1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/bitfield.h>
5 #include <linux/net/intel/libie/rx.h>
6 #include <linux/prefetch.h>
7 
8 #include "iavf.h"
9 #include "iavf_trace.h"
10 #include "iavf_prototype.h"
11 
build_ctob(u32 td_cmd,u32 td_offset,unsigned int size,u32 td_tag)12 static __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
13 			 u32 td_tag)
14 {
15 	return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA |
16 			   ((u64)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
17 			   ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) |
18 			   ((u64)size  << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
19 			   ((u64)td_tag  << IAVF_TXD_QW1_L2TAG1_SHIFT));
20 }
21 
22 #define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS)
23 
24 /**
25  * iavf_unmap_and_free_tx_resource - Release a Tx buffer
26  * @ring:      the ring that owns the buffer
27  * @tx_buffer: the buffer to free
28  **/
iavf_unmap_and_free_tx_resource(struct iavf_ring * ring,struct iavf_tx_buffer * tx_buffer)29 static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring,
30 					    struct iavf_tx_buffer *tx_buffer)
31 {
32 	if (tx_buffer->skb) {
33 		if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB)
34 			kfree(tx_buffer->raw_buf);
35 		else
36 			dev_kfree_skb_any(tx_buffer->skb);
37 		if (dma_unmap_len(tx_buffer, len))
38 			dma_unmap_single(ring->dev,
39 					 dma_unmap_addr(tx_buffer, dma),
40 					 dma_unmap_len(tx_buffer, len),
41 					 DMA_TO_DEVICE);
42 	} else if (dma_unmap_len(tx_buffer, len)) {
43 		dma_unmap_page(ring->dev,
44 			       dma_unmap_addr(tx_buffer, dma),
45 			       dma_unmap_len(tx_buffer, len),
46 			       DMA_TO_DEVICE);
47 	}
48 
49 	tx_buffer->next_to_watch = NULL;
50 	tx_buffer->skb = NULL;
51 	dma_unmap_len_set(tx_buffer, len, 0);
52 	/* tx_buffer must be completely set up in the transmit path */
53 }
54 
55 /**
56  * iavf_clean_tx_ring - Free any empty Tx buffers
57  * @tx_ring: ring to be cleaned
58  **/
iavf_clean_tx_ring(struct iavf_ring * tx_ring)59 static void iavf_clean_tx_ring(struct iavf_ring *tx_ring)
60 {
61 	unsigned long bi_size;
62 	u16 i;
63 
64 	/* ring already cleared, nothing to do */
65 	if (!tx_ring->tx_bi)
66 		return;
67 
68 	/* Free all the Tx ring sk_buffs */
69 	for (i = 0; i < tx_ring->count; i++)
70 		iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
71 
72 	bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
73 	memset(tx_ring->tx_bi, 0, bi_size);
74 
75 	/* Zero out the descriptor ring */
76 	memset(tx_ring->desc, 0, tx_ring->size);
77 
78 	tx_ring->next_to_use = 0;
79 	tx_ring->next_to_clean = 0;
80 
81 	if (!tx_ring->netdev)
82 		return;
83 
84 	/* cleanup Tx queue statistics */
85 	netdev_tx_reset_queue(txring_txq(tx_ring));
86 }
87 
88 /**
89  * iavf_free_tx_resources - Free Tx resources per queue
90  * @tx_ring: Tx descriptor ring for a specific queue
91  *
92  * Free all transmit software resources
93  **/
iavf_free_tx_resources(struct iavf_ring * tx_ring)94 void iavf_free_tx_resources(struct iavf_ring *tx_ring)
95 {
96 	iavf_clean_tx_ring(tx_ring);
97 	kfree(tx_ring->tx_bi);
98 	tx_ring->tx_bi = NULL;
99 
100 	if (tx_ring->desc) {
101 		dma_free_coherent(tx_ring->dev, tx_ring->size,
102 				  tx_ring->desc, tx_ring->dma);
103 		tx_ring->desc = NULL;
104 	}
105 }
106 
107 /**
108  * iavf_get_tx_pending - how many Tx descriptors not processed
109  * @ring: the ring of descriptors
110  * @in_sw: is tx_pending being checked in SW or HW
111  *
112  * Since there is no access to the ring head register
113  * in XL710, we need to use our local copies
114  **/
iavf_get_tx_pending(struct iavf_ring * ring,bool in_sw)115 static u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw)
116 {
117 	u32 head, tail;
118 
119 	/* underlying hardware might not allow access and/or always return
120 	 * 0 for the head/tail registers so just use the cached values
121 	 */
122 	head = ring->next_to_clean;
123 	tail = ring->next_to_use;
124 
125 	if (head != tail)
126 		return (head < tail) ?
127 			tail - head : (tail + ring->count - head);
128 
129 	return 0;
130 }
131 
132 /**
133  * iavf_force_wb - Issue SW Interrupt so HW does a wb
134  * @vsi: the VSI we care about
135  * @q_vector: the vector on which to force writeback
136  **/
iavf_force_wb(struct iavf_vsi * vsi,struct iavf_q_vector * q_vector)137 static void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector)
138 {
139 	u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
140 		  IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
141 		  IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
142 		  IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
143 		  /* allow 00 to be written to the index */;
144 
145 	wr32(&vsi->back->hw,
146 	     IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx),
147 	     val);
148 }
149 
150 /**
151  * iavf_detect_recover_hung - Function to detect and recover hung_queues
152  * @vsi:  pointer to vsi struct with tx queues
153  *
154  * VSI has netdev and netdev has TX queues. This function is to check each of
155  * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
156  **/
iavf_detect_recover_hung(struct iavf_vsi * vsi)157 void iavf_detect_recover_hung(struct iavf_vsi *vsi)
158 {
159 	struct iavf_ring *tx_ring = NULL;
160 	struct net_device *netdev;
161 	unsigned int i;
162 	int packets;
163 
164 	if (!vsi)
165 		return;
166 
167 	if (test_bit(__IAVF_VSI_DOWN, vsi->state))
168 		return;
169 
170 	netdev = vsi->netdev;
171 	if (!netdev)
172 		return;
173 
174 	if (!netif_carrier_ok(netdev))
175 		return;
176 
177 	for (i = 0; i < vsi->back->num_active_queues; i++) {
178 		tx_ring = &vsi->back->tx_rings[i];
179 		if (tx_ring && tx_ring->desc) {
180 			/* If packet counter has not changed the queue is
181 			 * likely stalled, so force an interrupt for this
182 			 * queue.
183 			 *
184 			 * prev_pkt_ctr would be negative if there was no
185 			 * pending work.
186 			 */
187 			packets = tx_ring->stats.packets & INT_MAX;
188 			if (tx_ring->prev_pkt_ctr == packets) {
189 				iavf_force_wb(vsi, tx_ring->q_vector);
190 				continue;
191 			}
192 
193 			/* Memory barrier between read of packet count and call
194 			 * to iavf_get_tx_pending()
195 			 */
196 			smp_rmb();
197 			tx_ring->prev_pkt_ctr =
198 			  iavf_get_tx_pending(tx_ring, true) ? packets : -1;
199 		}
200 	}
201 }
202 
203 #define WB_STRIDE 4
204 
205 /**
206  * iavf_clean_tx_irq - Reclaim resources after transmit completes
207  * @vsi: the VSI we care about
208  * @tx_ring: Tx ring to clean
209  * @napi_budget: Used to determine if we are in netpoll
210  *
211  * Returns true if there's any budget left (e.g. the clean is finished)
212  **/
iavf_clean_tx_irq(struct iavf_vsi * vsi,struct iavf_ring * tx_ring,int napi_budget)213 static bool iavf_clean_tx_irq(struct iavf_vsi *vsi,
214 			      struct iavf_ring *tx_ring, int napi_budget)
215 {
216 	int i = tx_ring->next_to_clean;
217 	struct iavf_tx_buffer *tx_buf;
218 	struct iavf_tx_desc *tx_desc;
219 	unsigned int total_bytes = 0, total_packets = 0;
220 	unsigned int budget = IAVF_DEFAULT_IRQ_WORK;
221 
222 	tx_buf = &tx_ring->tx_bi[i];
223 	tx_desc = IAVF_TX_DESC(tx_ring, i);
224 	i -= tx_ring->count;
225 
226 	do {
227 		struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch;
228 
229 		/* if next_to_watch is not set then there is no work pending */
230 		if (!eop_desc)
231 			break;
232 
233 		/* prevent any other reads prior to eop_desc */
234 		smp_rmb();
235 
236 		iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
237 		/* if the descriptor isn't done, no work yet to do */
238 		if (!(eop_desc->cmd_type_offset_bsz &
239 		      cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE)))
240 			break;
241 
242 		/* clear next_to_watch to prevent false hangs */
243 		tx_buf->next_to_watch = NULL;
244 
245 		/* update the statistics for this packet */
246 		total_bytes += tx_buf->bytecount;
247 		total_packets += tx_buf->gso_segs;
248 
249 		/* free the skb */
250 		napi_consume_skb(tx_buf->skb, napi_budget);
251 
252 		/* unmap skb header data */
253 		dma_unmap_single(tx_ring->dev,
254 				 dma_unmap_addr(tx_buf, dma),
255 				 dma_unmap_len(tx_buf, len),
256 				 DMA_TO_DEVICE);
257 
258 		/* clear tx_buffer data */
259 		tx_buf->skb = NULL;
260 		dma_unmap_len_set(tx_buf, len, 0);
261 
262 		/* unmap remaining buffers */
263 		while (tx_desc != eop_desc) {
264 			iavf_trace(clean_tx_irq_unmap,
265 				   tx_ring, tx_desc, tx_buf);
266 
267 			tx_buf++;
268 			tx_desc++;
269 			i++;
270 			if (unlikely(!i)) {
271 				i -= tx_ring->count;
272 				tx_buf = tx_ring->tx_bi;
273 				tx_desc = IAVF_TX_DESC(tx_ring, 0);
274 			}
275 
276 			/* unmap any remaining paged data */
277 			if (dma_unmap_len(tx_buf, len)) {
278 				dma_unmap_page(tx_ring->dev,
279 					       dma_unmap_addr(tx_buf, dma),
280 					       dma_unmap_len(tx_buf, len),
281 					       DMA_TO_DEVICE);
282 				dma_unmap_len_set(tx_buf, len, 0);
283 			}
284 		}
285 
286 		/* move us one more past the eop_desc for start of next pkt */
287 		tx_buf++;
288 		tx_desc++;
289 		i++;
290 		if (unlikely(!i)) {
291 			i -= tx_ring->count;
292 			tx_buf = tx_ring->tx_bi;
293 			tx_desc = IAVF_TX_DESC(tx_ring, 0);
294 		}
295 
296 		prefetch(tx_desc);
297 
298 		/* update budget accounting */
299 		budget--;
300 	} while (likely(budget));
301 
302 	i += tx_ring->count;
303 	tx_ring->next_to_clean = i;
304 	u64_stats_update_begin(&tx_ring->syncp);
305 	tx_ring->stats.bytes += total_bytes;
306 	tx_ring->stats.packets += total_packets;
307 	u64_stats_update_end(&tx_ring->syncp);
308 	tx_ring->q_vector->tx.total_bytes += total_bytes;
309 	tx_ring->q_vector->tx.total_packets += total_packets;
310 
311 	if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) {
312 		/* check to see if there are < 4 descriptors
313 		 * waiting to be written back, then kick the hardware to force
314 		 * them to be written back in case we stay in NAPI.
