1 /*	$NetBSD: if.c,v 1.356 2016/07/22 07:13:56 knakahara Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by William Studenmund and Jason R. Thorpe.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. Neither the name of the project nor the names of its contributors
45  *    may be used to endorse or promote products derived from this software
46  *    without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  */
60 
61 /*
62  * Copyright (c) 1980, 1986, 1993
63  *	The Regents of the University of California.  All rights reserved.
64  *
65  * Redistribution and use in source and binary forms, with or without
66  * modification, are permitted provided that the following conditions
67  * are met:
68  * 1. Redistributions of source code must retain the above copyright
69  *    notice, this list of conditions and the following disclaimer.
70  * 2. Redistributions in binary form must reproduce the above copyright
71  *    notice, this list of conditions and the following disclaimer in the
72  *    documentation and/or other materials provided with the distribution.
73  * 3. Neither the name of the University nor the names of its contributors
74  *    may be used to endorse or promote products derived from this software
75  *    without specific prior written permission.
76  *
77  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87  * SUCH DAMAGE.
88  *
89  *	@(#)if.c	8.5 (Berkeley) 1/9/95
90  */
91 
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.356 2016/07/22 07:13:56 knakahara Exp $");
94 
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 
99 #include "opt_atalk.h"
100 #include "opt_natm.h"
101 #include "opt_wlan.h"
102 #include "opt_net_mpsafe.h"
103 #endif
104 
105 #include <sys/param.h>
106 #include <sys/mbuf.h>
107 #include <sys/systm.h>
108 #include <sys/callout.h>
109 #include <sys/proc.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/domain.h>
113 #include <sys/protosw.h>
114 #include <sys/kernel.h>
115 #include <sys/ioctl.h>
116 #include <sys/sysctl.h>
117 #include <sys/syslog.h>
118 #include <sys/kauth.h>
119 #include <sys/kmem.h>
120 #include <sys/xcall.h>
121 #include <sys/cpu.h>
122 #include <sys/intr.h>
123 
124 #include <net/if.h>
125 #include <net/if_dl.h>
126 #include <net/if_ether.h>
127 #include <net/if_media.h>
128 #include <net80211/ieee80211.h>
129 #include <net80211/ieee80211_ioctl.h>
130 #include <net/if_types.h>
131 #include <net/route.h>
132 #include <net/netisr.h>
133 #include <sys/module.h>
134 #ifdef NETATALK
135 #include <netatalk/at_extern.h>
136 #include <netatalk/at.h>
137 #endif
138 #include <net/pfil.h>
139 #include <netinet/in.h>
140 #include <netinet/in_var.h>
141 #ifndef IPSEC
142 #include <netinet/ip_encap.h>
143 #endif
144 
145 #ifdef INET6
146 #include <netinet6/in6_var.h>
147 #include <netinet6/nd6.h>
148 #endif
149 
150 #include "ether.h"
151 #include "fddi.h"
152 #include "token.h"
153 
154 #include "carp.h"
155 #if NCARP > 0
156 #include <netinet/ip_carp.h>
157 #endif
158 
159 #include <compat/sys/sockio.h>
160 #include <compat/sys/socket.h>
161 
162 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
163 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
164 
165 /*
166  * Global list of interfaces.
167  */
168 /* DEPRECATED. Remove it once kvm(3) users disappeared */
169 struct ifnet_head		ifnet_list;
170 
171 struct pslist_head		ifnet_pslist;
172 static ifnet_t **		ifindex2ifnet = NULL;
173 static u_int			if_index = 1;
174 static size_t			if_indexlim = 0;
175 static uint64_t			index_gen;
176 /* Mutex to protect the above objects. */
177 kmutex_t			ifnet_mtx __cacheline_aligned;
178 struct psref_class		*ifnet_psref_class __read_mostly;
179 static pserialize_t		ifnet_psz;
180 
181 static kmutex_t			if_clone_mtx;
182 
183 struct ifnet *lo0ifp;
184 int	ifqmaxlen = IFQ_MAXLEN;
185 
186 static int	if_rt_walktree(struct rtentry *, void *);
187 
188 static struct if_clone *if_clone_lookup(const char *, int *);
189 
190 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
191 static int if_cloners_count;
192 
193 /* Packet filtering hook for interfaces. */
194 pfil_head_t *	if_pfil;
195 
196 static kauth_listener_t if_listener;
197 
198 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
199 static void if_detach_queues(struct ifnet *, struct ifqueue *);
200 static void sysctl_sndq_setup(struct sysctllog **, const char *,
201     struct ifaltq *);
202 static void if_slowtimo(void *);
203 static void if_free_sadl(struct ifnet *);
204 static void if_attachdomain1(struct ifnet *);
205 static int ifconf(u_long, void *);
206 static int if_transmit(struct ifnet *, struct mbuf *);
207 static int if_clone_create(const char *);
208 static int if_clone_destroy(const char *);
209 static void if_link_state_change_si(void *);
210 
211 struct if_percpuq {
212 	struct ifnet	*ipq_ifp;
213 	void		*ipq_si;
214 	struct percpu	*ipq_ifqs;	/* struct ifqueue */
215 };
216 
217 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
218 
219 static void if_percpuq_drops(void *, void *, struct cpu_info *);
220 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
221 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
222     struct if_percpuq *);
223 
224 #if defined(INET) || defined(INET6)
225 static void sysctl_net_pktq_setup(struct sysctllog **, int);
226 #endif
227 
228 static int
if_listener_cb(kauth_cred_t cred,kauth_action_t action,void * cookie,void * arg0,void * arg1,void * arg2,void * arg3)229 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
230     void *arg0, void *arg1, void *arg2, void *arg3)
231 {
232 	int result;
233 	enum kauth_network_req req;
234 
235 	result = KAUTH_RESULT_DEFER;
236 	req = (enum kauth_network_req)(uintptr_t)arg1;
237 
238 	if (action != KAUTH_NETWORK_INTERFACE)
239 		return result;
240 
241 	if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
242 	    (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
243 		result = KAUTH_RESULT_ALLOW;
244 
245 	return result;
246 }
247 
248 /*
249  * Network interface utility routines.
250  *
251  * Routines with ifa_ifwith* names take sockaddr *'s as
252  * parameters.
253  */
254 void
ifinit(void)255 ifinit(void)
256 {
257 #if defined(INET)
258 	sysctl_net_pktq_setup(NULL, PF_INET);
259 #endif
260 #ifdef INET6
261 	if (in6_present)
262 		sysctl_net_pktq_setup(NULL, PF_INET6);
263 #endif
264 
265 #if (defined(INET) || defined(INET6)) && !defined(IPSEC)
266 	encapinit();
267 #endif
268 
269 	if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
270 	    if_listener_cb, NULL);
271 
272 	/* interfaces are available, inform socket code */
273 	ifioctl = doifioctl;
274 }
275 
276 /*
277  * XXX Initialization before configure().
278  * XXX hack to get pfil_add_hook working in autoconf.
279  */
280 void
ifinit1(void)281 ifinit1(void)
282 {
283 	mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
284 	TAILQ_INIT(&ifnet_list);
285 	mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
286 	ifnet_psz = pserialize_create();
287 	ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
288 	PSLIST_INIT(&ifnet_pslist);
289 	if_indexlim = 8;
290 
291 	if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
292 	KASSERT(if_pfil != NULL);
293 
294 #if NETHER > 0 || NFDDI > 0 || defined(NETATALK) || NTOKEN > 0 || defined(WLAN)
295 	etherinit();
296 #endif
297 }
298 
299 ifnet_t *
if_alloc(u_char type)300 if_alloc(u_char type)
301 {
302 	return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
303 }
304 
305 void
if_free(ifnet_t * ifp)306 if_free(ifnet_t *ifp)
307 {
308 	kmem_free(ifp, sizeof(ifnet_t));
309 }
310 
311 void
if_initname(struct ifnet * ifp,const char * name,int unit)312 if_initname(struct ifnet *ifp, const char *name, int unit)
313 {
314 	(void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
315 	    "%s%d", name, unit);
316 }
317 
318 /*
319  * Null routines used while an interface is going away.  These routines
320  * just return an error.
321  */
322 
323 int
if_nulloutput(struct ifnet * ifp,struct mbuf * m,const struct sockaddr * so,const struct rtentry * rt)324 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
325     const struct sockaddr *so, const struct rtentry *rt)
326 {
327 
328 	return ENXIO;
329 }
330 
331 void
if_nullinput(struct ifnet * ifp,struct mbuf * m)332 if_nullinput(struct ifnet *ifp, struct mbuf *m)
333 {
334 
335 	/* Nothing. */
336 }
337 
338 void
if_nullstart(struct ifnet * ifp)339 if_nullstart(struct ifnet *ifp)
340 {
341 
342 	/* Nothing. */
343 }
344 
345 int
if_nulltransmit(struct ifnet * ifp,struct mbuf * m)346 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
347 {
348 
349 	return ENXIO;
350 }
351 
352 int
if_nullioctl(struct ifnet * ifp,u_long cmd,void * data)353 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
354 {
355 
356 	return ENXIO;
357 }
358 
359 int
if_nullinit(struct ifnet * ifp)360 if_nullinit(struct ifnet *ifp)
361 {
362 
363 	return ENXIO;
364 }
365 
366 void
if_nullstop(struct ifnet * ifp,int disable)367 if_nullstop(struct ifnet *ifp, int disable)
368 {
369 
370 	/* Nothing. */
371 }
372 
373 void
if_nullslowtimo(struct ifnet * ifp)374 if_nullslowtimo(struct ifnet *ifp)
375 {
376 
377 	/* Nothing. */
378 }
379 
380 void
if_nulldrain(struct ifnet * ifp)381 if_nulldrain(struct ifnet *ifp)
382 {
383 
384 	/* Nothing. */
385 }
386 
387 void
if_set_sadl(struct ifnet * ifp,const void * lla,u_char addrlen,bool factory)388 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
389 {
390 	struct ifaddr *ifa;
391 	struct sockaddr_dl *sdl;
392 
393 	ifp->if_addrlen = addrlen;
394 	if_alloc_sadl(ifp);
395 	ifa = ifp->if_dl;
396 	sdl = satosdl(ifa->ifa_addr);
397 
398 	(void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
399 	if (factory) {
400 		ifp->if_hwdl = ifp->if_dl;
401 		ifaref(ifp->if_hwdl);
402 	}
403 	/* TBD routing socket */
404 }
405 
406 struct ifaddr *
if_dl_create(const struct ifnet * ifp,const struct sockaddr_dl ** sdlp)407 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
408 {
409 	unsigned socksize, ifasize;
410 	int addrlen, namelen;
411 	struct sockaddr_dl *mask, *sdl;
412 	struct ifaddr *ifa;
413 
414 	namelen = strlen(ifp->if_xname);
415 	addrlen = ifp->if_addrlen;
416 	socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
417 	ifasize = sizeof(*ifa) + 2 * socksize;
418 	ifa = (struct ifaddr *)malloc(ifasize, M_IFADDR, M_WAITOK|M_ZERO);
419 
420 	sdl = (struct sockaddr_dl *)(ifa + 1);
421 	mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
422 
423 	sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
424 	    ifp->if_xname, namelen, NULL, addrlen);
425 	mask->sdl_len = sockaddr_dl_measure(namelen, 0);
426 	memset(&mask->sdl_data[0], 0xff, namelen);
427 	ifa->ifa_rtrequest = link_rtrequest;
428 	ifa->ifa_addr = (struct sockaddr *)sdl;
429 	ifa->ifa_netmask = (struct sockaddr *)mask;
430 
431 	*sdlp = sdl;
432 
433 	return ifa;
434 }
435 
436 static void
if_sadl_setrefs(struct ifnet * ifp,struct ifaddr * ifa)437 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
438 {
439 	const struct sockaddr_dl *sdl;
440 
441 	ifp->if_dl = ifa;
442 	ifaref(ifa);
443 	sdl = satosdl(ifa->ifa_addr);
444 	ifp->if_sadl = sdl;
445 }
446 
447 /*
448  * Allocate the link level name for the specified interface.  This
449  * is an attachment helper.  It must be called after ifp->if_addrlen
450  * is initialized, which may not be the case when if_attach() is
451  * called.
452  */
453 void
if_alloc_sadl(struct ifnet * ifp)454 if_alloc_sadl(struct ifnet *ifp)
455 {
456 	struct ifaddr *ifa;
457 	const struct sockaddr_dl *sdl;
458 
459 	/*
460 	 * If the interface already has a link name, release it
461 	 * now.  This is useful for interfaces that can change
462 	 * link types, and thus switch link names often.
463 	 */
464 	if (ifp->if_sadl != NULL)
465 		if_free_sadl(ifp);
466 
467 	ifa = if_dl_create(ifp, &sdl);
468 
469 	ifa_insert(ifp, ifa);
470 	if_sadl_setrefs(ifp, ifa);
471 }
472 
473 static void
if_deactivate_sadl(struct ifnet * ifp)474 if_deactivate_sadl(struct ifnet *ifp)
475 {
476 	struct ifaddr *ifa;
477 
478 	KASSERT(ifp->if_dl != NULL);
479 
480 	ifa = ifp->if_dl;
481 
482 	ifp->if_sadl = NULL;
483 
484 	ifp->if_dl = NULL;
485 	ifafree(ifa);
486 }
487 
488 void
if_activate_sadl(struct ifnet * ifp,struct ifaddr * ifa,const struct sockaddr_dl * sdl)489 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa,
490     const struct sockaddr_dl *sdl)
491 {
492 	int s;
493 
494 	s = splnet();
495 
496 	if_deactivate_sadl(ifp);
497 
498 	if_sadl_setrefs(ifp, ifa);
499 	IFADDR_READER_FOREACH(ifa, ifp)
500 		rtinit(ifa, RTM_LLINFO_UPD, 0);
501 
502 	splx(s);
503 }
504 
505 /*
506  * Free the link level name for the specified interface.  This is
507  * a detach helper.  This is called from if_detach().
