1 //===- Chunks.h -------------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #ifndef LLD_COFF_CHUNKS_H
10 #define LLD_COFF_CHUNKS_H
11
12 #include "Config.h"
13 #include "InputFiles.h"
14 #include "lld/Common/LLVM.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/PointerIntPair.h"
17 #include "llvm/ADT/iterator.h"
18 #include "llvm/ADT/iterator_range.h"
19 #include "llvm/MC/StringTableBuilder.h"
20 #include "llvm/Object/COFF.h"
21 #include <utility>
22 #include <vector>
23
24 namespace lld::coff {
25
26 using llvm::COFF::ImportDirectoryTableEntry;
27 using llvm::object::COFFSymbolRef;
28 using llvm::object::SectionRef;
29 using llvm::object::coff_relocation;
30 using llvm::object::coff_section;
31
32 class Baserel;
33 class Defined;
34 class DefinedImportData;
35 class DefinedRegular;
36 class ObjFile;
37 class OutputSection;
38 class RuntimePseudoReloc;
39 class Symbol;
40
41 // Mask for permissions (discardable, writable, readable, executable, etc).
42 const uint32_t permMask = 0xFE000000;
43
44 // Mask for section types (code, data, bss).
45 const uint32_t typeMask = 0x000000E0;
46
47 // The log base 2 of the largest section alignment, which is log2(8192), or 13.
48 enum : unsigned { Log2MaxSectionAlignment = 13 };
49
50 // A Chunk represents a chunk of data that will occupy space in the
51 // output (if the resolver chose that). It may or may not be backed by
52 // a section of an input file. It could be linker-created data, or
53 // doesn't even have actual data (if common or bss).
54 class Chunk {
55 public:
56 enum Kind : uint8_t { SectionKind, OtherKind, ImportThunkKind };
kind()57 Kind kind() const { return chunkKind; }
58
59 // Returns the size of this chunk (even if this is a common or BSS.)
60 size_t getSize() const;
61
62 // Returns chunk alignment in power of two form. Value values are powers of
63 // two from 1 to 8192.
getAlignment()64 uint32_t getAlignment() const { return 1U << p2Align; }
65
66 // Update the chunk section alignment measured in bytes. Internally alignment
67 // is stored in log2.
setAlignment(uint32_t align)68 void setAlignment(uint32_t align) {
69 // Treat zero byte alignment as 1 byte alignment.
70 align = align ? align : 1;
71 assert(llvm::isPowerOf2_32(align) && "alignment is not a power of 2");
72 p2Align = llvm::Log2_32(align);
73 assert(p2Align <= Log2MaxSectionAlignment &&
74 "impossible requested alignment");
75 }
76
77 // Write this chunk to a mmap'ed file, assuming Buf is pointing to
78 // beginning of the file. Because this function may use RVA values
79 // of other chunks for relocations, you need to set them properly
80 // before calling this function.
81 void writeTo(uint8_t *buf) const;
82
83 // The writer sets and uses the addresses. In practice, PE images cannot be
84 // larger than 2GB. Chunks are always laid as part of the image, so Chunk RVAs
85 // can be stored with 32 bits.
getRVA()86 uint32_t getRVA() const { return rva; }
setRVA(uint64_t v)87 void setRVA(uint64_t v) {
88 // This may truncate. The writer checks for overflow later.
89 rva = (uint32_t)v;
90 }
91
92 // Returns readable/writable/executable bits.
93 uint32_t getOutputCharacteristics() const;
94
95 // Returns the section name if this is a section chunk.
96 // It is illegal to call this function on non-section chunks.
97 StringRef getSectionName() const;
98
99 // An output section has pointers to chunks in the section, and each
100 // chunk has a back pointer to an output section.
setOutputSectionIdx(uint16_t o)101 void setOutputSectionIdx(uint16_t o) { osidx = o; }
getOutputSectionIdx()102 uint16_t getOutputSectionIdx() const { return osidx; }
103
104 // Windows-specific.