315 		 * In this mode on X722 we do not enable Interrupt.
316 		 */
317 		unsigned int j = iavf_get_tx_pending(tx_ring, false);
318 
319 		if (budget &&
320 		    ((j / WB_STRIDE) == 0) && (j > 0) &&
321 		    !test_bit(__IAVF_VSI_DOWN, vsi->state) &&
322 		    (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count))
323 			tx_ring->flags |= IAVF_TXR_FLAGS_ARM_WB;
324 	}
325 
326 	/* notify netdev of completed buffers */
327 	netdev_tx_completed_queue(txring_txq(tx_ring),
328 				  total_packets, total_bytes);
329 
330 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
331 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
332 		     (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
333 		/* Make sure that anybody stopping the queue after this
334 		 * sees the new next_to_clean.
335 		 */
336 		smp_mb();
337 		if (__netif_subqueue_stopped(tx_ring->netdev,
338 					     tx_ring->queue_index) &&
339 		   !test_bit(__IAVF_VSI_DOWN, vsi->state)) {
340 			netif_wake_subqueue(tx_ring->netdev,
341 					    tx_ring->queue_index);
342 			++tx_ring->tx_stats.restart_queue;
343 		}
344 	}
345 
346 	return !!budget;
347 }
348 
349 /**
350  * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
351  * @vsi: the VSI we care about
352  * @q_vector: the vector on which to enable writeback
353  *
354  **/
iavf_enable_wb_on_itr(struct iavf_vsi * vsi,struct iavf_q_vector * q_vector)355 static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi,
356 				  struct iavf_q_vector *q_vector)
357 {
358 	u16 flags = q_vector->tx.ring[0].flags;
359 	u32 val;
360 
361 	if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR))
362 		return;
363 
364 	if (q_vector->arm_wb_state)
365 		return;
366 
367 	val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
368 	      IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
369 
370 	wr32(&vsi->back->hw,
371 	     IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val);
372 	q_vector->arm_wb_state = true;
373 }
374 
iavf_container_is_rx(struct iavf_q_vector * q_vector,struct iavf_ring_container * rc)375 static bool iavf_container_is_rx(struct iavf_q_vector *q_vector,
376 				 struct iavf_ring_container *rc)
377 {
378 	return &q_vector->rx == rc;
379 }
380 
381 #define IAVF_AIM_MULTIPLIER_100G	2560
382 #define IAVF_AIM_MULTIPLIER_50G		1280
383 #define IAVF_AIM_MULTIPLIER_40G		1024
384 #define IAVF_AIM_MULTIPLIER_20G		512
385 #define IAVF_AIM_MULTIPLIER_10G		256
386 #define IAVF_AIM_MULTIPLIER_1G		32
387 
iavf_mbps_itr_multiplier(u32 speed_mbps)388 static unsigned int iavf_mbps_itr_multiplier(u32 speed_mbps)
389 {
390 	switch (speed_mbps) {
391 	case SPEED_100000:
392 		return IAVF_AIM_MULTIPLIER_100G;
393 	case SPEED_50000:
394 		return IAVF_AIM_MULTIPLIER_50G;
395 	case SPEED_40000:
396 		return IAVF_AIM_MULTIPLIER_40G;
397 	case SPEED_25000:
398 	case SPEED_20000:
399 		return IAVF_AIM_MULTIPLIER_20G;
400 	case SPEED_10000:
401 	default:
402 		return IAVF_AIM_MULTIPLIER_10G;
403 	case SPEED_1000:
404 	case SPEED_100:
405 		return IAVF_AIM_MULTIPLIER_1G;
406 	}
407 }
408 
409 static unsigned int
iavf_virtchnl_itr_multiplier(enum virtchnl_link_speed speed_virtchnl)410 iavf_virtchnl_itr_multiplier(enum virtchnl_link_speed speed_virtchnl)
411 {
412 	switch (speed_virtchnl) {
413 	case VIRTCHNL_LINK_SPEED_40GB:
414 		return IAVF_AIM_MULTIPLIER_40G;
415 	case VIRTCHNL_LINK_SPEED_25GB:
416 	case VIRTCHNL_LINK_SPEED_20GB:
417 		return IAVF_AIM_MULTIPLIER_20G;
418 	case VIRTCHNL_LINK_SPEED_10GB:
419 	default:
420 		return IAVF_AIM_MULTIPLIER_10G;
421 	case VIRTCHNL_LINK_SPEED_1GB:
422 	case VIRTCHNL_LINK_SPEED_100MB:
423 		return IAVF_AIM_MULTIPLIER_1G;
424 	}
425 }
426 
iavf_itr_divisor(struct iavf_adapter * adapter)427 static unsigned int iavf_itr_divisor(struct iavf_adapter *adapter)
428 {
429 	if (ADV_LINK_SUPPORT(adapter))
430 		return IAVF_ITR_ADAPTIVE_MIN_INC *
431 			iavf_mbps_itr_multiplier(adapter->link_speed_mbps);
432 	else
433 		return IAVF_ITR_ADAPTIVE_MIN_INC *
434 			iavf_virtchnl_itr_multiplier(adapter->link_speed);
435 }
436 
437 /**
438  * iavf_update_itr - update the dynamic ITR value based on statistics
439  * @q_vector: structure containing interrupt and ring information
440  * @rc: structure containing ring performance data
441  *
442  * Stores a new ITR value based on packets and byte
443  * counts during the last interrupt.  The advantage of per interrupt
444  * computation is faster updates and more accurate ITR for the current
445  * traffic pattern.  Constants in this function were computed
446  * based on theoretical maximum wire speed and thresholds were set based
447  * on testing data as well as attempting to minimize response time
448  * while increasing bulk throughput.
449  **/
iavf_update_itr(struct iavf_q_vector * q_vector,struct iavf_ring_container * rc)450 static void iavf_update_itr(struct iavf_q_vector *q_vector,
451 			    struct iavf_ring_container *rc)
452 {
453 	unsigned int avg_wire_size, packets, bytes, itr;
454 	unsigned long next_update = jiffies;
455 
456 	/* If we don't have any rings just leave ourselves set for maximum
457 	 * possible latency so we take ourselves out of the equation.
458 	 */
459 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
460 		return;
461 
462 	/* For Rx we want to push the delay up and default to low latency.
463 	 * for Tx we want to pull the delay down and default to high latency.
464 	 */
465 	itr = iavf_container_is_rx(q_vector, rc) ?
466 	      IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY :
467 	      IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY;
468 
469 	/* If we didn't update within up to 1 - 2 jiffies we can assume
470 	 * that either packets are coming in so slow there hasn't been
471 	 * any work, or that there is so much work that NAPI is dealing
472 	 * with interrupt moderation and we don't need to do anything.
473 	 */
474 	if (time_after(next_update, rc->next_update))
475 		goto clear_counts;
476 
477 	/* If itr_countdown is set it means we programmed an ITR within
478 	 * the last 4 interrupt cycles. This has a side effect of us
479 	 * potentially firing an early interrupt. In order to work around
480 	 * this we need to throw out any data received for a few
481 	 * interrupts following the update.
482 	 */
483 	if (q_vector->itr_countdown) {
484 		itr = rc->target_itr;
485 		goto clear_counts;
486 	}
487 
488 	packets = rc->total_packets;
489 	bytes = rc->total_bytes;
490 
491 	if (iavf_container_is_rx(q_vector, rc)) {
492 		/* If Rx there are 1 to 4 packets and bytes are less than
493 		 * 9000 assume insufficient data to use bulk rate limiting
494 		 * approach unless Tx is already in bulk rate limiting. We
495 		 * are likely latency driven.
496 		 */
497 		if (packets && packets < 4 && bytes < 9000 &&
498 		    (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) {
499 			itr = IAVF_ITR_ADAPTIVE_LATENCY;
500 			goto adjust_by_size;
501 		}
502 	} else if (packets < 4) {
503 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
504 		 * bulk mode and we are receiving 4 or fewer packets just
505 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
506 		 * that the Rx can relax.
507 		 */
508 		if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS &&
509 		    (q_vector->rx.target_itr & IAVF_ITR_MASK) ==
510 		     IAVF_ITR_ADAPTIVE_MAX_USECS)
511 			goto clear_counts;
512 	} else if (packets > 32) {
513 		/* If we have processed over 32 packets in a single interrupt
514 		 * for Tx assume we need to switch over to "bulk" mode.
515 		 */
516 		rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY;
517 	}
518 
519 	/* We have no packets to actually measure against. This means
520 	 * either one of the other queues on this vector is active or
521 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
522 	 *
523 	 * Between 4 and 56 we can assume that our current interrupt delay
524 	 * is only slightly too low. As such we should increase it by a small
525 	 * fixed amount.