508  */
509 static void
if_free_sadl(struct ifnet * ifp)510 if_free_sadl(struct ifnet *ifp)
511 {
512 	struct ifaddr *ifa;
513 	int s;
514 
515 	ifa = ifp->if_dl;
516 	if (ifa == NULL) {
517 		KASSERT(ifp->if_sadl == NULL);
518 		return;
519 	}
520 
521 	KASSERT(ifp->if_sadl != NULL);
522 
523 	s = splnet();
524 	rtinit(ifa, RTM_DELETE, 0);
525 	ifa_remove(ifp, ifa);
526 	if_deactivate_sadl(ifp);
527 	if (ifp->if_hwdl == ifa) {
528 		ifafree(ifa);
529 		ifp->if_hwdl = NULL;
530 	}
531 	splx(s);
532 }
533 
534 static void
if_getindex(ifnet_t * ifp)535 if_getindex(ifnet_t *ifp)
536 {
537 	bool hitlimit = false;
538 
539 	ifp->if_index_gen = index_gen++;
540 
541 	ifp->if_index = if_index;
542 	if (ifindex2ifnet == NULL) {
543 		if_index++;
544 		goto skip;
545 	}
546 	while (if_byindex(ifp->if_index)) {
547 		/*
548 		 * If we hit USHRT_MAX, we skip back to 0 since
549 		 * there are a number of places where the value
550 		 * of if_index or if_index itself is compared
551 		 * to or stored in an unsigned short.  By
552 		 * jumping back, we won't botch those assignments
553 		 * or comparisons.
554 		 */
555 		if (++if_index == 0) {
556 			if_index = 1;
557 		} else if (if_index == USHRT_MAX) {
558 			/*
559 			 * However, if we have to jump back to
560 			 * zero *twice* without finding an empty
561 			 * slot in ifindex2ifnet[], then there
562 			 * there are too many (>65535) interfaces.
563 			 */
564 			if (hitlimit) {
565 				panic("too many interfaces");
566 			}
567 			hitlimit = true;
568 			if_index = 1;
569 		}
570 		ifp->if_index = if_index;
571 	}
572 skip:
573 	/*
574 	 * ifindex2ifnet is indexed by if_index. Since if_index will
575 	 * grow dynamically, it should grow too.
576 	 */
577 	if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
578 		size_t m, n, oldlim;
579 		void *q;
580 
581 		oldlim = if_indexlim;
582 		while (ifp->if_index >= if_indexlim)
583 			if_indexlim <<= 1;
584 
585 		/* grow ifindex2ifnet */
586 		m = oldlim * sizeof(struct ifnet *);
587 		n = if_indexlim * sizeof(struct ifnet *);
588 		q = malloc(n, M_IFADDR, M_WAITOK|M_ZERO);
589 		if (ifindex2ifnet != NULL) {
590 			memcpy(q, ifindex2ifnet, m);
591 			free(ifindex2ifnet, M_IFADDR);
592 		}
593 		ifindex2ifnet = (struct ifnet **)q;
594 	}
595 	ifindex2ifnet[ifp->if_index] = ifp;
596 }
597 
598 /*
599  * Initialize an interface and assign an index for it.
600  *
601  * It must be called prior to a device specific attach routine
602  * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
603  * and be followed by if_register:
604  *
605  *     if_initialize(ifp);
606  *     ether_ifattach(ifp, enaddr);
607  *     if_register(ifp);
608  */
609 void
if_initialize(ifnet_t * ifp)610 if_initialize(ifnet_t *ifp)
611 {
612 	KASSERT(if_indexlim > 0);
613 	TAILQ_INIT(&ifp->if_addrlist);
614 
615 	/*
616 	 * Link level name is allocated later by a separate call to
617 	 * if_alloc_sadl().
618 	 */
619 
620 	if (ifp->if_snd.ifq_maxlen == 0)
621 		ifp->if_snd.ifq_maxlen = ifqmaxlen;
622 
623 	ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
624 
625 	ifp->if_link_state = LINK_STATE_UNKNOWN;
626 	ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
627 
628 	ifp->if_capenable = 0;
629 	ifp->if_csum_flags_tx = 0;
630 	ifp->if_csum_flags_rx = 0;
631 
632 #ifdef ALTQ
633 	ifp->if_snd.altq_type = 0;
634 	ifp->if_snd.altq_disc = NULL;
635 	ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
636 	ifp->if_snd.altq_tbr  = NULL;
637 	ifp->if_snd.altq_ifp  = ifp;
638 #endif
639 
640 	ifp->if_snd.ifq_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
641 
642 	ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
643 	(void)pfil_run_hooks(if_pfil,
644 	    (struct mbuf **)PFIL_IFNET_ATTACH, ifp, PFIL_IFNET);
645 
646 	IF_AFDATA_LOCK_INIT(ifp);
647 
648 	if (if_is_link_state_changeable(ifp)) {
649 		ifp->if_link_si = softint_establish(SOFTINT_NET,
650 		    if_link_state_change_si, ifp);
651 		if (ifp->if_link_si == NULL)
652 			panic("%s: softint_establish() failed", __func__);
653 	}
654 
655 	PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
656 	PSLIST_INIT(&ifp->if_addr_pslist);
657 	psref_target_init(&ifp->if_psref, ifnet_psref_class);
658 	ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
659 
660 	IFNET_LOCK();
661 	if_getindex(ifp);
662 	IFNET_UNLOCK();
663 }
664 
665 /*
666  * Register an interface to the list of "active" interfaces.
667  */
668 void
if_register(ifnet_t * ifp)669 if_register(ifnet_t *ifp)
670 {
671 	/*
672 	 * If the driver has not supplied its own if_ioctl, then
673 	 * supply the default.
674 	 */
675 	if (ifp->if_ioctl == NULL)
676 		ifp->if_ioctl = ifioctl_common;
677 
678 	sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
679 
680 	if (!STAILQ_EMPTY(&domains))
681 		if_attachdomain1(ifp);
682 
683 	/* Announce the interface. */
684 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
685 
686 	if (ifp->if_slowtimo != NULL) {
687 		ifp->if_slowtimo_ch =
688 		    kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
689 		callout_init(ifp->if_slowtimo_ch, 0);
690 		callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
691 		if_slowtimo(ifp);
692 	}
693 
694 	if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
695 		ifp->if_transmit = if_transmit;
696 
697 	IFNET_LOCK();
698 	TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
699 	IFNET_WRITER_INSERT_TAIL(ifp);
700 	IFNET_UNLOCK();
701 }
702 
703 /*
704  * The if_percpuq framework
705  *
706  * It allows network device drivers to execute the network stack
707  * in softint (so called softint-based if_input). It utilizes
708  * softint and percpu ifqueue. It doesn't distribute any packets
709  * between CPUs, unlike pktqueue(9).
710  *
711  * Currently we support two options for device drivers to apply the framework:
712  * - Use it implicitly with less changes
713  *   - If you use if_attach in driver's _attach function and if_input in
714  *     driver's Rx interrupt handler, a packet is queued and a softint handles
715  *     the packet implicitly
716  * - Use it explicitly in each driver (recommended)
717  *   - You can use if_percpuq_* directly in your driver
718  *   - In this case, you need to allocate struct if_percpuq in driver's softc
719  *   - See wm(4) as a reference implementation
720  */
721 
722 static void
if_percpuq_softint(void * arg)723 if_percpuq_softint(void *arg)
724 {
725 	struct if_percpuq *ipq = arg;
726 	struct ifnet *ifp = ipq->ipq_ifp;
727 	struct mbuf *m;
728 
729 	while ((m = if_percpuq_dequeue(ipq)) != NULL)
730 		ifp->_if_input(ifp, m);
731 }
732 
733 static void
if_percpuq_init_ifq(void * p,void * arg __unused,struct cpu_info * ci __unused)734 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
735 {
736 	struct ifqueue *const ifq = p;
737 
738 	memset(ifq, 0, sizeof(*ifq));
739 	ifq->ifq_maxlen = IFQ_MAXLEN;
740 }
741 
742 struct if_percpuq *
if_percpuq_create(struct ifnet * ifp)743 if_percpuq_create(struct ifnet *ifp)
744 {
745 	struct if_percpuq *ipq;
746 
747 	ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
748 	if (ipq == NULL)
749 		panic("kmem_zalloc failed");
750 
751 	ipq->ipq_ifp = ifp;
752 	ipq->ipq_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
753 	    if_percpuq_softint, ipq);
754 	ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
755 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
756 
757 	sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
758 
759 	return ipq;
760 }
761 
762 static struct mbuf *
if_percpuq_dequeue(struct if_percpuq * ipq)763 if_percpuq_dequeue(struct if_percpuq *ipq)
764 {
765 	struct mbuf *m;
766 	struct ifqueue *ifq;
767 	int s;
768 
769 	s = splnet();
770 	ifq = percpu_getref(ipq->ipq_ifqs);
771 	IF_DEQUEUE(ifq, m);
772 	percpu_putref(ipq->ipq_ifqs);
773 	splx(s);
774 
775 	return m;
776 }
777 
778 static void
if_percpuq_purge_ifq(void * p,void * arg __unused,struct cpu_info * ci __unused)779 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
780 {
781 	struct ifqueue *const ifq = p;
782 
783 	IF_PURGE(ifq);
784 }
785 
786 void
if_percpuq_destroy(struct if_percpuq * ipq)787 if_percpuq_destroy(struct if_percpuq *ipq)
788 {
789 
790 	/* if_detach may already destroy it */
791 	if (ipq == NULL)
792 		return;
793 
794 	softint_disestablish(ipq->ipq_si);
795 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
796 	percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
797 }
798 
799 void
if_percpuq_enqueue(struct if_percpuq * ipq,struct mbuf * m)800 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
801 {
802 	struct ifqueue *ifq;
803 	int s;
804 
805 	KASSERT(ipq != NULL);
806 
807 	s = splnet();
808 	ifq = percpu_getref(ipq->ipq_ifqs);
809 	if (IF_QFULL(ifq)) {
810 		IF_DROP(ifq);
811 		percpu_putref(ipq->ipq_ifqs);
812 		m_freem(m);
813 		goto out;
814 	}
815 	IF_ENQUEUE(ifq, m);
816 	percpu_putref(ipq->ipq_ifqs);
817 
818 	softint_schedule(ipq->ipq_si);
819 out:
820 	splx(s);
821 }
822 
823 static void
if_percpuq_drops(void * p,void * arg,struct cpu_info * ci __unused)824 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
825 {
826 	struct ifqueue *const ifq = p;
827 	int *sum = arg;
828 
829 	*sum += ifq->ifq_drops;
830 }
831 
832 static int
sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)833 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
834 {
835 	struct sysctlnode node;
836 	struct if_percpuq *ipq;
837 	int sum = 0;
838 	int error;
839 
840 	node = *rnode;
841 	ipq = node.sysctl_data;
842 
843 	percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
844 
845 	node.sysctl_data = &sum;
846 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
847 	if (error != 0 || newp == NULL)
848 		return error;
849 
850 	return 0;
851 }
852 
853 static void
sysctl_percpuq_setup(struct sysctllog ** clog,const char * ifname,struct if_percpuq * ipq)854 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
855     struct if_percpuq *ipq)
856 {
857 	const struct sysctlnode *cnode, *rnode;
858 
859 	if (sysctl_createv(clog, 0, NULL, &rnode,
860 		       CTLFLAG_PERMANENT,
861 		       CTLTYPE_NODE, "interfaces",
862 		       SYSCTL_DESCR("Per-interface controls"),
863 		       NULL, 0, NULL, 0,
864 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
865 		goto bad;
866 
867 	if (sysctl_createv(clog, 0, &rnode, &rnode,
868 		       CTLFLAG_PERMANENT,
869 		       CTLTYPE_NODE, ifname,
870 		       SYSCTL_DESCR("Interface controls"),
871 		       NULL, 0, NULL, 0,
872 		       CTL_CREATE, CTL_EOL) != 0)
873 		goto bad;
874 
875 	if (sysctl_createv(clog, 0, &rnode, &rnode,
876 		       CTLFLAG_PERMANENT,
877 		       CTLTYPE_NODE, "rcvq",
878 		       SYSCTL_DESCR("Interface input queue controls"),
879 		       NULL, 0, NULL, 0,
880 		       CTL_CREATE, CTL_EOL) != 0)
881 		goto bad;
882 
883 #ifdef NOTYET
884 	/* XXX Should show each per-CPU queue length? */
885 	if (sysctl_createv(clog, 0, &rnode, &rnode,
886 		       CTLFLAG_PERMANENT,
887 		       CTLTYPE_INT, "len",
888 		       SYSCTL_DESCR("Current input queue length"),
889 		       sysctl_percpuq_len, 0, NULL, 0,
890 		       CTL_CREATE, CTL_EOL) != 0)
891 		goto bad;
892 
893 	if (sysctl_createv(clog, 0, &rnode, &cnode,
894 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
895 		       CTLTYPE_INT, "maxlen",
896 		       SYSCTL_DESCR("Maximum allowed input queue length"),
897 		       sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
898 		       CTL_CREATE, CTL_EOL) != 0)
899 		goto bad;
900 #endif
901 
902 	if (sysctl_createv(clog, 0, &rnode, &cnode,
903 		       CTLFLAG_PERMANENT,
904 		       CTLTYPE_INT, "drops",
905 		       SYSCTL_DESCR("Total packets dropped due to full input queue"),
906 		       sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
907 		       CTL_CREATE, CTL_EOL) != 0)
908 		goto bad;
909 
910 	return;
911 bad:
912 	printf("%s: could not attach sysctl nodes\n", ifname);
913 	return;
914 }
915 
916 
917 /*
918  * The common interface input routine that is called by device drivers,
919  * which should be used only when the driver's rx handler already runs
920  * in softint.
