1 /* $NetBSD: mdb6.c,v 1.7 2022/09/23 12:30:52 christos Exp $ */
2
3 /*
4 * Copyright (C) 2007-2017 by Internet Systems Consortium, Inc. ("ISC")
5 *
6 * This Source Code Form is subject to the terms of the Mozilla Public
7 * License, v. 2.0. If a copy of the MPL was not distributed with this
8 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
11 * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
12 * AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
13 * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
14 * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
15 * OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
16 * PERFORMANCE OF THIS SOFTWARE.
17 */
18
19 #include <sys/cdefs.h>
20 __RCSID("$NetBSD: mdb6.c,v 1.7 2022/09/23 12:30:52 christos Exp $");
21
22
23 /*!
24 * \todo assert()
25 * \todo simplify functions, as pool is now in iaaddr
26 */
27
28 /*! \file server/mdb6.c
29 *
30 * \page ipv6structures IPv6 Structures Overview
31 *
32 * A brief description of the IPv6 structures as reverse engineered.
33 *
34 * There are four major data structures in the lease configuraion.
35 *
36 * - shared_network - The shared network is the outer enclosing scope for a
37 * network region that shares a broadcast domain. It is
38 * composed of one or more subnets all of which are valid
39 * in the given region. The share network may be
40 * explicitly defined or implicitly created if there is
41 * only a subnet statement. This structrure is shared
42 * with v4. Each shared network statment or naked subnet
43 * will map to one of these structures
44 *
45 * - subnet - The subnet structure mostly specifies the address range
46 * that could be valid in a given region. This structute
47 * doesn't include the addresses that the server can delegate
48 * those are in the ipv6_pool. This structure is also shared
49 * with v4. Each subnet statement will map to one of these
50 * structures.
51 *
52 * - ipv6_pond - The pond structure is a grouping of the address and prefix
53 * information via the pointers to the ipv6_pool and the
54 * allowability of this pool for given clinets via the permit
55 * lists and the valid TIMEs. This is equivilent to the v4
56 * pool structure and would have been named ip6_pool except
57 * that the name was already in use. Generally each pool6
58 * statement will map to one of these structures. In addition
59 * there may be one or for each group of naked range6 and
60 * prefix6 statements within a shared network that share
61 * the same group of statements.
62 *
63 * - ipv6_pool - this contains information about a pool of addresses or prefixes
64 * that the server is using. This includes a hash table that
65 * tracks the active items and a pair of heap tables one for
66 * active items and one for non-active items. The heap tables
67 * are used to determine the next items to be modified due to
68 * timing events (expire mostly).
69 *
70 * The linkages then look like this:
71 * \verbatim
72 *+--------------+ +-------------+
73 *|Shared Network| | ipv6_pond |
74 *| group | | group |
75 *| | | permit info |
76 *| | | next ---->
77 *| ponds ---->| |
78 *| |<---- shared |
79 *| Subnets | | pools |
80 *+-----|--------+ +------|------+
81 * | ^ | ^
82 * | | v |
83 * | | +-----------|-+
84 * | | | ipv6_pool | |
85 * | | | type | |
86 * | | | ipv6_pond |
87 * | | | |
88 * | | | next ---->
89 * | | | |
90 * | | | subnet |
91 * | | +-----|-------+
92 * | | |
93 * | | v
94 * | | +-------------+
95 * | | | subnet |
96 * | +---------- shared |
97 * +----------->| |
98 * | group |
99 * +-------------+
100 *
101 * The shared network contains a list of all the subnets that are on a broadcast
102 * doamin. These can be used to determine if an address makes sense in a given
103 * domain, but the subnets do not contain the addresses the server can delegate.
104 * Those are stored in the ponds and pools.
105 *
106 * In the simple case to find an acceptable address the server would first find
107 * the shared network the client is on based on either the interface used to
108 * receive the request or the relay agent's information. From the shared
109 * network the server will walk through it's list of ponds. For each pond it
110 * will evaluate the permit information against the (already done) classification.
111 * If it finds an acceptable pond it will then walk through the pools for that
112 * pond. The server first checks the type of the pool (NA, TA and PD) agaisnt the
113 * request and if they match it attemps to find an address within that pool. On
114 * success the address is used, on failure the server steps to the next pool and
115 * if necessary to the next pond.
116 *
117 * When the server is successful in finding an address it will execute any
118 * statements assocaited with the pond, then the subnet, then the shared
119 * network the group field is for in the above picture).
120 *
121 * In configurations that don't include either a shared network or a pool6
122 * statement (or both) the missing pieces are created.
123 *
124 *
125 * There are three major data structuress involved in the lease database:
126 *
127 * - ipv6_pool - see above
128 * - ia_xx - this contains information about a single IA from a request
129 * normally it will contain one pointer to a lease for the client
130 * but it may contain more in some circumstances. There are 3
131 * hash tables to aid in accessing these one each for NA, TA and PD.
132 * - iasubopt - the v6 lease structure. These are created dynamically when
133 * a client asks for something and will eventually be destroyed
134 * if the client doesn't re-ask for that item. A lease has space
135 * for backpointers to the IA and to the pool to which it belongs.
136 * The pool backpointer is always filled, the IA pointer may not be.
137 *
138 * In normal use we then have something like this:
139 *
140 * \verbatim
141 * ia hash tables
142 * ia_na_active +----------------+
143 * ia_ta_active +------------+ | pool |
144 * ia_pd_active | iasubopt |<--| active hash |
145 * +-----------------+ | aka lease |<--| active heap |
146 * | ia_xx | | pool ptr |-->| |
147 * | iasubopt array |<---| iaptr |<--| inactive heap |
148 * | lease ptr |--->| | | |
149 * +-----------------+ +------------+ +----------------+
150 * \endverbatim
151 *
152 * For the pool either the inactive heap will have a pointer
153 * or both the active heap and the active hash will have pointers.
154 *
155 * I think there are several major items to notice. The first is
156 * that as a lease moves around it will be added to and removed
157 * from the address hash table in the pool and between the active
158 * and inactive hash tables. The hash table and the active heap
159 * are used when the lease is either active or abandoned. The
160 * inactive heap is used for all other states. In particular a
161 * lease that has expired or been released will be cleaned
162 * (DDNS removal etc) and then moved to the inactive heap. After
163 * some time period (currently 1 hour) it will be freed.
164 *
165 * The second is that when a client requests specific addresses,
166 * either because it previously owned them or if the server supplied
167 * them as part of a solicit, the server will try to lookup the ia_xx
168 * associated with the client and find the addresses there. If it
169 * does find appropriate leases it moves them from the old IA to
170 * a new IA and eventually replaces the old IA with the new IA
171 * in the IA hash tables.
172 *
173 */
174 #include "config.h"
175
176 #include <sys/types.h>
177 #include <time.h>
178 #include <netinet/in.h>
179
180 #include <stdarg.h>
181 #include "dhcpd.h"
182 #include "omapip/omapip.h"
183 #include "omapip/hash.h"
184 #include <isc/md.h>
185
186 HASH_FUNCTIONS(ia, unsigned char *, struct ia_xx, ia_hash_t,
187 ia_reference, ia_dereference, do_string_hash)
188
189 ia_hash_t *ia_na_active;
190 ia_hash_t *ia_ta_active;
191 ia_hash_t *ia_pd_active;
192
193 HASH_FUNCTIONS(iasubopt, struct in6_addr *, struct iasubopt, iasubopt_hash_t,
194 iasubopt_reference, iasubopt_dereference, do_string_hash)
195
196 struct ipv6_pool **pools;
197 int num_pools;
198
199 /*
200 * Create a new IAADDR/PREFIX structure.
201 *
202 * - iasubopt must be a pointer to a (struct iasubopt *) pointer previously
203 * initialized to NULL
204 */
205 isc_result_t
iasubopt_allocate(struct iasubopt ** iasubopt,const char * file,int line)206 iasubopt_allocate(struct iasubopt **iasubopt, const char *file, int line) {
207 struct iasubopt *tmp;
208
209 if (iasubopt == NULL) {
210 log_error("%s(%d): NULL pointer reference", file, line);
211 return DHCP_R_INVALIDARG;
212 }
213 if (*iasubopt != NULL) {
214 log_error("%s(%d): non-NULL pointer", file, line);
215 return DHCP_R_INVALIDARG;
216 }
217
218 tmp = dmalloc(sizeof(*tmp), file, line);
219 if (tmp == NULL) {
220 return ISC_R_NOMEMORY;
221 }
222
223 tmp->refcnt = 1;
224 tmp->state = FTS_FREE;
225 tmp->active_index = 0;
226 tmp->inactive_index = 0;
227 tmp->plen = 255;
228
229 *iasubopt = tmp;
230 return ISC_R_SUCCESS;
231 }
232
233 /*
234 * Reference an IAADDR/PREFIX structure.
235 *
236 * - iasubopt must be a pointer to a (struct iasubopt *) pointer previously
237 * initialized to NULL
238 */
239 isc_result_t
iasubopt_reference(struct iasubopt ** iasubopt,struct iasubopt * src,const char * file,int line)240 iasubopt_reference(struct iasubopt **iasubopt, struct iasubopt *src,
241 const char *file, int line) {
242 if (iasubopt == NULL) {
243 log_error("%s(%d): NULL pointer reference", file, line);
244 return DHCP_R_INVALIDARG;
245 }
246 if (*iasubopt != NULL) {
247 log_error("%s(%d): non-NULL pointer", file, line);
248 return DHCP_R_INVALIDARG;
249 }
250 if (src == NULL) {
251 log_error("%s(%d): NULL pointer reference", file, line);
252 return DHCP_R_INVALIDARG;
253 }
254 *iasubopt = src;
255 src->refcnt++;
256 return ISC_R_SUCCESS;
257 }
258
259
260 /*
261 * Dereference an IAADDR/PREFIX structure.
262 *
263 * If it is the last reference, then the memory for the
264 * structure is freed.
265 */
266 isc_result_t
iasubopt_dereference(struct iasubopt ** iasubopt,const char * file,int line)267 iasubopt_dereference(struct iasubopt **iasubopt, const char *file, int line) {
268 struct iasubopt *tmp;
269
270 if ((iasubopt == NULL) || (*iasubopt == NULL)) {
271 log_error("%s(%d): NULL pointer", file, line);
272 return DHCP_R_INVALIDARG;
273 }
274
275 tmp = *iasubopt;
276 *iasubopt = NULL;
277
278 tmp->refcnt--;
279 if (tmp->refcnt < 0) {
280 log_error("%s(%d): negative refcnt", file, line);
281 tmp->refcnt = 0;
282 }
283 if (tmp->refcnt == 0) {
284 if (tmp->ia != NULL) {
285 ia_dereference(&(tmp->ia), file, line);
286 }
287 if (tmp->ipv6_pool != NULL) {
288 ipv6_pool_dereference(&(tmp->ipv6_pool), file, line);
289 }
290 if (tmp->scope != NULL) {
291 binding_scope_dereference(&tmp->scope, file, line);
292 }
293
294 if (tmp->on_star.on_expiry != NULL) {
295 executable_statement_dereference
296 (&tmp->on_star.on_expiry, MDL);
297 }
298 if (tmp->on_star.on_commit != NULL) {
299 executable_statement_dereference
300 (&tmp->on_star.on_commit, MDL);
301 }
302 if (tmp->on_star.on_release != NULL) {
303 executable_statement_dereference
304 (&tmp->on_star.on_release, MDL);
305 }
306
307 dfree(tmp, file, line);
308 }
309
310 return ISC_R_SUCCESS;
311 }
312
313 /*
314 * Make the key that we use for IA.
315 */
316 isc_result_t
ia_make_key(struct data_string * key,u_int32_t iaid,const char * duid,unsigned int duid_len,const char * file,int line)317 ia_make_key(struct data_string *key, u_int32_t iaid,
318 const char *duid, unsigned int duid_len,
319 const char *file, int line) {
320
321 memset(key, 0, sizeof(*key));
322 key->len = duid_len + sizeof(iaid);
323 if (!buffer_allocate(&(key->buffer), key->len, file, line)) {
324 return ISC_R_NOMEMORY;
325 }
326 key->data = key->buffer->data;
327 memcpy((char *)key->data, &iaid, sizeof(iaid));
328 memcpy((char *)key->data + sizeof(iaid), duid, duid_len);
329
330 return ISC_R_SUCCESS;
331 }
332
333 /*
334 * Create a new IA structure.
335 *
336 * - ia must be a pointer to a (struct ia_xx *) pointer previously
337 * initialized to NULL
338 * - iaid and duid are values from the client
339 *
340 * XXXsk: we don't concern ourself with the byte order of the IAID,
341 * which might be a problem if we transfer this structure
342 * between machines of different byte order
343 */
344 isc_result_t
ia_allocate(struct ia_xx ** ia,u_int32_t iaid,const char * duid,unsigned int duid_len,const char * file,int line)345 ia_allocate(struct ia_xx **ia, u_int32_t iaid,
346 const char *duid, unsigned int duid_len,
347 const char *file, int line) {
348 struct ia_xx *tmp;
349
350 if (ia == NULL) {
351 log_error("%s(%d): NULL pointer reference", file, line);
352 return DHCP_R_INVALIDARG;
353 }
354 if (*ia != NULL) {
355 log_error("%s(%d): non-NULL pointer", file, line);
356 return DHCP_R_INVALIDARG;
357 }
358
359 tmp = dmalloc(sizeof(*tmp), file, line);
360 if (tmp == NULL) {
361 return ISC_R_NOMEMORY;
362 }
363
364 if (ia_make_key(&tmp->iaid_duid, iaid,
365 duid, duid_len, file, line) != ISC_R_SUCCESS) {
366 dfree(tmp, file, line);
367 return ISC_R_NOMEMORY;
368 }
369
370 tmp->refcnt = 1;
371
372 *ia = tmp;
373 return ISC_R_SUCCESS;
374 }
375
376 /*
377 * Reference an IA structure.
378 *
379 * - ia must be a pointer to a (struct ia_xx *) pointer previously
380 * initialized to NULL
381 */
382 isc_result_t
ia_reference(struct ia_xx ** ia,struct ia_xx * src,const char * file,int line)383 ia_reference(struct ia_xx **ia, struct ia_xx *src,
384 const char *file, int line) {
385 if (ia == NULL) {
386 log_error("%s(%d): NULL pointer reference", file, line);
387 return DHCP_R_INVALIDARG;
388 }
389 if (*ia != NULL) {
390 log_error("%s(%d): non-NULL pointer", file, line);
391 return DHCP_R_INVALIDARG;
392 }
393 if (src == NULL) {
394 log_error("%s(%d): NULL pointer reference", file, line);
395 return DHCP_R_INVALIDARG;
396 }
397 *ia = src;
398 src->refcnt++;
399 return ISC_R_SUCCESS;
400 }
401
402 /*
403 * Dereference an IA structure.
