page_table_lock.
6081 */
6082 new_folio = false;
6083 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6084 if (IS_ERR(folio)) {
6085 size = i_size_read(mapping->host) >> huge_page_shift(h);
6086 if (vmf->pgoff >= size)
6087 goto out;
6088 /* Check for page in userfault range */
6089 if (userfaultfd_missing(vma)) {
6090 /*
6091 * Since hugetlb_no_page() was examining pte
6092 * without pgtable lock, we need to re-test under
6093 * lock because the pte may not be stable and could
6094 * have changed from under us. Try to detect
6095 * either changed or during-changing ptes and retry
6096 * properly when needed.
6097 *
6098 * Note that userfaultfd is actually fine with
6099 * false positives (e.g. caused by pte changed),
6100 * but not wrong logical events (e.g. caused by
6101 * reading a pte during changing). The latter can
6102 * confuse the userspace, so the strictness is very
6103 * much preferred. E.g., MISSING event should
6104 * never happen on the page after UFFDIO_COPY has
6105 * correctly installed the page and returned.
6106 */
6107 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6108 ret = 0;
6109 goto out;
6110 }
6111
6112 return hugetlb_handle_userfault(vmf, mapping,
6113 VM_UFFD_MISSING);
6114 }
6115
6116 if (!(vma->vm_flags & VM_MAYSHARE)) {
6117 ret = __vmf_anon_prepare(vmf);
6118 if (unlikely(ret))
6119 goto out;
6120 }
6121
6122 folio = alloc_hugetlb_folio(vma, vmf->address, 0);
6123 if (IS_ERR(folio)) {
6124 /*
6125 * Returning error will result in faulting task being
6126 * sent SIGBUS. The hugetlb fault mutex prevents two
6127 * tasks from racing to fault in the same page which
6128 * could result in false unable to allocate errors.
6129 * Page migration does not take the fault mutex, but
6130 * does a clear then write of pte's under page table
6131 * lock. Page fault code could race with migration,
6132 * notice the clear pte and try to allocate a page
6133 * here. Before returning error, get ptl and make
6134 * sure there really is no pte entry.
6135 */
6136 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6137 ret = vmf_error(PTR_ERR(folio));
6138 else
6139 ret = 0;
6140 goto out;
6141 }
6142 folio_zero_user(folio, vmf->real_address);
6143 __folio_mark_uptodate(folio);
6144 new_folio = true;
6145
6146 if (vma->vm_flags & VM_MAYSHARE) {
6147 int err = hugetlb_add_to_page_cache(folio, mapping,
6148 vmf->pgoff);
6149 if (err) {
6150 /*
6151 * err can't be -EEXIST which implies someone
6152 * else consumed the reservation since hugetlb
6153 * fault mutex is held when add a hugetlb page
6154 * to the page cache. So it's safe to call
6155 * restore_reserve_on_error() here.
6156 */
6157 restore_reserve_on_error(h, vma, vmf->address,
6158 folio);
6159 folio_put(folio);
6160 ret = VM_FAULT_SIGBUS;
6161 goto out;
6162 }
6163 new_pagecache_folio = true;
6164 } else {
6165 folio_lock(folio);
6166 anon_rmap = 1;
6167 }
6168 } else {
6169 /*
6170 * If memory error occurs between mmap() and fault, some process
6171 * don't have hwpoisoned swap entry for errored virtual address.
6172 * So we need to block hugepage fault by PG_hwpoison bit check.
6173 */
6174 if (unlikely(folio_test_hwpoison(folio))) {
6175 ret = VM_FAULT_HWPOISON_LARGE |
6176 VM_FAULT_SET_HINDEX(hstate_index(h));
6177 goto backout_unlocked;
6178 }
6179
6180 /* Check for page in userfault range. */
6181 if (userfaultfd_minor(vma)) {
6182 folio_unlock(folio);
6183 folio_put(folio);
6184 /* See comment in userfaultfd_missing() block above */
6185 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6186 ret = 0;
6187 goto out;
6188 }
6189 return hugetlb_handle_userfault(vmf, mapping,
6190 VM_UFFD_MINOR);
6191 }
6192 }
6193
6194 /*
6195 * If we are going to COW a private mapping later, we examine the
6196 * pending reservations for this page now. This will ensure that
6197 * any allocations necessary to record that reservation occur outside
6198 * the spinlock.
6199 */
6200 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6201 if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6202 ret = VM_FAULT_OOM;
6203 goto backout_unlocked;
6204 }
6205 /* Just decrements count, does not deallocate */
6206 vma_end_reservation(h, vma, vmf->address);
6207 }
6208
6209 vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6210 ret = 0;
6211 /* If pte changed from under us, retry */
6212 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6213 goto backout;
6214
6215 if (anon_rmap)
6216 hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6217 else
6218 hugetlb_add_file_rmap(folio);
6219 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6220 && (vma->vm_flags & VM_SHARED)));
6221 /*
6222 * If this pte was previously wr-protected, keep it wr-protected even
6223 * if populated.
6224 */
6225 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6226 new_pte = huge_pte_mkuffd_wp(new_pte);
6227 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6228
6229 hugetlb_count_add(pages_per_huge_page(h), mm);
6230 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6231 /* Optimization, do the COW without a second fault */
6232 ret = hugetlb_wp(folio, vmf);
6233 }
6234
6235 spin_unlock(vmf->ptl);
6236
6237 /*
6238 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6239 * found in the pagecache may not have hugetlb_migratable if they have
6240 * been isolated for migration.
6241 */
6242 if (new_folio)
6243 folio_set_hugetlb_migratable(folio);
6244
6245 folio_unlock(folio);
6246 out:
6247 hugetlb_vma_unlock_read(vma);
6248
6249 /*
6250 * We must check to release the per-VMA lock. __vmf_anon_prepare() is
6251 * the only way ret can be set to VM_FAULT_RETRY.
6252 */
6253 if (unlikely(ret & VM_FAULT_RETRY))
6254 vma_end_read(vma);
6255
6256 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6257 return ret;
6258
6259 backout:
6260 spin_unlock(vmf->ptl);
6261 backout_unlocked:
6262 if (new_folio && !new_pagecache_folio)
6263 restore_reserve_on_error(h, vma, vmf->address, folio);
6264
6265 folio_unlock(folio);
6266 folio_put(folio);
6267 goto out;
6268 }
6269
6270 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6271 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6272 {
6273 unsigned long key[2];
6274 u32 hash;
6275
6276 key[0] = (unsigned long) mapping;
6277 key[1] = idx;
6278
6279 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6280
6281 return hash & (num_fault_mutexes - 1);
6282 }
6283 #else
6284 /*
6285 * For uniprocessor systems we always use a single mutex, so just
6286 * return 0 and avoid the hashing overhead.
