1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2021 Intel Corporation
4 */
5
6 #include <linux/shmem_fs.h>
7
8 #include <drm/ttm/ttm_placement.h>
9 #include <drm/ttm/ttm_tt.h>
10 #include <drm/drm_buddy.h>
11
12 #include "i915_drv.h"
13 #include "i915_ttm_buddy_manager.h"
14 #include "intel_memory_region.h"
15 #include "intel_region_ttm.h"
16
17 #include "gem/i915_gem_mman.h"
18 #include "gem/i915_gem_object.h"
19 #include "gem/i915_gem_region.h"
20 #include "gem/i915_gem_ttm.h"
21 #include "gem/i915_gem_ttm_move.h"
22 #include "gem/i915_gem_ttm_pm.h"
23 #include "gt/intel_gpu_commands.h"
24
25 #define I915_TTM_PRIO_PURGE 0
26 #define I915_TTM_PRIO_NO_PAGES 1
27 #define I915_TTM_PRIO_HAS_PAGES 2
28 #define I915_TTM_PRIO_NEEDS_CPU_ACCESS 3
29
30 /*
31 * Size of struct ttm_place vector in on-stack struct ttm_placement allocs
32 */
33 #define I915_TTM_MAX_PLACEMENTS INTEL_REGION_UNKNOWN
34
35 /**
36 * struct i915_ttm_tt - TTM page vector with additional private information
37 * @ttm: The base TTM page vector.
38 * @dev: The struct device used for dma mapping and unmapping.
39 * @cached_rsgt: The cached scatter-gather table.
40 * @is_shmem: Set if using shmem.
41 * @filp: The shmem file, if using shmem backend.
42 *
43 * Note that DMA may be going on right up to the point where the page-
44 * vector is unpopulated in delayed destroy. Hence keep the
45 * scatter-gather table mapped and cached up to that point. This is
46 * different from the cached gem object io scatter-gather table which
47 * doesn't have an associated dma mapping.
48 */
49 struct i915_ttm_tt {
50 struct ttm_tt ttm;
51 struct device *dev;
52 struct i915_refct_sgt cached_rsgt;
53
54 bool is_shmem;
55 struct file *filp;
56 };
57
58 static const struct ttm_place sys_placement_flags = {
59 .fpfn = 0,
60 .lpfn = 0,
61 .mem_type = I915_PL_SYSTEM,
62 .flags = 0,
63 };
64
65 static struct ttm_placement i915_sys_placement = {
66 .num_placement = 1,
67 .placement = &sys_placement_flags,
68 .num_busy_placement = 1,
69 .busy_placement = &sys_placement_flags,
70 };
71
72 /**
73 * i915_ttm_sys_placement - Return the struct ttm_placement to be
74 * used for an object in system memory.
75 *
76 * Rather than making the struct extern, use this
77 * function.
78 *
79 * Return: A pointer to a static variable for sys placement.
80 */
i915_ttm_sys_placement(void)81 struct ttm_placement *i915_ttm_sys_placement(void)
82 {
83 return &i915_sys_placement;
84 }
85
i915_ttm_err_to_gem(int err)86 static int i915_ttm_err_to_gem(int err)
87 {
88 /* Fastpath */
89 if (likely(!err))
90 return 0;
91
92 switch (err) {
93 case -EBUSY:
94 /*
95 * TTM likes to convert -EDEADLK to -EBUSY, and wants us to
96 * restart the operation, since we don't record the contending
97 * lock. We use -EAGAIN to restart.
98 */
99 return -EAGAIN;
100 case -ENOSPC:
101 /*
102 * Memory type / region is full, and we can't evict.
103 * Except possibly system, that returns -ENOMEM;
104 */
105 return -ENXIO;
106 default:
107 break;
108 }
109
110 return err;
111 }
112
113 static enum ttm_caching
i915_ttm_select_tt_caching(const struct drm_i915_gem_object * obj)114 i915_ttm_select_tt_caching(const struct drm_i915_gem_object *obj)
115 {
116 /*
117 * Objects only allowed in system get cached cpu-mappings, or when
118 * evicting lmem-only buffers to system for swapping. Other objects get
119 * WC mapping for now. Even if in system.
120 */
121 if (obj->mm.n_placements <= 1)
122 return ttm_cached;
123
124 return ttm_write_combined;
125 }
126
127 static void
i915_ttm_place_from_region(const struct intel_memory_region * mr,struct ttm_place * place,resource_size_t offset,resource_size_t size,unsigned int flags)128 i915_ttm_place_from_region(const struct intel_memory_region *mr,
129 struct ttm_place *place,
130 resource_size_t offset,
131 resource_size_t size,
132 unsigned int flags)
133 {
134 memset(place, 0, sizeof(*place));
135 place->mem_type = intel_region_to_ttm_type(mr);
136
137 if (mr->type == INTEL_MEMORY_SYSTEM)
138 return;
139
140 if (flags & I915_BO_ALLOC_CONTIGUOUS)
141 place->flags |= TTM_PL_FLAG_CONTIGUOUS;
142 if (offset != I915_BO_INVALID_OFFSET) {
143 WARN_ON(overflows_type(offset >> PAGE_SHIFT, place->fpfn));
144 place->fpfn = offset >> PAGE_SHIFT;
145 WARN_ON(overflows_type(place->fpfn + (size >> PAGE_SHIFT), place->lpfn));
146 place->lpfn = place->fpfn + (size >> PAGE_SHIFT);
147 } else if (resource_size(&mr->io) && resource_size(&mr->io) < mr->total) {
148 if (flags & I915_BO_ALLOC_GPU_ONLY) {
149 place->flags |= TTM_PL_FLAG_TOPDOWN;
150 } else {
151 place->fpfn = 0;
152 WARN_ON(overflows_type(resource_size(&mr->io) >> PAGE_SHIFT, place->lpfn));
153 place->lpfn = resource_size(&mr->io) >> PAGE_SHIFT;
154 }
155 }
156 }
157
158 static void
i915_ttm_placement_from_obj(const struct drm_i915_gem_object * obj,struct ttm_place * requested,struct ttm_place * busy,struct ttm_placement * placement)159 i915_ttm_placement_from_obj(const struct drm_i915_gem_object *obj,
160 struct ttm_place *requested,
161 struct ttm_place *busy,
162 struct ttm_placement *placement)
163 {
164 unsigned int num_allowed = obj->mm.n_placements;
165 unsigned int flags = obj->flags;
166 unsigned int i;
167
168 placement->num_placement = 1;
169 i915_ttm_place_from_region(num_allowed ? obj->mm.placements[0] :
170 obj->mm.region, requested, obj->bo_offset,
171 obj->base.size, flags);
172
173 /* Cache this on object? */
174 placement->num_busy_placement = num_allowed;
175 for (i = 0; i < placement->num_busy_placement; ++i)
176 i915_ttm_place_from_region(obj->mm.placements[i], busy + i,
177 obj->bo_offset, obj->base.size, flags);
178
179 if (num_allowed == 0) {
180 *busy = *requested;
181 placement->num_busy_placement = 1;
182 }
183
184 placement->placement = requested;
185 placement->busy_placement = busy;
186 }
187
i915_ttm_tt_shmem_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)188 static int i915_ttm_tt_shmem_populate(struct ttm_device *bdev,
189 struct ttm_tt *ttm,
190 struct ttm_operation_ctx *ctx)
191 {
192 STUB();
193 return -ENOSYS;
194 #ifdef notyet
195 struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev);
196 struct intel_memory_region *mr = i915->mm.regions[INTEL_MEMORY_SYSTEM];
197 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
198 const unsigned int max_segment = i915_sg_segment_size(i915->drm.dev);
199 const size_t size = (size_t)ttm->num_pages << PAGE_SHIFT;
200 struct file *filp = i915_tt->filp;
201 struct sgt_iter sgt_iter;
202 struct sg_table *st;
203 struct vm_page *page;
204 unsigned long i;
205 int err;
206
207 if (!filp) {
208 struct address_space *mapping;
209 gfp_t mask;
210
211 filp = shmem_file_setup("i915-shmem-tt", size, VM_NORESERVE);