921  */
922 void
if_input(struct ifnet * ifp,struct mbuf * m)923 if_input(struct ifnet *ifp, struct mbuf *m)
924 {
925 
926 	KASSERT(ifp->if_percpuq == NULL);
927 	KASSERT(!cpu_intr_p());
928 
929 	ifp->_if_input(ifp, m);
930 }
931 
932 /*
933  * DEPRECATED. Use if_initialize and if_register instead.
934  * See the above comment of if_initialize.
935  *
936  * Note that it implicitly enables if_percpuq to make drivers easy to
937  * migrate softint-based if_input without much changes. If you don't
938  * want to enable it, use if_initialize instead.
939  */
940 void
if_attach(ifnet_t * ifp)941 if_attach(ifnet_t *ifp)
942 {
943 
944 	if_initialize(ifp);
945 	ifp->if_percpuq = if_percpuq_create(ifp);
946 	if_register(ifp);
947 }
948 
949 void
if_attachdomain(void)950 if_attachdomain(void)
951 {
952 	struct ifnet *ifp;
953 	int s;
954 	int bound = curlwp_bind();
955 
956 	s = pserialize_read_enter();
957 	IFNET_READER_FOREACH(ifp) {
958 		struct psref psref;
959 		psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
960 		pserialize_read_exit(s);
961 		if_attachdomain1(ifp);
962 		s = pserialize_read_enter();
963 		psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
964 	}
965 	pserialize_read_exit(s);
966 	curlwp_bindx(bound);
967 }
968 
969 static void
if_attachdomain1(struct ifnet * ifp)970 if_attachdomain1(struct ifnet *ifp)
971 {
972 	struct domain *dp;
973 	int s;
974 
975 	s = splnet();
976 
977 	/* address family dependent data region */
978 	memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
979 	DOMAIN_FOREACH(dp) {
980 		if (dp->dom_ifattach != NULL)
981 			ifp->if_afdata[dp->dom_family] =
982 			    (*dp->dom_ifattach)(ifp);
983 	}
984 
985 	splx(s);
986 }
987 
988 /*
989  * Deactivate an interface.  This points all of the procedure
990  * handles at error stubs.  May be called from interrupt context.
991  */
992 void
if_deactivate(struct ifnet * ifp)993 if_deactivate(struct ifnet *ifp)
994 {
995 	int s;
996 
997 	s = splnet();
998 
999 	ifp->if_output	 = if_nulloutput;
1000 	ifp->_if_input	 = if_nullinput;
1001 	ifp->if_start	 = if_nullstart;
1002 	ifp->if_transmit = if_nulltransmit;
1003 	ifp->if_ioctl	 = if_nullioctl;
1004 	ifp->if_init	 = if_nullinit;
1005 	ifp->if_stop	 = if_nullstop;
1006 	ifp->if_slowtimo = if_nullslowtimo;
1007 	ifp->if_drain	 = if_nulldrain;
1008 
1009 	/* No more packets may be enqueued. */
1010 	ifp->if_snd.ifq_maxlen = 0;
1011 
1012 	splx(s);
1013 }
1014 
1015 bool
if_is_deactivated(struct ifnet * ifp)1016 if_is_deactivated(struct ifnet *ifp)
1017 {
1018 
1019 	return ifp->if_output == if_nulloutput;
1020 }
1021 
1022 void
if_purgeaddrs(struct ifnet * ifp,int family,void (* purgeaddr)(struct ifaddr *))1023 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
1024 {
1025 	struct ifaddr *ifa, *nifa;
1026 
1027 	for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
1028 		nifa = IFADDR_READER_NEXT(ifa);
1029 		if (ifa->ifa_addr->sa_family != family)
1030 			continue;
1031 		(*purgeaddr)(ifa);
1032 	}
1033 }
1034 
1035 #ifdef IFAREF_DEBUG
1036 static struct ifaddr **ifa_list;
1037 static int ifa_list_size;
1038 
1039 /* Depends on only one if_attach runs at once */
1040 static void
if_build_ifa_list(struct ifnet * ifp)1041 if_build_ifa_list(struct ifnet *ifp)
1042 {
1043 	struct ifaddr *ifa;
1044 	int i;
1045 
1046 	KASSERT(ifa_list == NULL);
1047 	KASSERT(ifa_list_size == 0);
1048 
1049 	IFADDR_READER_FOREACH(ifa, ifp)
1050 		ifa_list_size++;
1051 
1052 	ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
1053 	if (ifa_list == NULL)
1054 		return;
1055 
1056 	i = 0;
1057 	IFADDR_READER_FOREACH(ifa, ifp) {
1058 		ifa_list[i++] = ifa;
1059 		ifaref(ifa);
1060 	}
1061 }
1062 
1063 static void
if_check_and_free_ifa_list(struct ifnet * ifp)1064 if_check_and_free_ifa_list(struct ifnet *ifp)
1065 {
1066 	int i;
1067 	struct ifaddr *ifa;
1068 
1069 	if (ifa_list == NULL)
1070 		return;
1071 
1072 	for (i = 0; i < ifa_list_size; i++) {
1073 		char buf[64];
1074 
1075 		ifa = ifa_list[i];
1076 		sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
1077 		if (ifa->ifa_refcnt > 1) {
1078 			log(LOG_WARNING,
1079 			    "ifa(%s) still referenced (refcnt=%d)\n",
1080 			    buf, ifa->ifa_refcnt - 1);
1081 		} else
1082 			log(LOG_DEBUG,
1083 			    "ifa(%s) not referenced (refcnt=%d)\n",
1084 			    buf, ifa->ifa_refcnt - 1);
1085 		ifafree(ifa);
1086 	}
1087 
1088 	kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
1089 	ifa_list = NULL;
1090 	ifa_list_size = 0;
1091 }
1092 #endif
1093 
1094 /*
1095  * Detach an interface from the list of "active" interfaces,
1096  * freeing any resources as we go along.
1097  *
1098  * NOTE: This routine must be called with a valid thread context,
1099  * as it may block.
1100  */
1101 void
if_detach(struct ifnet * ifp)1102 if_detach(struct ifnet *ifp)
1103 {
1104 	struct socket so;
1105 	struct ifaddr *ifa;
1106 #ifdef IFAREF_DEBUG
1107 	struct ifaddr *last_ifa = NULL;
1108 #endif
1109 	struct domain *dp;
1110 	const struct protosw *pr;
1111 	int s, i, family, purged;
1112 	uint64_t xc;
1113 
1114 #ifdef IFAREF_DEBUG
1115 	if_build_ifa_list(ifp);
1116 #endif
1117 	/*
1118 	 * XXX It's kind of lame that we have to have the
1119 	 * XXX socket structure...
1120 	 */
1121 	memset(&so, 0, sizeof(so));
1122 
1123 	s = splnet();
1124 
1125 	sysctl_teardown(&ifp->if_sysctl_log);
1126 	mutex_enter(ifp->if_ioctl_lock);
1127 	if_deactivate(ifp);
1128 	mutex_exit(ifp->if_ioctl_lock);
1129 
1130 	IFNET_LOCK();
1131 	ifindex2ifnet[ifp->if_index] = NULL;
1132 	TAILQ_REMOVE(&ifnet_list, ifp, if_list);
1133 	IFNET_WRITER_REMOVE(ifp);
1134 	pserialize_perform(ifnet_psz);
1135 	IFNET_UNLOCK();
1136 
1137 	mutex_obj_free(ifp->if_ioctl_lock);
1138 	ifp->if_ioctl_lock = NULL;
1139 
1140 	if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
1141 		ifp->if_slowtimo = NULL;
1142 		callout_halt(ifp->if_slowtimo_ch, NULL);
1143 		callout_destroy(ifp->if_slowtimo_ch);
1144 		kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
1145 	}
1146 
1147 	/*
1148 	 * Do an if_down() to give protocols a chance to do something.
1149 	 */
1150 	if_down(ifp);
1151 
1152 #ifdef ALTQ
1153 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
1154 		altq_disable(&ifp->if_snd);
1155 	if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1156 		altq_detach(&ifp->if_snd);
1157 #endif
1158 
1159 	mutex_obj_free(ifp->if_snd.ifq_lock);
1160 
1161 #if NCARP > 0
1162 	/* Remove the interface from any carp group it is a part of.  */
1163 	if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
1164 		carp_ifdetach(ifp);
1165 #endif
1166 
1167 	/*
1168 	 * Rip all the addresses off the interface.  This should make
1169 	 * all of the routes go away.
1170 	 *
1171 	 * pr_usrreq calls can remove an arbitrary number of ifaddrs
1172 	 * from the list, including our "cursor", ifa.  For safety,
1173 	 * and to honor the TAILQ abstraction, I just restart the
1174 	 * loop after each removal.  Note that the loop will exit
1175 	 * when all of the remaining ifaddrs belong to the AF_LINK
1176 	 * family.  I am counting on the historical fact that at
1177 	 * least one pr_usrreq in each address domain removes at
1178 	 * least one ifaddr.
1179 	 */
1180 again:
1181 	IFADDR_READER_FOREACH(ifa, ifp) {
1182 		family = ifa->ifa_addr->sa_family;
1183 #ifdef IFAREF_DEBUG
1184 		printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
1185 		    ifa, family, ifa->ifa_refcnt);
1186 		if (last_ifa != NULL && ifa == last_ifa)
1187 			panic("if_detach: loop detected");
1188 		last_ifa = ifa;
1189 #endif
1190 		if (family == AF_LINK)
1191 			continue;
1192 		dp = pffinddomain(family);
1193 #ifdef DIAGNOSTIC
1194 		if (dp == NULL)
1195 			panic("if_detach: no domain for AF %d",
1196 			    family);
1197 #endif
1198 		/*
1199 		 * XXX These PURGEIF calls are redundant with the
1200 		 * purge-all-families calls below, but are left in for
1201 		 * now both to make a smaller change, and to avoid
1202 		 * unplanned interactions with clearing of
1203 		 * ifp->if_addrlist.
1204 		 */
1205 		purged = 0;
1206 		for (pr = dp->dom_protosw;
1207 		     pr < dp->dom_protoswNPROTOSW; pr++) {
1208 			so.so_proto = pr;
1209 			if (pr->pr_usrreqs) {
1210 				(void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1211 				purged = 1;
1212 			}
1213 		}
1214 		if (purged == 0) {
1215 			/*
1216 			 * XXX What's really the best thing to do
1217 			 * XXX here?  --thorpej@NetBSD.org
1218 			 */
1219 			printf("if_detach: WARNING: AF %d not purged\n",
1220 			    family);
1221 			ifa_remove(ifp, ifa);
1222 		}
1223 		goto again;
1224 	}
1225 
1226 	if_free_sadl(ifp);
1227 
1228 	/* Walk the routing table looking for stragglers. */
1229 	for (i = 0; i <= AF_MAX; i++) {
1230 		while (rt_walktree(i, if_rt_walktree, ifp) == ERESTART)
1231 			continue;
1232 	}
1233 
1234 	DOMAIN_FOREACH(dp) {
1235 		if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
1236 		{
1237 			void *p = ifp->if_afdata[dp->dom_family];
1238 			if (p) {
1239 				ifp->if_afdata[dp->dom_family] = NULL;
1240 				(*dp->dom_ifdetach)(ifp, p);
1241 			}
1242 		}
1243 
1244 		/*
1245 		 * One would expect multicast memberships (INET and
1246 		 * INET6) on UDP sockets to be purged by the PURGEIF
1247 		 * calls above, but if all addresses were removed from
1248 		 * the interface prior to destruction, the calls will
1249 		 * not be made (e.g. ppp, for which pppd(8) generally
1250 		 * removes addresses before destroying the interface).
1251 		 * Because there is no invariant that multicast
1252 		 * memberships only exist for interfaces with IPv4
1253 		 * addresses, we must call PURGEIF regardless of
1254 		 * addresses.  (Protocols which might store ifnet
1255 		 * pointers are marked with PR_PURGEIF.)
1256 		 */
1257 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
1258 			so.so_proto = pr;
1259 			if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
1260 				(void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1261 		}
1262 	}
1263 
1264 	(void)pfil_run_hooks(if_pfil,
1265 	    (struct mbuf **)PFIL_IFNET_DETACH, ifp, PFIL_IFNET);
1266 	(void)pfil_head_destroy(ifp->if_pfil);
1267 
1268 	/* Announce that the interface is gone. */
1269 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1270 
1271 	IF_AFDATA_LOCK_DESTROY(ifp);
1272 
1273 	if (if_is_link_state_changeable(ifp)) {
1274 		softint_disestablish(ifp->if_link_si);
1275 		ifp->if_link_si = NULL;
1276 	}
1277 
1278 	/*
1279 	 * remove packets that came from ifp, from software interrupt queues.
1280 	 */
1281 	DOMAIN_FOREACH(dp) {
1282 		for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
1283 			struct ifqueue *iq = dp->dom_ifqueues[i];
1284 			if (iq == NULL)
1285 				break;
1286 			dp->dom_ifqueues[i] = NULL;
1287 			if_detach_queues(ifp, iq);
1288 		}
1289 	}
1290 
1291 	/*
1292 	 * IP queues have to be processed separately: net-queue barrier
1293 	 * ensures that the packets are dequeued while a cross-call will
1294 	 * ensure that the interrupts have completed. FIXME: not quite..