105 // Collect all locations that contain absolute addresses for base relocations.
106 void getBaserels(std::vector<Baserel> *res);
107
108 // Returns a human-readable name of this chunk. Chunks are unnamed chunks of
109 // bytes, so this is used only for logging or debugging.
110 StringRef getDebugName() const;
111
112 // Return true if this file has the hotpatch flag set to true in the
113 // S_COMPILE3 record in codeview debug info. Also returns true for some thunks
114 // synthesized by the linker.
115 bool isHotPatchable() const;
116
117 protected:
chunkKind(k)118 Chunk(Kind k = OtherKind) : chunkKind(k), hasData(true), p2Align(0) {}
119
120 const Kind chunkKind;
121
122 public:
123 // Returns true if this has non-zero data. BSS chunks return
124 // false. If false is returned, the space occupied by this chunk
125 // will be filled with zeros. Corresponds to the
126 // IMAGE_SCN_CNT_UNINITIALIZED_DATA section characteristic bit.
127 uint8_t hasData : 1;
128
129 public:
130 // The alignment of this chunk, stored in log2 form. The writer uses the
131 // value.
132 uint8_t p2Align : 7;
133
134 // The output section index for this chunk. The first valid section number is
135 // one.
136 uint16_t osidx = 0;
137
138 // The RVA of this chunk in the output. The writer sets a value.
139 uint32_t rva = 0;
140 };
141
142 class NonSectionChunk : public Chunk {
143 public:
144 virtual ~NonSectionChunk() = default;
145
146 // Returns the size of this chunk (even if this is a common or BSS.)
147 virtual size_t getSize() const = 0;
148
getOutputCharacteristics()149 virtual uint32_t getOutputCharacteristics() const { return 0; }
150
151 // Write this chunk to a mmap'ed file, assuming Buf is pointing to
152 // beginning of the file. Because this function may use RVA values
153 // of other chunks for relocations, you need to set them properly
154 // before calling this function.
writeTo(uint8_t * buf)155 virtual void writeTo(uint8_t *buf) const {}
156
157 // Returns the section name if this is a section chunk.
158 // It is illegal to call this function on non-section chunks.
getSectionName()159 virtual StringRef getSectionName() const {
160 llvm_unreachable("unimplemented getSectionName");
161 }
162
163 // Windows-specific.
164 // Collect all locations that contain absolute addresses for base relocations.
getBaserels(std::vector<Baserel> * res)165 virtual void getBaserels(std::vector<Baserel> *res) {}
166
167 // Returns a human-readable name of this chunk. Chunks are unnamed chunks of
168 // bytes, so this is used only for logging or debugging.
getDebugName()169 virtual StringRef getDebugName() const { return ""; }
170
classof(const Chunk * c)171 static bool classof(const Chunk *c) { return c->kind() != SectionKind; }
172
173 protected:
Chunk(k)174 NonSectionChunk(Kind k = OtherKind) : Chunk(k) {}
175 };
176
177 // MinGW specific; information about one individual location in the image
178 // that needs to be fixed up at runtime after loading. This represents
179 // one individual element in the PseudoRelocTableChunk table.
180 class RuntimePseudoReloc {
181 public:
RuntimePseudoReloc(Defined * sym,SectionChunk * target,uint32_t targetOffset,int flags)182 RuntimePseudoReloc(Defined *sym, SectionChunk *target, uint32_t targetOffset,
183 int flags)
184 : sym(sym), target(target), targetOffset(targetOffset), flags(flags) {}
185
186 Defined *sym;
187 SectionChunk *target;
188 uint32_t targetOffset;
189 // The Flags field contains the size of the relocation, in bits. No other
190 // flags are currently defined.
191 int flags;
192 };
193
194 // A chunk corresponding a section of an input file.
195 class SectionChunk final : public Chunk {
196 // Identical COMDAT Folding feature accesses section internal data.
