1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2018 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "cgraph.h"
30 #include "diagnostic.h"
31 #include "alias.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "stor-layout.h"
35 #include "internal-fn.h"
36 #include "tree-eh.h"
37 #include "gimple-iterator.h"
38 #include "gimple-walk.h"
39 #include "gimplify.h"
40 #include "target.h"
41 #include "builtins.h"
42 #include "selftest.h"
43 #include "gimple-pretty-print.h"
44 #include "stringpool.h"
45 #include "attribs.h"
46 #include "asan.h"
47
48
49 /* All the tuples have their operand vector (if present) at the very bottom
50 of the structure. Therefore, the offset required to find the
51 operands vector the size of the structure minus the size of the 1
52 element tree array at the end (see gimple_ops). */
53 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
54 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
55 EXPORTED_CONST size_t gimple_ops_offset_[] = {
56 #include "gsstruct.def"
57 };
58 #undef DEFGSSTRUCT
59
60 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
61 static const size_t gsstruct_code_size[] = {
62 #include "gsstruct.def"
63 };
64 #undef DEFGSSTRUCT
65
66 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
67 const char *const gimple_code_name[] = {
68 #include "gimple.def"
69 };
70 #undef DEFGSCODE
71
72 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
73 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
74 #include "gimple.def"
75 };
76 #undef DEFGSCODE
77
78 /* Gimple stats. */
79
80 uint64_t gimple_alloc_counts[(int) gimple_alloc_kind_all];
81 uint64_t gimple_alloc_sizes[(int) gimple_alloc_kind_all];
82
83 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
84 static const char * const gimple_alloc_kind_names[] = {
85 "assignments",
86 "phi nodes",
87 "conditionals",
88 "everything else"
89 };
90
91 /* Static gimple tuple members. */
92 const enum gimple_code gassign::code_;
93 const enum gimple_code gcall::code_;
94 const enum gimple_code gcond::code_;
95
96
97 /* Gimple tuple constructors.
98 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
99 be passed a NULL to start with an empty sequence. */
100
101 /* Set the code for statement G to CODE. */
102
103 static inline void
gimple_set_code(gimple * g,enum gimple_code code)104 gimple_set_code (gimple *g, enum gimple_code code)
105 {
106 g->code = code;
107 }
108
109 /* Return the number of bytes needed to hold a GIMPLE statement with
110 code CODE. */
111
112 static inline size_t
gimple_size(enum gimple_code code)113 gimple_size (enum gimple_code code)
114 {
115 return gsstruct_code_size[gss_for_code (code)];
116 }
117
118 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
119 operands. */
120
121 gimple *
gimple_alloc(enum gimple_code code,unsigned num_ops MEM_STAT_DECL)122 gimple_alloc (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
123 {
124 size_t size;
125 gimple *stmt;
126
127 size = gimple_size (code);
128 if (num_ops > 0)
129 size += sizeof (tree) * (num_ops - 1);
130
131 if (GATHER_STATISTICS)
132 {
133 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
134 gimple_alloc_counts[(int) kind]++;
135 gimple_alloc_sizes[(int) kind] += size;
136 }
137
138 stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
139 gimple_set_code (stmt, code);
140 gimple_set_num_ops (stmt, num_ops);
141
142 /* Do not call gimple_set_modified here as it has other side
143 effects and this tuple is still not completely built. */
144 stmt->modified = 1;
145 gimple_init_singleton (stmt);
146
147 return stmt;
148 }
149
150 /* Set SUBCODE to be the code of the expression computed by statement G. */
151
152 static inline void
gimple_set_subcode(gimple * g,unsigned subcode)153 gimple_set_subcode (gimple *g, unsigned subcode)
154 {
155 /* We only have 16 bits for the RHS code. Assert that we are not
156 overflowing it. */
157 gcc_assert (subcode < (1 << 16));
158 g->subcode = subcode;
159 }
160
161
162
163 /* Build a tuple with operands. CODE is the statement to build (which
164 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
165 for the new tuple. NUM_OPS is the number of operands to allocate. */
166
167 #define gimple_build_with_ops(c, s, n) \
168 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
169
170 static gimple *
gimple_build_with_ops_stat(enum gimple_code code,unsigned subcode,unsigned num_ops MEM_STAT_DECL)171 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
172 unsigned num_ops MEM_STAT_DECL)
173 {
174 gimple *s = gimple_alloc (code, num_ops PASS_MEM_STAT);
175 gimple_set_subcode (s, subcode);
176
177 return s;
178 }
179
180
181 /* Build a GIMPLE_RETURN statement returning RETVAL. */
182
183 greturn *
gimple_build_return(tree retval)184 gimple_build_return (tree retval)
185 {
186 greturn *s
187 = as_a <greturn *> (gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK,
188 2));
189 if (retval)
190 gimple_return_set_retval (s, retval);
191 return s;
192 }
193
194 /* Reset alias information on call S. */
195
196 void
gimple_call_reset_alias_info(gcall * s)197 gimple_call_reset_alias_info (gcall *s)
198 {
199 if (gimple_call_flags (s) & ECF_CONST)
200 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
201 else
202 pt_solution_reset (gimple_call_use_set (s));
203 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
204 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
205 else
206 pt_solution_reset (gimple_call_clobber_set (s));
207 }
208
209 /* Helper for gimple_build_call, gimple_build_call_valist,
210 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
211 components of a GIMPLE_CALL statement to function FN with NARGS
212 arguments. */
213
214 static inline gcall *
gimple_build_call_1(tree fn,unsigned nargs)215 gimple_build_call_1 (tree fn, unsigned nargs)
216 {
217 gcall *s
218 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
219 nargs + 3));
220 if (TREE_CODE (fn) == FUNCTION_DECL)
221 fn = build_fold_addr_expr (fn);
222 gimple_set_op (s, 1, fn);
223 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
224 gimple_call_reset_alias_info (s);
225 return s;
226 }
227
228
229 /* Build a GIMPLE_CALL statement to function FN with the arguments
230 specified in vector ARGS. */
231
232 gcall *
gimple_build_call_vec(tree fn,vec<tree> args)233 gimple_build_call_vec (tree fn, vec<tree> args)
234 {
235 unsigned i;
236 unsigned nargs = args.length ();
237 gcall *call = gimple_build_call_1 (fn, nargs);
238
239 for (i = 0; i < nargs; i++)
240 gimple_call_set_arg (call, i, args[i]);
241
242 return call;
243 }
244
245
246 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
247 arguments. The ... are the arguments. */
248
249 gcall *
gimple_build_call(tree fn,unsigned nargs,...)250 gimple_build_call (tree fn, unsigned nargs, ...)
251 {
252 va_list ap;
253 gcall *call;
254 unsigned i;
255
256 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
257
258 call = gimple_build_call_1 (fn, nargs);
259
260 va_start (ap, nargs);
261 for (i = 0; i < nargs; i++)
262 gimple_call_set_arg (call, i, va_arg (ap, tree));
263 va_end (ap);
264
265 return call;
266 }
267
268
269 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
270 arguments. AP contains the arguments. */
271
272 gcall *
gimple_build_call_valist(tree fn,unsigned nargs,va_list ap)273 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
274 {
275 gcall *call;
276 unsigned i;
277
278 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
279
280 call = gimple_build_call_1 (fn, nargs);
281
282 for (i = 0; i < nargs; i++)
283 gimple_call_set_arg (call, i, va_arg (ap, tree));
284
285 return call;
286 }
287
288
289 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
290 Build the basic components of a GIMPLE_CALL statement to internal
291 function FN with NARGS arguments. */
292
293 static inline gcall *
gimple_build_call_internal_1(enum internal_fn fn,unsigned nargs)294 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
295 {
296 gcall *s
297 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
298 nargs + 3));
299 s->subcode |= GF_CALL_INTERNAL;
300 gimple_call_set_internal_fn (s, fn);
301 gimple_call_reset_alias_info (s);
302 return s;
303 }
304
305
306 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
307 the number of arguments. The ... are the arguments. */
308
309 gcall *
gimple_build_call_internal(enum internal_fn fn,unsigned nargs,...)310 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
311 {
312 va_list ap;
313 gcall *call;
314 unsigned i;
315
316 call = gimple_build_call_internal_1 (fn, nargs);
317 va_start (ap, nargs);
318 for (i = 0; i < nargs; i++)
319 gimple_call_set_arg (call, i, va_arg (ap, tree));
320 va_end (ap);
321
322 return call;
323 }
324
325
326 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
327 specified in vector ARGS. */
328
329 gcall *
gimple_build_call_internal_vec(enum internal_fn fn,vec<tree> args)330 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
331 {
332 unsigned i, nargs;
333 gcall *call;
334
335 nargs = args.length ();
336 call = gimple_build_call_internal_1 (fn, nargs);
337 for (i = 0; i < nargs; i++)
338 gimple_call_set_arg (call, i, args[i]);
339
340 return call;
341 }
342
343
344 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
345 assumed to be in GIMPLE form already. Minimal checking is done of
346 this fact. */
347
348 gcall *
gimple_build_call_from_tree(tree t,tree fnptrtype)349 gimple_build_call_from_tree (tree t, tree fnptrtype)
350 {
351 unsigned i, nargs;
352 gcall *call;
353 tree fndecl = get_callee_fndecl (t);
354
355 gcc_assert (TREE_CODE (t) == CALL_EXPR);
356
357 nargs = call_expr_nargs (t);
358 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
359
360 for (i = 0; i < nargs; i++)
361 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
362
363 gimple_set_block (call, TREE_BLOCK (t));
364 gimple_set_location (call, EXPR_LOCATION (t));
365
366 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
367 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
368 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
369 gimple_call_set_must_tail (call, CALL_EXPR_MUST_TAIL_CALL (t));
370 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
371 if (fndecl
372 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
373 && ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (fndecl)))
374 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
375 else
376 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
377 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
378 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
379 gimple_call_set_by_descriptor (call, CALL_EXPR_BY_DESCRIPTOR (t));
380 gimple_set_no_warning (call, TREE_NO_WARNING (t));
381 gimple_call_set_with_bounds (call, CALL_WITH_BOUNDS_P (t));
382
383 if (fnptrtype)
384 {
385 gimple_call_set_fntype (call, TREE_TYPE (fnptrtype));
386
387 /* Check if it's an indirect CALL and the type has the
388 nocf_check attribute. In that case propagate the information
389 to the gimple CALL insn. */
390 if (!fndecl)
391 {
392 gcc_assert (POINTER_TYPE_P (fnptrtype));
393 tree fntype = TREE_TYPE (fnptrtype);
394
395 if (lookup_attribute ("nocf_check", TYPE_ATTRIBUTES (fntype)))
396 gimple_call_set_nocf_check (call, TRUE);
397 }
398 }
399
400 return call;
401 }
402
403
404 /* Build a GIMPLE_ASSIGN statement.