1295 	 */
1296 #ifdef INET
1297 	pktq_barrier(ip_pktq);
1298 #endif
1299 #ifdef INET6
1300 	if (in6_present)
1301 		pktq_barrier(ip6_pktq);
1302 #endif
1303 	xc = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
1304 	xc_wait(xc);
1305 
1306 	/* Wait for all readers to drain before freeing.  */
1307 	psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
1308 	PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
1309 
1310 	if (ifp->if_percpuq != NULL) {
1311 		if_percpuq_destroy(ifp->if_percpuq);
1312 		ifp->if_percpuq = NULL;
1313 	}
1314 
1315 	splx(s);
1316 
1317 #ifdef IFAREF_DEBUG
1318 	if_check_and_free_ifa_list(ifp);
1319 #endif
1320 }
1321 
1322 static void
if_detach_queues(struct ifnet * ifp,struct ifqueue * q)1323 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
1324 {
1325 	struct mbuf *m, *prev, *next;
1326 
1327 	prev = NULL;
1328 	for (m = q->ifq_head; m != NULL; m = next) {
1329 		KASSERT((m->m_flags & M_PKTHDR) != 0);
1330 
1331 		next = m->m_nextpkt;
1332 		if (m->m_pkthdr.rcvif_index != ifp->if_index) {
1333 			prev = m;
1334 			continue;
1335 		}
1336 
1337 		if (prev != NULL)
1338 			prev->m_nextpkt = m->m_nextpkt;
1339 		else
1340 			q->ifq_head = m->m_nextpkt;
1341 		if (q->ifq_tail == m)
1342 			q->ifq_tail = prev;
1343 		q->ifq_len--;
1344 
1345 		m->m_nextpkt = NULL;
1346 		m_freem(m);
1347 		IF_DROP(q);
1348 	}
1349 }
1350 
1351 /*
1352  * Callback for a radix tree walk to delete all references to an
1353  * ifnet.
1354  */
1355 static int
if_rt_walktree(struct rtentry * rt,void * v)1356 if_rt_walktree(struct rtentry *rt, void *v)
1357 {
1358 	struct ifnet *ifp = (struct ifnet *)v;
1359 	int error;
1360 	struct rtentry *retrt;
1361 
1362 	if (rt->rt_ifp != ifp)
1363 		return 0;
1364 
1365 	/* Delete the entry. */
1366 	error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
1367 	    rt_mask(rt), rt->rt_flags, &retrt);
1368 	if (error == 0) {
1369 		KASSERT(retrt == rt);
1370 		KASSERT((retrt->rt_flags & RTF_UP) == 0);
1371 		retrt->rt_ifp = NULL;
1372 		rtfree(retrt);
1373 	} else {
1374 		printf("%s: warning: unable to delete rtentry @ %p, "
1375 		    "error = %d\n", ifp->if_xname, rt, error);
1376 	}
1377 	return ERESTART;
1378 }
1379 
1380 /*
1381  * Create a clone network interface.
1382  */
1383 static int
if_clone_create(const char * name)1384 if_clone_create(const char *name)
1385 {
1386 	struct if_clone *ifc;
1387 	int unit;
1388 	struct ifnet *ifp;
1389 	struct psref psref;
1390 
1391 	ifc = if_clone_lookup(name, &unit);
1392 	if (ifc == NULL)
1393 		return EINVAL;
1394 
1395 	ifp = if_get(name, &psref);
1396 	if (ifp != NULL) {
1397 		if_put(ifp, &psref);
1398 		return EEXIST;
1399 	}
1400 
1401 	return (*ifc->ifc_create)(ifc, unit);
1402 }
1403 
1404 /*
1405  * Destroy a clone network interface.
1406  */
1407 static int
if_clone_destroy(const char * name)1408 if_clone_destroy(const char *name)
1409 {
1410 	struct if_clone *ifc;
1411 	struct ifnet *ifp;
1412 	struct psref psref;
1413 
1414 	ifc = if_clone_lookup(name, NULL);
1415 	if (ifc == NULL)
1416 		return EINVAL;
1417 
1418 	if (ifc->ifc_destroy == NULL)
1419 		return EOPNOTSUPP;
1420 
1421 	ifp = if_get(name, &psref);
1422 	if (ifp == NULL)
1423 		return ENXIO;
1424 
1425 	/* We have to disable ioctls here */
1426 	mutex_enter(ifp->if_ioctl_lock);
1427 	ifp->if_ioctl = if_nullioctl;
1428 	mutex_exit(ifp->if_ioctl_lock);
1429 
1430 	/*
1431 	 * We cannot call ifc_destroy with holding ifp.
1432 	 * Releasing ifp here is safe thanks to if_clone_mtx.
1433 	 */
1434 	if_put(ifp, &psref);
1435 
1436 	return (*ifc->ifc_destroy)(ifp);
1437 }
1438 
1439 /*
1440  * Look up a network interface cloner.
1441  */
1442 static struct if_clone *
if_clone_lookup(const char * name,int * unitp)1443 if_clone_lookup(const char *name, int *unitp)
1444 {
1445 	struct if_clone *ifc;
1446 	const char *cp;
1447 	char *dp, ifname[IFNAMSIZ + 3];
1448 	int unit;
1449 
1450 	strcpy(ifname, "if_");
1451 	/* separate interface name from unit */
1452 	for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1453 	    *cp && (*cp < '0' || *cp > '9');)
1454 		*dp++ = *cp++;
1455 
1456 	if (cp == name || cp - name == IFNAMSIZ || !*cp)
1457 		return NULL;	/* No name or unit number */
1458 	*dp++ = '\0';
1459 
1460 again:
1461 	LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1462 		if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1463 			break;
1464 	}
1465 
1466 	if (ifc == NULL) {
1467 		if (*ifname == '\0' ||
1468 		    module_autoload(ifname, MODULE_CLASS_DRIVER))
1469 			return NULL;
1470 		*ifname = '\0';
1471 		goto again;
1472 	}
1473 
1474 	unit = 0;
1475 	while (cp - name < IFNAMSIZ && *cp) {
1476 		if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1477 			/* Bogus unit number. */
1478 			return NULL;
1479 		}
1480 		unit = (unit * 10) + (*cp++ - '0');
1481 	}
1482 
1483 	if (unitp != NULL)
1484 		*unitp = unit;
1485 	return ifc;
1486 }
1487 
1488 /*
1489  * Register a network interface cloner.
1490  */
1491 void
if_clone_attach(struct if_clone * ifc)1492 if_clone_attach(struct if_clone *ifc)
1493 {
1494 
1495 	LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1496 	if_cloners_count++;
1497 }
1498 
1499 /*
1500  * Unregister a network interface cloner.
1501  */
1502 void
if_clone_detach(struct if_clone * ifc)1503 if_clone_detach(struct if_clone *ifc)
1504 {
1505 
1506 	LIST_REMOVE(ifc, ifc_list);
1507 	if_cloners_count--;
1508 }
1509 
1510 /*
1511  * Provide list of interface cloners to userspace.
1512  */
1513 int
if_clone_list(int buf_count,char * buffer,int * total)1514 if_clone_list(int buf_count, char *buffer, int *total)
1515 {
1516 	char outbuf[IFNAMSIZ], *dst;
1517 	struct if_clone *ifc;
1518 	int count, error = 0;
1519 
1520 	*total = if_cloners_count;
1521 	if ((dst = buffer) == NULL) {
1522 		/* Just asking how many there are. */
1523 		return 0;
1524 	}
1525 
1526 	if (buf_count < 0)
1527 		return EINVAL;
1528 
1529 	count = (if_cloners_count < buf_count) ?
1530 	    if_cloners_count : buf_count;
1531 
1532 	for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1533 	     ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1534 		(void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1535 		if (outbuf[sizeof(outbuf) - 1] != '\0')
1536 			return ENAMETOOLONG;
1537 		error = copyout(outbuf, dst, sizeof(outbuf));
1538 		if (error != 0)
1539 			break;
1540 	}
1541 
1542 	return error;
1543 }
1544 
1545 void
ifaref(struct ifaddr * ifa)1546 ifaref(struct ifaddr *ifa)
1547 {
1548 	ifa->ifa_refcnt++;
1549 }
1550 
1551 void
ifafree(struct ifaddr * ifa)1552 ifafree(struct ifaddr *ifa)
1553 {
1554 	KASSERT(ifa != NULL);
1555 	KASSERT(ifa->ifa_refcnt > 0);
1556 
1557 	if (--ifa->ifa_refcnt == 0) {
1558 		free(ifa, M_IFADDR);
1559 	}
1560 }
1561 
1562 void
ifa_insert(struct ifnet * ifp,struct ifaddr * ifa)1563 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1564 {
1565 	ifa->ifa_ifp = ifp;
1566 	TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1567 	IFADDR_ENTRY_INIT(ifa);
1568 	IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
1569 	ifaref(ifa);
1570 }
1571 
1572 void
ifa_remove(struct ifnet * ifp,struct ifaddr * ifa)1573 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1574 {
1575 	KASSERT(ifa->ifa_ifp == ifp);
1576 	TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1577 	IFADDR_WRITER_REMOVE(ifa);
1578 	/* TODO psref_target_destroy */
1579 	IFADDR_ENTRY_DESTROY(ifa);
1580 	ifafree(ifa);
1581 }
1582 
1583 static inline int
equal(const struct sockaddr * sa1,const struct sockaddr * sa2)1584 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1585 {
1586 	return sockaddr_cmp(sa1, sa2) == 0;
1587 }
1588 
1589 /*
1590  * Locate an interface based on a complete address.
1591  */
1592 /*ARGSUSED*/
1593 struct ifaddr *
ifa_ifwithaddr(const struct sockaddr * addr)1594 ifa_ifwithaddr(const struct sockaddr *addr)
1595 {
1596 	struct ifnet *ifp;
1597 	struct ifaddr *ifa;
1598 	int s;
1599 
1600 	s = pserialize_read_enter();
1601 	IFNET_READER_FOREACH(ifp) {
1602 		if (if_is_deactivated(ifp))
1603 			continue;
1604 		IFADDR_READER_FOREACH(ifa, ifp) {
1605 			if (ifa->ifa_addr->sa_family != addr->sa_family)
1606 				continue;
1607 			if (equal(addr, ifa->ifa_addr))
1608 				return ifa;
1609 			if ((ifp->if_flags & IFF_BROADCAST) &&
1610 			    ifa->ifa_broadaddr &&
1611 			    /* IP6 doesn't have broadcast */
1612 			    ifa->ifa_broadaddr->sa_len != 0 &&
1613 			    equal(ifa->ifa_broadaddr, addr))
1614 				return ifa;
1615 		}
1616 	}
1617 	pserialize_read_exit(s);
1618 	return NULL;
1619 }
1620 
1621 /*
1622  * Locate the point to point interface with a given destination address.
1623  */
1624 /*ARGSUSED*/
1625 struct ifaddr *
ifa_ifwithdstaddr(const struct sockaddr * addr)1626 ifa_ifwithdstaddr(const struct sockaddr *addr)
1627 {
1628 	struct ifnet *ifp;
1629 	struct ifaddr *ifa;
1630 	int s;
1631 
1632 	s = pserialize_read_enter();
1633 	IFNET_READER_FOREACH(ifp) {
1634 		if (if_is_deactivated(ifp))
1635 			continue;
1636 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1637 			continue;
1638 		IFADDR_READER_FOREACH(ifa, ifp) {
1639 			if (ifa->ifa_addr->sa_family != addr->sa_family ||
1640 			    ifa->ifa_dstaddr == NULL)
1641 				continue;
1642 			if (equal(addr, ifa->ifa_dstaddr))
1643 				return ifa;
1644 		}
1645 	}
1646 	pserialize_read_exit(s);
1647 	return NULL;
1648 }
1649 
1650 /*
1651  * Find an interface on a specific network.  If many, choice
1652  * is most specific found.
1653  */
1654 struct ifaddr *
ifa_ifwithnet(const struct sockaddr * addr)1655 ifa_ifwithnet(const struct sockaddr *addr)
1656 {
1657 	struct ifnet *ifp;
1658 	struct ifaddr *ifa;
1659 	const struct sockaddr_dl *sdl;
1660 	struct ifaddr *ifa_maybe = 0;
1661 	u_int af = addr->sa_family;
1662 	const char *addr_data = addr->sa_data, *cplim;
1663 	int s;
1664 
1665 	if (af == AF_LINK) {
1666 		sdl = satocsdl(addr);
1667 		if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1668 		    ifindex2ifnet[sdl->sdl_index] &&
1669 		    !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
1670 			return ifindex2ifnet[sdl->sdl_index]->if_dl;
1671 		}
1672 	}
1673 #ifdef NETATALK
1674 	if (af == AF_APPLETALK) {
1675 		const struct sockaddr_at *sat, *sat2;
1676 		sat = (const struct sockaddr_at *)addr;
1677 		s = pserialize_read_enter();
1678 		IFNET_READER_FOREACH(ifp) {
1679 			if (if_is_deactivated(ifp))
1680 				continue;
1681 			ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
1682 			if (ifa == NULL)
1683 				continue;
1684 			sat2 = (struct sockaddr_at *)ifa->ifa_addr;
1685 			if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
1686 				return ifa; /* exact match */
1687 			if (ifa_maybe == NULL) {
1688 				/* else keep the if with the right range */
1689 				ifa_maybe = ifa;
1690 			}
1691 		}
1692 		pserialize_read_exit(s);
1693 		return ifa_maybe;
1694 	}
1695 #endif
1696 	s = pserialize_read_enter();
1697 	IFNET_READER_FOREACH(ifp) {
1698 		if (if_is_deactivated(ifp))
1699 			continue;
1700 		IFADDR_READER_FOREACH(ifa, ifp) {
1701 			const char *cp, *cp2, *cp3;
1702 
1703 			if (ifa->ifa_addr->sa_family != af ||
1704 			    ifa->ifa_netmask == NULL)
1705  next:				continue;
1706 			cp = addr_data;
1707 			cp2 = ifa->ifa_addr->sa_data;
1708 			cp3 = ifa->ifa_netmask->sa_data;
1709 			cplim = (const char *)ifa->ifa_netmask +
1710 			    ifa->ifa_netmask->sa_len;
1711 			while (cp3 < cplim) {
1712 				if ((*cp++ ^ *cp2++) & *cp3++) {
1713 					/* want to continue for() loop */
1714 					goto next;
1715 				}
1716 			}
1717 			if (ifa_maybe == NULL ||
1718 			    rt_refines(ifa->ifa_netmask,
1719 			               ifa_maybe->ifa_netmask))
1720 				ifa_maybe = ifa;
1721 		}
1722 	}
1723 	pserialize_read_exit(s);
1724 	return ifa_maybe;
1725 }
1726 
1727 /*
1728  * Find the interface of the addresss.