197 friend class ICF;
198
199 public:
200 class symbol_iterator : public llvm::iterator_adaptor_base<
201 symbol_iterator, const coff_relocation *,
202 std::random_access_iterator_tag, Symbol *> {
203 friend SectionChunk;
204
205 ObjFile *file;
206
symbol_iterator(ObjFile * file,const coff_relocation * i)207 symbol_iterator(ObjFile *file, const coff_relocation *i)
208 : symbol_iterator::iterator_adaptor_base(i), file(file) {}
209
210 public:
211 symbol_iterator() = default;
212
213 Symbol *operator*() const { return file->getSymbol(I->SymbolTableIndex); }
214 };
215
216 SectionChunk(ObjFile *file, const coff_section *header);
classof(const Chunk * c)217 static bool classof(const Chunk *c) { return c->kind() == SectionKind; }
getSize()218 size_t getSize() const { return header->SizeOfRawData; }
219 ArrayRef<uint8_t> getContents() const;
220 void writeTo(uint8_t *buf) const;
221
222 // Defend against unsorted relocations. This may be overly conservative.
223 void sortRelocations();
224
225 // Write and relocate a portion of the section. This is intended to be called
226 // in a loop. Relocations must be sorted first.
227 void writeAndRelocateSubsection(ArrayRef<uint8_t> sec,
228 ArrayRef<uint8_t> subsec,
229 uint32_t &nextRelocIndex, uint8_t *buf) const;
230
getOutputCharacteristics()231 uint32_t getOutputCharacteristics() const {
232 return header->Characteristics & (permMask | typeMask);
233 }
getSectionName()234 StringRef getSectionName() const {
235 return StringRef(sectionNameData, sectionNameSize);
236 }
237 void getBaserels(std::vector<Baserel> *res);
238 bool isCOMDAT() const;
239 void applyRelocation(uint8_t *off, const coff_relocation &rel) const;
240 void applyRelX64(uint8_t *off, uint16_t type, OutputSection *os, uint64_t s,
241 uint64_t p, uint64_t imageBase) const;
242 void applyRelX86(uint8_t *off, uint16_t type, OutputSection *os, uint64_t s,
243 uint64_t p, uint64_t imageBase) const;
244 void applyRelARM(uint8_t *off, uint16_t type, OutputSection *os, uint64_t s,
245 uint64_t p, uint64_t imageBase) const;
246 void applyRelARM64(uint8_t *off, uint16_t type, OutputSection *os, uint64_t s,
247 uint64_t p, uint64_t imageBase) const;
248
249 void getRuntimePseudoRelocs(std::vector<RuntimePseudoReloc> &res);
250
251 // Called if the garbage collector decides to not include this chunk
252 // in a final output. It's supposed to print out a log message to stdout.
253 void printDiscardedMessage() const;
254
255 // Adds COMDAT associative sections to this COMDAT section. A chunk
256 // and its children are treated as a group by the garbage collector.
257 void addAssociative(SectionChunk *child);
258
259 StringRef getDebugName() const;
260
261 // True if this is a codeview debug info chunk. These will not be laid out in
262 // the image. Instead they will end up in the PDB, if one is requested.
isCodeView()263 bool isCodeView() const {
264 return getSectionName() == ".debug" || getSectionName().startswith(".debug$");
265 }
266
267 // True if this is a DWARF debug info or exception handling chunk.
isDWARF()268 bool isDWARF() const {
269 return getSectionName().startswith(".debug_") || getSectionName() == ".eh_frame";
270 }
271
272 // Allow iteration over the bodies of this chunk's relocated symbols.
symbols()273 llvm::iterator_range<symbol_iterator> symbols() const {
274 return llvm::make_range(symbol_iterator(file, relocsData),
275 symbol_iterator(file, relocsData + relocsSize));
276 }
277
getRelocs()278 ArrayRef<coff_relocation> getRelocs() const {
279 return llvm::ArrayRef(relocsData, relocsSize);
280 }
281
282 // Reloc setter used by ARM range extension thunk insertion.
setRelocs(ArrayRef<coff_relocation> newRelocs)283 void setRelocs(ArrayRef<coff_relocation> newRelocs) {
284 relocsData = newRelocs.data();
285 relocsSize = newRelocs.size();
286 assert(relocsSize == newRelocs.size() && "reloc size truncation");
287 }
288
289 // Single linked list iterator for associated comdat children.