6287 */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6288 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6289 {
6290 return 0;
6291 }
6292 #endif
6293
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)6294 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6295 unsigned long address, unsigned int flags)
6296 {
6297 vm_fault_t ret;
6298 u32 hash;
6299 struct folio *folio = NULL;
6300 struct folio *pagecache_folio = NULL;
6301 struct hstate *h = hstate_vma(vma);
6302 struct address_space *mapping;
6303 int need_wait_lock = 0;
6304 struct vm_fault vmf = {
6305 .vma = vma,
6306 .address = address & huge_page_mask(h),
6307 .real_address = address,
6308 .flags = flags,
6309 .pgoff = vma_hugecache_offset(h, vma,
6310 address & huge_page_mask(h)),
6311 /* TODO: Track hugetlb faults using vm_fault */
6312
6313 /*
6314 * Some fields may not be initialized, be careful as it may
6315 * be hard to debug if called functions make assumptions
6316 */
6317 };
6318
6319 /*
6320 * Serialize hugepage allocation and instantiation, so that we don't
6321 * get spurious allocation failures if two CPUs race to instantiate
6322 * the same page in the page cache.
6323 */
6324 mapping = vma->vm_file->f_mapping;
6325 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6326 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6327
6328 /*
6329 * Acquire vma lock before calling huge_pte_alloc and hold
6330 * until finished with vmf.pte. This prevents huge_pmd_unshare from
6331 * being called elsewhere and making the vmf.pte no longer valid.
6332 */
6333 hugetlb_vma_lock_read(vma);
6334 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6335 if (!vmf.pte) {
6336 hugetlb_vma_unlock_read(vma);
6337 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6338 return VM_FAULT_OOM;
6339 }
6340
6341 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6342 if (huge_pte_none_mostly(vmf.orig_pte)) {
6343 if (is_pte_marker(vmf.orig_pte)) {
6344 pte_marker marker =
6345 pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6346
6347 if (marker & PTE_MARKER_POISONED) {
6348 ret = VM_FAULT_HWPOISON_LARGE |
6349 VM_FAULT_SET_HINDEX(hstate_index(h));
6350 goto out_mutex;
6351 }
6352 }
6353
6354 /*
6355 * Other PTE markers should be handled the same way as none PTE.
6356 *
6357 * hugetlb_no_page will drop vma lock and hugetlb fault
6358 * mutex internally, which make us return immediately.
6359 */
6360 return hugetlb_no_page(mapping, &vmf);
6361 }
6362
6363 ret = 0;
6364
6365 /*
6366 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6367 * point, so this check prevents the kernel from going below assuming
6368 * that we have an active hugepage in pagecache. This goto expects
6369 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6370 * check will properly handle it.
6371 */
6372 if (!pte_present(vmf.orig_pte)) {
6373 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6374 /*
6375 * Release the hugetlb fault lock now, but retain
6376 * the vma lock, because it is needed to guard the
6377 * huge_pte_lockptr() later in
6378 * migration_entry_wait_huge(). The vma lock will
6379 * be released there.
6380 */
6381 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6382 migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6383 return 0;
6384 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6385 ret = VM_FAULT_HWPOISON_LARGE |
6386 VM_FAULT_SET_HINDEX(hstate_index(h));
6387 goto out_mutex;
6388 }
6389
6390 /*
6391 * If we are going to COW/unshare the mapping later, we examine the
6392 * pending reservations for this page now. This will ensure that any
6393 * allocations necessary to record that reservation occur outside the
6394 * spinlock. Also lookup the pagecache page now as it is used to
6395 * determine if a reservation has been consumed.
6396 */
6397 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6398 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6399 if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6400 ret = VM_FAULT_OOM;
6401 goto out_mutex;
6402 }
6403 /* Just decrements count, does not deallocate */
6404 vma_end_reservation(h, vma, vmf.address);
6405
6406 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6407 vmf.pgoff);
6408 if (IS_ERR(pagecache_folio))
6409 pagecache_folio = NULL;
6410 }
6411
6412 vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6413
6414 /* Check for a racing update before calling hugetlb_wp() */
6415 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6416 goto out_ptl;
6417
6418 /* Handle userfault-wp first, before trying to lock more pages */
6419 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6420 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6421 if (!userfaultfd_wp_async(vma)) {
6422 spin_unlock(vmf.ptl);
6423 if (pagecache_folio) {
6424 folio_unlock(pagecache_folio);
6425 folio_put(pagecache_folio);
6426 }
6427 hugetlb_vma_unlock_read(vma);
6428 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6429 return handle_userfault(&vmf, VM_UFFD_WP);
6430 }
6431
6432 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6433 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6434 huge_page_size(hstate_vma(vma)));
6435 /* Fallthrough to CoW */
6436 }
6437
6438 /*
6439 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6440 * pagecache_folio, so here we need take the former one
6441 * when folio != pagecache_folio or !pagecache_folio.
6442 */
6443 folio = page_folio(pte_page(vmf.orig_pte));
6444 if (folio != pagecache_folio)
6445 if (!folio_trylock(folio)) {
6446 need_wait_lock = 1;
6447 goto out_ptl;
6448 }
6449
6450 folio_get(folio);
6451
6452 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6453 if (!huge_pte_write(vmf.orig_pte)) {
6454 ret = hugetlb_wp(pagecache_folio, &vmf);
6455 goto out_put_page;
6456 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6457 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6458 }
6459 }
6460 vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6461 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6462 flags & FAULT_FLAG_WRITE))
6463 update_mmu_cache(vma, vmf.address, vmf.pte);
6464 out_put_page:
6465 if (folio != pagecache_folio)
6466 folio_unlock(folio);
6467 folio_put(folio);
6468 out_ptl:
6469 spin_unlock(vmf.ptl);
6470
6471 if (pagecache_folio) {
6472 folio_unlock(pagecache_folio);
6473 folio_put(pagecache_folio);
6474 }
6475 out_mutex:
6476 hugetlb_vma_unlock_read(vma);
6477
6478 /*
6479 * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6480 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6481 */
6482 if (unlikely(ret & VM_FAULT_RETRY))
6483 vma_end_read(vma);
6484
6485 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6486 /*
6487 * Generally it's safe to hold refcount during waiting page lock. But
6488 * here we just wait to defer the next page fault to avoid busy loop and
6489 * the page is not used after unlocked before returning from the current
6490 * page fault. So we are safe from accessing freed page, even if we wait
6491 * here without taking refcount.