405
406 LHS of the assignment.
407 RHS of the assignment which can be unary or binary. */
408
409 gassign *
gimple_build_assign(tree lhs,tree rhs MEM_STAT_DECL)410 gimple_build_assign (tree lhs, tree rhs MEM_STAT_DECL)
411 {
412 enum tree_code subcode;
413 tree op1, op2, op3;
414
415 extract_ops_from_tree (rhs, &subcode, &op1, &op2, &op3);
416 return gimple_build_assign (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
417 }
418
419
420 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
421 OP1, OP2 and OP3. */
422
423 static inline gassign *
gimple_build_assign_1(tree lhs,enum tree_code subcode,tree op1,tree op2,tree op3 MEM_STAT_DECL)424 gimple_build_assign_1 (tree lhs, enum tree_code subcode, tree op1,
425 tree op2, tree op3 MEM_STAT_DECL)
426 {
427 unsigned num_ops;
428 gassign *p;
429
430 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
431 code). */
432 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
433
434 p = as_a <gassign *> (
435 gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
436 PASS_MEM_STAT));
437 gimple_assign_set_lhs (p, lhs);
438 gimple_assign_set_rhs1 (p, op1);
439 if (op2)
440 {
441 gcc_assert (num_ops > 2);
442 gimple_assign_set_rhs2 (p, op2);
443 }
444
445 if (op3)
446 {
447 gcc_assert (num_ops > 3);
448 gimple_assign_set_rhs3 (p, op3);
449 }
450
451 return p;
452 }
453
454 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
455 OP1, OP2 and OP3. */
456
457 gassign *
gimple_build_assign(tree lhs,enum tree_code subcode,tree op1,tree op2,tree op3 MEM_STAT_DECL)458 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
459 tree op2, tree op3 MEM_STAT_DECL)
460 {
461 return gimple_build_assign_1 (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
462 }
463
464 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
465 OP1 and OP2. */
466
467 gassign *
gimple_build_assign(tree lhs,enum tree_code subcode,tree op1,tree op2 MEM_STAT_DECL)468 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
469 tree op2 MEM_STAT_DECL)
470 {
471 return gimple_build_assign_1 (lhs, subcode, op1, op2, NULL_TREE
472 PASS_MEM_STAT);
473 }
474
475 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operand OP1. */
476
477 gassign *
gimple_build_assign(tree lhs,enum tree_code subcode,tree op1 MEM_STAT_DECL)478 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1 MEM_STAT_DECL)
479 {
480 return gimple_build_assign_1 (lhs, subcode, op1, NULL_TREE, NULL_TREE
481 PASS_MEM_STAT);
482 }
483
484
485 /* Build a GIMPLE_COND statement.
486
487 PRED is the condition used to compare LHS and the RHS.
488 T_LABEL is the label to jump to if the condition is true.
489 F_LABEL is the label to jump to otherwise. */
490
491 gcond *
gimple_build_cond(enum tree_code pred_code,tree lhs,tree rhs,tree t_label,tree f_label)492 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
493 tree t_label, tree f_label)
494 {
495 gcond *p;
496
497 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
498 p = as_a <gcond *> (gimple_build_with_ops (GIMPLE_COND, pred_code, 4));
499 gimple_cond_set_lhs (p, lhs);
500 gimple_cond_set_rhs (p, rhs);
501 gimple_cond_set_true_label (p, t_label);
502 gimple_cond_set_false_label (p, f_label);
503 return p;
504 }
505
506 /* Build a GIMPLE_COND statement from the conditional expression tree
507 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
508
509 gcond *
gimple_build_cond_from_tree(tree cond,tree t_label,tree f_label)510 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
511 {
512 enum tree_code code;
513 tree lhs, rhs;
514
515 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
516 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
517 }
518
519 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
520 boolean expression tree COND. */
521
522 void
gimple_cond_set_condition_from_tree(gcond * stmt,tree cond)523 gimple_cond_set_condition_from_tree (gcond *stmt, tree cond)
524 {
525 enum tree_code code;
526 tree lhs, rhs;
527
528 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
529 gimple_cond_set_condition (stmt, code, lhs, rhs);
530 }
531
532 /* Build a GIMPLE_LABEL statement for LABEL. */
533
534 glabel *
gimple_build_label(tree label)535 gimple_build_label (tree label)
536 {
537 glabel *p
538 = as_a <glabel *> (gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1));
539 gimple_label_set_label (p, label);
540 return p;
541 }
542
543 /* Build a GIMPLE_GOTO statement to label DEST. */
544
545 ggoto *
gimple_build_goto(tree dest)546 gimple_build_goto (tree dest)
547 {
548 ggoto *p
549 = as_a <ggoto *> (gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1));
550 gimple_goto_set_dest (p, dest);
551 return p;
552 }
553
554
555 /* Build a GIMPLE_NOP statement. */
556
557 gimple *
gimple_build_nop(void)558 gimple_build_nop (void)
559 {
560 return gimple_alloc (GIMPLE_NOP, 0);
561 }
562
563
564 /* Build a GIMPLE_BIND statement.
565 VARS are the variables in BODY.
566 BLOCK is the containing block. */
567
568 gbind *
gimple_build_bind(tree vars,gimple_seq body,tree block)569 gimple_build_bind (tree vars, gimple_seq body, tree block)
570 {
571 gbind *p = as_a <gbind *> (gimple_alloc (GIMPLE_BIND, 0));
572 gimple_bind_set_vars (p, vars);
573 if (body)
574 gimple_bind_set_body (p, body);
575 if (block)
576 gimple_bind_set_block (p, block);
577 return p;
578 }
579
580 /* Helper function to set the simple fields of a asm stmt.
581
582 STRING is a pointer to a string that is the asm blocks assembly code.
583 NINPUT is the number of register inputs.
584 NOUTPUT is the number of register outputs.
585 NCLOBBERS is the number of clobbered registers.
586 */
587
588 static inline gasm *
gimple_build_asm_1(const char * string,unsigned ninputs,unsigned noutputs,unsigned nclobbers,unsigned nlabels)589 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
590 unsigned nclobbers, unsigned nlabels)
591 {
592 gasm *p;
593 int size = strlen (string);
594
595 /* ASMs with labels cannot have outputs. This should have been
596 enforced by the front end. */
597 gcc_assert (nlabels == 0 || noutputs == 0);
598
599 p = as_a <gasm *> (
600 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
601 ninputs + noutputs + nclobbers + nlabels));
602
603 p->ni = ninputs;
604 p->no = noutputs;
605 p->nc = nclobbers;
606 p->nl = nlabels;
607 p->string = ggc_alloc_string (string, size);
608
609 if (GATHER_STATISTICS)
610 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
611
612 return p;
613 }
614
615 /* Build a GIMPLE_ASM statement.
616
617 STRING is the assembly code.
618 NINPUT is the number of register inputs.
619 NOUTPUT is the number of register outputs.
620 NCLOBBERS is the number of clobbered registers.
621 INPUTS is a vector of the input register parameters.
622 OUTPUTS is a vector of the output register parameters.
623 CLOBBERS is a vector of the clobbered register parameters.
624 LABELS is a vector of destination labels. */
625
626 gasm *
gimple_build_asm_vec(const char * string,vec<tree,va_gc> * inputs,vec<tree,va_gc> * outputs,vec<tree,va_gc> * clobbers,vec<tree,va_gc> * labels)627 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
628 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
629 vec<tree, va_gc> *labels)
630 {
631 gasm *p;
632 unsigned i;
633
634 p = gimple_build_asm_1 (string,
635 vec_safe_length (inputs),
636 vec_safe_length (outputs),
637 vec_safe_length (clobbers),
638 vec_safe_length (labels));
639
640 for (i = 0; i < vec_safe_length (inputs); i++)
641 gimple_asm_set_input_op (p, i, (*inputs)[i]);
642
643 for (i = 0; i < vec_safe_length (outputs); i++)
644 gimple_asm_set_output_op (p, i, (*outputs)[i]);
645
646 for (i = 0; i < vec_safe_length (clobbers); i++)
647 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
648
649 for (i = 0; i < vec_safe_length (labels); i++)
650 gimple_asm_set_label_op (p, i, (*labels)[i]);
651
652 return p;
653 }
654
655 /* Build a GIMPLE_CATCH statement.