526 	 */
527 	if (packets < 56) {
528 		itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC;
529 		if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
530 			itr &= IAVF_ITR_ADAPTIVE_LATENCY;
531 			itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
532 		}
533 		goto clear_counts;
534 	}
535 
536 	if (packets <= 256) {
537 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
538 		itr &= IAVF_ITR_MASK;
539 
540 		/* Between 56 and 112 is our "goldilocks" zone where we are
541 		 * working out "just right". Just report that our current
542 		 * ITR is good for us.
543 		 */
544 		if (packets <= 112)
545 			goto clear_counts;
546 
547 		/* If packet count is 128 or greater we are likely looking
548 		 * at a slight overrun of the delay we want. Try halving
549 		 * our delay to see if that will cut the number of packets
550 		 * in half per interrupt.
551 		 */
552 		itr /= 2;
553 		itr &= IAVF_ITR_MASK;
554 		if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS)
555 			itr = IAVF_ITR_ADAPTIVE_MIN_USECS;
556 
557 		goto clear_counts;
558 	}
559 
560 	/* The paths below assume we are dealing with a bulk ITR since
561 	 * number of packets is greater than 256. We are just going to have
562 	 * to compute a value and try to bring the count under control,
563 	 * though for smaller packet sizes there isn't much we can do as
564 	 * NAPI polling will likely be kicking in sooner rather than later.
565 	 */
566 	itr = IAVF_ITR_ADAPTIVE_BULK;
567 
568 adjust_by_size:
569 	/* If packet counts are 256 or greater we can assume we have a gross
570 	 * overestimation of what the rate should be. Instead of trying to fine
571 	 * tune it just use the formula below to try and dial in an exact value
572 	 * give the current packet size of the frame.
573 	 */
574 	avg_wire_size = bytes / packets;
575 
576 	/* The following is a crude approximation of:
577 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
578 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
579 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
580 	 *
581 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
582 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
583 	 * formula down to
584 	 *
585 	 *  (170 * (size + 24)) / (size + 640) = ITR
586 	 *
587 	 * We first do some math on the packet size and then finally bitshift
588 	 * by 8 after rounding up. We also have to account for PCIe link speed
589 	 * difference as ITR scales based on this.
590 	 */
591 	if (avg_wire_size <= 60) {
592 		/* Start at 250k ints/sec */
593 		avg_wire_size = 4096;
594 	} else if (avg_wire_size <= 380) {
595 		/* 250K ints/sec to 60K ints/sec */
596 		avg_wire_size *= 40;
597 		avg_wire_size += 1696;
598 	} else if (avg_wire_size <= 1084) {
599 		/* 60K ints/sec to 36K ints/sec */
600 		avg_wire_size *= 15;
601 		avg_wire_size += 11452;
602 	} else if (avg_wire_size <= 1980) {
603 		/* 36K ints/sec to 30K ints/sec */
604 		avg_wire_size *= 5;
605 		avg_wire_size += 22420;
606 	} else {
607 		/* plateau at a limit of 30K ints/sec */
608 		avg_wire_size = 32256;
609 	}
610 
611 	/* If we are in low latency mode halve our delay which doubles the
612 	 * rate to somewhere between 100K to 16K ints/sec
613 	 */
614 	if (itr & IAVF_ITR_ADAPTIVE_LATENCY)
615 		avg_wire_size /= 2;
616 
617 	/* Resultant value is 256 times larger than it needs to be. This
618 	 * gives us room to adjust the value as needed to either increase
619 	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
620 	 *
621 	 * Use addition as we have already recorded the new latency flag
622 	 * for the ITR value.
623 	 */
624 	itr += DIV_ROUND_UP(avg_wire_size,
625 			    iavf_itr_divisor(q_vector->adapter)) *
626 		IAVF_ITR_ADAPTIVE_MIN_INC;
627 
628 	if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
629 		itr &= IAVF_ITR_ADAPTIVE_LATENCY;
630 		itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
631 	}
632 
633 clear_counts:
634 	/* write back value */
635 	rc->target_itr = itr;
636 
637 	/* next update should occur within next jiffy */
638 	rc->next_update = next_update + 1;
639 
640 	rc->total_bytes = 0;
641 	rc->total_packets = 0;
642 }
643 
644 /**
645  * iavf_setup_tx_descriptors - Allocate the Tx descriptors
646  * @tx_ring: the tx ring to set up
647  *
648  * Return 0 on success, negative on error
649  **/
iavf_setup_tx_descriptors(struct iavf_ring * tx_ring)650 int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring)
651 {
652 	struct device *dev = tx_ring->dev;
653 	int bi_size;
654 
655 	if (!dev)
656 		return -ENOMEM;
657 
658 	/* warn if we are about to overwrite the pointer */
659 	WARN_ON(tx_ring->tx_bi);
660 	bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
661 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
662 	if (!tx_ring->tx_bi)
663 		goto err;
664 
665 	/* round up to nearest 4K */
666 	tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc);
667 	tx_ring->size = ALIGN(tx_ring->size, 4096);
668 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
669 					   &tx_ring->dma, GFP_KERNEL);
670 	if (!tx_ring->desc) {
671 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
672 			 tx_ring->size);
673 		goto err;
674 	}
675 
676 	tx_ring->next_to_use = 0;
677 	tx_ring->next_to_clean = 0;
678 	tx_ring->prev_pkt_ctr = -1;
679 	return 0;
680 
681 err:
682 	kfree(tx_ring->tx_bi);
683 	tx_ring->tx_bi = NULL;
684 	return -ENOMEM;
685 }
686 
687 /**
688  * iavf_clean_rx_ring - Free Rx buffers
689  * @rx_ring: ring to be cleaned
690  **/
iavf_clean_rx_ring(struct iavf_ring * rx_ring)691 static void iavf_clean_rx_ring(struct iavf_ring *rx_ring)
692 {
693 	/* ring already cleared, nothing to do */
694 	if (!rx_ring->rx_fqes)
695 		return;
696 
697 	if (rx_ring->skb) {
698 		dev_kfree_skb(rx_ring->skb);
699 		rx_ring->skb = NULL;
700 	}
701 
702 	/* Free all the Rx ring buffers */
703 	for (u32 i = rx_ring->next_to_clean; i != rx_ring->next_to_use; ) {
704 		const struct libeth_fqe *rx_fqes = &rx_ring->rx_fqes[i];
705 
706 		page_pool_put_full_page(rx_ring->pp, rx_fqes->page, false);
707 
708 		if (unlikely(++i == rx_ring->count))
709 			i = 0;
710 	}
711 
712 	rx_ring->next_to_clean = 0;
713 	rx_ring->next_to_use = 0;
714 }
715 
716 /**
717  * iavf_free_rx_resources - Free Rx resources
718  * @rx_ring: ring to clean the resources from
719  *
720  * Free all receive software resources
721  **/
iavf_free_rx_resources(struct iavf_ring * rx_ring)722 void iavf_free_rx_resources(struct iavf_ring *rx_ring)
723 {
724 	struct libeth_fq fq = {
725 		.fqes	= rx_ring->rx_fqes,
726 		.pp	= rx_ring->pp,
727 	};
728 
729 	iavf_clean_rx_ring(rx_ring);
730 
731 	if (rx_ring->desc) {
732 		dma_free_coherent(rx_ring->pp->p.dev, rx_ring->size,
733 				  rx_ring->desc, rx_ring->dma);
734 		rx_ring->desc = NULL;
735 	}
736 
737 	libeth_rx_fq_destroy(&fq);
738 	rx_ring->rx_fqes = NULL;
739 	rx_ring->pp = NULL;
740 }
741 
742 /**
743  * iavf_setup_rx_descriptors - Allocate Rx descriptors
744  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
745  *
746  * Returns 0 on success, negative on failure
747  **/
iavf_setup_rx_descriptors(struct iavf_ring * rx_ring)748 int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring)
749 {
750 	struct libeth_fq fq = {
751 		.count		= rx_ring->count,
752 		.buf_len	= LIBIE_MAX_RX_BUF_LEN,
753 		.nid		= NUMA_NO_NODE,
754 	};
755 	int ret;
756 
757 	ret = libeth_rx_fq_create(&fq, &rx_ring->q_vector->napi);
758 	if (ret)
759 		return ret;
760 
761 	rx_ring->pp = fq.pp;
762 	rx_ring->rx_fqes = fq.fqes;
763 	rx_ring->truesize = fq.truesize;
764 	rx_ring->rx_buf_len = fq.buf_len;
765 
766 	u64_stats_init(&rx_ring->syncp);
767 
768 	/* Round up to nearest 4K */
769 	rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc);
770 	rx_ring->size = ALIGN(rx_ring->size, 4096);
771 	rx_ring->desc = dma_alloc_coherent(fq.pp->p.dev, rx_ring->size,
772 					   &rx_ring->dma, GFP_KERNEL);
773 
774 	if (!rx_ring->desc) {
775 		dev_info(fq.pp->p.dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
776 			 rx_ring->size);
777 		goto err;
778 	}
779 
780 	rx_ring->next_to_clean = 0;
781 	rx_ring->next_to_use = 0;
782 
783 	return 0;
784 
785 err:
786 	libeth_rx_fq_destroy(&fq);
787 	rx_ring->rx_fqes = NULL;
788 	rx_ring->pp = NULL;
789 
790 	return -ENOMEM;
791 }
792 
793 /**
794  * iavf_release_rx_desc - Store the new tail and head values
795  * @rx_ring: ring to bump
796  * @val: new head index
797  **/
iavf_release_rx_desc(struct iavf_ring * rx_ring,u32 val)798 static void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val)
799 {
800 	rx_ring->next_to_use = val;
801 
802 	/* Force memory writes to complete before letting h/w
803 	 * know there are new descriptors to fetch.  (Only
804 	 * applicable for weak-ordered memory model archs,
805 	 * such as IA-64).