6492 */
6493 if (need_wait_lock)
6494 folio_wait_locked(folio);
6495 return ret;
6496 }
6497
6498 #ifdef CONFIG_USERFAULTFD
6499 /*
6500 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6501 */
alloc_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6502 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6503 struct vm_area_struct *vma, unsigned long address)
6504 {
6505 struct mempolicy *mpol;
6506 nodemask_t *nodemask;
6507 struct folio *folio;
6508 gfp_t gfp_mask;
6509 int node;
6510
6511 gfp_mask = htlb_alloc_mask(h);
6512 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6513 /*
6514 * This is used to allocate a temporary hugetlb to hold the copied
6515 * content, which will then be copied again to the final hugetlb
6516 * consuming a reservation. Set the alloc_fallback to false to indicate
6517 * that breaking the per-node hugetlb pool is not allowed in this case.
6518 */
6519 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6520 mpol_cond_put(mpol);
6521
6522 return folio;
6523 }
6524
6525 /*
6526 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6527 * with modifications for hugetlb pages.
6528 */
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)6529 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6530 struct vm_area_struct *dst_vma,
6531 unsigned long dst_addr,
6532 unsigned long src_addr,
6533 uffd_flags_t flags,
6534 struct folio **foliop)
6535 {
6536 struct mm_struct *dst_mm = dst_vma->vm_mm;
6537 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6538 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6539 struct hstate *h = hstate_vma(dst_vma);
6540 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6541 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6542 unsigned long size = huge_page_size(h);
6543 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6544 pte_t _dst_pte;
6545 spinlock_t *ptl;
6546 int ret = -ENOMEM;
6547 struct folio *folio;
6548 int writable;
6549 bool folio_in_pagecache = false;
6550
6551 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6552 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6553
6554 /* Don't overwrite any existing PTEs (even markers) */
6555 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6556 spin_unlock(ptl);
6557 return -EEXIST;
6558 }
6559
6560 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6561 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6562
6563 /* No need to invalidate - it was non-present before */
6564 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6565
6566 spin_unlock(ptl);
6567 return 0;
6568 }
6569
6570 if (is_continue) {
6571 ret = -EFAULT;
6572 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6573 if (IS_ERR(folio))
6574 goto out;
6575 folio_in_pagecache = true;
6576 } else if (!*foliop) {
6577 /* If a folio already exists, then it's UFFDIO_COPY for
6578 * a non-missing case. Return -EEXIST.
6579 */
6580 if (vm_shared &&
6581 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6582 ret = -EEXIST;
6583 goto out;
6584 }
6585
6586 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6587 if (IS_ERR(folio)) {
6588 ret = -ENOMEM;
6589 goto out;
6590 }
6591
6592 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6593 false);
6594
6595 /* fallback to copy_from_user outside mmap_lock */
6596 if (unlikely(ret)) {
6597 ret = -ENOENT;
6598 /* Free the allocated folio which may have
6599 * consumed a reservation.
6600 */
6601 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6602 folio_put(folio);
6603
6604 /* Allocate a temporary folio to hold the copied
6605 * contents.
6606 */
6607 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6608 if (!folio) {
6609 ret = -ENOMEM;
6610 goto out;
6611 }
6612 *foliop = folio;
6613 /* Set the outparam foliop and return to the caller to
6614 * copy the contents outside the lock. Don't free the
6615 * folio.
6616 */
6617 goto out;
6618 }
6619 } else {
6620 if (vm_shared &&
6621 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6622 folio_put(*foliop);
6623 ret = -EEXIST;
6624 *foliop = NULL;
6625 goto out;
6626 }
6627
6628 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6629 if (IS_ERR(folio)) {
6630 folio_put(*foliop);
6631 ret = -ENOMEM;
6632 *foliop = NULL;
6633 goto out;
6634 }
6635 ret = copy_user_large_folio(folio, *foliop,
6636 ALIGN_DOWN(dst_addr, size), dst_vma);
6637 folio_put(*foliop);
6638 *foliop = NULL;
6639 if (ret) {
6640 folio_put(folio);
6641 goto out;
6642 }
6643 }
6644
6645 /*
6646 * If we just allocated a new page, we need a memory barrier to ensure
6647 * that preceding stores to the page become visible before the
6648 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6649 * is what we need.
6650 *
6651 * In the case where we have not allocated a new page (is_continue),
6652 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6653 * an earlier smp_wmb() to ensure that prior stores will be visible
6654 * before the set_pte_at() write.
6655 */
6656 if (!is_continue)
6657 __folio_mark_uptodate(folio);
6658 else
6659 WARN_ON_ONCE(!folio_test_uptodate(folio));
6660
6661 /* Add shared, newly allocated pages to the page cache. */
6662 if (vm_shared && !is_continue) {
6663 ret = -EFAULT;
6664 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
6665 goto out_release_nounlock;
6666
6667 /*
6668 * Serialization between remove_inode_hugepages() and
6669 * hugetlb_add_to_page_cache() below happens through the
6670 * hugetlb_fault_mutex_table that here must be hold by
6671 * the caller.
6672 */
6673 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6674 if (ret)
6675 goto out_release_nounlock;
6676 folio_in_pagecache = true;
6677 }
6678
6679 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6680
6681 ret = -EIO;
6682 if (folio_test_hwpoison(folio))
6683 goto out_release_unlock;
6684
6685 /*
6686 * We allow to overwrite a pte marker: consider when both MISSING|WP
6687 * registered, we firstly wr-protect a none pte which has no page cache
6688 * page backing it, then access the page.
6689 */
6690 ret = -EEXIST;
6691 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
6692 goto out_release_unlock;
6693
6694 if (folio_in_pagecache)
6695 hugetlb_add_file_rmap(folio);
6696 else
6697 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6698
6699 /*
6700 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6701 * with wp flag set, don't set pte write bit.