290 class AssociatedIterator
291 : public llvm::iterator_facade_base<
292 AssociatedIterator, std::forward_iterator_tag, SectionChunk> {
293 public:
294 AssociatedIterator() = default;
AssociatedIterator(SectionChunk * head)295 AssociatedIterator(SectionChunk *head) : cur(head) {}
296 bool operator==(const AssociatedIterator &r) const { return cur == r.cur; }
297 // FIXME: Wrong const-ness, but it makes filter ranges work.
298 SectionChunk &operator*() const { return *cur; }
299 SectionChunk &operator*() { return *cur; }
300 AssociatedIterator &operator++() {
301 cur = cur->assocChildren;
302 return *this;
303 }
304
305 private:
306 SectionChunk *cur = nullptr;
307 };
308
309 // Allow iteration over the associated child chunks for this section.
children()310 llvm::iterator_range<AssociatedIterator> children() const {
311 // Associated sections do not have children. The assocChildren field is
312 // part of the parent's list of children.
313 bool isAssoc = selection == llvm::COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE;
314 return llvm::make_range(
315 AssociatedIterator(isAssoc ? nullptr : assocChildren),
316 AssociatedIterator(nullptr));
317 }
318
319 // The section ID this chunk belongs to in its Obj.
320 uint32_t getSectionNumber() const;
321
322 ArrayRef<uint8_t> consumeDebugMagic();
323
324 static ArrayRef<uint8_t> consumeDebugMagic(ArrayRef<uint8_t> data,
325 StringRef sectionName);
326
327 static SectionChunk *findByName(ArrayRef<SectionChunk *> sections,
328 StringRef name);
329
330 // The file that this chunk was created from.
331 ObjFile *file;
332
333 // Pointer to the COFF section header in the input file.
334 const coff_section *header;
335
336 // The COMDAT leader symbol if this is a COMDAT chunk.
337 DefinedRegular *sym = nullptr;
338
339 // The CRC of the contents as described in the COFF spec 4.5.5.
340 // Auxiliary Format 5: Section Definitions. Used for ICF.
341 uint32_t checksum = 0;
342
343 // Used by the garbage collector.
344 bool live;
345
346 // Whether this section needs to be kept distinct from other sections during
347 // ICF. This is set by the driver using address-significance tables.
348 bool keepUnique = false;
349
350 // The COMDAT selection if this is a COMDAT chunk.
351 llvm::COFF::COMDATType selection = (llvm::COFF::COMDATType)0;
352
353 // A pointer pointing to a replacement for this chunk.
354 // Initially it points to "this" object. If this chunk is merged
355 // with other chunk by ICF, it points to another chunk,
356 // and this chunk is considered as dead.
357 SectionChunk *repl;
358
359 private:
360 SectionChunk *assocChildren = nullptr;
361
362 // Used for ICF (Identical COMDAT Folding)
363 void replace(SectionChunk *other);
364 uint32_t eqClass[2] = {0, 0};
365
366 // Relocations for this section. Size is stored below.
367 const coff_relocation *relocsData;
368
369 // Section name string. Size is stored below.
370 const char *sectionNameData;
371
372 uint32_t relocsSize = 0;
373 uint32_t sectionNameSize = 0;
374 };
375
376 // Inline methods to implement faux-virtual dispatch for SectionChunk.