212 if (IS_ERR(filp))
213 return PTR_ERR(filp);
214
215 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
216
217 mapping = filp->f_mapping;
218 mapping_set_gfp_mask(mapping, mask);
219 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
220
221 i915_tt->filp = filp;
222 }
223
224 st = &i915_tt->cached_rsgt.table;
225 err = shmem_sg_alloc_table(i915, st, size, mr, filp->f_mapping,
226 max_segment);
227 if (err)
228 return err;
229
230 err = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL,
231 DMA_ATTR_SKIP_CPU_SYNC);
232 if (err)
233 goto err_free_st;
234
235 i = 0;
236 for_each_sgt_page(page, sgt_iter, st)
237 ttm->pages[i++] = page;
238
239 if (ttm->page_flags & TTM_TT_FLAG_SWAPPED)
240 ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
241
242 return 0;
243
244 err_free_st:
245 shmem_sg_free_table(st, filp->f_mapping, false, false);
246
247 return err;
248 #endif
249 }
250
i915_ttm_tt_shmem_unpopulate(struct ttm_tt * ttm)251 static void i915_ttm_tt_shmem_unpopulate(struct ttm_tt *ttm)
252 {
253 STUB();
254 #ifdef notyet
255 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
256 bool backup = ttm->page_flags & TTM_TT_FLAG_SWAPPED;
257 struct sg_table *st = &i915_tt->cached_rsgt.table;
258
259 shmem_sg_free_table(st, file_inode(i915_tt->filp)->i_mapping,
260 backup, backup);
261 #endif
262 }
263
i915_ttm_tt_release(struct kref * ref)264 static void i915_ttm_tt_release(struct kref *ref)
265 {
266 struct i915_ttm_tt *i915_tt =
267 container_of(ref, typeof(*i915_tt), cached_rsgt.kref);
268 struct sg_table *st = &i915_tt->cached_rsgt.table;
269
270 GEM_WARN_ON(st->sgl);
271
272 kfree(i915_tt);
273 }
274
275 static const struct i915_refct_sgt_ops tt_rsgt_ops = {
276 .release = i915_ttm_tt_release
277 };
278
i915_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)279 static struct ttm_tt *i915_ttm_tt_create(struct ttm_buffer_object *bo,
280 uint32_t page_flags)
281 {
282 struct drm_i915_private *i915 = container_of(bo->bdev, typeof(*i915),
283 bdev);
284 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
285 unsigned long ccs_pages = 0;
286 enum ttm_caching caching;
287 struct i915_ttm_tt *i915_tt;
288 int ret;
289
290 if (i915_ttm_is_ghost_object(bo))
291 return NULL;
292
293 i915_tt = kzalloc(sizeof(*i915_tt), GFP_KERNEL);
294 if (!i915_tt)
295 return NULL;
296
297 if (obj->flags & I915_BO_ALLOC_CPU_CLEAR && (!bo->resource ||
298 ttm_manager_type(bo->bdev, bo->resource->mem_type)->use_tt))
299 page_flags |= TTM_TT_FLAG_ZERO_ALLOC;
300
301 caching = i915_ttm_select_tt_caching(obj);
302 if (i915_gem_object_is_shrinkable(obj) && caching == ttm_cached) {
303 page_flags |= TTM_TT_FLAG_EXTERNAL |
304 TTM_TT_FLAG_EXTERNAL_MAPPABLE;
305 i915_tt->is_shmem = true;
306 }
307
308 if (i915_gem_object_needs_ccs_pages(obj))
309 ccs_pages = DIV_ROUND_UP(DIV_ROUND_UP(bo->base.size,
310 NUM_BYTES_PER_CCS_BYTE),
311 PAGE_SIZE);
312
313 ret = ttm_tt_init(&i915_tt->ttm, bo, page_flags, caching, ccs_pages);
314 if (ret)
315 goto err_free;
316
317 __i915_refct_sgt_init(&i915_tt->cached_rsgt, bo->base.size,
318 &tt_rsgt_ops);
319
320 i915_tt->dev = obj->base.dev->dev;
321
322 return &i915_tt->ttm;
323
324 err_free:
325 kfree(i915_tt);
326 return NULL;
327 }
328
i915_ttm_tt_populate(struct ttm_device * bdev,struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)329 static int i915_ttm_tt_populate(struct ttm_device *bdev,
330 struct ttm_tt *ttm,
331 struct ttm_operation_ctx *ctx)
332 {
333 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
334
335 if (i915_tt->is_shmem)
336 return i915_ttm_tt_shmem_populate(bdev, ttm, ctx);
337
338 return ttm_pool_alloc(&bdev->pool, ttm, ctx);
339 }
340
i915_ttm_tt_unpopulate(struct ttm_device * bdev,struct ttm_tt * ttm)341 static void i915_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm)
342 {
343 STUB();
344 #ifdef notyet
345 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
346 struct sg_table *st = &i915_tt->cached_rsgt.table;
347
348 if (st->sgl)
349 dma_unmap_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
350
351 if (i915_tt->is_shmem) {
352 i915_ttm_tt_shmem_unpopulate(ttm);
353 } else {
354 sg_free_table(st);
355 ttm_pool_free(&bdev->pool, ttm);
356 }
357 #endif
358 }
359
i915_ttm_tt_destroy(struct ttm_device * bdev,struct ttm_tt * ttm)360 static void i915_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
361 {
362 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
363
364 if (i915_tt->filp)
365 fput(i915_tt->filp);
366
367 ttm_tt_fini(ttm);
368 i915_refct_sgt_put(&i915_tt->cached_rsgt);
369 }
370
i915_ttm_eviction_valuable(struct ttm_buffer_object * bo,const struct ttm_place * place)371 static bool i915_ttm_eviction_valuable(struct ttm_buffer_object *bo,
372 const struct ttm_place *place)
373 {
374 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
375
376 if (i915_ttm_is_ghost_object(bo))
377 return false;
378
379 /*
380 * EXTERNAL objects should never be swapped out by TTM, instead we need
381 * to handle that ourselves. TTM will already skip such objects for us,
382 * but we would like to avoid grabbing locks for no good reason.
383 */
384 if (bo->ttm && bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
385 return false;
386
387 /* Will do for now. Our pinned objects are still on TTM's LRU lists */
388 if (!i915_gem_object_evictable(obj))
389 return false;
390
391 return ttm_bo_eviction_valuable(bo, place);
392 }
393
i915_ttm_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)394 static void i915_ttm_evict_flags(struct ttm_buffer_object *bo,
395 struct ttm_placement *placement)
396 {
397 *placement = i915_sys_placement;
398 }
399
400 /**
401 * i915_ttm_free_cached_io_rsgt - Free object cached LMEM information
402 * @obj: The GEM object
403 * This function frees any LMEM-related information that is cached on
404 * the object. For example the radix tree for fast page lookup and the
405 * cached refcounted sg-table
406 */
i915_ttm_free_cached_io_rsgt(struct drm_i915_gem_object * obj)407 void i915_ttm_free_cached_io_rsgt(struct drm_i915_gem_object *obj)
408 {
409 struct radix_tree_iter iter;
410 void __rcu **slot;
411
412 if (!obj->ttm.cached_io_rsgt)
413 return;
414
415 rcu_read_lock();
416 radix_tree_for_each_slot(slot, &obj->ttm.get_io_page.radix, &iter, 0)
417 radix_tree_delete(&obj->ttm.get_io_page.radix, iter.index);
418 rcu_read_unlock();
419
420 i915_refct_sgt_put(obj->ttm.cached_io_rsgt);
421 obj->ttm.cached_io_rsgt = NULL;
422 }
423
424 /**
425 * i915_ttm_purge - Clear an object of its memory
426 * @obj: The object
427 *
428 * This function is called to clear an object of it's memory when it is
429 * marked as not needed anymore.