6702 */
6703 if (wp_enabled || (is_continue && !vm_shared))
6704 writable = 0;
6705 else
6706 writable = dst_vma->vm_flags & VM_WRITE;
6707
6708 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6709 /*
6710 * Always mark UFFDIO_COPY page dirty; note that this may not be
6711 * extremely important for hugetlbfs for now since swapping is not
6712 * supported, but we should still be clear in that this page cannot be
6713 * thrown away at will, even if write bit not set.
6714 */
6715 _dst_pte = huge_pte_mkdirty(_dst_pte);
6716 _dst_pte = pte_mkyoung(_dst_pte);
6717
6718 if (wp_enabled)
6719 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6720
6721 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6722
6723 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6724
6725 /* No need to invalidate - it was non-present before */
6726 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6727
6728 spin_unlock(ptl);
6729 if (!is_continue)
6730 folio_set_hugetlb_migratable(folio);
6731 if (vm_shared || is_continue)
6732 folio_unlock(folio);
6733 ret = 0;
6734 out:
6735 return ret;
6736 out_release_unlock:
6737 spin_unlock(ptl);
6738 if (vm_shared || is_continue)
6739 folio_unlock(folio);
6740 out_release_nounlock:
6741 if (!folio_in_pagecache)
6742 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6743 folio_put(folio);
6744 goto out;
6745 }
6746 #endif /* CONFIG_USERFAULTFD */
6747
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)6748 long hugetlb_change_protection(struct vm_area_struct *vma,
6749 unsigned long address, unsigned long end,
6750 pgprot_t newprot, unsigned long cp_flags)
6751 {
6752 struct mm_struct *mm = vma->vm_mm;
6753 unsigned long start = address;
6754 pte_t *ptep;
6755 pte_t pte;
6756 struct hstate *h = hstate_vma(vma);
6757 long pages = 0, psize = huge_page_size(h);
6758 bool shared_pmd = false;
6759 struct mmu_notifier_range range;
6760 unsigned long last_addr_mask;
6761 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6762 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6763
6764 /*
6765 * In the case of shared PMDs, the area to flush could be beyond
6766 * start/end. Set range.start/range.end to cover the maximum possible
6767 * range if PMD sharing is possible.
6768 */
6769 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6770 0, mm, start, end);
6771 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6772
6773 BUG_ON(address >= end);
6774 flush_cache_range(vma, range.start, range.end);
6775
6776 mmu_notifier_invalidate_range_start(&range);
6777 hugetlb_vma_lock_write(vma);
6778 i_mmap_lock_write(vma->vm_file->f_mapping);
6779 last_addr_mask = hugetlb_mask_last_page(h);
6780 for (; address < end; address += psize) {
6781 spinlock_t *ptl;
6782 ptep = hugetlb_walk(vma, address, psize);
6783 if (!ptep) {
6784 if (!uffd_wp) {
6785 address |= last_addr_mask;
6786 continue;
6787 }
6788 /*
6789 * Userfaultfd wr-protect requires pgtable
6790 * pre-allocations to install pte markers.
6791 */
6792 ptep = huge_pte_alloc(mm, vma, address, psize);
6793 if (!ptep) {
6794 pages = -ENOMEM;
6795 break;
6796 }
6797 }
6798 ptl = huge_pte_lock(h, mm, ptep);
6799 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6800 /*
6801 * When uffd-wp is enabled on the vma, unshare
6802 * shouldn't happen at all. Warn about it if it
6803 * happened due to some reason.
6804 */
6805 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6806 pages++;
6807 spin_unlock(ptl);
6808 shared_pmd = true;
6809 address |= last_addr_mask;
6810 continue;
6811 }
6812 pte = huge_ptep_get(mm, address, ptep);
6813 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6814 /* Nothing to do. */
6815 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6816 swp_entry_t entry = pte_to_swp_entry(pte);
6817 struct page *page = pfn_swap_entry_to_page(entry);
6818 pte_t newpte = pte;
6819
6820 if (is_writable_migration_entry(entry)) {
6821 if (PageAnon(page))
6822 entry = make_readable_exclusive_migration_entry(
6823 swp_offset(entry));
6824 else
6825 entry = make_readable_migration_entry(
6826 swp_offset(entry));
6827 newpte = swp_entry_to_pte(entry);
6828 pages++;
6829 }
6830
6831 if (uffd_wp)
6832 newpte = pte_swp_mkuffd_wp(newpte);
6833 else if (uffd_wp_resolve)
6834 newpte = pte_swp_clear_uffd_wp(newpte);
6835 if (!pte_same(pte, newpte))
6836 set_huge_pte_at(mm, address, ptep, newpte, psize);
6837 } else if (unlikely(is_pte_marker(pte))) {
6838 /*
6839 * Do nothing on a poison marker; page is
6840 * corrupted, permissons do not apply. Here
6841 * pte_marker_uffd_wp()==true implies !poison
6842 * because they're mutual exclusive.
6843 */
6844 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
6845 /* Safe to modify directly (non-present->none). */
6846 huge_pte_clear(mm, address, ptep, psize);
6847 } else if (!huge_pte_none(pte)) {
6848 pte_t old_pte;
6849 unsigned int shift = huge_page_shift(hstate_vma(vma));
6850
6851 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6852 pte = huge_pte_modify(old_pte, newprot);
6853 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6854 if (uffd_wp)
6855 pte = huge_pte_mkuffd_wp(pte);
6856 else if (uffd_wp_resolve)
6857 pte = huge_pte_clear_uffd_wp(pte);
6858 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6859 pages++;
6860 } else {
6861 /* None pte */
6862 if (unlikely(uffd_wp))
6863 /* Safe to modify directly (none->non-present). */
6864 set_huge_pte_at(mm, address, ptep,
6865 make_pte_marker(PTE_MARKER_UFFD_WP),
6866 psize);
6867 }
6868 spin_unlock(ptl);
6869 }
6870 /*
6871 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6872 * may have cleared our pud entry and done put_page on the page table:
6873 * once we release i_mmap_rwsem, another task can do the final put_page
6874 * and that page table be reused and filled with junk. If we actually
6875 * did unshare a page of pmds, flush the range corresponding to the pud.
6876 */
6877 if (shared_pmd)
6878 flush_hugetlb_tlb_range(vma, range.start, range.end);
6879 else
6880 flush_hugetlb_tlb_range(vma, start, end);
6881 /*
6882 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6883 * downgrading page table protection not changing it to point to a new
6884 * page.