806 	 */
807 	wmb();
808 	writel(val, rx_ring->tail);
809 }
810 
811 /**
812  * iavf_receive_skb - Send a completed packet up the stack
813  * @rx_ring:  rx ring in play
814  * @skb: packet to send up
815  * @vlan_tag: vlan tag for packet
816  **/
iavf_receive_skb(struct iavf_ring * rx_ring,struct sk_buff * skb,u16 vlan_tag)817 static void iavf_receive_skb(struct iavf_ring *rx_ring,
818 			     struct sk_buff *skb, u16 vlan_tag)
819 {
820 	struct iavf_q_vector *q_vector = rx_ring->q_vector;
821 
822 	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
823 	    (vlan_tag & VLAN_VID_MASK))
824 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
825 	else if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_STAG_RX) &&
826 		 vlan_tag & VLAN_VID_MASK)
827 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD), vlan_tag);
828 
829 	napi_gro_receive(&q_vector->napi, skb);
830 }
831 
832 /**
833  * iavf_alloc_rx_buffers - Replace used receive buffers
834  * @rx_ring: ring to place buffers on
835  * @cleaned_count: number of buffers to replace
836  *
837  * Returns false if all allocations were successful, true if any fail
838  **/
iavf_alloc_rx_buffers(struct iavf_ring * rx_ring,u16 cleaned_count)839 bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count)
840 {
841 	const struct libeth_fq_fp fq = {
842 		.pp		= rx_ring->pp,
843 		.fqes		= rx_ring->rx_fqes,
844 		.truesize	= rx_ring->truesize,
845 		.count		= rx_ring->count,
846 	};
847 	u16 ntu = rx_ring->next_to_use;
848 	union iavf_rx_desc *rx_desc;
849 
850 	/* do nothing if no valid netdev defined */
851 	if (!rx_ring->netdev || !cleaned_count)
852 		return false;
853 
854 	rx_desc = IAVF_RX_DESC(rx_ring, ntu);
855 
856 	do {
857 		dma_addr_t addr;
858 
859 		addr = libeth_rx_alloc(&fq, ntu);
860 		if (addr == DMA_MAPPING_ERROR)
861 			goto no_buffers;
862 
863 		/* Refresh the desc even if buffer_addrs didn't change
864 		 * because each write-back erases this info.
865 		 */
866 		rx_desc->read.pkt_addr = cpu_to_le64(addr);
867 
868 		rx_desc++;
869 		ntu++;
870 		if (unlikely(ntu == rx_ring->count)) {
871 			rx_desc = IAVF_RX_DESC(rx_ring, 0);
872 			ntu = 0;
873 		}
874 
875 		/* clear the status bits for the next_to_use descriptor */
876 		rx_desc->wb.qword1.status_error_len = 0;
877 
878 		cleaned_count--;
879 	} while (cleaned_count);
880 
881 	if (rx_ring->next_to_use != ntu)
882 		iavf_release_rx_desc(rx_ring, ntu);
883 
884 	return false;
885 
886 no_buffers:
887 	if (rx_ring->next_to_use != ntu)
888 		iavf_release_rx_desc(rx_ring, ntu);
889 
890 	rx_ring->rx_stats.alloc_page_failed++;
891 
892 	/* make sure to come back via polling to try again after
893 	 * allocation failure
894 	 */
895 	return true;
896 }
897 
898 /**
899  * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum
900  * @vsi: the VSI we care about
901  * @skb: skb currently being received and modified
902  * @rx_desc: the receive descriptor
903  **/
iavf_rx_checksum(struct iavf_vsi * vsi,struct sk_buff * skb,union iavf_rx_desc * rx_desc)904 static void iavf_rx_checksum(struct iavf_vsi *vsi,
905 			     struct sk_buff *skb,
906 			     union iavf_rx_desc *rx_desc)
907 {
908 	struct libeth_rx_pt decoded;
909 	u32 rx_error, rx_status;
910 	bool ipv4, ipv6;
911 	u8 ptype;
912 	u64 qword;
913 
914 	skb->ip_summed = CHECKSUM_NONE;
915 
916 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
917 	ptype = FIELD_GET(IAVF_RXD_QW1_PTYPE_MASK, qword);
918 
919 	decoded = libie_rx_pt_parse(ptype);
920 	if (!libeth_rx_pt_has_checksum(vsi->netdev, decoded))
921 		return;
922 
923 	rx_error = FIELD_GET(IAVF_RXD_QW1_ERROR_MASK, qword);
924 	rx_status = FIELD_GET(IAVF_RXD_QW1_STATUS_MASK, qword);
925 
926 	/* did the hardware decode the packet and checksum? */
927 	if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT)))
928 		return;
929 
930 	ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
931 	ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
932 
933 	if (ipv4 &&
934 	    (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) |
935 			 BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT))))
936 		goto checksum_fail;
937 
938 	/* likely incorrect csum if alternate IP extension headers found */
939 	if (ipv6 &&
940 	    rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT))
941 		/* don't increment checksum err here, non-fatal err */
942 		return;
943 
944 	/* there was some L4 error, count error and punt packet to the stack */
945 	if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT))
946 		goto checksum_fail;
947 
948 	/* handle packets that were not able to be checksummed due
949 	 * to arrival speed, in this case the stack can compute
950 	 * the csum.
951 	 */
952 	if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT))
953 		return;
954 
955 	skb->ip_summed = CHECKSUM_UNNECESSARY;
956 	return;
957 
958 checksum_fail:
959 	vsi->back->hw_csum_rx_error++;
960 }
961 
962 /**
963  * iavf_rx_hash - set the hash value in the skb
964  * @ring: descriptor ring
965  * @rx_desc: specific descriptor
966  * @skb: skb currently being received and modified
967  * @rx_ptype: Rx packet type
968  **/
iavf_rx_hash(struct iavf_ring * ring,union iavf_rx_desc * rx_desc,struct sk_buff * skb,u8 rx_ptype)969 static void iavf_rx_hash(struct iavf_ring *ring,
970 			 union iavf_rx_desc *rx_desc,
971 			 struct sk_buff *skb,
972 			 u8 rx_ptype)
973 {
974 	struct libeth_rx_pt decoded;
975 	u32 hash;
976 	const __le64 rss_mask =
977 		cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH <<
978 			    IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT);
979 
980 	decoded = libie_rx_pt_parse(rx_ptype);
981 	if (!libeth_rx_pt_has_hash(ring->netdev, decoded))
982 		return;
983 
984 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
985 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
986 		libeth_rx_pt_set_hash(skb, hash, decoded);
987 	}
988 }
989 
990 /**
991  * iavf_process_skb_fields - Populate skb header fields from Rx descriptor
992  * @rx_ring: rx descriptor ring packet is being transacted on
993  * @rx_desc: pointer to the EOP Rx descriptor
994  * @skb: pointer to current skb being populated
995  * @rx_ptype: the packet type decoded by hardware
996  *
997  * This function checks the ring, descriptor, and packet information in
998  * order to populate the hash, checksum, VLAN, protocol, and
999  * other fields within the skb.
1000  **/
1001 static void
iavf_process_skb_fields(struct iavf_ring * rx_ring,union iavf_rx_desc * rx_desc,struct sk_buff * skb,u8 rx_ptype)1002 iavf_process_skb_fields(struct iavf_ring *rx_ring,
1003 			union iavf_rx_desc *rx_desc, struct sk_buff *skb,
1004 			u8 rx_ptype)
1005 {
1006 	iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1007 
1008 	iavf_rx_checksum(rx_ring->vsi, skb, rx_desc);
1009 
1010 	skb_record_rx_queue(skb, rx_ring->queue_index);
1011 
1012 	/* modifies the skb - consumes the enet header */
1013 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1014 }
1015 
1016 /**
1017  * iavf_cleanup_headers - Correct empty headers
1018  * @rx_ring: rx descriptor ring packet is being transacted on
1019  * @skb: pointer to current skb being fixed
1020  *
1021  * Also address the case where we are pulling data in on pages only
1022  * and as such no data is present in the skb header.
1023  *
1024  * In addition if skb is not at least 60 bytes we need to pad it so that
1025  * it is large enough to qualify as a valid Ethernet frame.
1026  *
1027  * Returns true if an error was encountered and skb was freed.
1028  **/
iavf_cleanup_headers(struct iavf_ring * rx_ring,struct sk_buff * skb)1029 static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb)
1030 {
1031 	/* if eth_skb_pad returns an error the skb was freed */
1032 	if (eth_skb_pad(skb))
1033 		return true;
1034 
1035 	return false;
1036 }
1037 
1038 /**
1039  * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff
1040  * @skb: sk_buff to place the data into
1041  * @rx_buffer: buffer containing page to add
1042  * @size: packet length from rx_desc
1043  *
1044  * This function will add the data contained in rx_buffer->page to the skb.
1045  * It will just attach the page as a frag to the skb.
1046  *
1047  * The function will then update the page offset.
1048  **/
iavf_add_rx_frag(struct sk_buff * skb,const struct libeth_fqe * rx_buffer,unsigned int size)1049 static void iavf_add_rx_frag(struct sk_buff *skb,
1050 			     const struct libeth_fqe *rx_buffer,
1051 			     unsigned int size)
1052 {
1053 	u32 hr = rx_buffer->page->pp->p.offset;
1054 
1055 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1056 			rx_buffer->offset + hr, size, rx_buffer->truesize);
1057 }
1058 
1059 /**
1060  * iavf_build_skb - Build skb around an existing buffer
1061  * @rx_buffer: Rx buffer to pull data from
1062  * @size: size of buffer to add to skb
1063  *
1064  * This function builds an skb around an existing Rx buffer, taking care
1065  * to set up the skb correctly and avoid any memcpy overhead.
1066  */
iavf_build_skb(const struct libeth_fqe * rx_buffer,unsigned int size)1067 static struct sk_buff *iavf_build_skb(const struct libeth_fqe *rx_buffer,
1068 				      unsigned int size)
1069 {
1070 	u32 hr = rx_buffer->page->pp->p.offset;
1071 	struct sk_buff *skb;
1072 	void *va;
1073 
1074 	/* prefetch first cache line of first page */
1075 	va = page_address(rx_buffer->page) + rx_buffer->offset;
1076 	net_prefetch(va + hr);
1077 
1078 	/* build an skb around the page buffer */
1079 	skb = napi_build_skb(va, rx_buffer->truesize);
1080 	if (unlikely(!skb))
1081 		return NULL;
1082 
1083 	skb_mark_for_recycle(skb);
1084 
1085 	/* update pointers within the skb to store the data */
1086 	skb_reserve(skb, hr);
1087 	__skb_put(skb, size);
1088 
1089 	return skb;
1090 }
1091 
1092 /**
1093  * iavf_is_non_eop - process handling of non-EOP buffers
1094  * @rx_ring: Rx ring being processed
1095  * @rx_desc: Rx descriptor for current buffer
1096  * @skb: Current socket buffer containing buffer in progress
1097  *
1098  * This function updates next to clean.  If the buffer is an EOP buffer
1099  * this function exits returning false, otherwise it will place the
1100  * sk_buff in the next buffer to be chained and return true indicating
1101  * that this is in fact a non-EOP buffer.