377
getSize()378 inline size_t Chunk::getSize() const {
379 if (isa<SectionChunk>(this))
380 return static_cast<const SectionChunk *>(this)->getSize();
381 else
382 return static_cast<const NonSectionChunk *>(this)->getSize();
383 }
384
getOutputCharacteristics()385 inline uint32_t Chunk::getOutputCharacteristics() const {
386 if (isa<SectionChunk>(this))
387 return static_cast<const SectionChunk *>(this)->getOutputCharacteristics();
388 else
389 return static_cast<const NonSectionChunk *>(this)
390 ->getOutputCharacteristics();
391 }
392
writeTo(uint8_t * buf)393 inline void Chunk::writeTo(uint8_t *buf) const {
394 if (isa<SectionChunk>(this))
395 static_cast<const SectionChunk *>(this)->writeTo(buf);
396 else
397 static_cast<const NonSectionChunk *>(this)->writeTo(buf);
398 }
399
getSectionName()400 inline StringRef Chunk::getSectionName() const {
401 if (isa<SectionChunk>(this))
402 return static_cast<const SectionChunk *>(this)->getSectionName();
403 else
404 return static_cast<const NonSectionChunk *>(this)->getSectionName();
405 }
406
getBaserels(std::vector<Baserel> * res)407 inline void Chunk::getBaserels(std::vector<Baserel> *res) {
408 if (isa<SectionChunk>(this))
409 static_cast<SectionChunk *>(this)->getBaserels(res);
410 else
411 static_cast<NonSectionChunk *>(this)->getBaserels(res);
412 }
413
getDebugName()414 inline StringRef Chunk::getDebugName() const {
415 if (isa<SectionChunk>(this))
416 return static_cast<const SectionChunk *>(this)->getDebugName();
417 else
418 return static_cast<const NonSectionChunk *>(this)->getDebugName();
419 }
420
421 // This class is used to implement an lld-specific feature (not implemented in
422 // MSVC) that minimizes the output size by finding string literals sharing tail
423 // parts and merging them.
424 //
425 // If string tail merging is enabled and a section is identified as containing a
426 // string literal, it is added to a MergeChunk with an appropriate alignment.
427 // The MergeChunk then tail merges the strings using the StringTableBuilder
428 // class and assigns RVAs and section offsets to each of the member chunks based
429 // on the offsets assigned by the StringTableBuilder.
430 class MergeChunk : public NonSectionChunk {
431 public:
432 MergeChunk(uint32_t alignment);
433 static void addSection(COFFLinkerContext &ctx, SectionChunk *c);
434 void finalizeContents();
435 void assignSubsectionRVAs();
436
437 uint32_t getOutputCharacteristics() const override;
getSectionName()438 StringRef getSectionName() const override { return ".rdata"; }
439 size_t getSize() const override;
440 void writeTo(uint8_t *buf) const override;
441
442 std::vector<SectionChunk *> sections;
443
444 private:
445 llvm::StringTableBuilder builder;
446 bool finalized = false;
447 };
448
449 // A chunk for common symbols. Common chunks don't have actual data.
450 class CommonChunk : public NonSectionChunk {
451 public:
452 CommonChunk(const COFFSymbolRef sym);
getSize()453 size_t getSize() const override { return sym.getValue(); }
454 uint32_t getOutputCharacteristics() const override;
getSectionName()455 StringRef getSectionName() const override { return ".bss"; }
456
457 private:
458 const COFFSymbolRef sym;
459 };
460
461 // A chunk for linker-created strings.
462 class StringChunk : public NonSectionChunk {
463 public:
StringChunk(StringRef s)464 explicit StringChunk(StringRef s) : str(s) {}
getSize()465 size_t getSize() const override { return str.size() + 1; }
466 void writeTo(uint8_t *buf) const override;
467
468 private:
469 StringRef str;
470 };
471
472 static const uint8_t importThunkX86[] = {
473 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // JMP *0x0
474 };
475
476 static const uint8_t importThunkARM[] = {
477 0x40, 0xf2, 0x00, 0x0c, // mov.w ip, #0
478 0xc0, 0xf2, 0x00, 0x0c, // mov.t ip, #0
479 0xdc, 0xf8, 0x00, 0xf0, // ldr.w pc, [ip]
480 };
481
482 static const uint8_t importThunkARM64[] = {
483 0x10, 0x00, 0x00, 0x90, // adrp x16, #0
484 0x10, 0x02, 0x40, 0xf9, // ldr x16, [x16]
485 0x00, 0x02, 0x1f, 0xd6, // br x16
486 };
487
488 // Windows-specific.