1729  */
1730 struct ifaddr *
ifa_ifwithladdr(const struct sockaddr * addr)1731 ifa_ifwithladdr(const struct sockaddr *addr)
1732 {
1733 	struct ifaddr *ia;
1734 
1735 	if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
1736 	    (ia = ifa_ifwithnet(addr)))
1737 		return ia;
1738 	return NULL;
1739 }
1740 
1741 /*
1742  * Find an interface using a specific address family
1743  */
1744 struct ifaddr *
ifa_ifwithaf(int af)1745 ifa_ifwithaf(int af)
1746 {
1747 	struct ifnet *ifp;
1748 	struct ifaddr *ifa = NULL;
1749 	int s;
1750 
1751 	s = pserialize_read_enter();
1752 	IFNET_READER_FOREACH(ifp) {
1753 		if (if_is_deactivated(ifp))
1754 			continue;
1755 		IFADDR_READER_FOREACH(ifa, ifp) {
1756 			if (ifa->ifa_addr->sa_family == af)
1757 				goto out;
1758 		}
1759 	}
1760 out:
1761 	pserialize_read_exit(s);
1762 	return ifa;
1763 }
1764 
1765 /*
1766  * Find an interface address specific to an interface best matching
1767  * a given address.
1768  */
1769 struct ifaddr *
ifaof_ifpforaddr(const struct sockaddr * addr,struct ifnet * ifp)1770 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
1771 {
1772 	struct ifaddr *ifa;
1773 	const char *cp, *cp2, *cp3;
1774 	const char *cplim;
1775 	struct ifaddr *ifa_maybe = 0;
1776 	u_int af = addr->sa_family;
1777 
1778 	if (if_is_deactivated(ifp))
1779 		return NULL;
1780 
1781 	if (af >= AF_MAX)
1782 		return NULL;
1783 
1784 	IFADDR_READER_FOREACH(ifa, ifp) {
1785 		if (ifa->ifa_addr->sa_family != af)
1786 			continue;
1787 		ifa_maybe = ifa;
1788 		if (ifa->ifa_netmask == NULL) {
1789 			if (equal(addr, ifa->ifa_addr) ||
1790 			    (ifa->ifa_dstaddr &&
1791 			     equal(addr, ifa->ifa_dstaddr)))
1792 				return ifa;
1793 			continue;
1794 		}
1795 		cp = addr->sa_data;
1796 		cp2 = ifa->ifa_addr->sa_data;
1797 		cp3 = ifa->ifa_netmask->sa_data;
1798 		cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1799 		for (; cp3 < cplim; cp3++) {
1800 			if ((*cp++ ^ *cp2++) & *cp3)
1801 				break;
1802 		}
1803 		if (cp3 == cplim)
1804 			return ifa;
1805 	}
1806 	return ifa_maybe;
1807 }
1808 
1809 /*
1810  * Default action when installing a route with a Link Level gateway.
1811  * Lookup an appropriate real ifa to point to.
1812  * This should be moved to /sys/net/link.c eventually.
1813  */
1814 void
link_rtrequest(int cmd,struct rtentry * rt,const struct rt_addrinfo * info)1815 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
1816 {
1817 	struct ifaddr *ifa;
1818 	const struct sockaddr *dst;
1819 	struct ifnet *ifp;
1820 
1821 	if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1822 	    (ifp = ifa->ifa_ifp) == NULL || (dst = rt_getkey(rt)) == NULL)
1823 		return;
1824 	if ((ifa = ifaof_ifpforaddr(dst, ifp)) != NULL) {
1825 		rt_replace_ifa(rt, ifa);
1826 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1827 			ifa->ifa_rtrequest(cmd, rt, info);
1828 	}
1829 }
1830 
1831 /*
1832  * bitmask macros to manage a densely packed link_state change queue.
1833  * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
1834  * LINK_STATE_UP(2) we need 2 bits for each state change.
1835  * As a state change to store is 0, treat all bits set as an unset item.
1836  */
1837 #define LQ_ITEM_BITS		2
1838 #define LQ_ITEM_MASK		((1 << LQ_ITEM_BITS) - 1)
1839 #define LQ_MASK(i)		(LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
1840 #define LINK_STATE_UNSET	LQ_ITEM_MASK
1841 #define LQ_ITEM(q, i)		(((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
1842 #define LQ_STORE(q, i, v)						      \
1843 	do {								      \
1844 		(q) &= ~LQ_MASK((i));					      \
1845 		(q) |= (v) << (i) * LQ_ITEM_BITS;			      \
1846 	} while (0 /* CONSTCOND */)
1847 #define LQ_MAX(q)		((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
1848 #define LQ_POP(q, v)							      \
1849 	do {								      \
1850 		(v) = LQ_ITEM((q), 0);					      \
1851 		(q) >>= LQ_ITEM_BITS;					      \
1852 		(q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS;  \
1853 	} while (0 /* CONSTCOND */)
1854 #define LQ_PUSH(q, v)							      \
1855 	do {								      \
1856 		(q) >>= LQ_ITEM_BITS;					      \
1857 		(q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS;		      \
1858 	} while (0 /* CONSTCOND */)
1859 #define LQ_FIND_UNSET(q, i)						      \
1860 	for ((i) = 0; i < LQ_MAX((q)); (i)++) {				      \
1861 		if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET)		      \
1862 			break;						      \
1863 	}
1864 /*
1865  * Handle a change in the interface link state and
1866  * queue notifications.
1867  */
1868 void
if_link_state_change(struct ifnet * ifp,int link_state)1869 if_link_state_change(struct ifnet *ifp, int link_state)
1870 {
1871 	int s, idx;
1872 
1873 	KASSERTMSG(if_is_link_state_changeable(ifp),
1874 	    "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x",
1875 	    ifp->if_xname, ifp->if_extflags);
1876 
1877 	/* Ensure change is to a valid state */
1878 	switch (link_state) {
1879 	case LINK_STATE_UNKNOWN:	/* FALLTHROUGH */
1880 	case LINK_STATE_DOWN:		/* FALLTHROUGH */
1881 	case LINK_STATE_UP:
1882 		break;
1883 	default:
1884 #ifdef DEBUG
1885 		printf("%s: invalid link state %d\n",
1886 		    ifp->if_xname, link_state);
1887 #endif
1888 		return;
1889 	}
1890 
1891 	s = splnet();
1892 
1893 	/* Find the last unset event in the queue. */
1894 	LQ_FIND_UNSET(ifp->if_link_queue, idx);
1895 
1896 	/*
1897 	 * Ensure link_state doesn't match the last event in the queue.
1898 	 * ifp->if_link_state is not checked and set here because
1899 	 * that would present an inconsistent picture to the system.
1900 	 */
1901 	if (idx != 0 &&
1902 	    LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
1903 		goto out;
1904 
1905 	/* Handle queue overflow. */
1906 	if (idx == LQ_MAX(ifp->if_link_queue)) {
1907 		uint8_t lost;
1908 
1909 		/*
1910 		 * The DOWN state must be protected from being pushed off
1911 		 * the queue to ensure that userland will always be
1912 		 * in a sane state.
1913 		 * Because DOWN is protected, there is no need to protect
1914 		 * UNKNOWN.
1915 		 * It should be invalid to change from any other state to
1916 		 * UNKNOWN anyway ...
1917 		 */
1918 		lost = LQ_ITEM(ifp->if_link_queue, 0);
1919 		LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
1920 		if (lost == LINK_STATE_DOWN) {
1921 			lost = LQ_ITEM(ifp->if_link_queue, 0);
1922 			LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
1923 		}
1924 		printf("%s: lost link state change %s\n",
1925 		    ifp->if_xname,
1926 		    lost == LINK_STATE_UP ? "UP" :
1927 		    lost == LINK_STATE_DOWN ? "DOWN" :
1928 		    "UNKNOWN");
1929 	} else
1930 		LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
1931 
1932 	softint_schedule(ifp->if_link_si);
1933 
1934 out:
1935 	splx(s);
1936 }
1937 
1938 /*
1939  * Handle interface link state change notifications.
1940  * Must be called at splnet().
1941  */
1942 static void
if_link_state_change0(struct ifnet * ifp,int link_state)1943 if_link_state_change0(struct ifnet *ifp, int link_state)
1944 {
1945 	struct domain *dp;
1946 
1947 	/* Ensure the change is still valid. */
1948 	if (ifp->if_link_state == link_state)
1949 		return;
1950 
1951 #ifdef DEBUG
1952 	log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
1953 		link_state == LINK_STATE_UP ? "UP" :
1954 		link_state == LINK_STATE_DOWN ? "DOWN" :
1955 		"UNKNOWN",
1956 		ifp->if_link_state == LINK_STATE_UP ? "UP" :
1957 		ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
1958 		"UNKNOWN");
1959 #endif
1960 
1961 	/*
1962 	 * When going from UNKNOWN to UP, we need to mark existing
1963 	 * addresses as tentative and restart DAD as we may have
1964 	 * erroneously not found a duplicate.
1965 	 *
1966 	 * This needs to happen before rt_ifmsg to avoid a race where
1967 	 * listeners would have an address and expect it to work right
1968 	 * away.
1969 	 */
1970 	if (link_state == LINK_STATE_UP &&
1971 	    ifp->if_link_state == LINK_STATE_UNKNOWN)
1972 	{
1973 		DOMAIN_FOREACH(dp) {
1974 			if (dp->dom_if_link_state_change != NULL)
1975 				dp->dom_if_link_state_change(ifp,
1976 				    LINK_STATE_DOWN);
1977 		}
1978 	}
1979 
1980 	ifp->if_link_state = link_state;
1981 
1982 	/* Notify that the link state has changed. */
1983 	rt_ifmsg(ifp);
1984 
1985 #if NCARP > 0
1986 	if (ifp->if_carp)
1987 		carp_carpdev_state(ifp);
1988 #endif
1989 
1990 	DOMAIN_FOREACH(dp) {
1991 		if (dp->dom_if_link_state_change != NULL)
1992 			dp->dom_if_link_state_change(ifp, link_state);
1993 	}
1994 }
1995 
1996 /*
1997  * Process the interface link state change queue.
1998  */
1999 static void
if_link_state_change_si(void * arg)2000 if_link_state_change_si(void *arg)
2001 {
2002 	struct ifnet *ifp = arg;
2003 	int s;
2004 	uint8_t state;
2005 
2006 	s = splnet();
2007 
2008 	/* Pop a link state change from the queue and process it. */
2009 	LQ_POP(ifp->if_link_queue, state);
2010 	if_link_state_change0(ifp, state);
2011 
2012 	/* If there is a link state change to come, schedule it. */
2013 	if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET)
2014 		softint_schedule(ifp->if_link_si);
2015 
2016 	splx(s);
2017 }
2018 
2019 /*
2020  * Default action when installing a local route on a point-to-point
2021  * interface.
2022  */
2023 void
p2p_rtrequest(int req,struct rtentry * rt,__unused const struct rt_addrinfo * info)2024 p2p_rtrequest(int req, struct rtentry *rt,
2025     __unused const struct rt_addrinfo *info)
2026 {
2027 	struct ifnet *ifp = rt->rt_ifp;
2028 	struct ifaddr *ifa, *lo0ifa;
2029 
2030 	switch (req) {
2031 	case RTM_ADD:
2032 		if ((rt->rt_flags & RTF_LOCAL) == 0)
2033 			break;
2034 
2035 		rt->rt_ifp = lo0ifp;
2036 
2037 		IFADDR_READER_FOREACH(ifa, ifp) {
2038 			if (equal(rt_getkey(rt), ifa->ifa_addr))
2039 				break;
2040 		}
2041 		if (ifa == NULL)
2042 			break;
2043 
2044 		/*
2045 		 * Ensure lo0 has an address of the same family.
2046 		 */
2047 		IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
2048 			if (lo0ifa->ifa_addr->sa_family ==
2049 			    ifa->ifa_addr->sa_family)
2050 				break;
2051 		}
2052 		if (lo0ifa == NULL)
2053 			break;
2054 
2055 		/*
2056 		 * Make sure to set rt->rt_ifa to the interface
2057 		 * address we are using, otherwise we will have trouble
2058 		 * with source address selection.
2059 		 */
2060 		if (ifa != rt->rt_ifa)
2061 			rt_replace_ifa(rt, ifa);
2062 		break;
2063 	case RTM_DELETE:
2064 	default:
2065 		break;
2066 	}
2067 }
2068 
2069 /*
2070  * Mark an interface down and notify protocols of
2071  * the transition.
2072  * NOTE: must be called at splsoftnet or equivalent.
2073  */
2074 void
if_down(struct ifnet * ifp)2075 if_down(struct ifnet *ifp)
2076 {
2077 	struct ifaddr *ifa;
2078 	struct domain *dp;
2079 
2080 	ifp->if_flags &= ~IFF_UP;
2081 	nanotime(&ifp->if_lastchange);
2082 	IFADDR_READER_FOREACH(ifa, ifp)
2083 		pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
2084 	IFQ_PURGE(&ifp->if_snd);
2085 #if NCARP > 0
2086 	if (ifp->if_carp)
2087 		carp_carpdev_state(ifp);
2088 #endif
2089 	rt_ifmsg(ifp);
2090 	DOMAIN_FOREACH(dp) {
2091 		if (dp->dom_if_down)
2092 			dp->dom_if_down(ifp);
2093 	}
2094 }
2095 
2096 /*
2097  * Mark an interface up and notify protocols of
2098  * the transition.