430 *
431 * Return: 0 on success, negative error code on failure.
432 */
i915_ttm_purge(struct drm_i915_gem_object * obj)433 int i915_ttm_purge(struct drm_i915_gem_object *obj)
434 {
435 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
436 struct i915_ttm_tt *i915_tt =
437 container_of(bo->ttm, typeof(*i915_tt), ttm);
438 struct ttm_operation_ctx ctx = {
439 .interruptible = true,
440 .no_wait_gpu = false,
441 };
442 struct ttm_placement place = {};
443 int ret;
444
445 if (obj->mm.madv == __I915_MADV_PURGED)
446 return 0;
447
448 ret = ttm_bo_validate(bo, &place, &ctx);
449 if (ret)
450 return ret;
451
452 if (bo->ttm && i915_tt->filp) {
453 /*
454 * The below fput(which eventually calls shmem_truncate) might
455 * be delayed by worker, so when directly called to purge the
456 * pages(like by the shrinker) we should try to be more
457 * aggressive and release the pages immediately.
458 */
459 #ifdef __linux__
460 shmem_truncate_range(file_inode(i915_tt->filp),
461 0, (loff_t)-1);
462 #else
463 rw_enter(obj->base.uao->vmobjlock, RW_WRITE);
464 obj->base.uao->pgops->pgo_flush(obj->base.uao, 0, obj->base.size,
465 PGO_ALLPAGES | PGO_FREE);
466 rw_exit(obj->base.uao->vmobjlock);
467 #endif
468 fput(fetch_and_zero(&i915_tt->filp));
469 }
470
471 obj->write_domain = 0;
472 obj->read_domains = 0;
473 i915_ttm_adjust_gem_after_move(obj);
474 i915_ttm_free_cached_io_rsgt(obj);
475 obj->mm.madv = __I915_MADV_PURGED;
476
477 return 0;
478 }
479
i915_ttm_shrink(struct drm_i915_gem_object * obj,unsigned int flags)480 static int i915_ttm_shrink(struct drm_i915_gem_object *obj, unsigned int flags)
481 {
482 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
483 struct i915_ttm_tt *i915_tt =
484 container_of(bo->ttm, typeof(*i915_tt), ttm);
485 struct ttm_operation_ctx ctx = {
486 .interruptible = true,
487 .no_wait_gpu = flags & I915_GEM_OBJECT_SHRINK_NO_GPU_WAIT,
488 };
489 struct ttm_placement place = {};
490 int ret;
491
492 if (!bo->ttm || i915_ttm_cpu_maps_iomem(bo->resource))
493 return 0;
494
495 GEM_BUG_ON(!i915_tt->is_shmem);
496
497 if (!i915_tt->filp)
498 return 0;
499
500 ret = ttm_bo_wait_ctx(bo, &ctx);
501 if (ret)
502 return ret;
503
504 switch (obj->mm.madv) {
505 case I915_MADV_DONTNEED:
506 return i915_ttm_purge(obj);
507 case __I915_MADV_PURGED:
508 return 0;
509 }
510
511 if (bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED)
512 return 0;
513
514 bo->ttm->page_flags |= TTM_TT_FLAG_SWAPPED;
515 ret = ttm_bo_validate(bo, &place, &ctx);
516 if (ret) {
517 bo->ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
518 return ret;
519 }
520
521 if (flags & I915_GEM_OBJECT_SHRINK_WRITEBACK)
522 #ifdef notyet
523 __shmem_writeback(obj->base.size, i915_tt->filp->f_mapping);
524 #else
525 STUB();
526 #endif
527
528 return 0;
529 }
530
i915_ttm_delete_mem_notify(struct ttm_buffer_object * bo)531 static void i915_ttm_delete_mem_notify(struct ttm_buffer_object *bo)
532 {
533 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
534
535 /*
536 * This gets called twice by ttm, so long as we have a ttm resource or
537 * ttm_tt then we can still safely call this. Due to pipeline-gutting,
538 * we maybe have NULL bo->resource, but in that case we should always
539 * have a ttm alive (like if the pages are swapped out).
540 */
541 if ((bo->resource || bo->ttm) && !i915_ttm_is_ghost_object(bo)) {
542 __i915_gem_object_pages_fini(obj);
543 i915_ttm_free_cached_io_rsgt(obj);
544 }
545 }
546
i915_ttm_tt_get_st(struct ttm_tt * ttm)547 static struct i915_refct_sgt *i915_ttm_tt_get_st(struct ttm_tt *ttm)
548 {
549 STUB();
550 return ERR_PTR(-ENOSYS);
551 #ifdef notyet
552 struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
553 struct sg_table *st;
554 int ret;
555
556 if (i915_tt->cached_rsgt.table.sgl)
557 return i915_refct_sgt_get(&i915_tt->cached_rsgt);
558
559 st = &i915_tt->cached_rsgt.table;
560 ret = sg_alloc_table_from_pages_segment(st,
561 ttm->pages, ttm->num_pages,
562 0, (unsigned long)ttm->num_pages << PAGE_SHIFT,
563 i915_sg_segment_size(i915_tt->dev), GFP_KERNEL);
564 if (ret) {
565 st->sgl = NULL;
566 return ERR_PTR(ret);
567 }
568
569 ret = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
570 if (ret) {
571 sg_free_table(st);
572 return ERR_PTR(ret);
573 }
574
575 return i915_refct_sgt_get(&i915_tt->cached_rsgt);
576 #endif
577 }
578
579 /**
580 * i915_ttm_resource_get_st - Get a refcounted sg-table pointing to the
581 * resource memory
582 * @obj: The GEM object used for sg-table caching
583 * @res: The struct ttm_resource for which an sg-table is requested.
584 *
585 * This function returns a refcounted sg-table representing the memory
586 * pointed to by @res. If @res is the object's current resource it may also
587 * cache the sg_table on the object or attempt to access an already cached
588 * sg-table. The refcounted sg-table needs to be put when no-longer in use.
589 *
590 * Return: A valid pointer to a struct i915_refct_sgt or error pointer on
591 * failure.
592 */
593 struct i915_refct_sgt *
i915_ttm_resource_get_st(struct drm_i915_gem_object * obj,struct ttm_resource * res)594 i915_ttm_resource_get_st(struct drm_i915_gem_object *obj,
595 struct ttm_resource *res)
596 {
597 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
598 u32 page_alignment;
599
600 if (!i915_ttm_gtt_binds_lmem(res))
601 return i915_ttm_tt_get_st(bo->ttm);
602
603 page_alignment = bo->page_alignment << PAGE_SHIFT;
604 if (!page_alignment)
605 page_alignment = obj->mm.region->min_page_size;
606
607 /*
608 * If CPU mapping differs, we need to add the ttm_tt pages to
609 * the resulting st. Might make sense for GGTT.