6885 *
6886 * See Documentation/mm/mmu_notifier.rst
6887 */
6888 i_mmap_unlock_write(vma->vm_file->f_mapping);
6889 hugetlb_vma_unlock_write(vma);
6890 mmu_notifier_invalidate_range_end(&range);
6891
6892 return pages > 0 ? (pages << h->order) : pages;
6893 }
6894
6895 /* Return true if reservation was successful, false otherwise. */
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)6896 bool hugetlb_reserve_pages(struct inode *inode,
6897 long from, long to,
6898 struct vm_area_struct *vma,
6899 vm_flags_t vm_flags)
6900 {
6901 long chg = -1, add = -1;
6902 struct hstate *h = hstate_inode(inode);
6903 struct hugepage_subpool *spool = subpool_inode(inode);
6904 struct resv_map *resv_map;
6905 struct hugetlb_cgroup *h_cg = NULL;
6906 long gbl_reserve, regions_needed = 0;
6907
6908 /* This should never happen */
6909 if (from > to) {
6910 VM_WARN(1, "%s called with a negative range\n", __func__);
6911 return false;
6912 }
6913
6914 /*
6915 * vma specific semaphore used for pmd sharing and fault/truncation
6916 * synchronization
6917 */
6918 hugetlb_vma_lock_alloc(vma);
6919
6920 /*
6921 * Only apply hugepage reservation if asked. At fault time, an
6922 * attempt will be made for VM_NORESERVE to allocate a page
6923 * without using reserves
6924 */
6925 if (vm_flags & VM_NORESERVE)
6926 return true;
6927
6928 /*
6929 * Shared mappings base their reservation on the number of pages that
6930 * are already allocated on behalf of the file. Private mappings need
6931 * to reserve the full area even if read-only as mprotect() may be
6932 * called to make the mapping read-write. Assume !vma is a shm mapping
6933 */
6934 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6935 /*
6936 * resv_map can not be NULL as hugetlb_reserve_pages is only
6937 * called for inodes for which resv_maps were created (see
6938 * hugetlbfs_get_inode).
6939 */
6940 resv_map = inode_resv_map(inode);
6941
6942 chg = region_chg(resv_map, from, to, ®ions_needed);
6943 } else {
6944 /* Private mapping. */
6945 resv_map = resv_map_alloc();
6946 if (!resv_map)
6947 goto out_err;
6948
6949 chg = to - from;
6950
6951 set_vma_resv_map(vma, resv_map);
6952 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6953 }
6954
6955 if (chg < 0)
6956 goto out_err;
6957
6958 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6959 chg * pages_per_huge_page(h), &h_cg) < 0)
6960 goto out_err;
6961
6962 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6963 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6964 * of the resv_map.
6965 */
6966 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6967 }
6968
6969 /*
6970 * There must be enough pages in the subpool for the mapping. If
6971 * the subpool has a minimum size, there may be some global
6972 * reservations already in place (gbl_reserve).
6973 */
6974 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6975 if (gbl_reserve < 0)
6976 goto out_uncharge_cgroup;
6977
6978 /*
6979 * Check enough hugepages are available for the reservation.
6980 * Hand the pages back to the subpool if there are not
6981 */
6982 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6983 goto out_put_pages;
6984
6985 /*
6986 * Account for the reservations made. Shared mappings record regions
6987 * that have reservations as they are shared by multiple VMAs.
6988 * When the last VMA disappears, the region map says how much
6989 * the reservation was and the page cache tells how much of
6990 * the reservation was consumed. Private mappings are per-VMA and
6991 * only the consumed reservations are tracked. When the VMA
6992 * disappears, the original reservation is the VMA size and the
6993 * consumed reservations are stored in the map. Hence, nothing
6994 * else has to be done for private mappings here
6995 */
6996 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6997 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6998
6999 if (unlikely(add < 0)) {
7000 hugetlb_acct_memory(h, -gbl_reserve);
7001 goto out_put_pages;
7002 } else if (unlikely(chg > add)) {
7003 /*
7004 * pages in this range were added to the reserve
7005 * map between region_chg and region_add. This
7006 * indicates a race with alloc_hugetlb_folio. Adjust
7007 * the subpool and reserve counts modified above
7008 * based on the difference.
7009 */
7010 long rsv_adjust;
7011
7012 /*
7013 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7014 * reference to h_cg->css. See comment below for detail.
7015 */
7016 hugetlb_cgroup_uncharge_cgroup_rsvd(
7017 hstate_index(h),
7018 (chg - add) * pages_per_huge_page(h), h_cg);
7019
7020 rsv_adjust = hugepage_subpool_put_pages(spool,
7021 chg - add);
7022 hugetlb_acct_memory(h, -rsv_adjust);
7023 } else if (h_cg) {
7024 /*
7025 * The file_regions will hold their own reference to
7026 * h_cg->css. So we should release the reference held
7027 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7028 * done.
7029 */
7030 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7031 }
7032 }
7033 return true;
7034
7035 out_put_pages:
7036 /* put back original number of pages, chg */
7037 (void)hugepage_subpool_put_pages(spool, chg);
7038 out_uncharge_cgroup:
7039 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7040 chg * pages_per_huge_page(h), h_cg);
7041 out_err:
7042 hugetlb_vma_lock_free(vma);
7043 if (!vma || vma->vm_flags & VM_MAYSHARE)
7044 /* Only call region_abort if the region_chg succeeded but the
7045 * region_add failed or didn't run.
7046 */
7047 if (chg >= 0 && add < 0)
7048 region_abort(resv_map, from, to, regions_needed);
7049 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7050 kref_put(&resv_map->refs, resv_map_release);
7051 set_vma_resv_map(vma, NULL);
7052 }
7053 return false;
7054 }
7055
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)7056 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7057 long freed)
7058 {
7059 struct hstate *h = hstate_inode(inode);
7060 struct resv_map *resv_map = inode_resv_map(inode);
7061 long chg = 0;
7062 struct hugepage_subpool *spool = subpool_inode(inode);
7063 long gbl_reserve;
7064
7065 /*
7066 * Since this routine can be called in the evict inode path for all
7067 * hugetlbfs inodes, resv_map could be NULL.
7068 */
7069 if (resv_map) {
7070 chg = region_del(resv_map, start, end);
7071 /*
7072 * region_del() can fail in the rare case where a region
7073 * must be split and another region descriptor can not be
7074 * allocated. If end == LONG_MAX, it will not fail.
