1 /*
2 * IMX31 Clock Control Module
3 *
4 * Copyright (C) 2012 NICTA
5 * Updated by Jean-Christophe Dubois <jcd@tribudubois.net>
6 *
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
9 *
10 * To get the timer frequencies right, we need to emulate at least part of
11 * the i.MX31 CCM.
12 */
13
14 #include "qemu/osdep.h"
15 #include "hw/misc/imx31_ccm.h"
16 #include "migration/vmstate.h"
17 #include "qemu/log.h"
18 #include "qemu/module.h"
19
20 #define CKIH_FREQ 26000000 /* 26MHz crystal input */
21
22 #ifndef DEBUG_IMX31_CCM
23 #define DEBUG_IMX31_CCM 0
24 #endif
25
26 #define DPRINTF(fmt, args...) \
27 do { \
28 if (DEBUG_IMX31_CCM) { \
29 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX31_CCM, \
30 __func__, ##args); \
31 } \
32 } while (0)
33
imx31_ccm_reg_name(uint32_t reg)34 static const char *imx31_ccm_reg_name(uint32_t reg)
35 {
36 static char unknown[20];
37
38 switch (reg) {
39 case IMX31_CCM_CCMR_REG:
40 return "CCMR";
41 case IMX31_CCM_PDR0_REG:
42 return "PDR0";
43 case IMX31_CCM_PDR1_REG:
44 return "PDR1";
45 case IMX31_CCM_RCSR_REG:
46 return "RCSR";
47 case IMX31_CCM_MPCTL_REG:
48 return "MPCTL";
49 case IMX31_CCM_UPCTL_REG:
50 return "UPCTL";
51 case IMX31_CCM_SPCTL_REG:
52 return "SPCTL";
53 case IMX31_CCM_COSR_REG:
54 return "COSR";
55 case IMX31_CCM_CGR0_REG:
56 return "CGR0";
57 case IMX31_CCM_CGR1_REG:
58 return "CGR1";
59 case IMX31_CCM_CGR2_REG:
60 return "CGR2";
61 case IMX31_CCM_WIMR_REG:
62 return "WIMR";
63 case IMX31_CCM_LDC_REG:
64 return "LDC";
65 case IMX31_CCM_DCVR0_REG:
66 return "DCVR0";
67 case IMX31_CCM_DCVR1_REG:
68 return "DCVR1";
69 case IMX31_CCM_DCVR2_REG:
70 return "DCVR2";
71 case IMX31_CCM_DCVR3_REG:
72 return "DCVR3";
73 case IMX31_CCM_LTR0_REG:
74 return "LTR0";
75 case IMX31_CCM_LTR1_REG:
76 return "LTR1";
77 case IMX31_CCM_LTR2_REG:
78 return "LTR2";
79 case IMX31_CCM_LTR3_REG:
80 return "LTR3";
81 case IMX31_CCM_LTBR0_REG:
82 return "LTBR0";
83 case IMX31_CCM_LTBR1_REG:
84 return "LTBR1";
85 case IMX31_CCM_PMCR0_REG:
86 return "PMCR0";
87 case IMX31_CCM_PMCR1_REG:
88 return "PMCR1";
89 case IMX31_CCM_PDR2_REG:
90 return "PDR2";
91 default:
92 snprintf(unknown, sizeof(unknown), "[%u ?]", reg);
93 return unknown;
94 }
95 }
96
97 static const VMStateDescription vmstate_imx31_ccm = {
98 .name = TYPE_IMX31_CCM,
99 .version_id = 2,
100 .minimum_version_id = 2,
101 .fields = (const VMStateField[]) {
102 VMSTATE_UINT32_ARRAY(reg, IMX31CCMState, IMX31_CCM_MAX_REG),
103 VMSTATE_END_OF_LIST()
104 },
105 };
106
imx31_ccm_get_pll_ref_clk(IMXCCMState * dev)107 static uint32_t imx31_ccm_get_pll_ref_clk(IMXCCMState *dev)
108 {
109 uint32_t freq = 0;
110 IMX31CCMState *s = IMX31_CCM(dev);
111
112 if ((s->reg[IMX31_CCM_CCMR_REG] & CCMR_PRCS) == 2) {
113 if (s->reg[IMX31_CCM_CCMR_REG] & CCMR_FPME) {
114 freq = CKIL_FREQ;
115 if (s->reg[IMX31_CCM_CCMR_REG] & CCMR_FPMF) {
116 freq *= 1024;
117 }
118 }
119 } else {
120 freq = CKIH_FREQ;
121 }
122
123 DPRINTF("freq = %u\n", freq);
124
125 return freq;
126 }
127
imx31_ccm_get_mpll_clk(IMXCCMState * dev)128 static uint32_t imx31_ccm_get_mpll_clk(IMXCCMState *dev)
129 {
130 uint32_t freq;
131 IMX31CCMState *s = IMX31_CCM(dev);