610 */
611 GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(res));
612 if (bo->resource == res) {
613 if (!obj->ttm.cached_io_rsgt) {
614 struct i915_refct_sgt *rsgt;
615
616 rsgt = intel_region_ttm_resource_to_rsgt(obj->mm.region,
617 res,
618 page_alignment);
619 if (IS_ERR(rsgt))
620 return rsgt;
621
622 obj->ttm.cached_io_rsgt = rsgt;
623 }
624 return i915_refct_sgt_get(obj->ttm.cached_io_rsgt);
625 }
626
627 return intel_region_ttm_resource_to_rsgt(obj->mm.region, res,
628 page_alignment);
629 }
630
i915_ttm_truncate(struct drm_i915_gem_object * obj)631 static int i915_ttm_truncate(struct drm_i915_gem_object *obj)
632 {
633 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
634 long err;
635
636 WARN_ON_ONCE(obj->mm.madv == I915_MADV_WILLNEED);
637
638 err = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
639 true, 15 * HZ);
640 if (err < 0)
641 return err;
642 if (err == 0)
643 return -EBUSY;
644
645 err = i915_ttm_move_notify(bo);
646 if (err)
647 return err;
648
649 return i915_ttm_purge(obj);
650 }
651
i915_ttm_swap_notify(struct ttm_buffer_object * bo)652 static void i915_ttm_swap_notify(struct ttm_buffer_object *bo)
653 {
654 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
655 int ret;
656
657 if (i915_ttm_is_ghost_object(bo))
658 return;
659
660 ret = i915_ttm_move_notify(bo);
661 GEM_WARN_ON(ret);
662 GEM_WARN_ON(obj->ttm.cached_io_rsgt);
663 if (!ret && obj->mm.madv != I915_MADV_WILLNEED)
664 i915_ttm_purge(obj);
665 }
666
667 /**
668 * i915_ttm_resource_mappable - Return true if the ttm resource is CPU
669 * accessible.
670 * @res: The TTM resource to check.
671 *
672 * This is interesting on small-BAR systems where we may encounter lmem objects
673 * that can't be accessed via the CPU.
674 */
i915_ttm_resource_mappable(struct ttm_resource * res)675 bool i915_ttm_resource_mappable(struct ttm_resource *res)
676 {
677 struct i915_ttm_buddy_resource *bman_res = to_ttm_buddy_resource(res);
678
679 if (!i915_ttm_cpu_maps_iomem(res))
680 return true;
681
682 return bman_res->used_visible_size == PFN_UP(bman_res->base.size);
683 }
684
i915_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)685 static int i915_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
686 {
687 struct drm_i915_gem_object *obj = i915_ttm_to_gem(mem->bo);
688 bool unknown_state;
689
690 if (i915_ttm_is_ghost_object(mem->bo))
691 return -EINVAL;
692
693 if (!kref_get_unless_zero(&obj->base.refcount))
694 return -EINVAL;
695
696 assert_object_held(obj);
697
698 unknown_state = i915_gem_object_has_unknown_state(obj);
699 i915_gem_object_put(obj);
700 if (unknown_state)
701 return -EINVAL;
702
703 if (!i915_ttm_cpu_maps_iomem(mem))
704 return 0;
705
706 if (!i915_ttm_resource_mappable(mem))
707 return -EINVAL;
708
709 mem->bus.caching = ttm_write_combined;
710 mem->bus.is_iomem = true;
711
712 return 0;
713 }
714
i915_ttm_io_mem_pfn(struct ttm_buffer_object * bo,unsigned long page_offset)715 static unsigned long i915_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
716 unsigned long page_offset)
717 {
718 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
719 struct scatterlist *sg;
720 unsigned long base;
721 unsigned int ofs;
722
723 GEM_BUG_ON(i915_ttm_is_ghost_object(bo));
724 GEM_WARN_ON(bo->ttm);
725
726 base = obj->mm.region->iomap.base - obj->mm.region->region.start;
727 sg = i915_gem_object_page_iter_get_sg(obj, &obj->ttm.get_io_page, page_offset, &ofs);
728
729 return ((base + sg_dma_address(sg)) >> PAGE_SHIFT) + ofs;
730 }
731
i915_ttm_access_memory(struct ttm_buffer_object * bo,unsigned long offset,void * buf,int len,int write)732 static int i915_ttm_access_memory(struct ttm_buffer_object *bo,
733 unsigned long offset, void *buf,
734 int len, int write)
735 {
736 STUB();
737 return -ENOSYS;
738 #ifdef notyet
739 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
740 resource_size_t iomap = obj->mm.region->iomap.base -
741 obj->mm.region->region.start;
742 unsigned long page = offset >> PAGE_SHIFT;
743 unsigned long bytes_left = len;
744
745 /*
746 * TODO: For now just let it fail if the resource is non-mappable,
747 * otherwise we need to perform the memcpy from the gpu here, without
748 * interfering with the object (like moving the entire thing).
749 */
750 if (!i915_ttm_resource_mappable(bo->resource))
751 return -EIO;
752
753 offset -= page << PAGE_SHIFT;
754 do {
755 unsigned long bytes = min(bytes_left, PAGE_SIZE - offset);
756 void __iomem *ptr;
757 dma_addr_t daddr;
758
759 daddr = i915_gem_object_get_dma_address(obj, page);
760 ptr = ioremap_wc(iomap + daddr + offset, bytes);
761 if (!ptr)
762 return -EIO;
763
764 if (write)
765 memcpy_toio(ptr, buf, bytes);
766 else
767 memcpy_fromio(buf, ptr, bytes);
768 iounmap(ptr);
769
770 page++;
771 buf += bytes;
772 bytes_left -= bytes;
773 offset = 0;
774 } while (bytes_left);
775
776 return len;
777 #endif
778 }
779
780 /*
781 * All callbacks need to take care not to downcast a struct ttm_buffer_object
782 * without checking its subclass, since it might be a TTM ghost object.
783 */
784 static struct ttm_device_funcs i915_ttm_bo_driver = {
785 .ttm_tt_create = i915_ttm_tt_create,
786 .ttm_tt_populate = i915_ttm_tt_populate,
787 .ttm_tt_unpopulate = i915_ttm_tt_unpopulate,
788 .ttm_tt_destroy = i915_ttm_tt_destroy,
789 .eviction_valuable = i915_ttm_eviction_valuable,
790 .evict_flags = i915_ttm_evict_flags,
791 .move = i915_ttm_move,
792 .swap_notify = i915_ttm_swap_notify,
793 .delete_mem_notify = i915_ttm_delete_mem_notify,
794 .io_mem_reserve = i915_ttm_io_mem_reserve,
795 .io_mem_pfn = i915_ttm_io_mem_pfn,
796 .access_memory = i915_ttm_access_memory,
797 };
798
799 /**
800 * i915_ttm_driver - Return a pointer to the TTM device funcs
801 *
802 * Return: Pointer to statically allocated TTM device funcs.
803 */
i915_ttm_driver(void)804 struct ttm_device_funcs *i915_ttm_driver(void)
805 {
806 return &i915_ttm_bo_driver;
807 }
808
__i915_ttm_get_pages(struct drm_i915_gem_object * obj,struct ttm_placement * placement)809 static int __i915_ttm_get_pages(struct drm_i915_gem_object *obj,
810 struct ttm_placement *placement)
811 {
812 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
813 struct ttm_operation_ctx ctx = {
814 .interruptible = true,
815 .no_wait_gpu = false,
816 };
817 int real_num_busy;
818 int ret;
819
820 /* First try only the requested placement. No eviction. */
821 real_num_busy = fetch_and_zero(&placement->num_busy_placement);
822 ret = ttm_bo_validate(bo, placement, &ctx);
823 if (ret) {
824 ret = i915_ttm_err_to_gem(ret);
825 /*
826 * Anything that wants to restart the operation gets to
827 * do that.
828 */
829 if (ret == -EDEADLK || ret == -EINTR || ret == -ERESTARTSYS ||
830 ret == -EAGAIN)
831 return ret;
832
833 /*
834 * If the initial attempt fails, allow all accepted placements,
835 * evicting if necessary.