7075 */
7076 if (chg < 0)
7077 return chg;
7078 }
7079
7080 spin_lock(&inode->i_lock);
7081 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7082 spin_unlock(&inode->i_lock);
7083
7084 /*
7085 * If the subpool has a minimum size, the number of global
7086 * reservations to be released may be adjusted.
7087 *
7088 * Note that !resv_map implies freed == 0. So (chg - freed)
7089 * won't go negative.
7090 */
7091 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7092 hugetlb_acct_memory(h, -gbl_reserve);
7093
7094 return 0;
7095 }
7096
7097 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)7098 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7099 struct vm_area_struct *vma,
7100 unsigned long addr, pgoff_t idx)
7101 {
7102 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7103 svma->vm_start;
7104 unsigned long sbase = saddr & PUD_MASK;
7105 unsigned long s_end = sbase + PUD_SIZE;
7106
7107 /* Allow segments to share if only one is marked locked */
7108 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7109 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7110
7111 /*
7112 * match the virtual addresses, permission and the alignment of the
7113 * page table page.
7114 *
7115 * Also, vma_lock (vm_private_data) is required for sharing.
7116 */
7117 if (pmd_index(addr) != pmd_index(saddr) ||
7118 vm_flags != svm_flags ||
7119 !range_in_vma(svma, sbase, s_end) ||
7120 !svma->vm_private_data)
7121 return 0;
7122
7123 return saddr;
7124 }
7125
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7126 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7127 {
7128 unsigned long start = addr & PUD_MASK;
7129 unsigned long end = start + PUD_SIZE;
7130
7131 #ifdef CONFIG_USERFAULTFD
7132 if (uffd_disable_huge_pmd_share(vma))
7133 return false;
7134 #endif
7135 /*
7136 * check on proper vm_flags and page table alignment
7137 */
7138 if (!(vma->vm_flags & VM_MAYSHARE))
7139 return false;
7140 if (!vma->vm_private_data) /* vma lock required for sharing */
7141 return false;
7142 if (!range_in_vma(vma, start, end))
7143 return false;
7144 return true;
7145 }
7146
7147 /*
7148 * Determine if start,end range within vma could be mapped by shared pmd.
7149 * If yes, adjust start and end to cover range associated with possible
7150 * shared pmd mappings.
7151 */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7152 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7153 unsigned long *start, unsigned long *end)
7154 {
7155 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7156 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7157
7158 /*
7159 * vma needs to span at least one aligned PUD size, and the range
7160 * must be at least partially within in.
7161 */
7162 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7163 (*end <= v_start) || (*start >= v_end))
7164 return;
7165
7166 /* Extend the range to be PUD aligned for a worst case scenario */
7167 if (*start > v_start)
7168 *start = ALIGN_DOWN(*start, PUD_SIZE);
7169
7170 if (*end < v_end)
7171 *end = ALIGN(*end, PUD_SIZE);
7172 }
7173
7174 /*
7175 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7176 * and returns the corresponding pte. While this is not necessary for the
7177 * !shared pmd case because we can allocate the pmd later as well, it makes the
7178 * code much cleaner. pmd allocation is essential for the shared case because
7179 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7180 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7181 * bad pmd for sharing.
7182 */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7183 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7184 unsigned long addr, pud_t *pud)
7185 {
7186 struct address_space *mapping = vma->vm_file->f_mapping;
7187 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7188 vma->vm_pgoff;
7189 struct vm_area_struct *svma;
7190 unsigned long saddr;
7191 pte_t *spte = NULL;
7192 pte_t *pte;
7193
7194 i_mmap_lock_read(mapping);
7195 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7196 if (svma == vma)
7197 continue;
7198
7199 saddr = page_table_shareable(svma, vma, addr, idx);
7200 if (saddr) {
7201 spte = hugetlb_walk(svma, saddr,
7202 vma_mmu_pagesize(svma));
7203 if (spte) {
7204 get_page(virt_to_page(spte));
7205 break;
7206 }
7207 }
7208 }
7209
7210 if (!spte)
7211 goto out;
7212
7213 spin_lock(&mm->page_table_lock);
7214 if (pud_none(*pud)) {
7215 pud_populate(mm, pud,
7216 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7217 mm_inc_nr_pmds(mm);
7218 } else {
7219 put_page(virt_to_page(spte));
7220 }
7221 spin_unlock(&mm->page_table_lock);
7222 out:
7223 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7224 i_mmap_unlock_read(mapping);
7225 return pte;
7226 }
7227
7228 /*
7229 * unmap huge page backed by shared pte.
7230 *
7231 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7232 * indicated by page_count > 1, unmap is achieved by clearing pud and
7233 * decrementing the ref count. If count == 1, the pte page is not shared.
7234 *
7235 * Called with page table lock held.
7236 *
7237 * returns: 1 successfully unmapped a shared pte page
7238 * 0 the underlying pte page is not shared, or it is the last user
7239 */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7240 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7241 unsigned long addr, pte_t *ptep)
7242 {
7243 pgd_t *pgd = pgd_offset(mm, addr);
7244 p4d_t *p4d = p4d_offset(pgd, addr);
7245 pud_t *pud = pud_offset(p4d, addr);
7246
7247 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7248 hugetlb_vma_assert_locked(vma);
7249 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7250 if (page_count(virt_to_page(ptep)) == 1)
7251 return 0;
7252
7253 pud_clear(pud);
7254 put_page(virt_to_page(ptep));
7255 mm_dec_nr_pmds(mm);
7256 return 1;
7257 }
7258
7259 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7260
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7261 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7262 unsigned long addr, pud_t *pud)
7263 {
7264 return NULL;
7265 }
7266
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7267 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7268 unsigned long addr, pte_t *ptep)
7269 {
7270 return 0;
7271 }
7272
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7273 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7274 unsigned long *start, unsigned long *end)
7275 {
7276 }
7277
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7278 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7279 {
7280 return false;
7281 }
7282 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7283
7284 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)7285 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7286 unsigned long addr, unsigned long sz)
7287 {
7288 pgd_t *pgd;
7289 p4d_t *p4d;
7290 pud_t *pud;
7291 pte_t *pte = NULL;
7292
7293 pgd = pgd_offset(mm, addr);
7294 p4d = p4d_alloc(mm, pgd, addr);
7295 if (!p4d)
7296 return NULL;
7297 pud = pud_alloc(mm, p4d, addr);
7298 if (pud) {
7299 if (sz == PUD_SIZE) {
7300 pte = (pte_t *)pud;
7301 } else {
7302 BUG_ON(sz != PMD_SIZE);
7303 if (want_pmd_share(vma, addr) && pud_none(*pud))
7304 pte = huge_pmd_share(mm, vma, addr, pud);
7305 else
7306 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7307 }
7308 }
7309
7310 if (pte) {
7311 pte_t pteval = ptep_get_lockless(pte);
7312
7313 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7314 }
7315
7316 return pte;
7317 }
7318
7319 /*
7320 * huge_pte_offset() - Walk the page table to resolve the hugepage
7321 * entry at address @addr
7322 *
7323 * Return: Pointer to page table entry (PUD or PMD) for
7324 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7325 * size @sz doesn't match the hugepage size at this level of the page
7326 * table.