404 *
405 * If it is the last reference, then the memory for the
406 * structure is freed.
407 */
408 isc_result_t
ia_dereference(struct ia_xx ** ia,const char * file,int line)409 ia_dereference(struct ia_xx **ia, const char *file, int line) {
410 struct ia_xx *tmp;
411 int i;
412
413 if ((ia == NULL) || (*ia == NULL)) {
414 log_error("%s(%d): NULL pointer", file, line);
415 return DHCP_R_INVALIDARG;
416 }
417
418 tmp = *ia;
419 *ia = NULL;
420
421 tmp->refcnt--;
422 if (tmp->refcnt < 0) {
423 log_error("%s(%d): negative refcnt", file, line);
424 tmp->refcnt = 0;
425 }
426 if (tmp->refcnt == 0) {
427 if (tmp->iasubopt != NULL) {
428 for (i=0; i<tmp->num_iasubopt; i++) {
429 iasubopt_dereference(&(tmp->iasubopt[i]),
430 file, line);
431 }
432 dfree(tmp->iasubopt, file, line);
433 }
434 data_string_forget(&(tmp->iaid_duid), file, line);
435 dfree(tmp, file, line);
436 }
437 return ISC_R_SUCCESS;
438 }
439
440
441 /*
442 * Add an IAADDR/PREFIX entry to an IA structure.
443 */
444 isc_result_t
ia_add_iasubopt(struct ia_xx * ia,struct iasubopt * iasubopt,const char * file,int line)445 ia_add_iasubopt(struct ia_xx *ia, struct iasubopt *iasubopt,
446 const char *file, int line) {
447 int max;
448 struct iasubopt **new;
449
450 /*
451 * Grow our array if we need to.
452 *
453 * Note: we pick 4 as the increment, as that seems a reasonable
454 * guess as to how many addresses/prefixes we might expect
455 * on an interface.
456 */
457 if (ia->max_iasubopt <= ia->num_iasubopt) {
458 max = ia->max_iasubopt + 4;
459 new = dmalloc(max * sizeof(struct iasubopt *), file, line);
460 if (new == NULL) {
461 return ISC_R_NOMEMORY;
462 }
463 memcpy(new, ia->iasubopt,
464 ia->num_iasubopt * sizeof(struct iasubopt *));
465 ia->iasubopt = new;
466 ia->max_iasubopt = max;
467 }
468
469 iasubopt_reference(&(ia->iasubopt[ia->num_iasubopt]), iasubopt,
470 file, line);
471 ia->num_iasubopt++;
472
473 return ISC_R_SUCCESS;
474 }
475
476 /*
477 * Remove an IAADDR/PREFIX entry to an IA structure.
478 *
479 * Note: if a suboption appears more than once, then only ONE will be removed.
480 */
481 void
ia_remove_iasubopt(struct ia_xx * ia,struct iasubopt * iasubopt,const char * file,int line)482 ia_remove_iasubopt(struct ia_xx *ia, struct iasubopt *iasubopt,
483 const char *file, int line) {
484 int i, j;
485 if (ia == NULL || iasubopt == NULL)
486 return;
487
488 for (i=0; i<ia->num_iasubopt; i++) {
489 if (ia->iasubopt[i] == iasubopt) {
490 /* remove this sub option */
491 iasubopt_dereference(&(ia->iasubopt[i]), file, line);
492 /* move remaining suboption pointers down one */
493 for (j=i+1; j < ia->num_iasubopt; j++) {
494 ia->iasubopt[j-1] = ia->iasubopt[j];
495 }
496 /* decrease our total count */
497 /* remove the back-reference in the suboption itself */
498 ia_dereference(&iasubopt->ia, file, line);
499 ia->num_iasubopt--;
500 return;
501 }
502 }
503 log_error("%s(%d): IAADDR/PREFIX not in IA", file, line);
504 }
505
506 /*
507 * Remove all addresses/prefixes from an IA.
508 */
509 void
ia_remove_all_lease(struct ia_xx * ia,const char * file,int line)510 ia_remove_all_lease(struct ia_xx *ia, const char *file, int line) {
511 int i;
512
513 for (i=0; i<ia->num_iasubopt; i++) {
514 ia_dereference(&(ia->iasubopt[i]->ia), file, line);
515 iasubopt_dereference(&(ia->iasubopt[i]), file, line);
516 }
517 ia->num_iasubopt = 0;
518 }
519
520 /*
521 * Compare two IA.
522 */
523 isc_boolean_t
ia_equal(const struct ia_xx * a,const struct ia_xx * b)524 ia_equal(const struct ia_xx *a, const struct ia_xx *b)
525 {
526 isc_boolean_t found;
527 int i, j;
528
529 /*
530 * Handle cases where one or both of the inputs is NULL.
531 */
532 if (a == NULL) {
533 if (b == NULL) {
534 return ISC_TRUE;
535 } else {
536 return ISC_FALSE;
537 }
538 }
539
540 /*
541 * Check the type is the same.
542 */
543 if (a->ia_type != b->ia_type) {
544 return ISC_FALSE;
545 }
546
547 /*
548 * Check the DUID is the same.
549 */
550 if (a->iaid_duid.len != b->iaid_duid.len) {
551 return ISC_FALSE;
552 }
553 if (memcmp(a->iaid_duid.data,
554 b->iaid_duid.data, a->iaid_duid.len) != 0) {
555 return ISC_FALSE;
556 }
557
558 /*
559 * Make sure we have the same number of addresses/prefixes in each.
560 */
561 if (a->num_iasubopt != b->num_iasubopt) {
562 return ISC_FALSE;
563 }
564
565 /*
566 * Check that each address/prefix is present in both.
567 */
568 for (i=0; i<a->num_iasubopt; i++) {
569 found = ISC_FALSE;
570 for (j=0; j<a->num_iasubopt; j++) {
571 if (a->iasubopt[i]->plen != b->iasubopt[i]->plen)
572 continue;
573 if (memcmp(&(a->iasubopt[i]->addr),
574 &(b->iasubopt[j]->addr),
575 sizeof(struct in6_addr)) == 0) {
576 found = ISC_TRUE;
577 break;
578 }
579 }
580 if (!found) {
581 return ISC_FALSE;
582 }
583 }
584
585 /*
586 * These are the same in every way we care about.
587 */
588 return ISC_TRUE;
589 }
590
591 /*
592 * Helper function for lease heaps.
593 * Makes the top of the heap the oldest lease.
594 */
595 static isc_boolean_t
lease_older(void * a,void * b)596 lease_older(void *a, void *b) {
597 struct iasubopt *la = (struct iasubopt *)a;
598 struct iasubopt *lb = (struct iasubopt *)b;
599
600 if (la->hard_lifetime_end_time == lb->hard_lifetime_end_time) {
601 return difftime(la->soft_lifetime_end_time,
602 lb->soft_lifetime_end_time) < 0;
603 } else {
604 return difftime(la->hard_lifetime_end_time,
605 lb->hard_lifetime_end_time) < 0;
606 }
607 }
608
609 /*
610 * Helper functions for lease address/prefix heaps.
611 * Callback when an address's position in the heap changes.
612 */
613 static void
active_changed(void * iasubopt,unsigned int new_heap_index)614 active_changed(void *iasubopt, unsigned int new_heap_index) {
615 ((struct iasubopt *)iasubopt)->active_index = new_heap_index;
616 }
617
618 static void
inactive_changed(void * iasubopt,unsigned int new_heap_index)619 inactive_changed(void *iasubopt, unsigned int new_heap_index) {
620 ((struct iasubopt *)iasubopt)->inactive_index = new_heap_index;
621 }
622
623 /*!
624 *
625 * \brief Create a new IPv6 lease pool structure
626 *
627 * Allocate space for a new ipv6_pool structure and return a reference
628 * to it, includes setting the reference count to 1.
629 *
630 * \param pool = space for returning a referenced pointer to the pool.
631 * This must point to a space that has been initialzied
632 * to NULL by the caller.
633 * \param[in] type = The type of the pool NA, TA or PD
634 * \param[in] start_addr = The first address in the range for the pool
635 * \param[in] bits = The contiguous bits of the pool
636
637 *
638 * \return
639 * ISC_R_SUCCESS = The pool was successfully created, pool points to it.
640 * DHCP_R_INVALIDARG = One of the arugments was invalid, pool has not been
641 * modified
642 * ISC_R_NOMEMORY = The system wasn't able to allocate memory, pool has
643 * not been modified.
644 */
645 isc_result_t
ipv6_pool_allocate(struct ipv6_pool ** pool,u_int16_t type,const struct in6_addr * start_addr,int bits,int units,const char * file,int line)646 ipv6_pool_allocate(struct ipv6_pool **pool, u_int16_t type,
647 const struct in6_addr *start_addr, int bits,
648 int units, const char *file, int line) {
649 struct ipv6_pool *tmp;
650
651 if (pool == NULL) {
652 log_error("%s(%d): NULL pointer reference", file, line);
653 return DHCP_R_INVALIDARG;
654 }
655 if (*pool != NULL) {
656 log_error("%s(%d): non-NULL pointer", file, line);
657 return DHCP_R_INVALIDARG;
658 }
659
660 tmp = dmalloc(sizeof(*tmp), file, line);
661 if (tmp == NULL) {
662 return ISC_R_NOMEMORY;
663 }
664
665 tmp->refcnt = 1;
666 tmp->pool_type = type;
667 tmp->start_addr = *start_addr;
668 tmp->bits = bits;
669 tmp->units = units;
670 if (!iasubopt_new_hash(&tmp->leases, DEFAULT_HASH_SIZE, file, line)) {
671 dfree(tmp, file, line);
672 return ISC_R_NOMEMORY;
673 }
674 isc_heap_create(dhcp_gbl_ctx.mctx, lease_older, active_changed,
675 0, &(tmp->active_timeouts));
676 isc_heap_create(dhcp_gbl_ctx.mctx, lease_older, inactive_changed,
677 0, &(tmp->inactive_timeouts));
678
679 *pool = tmp;
680 return ISC_R_SUCCESS;
681 }
682
683 /*!
684 *
685 * \brief reference an IPv6 pool structure.
686 *
687 * This function genreates a reference to an ipv6_pool structure
688 * and increments the reference count on the structure.
689 *
690 * \param[out] pool = space for returning a referenced pointer to the pool.
691 * This must point to a space that has been initialzied
692 * to NULL by the caller.
693 * \param[in] src = A pointer to the pool to reference. This must not be
694 * NULL.
695 *
696 * \return
697 * ISC_R_SUCCESS = The pool was successfully referenced, pool now points
698 * to src.
699 * DHCP_R_INVALIDARG = One of the arugments was invalid, pool has not been
700 * modified.
701 */
702 isc_result_t
ipv6_pool_reference(struct ipv6_pool ** pool,struct ipv6_pool * src,const char * file,int line)703 ipv6_pool_reference(struct ipv6_pool **pool, struct ipv6_pool *src,
704 const char *file, int line) {
705 if (pool == NULL) {
706 log_error("%s(%d): NULL pointer reference", file, line);
707 return DHCP_R_INVALIDARG;
708 }
709 if (*pool != NULL) {
710 log_error("%s(%d): non-NULL pointer", file, line);
711 return DHCP_R_INVALIDARG;
712 }
713 if (src == NULL) {
714 log_error("%s(%d): NULL pointer reference", file, line);
715 return DHCP_R_INVALIDARG;
716 }
717 *pool = src;
718 src->refcnt++;
719 return ISC_R_SUCCESS;
720 }
721
722 /*
723 * Note: Each IAADDR/PREFIX in a pool is referenced by the pool. This is needed
724 * to prevent the lease from being garbage collected out from under the
725 * pool.
726 *
727 * The references are made from the hash and from the heap. The following
728 * helper functions dereference these when a pool is destroyed.
729 */
730
731 /*
732 * Helper function for pool cleanup.
733 * Dereference each of the hash entries in a pool.
734 */
735 static isc_result_t
dereference_hash_entry(const void * name,unsigned len,void * value)736 dereference_hash_entry(const void *name, unsigned len, void *value) {
737 struct iasubopt *iasubopt = (struct iasubopt *)value;
738
739 iasubopt_dereference(&iasubopt, MDL);
740 return ISC_R_SUCCESS;
741 }
742
743 /*
744 * Helper function for pool cleanup.
745 * Dereference each of the heap entries in a pool.
746 */
747 static void
dereference_heap_entry(void * value,void * dummy)748 dereference_heap_entry(void *value, void *dummy) {
749 struct iasubopt *iasubopt = (struct iasubopt *)value;
750
751 iasubopt_dereference(&iasubopt, MDL);
752 }
753
754 /*!
755 *
756 * \brief de-reference an IPv6 pool structure.
757 *
758 * This function decrements the reference count in an ipv6_pool structure.
759 * If this was the last reference then the memory for the structure is
760 * freed.
761 *
762 * \param[in] pool = A pointer to the pointer to the pool that should be
763 * de-referenced. On success the pointer to the pool
764 * is cleared. It must not be NULL and must not point
765 * to NULL.
766 *
767 * \return
768 * ISC_R_SUCCESS = The pool was successfully de-referenced, pool now points
769 * to NULL
770 * DHCP_R_INVALIDARG = One of the arugments was invalid, pool has not been
771 * modified.
772 */
773 isc_result_t
ipv6_pool_dereference(struct ipv6_pool ** pool,const char * file,int line)774 ipv6_pool_dereference(struct ipv6_pool **pool, const char *file, int line) {
775 struct ipv6_pool *tmp;
776
777 if ((pool == NULL) || (*pool == NULL)) {
778 log_error("%s(%d): NULL pointer", file, line);
779 return DHCP_R_INVALIDARG;
780 }
781
782 tmp = *pool;
783 *pool = NULL;
784
785 tmp->refcnt--;
786 if (tmp->refcnt < 0) {
787 log_error("%s(%d): negative refcnt", file, line);
788 tmp->refcnt = 0;
789 }
790 if (tmp->refcnt == 0) {
791 iasubopt_hash_foreach(tmp->leases, dereference_hash_entry);
792 iasubopt_free_hash_table(&(tmp->leases), file, line);
793 isc_heap_foreach(tmp->active_timeouts,
794 dereference_heap_entry, NULL);
795 isc_heap_destroy(&(tmp->active_timeouts));
796 isc_heap_foreach(tmp->inactive_timeouts,
797 dereference_heap_entry, NULL);
798 isc_heap_destroy(&(tmp->inactive_timeouts));
799 dfree(tmp, file, line);
800 }
801
802 return ISC_R_SUCCESS;
803 }
804
805 /*
806 * Create an address by hashing the input, and using that for
807 * the non-network part.