836 */
837 placement->num_busy_placement = real_num_busy;
838 ret = ttm_bo_validate(bo, placement, &ctx);
839 if (ret)
840 return i915_ttm_err_to_gem(ret);
841 }
842
843 if (bo->ttm && !ttm_tt_is_populated(bo->ttm)) {
844 ret = ttm_tt_populate(bo->bdev, bo->ttm, &ctx);
845 if (ret)
846 return ret;
847
848 i915_ttm_adjust_domains_after_move(obj);
849 i915_ttm_adjust_gem_after_move(obj);
850 }
851
852 if (!i915_gem_object_has_pages(obj)) {
853 struct i915_refct_sgt *rsgt =
854 i915_ttm_resource_get_st(obj, bo->resource);
855
856 if (IS_ERR(rsgt))
857 return PTR_ERR(rsgt);
858
859 GEM_BUG_ON(obj->mm.rsgt);
860 obj->mm.rsgt = rsgt;
861 __i915_gem_object_set_pages(obj, &rsgt->table);
862 }
863
864 GEM_BUG_ON(bo->ttm && ((obj->base.size >> PAGE_SHIFT) < bo->ttm->num_pages));
865 i915_ttm_adjust_lru(obj);
866 return ret;
867 }
868
i915_ttm_get_pages(struct drm_i915_gem_object * obj)869 static int i915_ttm_get_pages(struct drm_i915_gem_object *obj)
870 {
871 struct ttm_place requested, busy[I915_TTM_MAX_PLACEMENTS];
872 struct ttm_placement placement;
873
874 /* restricted by sg_alloc_table */
875 if (overflows_type(obj->base.size >> PAGE_SHIFT, unsigned int))
876 return -E2BIG;
877
878 GEM_BUG_ON(obj->mm.n_placements > I915_TTM_MAX_PLACEMENTS);
879
880 /* Move to the requested placement. */
881 i915_ttm_placement_from_obj(obj, &requested, busy, &placement);
882
883 return __i915_ttm_get_pages(obj, &placement);
884 }
885
886 /**
887 * DOC: Migration vs eviction
888 *
889 * GEM migration may not be the same as TTM migration / eviction. If
890 * the TTM core decides to evict an object it may be evicted to a
891 * TTM memory type that is not in the object's allowable GEM regions, or
892 * in fact theoretically to a TTM memory type that doesn't correspond to
893 * a GEM memory region. In that case the object's GEM region is not
894 * updated, and the data is migrated back to the GEM region at
895 * get_pages time. TTM may however set up CPU ptes to the object even
896 * when it is evicted.
897 * Gem forced migration using the i915_ttm_migrate() op, is allowed even
898 * to regions that are not in the object's list of allowable placements.
899 */
__i915_ttm_migrate(struct drm_i915_gem_object * obj,struct intel_memory_region * mr,unsigned int flags)900 static int __i915_ttm_migrate(struct drm_i915_gem_object *obj,
901 struct intel_memory_region *mr,
902 unsigned int flags)
903 {
904 struct ttm_place requested;
905 struct ttm_placement placement;
906 int ret;
907
908 i915_ttm_place_from_region(mr, &requested, obj->bo_offset,
909 obj->base.size, flags);
910 placement.num_placement = 1;
911 placement.num_busy_placement = 1;
912 placement.placement = &requested;
913 placement.busy_placement = &requested;
914
915 ret = __i915_ttm_get_pages(obj, &placement);
916 if (ret)
917 return ret;
918
919 /*
920 * Reinitialize the region bindings. This is primarily
921 * required for objects where the new region is not in
922 * its allowable placements.
923 */
924 if (obj->mm.region != mr) {
925 i915_gem_object_release_memory_region(obj);
926 i915_gem_object_init_memory_region(obj, mr);
927 }
928
929 return 0;
930 }
931
i915_ttm_migrate(struct drm_i915_gem_object * obj,struct intel_memory_region * mr,unsigned int flags)932 static int i915_ttm_migrate(struct drm_i915_gem_object *obj,
933 struct intel_memory_region *mr,
934 unsigned int flags)
935 {
936 return __i915_ttm_migrate(obj, mr, flags);
937 }
938
i915_ttm_put_pages(struct drm_i915_gem_object * obj,struct sg_table * st)939 static void i915_ttm_put_pages(struct drm_i915_gem_object *obj,
940 struct sg_table *st)
941 {
942 /*
943 * We're currently not called from a shrinker, so put_pages()
944 * typically means the object is about to destroyed, or called
945 * from move_notify(). So just avoid doing much for now.
946 * If the object is not destroyed next, The TTM eviction logic
947 * and shrinkers will move it out if needed.
948 */
949
950 if (obj->mm.rsgt)
951 i915_refct_sgt_put(fetch_and_zero(&obj->mm.rsgt));
952 }
953
954 /**
955 * i915_ttm_adjust_lru - Adjust an object's position on relevant LRU lists.
956 * @obj: The object
957 */
i915_ttm_adjust_lru(struct drm_i915_gem_object * obj)958 void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj)
959 {
960 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
961 struct i915_ttm_tt *i915_tt =
962 container_of(bo->ttm, typeof(*i915_tt), ttm);
963 bool shrinkable =
964 bo->ttm && i915_tt->filp && ttm_tt_is_populated(bo->ttm);
965
966 /*
967 * Don't manipulate the TTM LRUs while in TTM bo destruction.
968 * We're called through i915_ttm_delete_mem_notify().
969 */
970 if (!kref_read(&bo->kref))
971 return;
972
973 /*
974 * We skip managing the shrinker LRU in set_pages() and just manage
975 * everything here. This does at least solve the issue with having
976 * temporary shmem mappings(like with evicted lmem) not being visible to
977 * the shrinker. Only our shmem objects are shrinkable, everything else
978 * we keep as unshrinkable.
979 *
980 * To make sure everything plays nice we keep an extra shrink pin in TTM
981 * if the underlying pages are not currently shrinkable. Once we release
982 * our pin, like when the pages are moved to shmem, the pages will then
983 * be added to the shrinker LRU, assuming the caller isn't also holding
984 * a pin.
985 *
986 * TODO: consider maybe also bumping the shrinker list here when we have
987 * already unpinned it, which should give us something more like an LRU.
988 *
989 * TODO: There is a small window of opportunity for this function to
990 * get called from eviction after we've dropped the last GEM refcount,
991 * but before the TTM deleted flag is set on the object. Avoid
992 * adjusting the shrinker list in such cases, since the object is
993 * not available to the shrinker anyway due to its zero refcount.
994 * To fix this properly we should move to a TTM shrinker LRU list for
995 * these objects.
996 */
997 if (kref_get_unless_zero(&obj->base.refcount)) {
998 if (shrinkable != obj->mm.ttm_shrinkable) {
999 if (shrinkable) {
1000 if (obj->mm.madv == I915_MADV_WILLNEED)
1001 __i915_gem_object_make_shrinkable(obj);
1002 else
1003 __i915_gem_object_make_purgeable(obj);
1004 } else {
1005 i915_gem_object_make_unshrinkable(obj);
1006 }
1007
1008 obj->mm.ttm_shrinkable = shrinkable;
1009 }
1010 i915_gem_object_put(obj);
1011 }
1012
1013 /*
1014 * Put on the correct LRU list depending on the MADV status
1015 */
1016 spin_lock(&bo->bdev->lru_lock);
1017 if (shrinkable) {
1018 /* Try to keep shmem_tt from being considered for shrinking. */
1019 bo->priority = TTM_MAX_BO_PRIORITY - 1;
1020 } else if (obj->mm.madv != I915_MADV_WILLNEED) {
1021 bo->priority = I915_TTM_PRIO_PURGE;
1022 } else if (!i915_gem_object_has_pages(obj)) {
1023 bo->priority = I915_TTM_PRIO_NO_PAGES;
1024 } else {
1025 struct ttm_resource_manager *man =
1026 ttm_manager_type(bo->bdev, bo->resource->mem_type);
1027
1028 /*
1029 * If we need to place an LMEM resource which doesn't need CPU
1030 * access then we should try not to victimize mappable objects
1031 * first, since we likely end up stealing more of the mappable
1032 * portion. And likewise when we try to find space for a mappble
1033 * object, we know not to ever victimize objects that don't
1034 * occupy any mappable pages.