656
657 TYPES are the catch types.
658 HANDLER is the exception handler. */
659
660 gcatch *
gimple_build_catch(tree types,gimple_seq handler)661 gimple_build_catch (tree types, gimple_seq handler)
662 {
663 gcatch *p = as_a <gcatch *> (gimple_alloc (GIMPLE_CATCH, 0));
664 gimple_catch_set_types (p, types);
665 if (handler)
666 gimple_catch_set_handler (p, handler);
667
668 return p;
669 }
670
671 /* Build a GIMPLE_EH_FILTER statement.
672
673 TYPES are the filter's types.
674 FAILURE is the filter's failure action. */
675
676 geh_filter *
gimple_build_eh_filter(tree types,gimple_seq failure)677 gimple_build_eh_filter (tree types, gimple_seq failure)
678 {
679 geh_filter *p = as_a <geh_filter *> (gimple_alloc (GIMPLE_EH_FILTER, 0));
680 gimple_eh_filter_set_types (p, types);
681 if (failure)
682 gimple_eh_filter_set_failure (p, failure);
683
684 return p;
685 }
686
687 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
688
689 geh_mnt *
gimple_build_eh_must_not_throw(tree decl)690 gimple_build_eh_must_not_throw (tree decl)
691 {
692 geh_mnt *p = as_a <geh_mnt *> (gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0));
693
694 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
695 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
696 gimple_eh_must_not_throw_set_fndecl (p, decl);
697
698 return p;
699 }
700
701 /* Build a GIMPLE_EH_ELSE statement. */
702
703 geh_else *
gimple_build_eh_else(gimple_seq n_body,gimple_seq e_body)704 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
705 {
706 geh_else *p = as_a <geh_else *> (gimple_alloc (GIMPLE_EH_ELSE, 0));
707 gimple_eh_else_set_n_body (p, n_body);
708 gimple_eh_else_set_e_body (p, e_body);
709 return p;
710 }
711
712 /* Build a GIMPLE_TRY statement.
713
714 EVAL is the expression to evaluate.
715 CLEANUP is the cleanup expression.
716 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
717 whether this is a try/catch or a try/finally respectively. */
718
719 gtry *
gimple_build_try(gimple_seq eval,gimple_seq cleanup,enum gimple_try_flags kind)720 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
721 enum gimple_try_flags kind)
722 {
723 gtry *p;
724
725 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
726 p = as_a <gtry *> (gimple_alloc (GIMPLE_TRY, 0));
727 gimple_set_subcode (p, kind);
728 if (eval)
729 gimple_try_set_eval (p, eval);
730 if (cleanup)
731 gimple_try_set_cleanup (p, cleanup);
732
733 return p;
734 }
735
736 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
737
738 CLEANUP is the cleanup expression. */
739
740 gimple *
gimple_build_wce(gimple_seq cleanup)741 gimple_build_wce (gimple_seq cleanup)
742 {
743 gimple *p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
744 if (cleanup)
745 gimple_wce_set_cleanup (p, cleanup);
746
747 return p;
748 }
749
750
751 /* Build a GIMPLE_RESX statement. */
752
753 gresx *
gimple_build_resx(int region)754 gimple_build_resx (int region)
755 {
756 gresx *p
757 = as_a <gresx *> (gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
758 p->region = region;
759 return p;
760 }
761
762
763 /* The helper for constructing a gimple switch statement.
764 INDEX is the switch's index.
765 NLABELS is the number of labels in the switch excluding the default.
766 DEFAULT_LABEL is the default label for the switch statement. */
767
768 gswitch *
gimple_build_switch_nlabels(unsigned nlabels,tree index,tree default_label)769 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
770 {
771 /* nlabels + 1 default label + 1 index. */
772 gcc_checking_assert (default_label);
773 gswitch *p = as_a <gswitch *> (gimple_build_with_ops (GIMPLE_SWITCH,
774 ERROR_MARK,
775 1 + 1 + nlabels));
776 gimple_switch_set_index (p, index);
777 gimple_switch_set_default_label (p, default_label);
778 return p;
779 }
780
781 /* Build a GIMPLE_SWITCH statement.
782
783 INDEX is the switch's index.
784 DEFAULT_LABEL is the default label
785 ARGS is a vector of labels excluding the default. */
786
787 gswitch *
gimple_build_switch(tree index,tree default_label,vec<tree> args)788 gimple_build_switch (tree index, tree default_label, vec<tree> args)
789 {
790 unsigned i, nlabels = args.length ();
791
792 gswitch *p = gimple_build_switch_nlabels (nlabels, index, default_label);
793
794 /* Copy the labels from the vector to the switch statement. */
795 for (i = 0; i < nlabels; i++)
796 gimple_switch_set_label (p, i + 1, args[i]);
797
798 return p;
799 }
800
801 /* Build a GIMPLE_EH_DISPATCH statement. */
802
803 geh_dispatch *
gimple_build_eh_dispatch(int region)804 gimple_build_eh_dispatch (int region)
805 {
806 geh_dispatch *p
807 = as_a <geh_dispatch *> (
808 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
809 p->region = region;
810 return p;
811 }
812
813 /* Build a new GIMPLE_DEBUG_BIND statement.
814
815 VAR is bound to VALUE; block and location are taken from STMT. */
816
817 gdebug *
gimple_build_debug_bind(tree var,tree value,gimple * stmt MEM_STAT_DECL)818 gimple_build_debug_bind (tree var, tree value, gimple *stmt MEM_STAT_DECL)
819 {
820 gdebug *p
821 = as_a <gdebug *> (gimple_build_with_ops_stat (GIMPLE_DEBUG,
822 (unsigned)GIMPLE_DEBUG_BIND, 2
823 PASS_MEM_STAT));
824 gimple_debug_bind_set_var (p, var);
825 gimple_debug_bind_set_value (p, value);
826 if (stmt)
827 gimple_set_location (p, gimple_location (stmt));
828
829 return p;
830 }
831
832
833 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
834
835 VAR is bound to VALUE; block and location are taken from STMT. */
836
837 gdebug *
gimple_build_debug_source_bind(tree var,tree value,gimple * stmt MEM_STAT_DECL)838 gimple_build_debug_source_bind (tree var, tree value,
839 gimple *stmt MEM_STAT_DECL)
840 {
841 gdebug *p
842 = as_a <gdebug *> (
843 gimple_build_with_ops_stat (GIMPLE_DEBUG,
844 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
845 PASS_MEM_STAT));
846
847 gimple_debug_source_bind_set_var (p, var);
848 gimple_debug_source_bind_set_value (p, value);
849 if (stmt)
850 gimple_set_location (p, gimple_location (stmt));
851
852 return p;
853 }
854
855
856 /* Build a new GIMPLE_DEBUG_BEGIN_STMT statement in BLOCK at
857 LOCATION. */
858
859 gdebug *
gimple_build_debug_begin_stmt(tree block,location_t location MEM_STAT_DECL)860 gimple_build_debug_begin_stmt (tree block, location_t location
861 MEM_STAT_DECL)
862 {
863 gdebug *p
864 = as_a <gdebug *> (
865 gimple_build_with_ops_stat (GIMPLE_DEBUG,
866 (unsigned)GIMPLE_DEBUG_BEGIN_STMT, 0
867 PASS_MEM_STAT));
868
869 gimple_set_location (p, location);
870 gimple_set_block (p, block);
871 cfun->debug_marker_count++;
872
873 return p;
874 }
875
876
877 /* Build a new GIMPLE_DEBUG_INLINE_ENTRY statement in BLOCK at
878 LOCATION. The BLOCK links to the inlined function. */
879
880 gdebug *
gimple_build_debug_inline_entry(tree block,location_t location MEM_STAT_DECL)881 gimple_build_debug_inline_entry (tree block, location_t location
882 MEM_STAT_DECL)
883 {
884 gdebug *p
885 = as_a <gdebug *> (
886 gimple_build_with_ops_stat (GIMPLE_DEBUG,
887 (unsigned)GIMPLE_DEBUG_INLINE_ENTRY, 0
888 PASS_MEM_STAT));
889
890 gimple_set_location (p, location);
891 gimple_set_block (p, block);
892 cfun->debug_marker_count++;
893
894 return p;
895 }
896
897
898 /* Build a GIMPLE_OMP_CRITICAL statement.
899
900 BODY is the sequence of statements for which only one thread can execute.
901 NAME is optional identifier for this critical block.
902 CLAUSES are clauses for this critical block. */
903
904 gomp_critical *
gimple_build_omp_critical(gimple_seq body,tree name,tree clauses)905 gimple_build_omp_critical (gimple_seq body, tree name, tree clauses)
906 {
907 gomp_critical *p
908 = as_a <gomp_critical *> (gimple_alloc (GIMPLE_OMP_CRITICAL, 0));
909 gimple_omp_critical_set_name (p, name);
910 gimple_omp_critical_set_clauses (p, clauses);
911 if (body)
912 gimple_omp_set_body (p, body);
913
914 return p;
915 }
916
917 /* Build a GIMPLE_OMP_FOR statement.