808 */
809 static void
build_address6(struct in6_addr * addr,const struct in6_addr * net_start_addr,int net_bits,const struct data_string * input)810 build_address6(struct in6_addr *addr,
811 const struct in6_addr *net_start_addr, int net_bits,
812 const struct data_string *input) {
813 int net_bytes;
814 int i;
815 unsigned int len;
816 char *str;
817 const char *net_str;
818
819 isc_md(ISC_MD_MD5, input->data, input->len, (void *)addr, &len);
820
821 /*
822 * Copy the [0..128] network bits over.
823 */
824 str = (char *)addr;
825 net_str = (const char *)net_start_addr;
826 net_bytes = net_bits / 8;
827 for (i = 0; i < net_bytes; i++) {
828 str[i] = net_str[i];
829 }
830 switch (net_bits % 8) {
831 case 1: str[i] = (str[i] & 0x7F) | (net_str[i] & 0x80); break;
832 case 2: str[i] = (str[i] & 0x3F) | (net_str[i] & 0xC0); break;
833 case 3: str[i] = (str[i] & 0x1F) | (net_str[i] & 0xE0); break;
834 case 4: str[i] = (str[i] & 0x0F) | (net_str[i] & 0xF0); break;
835 case 5: str[i] = (str[i] & 0x07) | (net_str[i] & 0xF8); break;
836 case 6: str[i] = (str[i] & 0x03) | (net_str[i] & 0xFC); break;
837 case 7: str[i] = (str[i] & 0x01) | (net_str[i] & 0xFE); break;
838 }
839
840 /*
841 * Set the universal/local bit ("u bit") to zero for /64s. The
842 * individual/group bit ("g bit") is unchanged, because the g-bit
843 * has no meaning when the u-bit is cleared.
844 */
845 if (net_bits == 64)
846 str[8] &= ~0x02;
847 }
848
849 #ifdef EUI_64
850 int
valid_eui_64_duid(const struct data_string * uid,int offset)851 valid_eui_64_duid(const struct data_string* uid, int offset) {
852 if (uid->len == (offset + EUI_64_ID_LEN)) {
853 const unsigned char* duid = uid->data + offset;
854 return (((duid[0] == 0x00 && duid[1] == 0x03) &&
855 (duid[2] == 0x00 && duid[3] == 0x1b)));
856 }
857
858 return(0);
859 }
860
861
862 /*
863 * Create an EUI-64 address
864 */
865 static isc_result_t
build_address6_eui_64(struct in6_addr * addr,const struct in6_addr * net_start_addr,int net_bits,const struct data_string * iaid_duid,int duid_beg)866 build_address6_eui_64(struct in6_addr *addr,
867 const struct in6_addr *net_start_addr, int net_bits,
868 const struct data_string *iaid_duid, int duid_beg) {
869
870 if (net_bits != 64) {
871 log_error("build_address_eui_64: network is not 64 bits");
872 return (ISC_R_FAILURE);
873 }
874
875 if (valid_eui_64_duid(iaid_duid, duid_beg)) {
876 const unsigned char *duid = iaid_duid->data + duid_beg;
877
878 /* copy network prefix to the high 64 bits */
879 memcpy(addr->s6_addr, net_start_addr->s6_addr, 8);
880
881 /* copy Link-layer address to low 64 bits */
882 memcpy(addr->s6_addr + 8, duid + 4, 8);
883
884 /* RFC-3315 Any address assigned by a server that is based
885 * on an EUI-64 identifier MUST include an interface identifier
886 * with the "u" (universal/local) and "g" (individual/group)
887 * bits of the interface identifier set appropriately, as
888 * indicated in section 2.5.1 of RFC 2373 [5]. */
889 addr->s6_addr[8] |= 0x02;
890 return (ISC_R_SUCCESS);
891 }
892
893 log_error("build_address_eui_64: iaid_duid not a valid EUI-64: %s",
894 print_hex_1(iaid_duid->len, iaid_duid->data, 60));
895 return (ISC_R_FAILURE);
896 }
897
898 int
valid_for_eui_64_pool(struct ipv6_pool * pool,struct data_string * uid,int duid_beg,struct in6_addr * ia_addr)899 valid_for_eui_64_pool(struct ipv6_pool* pool, struct data_string* uid,
900 int duid_beg, struct in6_addr* ia_addr) {
901 struct in6_addr test_addr;
902 /* If it's not an EUI-64 pool bail */
903 if (!pool->ipv6_pond->use_eui_64) {
904 return (0);
905 }
906
907 if (!valid_eui_64_duid(uid, duid_beg)) {
908 /* Dynamic lease in a now eui_64 pond, toss it*/
909 return (0);
910 }
911
912 /* Call build_address6_eui_64() and compare it's result to
913 * this lease and see if they match. */
914 memset (&test_addr, 0, sizeof(test_addr));
915 build_address6_eui_64(&test_addr, &pool->start_addr, pool->bits,
916 uid, duid_beg);
917
918 return (!memcmp(ia_addr, &test_addr, sizeof(test_addr)));
919 }
920 #endif
921
922
923 /*
924 * Create a temporary address by a variant of RFC 4941 algo.
925 * Note: this should not be used for prefixes shorter than 64 bits.
926 */
927 static void
build_temporary6(struct in6_addr * addr,const struct in6_addr * net_start_addr,int net_bits,const struct data_string * input)928 build_temporary6(struct in6_addr *addr,
929 const struct in6_addr *net_start_addr, int net_bits,
930 const struct data_string *input) {
931 static u_int32_t history[2];
932 static u_int32_t counter = 0;
933 unsigned char md[16] = {0};
934 unsigned int len;
935
936 /*
937 * First time/time to reseed.
938 * Please use a good pseudo-random generator here!
939 */
940 if (counter == 0) {
941 history[0] = arc4random();
942 history[1] = arc4random();
943 }
944
945 /*
946 * Use MD5 as recommended by RFC 4941.
947 */
948 isc_md(ISC_MD_MD5, input->data, input->len, (void *)&history[0], &len);
949
950 /*
951 * Build the address.
952 */
953 if (net_bits == 64) {
954 memcpy(&addr->s6_addr[0], &net_start_addr->s6_addr[0], 8);
955 memcpy(&addr->s6_addr[8], md, 8);
956 addr->s6_addr[8] &= ~0x02;
957 } else {
958 int net_bytes;
959 int i;
960 char *str;
961 const char *net_str;
962
963 /*
964 * Copy the [0..128] network bits over.
965 */
966 str = (char *)addr;
967 net_str = (const char *)net_start_addr;
968 net_bytes = net_bits / 8;
969 for (i = 0; i < net_bytes; i++) {
970 str[i] = net_str[i];
971 }
972 memcpy(str + net_bytes, md, 16 - net_bytes);
973 switch (net_bits % 8) {
974 case 1: str[i] = (str[i] & 0x7F) | (net_str[i] & 0x80); break;
975 case 2: str[i] = (str[i] & 0x3F) | (net_str[i] & 0xC0); break;
976 case 3: str[i] = (str[i] & 0x1F) | (net_str[i] & 0xE0); break;
977 case 4: str[i] = (str[i] & 0x0F) | (net_str[i] & 0xF0); break;
978 case 5: str[i] = (str[i] & 0x07) | (net_str[i] & 0xF8); break;
979 case 6: str[i] = (str[i] & 0x03) | (net_str[i] & 0xFC); break;
980 case 7: str[i] = (str[i] & 0x01) | (net_str[i] & 0xFE); break;
981 }
982 }
983
984
985 /*
986 * Save history for the next call.
987 */
988 memcpy((unsigned char *)&history[0], md + 8, 8);
989 counter++;
990 }
991
992 /* Reserved Subnet Router Anycast ::0:0:0:0. */
993 static struct in6_addr rtany;
994 /* Reserved Subnet Anycasts ::fdff:ffff:ffff:ff80-::fdff:ffff:ffff:ffff. */
995 static struct in6_addr resany;
996
997 /*
998 * Create a lease for the given address and client duid.
999 *
1000 * - pool must be a pointer to a (struct ipv6_pool *) pointer previously
1001 * initialized to NULL
1002 *
1003 * Right now we simply hash the DUID, and if we get a collision, we hash
1004 * again until we find a free address. We try this a fixed number of times,
1005 * to avoid getting stuck in a loop (this is important on small pools
1006 * where we can run out of space).
1007 *
1008 * We return the number of attempts that it took to find an available
1009 * lease. This tells callers when a pool is are filling up, as
1010 * well as an indication of how full the pool is; statistically the
1011 * more full a pool is the more attempts must be made before finding
1012 * a free lease. Realistically this will only happen in very full
1013 * pools.
1014 *
1015 * We probably want different algorithms depending on the network size, in
1016 * the long term.
1017 */
1018 isc_result_t
create_lease6(struct ipv6_pool * pool,struct iasubopt ** addr,unsigned int * attempts,const struct data_string * uid,time_t soft_lifetime_end_time)1019 create_lease6(struct ipv6_pool *pool, struct iasubopt **addr,
1020 unsigned int *attempts,
1021 const struct data_string *uid, time_t soft_lifetime_end_time) {
1022 struct data_string ds;
1023 struct in6_addr tmp;
1024 struct iasubopt *test_iaaddr;
1025 struct data_string new_ds;
1026 struct iasubopt *iaaddr;
1027 isc_result_t result;
1028 isc_boolean_t reserved_iid;
1029 static isc_boolean_t init_resiid = ISC_FALSE;
1030
1031 /*
1032 * Fill the reserved IIDs.
1033 */
1034 if (!init_resiid) {
1035 memset(&rtany, 0, 16);
1036 memset(&resany, 0, 8);
1037 resany.s6_addr[8] = 0xfd;
1038 memset(&resany.s6_addr[9], 0xff, 6);
1039 init_resiid = ISC_TRUE;
1040 }
1041
1042 /*
1043 * Use the UID as our initial seed for the hash
1044 */
1045 memset(&ds, 0, sizeof(ds));
1046 data_string_copy(&ds, (struct data_string *)uid, MDL);
1047
1048 *attempts = 0;
1049 for (;;) {
1050 /*
1051 * Give up at some point.
1052 */
1053 if (++(*attempts) > 100) {
1054 data_string_forget(&ds, MDL);
1055 return ISC_R_NORESOURCES;
1056 }
1057
1058 /*
1059 * Build a resource.
1060 */
1061 switch (pool->pool_type) {
1062 case D6O_IA_NA:
1063 /* address */
1064 build_address6(&tmp, &pool->start_addr,
1065 pool->bits, &ds);
1066 break;
1067 case D6O_IA_TA:
1068 /* temporary address */
1069 build_temporary6(&tmp, &pool->start_addr,
1070 pool->bits, &ds);
1071 break;
1072 case D6O_IA_PD:
1073 /* prefix */
1074 log_error("create_lease6: prefix pool.");
1075 data_string_forget(&ds, MDL);
1076 return DHCP_R_INVALIDARG;
1077 default:
1078 log_error("create_lease6: untyped pool.");
1079 data_string_forget(&ds, MDL);
1080 return DHCP_R_INVALIDARG;
1081 }
1082
1083 /*
1084 * Avoid reserved interface IDs. (cf. RFC 5453)
1085 */
1086 reserved_iid = ISC_FALSE;
1087 if (memcmp(&tmp.s6_addr[8], &rtany.s6_addr[8], 8) == 0) {
1088 reserved_iid = ISC_TRUE;
1089 }
1090 if (!reserved_iid &&
1091 (memcmp(&tmp.s6_addr[8], &resany.s6_addr[8], 7) == 0) &&
1092 ((tmp.s6_addr[15] & 0x80) == 0x80)) {
1093 reserved_iid = ISC_TRUE;
1094 }
1095
1096 /*
1097 * If this address is not in use, we're happy with it
1098 */
1099 test_iaaddr = NULL;
1100 if (!reserved_iid &&
1101 (iasubopt_hash_lookup(&test_iaaddr, pool->leases,
1102 &tmp, sizeof(tmp), MDL) == 0)) {
1103 break;
1104 }
1105 if (test_iaaddr != NULL)
1106 iasubopt_dereference(&test_iaaddr, MDL);
1107
1108 /*
1109 * Otherwise, we create a new input, adding the address
1110 */
1111 memset(&new_ds, 0, sizeof(new_ds));
1112 new_ds.len = ds.len + sizeof(tmp);
1113 if (!buffer_allocate(&new_ds.buffer, new_ds.len, MDL)) {
1114 data_string_forget(&ds, MDL);
1115 return ISC_R_NOMEMORY;
1116 }
1117 new_ds.data = new_ds.buffer->data;
1118 memcpy(new_ds.buffer->data, ds.data, ds.len);
1119 memcpy(new_ds.buffer->data + ds.len, &tmp, sizeof(tmp));
1120 data_string_forget(&ds, MDL);
1121 data_string_copy(&ds, &new_ds, MDL);
1122 data_string_forget(&new_ds, MDL);
1123 }
1124
1125 data_string_forget(&ds, MDL);
1126
1127 /*
1128 * We're happy with the address, create an IAADDR
1129 * to hold it.
1130 */
1131 iaaddr = NULL;
1132 result = iasubopt_allocate(&iaaddr, MDL);
1133 if (result != ISC_R_SUCCESS) {
1134 return result;
1135 }
1136 iaaddr->plen = 0;
1137 memcpy(&iaaddr->addr, &tmp, sizeof(iaaddr->addr));
1138
1139 /*
1140 * Add the lease to the pool (note state is free, not active?!).
1141 */
1142 result = add_lease6(pool, iaaddr, soft_lifetime_end_time);
1143 if (result == ISC_R_SUCCESS) {
1144 iasubopt_reference(addr, iaaddr, MDL);
1145 }
1146 iasubopt_dereference(&iaaddr, MDL);
1147 return result;
1148 }
1149
1150 #ifdef EUI_64
1151 /*!