1102  **/
iavf_is_non_eop(struct iavf_ring * rx_ring,union iavf_rx_desc * rx_desc,struct sk_buff * skb)1103 static bool iavf_is_non_eop(struct iavf_ring *rx_ring,
1104 			    union iavf_rx_desc *rx_desc,
1105 			    struct sk_buff *skb)
1106 {
1107 	u32 ntc = rx_ring->next_to_clean + 1;
1108 
1109 	/* fetch, update, and store next to clean */
1110 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1111 	rx_ring->next_to_clean = ntc;
1112 
1113 	prefetch(IAVF_RX_DESC(rx_ring, ntc));
1114 
1115 	/* if we are the last buffer then there is nothing else to do */
1116 #define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT)
1117 	if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF)))
1118 		return false;
1119 
1120 	rx_ring->rx_stats.non_eop_descs++;
1121 
1122 	return true;
1123 }
1124 
1125 /**
1126  * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1127  * @rx_ring: rx descriptor ring to transact packets on
1128  * @budget: Total limit on number of packets to process
1129  *
1130  * This function provides a "bounce buffer" approach to Rx interrupt
1131  * processing.  The advantage to this is that on systems that have
1132  * expensive overhead for IOMMU access this provides a means of avoiding
1133  * it by maintaining the mapping of the page to the system.
1134  *
1135  * Returns amount of work completed
1136  **/
iavf_clean_rx_irq(struct iavf_ring * rx_ring,int budget)1137 static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget)
1138 {
1139 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1140 	struct sk_buff *skb = rx_ring->skb;
1141 	u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring);
1142 	bool failure = false;
1143 
1144 	while (likely(total_rx_packets < (unsigned int)budget)) {
1145 		struct libeth_fqe *rx_buffer;
1146 		union iavf_rx_desc *rx_desc;
1147 		unsigned int size;
1148 		u16 vlan_tag = 0;
1149 		u8 rx_ptype;
1150 		u64 qword;
1151 
1152 		/* return some buffers to hardware, one at a time is too slow */
1153 		if (cleaned_count >= IAVF_RX_BUFFER_WRITE) {
1154 			failure = failure ||
1155 				  iavf_alloc_rx_buffers(rx_ring, cleaned_count);
1156 			cleaned_count = 0;
1157 		}
1158 
1159 		rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1160 
1161 		/* status_error_len will always be zero for unused descriptors
1162 		 * because it's cleared in cleanup, and overlaps with hdr_addr
1163 		 * which is always zero because packet split isn't used, if the
1164 		 * hardware wrote DD then the length will be non-zero
1165 		 */
1166 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1167 
1168 		/* This memory barrier is needed to keep us from reading
1169 		 * any other fields out of the rx_desc until we have
1170 		 * verified the descriptor has been written back.
1171 		 */
1172 		dma_rmb();
1173 #define IAVF_RXD_DD BIT(IAVF_RX_DESC_STATUS_DD_SHIFT)
1174 		if (!iavf_test_staterr(rx_desc, IAVF_RXD_DD))
1175 			break;
1176 
1177 		size = FIELD_GET(IAVF_RXD_QW1_LENGTH_PBUF_MASK, qword);
1178 
1179 		iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1180 
1181 		rx_buffer = &rx_ring->rx_fqes[rx_ring->next_to_clean];
1182 		if (!libeth_rx_sync_for_cpu(rx_buffer, size))
1183 			goto skip_data;
1184 
1185 		/* retrieve a buffer from the ring */
1186 		if (skb)
1187 			iavf_add_rx_frag(skb, rx_buffer, size);
1188 		else
1189 			skb = iavf_build_skb(rx_buffer, size);
1190 
1191 		/* exit if we failed to retrieve a buffer */
1192 		if (!skb) {
1193 			rx_ring->rx_stats.alloc_buff_failed++;
1194 			break;
1195 		}
1196 
1197 skip_data:
1198 		cleaned_count++;
1199 
1200 		if (iavf_is_non_eop(rx_ring, rx_desc, skb) || unlikely(!skb))
1201 			continue;
1202 
1203 		/* ERR_MASK will only have valid bits if EOP set, and
1204 		 * what we are doing here is actually checking
1205 		 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1206 		 * the error field
1207 		 */
1208 		if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) {
1209 			dev_kfree_skb_any(skb);
1210 			skb = NULL;
1211 			continue;
1212 		}
1213 
1214 		if (iavf_cleanup_headers(rx_ring, skb)) {
1215 			skb = NULL;
1216 			continue;
1217 		}
1218 
1219 		/* probably a little skewed due to removing CRC */
1220 		total_rx_bytes += skb->len;
1221 
1222 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1223 		rx_ptype = FIELD_GET(IAVF_RXD_QW1_PTYPE_MASK, qword);
1224 
1225 		/* populate checksum, VLAN, and protocol */
1226 		iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1227 
1228 		if (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT) &&
1229 		    rx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1)
1230 			vlan_tag = le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1);
1231 		if (rx_desc->wb.qword2.ext_status &
1232 		    cpu_to_le16(BIT(IAVF_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) &&
1233 		    rx_ring->flags & IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2)
1234 			vlan_tag = le16_to_cpu(rx_desc->wb.qword2.l2tag2_2);
1235 
1236 		iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1237 		iavf_receive_skb(rx_ring, skb, vlan_tag);
1238 		skb = NULL;
1239 
1240 		/* update budget accounting */
1241 		total_rx_packets++;
1242 	}
1243 
1244 	rx_ring->skb = skb;
1245 
1246 	u64_stats_update_begin(&rx_ring->syncp);
1247 	rx_ring->stats.packets += total_rx_packets;
1248 	rx_ring->stats.bytes += total_rx_bytes;
1249 	u64_stats_update_end(&rx_ring->syncp);
1250 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1251 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1252 
1253 	/* guarantee a trip back through this routine if there was a failure */
1254 	return failure ? budget : (int)total_rx_packets;
1255 }
1256 
iavf_buildreg_itr(const int type,u16 itr)1257 static inline u32 iavf_buildreg_itr(const int type, u16 itr)
1258 {
1259 	u32 val;
1260 
1261 	/* We don't bother with setting the CLEARPBA bit as the data sheet
1262 	 * points out doing so is "meaningless since it was already
1263 	 * auto-cleared". The auto-clearing happens when the interrupt is
1264 	 * asserted.
1265 	 *
1266 	 * Hardware errata 28 for also indicates that writing to a
1267 	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
1268 	 * an event in the PBA anyway so we need to rely on the automask
1269 	 * to hold pending events for us until the interrupt is re-enabled
1270 	 *
1271 	 * The itr value is reported in microseconds, and the register
1272 	 * value is recorded in 2 microsecond units. For this reason we
1273 	 * only need to shift by the interval shift - 1 instead of the
1274 	 * full value.
1275 	 */
1276 	itr &= IAVF_ITR_MASK;
1277 
1278 	val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1279 	      (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1280 	      (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1));
1281 
1282 	return val;
1283 }
1284 
1285 /* a small macro to shorten up some long lines */
1286 #define INTREG IAVF_VFINT_DYN_CTLN1
1287 
1288 /* The act of updating the ITR will cause it to immediately trigger. In order
1289  * to prevent this from throwing off adaptive update statistics we defer the
1290  * update so that it can only happen so often. So after either Tx or Rx are
1291  * updated we make the adaptive scheme wait until either the ITR completely
1292  * expires via the next_update expiration or we have been through at least
1293  * 3 interrupts.
1294  */
1295 #define ITR_COUNTDOWN_START 3
1296 
1297 /**
1298  * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt
1299  * @vsi: the VSI we care about
1300  * @q_vector: q_vector for which itr is being updated and interrupt enabled
1301  *
1302  **/
iavf_update_enable_itr(struct iavf_vsi * vsi,struct iavf_q_vector * q_vector)1303 static void iavf_update_enable_itr(struct iavf_vsi *vsi,
1304 				   struct iavf_q_vector *q_vector)
1305 {
1306 	struct iavf_hw *hw = &vsi->back->hw;
1307 	u32 intval;
1308 
1309 	/* These will do nothing if dynamic updates are not enabled */
1310 	iavf_update_itr(q_vector, &q_vector->tx);
1311 	iavf_update_itr(q_vector, &q_vector->rx);
1312 
1313 	/* This block of logic allows us to get away with only updating
1314 	 * one ITR value with each interrupt. The idea is to perform a
1315 	 * pseudo-lazy update with the following criteria.
1316 	 *
1317 	 * 1. Rx is given higher priority than Tx if both are in same state
1318 	 * 2. If we must reduce an ITR that is given highest priority.
1319 	 * 3. We then give priority to increasing ITR based on amount.
1320 	 */
1321 	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
1322 		/* Rx ITR needs to be reduced, this is highest priority */
1323 		intval = iavf_buildreg_itr(IAVF_RX_ITR,
1324 					   q_vector->rx.target_itr);
1325 		q_vector->rx.current_itr = q_vector->rx.target_itr;
1326 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1327 	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
1328 		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
1329 		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
1330 		/* Tx ITR needs to be reduced, this is second priority
1331 		 * Tx ITR needs to be increased more than Rx, fourth priority
1332 		 */
1333 		intval = iavf_buildreg_itr(IAVF_TX_ITR,
1334 					   q_vector->tx.target_itr);
1335 		q_vector->tx.current_itr = q_vector->tx.target_itr;
1336 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1337 	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
1338 		/* Rx ITR needs to be increased, third priority */
1339 		intval = iavf_buildreg_itr(IAVF_RX_ITR,
1340 					   q_vector->rx.target_itr);
1341 		q_vector->rx.current_itr = q_vector->rx.target_itr;
1342 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1343 	} else {
1344 		/* No ITR update, lowest priority */
1345 		intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0);
1346 		if (q_vector->itr_countdown)
1347 			q_vector->itr_countdown--;
1348 	}
1349 
1350 	if (!test_bit(__IAVF_VSI_DOWN, vsi->state))
1351 		wr32(hw, INTREG(q_vector->reg_idx), intval);
1352 }
1353 
1354 /**
1355  * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine
1356  * @napi: napi struct with our devices info in it
1357  * @budget: amount of work driver is allowed to do this pass, in packets
1358  *
1359  * This function will clean all queues associated with a q_vector.