1035 */
1036 if (i915_ttm_cpu_maps_iomem(bo->resource) &&
1037 i915_ttm_buddy_man_visible_size(man) < man->size &&
1038 !(obj->flags & I915_BO_ALLOC_GPU_ONLY))
1039 bo->priority = I915_TTM_PRIO_NEEDS_CPU_ACCESS;
1040 else
1041 bo->priority = I915_TTM_PRIO_HAS_PAGES;
1042 }
1043
1044 ttm_bo_move_to_lru_tail(bo);
1045 spin_unlock(&bo->bdev->lru_lock);
1046 }
1047
1048 /*
1049 * TTM-backed gem object destruction requires some clarification.
1050 * Basically we have two possibilities here. We can either rely on the
1051 * i915 delayed destruction and put the TTM object when the object
1052 * is idle. This would be detected by TTM which would bypass the
1053 * TTM delayed destroy handling. The other approach is to put the TTM
1054 * object early and rely on the TTM destroyed handling, and then free
1055 * the leftover parts of the GEM object once TTM's destroyed list handling is
1056 * complete. For now, we rely on the latter for two reasons:
1057 * a) TTM can evict an object even when it's on the delayed destroy list,
1058 * which in theory allows for complete eviction.
1059 * b) There is work going on in TTM to allow freeing an object even when
1060 * it's not idle, and using the TTM destroyed list handling could help us
1061 * benefit from that.
1062 */
i915_ttm_delayed_free(struct drm_i915_gem_object * obj)1063 static void i915_ttm_delayed_free(struct drm_i915_gem_object *obj)
1064 {
1065 GEM_BUG_ON(!obj->ttm.created);
1066
1067 ttm_bo_put(i915_gem_to_ttm(obj));
1068 }
1069
1070 #ifdef __linux__
1071
vm_fault_ttm(struct vm_fault * vmf)1072 static vm_fault_t vm_fault_ttm(struct vm_fault *vmf)
1073 {
1074 struct vm_area_struct *area = vmf->vma;
1075 struct ttm_buffer_object *bo = area->vm_private_data;
1076 struct drm_device *dev = bo->base.dev;
1077 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
1078 intel_wakeref_t wakeref = 0;
1079 vm_fault_t ret;
1080 int idx;
1081
1082 /* Sanity check that we allow writing into this object */
1083 if (unlikely(i915_gem_object_is_readonly(obj) &&
1084 area->vm_flags & VM_WRITE))
1085 return VM_FAULT_SIGBUS;
1086
1087 ret = ttm_bo_vm_reserve(bo, vmf);
1088 if (ret)
1089 return ret;
1090
1091 if (obj->mm.madv != I915_MADV_WILLNEED) {
1092 dma_resv_unlock(bo->base.resv);
1093 return VM_FAULT_SIGBUS;
1094 }
1095
1096 /*
1097 * This must be swapped out with shmem ttm_tt (pipeline-gutting).
1098 * Calling ttm_bo_validate() here with TTM_PL_SYSTEM should only go as
1099 * far as far doing a ttm_bo_move_null(), which should skip all the
1100 * other junk.
1101 */
1102 if (!bo->resource) {
1103 struct ttm_operation_ctx ctx = {
1104 .interruptible = true,
1105 .no_wait_gpu = true, /* should be idle already */
1106 };
1107 int err;
1108
1109 GEM_BUG_ON(!bo->ttm || !(bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED));
1110
1111 err = ttm_bo_validate(bo, i915_ttm_sys_placement(), &ctx);
1112 if (err) {
1113 dma_resv_unlock(bo->base.resv);
1114 return VM_FAULT_SIGBUS;
1115 }
1116 } else if (!i915_ttm_resource_mappable(bo->resource)) {
1117 int err = -ENODEV;
1118 int i;
1119
1120 for (i = 0; i < obj->mm.n_placements; i++) {
1121 struct intel_memory_region *mr = obj->mm.placements[i];
1122 unsigned int flags;
1123
1124 if (!resource_size(&mr->io) && mr->type != INTEL_MEMORY_SYSTEM)
1125 continue;
1126
1127 flags = obj->flags;
1128 flags &= ~I915_BO_ALLOC_GPU_ONLY;
1129 err = __i915_ttm_migrate(obj, mr, flags);
1130 if (!err)
1131 break;
1132 }
1133
1134 if (err) {
1135 drm_dbg(dev, "Unable to make resource CPU accessible(err = %pe)\n",
1136 ERR_PTR(err));
1137 dma_resv_unlock(bo->base.resv);
1138 ret = VM_FAULT_SIGBUS;
1139 goto out_rpm;
1140 }
1141 }
1142
1143 if (i915_ttm_cpu_maps_iomem(bo->resource))
1144 wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm);
1145
1146 if (drm_dev_enter(dev, &idx)) {
1147 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1148 TTM_BO_VM_NUM_PREFAULT);
1149 drm_dev_exit(idx);
1150 } else {
1151 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1152 }
1153
1154 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1155 goto out_rpm;
1156
1157 /*
1158 * ttm_bo_vm_reserve() already has dma_resv_lock.
1159 * userfault_count is protected by dma_resv lock and rpm wakeref.
1160 */
1161 if (ret == VM_FAULT_NOPAGE && wakeref && !obj->userfault_count) {
1162 obj->userfault_count = 1;
1163 spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1164 list_add(&obj->userfault_link, &to_i915(obj->base.dev)->runtime_pm.lmem_userfault_list);
1165 spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1166
1167 GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(bo->resource));
1168 }
1169
1170 if (wakeref && CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND != 0)
1171 intel_wakeref_auto(&to_i915(obj->base.dev)->runtime_pm.userfault_wakeref,
1172 msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND));
1173
1174 i915_ttm_adjust_lru(obj);
1175
1176 dma_resv_unlock(bo->base.resv);
1177
1178 out_rpm:
1179 if (wakeref)
1180 intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref);
1181
1182 return ret;
1183 }
1184
1185 static int
vm_access_ttm(struct vm_area_struct * area,unsigned long addr,void * buf,int len,int write)1186 vm_access_ttm(struct vm_area_struct *area, unsigned long addr,
1187 void *buf, int len, int write)
1188 {
1189 struct drm_i915_gem_object *obj =
1190 i915_ttm_to_gem(area->vm_private_data);
1191
1192 if (i915_gem_object_is_readonly(obj) && write)
1193 return -EACCES;
1194
1195 return ttm_bo_vm_access(area, addr, buf, len, write);
1196 }
1197
ttm_vm_open(struct vm_area_struct * vma)1198 static void ttm_vm_open(struct vm_area_struct *vma)
1199 {
1200 struct drm_i915_gem_object *obj =
1201 i915_ttm_to_gem(vma->vm_private_data);
1202
1203 GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data));
1204 i915_gem_object_get(obj);
1205 }
1206
ttm_vm_close(struct vm_area_struct * vma)1207 static void ttm_vm_close(struct vm_area_struct *vma)
1208 {
1209 struct drm_i915_gem_object *obj =
1210 i915_ttm_to_gem(vma->vm_private_data);
1211
1212 GEM_BUG_ON(i915_ttm_is_ghost_object(vma->vm_private_data));
1213 i915_gem_object_put(obj);
1214 }
1215
1216 static const struct vm_operations_struct vm_ops_ttm = {
1217 .fault = vm_fault_ttm,
1218 .access = vm_access_ttm,
1219 .open = ttm_vm_open,
1220 .close = ttm_vm_close,
1221 };
1222
1223 #else /* !__linux__ */
1224
1225 static int
1226
vm_fault_ttm(struct uvm_faultinfo * ufi,vaddr_t vaddr,vm_page_t * pps,int npages,int centeridx,vm_fault_t fault_type,vm_prot_t access_type,int flags)1227 vm_fault_ttm(struct uvm_faultinfo *ufi, vaddr_t vaddr, vm_page_t *pps,
1228 int npages, int centeridx, vm_fault_t fault_type,
1229 vm_prot_t access_type, int flags)
1230 {
1231 struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1232 struct ttm_buffer_object *bo = (struct ttm_buffer_object *)uobj;
1233 struct drm_device *dev = bo->base.dev;
1234 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
1235 intel_wakeref_t wakeref = 0;
1236 vm_fault_t ret;
1237 int idx;
1238 int write = !!(access_type & PROT_WRITE);
1239
1240 /* Sanity check that we allow writing into this object */
1241 if (unlikely(i915_gem_object_is_readonly(obj) && write)) {
1242 uvmfault_unlockall(ufi, NULL, &obj->base.uobj);
1243 return VM_PAGER_BAD;
1244 }
1245
1246 ret = ttm_bo_vm_reserve(bo);
1247 if (ret) {
1248 switch (ret) {
1249 case VM_FAULT_NOPAGE:
1250 ret = VM_PAGER_OK;
1251 break;
1252 case VM_FAULT_RETRY:
1253 ret = VM_PAGER_REFAULT;
1254 break;
1255 default:
1256 ret = VM_PAGER_BAD;
1257 break;
1258 }
1259 uvmfault_unlockall(ufi, NULL, &obj->base.uobj);
1260 return ret;
1261 }
1262
1263 if (obj->mm.madv != I915_MADV_WILLNEED) {
1264 dma_resv_unlock(bo->base.resv);
1265 uvmfault_unlockall(ufi, NULL, &obj->base.uobj);
1266 return VM_PAGER_BAD;
1267 }
1268
1269 /*
1270 * This must be swapped out with shmem ttm_tt (pipeline-gutting).