1152 * \brief Assign an EUI-64 address from a pool for a given iaid-duid
1153 *
1154 * \param pool - pool from which the address is assigned
1155 * \param iaddr - pointer to the iasubopt to contain the assigned address is
1156 * \param uid - data_string containing the iaid-duid tuple
1157 * \param soft_lifetime_end_time - lifetime of the lease for a solicit?
1158 *
1159 * \return status indicating success or nature of the failure
1160 */
1161 isc_result_t
create_lease6_eui_64(struct ipv6_pool * pool,struct iasubopt ** addr,const struct data_string * uid,time_t soft_lifetime_end_time)1162 create_lease6_eui_64(struct ipv6_pool *pool, struct iasubopt **addr,
1163 const struct data_string *uid,
1164 time_t soft_lifetime_end_time) {
1165 struct in6_addr tmp;
1166 struct iasubopt *test_iaaddr;
1167 struct iasubopt *iaaddr;
1168 isc_result_t result;
1169 static isc_boolean_t init_resiid = ISC_FALSE;
1170
1171 /* Fill the reserved IIDs. */
1172 if (!init_resiid) {
1173 memset(&rtany, 0, 16);
1174 memset(&resany, 0, 8);
1175 resany.s6_addr[8] = 0xfd;
1176 memset(&resany.s6_addr[9], 0xff, 6);
1177 init_resiid = ISC_TRUE;
1178 }
1179
1180 /* Pool must be IA_NA */
1181 if (pool->pool_type != D6O_IA_NA) {
1182 log_error("create_lease6_eui_64: pool type is not IA_NA.");
1183 return (DHCP_R_INVALIDARG);
1184 }
1185
1186 /* Attempt to build the address */
1187 if (build_address6_eui_64 (&tmp, &pool->start_addr, pool->bits,
1188 uid, IAID_LEN) != ISC_R_SUCCESS) {
1189 log_error("create_lease6_eui_64: build_address6_eui_64 failed");
1190 return (ISC_R_FAILURE);
1191 }
1192
1193 /* Avoid reserved interface IDs. (cf. RFC 5453) */
1194 if ((memcmp(&tmp.s6_addr[8], &rtany.s6_addr[8], 8) == 0) ||
1195 ((memcmp(&tmp.s6_addr[8], &resany.s6_addr[8], 7) == 0) &&
1196 ((tmp.s6_addr[15] & 0x80) == 0x80))) {
1197 log_error("create_lease6_eui_64: "
1198 "address conflicts with reserved IID");
1199 return (ISC_R_FAILURE);
1200 }
1201
1202 /* If this address is not in use, we're happy with it */
1203 test_iaaddr = NULL;
1204 if (iasubopt_hash_lookup(&test_iaaddr, pool->leases,
1205 &tmp, sizeof(tmp), MDL) != 0) {
1206
1207 /* See if it's ours. Static leases won't have an ia */
1208 int ours = 0;
1209 if (!test_iaaddr->ia) {
1210 log_error("create_lease6_eui_64: "
1211 "address %s is assigned to static lease",
1212 pin6_addr(&test_iaaddr->addr));
1213 } else {
1214 /* Not sure if this can actually happen */
1215 struct data_string* found = &test_iaaddr->ia->iaid_duid;
1216 ours = ((found->len == uid->len) &&
1217 (!memcmp(found->data, uid->data, uid->len)));
1218 log_error("create_lease6_eui_64: "
1219 "address %s belongs to %s",
1220 pin6_addr(&test_iaaddr->addr),
1221 print_hex_1(found->len, found->data, 60));
1222 }
1223
1224 iasubopt_dereference(&test_iaaddr, MDL);
1225 if (!ours) {
1226 /* Cant' use it */
1227 return (ISC_R_FAILURE);
1228 }
1229 }
1230
1231 /* We're happy with the address, create an IAADDR to hold it. */
1232 iaaddr = NULL;
1233 result = iasubopt_allocate(&iaaddr, MDL);
1234 if (result != ISC_R_SUCCESS) {
1235 log_error("create_lease6_eui_64: could not allocate iasubop");
1236 return result;
1237 }
1238 iaaddr->plen = 0;
1239 memcpy(&iaaddr->addr, &tmp, sizeof(iaaddr->addr));
1240
1241 /* Add the lease to the pool and the reply */
1242 result = add_lease6(pool, iaaddr, soft_lifetime_end_time);
1243 if (result == ISC_R_SUCCESS) {
1244 iasubopt_reference(addr, iaaddr, MDL);
1245 }
1246
1247 iasubopt_dereference(&iaaddr, MDL);
1248 return result;
1249 }
1250 #endif
1251
1252 /*!
1253 *
1254 * \brief Cleans up leases when reading from a lease file
1255 *
1256 * This function is only expected to be run when reading leases in from a file.
1257 * It checks to see if a lease already exists for the new leases's address.
1258 * We don't add expired leases to the structures when reading a lease file
1259 * which limits what can happen. We have two variables the owners of the leases
1260 * being the same or different and the new lease being active or non-active:
1261 * Owners active
1262 * same no remove old lease and its connections
1263 * same yes nothing to do, other code will update the structures.
1264 * diff no nothing to do
1265 * diff yes this combination shouldn't happen, we should only have a
1266 * single active lease per address at a time and that lease
1267 * should move to non-active before any other lease can
1268 * become active for that address.
1269 * Currently we delete the previous lease and pass an error
1270 * to the caller who should log an error.
1271 *
1272 * When we remove a lease we remove it from the hash table and active heap
1273 * (remember only active leases are in the structures at this time) for the
1274 * pool, and from the IA's array. If, after we've removed the pointer from
1275 * IA's array to the lease, the IA has no more pointers we remove it from
1276 * the appropriate hash table as well.
1277 *
1278 * \param[in] ia_table = the hash table for the IA
1279 * \param[in] pool = the pool to update
1280 * \param[in] lease = the new lease we want to add
1281 * \param[in] ia = the new ia we are building
1282 *
1283 * \return
1284 * ISC_R_SUCCESS = the incoming lease and any previous lease were in
1285 * an expected state - one of the first 3 options above.
1286 * If necessary the old lease was removed.
1287 * ISC_R_FAILURE = there is already an active lease for the address in
1288 * the incoming lease. This shouldn't happen if it does
1289 * flag an error for the caller to log.
1290 */
1291
1292 isc_result_t
cleanup_lease6(ia_hash_t * ia_table,struct ipv6_pool * pool,struct iasubopt * lease,struct ia_xx * ia)1293 cleanup_lease6(ia_hash_t *ia_table,
1294 struct ipv6_pool *pool,
1295 struct iasubopt *lease,
1296 struct ia_xx *ia) {
1297
1298 struct iasubopt *test_iasubopt, *tmp_iasubopt;
1299 struct ia_xx *old_ia;
1300 isc_result_t status = ISC_R_SUCCESS;
1301
1302 test_iasubopt = NULL;
1303 old_ia = NULL;
1304
1305 /*
1306 * Look up the address - if we don't find a lease
1307 * we don't need to do anything.
1308 */
1309 if (iasubopt_hash_lookup(&test_iasubopt, pool->leases,
1310 &lease->addr, sizeof(lease->addr),
1311 MDL) == 0) {
1312 return (ISC_R_SUCCESS);
1313 }
1314
1315 if (test_iasubopt->ia == NULL) {
1316 /* no old ia, no work to do */
1317 iasubopt_dereference(&test_iasubopt, MDL);
1318 return (status);
1319 }
1320
1321 ia_reference(&old_ia, test_iasubopt->ia, MDL);
1322
1323 if ((old_ia->iaid_duid.len == ia->iaid_duid.len) &&
1324 (memcmp((unsigned char *)ia->iaid_duid.data,
1325 (unsigned char *)old_ia->iaid_duid.data,
1326 ia->iaid_duid.len) == 0)) {
1327 /* same IA */
1328 if ((lease->state == FTS_ACTIVE) ||
1329 (lease->state == FTS_ABANDONED)) {
1330 /* still active, no need to delete */
1331 goto cleanup;
1332 }
1333 } else {
1334 /* different IA */
1335 if ((lease->state != FTS_ACTIVE) &&
1336 (lease->state != FTS_ABANDONED)) {
1337 /* new lease isn't active, no work */
1338 goto cleanup;
1339 }
1340
1341 /*
1342 * We appear to have two active leases, this shouldn't happen.
1343 * Before a second lease can be set to active the first lease
1344 * should be set to inactive (released, expired etc). For now
1345 * delete the previous lease and indicate a failure to the
1346 * caller so it can generate a warning.
1347 * In the future we may try and determine which is the better
1348 * lease to keep.
1349 */
1350
1351 status = ISC_R_FAILURE;
1352 }
1353
1354 /*
1355 * Remove the old lease from the active heap and from the hash table
1356 * then remove the lease from the IA and clean up the IA if necessary.
1357 */
1358 isc_heap_delete(pool->active_timeouts, test_iasubopt->active_index);
1359 pool->num_active--;
1360 if (pool->ipv6_pond)
1361 pool->ipv6_pond->num_active--;
1362
1363 if (lease->state == FTS_ABANDONED) {
1364 pool->num_abandoned--;
1365 if (pool->ipv6_pond)
1366 pool->ipv6_pond->num_abandoned--;
1367 }
1368
1369 iasubopt_hash_delete(pool->leases, &test_iasubopt->addr,
1370 sizeof(test_iasubopt->addr), MDL);
1371 ia_remove_iasubopt(old_ia, test_iasubopt, MDL);
1372 if (old_ia->num_iasubopt <= 0) {
1373 ia_hash_delete(ia_table,
1374 (unsigned char *)old_ia->iaid_duid.data,
1375 old_ia->iaid_duid.len, MDL);
1376 }
1377
1378 /*
1379 * We derefenrece the subopt here as we've just removed it from
1380 * the hash table in the pool. We need to make a copy as we
1381 * need to derefernece it again later.
1382 */
1383 tmp_iasubopt = test_iasubopt;
1384 iasubopt_dereference(&tmp_iasubopt, MDL);
1385
1386 cleanup:
1387 ia_dereference(&old_ia, MDL);
1388
1389 /*
1390 * Clean up the reference, this is in addition to the deference
1391 * above after removing the entry from the hash table
1392 */
1393 iasubopt_dereference(&test_iasubopt, MDL);
1394
1395 return (status);
1396 }
1397
1398 /*
1399 * Put a lease in the pool directly. This is intended to be used when
1400 * loading leases from the file.
1401 */
1402 isc_result_t
add_lease6(struct ipv6_pool * pool,struct iasubopt * lease,time_t valid_lifetime_end_time)1403 add_lease6(struct ipv6_pool *pool, struct iasubopt *lease,
1404 time_t valid_lifetime_end_time) {
1405 struct iasubopt *test_iasubopt;
1406 struct iasubopt *tmp_iasubopt;
1407
1408 /* If a state was not assigned by the caller, assume active. */
1409 if (lease->state == 0)
1410 lease->state = FTS_ACTIVE;
1411
1412 ipv6_pool_reference(&lease->ipv6_pool, pool, MDL);
1413
1414 /*
1415 * If this IAADDR/PREFIX is already in our structures, remove the
1416 * old one.
1417 */
1418 test_iasubopt = NULL;
1419 if (iasubopt_hash_lookup(&test_iasubopt, pool->leases,
1420 &lease->addr, sizeof(lease->addr), MDL)) {
1421 /* XXX: we should probably ask the lease what heap it is on
1422 * (as a consistency check).
1423 * XXX: we should probably have one function to "put this lease
1424 * on its heap" rather than doing these if's everywhere. If
1425 * you add more states to this list, don't.
1426 */
1427 if ((test_iasubopt->state == FTS_ACTIVE) ||
1428 (test_iasubopt->state == FTS_ABANDONED)) {
1429 isc_heap_delete(pool->active_timeouts,
1430 test_iasubopt->active_index);
1431 pool->num_active--;
1432 if (pool->ipv6_pond)
1433 pool->ipv6_pond->num_active--;
1434
1435 if (test_iasubopt->state == FTS_ABANDONED) {
1436 pool->num_abandoned--;
1437 if (pool->ipv6_pond)
1438 pool->ipv6_pond->num_abandoned--;
1439 }
1440 } else {
1441 isc_heap_delete(pool->inactive_timeouts,
1442 test_iasubopt->inactive_index);
1443 pool->num_inactive--;
1444 }
1445
1446 iasubopt_hash_delete(pool->leases, &test_iasubopt->addr,
1447 sizeof(test_iasubopt->addr), MDL);
1448
1449 /*
1450 * We're going to do a bit of evil trickery here.
1451 *
1452 * We need to dereference the entry once to remove our
1453 * current reference (in test_iasubopt), and then one
1454 * more time to remove the reference left when the
1455 * address was added to the pool before.
1456 */
1457 tmp_iasubopt = test_iasubopt;
1458 iasubopt_dereference(&test_iasubopt, MDL);
1459 iasubopt_dereference(&tmp_iasubopt, MDL);
1460 }
1461
1462 /*
1463 * Add IAADDR/PREFIX to our structures.
1464 */
1465 tmp_iasubopt = NULL;
1466 iasubopt_reference(&tmp_iasubopt, lease, MDL);
1467 if ((tmp_iasubopt->state == FTS_ACTIVE) ||
1468 (tmp_iasubopt->state == FTS_ABANDONED)) {
1469 tmp_iasubopt->hard_lifetime_end_time = valid_lifetime_end_time;
1470 iasubopt_hash_add(pool->leases, &tmp_iasubopt->addr,
1471 sizeof(tmp_iasubopt->addr), lease, MDL);
1472 isc_heap_insert(pool->active_timeouts, tmp_iasubopt);
1473 pool->num_active++;
1474 if (pool->ipv6_pond)
1475 pool->ipv6_pond->num_active++;
1476
1477 if (tmp_iasubopt->state == FTS_ABANDONED) {
1478 pool->num_abandoned++;
1479 if (pool->ipv6_pond)
1480 pool->ipv6_pond->num_abandoned++;
1481 }
1482
1483 } else {
1484 tmp_iasubopt->soft_lifetime_end_time = valid_lifetime_end_time;
1485 isc_heap_insert(pool->inactive_timeouts, tmp_iasubopt);
1486 pool->num_inactive++;
1487 }
1488 iasubopt_hash_delete(pool->leases, &lease->addr,
1489 sizeof(lease->addr), MDL);
1490 iasubopt_dereference(&tmp_iasubopt, MDL);
1491 /*
1492 * Note: we intentionally leave tmp_iasubopt referenced; there
1493 * is a reference in the heap/hash, after all.