1360  *
1361  * Returns the amount of work done
1362  **/
iavf_napi_poll(struct napi_struct * napi,int budget)1363 int iavf_napi_poll(struct napi_struct *napi, int budget)
1364 {
1365 	struct iavf_q_vector *q_vector =
1366 			       container_of(napi, struct iavf_q_vector, napi);
1367 	struct iavf_vsi *vsi = q_vector->vsi;
1368 	struct iavf_ring *ring;
1369 	bool clean_complete = true;
1370 	bool arm_wb = false;
1371 	int budget_per_ring;
1372 	int work_done = 0;
1373 
1374 	if (test_bit(__IAVF_VSI_DOWN, vsi->state)) {
1375 		napi_complete(napi);
1376 		return 0;
1377 	}
1378 
1379 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1380 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1381 	 */
1382 	iavf_for_each_ring(ring, q_vector->tx) {
1383 		if (!iavf_clean_tx_irq(vsi, ring, budget)) {
1384 			clean_complete = false;
1385 			continue;
1386 		}
1387 		arm_wb |= !!(ring->flags & IAVF_TXR_FLAGS_ARM_WB);
1388 		ring->flags &= ~IAVF_TXR_FLAGS_ARM_WB;
1389 	}
1390 
1391 	/* Handle case where we are called by netpoll with a budget of 0 */
1392 	if (budget <= 0)
1393 		goto tx_only;
1394 
1395 	/* We attempt to distribute budget to each Rx queue fairly, but don't
1396 	 * allow the budget to go below 1 because that would exit polling early.
1397 	 */
1398 	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1399 
1400 	iavf_for_each_ring(ring, q_vector->rx) {
1401 		int cleaned = iavf_clean_rx_irq(ring, budget_per_ring);
1402 
1403 		work_done += cleaned;
1404 		/* if we clean as many as budgeted, we must not be done */
1405 		if (cleaned >= budget_per_ring)
1406 			clean_complete = false;
1407 	}
1408 
1409 	/* If work not completed, return budget and polling will return */
1410 	if (!clean_complete) {
1411 		int cpu_id = smp_processor_id();
1412 
1413 		/* It is possible that the interrupt affinity has changed but,
1414 		 * if the cpu is pegged at 100%, polling will never exit while
1415 		 * traffic continues and the interrupt will be stuck on this
1416 		 * cpu.  We check to make sure affinity is correct before we
1417 		 * continue to poll, otherwise we must stop polling so the
1418 		 * interrupt can move to the correct cpu.
1419 		 */
1420 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
1421 			/* Tell napi that we are done polling */
1422 			napi_complete_done(napi, work_done);
1423 
1424 			/* Force an interrupt */
1425 			iavf_force_wb(vsi, q_vector);
1426 
1427 			/* Return budget-1 so that polling stops */
1428 			return budget - 1;
1429 		}
1430 tx_only:
1431 		if (arm_wb) {
1432 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1433 			iavf_enable_wb_on_itr(vsi, q_vector);
1434 		}
1435 		return budget;
1436 	}
1437 
1438 	if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR)
1439 		q_vector->arm_wb_state = false;
1440 
1441 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1442 	 * poll us due to busy-polling
1443 	 */
1444 	if (likely(napi_complete_done(napi, work_done)))
1445 		iavf_update_enable_itr(vsi, q_vector);
1446 
1447 	return min_t(int, work_done, budget - 1);
1448 }
1449 
1450 /**
1451  * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1452  * @skb:     send buffer
1453  * @tx_ring: ring to send buffer on
1454  * @flags:   the tx flags to be set
1455  *
1456  * Checks the skb and set up correspondingly several generic transmit flags
1457  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1458  *
1459  * Returns error code indicate the frame should be dropped upon error and the
1460  * otherwise  returns 0 to indicate the flags has been set properly.
1461  **/
iavf_tx_prepare_vlan_flags(struct sk_buff * skb,struct iavf_ring * tx_ring,u32 * flags)1462 static void iavf_tx_prepare_vlan_flags(struct sk_buff *skb,
1463 				       struct iavf_ring *tx_ring, u32 *flags)
1464 {
1465 	u32  tx_flags = 0;
1466 
1467 
1468 	/* stack will only request hardware VLAN insertion offload for protocols
1469 	 * that the driver supports and has enabled
1470 	 */
1471 	if (!skb_vlan_tag_present(skb))
1472 		return;
1473 
1474 	tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT;
1475 	if (tx_ring->flags & IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2) {
1476 		tx_flags |= IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
1477 	} else if (tx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1) {
1478 		tx_flags |= IAVF_TX_FLAGS_HW_VLAN;
1479 	} else {
1480 		dev_dbg(tx_ring->dev, "Unsupported Tx VLAN tag location requested\n");
1481 		return;
1482 	}
1483 
1484 	*flags = tx_flags;
1485 }
1486 
1487 /**
1488  * iavf_tso - set up the tso context descriptor
1489  * @first:    pointer to first Tx buffer for xmit
1490  * @hdr_len:  ptr to the size of the packet header
1491  * @cd_type_cmd_tso_mss: Quad Word 1
1492  *
1493  * Returns 0 if no TSO can happen, 1 if tso is going, or error
1494  **/
iavf_tso(struct iavf_tx_buffer * first,u8 * hdr_len,u64 * cd_type_cmd_tso_mss)1495 static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len,
1496 		    u64 *cd_type_cmd_tso_mss)
1497 {
1498 	struct sk_buff *skb = first->skb;
1499 	u64 cd_cmd, cd_tso_len, cd_mss;
1500 	union {
1501 		struct iphdr *v4;
1502 		struct ipv6hdr *v6;
1503 		unsigned char *hdr;
1504 	} ip;
1505 	union {
1506 		struct tcphdr *tcp;
1507 		struct udphdr *udp;
1508 		unsigned char *hdr;
1509 	} l4;
1510 	u32 paylen, l4_offset;
1511 	u16 gso_segs, gso_size;
1512 	int err;
1513 
1514 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1515 		return 0;
1516 
1517 	if (!skb_is_gso(skb))
1518 		return 0;
1519 
1520 	err = skb_cow_head(skb, 0);
1521 	if (err < 0)
1522 		return err;
1523 
1524 	ip.hdr = skb_network_header(skb);
1525 	l4.hdr = skb_transport_header(skb);
1526 
1527 	/* initialize outer IP header fields */
1528 	if (ip.v4->version == 4) {
1529 		ip.v4->tot_len = 0;
1530 		ip.v4->check = 0;
1531 	} else {
1532 		ip.v6->payload_len = 0;
1533 	}
1534 
1535 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1536 					 SKB_GSO_GRE_CSUM |
1537 					 SKB_GSO_IPXIP4 |
1538 					 SKB_GSO_IPXIP6 |
1539 					 SKB_GSO_UDP_TUNNEL |
1540 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1541 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1542 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1543 			l4.udp->len = 0;
1544 
1545 			/* determine offset of outer transport header */
1546 			l4_offset = l4.hdr - skb->data;
1547 
1548 			/* remove payload length from outer checksum */
1549 			paylen = skb->len - l4_offset;
1550 			csum_replace_by_diff(&l4.udp->check,
1551 					     (__force __wsum)htonl(paylen));
1552 		}
1553 
1554 		/* reset pointers to inner headers */
1555 		ip.hdr = skb_inner_network_header(skb);
1556 		l4.hdr = skb_inner_transport_header(skb);
1557 
1558 		/* initialize inner IP header fields */
1559 		if (ip.v4->version == 4) {
1560 			ip.v4->tot_len = 0;
1561 			ip.v4->check = 0;
1562 		} else {
1563 			ip.v6->payload_len = 0;
1564 		}
1565 	}
1566 
1567 	/* determine offset of inner transport header */
1568 	l4_offset = l4.hdr - skb->data;
1569 	/* remove payload length from inner checksum */
1570 	paylen = skb->len - l4_offset;
1571 
1572 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1573 		csum_replace_by_diff(&l4.udp->check,
1574 				     (__force __wsum)htonl(paylen));
1575 		/* compute length of UDP segmentation header */
1576 		*hdr_len = (u8)sizeof(l4.udp) + l4_offset;
1577 	} else {
1578 		csum_replace_by_diff(&l4.tcp->check,
1579 				     (__force __wsum)htonl(paylen));
1580 		/* compute length of TCP segmentation header */
1581 		*hdr_len = (u8)((l4.tcp->doff * 4) + l4_offset);
1582 	}
1583 
1584 	/* pull values out of skb_shinfo */
1585 	gso_size = skb_shinfo(skb)->gso_size;
1586 	gso_segs = skb_shinfo(skb)->gso_segs;
1587 
1588 	/* update GSO size and bytecount with header size */
1589 	first->gso_segs = gso_segs;
1590 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1591 
1592 	/* find the field values */
1593 	cd_cmd = IAVF_TX_CTX_DESC_TSO;
1594 	cd_tso_len = skb->len - *hdr_len;
1595 	cd_mss = gso_size;
1596 	*cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1597 				(cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1598 				(cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1599 	return 1;
1600 }
1601 
1602 /**
1603  * iavf_tx_enable_csum - Enable Tx checksum offloads
1604  * @skb: send buffer
1605  * @tx_flags: pointer to Tx flags currently set
1606  * @td_cmd: Tx descriptor command bits to set
1607  * @td_offset: Tx descriptor header offsets to set
1608  * @tx_ring: Tx descriptor ring
1609  * @cd_tunneling: ptr to context desc bits
1610  **/
iavf_tx_enable_csum(struct sk_buff * skb,u32 * tx_flags,u32 * td_cmd,u32 * td_offset,struct iavf_ring * tx_ring,u32 * cd_tunneling)1611 static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1612 			       u32 *td_cmd, u32 *td_offset,