918
919 BODY is sequence of statements inside the for loop.
920 KIND is the `for' variant.
921 CLAUSES, are any of the construct's clauses.
922 COLLAPSE is the collapse count.
923 PRE_BODY is the sequence of statements that are loop invariant. */
924
925 gomp_for *
gimple_build_omp_for(gimple_seq body,int kind,tree clauses,size_t collapse,gimple_seq pre_body)926 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
927 gimple_seq pre_body)
928 {
929 gomp_for *p = as_a <gomp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
930 if (body)
931 gimple_omp_set_body (p, body);
932 gimple_omp_for_set_clauses (p, clauses);
933 gimple_omp_for_set_kind (p, kind);
934 p->collapse = collapse;
935 p->iter = ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
936
937 if (pre_body)
938 gimple_omp_for_set_pre_body (p, pre_body);
939
940 return p;
941 }
942
943
944 /* Build a GIMPLE_OMP_PARALLEL statement.
945
946 BODY is sequence of statements which are executed in parallel.
947 CLAUSES, are the OMP parallel construct's clauses.
948 CHILD_FN is the function created for the parallel threads to execute.
949 DATA_ARG are the shared data argument(s). */
950
951 gomp_parallel *
gimple_build_omp_parallel(gimple_seq body,tree clauses,tree child_fn,tree data_arg)952 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
953 tree data_arg)
954 {
955 gomp_parallel *p
956 = as_a <gomp_parallel *> (gimple_alloc (GIMPLE_OMP_PARALLEL, 0));
957 if (body)
958 gimple_omp_set_body (p, body);
959 gimple_omp_parallel_set_clauses (p, clauses);
960 gimple_omp_parallel_set_child_fn (p, child_fn);
961 gimple_omp_parallel_set_data_arg (p, data_arg);
962
963 return p;
964 }
965
966
967 /* Build a GIMPLE_OMP_TASK statement.
968
969 BODY is sequence of statements which are executed by the explicit task.
970 CLAUSES, are the OMP parallel construct's clauses.
971 CHILD_FN is the function created for the parallel threads to execute.
972 DATA_ARG are the shared data argument(s).
973 COPY_FN is the optional function for firstprivate initialization.
974 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
975
976 gomp_task *
gimple_build_omp_task(gimple_seq body,tree clauses,tree child_fn,tree data_arg,tree copy_fn,tree arg_size,tree arg_align)977 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
978 tree data_arg, tree copy_fn, tree arg_size,
979 tree arg_align)
980 {
981 gomp_task *p = as_a <gomp_task *> (gimple_alloc (GIMPLE_OMP_TASK, 0));
982 if (body)
983 gimple_omp_set_body (p, body);
984 gimple_omp_task_set_clauses (p, clauses);
985 gimple_omp_task_set_child_fn (p, child_fn);
986 gimple_omp_task_set_data_arg (p, data_arg);
987 gimple_omp_task_set_copy_fn (p, copy_fn);
988 gimple_omp_task_set_arg_size (p, arg_size);
989 gimple_omp_task_set_arg_align (p, arg_align);
990
991 return p;
992 }
993
994
995 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
996
997 BODY is the sequence of statements in the section. */
998
999 gimple *
gimple_build_omp_section(gimple_seq body)1000 gimple_build_omp_section (gimple_seq body)
1001 {
1002 gimple *p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
1003 if (body)
1004 gimple_omp_set_body (p, body);
1005
1006 return p;
1007 }
1008
1009
1010 /* Build a GIMPLE_OMP_MASTER statement.
1011
1012 BODY is the sequence of statements to be executed by just the master. */
1013
1014 gimple *
gimple_build_omp_master(gimple_seq body)1015 gimple_build_omp_master (gimple_seq body)
1016 {
1017 gimple *p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
1018 if (body)
1019 gimple_omp_set_body (p, body);
1020
1021 return p;
1022 }
1023
1024 /* Build a GIMPLE_OMP_GRID_BODY statement.
1025
1026 BODY is the sequence of statements to be executed by the kernel. */
1027
1028 gimple *
gimple_build_omp_grid_body(gimple_seq body)1029 gimple_build_omp_grid_body (gimple_seq body)
1030 {
1031 gimple *p = gimple_alloc (GIMPLE_OMP_GRID_BODY, 0);
1032 if (body)
1033 gimple_omp_set_body (p, body);
1034
1035 return p;
1036 }
1037
1038 /* Build a GIMPLE_OMP_TASKGROUP statement.
1039
1040 BODY is the sequence of statements to be executed by the taskgroup
1041 construct. */
1042
1043 gimple *
gimple_build_omp_taskgroup(gimple_seq body)1044 gimple_build_omp_taskgroup (gimple_seq body)
1045 {
1046 gimple *p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
1047 if (body)
1048 gimple_omp_set_body (p, body);
1049
1050 return p;
1051 }
1052
1053
1054 /* Build a GIMPLE_OMP_CONTINUE statement.
1055
1056 CONTROL_DEF is the definition of the control variable.
1057 CONTROL_USE is the use of the control variable. */
1058
1059 gomp_continue *
gimple_build_omp_continue(tree control_def,tree control_use)1060 gimple_build_omp_continue (tree control_def, tree control_use)
1061 {
1062 gomp_continue *p
1063 = as_a <gomp_continue *> (gimple_alloc (GIMPLE_OMP_CONTINUE, 0));
1064 gimple_omp_continue_set_control_def (p, control_def);
1065 gimple_omp_continue_set_control_use (p, control_use);
1066 return p;
1067 }
1068
1069 /* Build a GIMPLE_OMP_ORDERED statement.
1070
1071 BODY is the sequence of statements inside a loop that will executed in
1072 sequence.
1073 CLAUSES are clauses for this statement. */
1074
1075 gomp_ordered *
gimple_build_omp_ordered(gimple_seq body,tree clauses)1076 gimple_build_omp_ordered (gimple_seq body, tree clauses)
1077 {
1078 gomp_ordered *p
1079 = as_a <gomp_ordered *> (gimple_alloc (GIMPLE_OMP_ORDERED, 0));
1080 gimple_omp_ordered_set_clauses (p, clauses);
1081 if (body)
1082 gimple_omp_set_body (p, body);
1083
1084 return p;
1085 }
1086
1087
1088 /* Build a GIMPLE_OMP_RETURN statement.
1089 WAIT_P is true if this is a non-waiting return. */
1090
1091 gimple *
gimple_build_omp_return(bool wait_p)1092 gimple_build_omp_return (bool wait_p)
1093 {
1094 gimple *p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1095 if (wait_p)
1096 gimple_omp_return_set_nowait (p);
1097
1098 return p;
1099 }
1100
1101
1102 /* Build a GIMPLE_OMP_SECTIONS statement.
1103
1104 BODY is a sequence of section statements.
1105 CLAUSES are any of the OMP sections contsruct's clauses: private,
1106 firstprivate, lastprivate, reduction, and nowait. */
1107
1108 gomp_sections *
gimple_build_omp_sections(gimple_seq body,tree clauses)1109 gimple_build_omp_sections (gimple_seq body, tree clauses)
1110 {
1111 gomp_sections *p
1112 = as_a <gomp_sections *> (gimple_alloc (GIMPLE_OMP_SECTIONS, 0));
1113 if (body)
1114 gimple_omp_set_body (p, body);
1115 gimple_omp_sections_set_clauses (p, clauses);
1116
1117 return p;
1118 }
1119
1120
1121 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1122
1123 gimple *
gimple_build_omp_sections_switch(void)1124 gimple_build_omp_sections_switch (void)
1125 {
1126 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1127 }
1128
1129
1130 /* Build a GIMPLE_OMP_SINGLE statement.
1131
1132 BODY is the sequence of statements that will be executed once.
1133 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1134 copyprivate, nowait. */
1135
1136 gomp_single *
gimple_build_omp_single(gimple_seq body,tree clauses)1137 gimple_build_omp_single (gimple_seq body, tree clauses)
1138 {
1139 gomp_single *p
1140 = as_a <gomp_single *> (gimple_alloc (GIMPLE_OMP_SINGLE, 0));
1141 if (body)
1142 gimple_omp_set_body (p, body);
1143 gimple_omp_single_set_clauses (p, clauses);
1144
1145 return p;
1146 }
1147
1148
1149 /* Build a GIMPLE_OMP_TARGET statement.
1150
1151 BODY is the sequence of statements that will be executed.
1152 KIND is the kind of the region.
1153 CLAUSES are any of the construct's clauses. */
1154
1155 gomp_target *
gimple_build_omp_target(gimple_seq body,int kind,tree clauses)1156 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1157 {
1158 gomp_target *p
1159 = as_a <gomp_target *> (gimple_alloc (GIMPLE_OMP_TARGET, 0));
1160 if (body)
1161 gimple_omp_set_body (p, body);
1162 gimple_omp_target_set_clauses (p, clauses);
1163 gimple_omp_target_set_kind (p, kind);
1164
1165 return p;
1166 }
1167
1168
1169 /* Build a GIMPLE_OMP_TEAMS statement.