1494 */
1495
1496 return ISC_R_SUCCESS;
1497 }
1498
1499 /*
1500 * Determine if an address is present in a pool or not.
1501 */
1502 isc_boolean_t
lease6_exists(const struct ipv6_pool * pool,const struct in6_addr * addr)1503 lease6_exists(const struct ipv6_pool *pool, const struct in6_addr *addr) {
1504 struct iasubopt *test_iaaddr;
1505
1506 test_iaaddr = NULL;
1507 if (iasubopt_hash_lookup(&test_iaaddr, pool->leases,
1508 (void *)addr, sizeof(*addr), MDL)) {
1509 iasubopt_dereference(&test_iaaddr, MDL);
1510 return ISC_TRUE;
1511 } else {
1512 return ISC_FALSE;
1513 }
1514 }
1515
1516 /*!
1517 *
1518 * \brief Check if address is available to a lease
1519 *
1520 * Determine if the address in the lease is available to that
1521 * lease. Either the address isn't in use or it is in use
1522 * but by that lease.
1523 *
1524 * \param[in] lease = lease to check
1525 *
1526 * \return
1527 * ISC_TRUE = The lease is allowed to use that address
1528 * ISC_FALSE = The lease isn't allowed to use that address
1529 */
1530 isc_boolean_t
lease6_usable(struct iasubopt * lease)1531 lease6_usable(struct iasubopt *lease) {
1532 struct iasubopt *test_iaaddr;
1533 isc_boolean_t status = ISC_TRUE;
1534
1535 test_iaaddr = NULL;
1536 if (iasubopt_hash_lookup(&test_iaaddr, lease->ipv6_pool->leases,
1537 (void *)&lease->addr,
1538 sizeof(lease->addr), MDL)) {
1539 if (test_iaaddr != lease) {
1540 status = ISC_FALSE;
1541 }
1542 iasubopt_dereference(&test_iaaddr, MDL);
1543 }
1544
1545 return (status);
1546 }
1547
1548 /*
1549 * Put the lease on our active pool.
1550 */
1551 static isc_result_t
move_lease_to_active(struct ipv6_pool * pool,struct iasubopt * lease)1552 move_lease_to_active(struct ipv6_pool *pool, struct iasubopt *lease) {
1553 isc_heap_insert(pool->active_timeouts, lease);
1554 iasubopt_hash_add(pool->leases, &lease->addr,
1555 sizeof(lease->addr), lease, MDL);
1556 isc_heap_delete(pool->inactive_timeouts,
1557 lease->inactive_index);
1558 pool->num_active++;
1559 pool->num_inactive--;
1560 lease->state = FTS_ACTIVE;
1561 if (pool->ipv6_pond)
1562 pool->ipv6_pond->num_active++;
1563
1564 return ISC_R_SUCCESS;
1565 }
1566
1567 /*!
1568 *
1569 * \brief Renew a lease in the pool.
1570 *
1571 * The hard_lifetime_end_time of the lease should be set to
1572 * the current expiration time.
1573 * The soft_lifetime_end_time of the lease should be set to
1574 * the desired expiration time.
1575 *
1576 * This routine will compare the two and call the correct
1577 * heap routine to move the lease. If the lease is active
1578 * and the new expiration time is greater (the normal case)
1579 * then we call isc_heap_decreased() as a larger time is a
1580 * lower priority. If the new expiration time is less then
1581 * we call isc_heap_increased().
1582 *
1583 * If the lease is abandoned then it will be on the active list
1584 * and we will always call isc_heap_increased() as the previous
1585 * expiration would have been all 1s (as close as we can get
1586 * to infinite).
1587 *
1588 * If the lease is moving to active we call that routine
1589 * which will move it from the inactive list to the active list.
1590 *
1591 * \param pool = a pool the lease belongs to
1592 * \param lease = the lease to be renewed
1593 *
1594 * \return result of the renew operation (ISC_R_SUCCESS if successful,
1595 ISC_R_NOMEMORY when run out of memory)
1596 */
1597 isc_result_t
renew_lease6(struct ipv6_pool * pool,struct iasubopt * lease)1598 renew_lease6(struct ipv6_pool *pool, struct iasubopt *lease) {
1599 time_t old_end_time = lease->hard_lifetime_end_time;
1600 lease->hard_lifetime_end_time = lease->soft_lifetime_end_time;
1601 lease->soft_lifetime_end_time = 0;
1602
1603 if (lease->state == FTS_ACTIVE) {
1604 if (old_end_time <= lease->hard_lifetime_end_time) {
1605 isc_heap_decreased(pool->active_timeouts,
1606 lease->active_index);
1607 } else {
1608 isc_heap_increased(pool->active_timeouts,
1609 lease->active_index);
1610 }
1611 return ISC_R_SUCCESS;
1612 } else if (lease->state == FTS_ABANDONED) {
1613 char tmp_addr[INET6_ADDRSTRLEN];
1614 lease->state = FTS_ACTIVE;
1615 isc_heap_increased(pool->active_timeouts, lease->active_index);
1616 log_info("Reclaiming previously abandoned address %s",
1617 inet_ntop(AF_INET6, &(lease->addr), tmp_addr,
1618 sizeof(tmp_addr)));
1619
1620 pool->num_abandoned--;
1621 if (pool->ipv6_pond)
1622 pool->ipv6_pond->num_abandoned--;
1623
1624 return ISC_R_SUCCESS;
1625 } else {
1626 return move_lease_to_active(pool, lease);
1627 }
1628 }
1629
1630 /*
1631 * Put the lease on our inactive pool, with the specified state.
1632 */
1633 static isc_result_t
move_lease_to_inactive(struct ipv6_pool * pool,struct iasubopt * lease,binding_state_t state)1634 move_lease_to_inactive(struct ipv6_pool *pool, struct iasubopt *lease,
1635 binding_state_t state) {
1636
1637 isc_heap_insert(pool->inactive_timeouts, lease);
1638 /*
1639 * Handle expire and release statements
1640 * To get here we must be active and have done a commit so
1641 * we should run the proper statements if they exist, though
1642 * that will change when we remove the inactive heap.
1643 * In addition we get rid of the references for both as we
1644 * can only do one (expire or release) on a lease
1645 */
1646 if (lease->on_star.on_expiry != NULL) {
1647 if (state == FTS_EXPIRED) {
1648 execute_statements(NULL, NULL, NULL,
1649 NULL, NULL, NULL,
1650 &lease->scope,
1651 lease->on_star.on_expiry,
1652 &lease->on_star);
1653 }
1654 executable_statement_dereference
1655 (&lease->on_star.on_expiry, MDL);
1656 }
1657
1658 if (lease->on_star.on_release != NULL) {
1659 if (state == FTS_RELEASED) {
1660 execute_statements(NULL, NULL, NULL,
1661 NULL, NULL, NULL,
1662 &lease->scope,
1663 lease->on_star.on_release,
1664 &lease->on_star);
1665 }
1666 executable_statement_dereference
1667 (&lease->on_star.on_release, MDL);
1668 }
1669
1670 #if defined (NSUPDATE)
1671 /* Process events upon expiration. */
1672 if (pool->pool_type != D6O_IA_PD) {
1673 (void) ddns_removals(NULL, lease, NULL, ISC_FALSE);
1674 }
1675 #endif
1676
1677 /* Binding scopes are no longer valid after expiry or
1678 * release.
1679 */
1680 if (lease->scope != NULL) {
1681 binding_scope_dereference(&lease->scope, MDL);
1682 }
1683
1684 iasubopt_hash_delete(pool->leases,
1685 &lease->addr, sizeof(lease->addr), MDL);
1686 isc_heap_delete(pool->active_timeouts, lease->active_index);
1687 lease->state = state;
1688 pool->num_active--;
1689 pool->num_inactive++;
1690 if (pool->ipv6_pond)
1691 pool->ipv6_pond->num_active--;
1692
1693 if (lease->state == FTS_ABANDONED) {
1694 pool->num_abandoned--;
1695 if (pool->ipv6_pond)
1696 pool->ipv6_pond->num_abandoned--;
1697 }
1698 return ISC_R_SUCCESS;
1699 }
1700
1701 /*
1702 * Expire the oldest lease if it's lifetime_end_time is
1703 * older than the given time.
1704 *
1705 * - leasep must be a pointer to a (struct iasubopt *) pointer previously
1706 * initialized to NULL
1707 *
1708 * On return leasep has a reference to the removed entry. It is left
1709 * pointing to NULL if the oldest lease has not expired.
1710 */
1711 isc_result_t
expire_lease6(struct iasubopt ** leasep,struct ipv6_pool * pool,time_t now)1712 expire_lease6(struct iasubopt **leasep, struct ipv6_pool *pool, time_t now) {
1713 struct iasubopt *tmp;
1714 isc_result_t result;
1715
1716 if (leasep == NULL) {
1717 log_error("%s(%d): NULL pointer reference", MDL);
1718 return DHCP_R_INVALIDARG;
1719 }
1720 if (*leasep != NULL) {
1721 log_error("%s(%d): non-NULL pointer", MDL);
1722 return DHCP_R_INVALIDARG;
1723 }
1724
1725 if (pool->num_active > 0) {
1726 tmp = (struct iasubopt *)
1727 isc_heap_element(pool->active_timeouts, 1);
1728 if (now > tmp->hard_lifetime_end_time) {
1729 result = move_lease_to_inactive(pool, tmp,
1730 FTS_EXPIRED);
1731 if (result == ISC_R_SUCCESS) {
1732 iasubopt_reference(leasep, tmp, MDL);
1733 }
1734 return result;
1735 }
1736 }
1737 return ISC_R_SUCCESS;
1738 }
1739
1740
1741 /*
1742 * For a declined lease, leave it on the "active" pool, but mark
1743 * it as declined. Give it an infinite (well, really long) life.
1744 */
1745 isc_result_t
decline_lease6(struct ipv6_pool * pool,struct iasubopt * lease)1746 decline_lease6(struct ipv6_pool *pool, struct iasubopt *lease) {
1747 isc_result_t result;
1748
1749 if ((lease->state != FTS_ACTIVE) &&
1750 (lease->state != FTS_ABANDONED)) {
1751 result = move_lease_to_active(pool, lease);
1752 if (result != ISC_R_SUCCESS) {
1753 return result;
1754 }
1755 }
1756 lease->state = FTS_ABANDONED;
1757
1758 pool->num_abandoned++;
1759 if (pool->ipv6_pond)
1760 pool->ipv6_pond->num_abandoned++;
1761
1762 lease->hard_lifetime_end_time = MAX_TIME;
1763 isc_heap_decreased(pool->active_timeouts, lease->active_index);
1764 return ISC_R_SUCCESS;
1765 }
1766
1767 /*
1768 * Put the returned lease on our inactive pool.
1769 */
1770 isc_result_t
release_lease6(struct ipv6_pool * pool,struct iasubopt * lease)1771 release_lease6(struct ipv6_pool *pool, struct iasubopt *lease) {
1772 if (lease->state == FTS_ACTIVE) {
1773 return move_lease_to_inactive(pool, lease, FTS_RELEASED);
1774 } else {
1775 return ISC_R_SUCCESS;
1776 }
1777 }
1778
1779 /*
1780 * Create a prefix by hashing the input, and using that for
1781 * the part subject to allocation.
1782 */
1783 static void
build_prefix6(struct in6_addr * pref,const struct in6_addr * net_start_pref,int pool_bits,int pref_bits,const struct data_string * input)1784 build_prefix6(struct in6_addr *pref,
1785 const struct in6_addr *net_start_pref,
1786 int pool_bits, int pref_bits,
1787 const struct data_string *input) {
1788 int net_bytes;
1789 int i;
1790 unsigned int len;
1791 char *str;
1792 const char *net_str;
1793
1794 /*
1795 * Use MD5 to get a nice 128 bit hash of the input.
1796 * Yes, we know MD5 isn't cryptographically sound.
1797 * No, we don't care.
1798 */
1799 isc_md(ISC_MD_MD5, input->data, input->len, (void *)&pref, &len);
1800
1801 /*
1802 * Copy the network bits over.
1803 */
1804 str = (char *)pref;
1805 net_str = (const char *)net_start_pref;
1806 net_bytes = pool_bits / 8;
1807 for (i = 0; i < net_bytes; i++) {
1808 str[i] = net_str[i];
1809 }
1810 i = net_bytes;
1811 switch (pool_bits % 8) {
1812 case 1: str[i] = (str[i] & 0x7F) | (net_str[i] & 0x80); break;
1813 case 2: str[i] = (str[i] & 0x3F) | (net_str[i] & 0xC0); break;
1814 case 3: str[i] = (str[i] & 0x1F) | (net_str[i] & 0xE0); break;
1815 case 4: str[i] = (str[i] & 0x0F) | (net_str[i] & 0xF0); break;
1816 case 5: str[i] = (str[i] & 0x07) | (net_str[i] & 0xF8); break;
1817 case 6: str[i] = (str[i] & 0x03) | (net_str[i] & 0xFC); break;
1818 case 7: str[i] = (str[i] & 0x01) | (net_str[i] & 0xFE); break;
1819 }
1820 /*
1821 * Zero the remaining bits.
1822 */
1823 net_bytes = pref_bits / 8;
1824 for (i=net_bytes+1; i<16; i++) {
1825 str[i] = 0;
1826 }
1827 i = net_bytes;
1828 switch (pref_bits % 8) {
1829 case 0: str[i] &= 0; break;
1830 case 1: str[i] &= 0x80; break;
1831 case 2: str[i] &= 0xC0; break;
1832 case 3: str[i] &= 0xE0; break;
1833 case 4: str[i] &= 0xF0; break;
1834 case 5: str[i] &= 0xF8; break;
1835 case 6: str[i] &= 0xFC; break;
1836 case 7: str[i] &= 0xFE; break;
1837 }
1838 }
1839
1840 /*
1841 * Create a lease for the given prefix and client duid.
1842 *
1843 * - pool must be a pointer to a (struct ipv6_pool *) pointer previously
1844 * initialized to NULL
1845 *
1846 * Right now we simply hash the DUID, and if we get a collision, we hash
1847 * again until we find a free prefix. We try this a fixed number of times,
1848 * to avoid getting stuck in a loop (this is important on small pools
1849 * where we can run out of space).