489 // A chunk for DLL import jump table entry. In a final output, its
490 // contents will be a JMP instruction to some __imp_ symbol.
491 class ImportThunkChunk : public NonSectionChunk {
492 public:
ImportThunkChunk(COFFLinkerContext & ctx,Defined * s)493 ImportThunkChunk(COFFLinkerContext &ctx, Defined *s)
494 : NonSectionChunk(ImportThunkKind), impSymbol(s), ctx(ctx) {}
classof(const Chunk * c)495 static bool classof(const Chunk *c) { return c->kind() == ImportThunkKind; }
496
497 protected:
498 Defined *impSymbol;
499 COFFLinkerContext &ctx;
500 };
501
502 class ImportThunkChunkX64 : public ImportThunkChunk {
503 public:
504 explicit ImportThunkChunkX64(COFFLinkerContext &ctx, Defined *s);
getSize()505 size_t getSize() const override { return sizeof(importThunkX86); }
506 void writeTo(uint8_t *buf) const override;
507 };
508
509 class ImportThunkChunkX86 : public ImportThunkChunk {
510 public:
ImportThunkChunkX86(COFFLinkerContext & ctx,Defined * s)511 explicit ImportThunkChunkX86(COFFLinkerContext &ctx, Defined *s)
512 : ImportThunkChunk(ctx, s) {}
getSize()513 size_t getSize() const override { return sizeof(importThunkX86); }
514 void getBaserels(std::vector<Baserel> *res) override;
515 void writeTo(uint8_t *buf) const override;
516 };
517
518 class ImportThunkChunkARM : public ImportThunkChunk {
519 public:
ImportThunkChunkARM(COFFLinkerContext & ctx,Defined * s)520 explicit ImportThunkChunkARM(COFFLinkerContext &ctx, Defined *s)
521 : ImportThunkChunk(ctx, s) {
522 setAlignment(2);
523 }
getSize()524 size_t getSize() const override { return sizeof(importThunkARM); }
525 void getBaserels(std::vector<Baserel> *res) override;
526 void writeTo(uint8_t *buf) const override;
527 };
528
529 class ImportThunkChunkARM64 : public ImportThunkChunk {
530 public:
ImportThunkChunkARM64(COFFLinkerContext & ctx,Defined * s)531 explicit ImportThunkChunkARM64(COFFLinkerContext &ctx, Defined *s)
532 : ImportThunkChunk(ctx, s) {
533 setAlignment(4);
534 }
getSize()535 size_t getSize() const override { return sizeof(importThunkARM64); }
536 void writeTo(uint8_t *buf) const override;
537 };
538
539 class RangeExtensionThunkARM : public NonSectionChunk {
540 public:
RangeExtensionThunkARM(COFFLinkerContext & ctx,Defined * t)541 explicit RangeExtensionThunkARM(COFFLinkerContext &ctx, Defined *t)
542 : target(t), ctx(ctx) {
543 setAlignment(2);
544 }
545 size_t getSize() const override;
546 void writeTo(uint8_t *buf) const override;
547
548 Defined *target;
549
550 private:
551 COFFLinkerContext &ctx;
552 };
553
554 class RangeExtensionThunkARM64 : public NonSectionChunk {
555 public:
RangeExtensionThunkARM64(COFFLinkerContext & ctx,Defined * t)556 explicit RangeExtensionThunkARM64(COFFLinkerContext &ctx, Defined *t)
557 : target(t), ctx(ctx) {
558 setAlignment(4);
559 }
560 size_t getSize() const override;
561 void writeTo(uint8_t *buf) const override;
562
563 Defined *target;
564
565 private:
566 COFFLinkerContext &ctx;
567 };
568
569 // Windows-specific.