1170
1171 BODY is the sequence of statements that will be executed.
1172 CLAUSES are any of the OMP teams construct's clauses. */
1173
1174 gomp_teams *
gimple_build_omp_teams(gimple_seq body,tree clauses)1175 gimple_build_omp_teams (gimple_seq body, tree clauses)
1176 {
1177 gomp_teams *p = as_a <gomp_teams *> (gimple_alloc (GIMPLE_OMP_TEAMS, 0));
1178 if (body)
1179 gimple_omp_set_body (p, body);
1180 gimple_omp_teams_set_clauses (p, clauses);
1181
1182 return p;
1183 }
1184
1185
1186 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1187
1188 gomp_atomic_load *
gimple_build_omp_atomic_load(tree lhs,tree rhs)1189 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1190 {
1191 gomp_atomic_load *p
1192 = as_a <gomp_atomic_load *> (gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0));
1193 gimple_omp_atomic_load_set_lhs (p, lhs);
1194 gimple_omp_atomic_load_set_rhs (p, rhs);
1195 return p;
1196 }
1197
1198 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1199
1200 VAL is the value we are storing. */
1201
1202 gomp_atomic_store *
gimple_build_omp_atomic_store(tree val)1203 gimple_build_omp_atomic_store (tree val)
1204 {
1205 gomp_atomic_store *p
1206 = as_a <gomp_atomic_store *> (gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0));
1207 gimple_omp_atomic_store_set_val (p, val);
1208 return p;
1209 }
1210
1211 /* Build a GIMPLE_TRANSACTION statement. */
1212
1213 gtransaction *
gimple_build_transaction(gimple_seq body)1214 gimple_build_transaction (gimple_seq body)
1215 {
1216 gtransaction *p
1217 = as_a <gtransaction *> (gimple_alloc (GIMPLE_TRANSACTION, 0));
1218 gimple_transaction_set_body (p, body);
1219 gimple_transaction_set_label_norm (p, 0);
1220 gimple_transaction_set_label_uninst (p, 0);
1221 gimple_transaction_set_label_over (p, 0);
1222 return p;
1223 }
1224
1225 #if defined ENABLE_GIMPLE_CHECKING
1226 /* Complain of a gimple type mismatch and die. */
1227
1228 void
gimple_check_failed(const gimple * gs,const char * file,int line,const char * function,enum gimple_code code,enum tree_code subcode)1229 gimple_check_failed (const gimple *gs, const char *file, int line,
1230 const char *function, enum gimple_code code,
1231 enum tree_code subcode)
1232 {
1233 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1234 gimple_code_name[code],
1235 get_tree_code_name (subcode),
1236 gimple_code_name[gimple_code (gs)],
1237 gs->subcode > 0
1238 ? get_tree_code_name ((enum tree_code) gs->subcode)
1239 : "",
1240 function, trim_filename (file), line);
1241 }
1242 #endif /* ENABLE_GIMPLE_CHECKING */
1243
1244
1245 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1246 *SEQ_P is NULL, a new sequence is allocated. */
1247
1248 void
gimple_seq_add_stmt(gimple_seq * seq_p,gimple * gs)1249 gimple_seq_add_stmt (gimple_seq *seq_p, gimple *gs)
1250 {
1251 gimple_stmt_iterator si;
1252 if (gs == NULL)
1253 return;
1254
1255 si = gsi_last (*seq_p);
1256 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1257 }
1258
1259 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1260 *SEQ_P is NULL, a new sequence is allocated. This function is
1261 similar to gimple_seq_add_stmt, but does not scan the operands.
1262 During gimplification, we need to manipulate statement sequences
1263 before the def/use vectors have been constructed. */
1264
1265 void
gimple_seq_add_stmt_without_update(gimple_seq * seq_p,gimple * gs)1266 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple *gs)
1267 {
1268 gimple_stmt_iterator si;
1269
1270 if (gs == NULL)
1271 return;
1272
1273 si = gsi_last (*seq_p);
1274 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1275 }
1276
1277 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1278 NULL, a new sequence is allocated. */
1279
1280 void
gimple_seq_add_seq(gimple_seq * dst_p,gimple_seq src)1281 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1282 {
1283 gimple_stmt_iterator si;
1284 if (src == NULL)
1285 return;
1286
1287 si = gsi_last (*dst_p);
1288 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1289 }
1290
1291 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1292 NULL, a new sequence is allocated. This function is
1293 similar to gimple_seq_add_seq, but does not scan the operands. */
1294
1295 void
gimple_seq_add_seq_without_update(gimple_seq * dst_p,gimple_seq src)1296 gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1297 {
1298 gimple_stmt_iterator si;
1299 if (src == NULL)
1300 return;
1301
1302 si = gsi_last (*dst_p);
1303 gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1304 }
1305
1306 /* Determine whether to assign a location to the statement GS. */
1307
1308 static bool
should_carry_location_p(gimple * gs)1309 should_carry_location_p (gimple *gs)
1310 {
1311 /* Don't emit a line note for a label. We particularly don't want to
1312 emit one for the break label, since it doesn't actually correspond
1313 to the beginning of the loop/switch. */
1314 if (gimple_code (gs) == GIMPLE_LABEL)
1315 return false;
1316
1317 return true;
1318 }
1319
1320 /* Set the location for gimple statement GS to LOCATION. */
1321
1322 static void
annotate_one_with_location(gimple * gs,location_t location)1323 annotate_one_with_location (gimple *gs, location_t location)
1324 {
1325 if (!gimple_has_location (gs)
1326 && !gimple_do_not_emit_location_p (gs)
1327 && should_carry_location_p (gs))
1328 gimple_set_location (gs, location);
1329 }
1330
1331 /* Set LOCATION for all the statements after iterator GSI in sequence
1332 SEQ. If GSI is pointing to the end of the sequence, start with the
1333 first statement in SEQ. */
1334
1335 void
annotate_all_with_location_after(gimple_seq seq,gimple_stmt_iterator gsi,location_t location)1336 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1337 location_t location)
1338 {
1339 if (gsi_end_p (gsi))
1340 gsi = gsi_start (seq);
1341 else
1342 gsi_next (&gsi);
1343
1344 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1345 annotate_one_with_location (gsi_stmt (gsi), location);
1346 }
1347
1348 /* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1349
1350 void
annotate_all_with_location(gimple_seq stmt_p,location_t location)1351 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1352 {
1353 gimple_stmt_iterator i;
1354
1355 if (gimple_seq_empty_p (stmt_p))
1356 return;
1357
1358 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1359 {
1360 gimple *gs = gsi_stmt (i);
1361 annotate_one_with_location (gs, location);
1362 }
1363 }
1364
1365 /* Helper function of empty_body_p. Return true if STMT is an empty
1366 statement. */
1367
1368 static bool
empty_stmt_p(gimple * stmt)1369 empty_stmt_p (gimple *stmt)
1370 {
1371 if (gimple_code (stmt) == GIMPLE_NOP)
1372 return true;
1373 if (gbind *bind_stmt = dyn_cast <gbind *> (stmt))
1374 return empty_body_p (gimple_bind_body (bind_stmt));
1375 return false;
1376 }
1377
1378
1379 /* Return true if BODY contains nothing but empty statements. */
1380
1381 bool
empty_body_p(gimple_seq body)1382 empty_body_p (gimple_seq body)
1383 {
1384 gimple_stmt_iterator i;
1385
1386 if (gimple_seq_empty_p (body))
1387 return true;
1388 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1389 if (!empty_stmt_p (gsi_stmt (i))
1390 && !is_gimple_debug (gsi_stmt (i)))
1391 return false;
1392
1393 return true;
1394 }
1395
1396
1397 /* Perform a deep copy of sequence SRC and return the result. */
1398
1399 gimple_seq
gimple_seq_copy(gimple_seq src)1400 gimple_seq_copy (gimple_seq src)
1401 {
1402 gimple_stmt_iterator gsi;
1403 gimple_seq new_seq = NULL;
1404 gimple *stmt;