1613 			       struct iavf_ring *tx_ring,
1614 			       u32 *cd_tunneling)
1615 {
1616 	union {
1617 		struct iphdr *v4;
1618 		struct ipv6hdr *v6;
1619 		unsigned char *hdr;
1620 	} ip;
1621 	union {
1622 		struct tcphdr *tcp;
1623 		struct udphdr *udp;
1624 		unsigned char *hdr;
1625 	} l4;
1626 	unsigned char *exthdr;
1627 	u32 offset, cmd = 0;
1628 	__be16 frag_off;
1629 	u8 l4_proto = 0;
1630 
1631 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1632 		return 0;
1633 
1634 	ip.hdr = skb_network_header(skb);
1635 	l4.hdr = skb_transport_header(skb);
1636 
1637 	/* compute outer L2 header size */
1638 	offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
1639 
1640 	if (skb->encapsulation) {
1641 		u32 tunnel = 0;
1642 		/* define outer network header type */
1643 		if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
1644 			tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
1645 				  IAVF_TX_CTX_EXT_IP_IPV4 :
1646 				  IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1647 
1648 			l4_proto = ip.v4->protocol;
1649 		} else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
1650 			tunnel |= IAVF_TX_CTX_EXT_IP_IPV6;
1651 
1652 			exthdr = ip.hdr + sizeof(*ip.v6);
1653 			l4_proto = ip.v6->nexthdr;
1654 			if (l4.hdr != exthdr)
1655 				ipv6_skip_exthdr(skb, exthdr - skb->data,
1656 						 &l4_proto, &frag_off);
1657 		}
1658 
1659 		/* define outer transport */
1660 		switch (l4_proto) {
1661 		case IPPROTO_UDP:
1662 			tunnel |= IAVF_TXD_CTX_UDP_TUNNELING;
1663 			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
1664 			break;
1665 		case IPPROTO_GRE:
1666 			tunnel |= IAVF_TXD_CTX_GRE_TUNNELING;
1667 			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
1668 			break;
1669 		case IPPROTO_IPIP:
1670 		case IPPROTO_IPV6:
1671 			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
1672 			l4.hdr = skb_inner_network_header(skb);
1673 			break;
1674 		default:
1675 			if (*tx_flags & IAVF_TX_FLAGS_TSO)
1676 				return -1;
1677 
1678 			skb_checksum_help(skb);
1679 			return 0;
1680 		}
1681 
1682 		/* compute outer L3 header size */
1683 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1684 			  IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
1685 
1686 		/* switch IP header pointer from outer to inner header */
1687 		ip.hdr = skb_inner_network_header(skb);
1688 
1689 		/* compute tunnel header size */
1690 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1691 			  IAVF_TXD_CTX_QW0_NATLEN_SHIFT;
1692 
1693 		/* indicate if we need to offload outer UDP header */
1694 		if ((*tx_flags & IAVF_TX_FLAGS_TSO) &&
1695 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1696 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1697 			tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK;
1698 
1699 		/* record tunnel offload values */
1700 		*cd_tunneling |= tunnel;
1701 
1702 		/* switch L4 header pointer from outer to inner */
1703 		l4.hdr = skb_inner_transport_header(skb);
1704 		l4_proto = 0;
1705 
1706 		/* reset type as we transition from outer to inner headers */
1707 		*tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6);
1708 		if (ip.v4->version == 4)
1709 			*tx_flags |= IAVF_TX_FLAGS_IPV4;
1710 		if (ip.v6->version == 6)
1711 			*tx_flags |= IAVF_TX_FLAGS_IPV6;
1712 	}
1713 
1714 	/* Enable IP checksum offloads */
1715 	if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
1716 		l4_proto = ip.v4->protocol;
1717 		/* the stack computes the IP header already, the only time we
1718 		 * need the hardware to recompute it is in the case of TSO.
1719 		 */
1720 		cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
1721 		       IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM :
1722 		       IAVF_TX_DESC_CMD_IIPT_IPV4;
1723 	} else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
1724 		cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
1725 
1726 		exthdr = ip.hdr + sizeof(*ip.v6);
1727 		l4_proto = ip.v6->nexthdr;
1728 		if (l4.hdr != exthdr)
1729 			ipv6_skip_exthdr(skb, exthdr - skb->data,
1730 					 &l4_proto, &frag_off);
1731 	}
1732 
1733 	/* compute inner L3 header size */
1734 	offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1735 
1736 	/* Enable L4 checksum offloads */
1737 	switch (l4_proto) {
1738 	case IPPROTO_TCP:
1739 		/* enable checksum offloads */
1740 		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
1741 		offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1742 		break;
1743 	case IPPROTO_SCTP:
1744 		/* enable SCTP checksum offload */
1745 		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
1746 		offset |= (sizeof(struct sctphdr) >> 2) <<
1747 			  IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1748 		break;
1749 	case IPPROTO_UDP:
1750 		/* enable UDP checksum offload */
1751 		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
1752 		offset |= (sizeof(struct udphdr) >> 2) <<
1753 			  IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1754 		break;
1755 	default:
1756 		if (*tx_flags & IAVF_TX_FLAGS_TSO)
1757 			return -1;
1758 		skb_checksum_help(skb);
1759 		return 0;
1760 	}
1761 
1762 	*td_cmd |= cmd;
1763 	*td_offset |= offset;
1764 
1765 	return 1;
1766 }
1767 
1768 /**
1769  * iavf_create_tx_ctx - Build the Tx context descriptor
1770  * @tx_ring:  ring to create the descriptor on
1771  * @cd_type_cmd_tso_mss: Quad Word 1
1772  * @cd_tunneling: Quad Word 0 - bits 0-31
1773  * @cd_l2tag2: Quad Word 0 - bits 32-63
1774  **/
iavf_create_tx_ctx(struct iavf_ring * tx_ring,const u64 cd_type_cmd_tso_mss,const u32 cd_tunneling,const u32 cd_l2tag2)1775 static void iavf_create_tx_ctx(struct iavf_ring *tx_ring,
1776 			       const u64 cd_type_cmd_tso_mss,
1777 			       const u32 cd_tunneling, const u32 cd_l2tag2)
1778 {
1779 	struct iavf_tx_context_desc *context_desc;
1780 	int i = tx_ring->next_to_use;
1781 
1782 	if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) &&
1783 	    !cd_tunneling && !cd_l2tag2)
1784 		return;
1785 
1786 	/* grab the next descriptor */
1787 	context_desc = IAVF_TX_CTXTDESC(tx_ring, i);
1788 
1789 	i++;
1790 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1791 
1792 	/* cpu_to_le32 and assign to struct fields */
1793 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1794 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1795 	context_desc->rsvd = cpu_to_le16(0);
1796 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1797 }
1798 
1799 /**
1800  * __iavf_chk_linearize - Check if there are more than 8 buffers per packet
1801  * @skb:      send buffer
1802  *
1803  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
1804  * and so we need to figure out the cases where we need to linearize the skb.
1805  *
1806  * For TSO we need to count the TSO header and segment payload separately.
1807  * As such we need to check cases where we have 7 fragments or more as we
1808  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
1809  * the segment payload in the first descriptor, and another 7 for the
1810  * fragments.
1811  **/
__iavf_chk_linearize(struct sk_buff * skb)1812 bool __iavf_chk_linearize(struct sk_buff *skb)
1813 {
1814 	const skb_frag_t *frag, *stale;
1815 	int nr_frags, sum;
1816 
1817 	/* no need to check if number of frags is less than 7 */
1818 	nr_frags = skb_shinfo(skb)->nr_frags;
1819 	if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1))
1820 		return false;
1821 
1822 	/* We need to walk through the list and validate that each group
1823 	 * of 6 fragments totals at least gso_size.
1824 	 */
1825 	nr_frags -= IAVF_MAX_BUFFER_TXD - 2;
1826 	frag = &skb_shinfo(skb)->frags[0];
1827 
1828 	/* Initialize size to the negative value of gso_size minus 1.  We
1829 	 * use this as the worst case scenerio in which the frag ahead
1830 	 * of us only provides one byte which is why we are limited to 6
1831 	 * descriptors for a single transmit as the header and previous
1832 	 * fragment are already consuming 2 descriptors.
1833 	 */
1834 	sum = 1 - skb_shinfo(skb)->gso_size;
1835 
1836 	/* Add size of frags 0 through 4 to create our initial sum */
1837 	sum += skb_frag_size(frag++);
1838 	sum += skb_frag_size(frag++);
1839 	sum += skb_frag_size(frag++);
1840 	sum += skb_frag_size(frag++);
1841 	sum += skb_frag_size(frag++);
1842 
1843 	/* Walk through fragments adding latest fragment, testing it, and
1844 	 * then removing stale fragments from the sum.
1845 	 */
1846 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
1847 		int stale_size = skb_frag_size(stale);
1848 
1849 		sum += skb_frag_size(frag++);
1850 
1851 		/* The stale fragment may present us with a smaller
1852 		 * descriptor than the actual fragment size. To account
1853 		 * for that we need to remove all the data on the front and
1854 		 * figure out what the remainder would be in the last
1855 		 * descriptor associated with the fragment.