2099  * NOTE: must be called at splsoftnet or equivalent.
2100  */
2101 void
if_up(struct ifnet * ifp)2102 if_up(struct ifnet *ifp)
2103 {
2104 #ifdef notyet
2105 	struct ifaddr *ifa;
2106 #endif
2107 	struct domain *dp;
2108 
2109 	ifp->if_flags |= IFF_UP;
2110 	nanotime(&ifp->if_lastchange);
2111 #ifdef notyet
2112 	/* this has no effect on IP, and will kill all ISO connections XXX */
2113 	IFADDR_READER_FOREACH(ifa, ifp)
2114 		pfctlinput(PRC_IFUP, ifa->ifa_addr);
2115 #endif
2116 #if NCARP > 0
2117 	if (ifp->if_carp)
2118 		carp_carpdev_state(ifp);
2119 #endif
2120 	rt_ifmsg(ifp);
2121 	DOMAIN_FOREACH(dp) {
2122 		if (dp->dom_if_up)
2123 			dp->dom_if_up(ifp);
2124 	}
2125 }
2126 
2127 /*
2128  * Handle interface slowtimo timer routine.  Called
2129  * from softclock, we decrement timer (if set) and
2130  * call the appropriate interface routine on expiration.
2131  */
2132 static void
if_slowtimo(void * arg)2133 if_slowtimo(void *arg)
2134 {
2135 	void (*slowtimo)(struct ifnet *);
2136 	struct ifnet *ifp = arg;
2137 	int s;
2138 
2139 	slowtimo = ifp->if_slowtimo;
2140 	if (__predict_false(slowtimo == NULL))
2141 		return;
2142 
2143 	s = splnet();
2144 	if (ifp->if_timer != 0 && --ifp->if_timer == 0)
2145 		(*slowtimo)(ifp);
2146 
2147 	splx(s);
2148 
2149 	if (__predict_true(ifp->if_slowtimo != NULL))
2150 		callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
2151 }
2152 
2153 /*
2154  * Set/clear promiscuous mode on interface ifp based on the truth value
2155  * of pswitch.  The calls are reference counted so that only the first
2156  * "on" request actually has an effect, as does the final "off" request.
2157  * Results are undefined if the "off" and "on" requests are not matched.
2158  */
2159 int
ifpromisc(struct ifnet * ifp,int pswitch)2160 ifpromisc(struct ifnet *ifp, int pswitch)
2161 {
2162 	int pcount, ret;
2163 	short nflags;
2164 
2165 	pcount = ifp->if_pcount;
2166 	if (pswitch) {
2167 		/*
2168 		 * Allow the device to be "placed" into promiscuous
2169 		 * mode even if it is not configured up.  It will
2170 		 * consult IFF_PROMISC when it is brought up.
2171 		 */
2172 		if (ifp->if_pcount++ != 0)
2173 			return 0;
2174 		nflags = ifp->if_flags | IFF_PROMISC;
2175 	} else {
2176 		if (--ifp->if_pcount > 0)
2177 			return 0;
2178 		nflags = ifp->if_flags & ~IFF_PROMISC;
2179 	}
2180 	ret = if_flags_set(ifp, nflags);
2181 	/* Restore interface state if not successful. */
2182 	if (ret != 0) {
2183 		ifp->if_pcount = pcount;
2184 	}
2185 	return ret;
2186 }
2187 
2188 /*
2189  * Map interface name to
2190  * interface structure pointer.
2191  */
2192 struct ifnet *
ifunit(const char * name)2193 ifunit(const char *name)
2194 {
2195 	struct ifnet *ifp;
2196 	const char *cp = name;
2197 	u_int unit = 0;
2198 	u_int i;
2199 	int s;
2200 
2201 	/*
2202 	 * If the entire name is a number, treat it as an ifindex.
2203 	 */
2204 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2205 		unit = unit * 10 + (*cp - '0');
2206 	}
2207 
2208 	/*
2209 	 * If the number took all of the name, then it's a valid ifindex.
2210 	 */
2211 	if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
2212 		if (unit >= if_indexlim)
2213 			return NULL;
2214 		ifp = ifindex2ifnet[unit];
2215 		if (ifp == NULL || if_is_deactivated(ifp))
2216 			return NULL;
2217 		return ifp;
2218 	}
2219 
2220 	ifp = NULL;
2221 	s = pserialize_read_enter();
2222 	IFNET_READER_FOREACH(ifp) {
2223 		if (if_is_deactivated(ifp))
2224 			continue;
2225 	 	if (strcmp(ifp->if_xname, name) == 0)
2226 			goto out;
2227 	}
2228 out:
2229 	pserialize_read_exit(s);
2230 	return ifp;
2231 }
2232 
2233 /*
2234  * Get a reference of an ifnet object by an interface name.
2235  * The returned reference is protected by psref(9). The caller
2236  * must release a returned reference by if_put after use.
2237  */
2238 struct ifnet *
if_get(const char * name,struct psref * psref)2239 if_get(const char *name, struct psref *psref)
2240 {
2241 	struct ifnet *ifp;
2242 	const char *cp = name;
2243 	u_int unit = 0;
2244 	u_int i;
2245 	int s;
2246 
2247 	/*
2248 	 * If the entire name is a number, treat it as an ifindex.
2249 	 */
2250 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2251 		unit = unit * 10 + (*cp - '0');
2252 	}
2253 
2254 	/*
2255 	 * If the number took all of the name, then it's a valid ifindex.
2256 	 */
2257 	if (i == IFNAMSIZ || (cp != name && *cp == '\0')) {
2258 		if (unit >= if_indexlim)
2259 			return NULL;
2260 		ifp = ifindex2ifnet[unit];
2261 		if (ifp == NULL || if_is_deactivated(ifp))
2262 			return NULL;
2263 		return ifp;
2264 	}
2265 
2266 	ifp = NULL;
2267 	s = pserialize_read_enter();
2268 	IFNET_READER_FOREACH(ifp) {
2269 		if (if_is_deactivated(ifp))
2270 			continue;
2271 		if (strcmp(ifp->if_xname, name) == 0) {
2272 			psref_acquire(psref, &ifp->if_psref,
2273 			    ifnet_psref_class);
2274 			goto out;
2275 		}
2276 	}
2277 out:
2278 	pserialize_read_exit(s);
2279 	return ifp;
2280 }
2281 
2282 /*
2283  * Release a reference of an ifnet object given by if_get or
2284  * if_get_byindex.
2285  */
2286 void
if_put(const struct ifnet * ifp,struct psref * psref)2287 if_put(const struct ifnet *ifp, struct psref *psref)
2288 {
2289 
2290 	if (ifp == NULL)
2291 		return;
2292 
2293 	psref_release(psref, &ifp->if_psref, ifnet_psref_class);
2294 }
2295 
2296 ifnet_t *
if_byindex(u_int idx)2297 if_byindex(u_int idx)
2298 {
2299 	return (idx < if_indexlim) ? ifindex2ifnet[idx] : NULL;
2300 }
2301 
2302 /*
2303  * Get a reference of an ifnet object by an interface index.
2304  * The returned reference is protected by psref(9). The caller
2305  * must release a returned reference by if_put after use.
2306  */
2307 ifnet_t *
if_get_byindex(u_int idx,struct psref * psref)2308 if_get_byindex(u_int idx, struct psref *psref)
2309 {
2310 	ifnet_t *ifp;
2311 	int s;
2312 
2313 	s = pserialize_read_enter();
2314 	ifp = (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
2315 	if (__predict_true(ifp != NULL))
2316 		psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2317 	pserialize_read_exit(s);
2318 
2319 	return ifp;
2320 }
2321 
2322 /*
2323  * XXX it's safe only if the passed ifp is guaranteed to not be freed,
2324  * for example the ifp is already held or some other object is held which
2325  * guarantes the ifp to not be freed indirectly.
2326  */
2327 void
if_acquire_NOMPSAFE(struct ifnet * ifp,struct psref * psref)2328 if_acquire_NOMPSAFE(struct ifnet *ifp, struct psref *psref)
2329 {
2330 
2331 	KASSERT(ifp->if_index != 0);
2332 	psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2333 }
2334 
2335 bool
if_held(struct ifnet * ifp)2336 if_held(struct ifnet *ifp)
2337 {
2338 
2339 	return psref_held(&ifp->if_psref, ifnet_psref_class);
2340 }
2341 
2342 
2343 /* common */
2344 int
ifioctl_common(struct ifnet * ifp,u_long cmd,void * data)2345 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
2346 {
2347 	int s;
2348 	struct ifreq *ifr;
2349 	struct ifcapreq *ifcr;
2350 	struct ifdatareq *ifdr;
2351 
2352 	switch (cmd) {
2353 	case SIOCSIFCAP:
2354 		ifcr = data;
2355 		if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
2356 			return EINVAL;
2357 
2358 		if (ifcr->ifcr_capenable == ifp->if_capenable)
2359 			return 0;
2360 
2361 		ifp->if_capenable = ifcr->ifcr_capenable;
2362 
2363 		/* Pre-compute the checksum flags mask. */
2364 		ifp->if_csum_flags_tx = 0;
2365 		ifp->if_csum_flags_rx = 0;
2366 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) {
2367 			ifp->if_csum_flags_tx |= M_CSUM_IPv4;
2368 		}
2369 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) {
2370 			ifp->if_csum_flags_rx |= M_CSUM_IPv4;
2371 		}
2372 
2373 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) {
2374 			ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
2375 		}
2376 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) {
2377 			ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
2378 		}
2379 
2380 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) {
2381 			ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
2382 		}
2383 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) {
2384 			ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
2385 		}
2386 
2387 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) {
2388 			ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
2389 		}
2390 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) {
2391 			ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
2392 		}
2393 
2394 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) {
2395 			ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
2396 		}
2397 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) {
2398 			ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
2399 		}
2400 		if (ifp->if_flags & IFF_UP)
2401 			return ENETRESET;
2402 		return 0;
2403 	case SIOCSIFFLAGS:
2404 		ifr = data;
2405 		if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
2406 			s = splnet();
2407 			if_down(ifp);
2408 			splx(s);
2409 		}
2410 		if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
2411 			s = splnet();
2412 			if_up(ifp);
2413 			splx(s);
2414 		}
2415 		ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
2416 			(ifr->ifr_flags &~ IFF_CANTCHANGE);
2417 		break;
2418 	case SIOCGIFFLAGS:
2419 		ifr = data;
2420 		ifr->ifr_flags = ifp->if_flags;
2421 		break;
2422 
2423 	case SIOCGIFMETRIC:
2424 		ifr = data;
2425 		ifr->ifr_metric = ifp->if_metric;
2426 		break;
2427 
2428 	case SIOCGIFMTU:
2429 		ifr = data;
2430 		ifr->ifr_mtu = ifp->if_mtu;
2431 		break;
2432 
2433 	case SIOCGIFDLT:
2434 		ifr = data;
2435 		ifr->ifr_dlt = ifp->if_dlt;
2436 		break;
2437 
2438 	case SIOCGIFCAP:
2439 		ifcr = data;
2440 		ifcr->ifcr_capabilities = ifp->if_capabilities;
2441 		ifcr->ifcr_capenable = ifp->if_capenable;
2442 		break;
2443 
2444 	case SIOCSIFMETRIC:
2445 		ifr = data;
2446 		ifp->if_metric = ifr->ifr_metric;
2447 		break;
2448 
2449 	case SIOCGIFDATA:
2450 		ifdr = data;
2451 		ifdr->ifdr_data = ifp->if_data;
2452 		break;
2453 
2454 	case SIOCGIFINDEX:
2455 		ifr = data;
2456 		ifr->ifr_index = ifp->if_index;
2457 		break;
2458 
2459 	case SIOCZIFDATA:
2460 		ifdr = data;
2461 		ifdr->ifdr_data = ifp->if_data;
2462 		/*
2463 		 * Assumes that the volatile counters that can be
2464 		 * zero'ed are at the end of if_data.
2465 		 */
2466 		memset(&ifp->if_data.ifi_ipackets, 0, sizeof(ifp->if_data) -
2467 		    offsetof(struct if_data, ifi_ipackets));
2468 		/*
2469 		 * The memset() clears to the bottm of if_data. In the area,
2470 		 * if_lastchange is included. Please be careful if new entry
2471 		 * will be added into if_data or rewite this.
2472 		 *
2473 		 * And also, update if_lastchnage.
2474 		 */
2475 		getnanotime(&ifp->if_lastchange);
2476 		break;
2477 	case SIOCSIFMTU:
2478 		ifr = data;
2479 		if (ifp->if_mtu == ifr->ifr_mtu)
2480 			break;
2481 		ifp->if_mtu = ifr->ifr_mtu;
2482 		/*
2483 		 * If the link MTU changed, do network layer specific procedure.