570 // See comments for DefinedLocalImport class.
571 class LocalImportChunk : public NonSectionChunk {
572 public:
573 explicit LocalImportChunk(COFFLinkerContext &ctx, Defined *s);
574 size_t getSize() const override;
575 void getBaserels(std::vector<Baserel> *res) override;
576 void writeTo(uint8_t *buf) const override;
577
578 private:
579 Defined *sym;
580 COFFLinkerContext &ctx;
581 };
582
583 // Duplicate RVAs are not allowed in RVA tables, so unique symbols by chunk and
584 // offset into the chunk. Order does not matter as the RVA table will be sorted
585 // later.
586 struct ChunkAndOffset {
587 Chunk *inputChunk;
588 uint32_t offset;
589
590 struct DenseMapInfo {
getEmptyKeyChunkAndOffset::DenseMapInfo591 static ChunkAndOffset getEmptyKey() {
592 return {llvm::DenseMapInfo<Chunk *>::getEmptyKey(), 0};
593 }
getTombstoneKeyChunkAndOffset::DenseMapInfo594 static ChunkAndOffset getTombstoneKey() {
595 return {llvm::DenseMapInfo<Chunk *>::getTombstoneKey(), 0};
596 }
getHashValueChunkAndOffset::DenseMapInfo597 static unsigned getHashValue(const ChunkAndOffset &co) {
598 return llvm::DenseMapInfo<std::pair<Chunk *, uint32_t>>::getHashValue(
599 {co.inputChunk, co.offset});
600 }
isEqualChunkAndOffset::DenseMapInfo601 static bool isEqual(const ChunkAndOffset &lhs, const ChunkAndOffset &rhs) {
602 return lhs.inputChunk == rhs.inputChunk && lhs.offset == rhs.offset;
603 }
604 };
605 };
606
607 using SymbolRVASet = llvm::DenseSet<ChunkAndOffset>;
608
609 // Table which contains symbol RVAs. Used for /safeseh and /guard:cf.
610 class RVATableChunk : public NonSectionChunk {
611 public:
RVATableChunk(SymbolRVASet s)612 explicit RVATableChunk(SymbolRVASet s) : syms(std::move(s)) {}
getSize()613 size_t getSize() const override { return syms.size() * 4; }
614 void writeTo(uint8_t *buf) const override;
615
616 private:
617 SymbolRVASet syms;
618 };
619
620 // Table which contains symbol RVAs with flags. Used for /guard:ehcont.
621 class RVAFlagTableChunk : public NonSectionChunk {
622 public:
RVAFlagTableChunk(SymbolRVASet s)623 explicit RVAFlagTableChunk(SymbolRVASet s) : syms(std::move(s)) {}
getSize()624 size_t getSize() const override { return syms.size() * 5; }
625 void writeTo(uint8_t *buf) const override;
626
627 private:
628 SymbolRVASet syms;
629 };
630
631 // Windows-specific.
632 // This class represents a block in .reloc section.
633 // See the PE/COFF spec 5.6 for details.
634 class BaserelChunk : public NonSectionChunk {
635 public:
636 BaserelChunk(uint32_t page, Baserel *begin, Baserel *end);
getSize()637 size_t getSize() const override { return data.size(); }
638 void writeTo(uint8_t *buf) const override;
639
640 private:
641 std::vector<uint8_t> data;
642 };
643
644 class Baserel {
645 public:
Baserel(uint32_t v,uint8_t ty)646 Baserel(uint32_t v, uint8_t ty) : rva(v), type(ty) {}
Baserel(uint32_t v,llvm::COFF::MachineTypes machine)647 explicit Baserel(uint32_t v, llvm::COFF::MachineTypes machine)
648 : Baserel(v, getDefaultType(machine)) {}
649 uint8_t getDefaultType(llvm::COFF::MachineTypes machine);
650
651 uint32_t rva;
652 uint8_t type;
653 };
654
655 // This is a placeholder Chunk, to allow attaching a DefinedSynthetic to a
656 // specific place in a section, without any data. This is used for the MinGW
657 // specific symbol __RUNTIME_PSEUDO_RELOC_LIST_END__, even though the concept
658 // of an empty chunk isn't MinGW specific.