1271 * Calling ttm_bo_validate() here with TTM_PL_SYSTEM should only go as
1272 * far as far doing a ttm_bo_move_null(), which should skip all the
1273 * other junk.
1274 */
1275 if (!bo->resource) {
1276 struct ttm_operation_ctx ctx = {
1277 .interruptible = true,
1278 .no_wait_gpu = true, /* should be idle already */
1279 };
1280 int err;
1281
1282 GEM_BUG_ON(!bo->ttm || !(bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED));
1283
1284 err = ttm_bo_validate(bo, i915_ttm_sys_placement(), &ctx);
1285 if (err) {
1286 dma_resv_unlock(bo->base.resv);
1287 uvmfault_unlockall(ufi, NULL, &obj->base.uobj);
1288 return VM_PAGER_BAD;
1289 }
1290 } else if (!i915_ttm_resource_mappable(bo->resource)) {
1291 int err = -ENODEV;
1292 int i;
1293
1294 for (i = 0; i < obj->mm.n_placements; i++) {
1295 struct intel_memory_region *mr = obj->mm.placements[i];
1296 unsigned int flags;
1297
1298 if (!resource_size(&mr->io) && mr->type != INTEL_MEMORY_SYSTEM)
1299 continue;
1300
1301 flags = obj->flags;
1302 flags &= ~I915_BO_ALLOC_GPU_ONLY;
1303 err = __i915_ttm_migrate(obj, mr, flags);
1304 if (!err)
1305 break;
1306 }
1307
1308 if (err) {
1309 drm_dbg(dev, "Unable to make resource CPU accessible(err = %pe)\n",
1310 ERR_PTR(err));
1311 dma_resv_unlock(bo->base.resv);
1312 ret = VM_FAULT_SIGBUS;
1313 goto out_rpm;
1314 }
1315 }
1316
1317 if (i915_ttm_cpu_maps_iomem(bo->resource))
1318 wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm);
1319
1320 if (drm_dev_enter(dev, &idx)) {
1321 ret = ttm_bo_vm_fault_reserved(ufi, vaddr,
1322 TTM_BO_VM_NUM_PREFAULT, 1);
1323 drm_dev_exit(idx);
1324 } else {
1325 STUB();
1326 #ifdef notyet
1327 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1328 #else
1329 STUB();
1330 ret = VM_FAULT_NOPAGE;
1331 #endif
1332 }
1333 #ifdef __linux__
1334 if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1335 goto out_rpm;
1336 #endif
1337
1338 /*
1339 * ttm_bo_vm_reserve() already has dma_resv_lock.
1340 * userfault_count is protected by dma_resv lock and rpm wakeref.
1341 */
1342 if (ret == VM_FAULT_NOPAGE && wakeref && !obj->userfault_count) {
1343 obj->userfault_count = 1;
1344 spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1345 list_add(&obj->userfault_link, &to_i915(obj->base.dev)->runtime_pm.lmem_userfault_list);
1346 spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1347
1348 GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(bo->resource));
1349 }
1350
1351 if (wakeref & CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND)
1352 intel_wakeref_auto(&to_i915(obj->base.dev)->runtime_pm.userfault_wakeref,
1353 msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND));
1354
1355 i915_ttm_adjust_lru(obj);
1356
1357 dma_resv_unlock(bo->base.resv);
1358
1359 out_rpm:
1360 switch (ret) {
1361 case VM_FAULT_NOPAGE:
1362 ret = VM_PAGER_OK;
1363 break;
1364 case VM_FAULT_RETRY:
1365 ret = VM_PAGER_REFAULT;
1366 break;
1367 default:
1368 ret = VM_PAGER_BAD;
1369 break;
1370 }
1371
1372 if (wakeref)
1373 intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref);
1374
1375 uvmfault_unlockall(ufi, NULL, &obj->base.uobj);
1376
1377 return ret;
1378 }
1379
1380 static void
ttm_vm_reference(struct uvm_object * uobj)1381 ttm_vm_reference(struct uvm_object *uobj)
1382 {
1383 struct drm_i915_gem_object *obj =
1384 i915_ttm_to_gem((struct ttm_buffer_object *)uobj);
1385
1386 i915_gem_object_get(obj);
1387 }
1388
1389 static void
ttm_vm_detach(struct uvm_object * uobj)1390 ttm_vm_detach(struct uvm_object *uobj)
1391 {
1392 struct drm_i915_gem_object *obj =
1393 i915_ttm_to_gem((struct ttm_buffer_object *)uobj);
1394
1395 i915_gem_object_put(obj);
1396 }
1397
1398 const struct uvm_pagerops vm_ops_ttm = {
1399 .pgo_fault = vm_fault_ttm,
1400 .pgo_reference = ttm_vm_reference,
1401 .pgo_detach = ttm_vm_detach,
1402 };
1403
1404 #endif
1405
i915_ttm_mmap_offset(struct drm_i915_gem_object * obj)1406 static u64 i915_ttm_mmap_offset(struct drm_i915_gem_object *obj)
1407 {
1408 /* The ttm_bo must be allocated with I915_BO_ALLOC_USER */
1409 GEM_BUG_ON(!drm_mm_node_allocated(&obj->base.vma_node.vm_node));
1410
1411 return drm_vma_node_offset_addr(&obj->base.vma_node);
1412 }
1413
i915_ttm_unmap_virtual(struct drm_i915_gem_object * obj)1414 static void i915_ttm_unmap_virtual(struct drm_i915_gem_object *obj)
1415 {
1416 struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
1417 intel_wakeref_t wakeref = 0;
1418
1419 assert_object_held_shared(obj);
1420
1421 if (i915_ttm_cpu_maps_iomem(bo->resource)) {
1422 wakeref = intel_runtime_pm_get(&to_i915(obj->base.dev)->runtime_pm);
1423
1424 /* userfault_count is protected by obj lock and rpm wakeref. */
1425 if (obj->userfault_count) {
1426 spin_lock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1427 list_del(&obj->userfault_link);
1428 spin_unlock(&to_i915(obj->base.dev)->runtime_pm.lmem_userfault_lock);
1429 obj->userfault_count = 0;
1430 }
1431 }
1432
1433 GEM_WARN_ON(obj->userfault_count);
1434
1435 ttm_bo_unmap_virtual(i915_gem_to_ttm(obj));
1436
1437 if (wakeref)
1438 intel_runtime_pm_put(&to_i915(obj->base.dev)->runtime_pm, wakeref);
1439 }
1440
1441 static const struct drm_i915_gem_object_ops i915_gem_ttm_obj_ops = {
1442 .name = "i915_gem_object_ttm",
1443 .flags = I915_GEM_OBJECT_IS_SHRINKABLE |
1444 I915_GEM_OBJECT_SELF_MANAGED_SHRINK_LIST,
1445
1446 .get_pages = i915_ttm_get_pages,
1447 .put_pages = i915_ttm_put_pages,
1448 .truncate = i915_ttm_truncate,
1449 .shrink = i915_ttm_shrink,
1450
1451 .adjust_lru = i915_ttm_adjust_lru,
1452 .delayed_free = i915_ttm_delayed_free,
1453 .migrate = i915_ttm_migrate,
1454
1455 .mmap_offset = i915_ttm_mmap_offset,
1456 .unmap_virtual = i915_ttm_unmap_virtual,
1457 .mmap_ops = &vm_ops_ttm,
1458 };
1459
i915_ttm_bo_destroy(struct ttm_buffer_object * bo)1460 void i915_ttm_bo_destroy(struct ttm_buffer_object *bo)
1461 {
1462 struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
1463
1464 i915_gem_object_release_memory_region(obj);
1465 mutex_destroy(&obj->ttm.get_io_page.lock);
1466
1467 if (obj->ttm.created) {
1468 /*
1469 * We freely manage the shrinker LRU outide of the mm.pages life
1470 * cycle. As a result when destroying the object we should be
1471 * extra paranoid and ensure we remove it from the LRU, before
1472 * we free the object.