7327 */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)7328 pte_t *huge_pte_offset(struct mm_struct *mm,
7329 unsigned long addr, unsigned long sz)
7330 {
7331 pgd_t *pgd;
7332 p4d_t *p4d;
7333 pud_t *pud;
7334 pmd_t *pmd;
7335
7336 pgd = pgd_offset(mm, addr);
7337 if (!pgd_present(*pgd))
7338 return NULL;
7339 p4d = p4d_offset(pgd, addr);
7340 if (!p4d_present(*p4d))
7341 return NULL;
7342
7343 pud = pud_offset(p4d, addr);
7344 if (sz == PUD_SIZE)
7345 /* must be pud huge, non-present or none */
7346 return (pte_t *)pud;
7347 if (!pud_present(*pud))
7348 return NULL;
7349 /* must have a valid entry and size to go further */
7350
7351 pmd = pmd_offset(pud, addr);
7352 /* must be pmd huge, non-present or none */
7353 return (pte_t *)pmd;
7354 }
7355
7356 /*
7357 * Return a mask that can be used to update an address to the last huge
7358 * page in a page table page mapping size. Used to skip non-present
7359 * page table entries when linearly scanning address ranges. Architectures
7360 * with unique huge page to page table relationships can define their own
7361 * version of this routine.
7362 */
hugetlb_mask_last_page(struct hstate * h)7363 unsigned long hugetlb_mask_last_page(struct hstate *h)
7364 {
7365 unsigned long hp_size = huge_page_size(h);
7366
7367 if (hp_size == PUD_SIZE)
7368 return P4D_SIZE - PUD_SIZE;
7369 else if (hp_size == PMD_SIZE)
7370 return PUD_SIZE - PMD_SIZE;
7371 else
7372 return 0UL;
7373 }
7374
7375 #else
7376
7377 /* See description above. Architectures can provide their own version. */
hugetlb_mask_last_page(struct hstate * h)7378 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7379 {
7380 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7381 if (huge_page_size(h) == PMD_SIZE)
7382 return PUD_SIZE - PMD_SIZE;
7383 #endif
7384 return 0UL;
7385 }
7386
7387 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7388
isolate_hugetlb(struct folio * folio,struct list_head * list)7389 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7390 {
7391 bool ret = true;
7392
7393 spin_lock_irq(&hugetlb_lock);
7394 if (!folio_test_hugetlb(folio) ||
7395 !folio_test_hugetlb_migratable(folio) ||
7396 !folio_try_get(folio)) {
7397 ret = false;
7398 goto unlock;
7399 }
7400 folio_clear_hugetlb_migratable(folio);
7401 list_move_tail(&folio->lru, list);
7402 unlock:
7403 spin_unlock_irq(&hugetlb_lock);
7404 return ret;
7405 }
7406
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)7407 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7408 {
7409 int ret = 0;
7410
7411 *hugetlb = false;
7412 spin_lock_irq(&hugetlb_lock);
7413 if (folio_test_hugetlb(folio)) {
7414 *hugetlb = true;
7415 if (folio_test_hugetlb_freed(folio))
7416 ret = 0;
7417 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7418 ret = folio_try_get(folio);
7419 else
7420 ret = -EBUSY;
7421 }
7422 spin_unlock_irq(&hugetlb_lock);
7423 return ret;
7424 }
7425
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)7426 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7427 bool *migratable_cleared)
7428 {
7429 int ret;
7430
7431 spin_lock_irq(&hugetlb_lock);
7432 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7433 spin_unlock_irq(&hugetlb_lock);
7434 return ret;
7435 }
7436
folio_putback_active_hugetlb(struct folio * folio)7437 void folio_putback_active_hugetlb(struct folio *folio)
7438 {
7439 spin_lock_irq(&hugetlb_lock);
7440 folio_set_hugetlb_migratable(folio);
7441 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7442 spin_unlock_irq(&hugetlb_lock);
7443 folio_put(folio);
7444 }
7445
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)7446 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7447 {
7448 struct hstate *h = folio_hstate(old_folio);
7449
7450 hugetlb_cgroup_migrate(old_folio, new_folio);
7451 set_page_owner_migrate_reason(&new_folio->page, reason);
7452
7453 /*
7454 * transfer temporary state of the new hugetlb folio. This is
7455 * reverse to other transitions because the newpage is going to
7456 * be final while the old one will be freed so it takes over
7457 * the temporary status.
7458 *
7459 * Also note that we have to transfer the per-node surplus state
7460 * here as well otherwise the global surplus count will not match
7461 * the per-node's.
7462 */
7463 if (folio_test_hugetlb_temporary(new_folio)) {
7464 int old_nid = folio_nid(old_folio);
7465 int new_nid = folio_nid(new_folio);
7466
7467 folio_set_hugetlb_temporary(old_folio);
7468 folio_clear_hugetlb_temporary(new_folio);
7469
7470
7471 /*
7472 * There is no need to transfer the per-node surplus state
7473 * when we do not cross the node.
7474 */
7475 if (new_nid == old_nid)
7476 return;
7477 spin_lock_irq(&hugetlb_lock);
7478 if (h->surplus_huge_pages_node[old_nid]) {
7479 h->surplus_huge_pages_node[old_nid]--;
7480 h->surplus_huge_pages_node[new_nid]++;
7481 }
7482 spin_unlock_irq(&hugetlb_lock);
7483 }
7484 }
7485
hugetlb_unshare_pmds(struct vm_area_struct * vma,unsigned long start,unsigned long end)7486 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7487 unsigned long start,
7488 unsigned long end)
7489 {
7490 struct hstate *h = hstate_vma(vma);
7491 unsigned long sz = huge_page_size(h);
7492 struct mm_struct *mm = vma->vm_mm;
7493 struct mmu_notifier_range range;
7494 unsigned long address;
7495 spinlock_t *ptl;
7496 pte_t *ptep;
7497
7498 if (!(vma->vm_flags & VM_MAYSHARE))
7499 return;
7500
7501 if (start >= end)
7502 return;
7503
7504 flush_cache_range(vma, start, end);
7505 /*
7506 * No need to call adjust_range_if_pmd_sharing_possible(), because
7507 * we have already done the PUD_SIZE alignment.