1850 *
1851 * We return the number of attempts that it took to find an available
1852 * prefix. This tells callers when a pool is are filling up, as
1853 * well as an indication of how full the pool is; statistically the
1854 * more full a pool is the more attempts must be made before finding
1855 * a free prefix. Realistically this will only happen in very full
1856 * pools.
1857 *
1858 * We probably want different algorithms depending on the network size, in
1859 * the long term.
1860 */
1861 isc_result_t
create_prefix6(struct ipv6_pool * pool,struct iasubopt ** pref,unsigned int * attempts,const struct data_string * uid,time_t soft_lifetime_end_time)1862 create_prefix6(struct ipv6_pool *pool, struct iasubopt **pref,
1863 unsigned int *attempts,
1864 const struct data_string *uid,
1865 time_t soft_lifetime_end_time) {
1866 struct data_string ds;
1867 struct in6_addr tmp;
1868 struct iasubopt *test_iapref;
1869 struct data_string new_ds;
1870 struct iasubopt *iapref;
1871 isc_result_t result;
1872
1873 /*
1874 * Use the UID as our initial seed for the hash
1875 */
1876 memset(&ds, 0, sizeof(ds));
1877 data_string_copy(&ds, (struct data_string *)uid, MDL);
1878
1879 *attempts = 0;
1880 for (;;) {
1881 /*
1882 * Give up at some point.
1883 */
1884 if (++(*attempts) > 10) {
1885 data_string_forget(&ds, MDL);
1886 return ISC_R_NORESOURCES;
1887 }
1888
1889 /*
1890 * Build a prefix
1891 */
1892 build_prefix6(&tmp, &pool->start_addr,
1893 pool->bits, pool->units, &ds);
1894
1895 /*
1896 * If this prefix is not in use, we're happy with it
1897 */
1898 test_iapref = NULL;
1899 if (iasubopt_hash_lookup(&test_iapref, pool->leases,
1900 &tmp, sizeof(tmp), MDL) == 0) {
1901 break;
1902 }
1903 iasubopt_dereference(&test_iapref, MDL);
1904
1905 /*
1906 * Otherwise, we create a new input, adding the prefix
1907 */
1908 memset(&new_ds, 0, sizeof(new_ds));
1909 new_ds.len = ds.len + sizeof(tmp);
1910 if (!buffer_allocate(&new_ds.buffer, new_ds.len, MDL)) {
1911 data_string_forget(&ds, MDL);
1912 return ISC_R_NOMEMORY;
1913 }
1914 new_ds.data = new_ds.buffer->data;
1915 memcpy(new_ds.buffer->data, ds.data, ds.len);
1916 memcpy(&new_ds.buffer->data[0] + ds.len, &tmp, sizeof(tmp));
1917 data_string_forget(&ds, MDL);
1918 data_string_copy(&ds, &new_ds, MDL);
1919 data_string_forget(&new_ds, MDL);
1920 }
1921
1922 data_string_forget(&ds, MDL);
1923
1924 /*
1925 * We're happy with the prefix, create an IAPREFIX
1926 * to hold it.
1927 */
1928 iapref = NULL;
1929 result = iasubopt_allocate(&iapref, MDL);
1930 if (result != ISC_R_SUCCESS) {
1931 return result;
1932 }
1933 iapref->plen = (u_int8_t)pool->units;
1934 memcpy(&iapref->addr, &tmp, sizeof(iapref->addr));
1935
1936 /*
1937 * Add the prefix to the pool (note state is free, not active?!).
1938 */
1939 result = add_lease6(pool, iapref, soft_lifetime_end_time);
1940 if (result == ISC_R_SUCCESS) {
1941 iasubopt_reference(pref, iapref, MDL);
1942 }
1943 iasubopt_dereference(&iapref, MDL);
1944 return result;
1945 }
1946
1947 /*
1948 * Determine if a prefix is present in a pool or not.
1949 */
1950 isc_boolean_t
prefix6_exists(const struct ipv6_pool * pool,const struct in6_addr * pref,u_int8_t plen)1951 prefix6_exists(const struct ipv6_pool *pool,
1952 const struct in6_addr *pref, u_int8_t plen) {
1953 struct iasubopt *test_iapref;
1954
1955 if ((int)plen != pool->units)
1956 return ISC_FALSE;
1957
1958 test_iapref = NULL;
1959 if (iasubopt_hash_lookup(&test_iapref, pool->leases,
1960 (void *)pref, sizeof(*pref), MDL)) {
1961 iasubopt_dereference(&test_iapref, MDL);
1962 return ISC_TRUE;
1963 } else {
1964 return ISC_FALSE;
1965 }
1966 }
1967
1968 /*
1969 * Mark an IPv6 address/prefix as unavailable from a pool.
1970 *
1971 * This is used for host entries and the addresses of the server itself.
1972 */
1973 static isc_result_t
mark_lease_unavailable(struct ipv6_pool * pool,const struct in6_addr * addr)1974 mark_lease_unavailable(struct ipv6_pool *pool, const struct in6_addr *addr) {
1975 struct iasubopt *dummy_iasubopt;
1976 isc_result_t result;
1977
1978 dummy_iasubopt = NULL;
1979 result = iasubopt_allocate(&dummy_iasubopt, MDL);
1980 if (result == ISC_R_SUCCESS) {
1981 dummy_iasubopt->addr = *addr;
1982 iasubopt_hash_add(pool->leases, &dummy_iasubopt->addr,
1983 sizeof(*addr), dummy_iasubopt, MDL);
1984 }
1985 return result;
1986 }
1987
1988 /*
1989 * Add a pool.
1990 */
1991 isc_result_t
add_ipv6_pool(struct ipv6_pool * pool)1992 add_ipv6_pool(struct ipv6_pool *pool) {
1993 struct ipv6_pool **new_pools;
1994
1995 new_pools = dmalloc(sizeof(struct ipv6_pool *) * (num_pools+1), MDL);
1996 if (new_pools == NULL) {
1997 return ISC_R_NOMEMORY;
1998 }
1999
2000 if (num_pools > 0) {
2001 memcpy(new_pools, pools,
2002 sizeof(struct ipv6_pool *) * num_pools);
2003 dfree(pools, MDL);
2004 }
2005 pools = new_pools;
2006
2007 pools[num_pools] = NULL;
2008 ipv6_pool_reference(&pools[num_pools], pool, MDL);
2009 num_pools++;
2010 return ISC_R_SUCCESS;
2011 }
2012
2013 static void
cleanup_old_expired(struct ipv6_pool * pool)2014 cleanup_old_expired(struct ipv6_pool *pool) {
2015 struct iasubopt *tmp;
2016 struct ia_xx *ia;
2017 struct ia_xx *ia_active;
2018 unsigned char *tmpd;
2019 time_t timeout;
2020
2021 while (pool->num_inactive > 0) {
2022 tmp = (struct iasubopt *)
2023 isc_heap_element(pool->inactive_timeouts, 1);
2024 if (tmp->hard_lifetime_end_time != 0) {
2025 timeout = tmp->hard_lifetime_end_time;
2026 timeout += EXPIRED_IPV6_CLEANUP_TIME;
2027 } else {
2028 timeout = tmp->soft_lifetime_end_time;
2029 }
2030 if (cur_time < timeout) {
2031 break;
2032 }
2033
2034 isc_heap_delete(pool->inactive_timeouts, tmp->inactive_index);
2035 pool->num_inactive--;
2036
2037 if (tmp->ia != NULL) {
2038 /*
2039 * Check to see if this IA is in an active list,
2040 * but has no remaining resources. If so, remove it
2041 * from the active list.
2042 */
2043 ia = NULL;
2044 ia_reference(&ia, tmp->ia, MDL);
2045 ia_remove_iasubopt(ia, tmp, MDL);
2046 ia_active = NULL;
2047 tmpd = (unsigned char *)ia->iaid_duid.data;
2048 if ((ia->ia_type == D6O_IA_NA) &&
2049 (ia->num_iasubopt <= 0) &&
2050 (ia_hash_lookup(&ia_active, ia_na_active, tmpd,
2051 ia->iaid_duid.len, MDL) == 0) &&
2052 (ia_active == ia)) {
2053 ia_hash_delete(ia_na_active, tmpd,
2054 ia->iaid_duid.len, MDL);
2055 }
2056 if ((ia->ia_type == D6O_IA_TA) &&
2057 (ia->num_iasubopt <= 0) &&
2058 (ia_hash_lookup(&ia_active, ia_ta_active, tmpd,
2059 ia->iaid_duid.len, MDL) == 0) &&
2060 (ia_active == ia)) {
2061 ia_hash_delete(ia_ta_active, tmpd,
2062 ia->iaid_duid.len, MDL);
2063 }
2064 if ((ia->ia_type == D6O_IA_PD) &&
2065 (ia->num_iasubopt <= 0) &&
2066 (ia_hash_lookup(&ia_active, ia_pd_active, tmpd,
2067 ia->iaid_duid.len, MDL) == 0) &&
2068 (ia_active == ia)) {
2069 ia_hash_delete(ia_pd_active, tmpd,
2070 ia->iaid_duid.len, MDL);
2071 }
2072 ia_dereference(&ia, MDL);
2073 }
2074 iasubopt_dereference(&tmp, MDL);
2075 }
2076 }
2077
2078 static void
lease_timeout_support(void * vpool)2079 lease_timeout_support(void *vpool) {
2080 struct ipv6_pool *pool;
2081 struct iasubopt *lease;
2082
2083 pool = (struct ipv6_pool *)vpool;
2084 for (;;) {
2085 /*
2086 * Get the next lease scheduled to expire.
2087 *
2088 * Note that if there are no leases in the pool,
2089 * expire_lease6() will return ISC_R_SUCCESS with
2090 * a NULL lease.
2091 *
2092 * expire_lease6() will call move_lease_to_inactive() which
2093 * calls ddns_removals() do we want that on the standard
2094 * expiration timer or a special 'depref' timer? Original
2095 * query from DH, moved here by SAR.
2096 */
2097 lease = NULL;
2098 if (expire_lease6(&lease, pool, cur_time) != ISC_R_SUCCESS) {
2099 break;
2100 }
2101 if (lease == NULL) {
2102 break;
2103 }
2104
2105 write_ia(lease->ia);
2106
2107 iasubopt_dereference(&lease, MDL);
2108 }
2109
2110 /*
2111 * If appropriate commit and rotate the lease file
2112 * As commit_leases_timed() checks to see if we've done any writes
2113 * we don't bother tracking if this function called write _ia
2114 */
2115 (void) commit_leases_timed();
2116
2117 /*
2118 * Do some cleanup of our expired leases.
2119 */
2120 cleanup_old_expired(pool);
2121
2122 /*
2123 * Schedule next round of expirations.
2124 */
2125 schedule_lease_timeout(pool);
2126 }
2127
2128 /*
2129 * For a given pool, add a timer that will remove the next
2130 * lease to expire.
2131 */
2132 void
schedule_lease_timeout(struct ipv6_pool * pool)2133 schedule_lease_timeout(struct ipv6_pool *pool) {
2134 struct iasubopt *tmp;
2135 time_t timeout;
2136 time_t next_timeout;
2137 struct timeval tv;
2138
2139 next_timeout = MAX_TIME;
2140
2141 if (pool->num_active > 0) {
2142 tmp = (struct iasubopt *)
2143 isc_heap_element(pool->active_timeouts, 1);
2144 if (tmp->hard_lifetime_end_time < next_timeout) {
2145 next_timeout = tmp->hard_lifetime_end_time + 1;
2146 }
2147 }
2148
2149 if (pool->num_inactive > 0) {
2150 tmp = (struct iasubopt *)
2151 isc_heap_element(pool->inactive_timeouts, 1);
2152 if (tmp->hard_lifetime_end_time != 0) {
2153 timeout = tmp->hard_lifetime_end_time;
2154 timeout += EXPIRED_IPV6_CLEANUP_TIME;
2155 } else {
2156 timeout = tmp->soft_lifetime_end_time + 1;
2157 }
2158 if (timeout < next_timeout) {
2159 next_timeout = timeout;
2160 }
2161 }
2162
2163 if (next_timeout < MAX_TIME) {
2164 tv.tv_sec = next_timeout;
2165 tv.tv_usec = 0;
2166 add_timeout(&tv, lease_timeout_support, pool,
2167 (tvref_t)ipv6_pool_reference,
2168 (tvunref_t)ipv6_pool_dereference);
2169 }
2170 }
2171
2172 /*
2173 * Schedule timeouts across all pools.
2174 */
2175 void
schedule_all_ipv6_lease_timeouts(void)2176 schedule_all_ipv6_lease_timeouts(void) {
2177 int i;
2178
2179 for (i=0; i<num_pools; i++) {
2180 schedule_lease_timeout(pools[i]);
2181 }
2182 }
2183
2184 /*
2185 * Given an address and the length of the network mask, return
2186 * only the network portion.
2187 *
2188 * Examples:
2189 *
2190 * "fe80::216:6fff:fe49:7d9b", length 64 = "fe80::"
2191 * "2001:888:1936:2:216:6fff:fe49:7d9b", length 48 = "2001:888:1936::"
2192 */
2193 static void
ipv6_network_portion(struct in6_addr * result,const struct in6_addr * addr,int bits)2194 ipv6_network_portion(struct in6_addr *result,
2195 const struct in6_addr *addr, int bits) {
2196 unsigned char *addrp;
2197 int mask_bits;
2198 int bytes;
2199 int extra_bits;
2200 int i;
2201
2202 static const unsigned char bitmasks[] = {
2203 0x00, 0xFE, 0xFC, 0xF8,
2204 0xF0, 0xE0, 0xC0, 0x80,
2205 };
2206
2207 /*
2208 * Sanity check our bits. ;)
2209 */
2210 if ((bits < 0) || (bits > 128)) {
2211 log_fatal("ipv6_network_portion: bits %d not between 0 and 128",
2212 bits);
2213 }
2214
2215 /*
2216 * Copy our address portion.
2217 */
2218 *result = *addr;
2219 addrp = ((unsigned char *)result) + 15;
2220
2221 /*
2222 * Zero out masked portion.