132
133 freq = imx_ccm_calc_pll(s->reg[IMX31_CCM_MPCTL_REG],
134 imx31_ccm_get_pll_ref_clk(dev));
135
136 DPRINTF("freq = %u\n", freq);
137
138 return freq;
139 }
140
imx31_ccm_get_mcu_main_clk(IMXCCMState * dev)141 static uint32_t imx31_ccm_get_mcu_main_clk(IMXCCMState *dev)
142 {
143 uint32_t freq;
144 IMX31CCMState *s = IMX31_CCM(dev);
145
146 if ((s->reg[IMX31_CCM_CCMR_REG] & CCMR_MDS) ||
147 !(s->reg[IMX31_CCM_CCMR_REG] & CCMR_MPE)) {
148 freq = imx31_ccm_get_pll_ref_clk(dev);
149 } else {
150 freq = imx31_ccm_get_mpll_clk(dev);
151 }
152
153 DPRINTF("freq = %u\n", freq);
154
155 return freq;
156 }
157
imx31_ccm_get_hclk_clk(IMXCCMState * dev)158 static uint32_t imx31_ccm_get_hclk_clk(IMXCCMState *dev)
159 {
160 uint32_t freq;
161 IMX31CCMState *s = IMX31_CCM(dev);
162
163 freq = imx31_ccm_get_mcu_main_clk(dev)
164 / (1 + EXTRACT(s->reg[IMX31_CCM_PDR0_REG], MAX));
165
166 DPRINTF("freq = %u\n", freq);
167
168 return freq;
169 }
170
imx31_ccm_get_ipg_clk(IMXCCMState * dev)171 static uint32_t imx31_ccm_get_ipg_clk(IMXCCMState *dev)
172 {
173 uint32_t freq;
174 IMX31CCMState *s = IMX31_CCM(dev);
175
176 freq = imx31_ccm_get_hclk_clk(dev)
177 / (1 + EXTRACT(s->reg[IMX31_CCM_PDR0_REG], IPG));
178
179 DPRINTF("freq = %u\n", freq);
180
181 return freq;
182 }
183
imx31_ccm_get_clock_frequency(IMXCCMState * dev,IMXClk clock)184 static uint32_t imx31_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock)
185 {
186 uint32_t freq = 0;
187
188 switch (clock) {
189 case CLK_NONE:
190 break;
191 case CLK_IPG:
192 case CLK_IPG_HIGH:
193 freq = imx31_ccm_get_ipg_clk(dev);
194 break;
195 case CLK_32k:
196 freq = CKIL_FREQ;
197 break;
198 default:
199 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n",
200 TYPE_IMX31_CCM, __func__, clock);
201 break;
202 }
203
204 DPRINTF("Clock = %d) = %u\n", clock, freq);
205
206 return freq;
207 }
208
imx31_ccm_reset(DeviceState * dev)209 static void imx31_ccm_reset(DeviceState *dev)
210 {
211 IMX31CCMState *s = IMX31_CCM(dev);
212
213 DPRINTF("()\n");
214
215 memset(s->reg, 0, sizeof(uint32_t) * IMX31_CCM_MAX_REG);
216
217 s->reg[IMX31_CCM_CCMR_REG] = 0x074b0b7d;
218 s->reg[IMX31_CCM_PDR0_REG] = 0xff870b48;
219 s->reg[IMX31_CCM_PDR1_REG] = 0x49fcfe7f;
220 s->reg[IMX31_CCM_RCSR_REG] = 0x007f0000;
221 s->reg[IMX31_CCM_MPCTL_REG] = 0x04001800;
222 s->reg[IMX31_CCM_UPCTL_REG] = 0x04051c03;
223 s->reg[IMX31_CCM_SPCTL_REG] = 0x04043001;
224 s->reg[IMX31_CCM_COSR_REG] = 0x00000280;
225 s->reg[IMX31_CCM_CGR0_REG] = 0xffffffff;
226 s->reg[IMX31_CCM_CGR1_REG] = 0xffffffff;
227 s->reg[IMX31_CCM_CGR2_REG] = 0xffffffff;
228 s->reg[IMX31_CCM_WIMR_REG] = 0xffffffff;
229 s->reg[IMX31_CCM_LTR1_REG] = 0x00004040;
230 s->reg[IMX31_CCM_PMCR0_REG] = 0x80209828;
231 s->reg[IMX31_CCM_PMCR1_REG] = 0x00aa0000;
232 s->reg[IMX31_CCM_PDR2_REG] = 0x00000285;
233 }
234
imx31_ccm_read(void * opaque,hwaddr offset,unsigned size)235 static uint64_t imx31_ccm_read(void *opaque, hwaddr offset, unsigned size)
236 {
237 uint32_t value = 0;
238 IMX31CCMState *s = (IMX31CCMState *)opaque;
239
240 if ((offset >> 2) < IMX31_CCM_MAX_REG) {
241 value = s->reg[offset >> 2];
242 } else {
243 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