1473 *
1474 * Touching the ttm_shrinkable outside of the object lock here
1475 * should be safe now that the last GEM object ref was dropped.
1476 */
1477 if (obj->mm.ttm_shrinkable)
1478 i915_gem_object_make_unshrinkable(obj);
1479
1480 i915_ttm_backup_free(obj);
1481
1482 /* This releases all gem object bindings to the backend. */
1483 __i915_gem_free_object(obj);
1484
1485 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
1486 } else {
1487 __i915_gem_object_fini(obj);
1488 }
1489 }
1490
1491 /*
1492 * __i915_gem_ttm_object_init - Initialize a ttm-backed i915 gem object
1493 * @mem: The initial memory region for the object.
1494 * @obj: The gem object.
1495 * @size: Object size in bytes.
1496 * @flags: gem object flags.
1497 *
1498 * Return: 0 on success, negative error code on failure.
1499 */
__i915_gem_ttm_object_init(struct intel_memory_region * mem,struct drm_i915_gem_object * obj,resource_size_t offset,resource_size_t size,resource_size_t page_size,unsigned int flags)1500 int __i915_gem_ttm_object_init(struct intel_memory_region *mem,
1501 struct drm_i915_gem_object *obj,
1502 resource_size_t offset,
1503 resource_size_t size,
1504 resource_size_t page_size,
1505 unsigned int flags)
1506 {
1507 static struct lock_class_key lock_class;
1508 struct drm_i915_private *i915 = mem->i915;
1509 struct ttm_operation_ctx ctx = {
1510 .interruptible = true,
1511 .no_wait_gpu = false,
1512 };
1513 enum ttm_bo_type bo_type;
1514 int ret;
1515
1516 drm_gem_private_object_init(&i915->drm, &obj->base, size);
1517 i915_gem_object_init(obj, &i915_gem_ttm_obj_ops, &lock_class, flags);
1518
1519 obj->bo_offset = offset;
1520
1521 /* Don't put on a region list until we're either locked or fully initialized. */
1522 obj->mm.region = mem;
1523 INIT_LIST_HEAD(&obj->mm.region_link);
1524
1525 INIT_RADIX_TREE(&obj->ttm.get_io_page.radix, GFP_KERNEL | __GFP_NOWARN);
1526 rw_init(&obj->ttm.get_io_page.lock, "i915ttm");
1527 bo_type = (obj->flags & I915_BO_ALLOC_USER) ? ttm_bo_type_device :
1528 ttm_bo_type_kernel;
1529
1530 obj->base.vma_node.driver_private = i915_gem_to_ttm(obj);
1531
1532 /* Forcing the page size is kernel internal only */
1533 GEM_BUG_ON(page_size && obj->mm.n_placements);
1534
1535 /*
1536 * Keep an extra shrink pin to prevent the object from being made
1537 * shrinkable too early. If the ttm_tt is ever allocated in shmem, we
1538 * drop the pin. The TTM backend manages the shrinker LRU itself,
1539 * outside of the normal mm.pages life cycle.
1540 */
1541 i915_gem_object_make_unshrinkable(obj);
1542
1543 /*
1544 * If this function fails, it will call the destructor, but
1545 * our caller still owns the object. So no freeing in the
1546 * destructor until obj->ttm.created is true.
1547 * Similarly, in delayed_destroy, we can't call ttm_bo_put()
1548 * until successful initialization.
1549 */
1550 ret = ttm_bo_init_reserved(&i915->bdev, i915_gem_to_ttm(obj), bo_type,
1551 &i915_sys_placement, page_size >> PAGE_SHIFT,
1552 &ctx, NULL, NULL, i915_ttm_bo_destroy);
1553
1554 /*
1555 * XXX: The ttm_bo_init_reserved() functions returns -ENOSPC if the size
1556 * is too big to add vma. The direct function that returns -ENOSPC is
1557 * drm_mm_insert_node_in_range(). To handle the same error as other code
1558 * that returns -E2BIG when the size is too large, it converts -ENOSPC to
1559 * -E2BIG.
1560 */
1561 if (size >> PAGE_SHIFT > INT_MAX && ret == -ENOSPC)
1562 ret = -E2BIG;
1563
1564 if (ret)
1565 return i915_ttm_err_to_gem(ret);
1566
1567 obj->ttm.created = true;
1568 i915_gem_object_release_memory_region(obj);
1569 i915_gem_object_init_memory_region(obj, mem);
1570 i915_ttm_adjust_domains_after_move(obj);
1571 i915_ttm_adjust_gem_after_move(obj);
1572 i915_gem_object_unlock(obj);
1573
1574 return 0;
1575 }
1576
1577 static const struct intel_memory_region_ops ttm_system_region_ops = {
1578 .init_object = __i915_gem_ttm_object_init,
1579 .release = intel_region_ttm_fini,
1580 };
1581
1582 struct intel_memory_region *
i915_gem_ttm_system_setup(struct drm_i915_private * i915,u16 type,u16 instance)1583 i915_gem_ttm_system_setup(struct drm_i915_private *i915,
1584 u16 type, u16 instance)
1585 {
1586 struct intel_memory_region *mr;
1587
1588 mr = intel_memory_region_create(i915, 0,
1589 totalram_pages() << PAGE_SHIFT,
1590 PAGE_SIZE, 0, 0,
1591 type, instance,
1592 &ttm_system_region_ops);
1593 if (IS_ERR(mr))
1594 return mr;
1595
1596 intel_memory_region_set_name(mr, "system-ttm");
1597 return mr;
1598 }
1599