2223 */
2224 mask_bits = 128 - bits;
2225 bytes = mask_bits / 8;
2226 extra_bits = mask_bits % 8;
2227
2228 for (i=0; i<bytes; i++) {
2229 *addrp = 0;
2230 addrp--;
2231 }
2232 if (extra_bits) {
2233 *addrp &= bitmasks[extra_bits];
2234 }
2235 }
2236
2237 /*
2238 * Determine if the given address/prefix is in the pool.
2239 */
2240 isc_boolean_t
ipv6_in_pool(const struct in6_addr * addr,const struct ipv6_pool * pool)2241 ipv6_in_pool(const struct in6_addr *addr, const struct ipv6_pool *pool) {
2242 struct in6_addr tmp;
2243
2244 ipv6_network_portion(&tmp, addr, pool->bits);
2245 if (memcmp(&tmp, &pool->start_addr, sizeof(tmp)) == 0) {
2246 return ISC_TRUE;
2247 } else {
2248 return ISC_FALSE;
2249 }
2250 }
2251
2252 /*
2253 * Find the pool that contains the given address.
2254 *
2255 * - pool must be a pointer to a (struct ipv6_pool *) pointer previously
2256 * initialized to NULL
2257 */
2258 isc_result_t
find_ipv6_pool(struct ipv6_pool ** pool,u_int16_t type,const struct in6_addr * addr)2259 find_ipv6_pool(struct ipv6_pool **pool, u_int16_t type,
2260 const struct in6_addr *addr) {
2261 int i;
2262
2263 if (pool == NULL) {
2264 log_error("%s(%d): NULL pointer reference", MDL);
2265 return DHCP_R_INVALIDARG;
2266 }
2267 if (*pool != NULL) {
2268 log_error("%s(%d): non-NULL pointer", MDL);
2269 return DHCP_R_INVALIDARG;
2270 }
2271
2272 for (i=0; i<num_pools; i++) {
2273 if (pools[i]->pool_type != type)
2274 continue;
2275 if (ipv6_in_pool(addr, pools[i])) {
2276 ipv6_pool_reference(pool, pools[i], MDL);
2277 return ISC_R_SUCCESS;
2278 }
2279 }
2280 return ISC_R_NOTFOUND;
2281 }
2282
2283 /*
2284 * Helper function for the various functions that act across all
2285 * pools.
2286 */
2287 static isc_result_t
change_leases(struct ia_xx * ia,isc_result_t (* change_func)(struct ipv6_pool *,struct iasubopt *))2288 change_leases(struct ia_xx *ia,
2289 isc_result_t (*change_func)(struct ipv6_pool *,
2290 struct iasubopt *)) {
2291 isc_result_t retval;
2292 isc_result_t renew_retval;
2293 struct ipv6_pool *pool;
2294 struct in6_addr *addr;
2295 int i;
2296
2297 retval = ISC_R_SUCCESS;
2298 for (i=0; i<ia->num_iasubopt; i++) {
2299 pool = NULL;
2300 addr = &ia->iasubopt[i]->addr;
2301 if (find_ipv6_pool(&pool, ia->ia_type,
2302 addr) == ISC_R_SUCCESS) {
2303 renew_retval = change_func(pool, ia->iasubopt[i]);
2304 if (renew_retval != ISC_R_SUCCESS) {
2305 retval = renew_retval;
2306 }
2307 }
2308 /* XXXsk: should we warn if we don't find a pool? */
2309 }
2310 return retval;
2311 }
2312
2313 /*
2314 * Renew all leases in an IA from all pools.
2315 *
2316 * The new lifetime should be in the soft_lifetime_end_time
2317 * and will be moved to hard_lifetime_end_time by renew_lease6.
2318 */
2319 isc_result_t
renew_leases(struct ia_xx * ia)2320 renew_leases(struct ia_xx *ia) {
2321 return change_leases(ia, renew_lease6);
2322 }
2323
2324 /*
2325 * Release all leases in an IA from all pools.
2326 */
2327 isc_result_t
release_leases(struct ia_xx * ia)2328 release_leases(struct ia_xx *ia) {
2329 return change_leases(ia, release_lease6);
2330 }
2331
2332 /*
2333 * Decline all leases in an IA from all pools.
2334 */
2335 isc_result_t
decline_leases(struct ia_xx * ia)2336 decline_leases(struct ia_xx *ia) {
2337 return change_leases(ia, decline_lease6);
2338 }
2339
2340 #ifdef DHCPv6
2341 /*
2342 * Helper function to output leases.
2343 */
2344 static int write_error;
2345
2346 static isc_result_t
write_ia_leases(const void * name,unsigned len,void * value)2347 write_ia_leases(const void *name, unsigned len, void *value) {
2348 struct ia_xx *ia = (struct ia_xx *)value;
2349
2350 if (!write_error) {
2351 if (!write_ia(ia)) {
2352 write_error = 1;
2353 }
2354 }
2355 return ISC_R_SUCCESS;
2356 }
2357
2358 /*
2359 * Write all DHCPv6 information.
2360 */
2361 int
write_leases6(void)2362 write_leases6(void) {
2363 int nas, tas, pds;
2364
2365 write_error = 0;
2366 write_server_duid();
2367 nas = ia_hash_foreach(ia_na_active, write_ia_leases);
2368 if (write_error) {
2369 return 0;
2370 }
2371 tas = ia_hash_foreach(ia_ta_active, write_ia_leases);
2372 if (write_error) {
2373 return 0;
2374 }
2375 pds = ia_hash_foreach(ia_pd_active, write_ia_leases);
2376 if (write_error) {
2377 return 0;
2378 }
2379
2380 log_info("Wrote %d NA, %d TA, %d PD leases to lease file.",
2381 nas, tas, pds);
2382 return 1;
2383 }
2384 #endif /* DHCPv6 */
2385
2386 static isc_result_t
mark_hosts_unavailable_support(const void * name,unsigned len,void * value)2387 mark_hosts_unavailable_support(const void *name, unsigned len, void *value) {
2388 struct host_decl *h;
2389 struct data_string fixed_addr;
2390 struct in6_addr addr;
2391 struct ipv6_pool *p;
2392
2393 h = (struct host_decl *)value;
2394
2395 /*
2396 * If the host has no address, we don't need to mark anything.
2397 */
2398 if (h->fixed_addr == NULL) {
2399 return ISC_R_SUCCESS;
2400 }
2401
2402 /*
2403 * Evaluate the fixed address.
2404 */
2405 memset(&fixed_addr, 0, sizeof(fixed_addr));
2406 if (!evaluate_option_cache(&fixed_addr, NULL, NULL, NULL, NULL, NULL,
2407 &global_scope, h->fixed_addr, MDL)) {
2408 log_error("mark_hosts_unavailable: "
2409 "error evaluating host address.");
2410 return ISC_R_SUCCESS;
2411 }
2412 if (fixed_addr.len != 16) {
2413 log_error("mark_hosts_unavailable: "
2414 "host address is not 128 bits.");
2415 return ISC_R_SUCCESS;
2416 }
2417 memcpy(&addr, fixed_addr.data, 16);
2418 data_string_forget(&fixed_addr, MDL);
2419
2420 /*
2421 * Find the pool holding this host, and mark the address.
2422 * (I suppose it is arguably valid to have a host that does not
2423 * sit in any pool.)
2424 */
2425 p = NULL;
2426 if (find_ipv6_pool(&p, D6O_IA_NA, &addr) == ISC_R_SUCCESS) {
2427 mark_lease_unavailable(p, &addr);
2428 ipv6_pool_dereference(&p, MDL);
2429 }
2430 if (find_ipv6_pool(&p, D6O_IA_TA, &addr) == ISC_R_SUCCESS) {
2431 mark_lease_unavailable(p, &addr);
2432 ipv6_pool_dereference(&p, MDL);
2433 }
2434
2435 return ISC_R_SUCCESS;
2436 }
2437
2438 void
mark_hosts_unavailable(void)2439 mark_hosts_unavailable(void) {
2440 hash_foreach(host_name_hash, mark_hosts_unavailable_support);
2441 }
2442
2443 static isc_result_t
mark_phosts_unavailable_support(const void * name,unsigned len,void * value)2444 mark_phosts_unavailable_support(const void *name, unsigned len, void *value) {
2445 struct host_decl *h;
2446 struct iaddrcidrnetlist *l;
2447 struct in6_addr pref;
2448 struct ipv6_pool *p;
2449
2450 h = (struct host_decl *)value;
2451
2452 /*
2453 * If the host has no prefix, we don't need to mark anything.
2454 */
2455 if (h->fixed_prefix == NULL) {
2456 return ISC_R_SUCCESS;
2457 }
2458
2459 /*
2460 * Get the fixed prefixes.
2461 */
2462 for (l = h->fixed_prefix; l != NULL; l = l->next) {
2463 if (l->cidrnet.lo_addr.len != 16) {
2464 continue;
2465 }
2466 memcpy(&pref, l->cidrnet.lo_addr.iabuf, 16);
2467
2468 /*
2469 * Find the pool holding this host, and mark the prefix.
2470 * (I suppose it is arguably valid to have a host that does not
2471 * sit in any pool.)
2472 */
2473 p = NULL;
2474 if (find_ipv6_pool(&p, D6O_IA_PD, &pref) != ISC_R_SUCCESS) {
2475 continue;
2476 }
2477 if (l->cidrnet.bits != p->units) {
2478 ipv6_pool_dereference(&p, MDL);
2479 continue;
2480 }
2481 mark_lease_unavailable(p, &pref);
2482 ipv6_pool_dereference(&p, MDL);
2483 }
2484
2485 return ISC_R_SUCCESS;
2486 }
2487
2488 void
mark_phosts_unavailable(void)2489 mark_phosts_unavailable(void) {
2490 hash_foreach(host_name_hash, mark_phosts_unavailable_support);
2491 }
2492
2493 void
mark_interfaces_unavailable(void)2494 mark_interfaces_unavailable(void) {
2495 struct interface_info *ip;
2496 int i;
2497 struct ipv6_pool *p;
2498
2499 ip = interfaces;
2500 while (ip != NULL) {
2501 for (i=0; i<ip->v6address_count; i++) {
2502 p = NULL;
2503 if (find_ipv6_pool(&p, D6O_IA_NA, &ip->v6addresses[i])
2504 == ISC_R_SUCCESS) {
2505 mark_lease_unavailable(p,
2506 &ip->v6addresses[i]);
2507 ipv6_pool_dereference(&p, MDL);
2508 }
2509 if (find_ipv6_pool(&p, D6O_IA_TA, &ip->v6addresses[i])
2510 == ISC_R_SUCCESS) {
2511 mark_lease_unavailable(p,
2512 &ip->v6addresses[i]);
2513 ipv6_pool_dereference(&p, MDL);
2514 }
2515 }
2516 ip = ip->next;
2517 }
2518 }
2519
2520 /*!
2521 * \brief Create a new IPv6 pond structure.
2522 *
2523 * Allocate space for a new ipv6_pond structure and return a reference
2524 * to it, includes setting the reference count to 1.
2525 *
2526 * \param pond = space for returning a referenced pointer to the pond.
2527 * This must point to a space that has been initialzied
2528 * to NULL by the caller.
2529 *
2530 * \return
2531 * ISC_R_SUCCESS = The pond was successfully created, pond points to it.
2532 * DHCP_R_INVALIDARG = One of the arugments was invalid, pond has not been
2533 * modified
2534 * ISC_R_NOMEMORY = The system wasn't able to allocate memory, pond has
2535 * not been modified.
2536 */
2537 isc_result_t
ipv6_pond_allocate(struct ipv6_pond ** pond,const char * file,int line)2538 ipv6_pond_allocate(struct ipv6_pond **pond, const char *file, int line) {
2539 struct ipv6_pond *tmp;
2540
2541 if (pond == NULL) {
2542 log_error("%s(%d): NULL pointer reference", file, line);
2543 return DHCP_R_INVALIDARG;
2544 }
2545 if (*pond != NULL) {
2546 log_error("%s(%d): non-NULL pointer", file, line);
2547 return DHCP_R_INVALIDARG;
2548 }
2549
2550 tmp = dmalloc(sizeof(*tmp), file, line);
2551 if (tmp == NULL) {
2552 return ISC_R_NOMEMORY;
2553 }
2554
2555 tmp->refcnt = 1;
2556
2557 *pond = tmp;
2558 return ISC_R_SUCCESS;
2559 }
2560
2561 /*!
2562 *
2563 * \brief reference an IPv6 pond structure.
2564 *
2565 * This function genreates a reference to an ipv6_pond structure
2566 * and increments the reference count on the structure.
2567 *
2568 * \param[out] pond = space for returning a referenced pointer to the pond.
2569 * This must point to a space that has been initialzied
2570 * to NULL by the caller.
2571 * \param[in] src = A pointer to the pond to reference. This must not be
2572 * NULL.
2573 *
2574 * \return
2575 * ISC_R_SUCCESS = The pond was successfully referenced, pond now points
2576 * to src.
2577 * DHCP_R_INVALIDARG = One of the arugments was invalid, pond has not been
2578 * modified.
2579 */
2580 isc_result_t
ipv6_pond_reference(struct ipv6_pond ** pond,struct ipv6_pond * src,const char * file,int line)2581 ipv6_pond_reference(struct ipv6_pond **pond, struct ipv6_pond *src,
2582 const char *file, int line) {
2583 if (pond == NULL) {
2584 log_error("%s(%d): NULL pointer reference", file, line);
2585 return DHCP_R_INVALIDARG;
2586 }
2587 if (*pond != NULL) {
2588 log_error("%s(%d): non-NULL pointer", file, line);
2589 return DHCP_R_INVALIDARG;
2590 }
2591 if (src == NULL) {
2592 log_error("%s(%d): NULL pointer reference", file, line);
2593 return DHCP_R_INVALIDARG;
2594 }
2595 *pond = src;
2596 src->refcnt++;
2597 return ISC_R_SUCCESS;
2598 }
2599
2600 /*!
2601 *
2602 * \brief de-reference an IPv6 pond structure.
2603 *
2604 * This function decrements the reference count in an ipv6_pond structure.
2605 * If this was the last reference then the memory for the structure is
2606 * freed.
2607 *
2608 * \param[in] pond = A pointer to the pointer to the pond that should be
2609 * de-referenced. On success the pointer to the pond
2610 * is cleared. It must not be NULL and must not point
2611 * to NULL.
2612 *
2613 * \return
2614 * ISC_R_SUCCESS = The pond was successfully de-referenced, pond now points
2615 * to NULL
2616 * DHCP_R_INVALIDARG = One of the arugments was invalid, pond has not been
2617 * modified.