244 HWADDR_PRIx "\n", TYPE_IMX31_CCM, __func__, offset);
245 }
246
247 DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx31_ccm_reg_name(offset >> 2),
248 value);
249
250 return (uint64_t)value;
251 }
252
imx31_ccm_write(void * opaque,hwaddr offset,uint64_t value,unsigned size)253 static void imx31_ccm_write(void *opaque, hwaddr offset, uint64_t value,
254 unsigned size)
255 {
256 IMX31CCMState *s = (IMX31CCMState *)opaque;
257
258 DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx31_ccm_reg_name(offset >> 2),
259 (uint32_t)value);
260
261 switch (offset >> 2) {
262 case IMX31_CCM_CCMR_REG:
263 s->reg[IMX31_CCM_CCMR_REG] = CCMR_FPMF | (value & 0x3b6fdfff);
264 break;
265 case IMX31_CCM_PDR0_REG:
266 s->reg[IMX31_CCM_PDR0_REG] = value & 0xff9f3fff;
267 break;
268 case IMX31_CCM_PDR1_REG:
269 s->reg[IMX31_CCM_PDR1_REG] = value;
270 break;
271 case IMX31_CCM_MPCTL_REG:
272 s->reg[IMX31_CCM_MPCTL_REG] = value & 0xbfff3fff;
273 break;
274 case IMX31_CCM_SPCTL_REG:
275 s->reg[IMX31_CCM_SPCTL_REG] = value & 0xbfff3fff;
276 break;
277 case IMX31_CCM_CGR0_REG:
278 s->reg[IMX31_CCM_CGR0_REG] = value;
279 break;
280 case IMX31_CCM_CGR1_REG:
281 s->reg[IMX31_CCM_CGR1_REG] = value;
282 break;
283 case IMX31_CCM_CGR2_REG:
284 s->reg[IMX31_CCM_CGR2_REG] = value;
285 break;
286 default:
287 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
288 HWADDR_PRIx "\n", TYPE_IMX31_CCM, __func__, offset);
289 break;
290 }
291 }
292
293 static const struct MemoryRegionOps imx31_ccm_ops = {
294 .read = imx31_ccm_read,
295 .write = imx31_ccm_write,
296 .endianness = DEVICE_NATIVE_ENDIAN,
297 .valid = {
298 /*
299 * Our device would not work correctly if the guest was doing
300 * unaligned access. This might not be a limitation on the real
301 * device but in practice there is no reason for a guest to access
302 * this device unaligned.
303 */
304 .min_access_size = 4,
305 .max_access_size = 4,
306 .unaligned = false,
307 },
308
309 };
310
imx31_ccm_init(Object * obj)311 static void imx31_ccm_init(Object *obj)
312 {
313 DeviceState *dev = DEVICE(obj);
314 SysBusDevice *sd = SYS_BUS_DEVICE(obj);
315 IMX31CCMState *s = IMX31_CCM(obj);
316
317 memory_region_init_io(&s->iomem, OBJECT(dev), &imx31_ccm_ops, s,
318 TYPE_IMX31_CCM, 0x1000);
319 sysbus_init_mmio(sd, &s->iomem);
320 }
321
imx31_ccm_class_init(ObjectClass * klass,void * data)322 static void imx31_ccm_class_init(ObjectClass *klass, void *data)
323 {
324 DeviceClass *dc = DEVICE_CLASS(klass);
325 IMXCCMClass *ccm = IMX_CCM_CLASS(klass);
326
327 device_class_set_legacy_reset(dc, imx31_ccm_reset);
328 dc->vmsd = &vmstate_imx31_ccm;
329 dc->desc = "i.MX31 Clock Control Module";
330
331 ccm->get_clock_frequency = imx31_ccm_get_clock_frequency;
332 }
333
334 static const TypeInfo imx31_ccm_info = {
335 .name = TYPE_IMX31_CCM,
336 .parent = TYPE_IMX_CCM,
337 .instance_size = sizeof(IMX31CCMState),
338 .instance_init = imx31_ccm_init,
339 .class_init = imx31_ccm_class_init,
340 };
341
imx31_ccm_register_types(void)342 static void imx31_ccm_register_types(void)
343 {
344 type_register_static(&imx31_ccm_info);
345 }
346
347 type_init(imx31_ccm_register_types)
348