2484 		 */
2485 #ifdef INET6
2486 		if (in6_present)
2487 			nd6_setmtu(ifp);
2488 #endif
2489 		return ENETRESET;
2490 	default:
2491 		return ENOTTY;
2492 	}
2493 	return 0;
2494 }
2495 
2496 int
ifaddrpref_ioctl(struct socket * so,u_long cmd,void * data,struct ifnet * ifp)2497 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
2498 {
2499 	struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
2500 	struct ifaddr *ifa;
2501 	const struct sockaddr *any, *sa;
2502 	union {
2503 		struct sockaddr sa;
2504 		struct sockaddr_storage ss;
2505 	} u, v;
2506 
2507 	switch (cmd) {
2508 	case SIOCSIFADDRPREF:
2509 		if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE,
2510 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
2511 		    NULL) != 0)
2512 			return EPERM;
2513 	case SIOCGIFADDRPREF:
2514 		break;
2515 	default:
2516 		return EOPNOTSUPP;
2517 	}
2518 
2519 	/* sanity checks */
2520 	if (data == NULL || ifp == NULL) {
2521 		panic("invalid argument to %s", __func__);
2522 		/*NOTREACHED*/
2523 	}
2524 
2525 	/* address must be specified on ADD and DELETE */
2526 	sa = sstocsa(&ifap->ifap_addr);
2527 	if (sa->sa_family != sofamily(so))
2528 		return EINVAL;
2529 	if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
2530 		return EINVAL;
2531 
2532 	sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
2533 
2534 	IFADDR_READER_FOREACH(ifa, ifp) {
2535 		if (ifa->ifa_addr->sa_family != sa->sa_family)
2536 			continue;
2537 		sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
2538 		if (sockaddr_cmp(&u.sa, &v.sa) == 0)
2539 			break;
2540 	}
2541 	if (ifa == NULL)
2542 		return EADDRNOTAVAIL;
2543 
2544 	switch (cmd) {
2545 	case SIOCSIFADDRPREF:
2546 		ifa->ifa_preference = ifap->ifap_preference;
2547 		return 0;
2548 	case SIOCGIFADDRPREF:
2549 		/* fill in the if_laddrreq structure */
2550 		(void)sockaddr_copy(sstosa(&ifap->ifap_addr),
2551 		    sizeof(ifap->ifap_addr), ifa->ifa_addr);
2552 		ifap->ifap_preference = ifa->ifa_preference;
2553 		return 0;
2554 	default:
2555 		return EOPNOTSUPP;
2556 	}
2557 }
2558 
2559 /*
2560  * Interface ioctls.
2561  */
2562 static int
doifioctl(struct socket * so,u_long cmd,void * data,struct lwp * l)2563 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
2564 {
2565 	struct ifnet *ifp;
2566 	struct ifreq *ifr;
2567 	int error = 0;
2568 #if defined(COMPAT_OSOCK) || defined(COMPAT_OIFREQ)
2569 	u_long ocmd = cmd;
2570 #endif
2571 	short oif_flags;
2572 #ifdef COMPAT_OIFREQ
2573 	struct ifreq ifrb;
2574 	struct oifreq *oifr = NULL;
2575 #endif
2576 	int r;
2577 	struct psref psref;
2578 	int bound;
2579 
2580 	switch (cmd) {
2581 #ifdef COMPAT_OIFREQ
2582 	case OSIOCGIFCONF:
2583 	case OOSIOCGIFCONF:
2584 		return compat_ifconf(cmd, data);
2585 #endif
2586 #ifdef COMPAT_OIFDATA
2587 	case OSIOCGIFDATA:
2588 	case OSIOCZIFDATA:
2589 		return compat_ifdatareq(l, cmd, data);
2590 #endif
2591 	case SIOCGIFCONF:
2592 		return ifconf(cmd, data);
2593 	case SIOCINITIFADDR:
2594 		return EPERM;
2595 	}
2596 
2597 #ifdef COMPAT_OIFREQ
2598 	cmd = compat_cvtcmd(cmd);
2599 	if (cmd != ocmd) {
2600 		oifr = data;
2601 		data = ifr = &ifrb;
2602 		ifreqo2n(oifr, ifr);
2603 	} else
2604 #endif
2605 		ifr = data;
2606 
2607 	switch (cmd) {
2608 	case SIOCIFCREATE:
2609 	case SIOCIFDESTROY:
2610 		bound = curlwp_bind();
2611 		if (l != NULL) {
2612 			ifp = if_get(ifr->ifr_name, &psref);
2613 			error = kauth_authorize_network(l->l_cred,
2614 			    KAUTH_NETWORK_INTERFACE,
2615 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
2616 			    (void *)cmd, NULL);
2617 			if (ifp != NULL)
2618 				if_put(ifp, &psref);
2619 			if (error != 0) {
2620 				curlwp_bindx(bound);
2621 				return error;
2622 			}
2623 		}
2624 		mutex_enter(&if_clone_mtx);
2625 		r = (cmd == SIOCIFCREATE) ?
2626 			if_clone_create(ifr->ifr_name) :
2627 			if_clone_destroy(ifr->ifr_name);
2628 		mutex_exit(&if_clone_mtx);
2629 		curlwp_bindx(bound);
2630 		return r;
2631 
2632 	case SIOCIFGCLONERS:
2633 		{
2634 			struct if_clonereq *req = (struct if_clonereq *)data;
2635 			return if_clone_list(req->ifcr_count, req->ifcr_buffer,
2636 			    &req->ifcr_total);
2637 		}
2638 	}
2639 
2640 	bound = curlwp_bind();
2641 	ifp = if_get(ifr->ifr_name, &psref);
2642 	if (ifp == NULL) {
2643 		curlwp_bindx(bound);
2644 		return ENXIO;
2645 	}
2646 
2647 	switch (cmd) {
2648 	case SIOCALIFADDR:
2649 	case SIOCDLIFADDR:
2650 	case SIOCSIFADDRPREF:
2651 	case SIOCSIFFLAGS:
2652 	case SIOCSIFCAP:
2653 	case SIOCSIFMETRIC:
2654 	case SIOCZIFDATA:
2655 	case SIOCSIFMTU:
2656 	case SIOCSIFPHYADDR:
2657 	case SIOCDIFPHYADDR:
2658 #ifdef INET6
2659 	case SIOCSIFPHYADDR_IN6:
2660 #endif
2661 	case SIOCSLIFPHYADDR:
2662 	case SIOCADDMULTI:
2663 	case SIOCDELMULTI:
2664 	case SIOCSIFMEDIA:
2665 	case SIOCSDRVSPEC:
2666 	case SIOCG80211:
2667 	case SIOCS80211:
2668 	case SIOCS80211NWID:
2669 	case SIOCS80211NWKEY:
2670 	case SIOCS80211POWER:
2671 	case SIOCS80211BSSID:
2672 	case SIOCS80211CHANNEL:
2673 	case SIOCSLINKSTR:
2674 		if (l != NULL) {
2675 			error = kauth_authorize_network(l->l_cred,
2676 			    KAUTH_NETWORK_INTERFACE,
2677 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
2678 			    (void *)cmd, NULL);
2679 			if (error != 0)
2680 				goto out;
2681 		}
2682 	}
2683 
2684 	oif_flags = ifp->if_flags;
2685 
2686 	mutex_enter(ifp->if_ioctl_lock);
2687 
2688 	error = (*ifp->if_ioctl)(ifp, cmd, data);
2689 	if (error != ENOTTY)
2690 		;
2691 	else if (so->so_proto == NULL)
2692 		error = EOPNOTSUPP;
2693 	else {
2694 #ifdef COMPAT_OSOCK
2695 		error = compat_ifioctl(so, ocmd, cmd, data, l);
2696 #else
2697 		error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
2698 		    cmd, data, ifp);
2699 #endif
2700 	}
2701 
2702 	if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
2703 		if ((ifp->if_flags & IFF_UP) != 0) {
2704 			int s = splnet();
2705 			if_up(ifp);
2706 			splx(s);
2707 		}
2708 	}
2709 #ifdef COMPAT_OIFREQ
2710 	if (cmd != ocmd)
2711 		ifreqn2o(oifr, ifr);
2712 #endif
2713 
2714 	mutex_exit(ifp->if_ioctl_lock);
2715 out:
2716 	if_put(ifp, &psref);
2717 	curlwp_bindx(bound);
2718 	return error;
2719 }
2720 
2721 /*
2722  * Return interface configuration
2723  * of system.  List may be used
2724  * in later ioctl's (above) to get
2725  * other information.
2726  *
2727  * Each record is a struct ifreq.  Before the addition of
2728  * sockaddr_storage, the API rule was that sockaddr flavors that did
2729  * not fit would extend beyond the struct ifreq, with the next struct
2730  * ifreq starting sa_len beyond the struct sockaddr.  Because the
2731  * union in struct ifreq includes struct sockaddr_storage, every kind
2732  * of sockaddr must fit.  Thus, there are no longer any overlength
2733  * records.
2734  *
2735  * Records are added to the user buffer if they fit, and ifc_len is
2736  * adjusted to the length that was written.  Thus, the user is only
2737  * assured of getting the complete list if ifc_len on return is at
2738  * least sizeof(struct ifreq) less than it was on entry.
2739  *
2740  * If the user buffer pointer is NULL, this routine copies no data and
2741  * returns the amount of space that would be needed.
2742  *
2743  * Invariants:
2744  * ifrp points to the next part of the user's buffer to be used.  If
2745  * ifrp != NULL, space holds the number of bytes remaining that we may
2746  * write at ifrp.  Otherwise, space holds the number of bytes that
2747  * would have been written had there been adequate space.
2748  */
2749 /*ARGSUSED*/
2750 static int
ifconf(u_long cmd,void * data)2751 ifconf(u_long cmd, void *data)
2752 {
2753 	struct ifconf *ifc = (struct ifconf *)data;
2754 	struct ifnet *ifp;
2755 	struct ifaddr *ifa;
2756 	struct ifreq ifr, *ifrp = NULL;
2757 	int space = 0, error = 0;
2758 	const int sz = (int)sizeof(struct ifreq);
2759 	const bool docopy = ifc->ifc_req != NULL;
2760 	int s;
2761 	int bound;
2762 	struct psref psref;
2763 
2764 	if (docopy) {
2765 		space = ifc->ifc_len;
2766 		ifrp = ifc->ifc_req;
2767 	}
2768 
2769 	bound = curlwp_bind();
2770 	s = pserialize_read_enter();
2771 	IFNET_READER_FOREACH(ifp) {
2772 		psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
2773 		pserialize_read_exit(s);
2774 
2775 		(void)strncpy(ifr.ifr_name, ifp->if_xname,
2776 		    sizeof(ifr.ifr_name));
2777 		if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
2778 			error = ENAMETOOLONG;
2779 			goto release_exit;
2780 		}
2781 		if (IFADDR_READER_EMPTY(ifp)) {
2782 			/* Interface with no addresses - send zero sockaddr. */
2783 			memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
2784 			if (!docopy) {
2785 				space += sz;
2786 				continue;
2787 			}
2788 			if (space >= sz) {
2789 				error = copyout(&ifr, ifrp, sz);
2790 				if (error != 0)
2791 					goto release_exit;
2792 				ifrp++;
2793 				space -= sz;
2794 			}
2795 		}
2796 
2797 		IFADDR_READER_FOREACH(ifa, ifp) {
2798 			struct sockaddr *sa = ifa->ifa_addr;
2799 			/* all sockaddrs must fit in sockaddr_storage */
2800 			KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
2801 
2802 			if (!docopy) {
2803 				space += sz;
2804 				continue;
2805 			}
2806 			memcpy(&ifr.ifr_space, sa, sa->sa_len);
2807 			if (space >= sz) {
2808 				error = copyout(&ifr, ifrp, sz);
2809 				if (error != 0)
2810 					goto release_exit;
2811 				ifrp++; space -= sz;
2812 			}
2813 		}
2814 
2815 		s = pserialize_read_enter();
2816 		psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
2817 	}
2818 	pserialize_read_exit(s);
2819 	curlwp_bindx(bound);
2820 
2821 	if (docopy) {
2822 		KASSERT(0 <= space && space <= ifc->ifc_len);
2823 		ifc->ifc_len -= space;
2824 	} else {
2825 		KASSERT(space >= 0);
2826 		ifc->ifc_len = space;
2827 	}
2828 	return (0);
2829 
2830 release_exit:
2831 	psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
2832 	curlwp_bindx(bound);
2833 	return error;
2834 }
2835 
2836 int
ifreq_setaddr(u_long cmd,struct ifreq * ifr,const struct sockaddr * sa)2837 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
2838 {
2839 	uint8_t len;
2840 #ifdef COMPAT_OIFREQ
2841 	struct ifreq ifrb;
2842 	struct oifreq *oifr = NULL;
2843 	u_long ocmd = cmd;
2844 	cmd = compat_cvtcmd(cmd);
2845 	if (cmd != ocmd) {
2846 		oifr = (struct oifreq *)(void *)ifr;
2847 		ifr = &ifrb;
2848 		ifreqo2n(oifr, ifr);
2849 		len = sizeof(oifr->ifr_addr);
2850 	} else
2851 #endif
2852 		len = sizeof(ifr->ifr_ifru.ifru_space);
2853 
2854 	if (len < sa->sa_len)
2855 		return EFBIG;
2856 
2857 	memset(&ifr->ifr_addr, 0, len);
2858 	sockaddr_copy(&ifr->ifr_addr, len, sa);
2859 
2860 #ifdef COMPAT_OIFREQ
2861 	if (cmd != ocmd)
2862 		ifreqn2o(oifr, ifr);
2863 #endif
2864 	return 0;
2865 }
2866 
2867 /*
2868  * wrapper function for the drivers which doesn't have if_transmit().
2869  */
2870 static int
if_transmit(struct ifnet * ifp,struct mbuf * m)2871 if_transmit(struct ifnet *ifp, struct mbuf *m)
2872 {
2873 	int s, error;
2874 
2875 	s = splnet();
2876 
2877 	IFQ_ENQUEUE(&ifp->if_snd, m, error);
2878 	if (error != 0) {
2879 		/* mbuf is already freed */
2880 		goto out;
2881 	}
2882 
2883 	ifp->if_obytes += m->m_pkthdr.len;;
2884 	if (m->m_flags & M_MCAST)
2885 		ifp->if_omcasts++;
2886 
2887 	if ((ifp->if_flags & IFF_OACTIVE) == 0)
2888 		if_start_lock(ifp);
2889 out:
2890 	splx(s);
2891 
2892 	return error;
2893 }
2894 
2895 int
if_transmit_lock(struct ifnet * ifp,struct mbuf * m)2896 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
2897 {
2898 	int error;
2899 
2900 #ifdef ALTQ
2901 	KERNEL_LOCK(1, NULL);
2902 	if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
2903 		error = if_transmit(ifp, m);
2904 		KERNEL_UNLOCK_ONE(NULL);
2905 	} else {
2906 		KERNEL_UNLOCK_ONE(NULL);
2907 		error = (*ifp->if_transmit)(ifp, m);
2908 	}
2909 #else /* !ALTQ */
2910 	error = (*ifp->if_transmit)(ifp, m);
2911 #endif /* !ALTQ */
2912 
2913 	return error;
2914 }
2915 
2916 /*
2917  * Queue message on interface, and start output if interface
2918  * not yet active.