1405
1406 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1407 {
1408 stmt = gimple_copy (gsi_stmt (gsi));
1409 gimple_seq_add_stmt (&new_seq, stmt);
1410 }
1411
1412 return new_seq;
1413 }
1414
1415
1416
1417 /* Return true if calls C1 and C2 are known to go to the same function. */
1418
1419 bool
gimple_call_same_target_p(const gimple * c1,const gimple * c2)1420 gimple_call_same_target_p (const gimple *c1, const gimple *c2)
1421 {
1422 if (gimple_call_internal_p (c1))
1423 return (gimple_call_internal_p (c2)
1424 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2)
1425 && (!gimple_call_internal_unique_p (as_a <const gcall *> (c1))
1426 || c1 == c2));
1427 else
1428 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1429 || (gimple_call_fndecl (c1)
1430 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1431 }
1432
1433 /* Detect flags from a GIMPLE_CALL. This is just like
1434 call_expr_flags, but for gimple tuples. */
1435
1436 int
gimple_call_flags(const gimple * stmt)1437 gimple_call_flags (const gimple *stmt)
1438 {
1439 int flags;
1440 tree decl = gimple_call_fndecl (stmt);
1441
1442 if (decl)
1443 flags = flags_from_decl_or_type (decl);
1444 else if (gimple_call_internal_p (stmt))
1445 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1446 else
1447 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1448
1449 if (stmt->subcode & GF_CALL_NOTHROW)
1450 flags |= ECF_NOTHROW;
1451
1452 if (stmt->subcode & GF_CALL_BY_DESCRIPTOR)
1453 flags |= ECF_BY_DESCRIPTOR;
1454
1455 return flags;
1456 }
1457
1458 /* Return the "fn spec" string for call STMT. */
1459
1460 static const_tree
gimple_call_fnspec(const gcall * stmt)1461 gimple_call_fnspec (const gcall *stmt)
1462 {
1463 tree type, attr;
1464
1465 if (gimple_call_internal_p (stmt))
1466 return internal_fn_fnspec (gimple_call_internal_fn (stmt));
1467
1468 type = gimple_call_fntype (stmt);
1469 if (!type)
1470 return NULL_TREE;
1471
1472 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1473 if (!attr)
1474 return NULL_TREE;
1475
1476 return TREE_VALUE (TREE_VALUE (attr));
1477 }
1478
1479 /* Detects argument flags for argument number ARG on call STMT. */
1480
1481 int
gimple_call_arg_flags(const gcall * stmt,unsigned arg)1482 gimple_call_arg_flags (const gcall *stmt, unsigned arg)
1483 {
1484 const_tree attr = gimple_call_fnspec (stmt);
1485
1486 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1487 return 0;
1488
1489 switch (TREE_STRING_POINTER (attr)[1 + arg])
1490 {
1491 case 'x':
1492 case 'X':
1493 return EAF_UNUSED;
1494
1495 case 'R':
1496 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1497
1498 case 'r':
1499 return EAF_NOCLOBBER | EAF_NOESCAPE;
1500
1501 case 'W':
1502 return EAF_DIRECT | EAF_NOESCAPE;
1503
1504 case 'w':
1505 return EAF_NOESCAPE;
1506
1507 case '.':
1508 default:
1509 return 0;
1510 }
1511 }
1512
1513 /* Detects return flags for the call STMT. */
1514
1515 int
gimple_call_return_flags(const gcall * stmt)1516 gimple_call_return_flags (const gcall *stmt)
1517 {
1518 const_tree attr;
1519
1520 if (gimple_call_flags (stmt) & ECF_MALLOC)
1521 return ERF_NOALIAS;
1522
1523 attr = gimple_call_fnspec (stmt);
1524 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1525 return 0;
1526
1527 switch (TREE_STRING_POINTER (attr)[0])
1528 {
1529 case '1':
1530 case '2':
1531 case '3':
1532 case '4':
1533 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1534
1535 case 'm':
1536 return ERF_NOALIAS;
1537
1538 case '.':
1539 default:
1540 return 0;
1541 }
1542 }
1543
1544
1545 /* Return true if GS is a copy assignment. */
1546
1547 bool
gimple_assign_copy_p(gimple * gs)1548 gimple_assign_copy_p (gimple *gs)
1549 {
1550 return (gimple_assign_single_p (gs)
1551 && is_gimple_val (gimple_op (gs, 1)));
1552 }
1553
1554
1555 /* Return true if GS is a SSA_NAME copy assignment. */
1556
1557 bool
gimple_assign_ssa_name_copy_p(gimple * gs)1558 gimple_assign_ssa_name_copy_p (gimple *gs)
1559 {
1560 return (gimple_assign_single_p (gs)
1561 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1562 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1563 }
1564
1565
1566 /* Return true if GS is an assignment with a unary RHS, but the
1567 operator has no effect on the assigned value. The logic is adapted
1568 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1569 instances in which STRIP_NOPS was previously applied to the RHS of
1570 an assignment.
1571
1572 NOTE: In the use cases that led to the creation of this function
1573 and of gimple_assign_single_p, it is typical to test for either
1574 condition and to proceed in the same manner. In each case, the
1575 assigned value is represented by the single RHS operand of the
1576 assignment. I suspect there may be cases where gimple_assign_copy_p,
1577 gimple_assign_single_p, or equivalent logic is used where a similar
1578 treatment of unary NOPs is appropriate. */
1579
1580 bool
gimple_assign_unary_nop_p(gimple * gs)1581 gimple_assign_unary_nop_p (gimple *gs)
1582 {
1583 return (is_gimple_assign (gs)
1584 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1585 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1586 && gimple_assign_rhs1 (gs) != error_mark_node
1587 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1588 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1589 }
1590
1591 /* Set BB to be the basic block holding G. */
1592
1593 void
gimple_set_bb(gimple * stmt,basic_block bb)1594 gimple_set_bb (gimple *stmt, basic_block bb)
1595 {
1596 stmt->bb = bb;
1597
1598 if (gimple_code (stmt) != GIMPLE_LABEL)
1599 return;
1600
1601 /* If the statement is a label, add the label to block-to-labels map
1602 so that we can speed up edge creation for GIMPLE_GOTOs. */
1603 if (cfun->cfg)
1604 {
1605 tree t;
1606 int uid;
1607
1608 t = gimple_label_label (as_a <glabel *> (stmt));
1609 uid = LABEL_DECL_UID (t);
1610 if (uid == -1)
1611 {
1612 unsigned old_len =
1613 vec_safe_length (label_to_block_map_for_fn (cfun));
1614 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1615 if (old_len <= (unsigned) uid)
1616 {
1617 unsigned new_len = 3 * uid / 2 + 1;
1618
1619 vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
1620 new_len);
1621 }
1622 }
1623
1624 (*label_to_block_map_for_fn (cfun))[uid] = bb;
1625 }
1626 }
1627
1628
1629 /* Modify the RHS of the assignment pointed-to by GSI using the
1630 operands in the expression tree EXPR.
1631
1632 NOTE: The statement pointed-to by GSI may be reallocated if it
1633 did not have enough operand slots.
1634
1635 This function is useful to convert an existing tree expression into
1636 the flat representation used for the RHS of a GIMPLE assignment.
1637 It will reallocate memory as needed to expand or shrink the number
1638 of operand slots needed to represent EXPR.
1639
1640 NOTE: If you find yourself building a tree and then calling this
1641 function, you are most certainly doing it the slow way. It is much
1642 better to build a new assignment or to use the function
1643 gimple_assign_set_rhs_with_ops, which does not require an
1644 expression tree to be built. */
1645
1646 void
gimple_assign_set_rhs_from_tree(gimple_stmt_iterator * gsi,tree expr)1647 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1648 {
1649 enum tree_code subcode;
1650 tree op1, op2, op3;
1651
1652 extract_ops_from_tree (expr, &subcode, &op1, &op2, &op3);
1653 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2, op3);
1654 }
1655
1656
1657 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1658 operands OP1, OP2 and OP3.