659 class EmptyChunk : public NonSectionChunk {
660 public:
EmptyChunk()661 EmptyChunk() {}
getSize()662 size_t getSize() const override { return 0; }
writeTo(uint8_t * buf)663 void writeTo(uint8_t *buf) const override {}
664 };
665
666 // MinGW specific, for the "automatic import of variables from DLLs" feature.
667 // This provides the table of runtime pseudo relocations, for variable
668 // references that turned out to need to be imported from a DLL even though
669 // the reference didn't use the dllimport attribute. The MinGW runtime will
670 // process this table after loading, before handling control over to user
671 // code.
672 class PseudoRelocTableChunk : public NonSectionChunk {
673 public:
PseudoRelocTableChunk(std::vector<RuntimePseudoReloc> & relocs)674 PseudoRelocTableChunk(std::vector<RuntimePseudoReloc> &relocs)
675 : relocs(std::move(relocs)) {
676 setAlignment(4);
677 }
678 size_t getSize() const override;
679 void writeTo(uint8_t *buf) const override;
680
681 private:
682 std::vector<RuntimePseudoReloc> relocs;
683 };
684
685 // MinGW specific. A Chunk that contains one pointer-sized absolute value.
686 class AbsolutePointerChunk : public NonSectionChunk {
687 public:
AbsolutePointerChunk(COFFLinkerContext & ctx,uint64_t value)688 AbsolutePointerChunk(COFFLinkerContext &ctx, uint64_t value)
689 : value(value), ctx(ctx) {
690 setAlignment(getSize());
691 }
692 size_t getSize() const override;
693 void writeTo(uint8_t *buf) const override;
694
695 private:
696 uint64_t value;
697 COFFLinkerContext &ctx;
698 };
699
700 // Return true if this file has the hotpatch flag set to true in the S_COMPILE3
701 // record in codeview debug info. Also returns true for some thunks synthesized
702 // by the linker.
isHotPatchable()703 inline bool Chunk::isHotPatchable() const {
704 if (auto *sc = dyn_cast<SectionChunk>(this))
705 return sc->file->hotPatchable;
706 else if (isa<ImportThunkChunk>(this))
707 return true;
708 return false;
709 }
710
711 void applyMOV32T(uint8_t *off, uint32_t v);
712 void applyBranch24T(uint8_t *off, int32_t v);
713
714 void applyArm64Addr(uint8_t *off, uint64_t s, uint64_t p, int shift);
715 void applyArm64Imm(uint8_t *off, uint64_t imm, uint32_t rangeLimit);
716 void applyArm64Branch26(uint8_t *off, int64_t v);
717
718 // Convenience class for initializing a coff_section with specific flags.
719 class FakeSection {
720 public:
FakeSection(int c)721 FakeSection(int c) { section.Characteristics = c; }
722
723 coff_section section;
724 };
725
726 // Convenience class for initializing a SectionChunk with specific flags.
727 class FakeSectionChunk {
728 public:
FakeSectionChunk(const coff_section * section)729 FakeSectionChunk(const coff_section *section) : chunk(nullptr, section) {
730 // Comdats from LTO files can't be fully treated as regular comdats
731 // at this point; we don't know what size or contents they are going to
732 // have, so we can't do proper checking of such aspects of them.
733 chunk.selection = llvm::COFF::IMAGE_COMDAT_SELECT_ANY;
734 }
735
736 SectionChunk chunk;
737 };
738
739 } // namespace lld::coff
740
741 namespace llvm {
742 template <>
743 struct DenseMapInfo<lld::coff::ChunkAndOffset>
744 : lld::coff::ChunkAndOffset::DenseMapInfo {};
745 }
746
747 #endif
748