2919  */
2920 int
ifq_enqueue(struct ifnet * ifp,struct mbuf * m)2921 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
2922 {
2923 
2924 	return if_transmit_lock(ifp, m);
2925 }
2926 
2927 /*
2928  * Queue message on interface, possibly using a second fast queue
2929  */
2930 int
ifq_enqueue2(struct ifnet * ifp,struct ifqueue * ifq,struct mbuf * m)2931 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
2932 {
2933 	int error = 0;
2934 
2935 	if (ifq != NULL
2936 #ifdef ALTQ
2937 	    && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
2938 #endif
2939 	    ) {
2940 		if (IF_QFULL(ifq)) {
2941 			IF_DROP(&ifp->if_snd);
2942 			m_freem(m);
2943 			if (error == 0)
2944 				error = ENOBUFS;
2945 		} else
2946 			IF_ENQUEUE(ifq, m);
2947 	} else
2948 		IFQ_ENQUEUE(&ifp->if_snd, m, error);
2949 	if (error != 0) {
2950 		++ifp->if_oerrors;
2951 		return error;
2952 	}
2953 	return 0;
2954 }
2955 
2956 int
if_addr_init(ifnet_t * ifp,struct ifaddr * ifa,const bool src)2957 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
2958 {
2959 	int rc;
2960 
2961 	if (ifp->if_initaddr != NULL)
2962 		rc = (*ifp->if_initaddr)(ifp, ifa, src);
2963 	else if (src ||
2964 		/* FIXME: may not hold if_ioctl_lock */
2965 	         (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
2966 		rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
2967 
2968 	return rc;
2969 }
2970 
2971 int
if_do_dad(struct ifnet * ifp)2972 if_do_dad(struct ifnet *ifp)
2973 {
2974 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2975 		return 0;
2976 
2977 	switch (ifp->if_type) {
2978 	case IFT_FAITH:
2979 		/*
2980 		 * These interfaces do not have the IFF_LOOPBACK flag,
2981 		 * but loop packets back.  We do not have to do DAD on such
2982 		 * interfaces.  We should even omit it, because loop-backed
2983 		 * responses would confuse the DAD procedure.
2984 		 */
2985 		return 0;
2986 	default:
2987 		/*
2988 		 * Our DAD routine requires the interface up and running.
2989 		 * However, some interfaces can be up before the RUNNING
2990 		 * status.  Additionaly, users may try to assign addresses
2991 		 * before the interface becomes up (or running).
2992 		 * We simply skip DAD in such a case as a work around.
2993 		 * XXX: we should rather mark "tentative" on such addresses,
2994 		 * and do DAD after the interface becomes ready.
2995 		 */
2996 		if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
2997 		    (IFF_UP|IFF_RUNNING))
2998 			return 0;
2999 
3000 		return 1;
3001 	}
3002 }
3003 
3004 int
if_flags_set(ifnet_t * ifp,const short flags)3005 if_flags_set(ifnet_t *ifp, const short flags)
3006 {
3007 	int rc;
3008 
3009 	if (ifp->if_setflags != NULL)
3010 		rc = (*ifp->if_setflags)(ifp, flags);
3011 	else {
3012 		short cantflags, chgdflags;
3013 		struct ifreq ifr;
3014 
3015 		chgdflags = ifp->if_flags ^ flags;
3016 		cantflags = chgdflags & IFF_CANTCHANGE;
3017 
3018 		if (cantflags != 0)
3019 			ifp->if_flags ^= cantflags;
3020 
3021                 /* Traditionally, we do not call if_ioctl after
3022                  * setting/clearing only IFF_PROMISC if the interface
3023                  * isn't IFF_UP.  Uphold that tradition.
3024 		 */
3025 		if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
3026 			return 0;
3027 
3028 		memset(&ifr, 0, sizeof(ifr));
3029 
3030 		ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
3031 		/* FIXME: may not hold if_ioctl_lock */
3032 		rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
3033 
3034 		if (rc != 0 && cantflags != 0)
3035 			ifp->if_flags ^= cantflags;
3036 	}
3037 
3038 	return rc;
3039 }
3040 
3041 int
if_mcast_op(ifnet_t * ifp,const unsigned long cmd,const struct sockaddr * sa)3042 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
3043 {
3044 	int rc;
3045 	struct ifreq ifr;
3046 
3047 	if (ifp->if_mcastop != NULL)
3048 		rc = (*ifp->if_mcastop)(ifp, cmd, sa);
3049 	else {
3050 		ifreq_setaddr(cmd, &ifr, sa);
3051 		rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
3052 	}
3053 
3054 	return rc;
3055 }
3056 
3057 static void
sysctl_sndq_setup(struct sysctllog ** clog,const char * ifname,struct ifaltq * ifq)3058 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
3059     struct ifaltq *ifq)
3060 {
3061 	const struct sysctlnode *cnode, *rnode;
3062 
3063 	if (sysctl_createv(clog, 0, NULL, &rnode,
3064 		       CTLFLAG_PERMANENT,
3065 		       CTLTYPE_NODE, "interfaces",
3066 		       SYSCTL_DESCR("Per-interface controls"),
3067 		       NULL, 0, NULL, 0,
3068 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
3069 		goto bad;
3070 
3071 	if (sysctl_createv(clog, 0, &rnode, &rnode,
3072 		       CTLFLAG_PERMANENT,
3073 		       CTLTYPE_NODE, ifname,
3074 		       SYSCTL_DESCR("Interface controls"),
3075 		       NULL, 0, NULL, 0,
3076 		       CTL_CREATE, CTL_EOL) != 0)
3077 		goto bad;
3078 
3079 	if (sysctl_createv(clog, 0, &rnode, &rnode,
3080 		       CTLFLAG_PERMANENT,
3081 		       CTLTYPE_NODE, "sndq",
3082 		       SYSCTL_DESCR("Interface output queue controls"),
3083 		       NULL, 0, NULL, 0,
3084 		       CTL_CREATE, CTL_EOL) != 0)
3085 		goto bad;
3086 
3087 	if (sysctl_createv(clog, 0, &rnode, &cnode,
3088 		       CTLFLAG_PERMANENT,
3089 		       CTLTYPE_INT, "len",
3090 		       SYSCTL_DESCR("Current output queue length"),
3091 		       NULL, 0, &ifq->ifq_len, 0,
3092 		       CTL_CREATE, CTL_EOL) != 0)
3093 		goto bad;
3094 
3095 	if (sysctl_createv(clog, 0, &rnode, &cnode,
3096 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3097 		       CTLTYPE_INT, "maxlen",
3098 		       SYSCTL_DESCR("Maximum allowed output queue length"),
3099 		       NULL, 0, &ifq->ifq_maxlen, 0,
3100 		       CTL_CREATE, CTL_EOL) != 0)
3101 		goto bad;
3102 
3103 	if (sysctl_createv(clog, 0, &rnode, &cnode,
3104 		       CTLFLAG_PERMANENT,
3105 		       CTLTYPE_INT, "drops",
3106 		       SYSCTL_DESCR("Packets dropped due to full output queue"),
3107 		       NULL, 0, &ifq->ifq_drops, 0,
3108 		       CTL_CREATE, CTL_EOL) != 0)
3109 		goto bad;
3110 
3111 	return;
3112 bad:
3113 	printf("%s: could not attach sysctl nodes\n", ifname);
3114 	return;
3115 }
3116 
3117 #if defined(INET) || defined(INET6)
3118 
3119 #define	SYSCTL_NET_PKTQ(q, cn, c)					\
3120 	static int							\
3121 	sysctl_net_##q##_##cn(SYSCTLFN_ARGS)				\
3122 	{								\
3123 		return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c);	\
3124 	}
3125 
3126 #if defined(INET)
3127 static int
sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)3128 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
3129 {
3130 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
3131 }
SYSCTL_NET_PKTQ(ip_pktq,items,PKTQ_NITEMS)3132 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
3133 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
3134 #endif
3135 
3136 #if defined(INET6)
3137 static int
3138 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
3139 {
3140 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
3141 }
SYSCTL_NET_PKTQ(ip6_pktq,items,PKTQ_NITEMS)3142 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
3143 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
3144 #endif
3145 
3146 static void
3147 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
3148 {
3149 	sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
3150 	const char *pfname = NULL, *ipname = NULL;
3151 	int ipn = 0, qid = 0;
3152 
3153 	switch (pf) {
3154 #if defined(INET)
3155 	case PF_INET:
3156 		len_func = sysctl_net_ip_pktq_items;
3157 		maxlen_func = sysctl_net_ip_pktq_maxlen;
3158 		drops_func = sysctl_net_ip_pktq_drops;
3159 		pfname = "inet", ipn = IPPROTO_IP;
3160 		ipname = "ip", qid = IPCTL_IFQ;
3161 		break;
3162 #endif
3163 #if defined(INET6)
3164 	case PF_INET6:
3165 		len_func = sysctl_net_ip6_pktq_items;
3166 		maxlen_func = sysctl_net_ip6_pktq_maxlen;
3167 		drops_func = sysctl_net_ip6_pktq_drops;
3168 		pfname = "inet6", ipn = IPPROTO_IPV6;
3169 		ipname = "ip6", qid = IPV6CTL_IFQ;
3170 		break;
3171 #endif
3172 	default:
3173 		KASSERT(false);
3174 	}
3175 
3176 	sysctl_createv(clog, 0, NULL, NULL,
3177 		       CTLFLAG_PERMANENT,
3178 		       CTLTYPE_NODE, pfname, NULL,
3179 		       NULL, 0, NULL, 0,
3180 		       CTL_NET, pf, CTL_EOL);
3181 	sysctl_createv(clog, 0, NULL, NULL,
3182 		       CTLFLAG_PERMANENT,
3183 		       CTLTYPE_NODE, ipname, NULL,
3184 		       NULL, 0, NULL, 0,
3185 		       CTL_NET, pf, ipn, CTL_EOL);
3186 	sysctl_createv(clog, 0, NULL, NULL,
3187 		       CTLFLAG_PERMANENT,
3188 		       CTLTYPE_NODE, "ifq",
3189 		       SYSCTL_DESCR("Protocol input queue controls"),
3190 		       NULL, 0, NULL, 0,
3191 		       CTL_NET, pf, ipn, qid, CTL_EOL);
3192 
3193 	sysctl_createv(clog, 0, NULL, NULL,
3194 		       CTLFLAG_PERMANENT,
3195 		       CTLTYPE_INT, "len",
3196 		       SYSCTL_DESCR("Current input queue length"),
3197 		       len_func, 0, NULL, 0,
3198 		       CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
3199 	sysctl_createv(clog, 0, NULL, NULL,
3200 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
3201 		       CTLTYPE_INT, "maxlen",
3202 		       SYSCTL_DESCR("Maximum allowed input queue length"),
3203 		       maxlen_func, 0, NULL, 0,
3204 		       CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
3205 	sysctl_createv(clog, 0, NULL, NULL,
3206 		       CTLFLAG_PERMANENT,
3207 		       CTLTYPE_INT, "drops",
3208 		       SYSCTL_DESCR("Packets dropped due to full input queue"),
3209 		       drops_func, 0, NULL, 0,
3210 		       CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
3211 }
3212 #endif /* INET || INET6 */
3213 
3214 static int
if_sdl_sysctl(SYSCTLFN_ARGS)3215 if_sdl_sysctl(SYSCTLFN_ARGS)
3216 {
3217 	struct ifnet *ifp;
3218 	const struct sockaddr_dl *sdl;
3219 	struct psref psref;
3220 	int error = 0;
3221 	int bound;
3222 
3223 	if (namelen != 1)
3224 		return EINVAL;
3225 
3226 	bound = curlwp_bind();
3227 	ifp = if_get_byindex(name[0], &psref);
3228 	if (ifp == NULL) {
3229 		error = ENODEV;
3230 		goto out0;
3231 	}
3232 
3233 	sdl = ifp->if_sadl;
3234 	if (sdl == NULL) {
3235 		*oldlenp = 0;
3236 		goto out1;
3237 	}
3238 
3239 	if (oldp == NULL) {
3240 		*oldlenp = sdl->sdl_alen;
3241 		goto out1;
3242 	}
3243 
3244 	if (*oldlenp >= sdl->sdl_alen)
3245 		*oldlenp = sdl->sdl_alen;
3246 	error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
3247 out1:
3248 	if_put(ifp, &psref);
3249 out0:
3250 	curlwp_bindx(bound);
3251 	return error;
3252 }
3253 
3254 SYSCTL_SETUP(sysctl_net_sdl_setup, "sysctl net.sdl subtree setup")
3255 {
3256 	const struct sysctlnode *rnode = NULL;
3257 
3258 	sysctl_createv(clog, 0, NULL, &rnode,
3259 		       CTLFLAG_PERMANENT,
3260 		       CTLTYPE_NODE, "sdl",
3261 		       SYSCTL_DESCR("Get active link-layer address"),
3262 		       if_sdl_sysctl, 0, NULL, 0,
3263 		       CTL_NET, CTL_CREATE, CTL_EOL);
3264 }
3265