1659
1660 NOTE: The statement pointed-to by GSI may be reallocated if it
1661 did not have enough operand slots. */
1662
1663 void
gimple_assign_set_rhs_with_ops(gimple_stmt_iterator * gsi,enum tree_code code,tree op1,tree op2,tree op3)1664 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1665 tree op1, tree op2, tree op3)
1666 {
1667 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1668 gimple *stmt = gsi_stmt (*gsi);
1669
1670 /* If the new CODE needs more operands, allocate a new statement. */
1671 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1672 {
1673 tree lhs = gimple_assign_lhs (stmt);
1674 gimple *new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1675 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1676 gimple_init_singleton (new_stmt);
1677 gsi_replace (gsi, new_stmt, false);
1678 stmt = new_stmt;
1679
1680 /* The LHS needs to be reset as this also changes the SSA name
1681 on the LHS. */
1682 gimple_assign_set_lhs (stmt, lhs);
1683 }
1684
1685 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1686 gimple_set_subcode (stmt, code);
1687 gimple_assign_set_rhs1 (stmt, op1);
1688 if (new_rhs_ops > 1)
1689 gimple_assign_set_rhs2 (stmt, op2);
1690 if (new_rhs_ops > 2)
1691 gimple_assign_set_rhs3 (stmt, op3);
1692 }
1693
1694
1695 /* Return the LHS of a statement that performs an assignment,
1696 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1697 for a call to a function that returns no value, or for a
1698 statement other than an assignment or a call. */
1699
1700 tree
gimple_get_lhs(const gimple * stmt)1701 gimple_get_lhs (const gimple *stmt)
1702 {
1703 enum gimple_code code = gimple_code (stmt);
1704
1705 if (code == GIMPLE_ASSIGN)
1706 return gimple_assign_lhs (stmt);
1707 else if (code == GIMPLE_CALL)
1708 return gimple_call_lhs (stmt);
1709 else
1710 return NULL_TREE;
1711 }
1712
1713
1714 /* Set the LHS of a statement that performs an assignment,
1715 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1716
1717 void
gimple_set_lhs(gimple * stmt,tree lhs)1718 gimple_set_lhs (gimple *stmt, tree lhs)
1719 {
1720 enum gimple_code code = gimple_code (stmt);
1721
1722 if (code == GIMPLE_ASSIGN)
1723 gimple_assign_set_lhs (stmt, lhs);
1724 else if (code == GIMPLE_CALL)
1725 gimple_call_set_lhs (stmt, lhs);
1726 else
1727 gcc_unreachable ();
1728 }
1729
1730
1731 /* Return a deep copy of statement STMT. All the operands from STMT
1732 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1733 and VUSE operand arrays are set to empty in the new copy. The new
1734 copy isn't part of any sequence. */
1735
1736 gimple *
gimple_copy(gimple * stmt)1737 gimple_copy (gimple *stmt)
1738 {
1739 enum gimple_code code = gimple_code (stmt);
1740 unsigned num_ops = gimple_num_ops (stmt);
1741 gimple *copy = gimple_alloc (code, num_ops);
1742 unsigned i;
1743
1744 /* Shallow copy all the fields from STMT. */
1745 memcpy (copy, stmt, gimple_size (code));
1746 gimple_init_singleton (copy);
1747
1748 /* If STMT has sub-statements, deep-copy them as well. */
1749 if (gimple_has_substatements (stmt))
1750 {
1751 gimple_seq new_seq;
1752 tree t;
1753
1754 switch (gimple_code (stmt))
1755 {
1756 case GIMPLE_BIND:
1757 {
1758 gbind *bind_stmt = as_a <gbind *> (stmt);
1759 gbind *bind_copy = as_a <gbind *> (copy);
1760 new_seq = gimple_seq_copy (gimple_bind_body (bind_stmt));
1761 gimple_bind_set_body (bind_copy, new_seq);
1762 gimple_bind_set_vars (bind_copy,
1763 unshare_expr (gimple_bind_vars (bind_stmt)));
1764 gimple_bind_set_block (bind_copy, gimple_bind_block (bind_stmt));
1765 }
1766 break;
1767
1768 case GIMPLE_CATCH:
1769 {
1770 gcatch *catch_stmt = as_a <gcatch *> (stmt);
1771 gcatch *catch_copy = as_a <gcatch *> (copy);
1772 new_seq = gimple_seq_copy (gimple_catch_handler (catch_stmt));
1773 gimple_catch_set_handler (catch_copy, new_seq);
1774 t = unshare_expr (gimple_catch_types (catch_stmt));
1775 gimple_catch_set_types (catch_copy, t);
1776 }
1777 break;
1778
1779 case GIMPLE_EH_FILTER:
1780 {
1781 geh_filter *eh_filter_stmt = as_a <geh_filter *> (stmt);
1782 geh_filter *eh_filter_copy = as_a <geh_filter *> (copy);
1783 new_seq
1784 = gimple_seq_copy (gimple_eh_filter_failure (eh_filter_stmt));
1785 gimple_eh_filter_set_failure (eh_filter_copy, new_seq);
1786 t = unshare_expr (gimple_eh_filter_types (eh_filter_stmt));
1787 gimple_eh_filter_set_types (eh_filter_copy, t);
1788 }
1789 break;
1790
1791 case GIMPLE_EH_ELSE:
1792 {
1793 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
1794 geh_else *eh_else_copy = as_a <geh_else *> (copy);
1795 new_seq = gimple_seq_copy (gimple_eh_else_n_body (eh_else_stmt));
1796 gimple_eh_else_set_n_body (eh_else_copy, new_seq);
1797 new_seq = gimple_seq_copy (gimple_eh_else_e_body (eh_else_stmt));
1798 gimple_eh_else_set_e_body (eh_else_copy, new_seq);
1799 }
1800 break;
1801
1802 case GIMPLE_TRY:
1803 {
1804 gtry *try_stmt = as_a <gtry *> (stmt);
1805 gtry *try_copy = as_a <gtry *> (copy);
1806 new_seq = gimple_seq_copy (gimple_try_eval (try_stmt));
1807 gimple_try_set_eval (try_copy, new_seq);
1808 new_seq = gimple_seq_copy (gimple_try_cleanup (try_stmt));
1809 gimple_try_set_cleanup (try_copy, new_seq);
1810 }
1811 break;
1812
1813 case GIMPLE_OMP_FOR:
1814 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1815 gimple_omp_for_set_pre_body (copy, new_seq);
1816 t = unshare_expr (gimple_omp_for_clauses (stmt));
1817 gimple_omp_for_set_clauses (copy, t);
1818 {
1819 gomp_for *omp_for_copy = as_a <gomp_for *> (copy);
1820 omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1821 ( gimple_omp_for_collapse (stmt));
1822 }
1823 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1824 {
1825 gimple_omp_for_set_cond (copy, i,
1826 gimple_omp_for_cond (stmt, i));
1827 gimple_omp_for_set_index (copy, i,
1828 gimple_omp_for_index (stmt, i));
1829 t = unshare_expr (gimple_omp_for_initial (stmt, i));
1830 gimple_omp_for_set_initial (copy, i, t);
1831 t = unshare_expr (gimple_omp_for_final (stmt, i));
1832 gimple_omp_for_set_final (copy, i, t);
1833 t = unshare_expr (gimple_omp_for_incr (stmt, i));
1834 gimple_omp_for_set_incr (copy, i, t);
1835 }
1836 goto copy_omp_body;
1837
1838 case GIMPLE_OMP_PARALLEL:
1839 {
1840 gomp_parallel *omp_par_stmt = as_a <gomp_parallel *> (stmt);
1841 gomp_parallel *omp_par_copy = as_a <gomp_parallel *> (copy);
1842 t = unshare_expr (gimple_omp_parallel_clauses (omp_par_stmt));
1843 gimple_omp_parallel_set_clauses (omp_par_copy, t);
1844 t = unshare_expr (gimple_omp_parallel_child_fn (omp_par_stmt));
1845 gimple_omp_parallel_set_child_fn (omp_par_copy, t);
1846 t = unshare_expr (gimple_omp_parallel_data_arg (omp_par_stmt));
1847 gimple_omp_parallel_set_data_arg (omp_par_copy, t);
1848 }
1849 goto copy_omp_body;
1850
1851 case GIMPLE_OMP_TASK:
1852 t = unshare_expr (gimple_omp_task_clauses (stmt));
1853 gimple_omp_task_set_clauses (copy, t);
1854 t = unshare_expr (gimple_omp_task_child_fn (stmt));
1855 gimple_omp_task_set_child_fn (copy, t);
1856 t = unshare_expr (gimple_omp_task_data_arg (stmt));
1857 gimple_omp_task_set_data_arg (copy, t);
1858 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1859 gimple_omp_task_set_copy_fn (copy, t);
1860 t = unshare_expr (gimple_omp_task_arg_size (stmt));
1861 gimple_omp_task_set_arg_size (copy, t);
1862 t = unshare_expr (gimple_omp_task_arg_align (stmt));
1863 gimple_omp_task_set_arg_align (copy, t);
1864 goto copy_omp_body;
1865
1866 case GIMPLE_OMP_CRITICAL:
1867 t = unshare_expr (gimple_omp_critical_name
1868 (as_a <gomp_critical *> (stmt)));
1869 gimple_omp_critical_set_name (as_a <gomp_critical *> (copy), t);
1870 t = unshare_expr (gimple_omp_critical_clauses
1871 (as_a <gomp_critical *> (stmt)));
1872 gimple_omp_critical_set_clauses (as_a <gomp_critical *> (copy), t);
1873 goto copy_omp_body;
1874
1875 case GIMPLE_OMP_ORDERED:
1876 t = unshare_expr (gimple_omp_ordered_clauses
1877 (as_a <gomp_ordered *> (stmt)));
1878 gimple_omp_ordered_set_clauses (as_a <gomp_ordered *> (copy), t);
1879 goto copy_omp_body;
1880
1881 case GIMPLE_OMP_SECTIONS:
1882 t = unshare_expr (gimple_omp_sections_clauses (stmt));
1883 gimple_omp_sections_set_clauses (copy, t);
1884 t = unshare_expr (gimple_omp_sections_control (stmt));
1885 gimple_omp_sections_set_control (copy, t);
1886 goto copy_omp_body;
1887
1888 case GIMPLE_OMP_SINGLE:
1889 {
1890 gomp_single *omp_single_copy = as_a <gomp_single *> (copy);
1891 t = unshare_expr (gimple_omp_single_clauses (stmt));
1892 gimple_omp_single_set_clauses (omp_single_copy, t);
1893 }
1894 goto copy_omp_body;
1895
1896 case GIMPLE_OMP_TARGET:
1897 {
1898 gomp_target *omp_target_stmt = as_a <gomp_target *> (stmt);
1899 gomp_target *omp_target_copy = as_a <gomp_target *> (copy);
1900 t = unshare_expr (gimple_omp_target_clauses (omp_target_stmt));
1901 gimple_omp_target_set_clauses (omp_target_copy, t);