2618 */
2619
2620 isc_result_t
ipv6_pond_dereference(struct ipv6_pond ** pond,const char * file,int line)2621 ipv6_pond_dereference(struct ipv6_pond **pond, const char *file, int line) {
2622 struct ipv6_pond *tmp;
2623
2624 if ((pond == NULL) || (*pond == NULL)) {
2625 log_error("%s(%d): NULL pointer", file, line);
2626 return DHCP_R_INVALIDARG;
2627 }
2628
2629 tmp = *pond;
2630 *pond = NULL;
2631
2632 tmp->refcnt--;
2633 if (tmp->refcnt < 0) {
2634 log_error("%s(%d): negative refcnt", file, line);
2635 tmp->refcnt = 0;
2636 }
2637 if (tmp->refcnt == 0) {
2638 dfree(tmp, file, line);
2639 }
2640
2641 return ISC_R_SUCCESS;
2642 }
2643
2644 #ifdef EUI_64
2645 /*
2646 * Enables/disables EUI-64 address assignment for a pond
2647 *
2648 * Excecutes statements down to the pond's scope and sets the pond's
2649 * use_eui_64 flag accordingly. In addition it iterates over the
2650 * pond's pools ensuring they are all /64. Anything else is deemed
2651 * invalid for EUI-64. It returns the number of invalid pools
2652 * detected. This is done post-parsing as use-eui-64 can be set
2653 * down to the pool scope and we can't reliably do it until the
2654 * entire configuration has been parsed.
2655 */
2656 int
set_eui_64(struct ipv6_pond * pond)2657 set_eui_64(struct ipv6_pond *pond) {
2658 int invalid_cnt = 0;
2659 struct option_state* options = NULL;
2660 struct option_cache *oc = NULL;
2661 option_state_allocate(&options, MDL);
2662 execute_statements_in_scope(NULL, NULL, NULL, NULL, NULL, options,
2663 &global_scope, pond->group, NULL, NULL);
2664
2665 pond->use_eui_64 =
2666 ((oc = lookup_option(&server_universe, options, SV_USE_EUI_64))
2667 &&
2668 (evaluate_boolean_option_cache (NULL, NULL, NULL, NULL,
2669 options, NULL, &global_scope,
2670 oc, MDL)));
2671 if (pond->use_eui_64) {
2672 // Check all pools are valid
2673 int i = 0;
2674 struct ipv6_pool* p;
2675 while((p = pond->ipv6_pools[i++]) != NULL) {
2676 if (p->bits != 64) {
2677 log_error("Pool %s/%d cannot use EUI-64,"
2678 " prefix must 64",
2679 pin6_addr(&p->start_addr), p->bits);
2680 invalid_cnt++;
2681 } else {
2682 log_debug("Pool: %s/%d - will use EUI-64",
2683 pin6_addr(&p->start_addr), p->bits);
2684 }
2685 }
2686 }
2687
2688 /* Don't need the options anymore. */
2689 option_state_dereference(&options, MDL);
2690 return (invalid_cnt);
2691 }
2692 #endif
2693
2694 /*
2695 * Emits a log for each pond that has been flagged as being a "jumbo range"
2696 * A pond is considered a "jumbo range" when the total number of elements
2697 * exceeds the maximum value of POND_TRACK_MAX (currently maximum value
2698 * that can be stored by ipv6_pond.num_total). Since we disable threshold
2699 * logging for jumbo ranges, we need to report this to the user. This
2700 * function allows us to report jumbo ponds after config parsing, so the
2701 * logs can be seen both on the console (-T) and the log facility (i.e syslog).
2702 *
2703 * Note, threshold logging is done at the pond level, so we need emit a list
2704 * of the addresses ranges of the pools in the pond affected.
2705 */
2706 void
report_jumbo_ranges()2707 report_jumbo_ranges() {
2708 struct shared_network* s;
2709 char log_buf[1084];
2710 #ifdef EUI_64
2711 int invalid_cnt = 0;
2712 #endif
2713
2714 /* Loop thru all the networks looking for jumbo range ponds */
2715 for (s = shared_networks; s; s = s -> next) {
2716 struct ipv6_pond* pond = s->ipv6_pond;
2717 while (pond) {
2718 #ifdef EUI_64
2719 /* while we're here, set the pond's use_eui_64 flag */
2720 invalid_cnt += set_eui_64(pond);
2721 #endif
2722 /* if its a jumbo and has pools(sanity check) */
2723 if (pond->jumbo_range == 1 && (pond->ipv6_pools)) {
2724 struct ipv6_pool* pool;
2725 char *bufptr = log_buf;
2726 size_t space_left = sizeof(log_buf) - 1;
2727 int i = 0;
2728 int used = 0;
2729
2730 /* Build list containing the start-address/CIDR
2731 * of each pool */
2732 *bufptr = '\0';
2733 while ((pool = pond->ipv6_pools[i++]) &&
2734 (space_left > (INET6_ADDRSTRLEN + 6))) {
2735 /* more than one so add a comma */
2736 if (i > 1) {
2737 *bufptr++ = ',';
2738 *bufptr++ = ' ';
2739 *bufptr = '\0';
2740 space_left -= 2;
2741 }
2742
2743 /* add the address */
2744 inet_ntop(AF_INET6, &pool->start_addr,
2745 bufptr, INET6_ADDRSTRLEN);
2746
2747 used = strlen(bufptr);
2748 bufptr += used;
2749 space_left -= used;
2750
2751 /* add the CIDR */
2752 sprintf (bufptr, "/%d",pool->bits);
2753 used = strlen(bufptr);
2754 bufptr += used;
2755 space_left -= used;
2756 *bufptr = '\0';
2757 }
2758
2759 log_info("Threshold logging disabled for shared"
2760 " subnet of ranges: %s", log_buf);
2761 }
2762 pond = pond->next;
2763 }
2764
2765 }
2766
2767 #ifdef EUI_64
2768 if (invalid_cnt) {
2769 log_fatal ("%d pool(s) are invalid for EUI-64 use",
2770 invalid_cnt);
2771 }
2772 #endif
2773 }
2774
2775
2776 /*
2777 * \brief Tests that 16-bit hardware type is less than 256
2778 *
2779 * XXX: DHCPv6 gives a 16-bit field for the htype. DHCPv4 gives an
2780 * 8-bit field. To change the semantics of the generic 'hardware'
2781 * structure, we would have to adjust many DHCPv4 sources (from
2782 * interface to DHCPv4 lease code), and we would have to update the
2783 * 'hardware' config directive (probably being reverse compatible and
2784 * providing a new upgrade/replacement primitive). This is a little
2785 * too much to change for now. Hopefully we will revisit this before
2786 * hardware types exceeding 8 bits are assigned.
2787 *
2788 * Uses a static variable to limit log occurence to once per startup
2789 *
2790 * \param htype hardware type value to test
2791 *
2792 * \return returns 0 if the value is too large
2793 *
2794 */
2795 static int
htype_bounds_check(uint16_t htype)2796 htype_bounds_check(uint16_t htype) {
2797 static int log_once = 0;
2798
2799 if (htype & 0xFF00) {
2800 if (!log_once) {
2801 log_error("Attention: At least one client advertises a "
2802 "hardware type of %d, which exceeds the software "
2803 "limitation of 255.", htype);
2804 log_once = 1;
2805 }
2806
2807 return(0);
2808 }
2809
2810 return(1);
2811 }
2812
2813 /*!
2814 * \brief Look for hosts by MAC address if it's available
2815 *
2816 * Checks the inbound packet against host declarations which specified:
2817 *
2818 * "hardware ethernet <MAC>;"
2819 *
2820 * For directly connected clients, the function will use the MAC address
2821 * contained in packet:haddr if it's populated. \TODO - While the logic is in
2822 * place for this search, the socket layer does not yet populate packet:haddr,
2823 * this is to be done under rt41523.
2824 *
2825 * For relayed clients, the function will use the MAC address from the
2826 * client-linklayer-address option if it has been supplied by the relay
2827 * directly connected to the client.
2828 *
2829 * \param hp[out] - pointer to storage for the host delcaration if found
2830 * \param packet - received packet
2831 * \param opt_state - option state to search
2832 * \param file - source file
2833 * \param line - line number
2834 *
2835 * \return non-zero if a matching host was found, zero otherwise
2836 */
2837 static int
find_hosts_by_haddr6(struct host_decl ** hp,struct packet * packet,struct option_state * opt_state,const char * file,int line)2838 find_hosts_by_haddr6(struct host_decl **hp,
2839 struct packet *packet,
2840 struct option_state *opt_state,
2841 const char *file, int line) {
2842 int found = 0;
2843 int htype;
2844 int hlen;
2845
2846 /* For directly connected clients, use packet:haddr if populated */
2847 if (packet->dhcpv6_container_packet == NULL) {
2848 if (packet->haddr) {
2849 htype = packet->haddr->hbuf[0];
2850 hlen = packet->haddr->hlen - 1,
2851 log_debug("find_hosts_by_haddr6: using packet->haddr,"
2852 " type: %d, len: %d", htype, hlen);
2853 found = find_hosts_by_haddr (hp, htype,
2854 &packet->haddr->hbuf[1],
2855 hlen, MDL);
2856 }
2857 } else {
2858 /* The first container packet is the from the relay directly
2859 * connected to the client. Per RFC 6939, that is only relay
2860 * that may supply the client linklayer address option. */
2861 struct packet *relay_packet = packet->dhcpv6_container_packet;
2862 struct option_state *relay_state = relay_packet->options;
2863 struct data_string rel_addr;
2864 struct option_cache *oc;
2865
2866 /* Look for the option in the first relay packet */
2867 oc = lookup_option(&dhcpv6_universe, relay_state,
2868 D6O_CLIENT_LINKLAYER_ADDR);
2869 if (!oc) {
2870 /* Not there, so bail */
2871 return (0);
2872 }
2873
2874 /* The option is present, fetch the address data */
2875 memset(&rel_addr, 0, sizeof(rel_addr));
2876 if (!evaluate_option_cache(&rel_addr, relay_packet, NULL, NULL,
2877 relay_state, NULL, &global_scope,
2878 oc, MDL)) {
2879 log_error("find_hosts_by_add6:"
2880 "Error evaluating option cache");
2881 return (0);
2882 }
2883
2884 /* The relay address data should be:
2885 * byte 0 - 1 = hardware type
2886 * bytes 2 - hlen = hardware address
2887 * where hlen ( hardware address len) is option data len - 2 */
2888 hlen = rel_addr.len - 2;
2889 if (hlen > 0 && hlen <= HARDWARE_ADDR_LEN) {
2890 htype = getUShort(rel_addr.data);
2891 if (htype_bounds_check(htype)) {
2892 /* Looks valid, let's search with it */
2893 log_debug("find_hosts_by_haddr6:"
2894 "using relayed haddr"
2895 " type: %d, len: %d", htype, hlen);
2896 found = find_hosts_by_haddr (hp, htype,
2897 &rel_addr.data[2],
2898 hlen, MDL);
2899 }
2900 }
2901
2902 data_string_forget(&rel_addr, MDL);
2903 }
2904
2905 return (found);
2906 }
2907
2908 /*
2909 * find_host_by_duid_chaddr() synthesizes a DHCPv4-like 'hardware'
2910 * parameter from a DHCPv6 supplied DUID (client-identifier option),
2911 * and may seek to use client or relay supplied hardware addresses.
2912 */
2913 static int
find_hosts_by_duid_chaddr(struct host_decl ** host,const struct data_string * client_id)2914 find_hosts_by_duid_chaddr(struct host_decl **host,
2915 const struct data_string *client_id) {
2916 int htype, hlen;
2917 const unsigned char *chaddr;
2918
2919 /*
2920 * The DUID-LL and DUID-LLT must have a 2-byte DUID type and 2-byte
2921 * htype.
2922 */
2923 if (client_id->len < 4)
2924 return 0;
2925
2926 /*
2927 * The third and fourth octets of the DUID-LL and DUID-LLT
2928 * is the hardware type, but in 16 bits.
2929 */
2930 htype = getUShort(client_id->data + 2);
2931 hlen = 0;
2932 chaddr = NULL;
2933
2934 /* The first two octets of the DUID identify the type. */
2935 switch(getUShort(client_id->data)) {
2936 case DUID_LLT:
2937 if (client_id->len > 8) {
2938 hlen = client_id->len - 8;
2939 chaddr = client_id->data + 8;
2940 }
2941 break;
2942
2943 case DUID_LL:
2944 /*
2945 * Note that client_id->len must be greater than or equal
2946 * to four to get to this point in the function.
2947 */
2948 hlen = client_id->len - 4;
2949 chaddr = client_id->data + 4;
2950 break;
2951
2952 default:
2953 break;
2954 }
2955
2956 if ((hlen == 0) || (hlen > HARDWARE_ADDR_LEN) ||
2957 !htype_bounds_check(htype)) {
2958 return (0);
2959 }
2960
2961 return find_hosts_by_haddr(host, htype, chaddr, hlen, MDL);
2962 }
2963
2964 /*
2965 * \brief Finds a host record that matches the packet, if any
2966 *
2967 * This function centralizes the logic for matching v6 client
2968 * packets to host declarations. We check in the following order
2969 * for matches with:
2970 *
2971 * 1. client_id if specified
2972 * 2. MAC address when explicitly available
2973 * 3. packet option
2974 * 4. synthesized hardware address - this is done last as some
2975 * synthesis methods are not consided to be reliable
2976 *
2977 * \param[out] host - pointer to storage for the located host
2978 * \param packet - inbound client packet
2979 * \param client_id - client identifier (if one)
2980 * \param file - source file
2981 * \param line - source file line number
2982 * \return non-zero if a host is found, zero otherwise
2983 */
2984 int
find_hosts6(struct host_decl ** host,struct packet * packet,const struct data_string * client_id,char * file,int line)2985 find_hosts6(struct host_decl** host, struct packet* packet,
2986 const struct data_string* client_id, char* file, int line) {
2987 return (find_hosts_by_uid(host, client_id->data, client_id->len, MDL)
2988 || find_hosts_by_haddr6(host, packet, packet->options, MDL)
2989 || find_hosts_by_option(host, packet, packet->options, MDL)
2990 || find_hosts_by_duid_chaddr(host, client_id));
2991 }
2992
2993 /* unittest moved to server/tests/mdb6_unittest.c */
2994