7508 */
7509 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7510 start, end);
7511 mmu_notifier_invalidate_range_start(&range);
7512 hugetlb_vma_lock_write(vma);
7513 i_mmap_lock_write(vma->vm_file->f_mapping);
7514 for (address = start; address < end; address += PUD_SIZE) {
7515 ptep = hugetlb_walk(vma, address, sz);
7516 if (!ptep)
7517 continue;
7518 ptl = huge_pte_lock(h, mm, ptep);
7519 huge_pmd_unshare(mm, vma, address, ptep);
7520 spin_unlock(ptl);
7521 }
7522 flush_hugetlb_tlb_range(vma, start, end);
7523 i_mmap_unlock_write(vma->vm_file->f_mapping);
7524 hugetlb_vma_unlock_write(vma);
7525 /*
7526 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7527 * Documentation/mm/mmu_notifier.rst.
7528 */
7529 mmu_notifier_invalidate_range_end(&range);
7530 }
7531
7532 /*
7533 * This function will unconditionally remove all the shared pmd pgtable entries
7534 * within the specific vma for a hugetlbfs memory range.
7535 */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)7536 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7537 {
7538 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7539 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7540 }
7541
7542 #ifdef CONFIG_CMA
7543 static bool cma_reserve_called __initdata;
7544
cmdline_parse_hugetlb_cma(char * p)7545 static int __init cmdline_parse_hugetlb_cma(char *p)
7546 {
7547 int nid, count = 0;
7548 unsigned long tmp;
7549 char *s = p;
7550
7551 while (*s) {
7552 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7553 break;
7554
7555 if (s[count] == ':') {
7556 if (tmp >= MAX_NUMNODES)
7557 break;
7558 nid = array_index_nospec(tmp, MAX_NUMNODES);
7559
7560 s += count + 1;
7561 tmp = memparse(s, &s);
7562 hugetlb_cma_size_in_node[nid] = tmp;
7563 hugetlb_cma_size += tmp;
7564
7565 /*
7566 * Skip the separator if have one, otherwise
7567 * break the parsing.
7568 */
7569 if (*s == ',')
7570 s++;
7571 else
7572 break;
7573 } else {
7574 hugetlb_cma_size = memparse(p, &p);
7575 break;
7576 }
7577 }
7578
7579 return 0;
7580 }
7581
7582 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7583
hugetlb_cma_reserve(int order)7584 void __init hugetlb_cma_reserve(int order)
7585 {
7586 unsigned long size, reserved, per_node;
7587 bool node_specific_cma_alloc = false;
7588 int nid;
7589
7590 /*
7591 * HugeTLB CMA reservation is required for gigantic
7592 * huge pages which could not be allocated via the
7593 * page allocator. Just warn if there is any change
7594 * breaking this assumption.
7595 */
7596 VM_WARN_ON(order <= MAX_PAGE_ORDER);
7597 cma_reserve_called = true;
7598
7599 if (!hugetlb_cma_size)
7600 return;
7601
7602 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7603 if (hugetlb_cma_size_in_node[nid] == 0)
7604 continue;
7605
7606 if (!node_online(nid)) {
7607 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7608 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7609 hugetlb_cma_size_in_node[nid] = 0;
7610 continue;
7611 }
7612
7613 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7614 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7615 nid, (PAGE_SIZE << order) / SZ_1M);
7616 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7617 hugetlb_cma_size_in_node[nid] = 0;
7618 } else {
7619 node_specific_cma_alloc = true;
7620 }
7621 }
7622
7623 /* Validate the CMA size again in case some invalid nodes specified. */
7624 if (!hugetlb_cma_size)
7625 return;
7626
7627 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7628 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7629 (PAGE_SIZE << order) / SZ_1M);
7630 hugetlb_cma_size = 0;
7631 return;
7632 }
7633
7634 if (!node_specific_cma_alloc) {
7635 /*
7636 * If 3 GB area is requested on a machine with 4 numa nodes,
7637 * let's allocate 1 GB on first three nodes and ignore the last one.
7638 */
7639 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7640 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7641 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7642 }
7643
7644 reserved = 0;
7645 for_each_online_node(nid) {
7646 int res;
7647 char name[CMA_MAX_NAME];
7648
7649 if (node_specific_cma_alloc) {
7650 if (hugetlb_cma_size_in_node[nid] == 0)
7651 continue;
7652
7653 size = hugetlb_cma_size_in_node[nid];
7654 } else {
7655 size = min(per_node, hugetlb_cma_size - reserved);
7656 }
7657
7658 size = round_up(size, PAGE_SIZE << order);
7659
7660 snprintf(name, sizeof(name), "hugetlb%d", nid);
7661 /*
7662 * Note that 'order per bit' is based on smallest size that
7663 * may be returned to CMA allocator in the case of
7664 * huge page demotion.
7665 */
7666 res = cma_declare_contiguous_nid(0, size, 0,
7667 PAGE_SIZE << order,
7668 HUGETLB_PAGE_ORDER, false, name,
7669 &hugetlb_cma[nid], nid);
7670 if (res) {
7671 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7672 res, nid);
7673 continue;
7674 }
7675
7676 reserved += size;
7677 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7678 size / SZ_1M, nid);
7679
7680 if (reserved >= hugetlb_cma_size)
7681 break;
7682 }
7683
7684 if (!reserved)
7685 /*
7686 * hugetlb_cma_size is used to determine if allocations from
7687 * cma are possible. Set to zero if no cma regions are set up.
7688 */
7689 hugetlb_cma_size = 0;
7690 }
7691
hugetlb_cma_check(void)7692 static void __init hugetlb_cma_check(void)
7693 {
7694 if (!hugetlb_cma_size || cma_reserve_called)
7695 return;
7696
7697 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7698 }
7699
7700 #endif /* CONFIG_CMA */
7701