1856 		 */
1857 		if (stale_size > IAVF_MAX_DATA_PER_TXD) {
1858 			int align_pad = -(skb_frag_off(stale)) &
1859 					(IAVF_MAX_READ_REQ_SIZE - 1);
1860 
1861 			sum -= align_pad;
1862 			stale_size -= align_pad;
1863 
1864 			do {
1865 				sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
1866 				stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
1867 			} while (stale_size > IAVF_MAX_DATA_PER_TXD);
1868 		}
1869 
1870 		/* if sum is negative we failed to make sufficient progress */
1871 		if (sum < 0)
1872 			return true;
1873 
1874 		if (!nr_frags--)
1875 			break;
1876 
1877 		sum -= stale_size;
1878 	}
1879 
1880 	return false;
1881 }
1882 
1883 /**
1884  * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions
1885  * @tx_ring: the ring to be checked
1886  * @size:    the size buffer we want to assure is available
1887  *
1888  * Returns -EBUSY if a stop is needed, else 0
1889  **/
__iavf_maybe_stop_tx(struct iavf_ring * tx_ring,int size)1890 int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
1891 {
1892 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1893 	/* Memory barrier before checking head and tail */
1894 	smp_mb();
1895 
1896 	/* Check again in a case another CPU has just made room available. */
1897 	if (likely(IAVF_DESC_UNUSED(tx_ring) < size))
1898 		return -EBUSY;
1899 
1900 	/* A reprieve! - use start_queue because it doesn't call schedule */
1901 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1902 	++tx_ring->tx_stats.restart_queue;
1903 	return 0;
1904 }
1905 
1906 /**
1907  * iavf_tx_map - Build the Tx descriptor
1908  * @tx_ring:  ring to send buffer on
1909  * @skb:      send buffer
1910  * @first:    first buffer info buffer to use
1911  * @tx_flags: collected send information
1912  * @hdr_len:  size of the packet header
1913  * @td_cmd:   the command field in the descriptor
1914  * @td_offset: offset for checksum or crc
1915  **/
iavf_tx_map(struct iavf_ring * tx_ring,struct sk_buff * skb,struct iavf_tx_buffer * first,u32 tx_flags,const u8 hdr_len,u32 td_cmd,u32 td_offset)1916 static void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb,
1917 			struct iavf_tx_buffer *first, u32 tx_flags,
1918 			const u8 hdr_len, u32 td_cmd, u32 td_offset)
1919 {
1920 	unsigned int data_len = skb->data_len;
1921 	unsigned int size = skb_headlen(skb);
1922 	skb_frag_t *frag;
1923 	struct iavf_tx_buffer *tx_bi;
1924 	struct iavf_tx_desc *tx_desc;
1925 	u16 i = tx_ring->next_to_use;
1926 	u32 td_tag = 0;
1927 	dma_addr_t dma;
1928 
1929 	if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) {
1930 		td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
1931 		td_tag = FIELD_GET(IAVF_TX_FLAGS_VLAN_MASK, tx_flags);
1932 	}
1933 
1934 	first->tx_flags = tx_flags;
1935 
1936 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1937 
1938 	tx_desc = IAVF_TX_DESC(tx_ring, i);
1939 	tx_bi = first;
1940 
1941 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1942 		unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
1943 
1944 		if (dma_mapping_error(tx_ring->dev, dma))
1945 			goto dma_error;
1946 
1947 		/* record length, and DMA address */
1948 		dma_unmap_len_set(tx_bi, len, size);
1949 		dma_unmap_addr_set(tx_bi, dma, dma);
1950 
1951 		/* align size to end of page */
1952 		max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1);
1953 		tx_desc->buffer_addr = cpu_to_le64(dma);
1954 
1955 		while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) {
1956 			tx_desc->cmd_type_offset_bsz =
1957 				build_ctob(td_cmd, td_offset,
1958 					   max_data, td_tag);
1959 
1960 			tx_desc++;
1961 			i++;
1962 
1963 			if (i == tx_ring->count) {
1964 				tx_desc = IAVF_TX_DESC(tx_ring, 0);
1965 				i = 0;
1966 			}
1967 
1968 			dma += max_data;
1969 			size -= max_data;
1970 
1971 			max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
1972 			tx_desc->buffer_addr = cpu_to_le64(dma);
1973 		}
1974 
1975 		if (likely(!data_len))
1976 			break;
1977 
1978 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1979 							  size, td_tag);
1980 
1981 		tx_desc++;
1982 		i++;
1983 
1984 		if (i == tx_ring->count) {
1985 			tx_desc = IAVF_TX_DESC(tx_ring, 0);
1986 			i = 0;
1987 		}
1988 
1989 		size = skb_frag_size(frag);
1990 		data_len -= size;
1991 
1992 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1993 				       DMA_TO_DEVICE);
1994 
1995 		tx_bi = &tx_ring->tx_bi[i];
1996 	}
1997 
1998 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1999 
2000 	i++;
2001 	if (i == tx_ring->count)
2002 		i = 0;
2003 
2004 	tx_ring->next_to_use = i;
2005 
2006 	iavf_maybe_stop_tx(tx_ring, DESC_NEEDED);
2007 
2008 	/* write last descriptor with RS and EOP bits */
2009 	td_cmd |= IAVF_TXD_CMD;
2010 	tx_desc->cmd_type_offset_bsz =
2011 			build_ctob(td_cmd, td_offset, size, td_tag);
2012 
2013 	skb_tx_timestamp(skb);
2014 
2015 	/* Force memory writes to complete before letting h/w know there
2016 	 * are new descriptors to fetch.
2017 	 *
2018 	 * We also use this memory barrier to make certain all of the
2019 	 * status bits have been updated before next_to_watch is written.
2020 	 */
2021 	wmb();
2022 
2023 	/* set next_to_watch value indicating a packet is present */
2024 	first->next_to_watch = tx_desc;
2025 
2026 	/* notify HW of packet */
2027 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
2028 		writel(i, tx_ring->tail);
2029 	}
2030 
2031 	return;
2032 
2033 dma_error:
2034 	dev_info(tx_ring->dev, "TX DMA map failed\n");
2035 
2036 	/* clear dma mappings for failed tx_bi map */
2037 	for (;;) {
2038 		tx_bi = &tx_ring->tx_bi[i];
2039 		iavf_unmap_and_free_tx_resource(tx_ring, tx_bi);
2040 		if (tx_bi == first)
2041 			break;
2042 		if (i == 0)
2043 			i = tx_ring->count;
2044 		i--;
2045 	}
2046 
2047 	tx_ring->next_to_use = i;
2048 }
2049 
2050 /**
2051  * iavf_xmit_frame_ring - Sends buffer on Tx ring
2052  * @skb:     send buffer
2053  * @tx_ring: ring to send buffer on
2054  *
2055  * Returns NETDEV_TX_OK if sent, else an error code
2056  **/
iavf_xmit_frame_ring(struct sk_buff * skb,struct iavf_ring * tx_ring)2057 static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb,
2058 					struct iavf_ring *tx_ring)
2059 {
2060 	u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT;
2061 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
2062 	struct iavf_tx_buffer *first;
2063 	u32 td_offset = 0;
2064 	u32 tx_flags = 0;
2065 	__be16 protocol;
2066 	u32 td_cmd = 0;
2067 	u8 hdr_len = 0;
2068 	int tso, count;
2069 
2070 	/* prefetch the data, we'll need it later */
2071 	prefetch(skb->data);
2072 
2073 	iavf_trace(xmit_frame_ring, skb, tx_ring);
2074 
2075 	count = iavf_xmit_descriptor_count(skb);
2076 	if (iavf_chk_linearize(skb, count)) {
2077 		if (__skb_linearize(skb)) {
2078 			dev_kfree_skb_any(skb);
2079 			return NETDEV_TX_OK;
2080 		}
2081 		count = iavf_txd_use_count(skb->len);
2082 		tx_ring->tx_stats.tx_linearize++;
2083 	}
2084 
2085 	/* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD,
2086 	 *       + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD,
2087 	 *       + 4 desc gap to avoid the cache line where head is,
2088 	 *       + 1 desc for context descriptor,
2089 	 * otherwise try next time
2090 	 */
2091 	if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2092 		tx_ring->tx_stats.tx_busy++;
2093 		return NETDEV_TX_BUSY;
2094 	}
2095 
2096 	/* record the location of the first descriptor for this packet */
2097 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
2098 	first->skb = skb;
2099 	first->bytecount = skb->len;
2100 	first->gso_segs = 1;
2101 
2102 	/* prepare the xmit flags */
2103 	iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags);
2104 	if (tx_flags & IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
2105 		cd_type_cmd_tso_mss |= IAVF_TX_CTX_DESC_IL2TAG2 <<
2106 			IAVF_TXD_CTX_QW1_CMD_SHIFT;
2107 		cd_l2tag2 = FIELD_GET(IAVF_TX_FLAGS_VLAN_MASK, tx_flags);
2108 	}
2109 
2110 	/* obtain protocol of skb */
2111 	protocol = vlan_get_protocol(skb);
2112 
2113 	/* setup IPv4/IPv6 offloads */
2114 	if (protocol == htons(ETH_P_IP))
2115 		tx_flags |= IAVF_TX_FLAGS_IPV4;
2116 	else if (protocol == htons(ETH_P_IPV6))
2117 		tx_flags |= IAVF_TX_FLAGS_IPV6;
2118 
2119 	tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2120 
2121 	if (tso < 0)
2122 		goto out_drop;
2123 	else if (tso)
2124 		tx_flags |= IAVF_TX_FLAGS_TSO;
2125 
2126 	/* Always offload the checksum, since it's in the data descriptor */
2127 	tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2128 				  tx_ring, &cd_tunneling);
2129 	if (tso < 0)
2130 		goto out_drop;
2131 
2132 	/* always enable CRC insertion offload */
2133 	td_cmd |= IAVF_TX_DESC_CMD_ICRC;
2134 
2135 	iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2136 			   cd_tunneling, cd_l2tag2);
2137 
2138 	iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2139 		    td_cmd, td_offset);
2140 
2141 	return NETDEV_TX_OK;
2142 
2143 out_drop:
2144 	iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2145 	dev_kfree_skb_any(first->skb);
2146 	first->skb = NULL;
2147 	return NETDEV_TX_OK;
2148 }
2149 
2150 /**
2151  * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2152  * @skb:    send buffer
2153  * @netdev: network interface device structure
2154  *
2155  * Returns NETDEV_TX_OK if sent, else an error code
2156  **/
iavf_xmit_frame(struct sk_buff * skb,struct net_device * netdev)2157 netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2158 {
2159 	struct iavf_adapter *adapter = netdev_priv(netdev);
2160 	struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2161 
2162 	/* hardware can't handle really short frames, hardware padding works
2163 	 * beyond this point
2164 	 */
2165 	if (unlikely(skb->len < IAVF_MIN_TX_LEN)) {
2166 		if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len))
2167 			return NETDEV_TX_OK;
2168 		skb->len = IAVF_MIN_TX_LEN;
2169 		skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN);
2170 	}
2171 
2172 	return iavf_xmit_frame_ring(skb, tx_ring);
2173 }
2174