1902 t = unshare_expr (gimple_omp_target_data_arg (omp_target_stmt));
1903 gimple_omp_target_set_data_arg (omp_target_copy, t);
1904 }
1905 goto copy_omp_body;
1906
1907 case GIMPLE_OMP_TEAMS:
1908 {
1909 gomp_teams *omp_teams_copy = as_a <gomp_teams *> (copy);
1910 t = unshare_expr (gimple_omp_teams_clauses (stmt));
1911 gimple_omp_teams_set_clauses (omp_teams_copy, t);
1912 }
1913 /* FALLTHRU */
1914
1915 case GIMPLE_OMP_SECTION:
1916 case GIMPLE_OMP_MASTER:
1917 case GIMPLE_OMP_TASKGROUP:
1918 case GIMPLE_OMP_GRID_BODY:
1919 copy_omp_body:
1920 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
1921 gimple_omp_set_body (copy, new_seq);
1922 break;
1923
1924 case GIMPLE_TRANSACTION:
1925 new_seq = gimple_seq_copy (gimple_transaction_body (
1926 as_a <gtransaction *> (stmt)));
1927 gimple_transaction_set_body (as_a <gtransaction *> (copy),
1928 new_seq);
1929 break;
1930
1931 case GIMPLE_WITH_CLEANUP_EXPR:
1932 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
1933 gimple_wce_set_cleanup (copy, new_seq);
1934 break;
1935
1936 default:
1937 gcc_unreachable ();
1938 }
1939 }
1940
1941 /* Make copy of operands. */
1942 for (i = 0; i < num_ops; i++)
1943 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
1944
1945 if (gimple_has_mem_ops (stmt))
1946 {
1947 gimple_set_vdef (copy, gimple_vdef (stmt));
1948 gimple_set_vuse (copy, gimple_vuse (stmt));
1949 }
1950
1951 /* Clear out SSA operand vectors on COPY. */
1952 if (gimple_has_ops (stmt))
1953 {
1954 gimple_set_use_ops (copy, NULL);
1955
1956 /* SSA operands need to be updated. */
1957 gimple_set_modified (copy, true);
1958 }
1959
1960 if (gimple_debug_nonbind_marker_p (stmt))
1961 cfun->debug_marker_count++;
1962
1963 return copy;
1964 }
1965
1966
1967 /* Return true if statement S has side-effects. We consider a
1968 statement to have side effects if:
1969
1970 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
1971 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
1972
1973 bool
gimple_has_side_effects(const gimple * s)1974 gimple_has_side_effects (const gimple *s)
1975 {
1976 if (is_gimple_debug (s))
1977 return false;
1978
1979 /* We don't have to scan the arguments to check for
1980 volatile arguments, though, at present, we still
1981 do a scan to check for TREE_SIDE_EFFECTS. */
1982 if (gimple_has_volatile_ops (s))
1983 return true;
1984
1985 if (gimple_code (s) == GIMPLE_ASM
1986 && gimple_asm_volatile_p (as_a <const gasm *> (s)))
1987 return true;
1988
1989 if (is_gimple_call (s))
1990 {
1991 int flags = gimple_call_flags (s);
1992
1993 /* An infinite loop is considered a side effect. */
1994 if (!(flags & (ECF_CONST | ECF_PURE))
1995 || (flags & ECF_LOOPING_CONST_OR_PURE))
1996 return true;
1997
1998 return false;
1999 }
2000
2001 return false;
2002 }
2003
2004 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2005 Return true if S can trap. When INCLUDE_MEM is true, check whether
2006 the memory operations could trap. When INCLUDE_STORES is true and
2007 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
2008
2009 bool
gimple_could_trap_p_1(gimple * s,bool include_mem,bool include_stores)2010 gimple_could_trap_p_1 (gimple *s, bool include_mem, bool include_stores)
2011 {
2012 tree t, div = NULL_TREE;
2013 enum tree_code op;
2014
2015 if (include_mem)
2016 {
2017 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
2018
2019 for (i = start; i < gimple_num_ops (s); i++)
2020 if (tree_could_trap_p (gimple_op (s, i)))
2021 return true;
2022 }
2023
2024 switch (gimple_code (s))
2025 {
2026 case GIMPLE_ASM:
2027 return gimple_asm_volatile_p (as_a <gasm *> (s));
2028
2029 case GIMPLE_CALL:
2030 t = gimple_call_fndecl (s);
2031 /* Assume that calls to weak functions may trap. */
2032 if (!t || !DECL_P (t) || DECL_WEAK (t))
2033 return true;
2034 return false;
2035
2036 case GIMPLE_ASSIGN:
2037 t = gimple_expr_type (s);
2038 op = gimple_assign_rhs_code (s);
2039 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2040 div = gimple_assign_rhs2 (s);
2041 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2042 (INTEGRAL_TYPE_P (t)
2043 && TYPE_OVERFLOW_TRAPS (t)),
2044 div));
2045
2046 case GIMPLE_COND:
2047 t = TREE_TYPE (gimple_cond_lhs (s));
2048 return operation_could_trap_p (gimple_cond_code (s),
2049 FLOAT_TYPE_P (t), false, NULL_TREE);
2050
2051 default:
2052 break;
2053 }
2054
2055 return false;
2056 }
2057
2058 /* Return true if statement S can trap. */
2059
2060 bool
gimple_could_trap_p(gimple * s)2061 gimple_could_trap_p (gimple *s)
2062 {
2063 return gimple_could_trap_p_1 (s, true, true);
2064 }
2065
2066 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2067
2068 bool
gimple_assign_rhs_could_trap_p(gimple * s)2069 gimple_assign_rhs_could_trap_p (gimple *s)
2070 {
2071 gcc_assert (is_gimple_assign (s));
2072 return gimple_could_trap_p_1 (s, true, false);
2073 }
2074
2075
2076 /* Print debugging information for gimple stmts generated. */
2077
2078 void
dump_gimple_statistics(void)2079 dump_gimple_statistics (void)
2080 {
2081 int i;
2082 uint64_t total_tuples = 0, total_bytes = 0;
2083
2084 if (! GATHER_STATISTICS)
2085 {
2086 fprintf (stderr, "No GIMPLE statistics\n");
2087 return;
2088 }
2089
2090 fprintf (stderr, "\nGIMPLE statements\n");
2091 fprintf (stderr, "Kind Stmts Bytes\n");
2092 fprintf (stderr, "---------------------------------------\n");
2093 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2094 {
2095 fprintf (stderr, "%-20s %7" PRIu64 " %10" PRIu64 "\n",
2096 gimple_alloc_kind_names[i], gimple_alloc_counts[i],
2097 gimple_alloc_sizes[i]);
2098 total_tuples += gimple_alloc_counts[i];
2099 total_bytes += gimple_alloc_sizes[i];
2100 }
2101 fprintf (stderr, "---------------------------------------\n");
2102 fprintf (stderr, "%-20s %7" PRIu64 " %10" PRIu64 "\n", "Total",
2103 total_tuples, total_bytes);
2104 fprintf (stderr, "---------------------------------------\n");
2105 }
2106
2107
2108 /* Return the number of operands needed on the RHS of a GIMPLE
2109 assignment for an expression with tree code CODE. */
2110
2111 unsigned
get_gimple_rhs_num_ops(enum tree_code code)2112 get_gimple_rhs_num_ops (enum tree_code code)
2113 {
2114 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2115
2116 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2117 return 1;
2118 else if (rhs_class == GIMPLE_BINARY_RHS)
2119 return 2;
2120 else if (rhs_class == GIMPLE_TERNARY_RHS)
2121 return 3;
2122 else
2123 gcc_unreachable ();
2124 }
2125
2126 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2127 (unsigned char) \
2128 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2129 : ((TYPE) == tcc_binary \
2130 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2131 : ((TYPE) == tcc_constant \
2132 || (TYPE) == tcc_declaration \
2133 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2134 : ((SYM) == TRUTH_AND_EXPR \
2135 || (SYM) == TRUTH_OR_EXPR \
2136 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2137 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2138 : ((SYM) == COND_EXPR \
2139 || (SYM) == WIDEN_MULT_PLUS_EXPR \
2140 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2141 || (SYM) == DOT_PROD_EXPR \
2142 || (SYM) == SAD_EXPR \
2143 || (SYM) == REALIGN_LOAD_EXPR \
2144 || (SYM) == VEC_COND_EXPR \
2145 || (SYM) == VEC_PERM_EXPR \
2146 || (SYM) == BIT_INSERT_EXPR \
2147 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2148 : ((SYM) == CONSTRUCTOR \
2149 || (SYM) == OBJ_TYPE_REF \
2150 || (SYM) == ASSERT_EXPR \
2151 || (SYM) == ADDR_EXPR \
2152 || (SYM) == WITH_SIZE_EXPR \
2153 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
2154 : GIMPLE_INVALID_RHS),
2155 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2156
2157 const unsigned char gimple_rhs_class_table[] = {
2158 #include "all-tree.def"
2159 };
2160
2161 #undef DEFTREECODE
2162 #undef END_OF_BASE_TREE_CODES
2163
2164 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2165 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2166 we failed to create one. */
2167
2168 tree
canonicalize_cond_expr_cond(tree t)2169 canonicalize_cond_expr_cond (tree t)
2170 {
2171 /* Strip conversions around boolean operations. */
2172 if (CONVERT_EXPR_P (t)
2173 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2174 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2175 == BOOLEAN_TYPE))
2176 t = TREE_OPERAND (t, 0);
2177
2178 /* For !x use x == 0. */
2179 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2180 {
2181 tree top0 = TREE_OPERAND (t, 0);
2182 t = build2 (EQ_EXPR, TREE_TYPE (t),
2183 top0, build_int_cst (TREE_TYPE (top0), 0));
2184 }
2185 /* For cmp ? 1 : 0 use cmp. */
2186 else if (TREE_CODE (t) == COND_EXPR
2187 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2188 && integer_onep (TREE_OPERAND (t, 1))
2189 && integer_zerop (TREE_OPERAND (t, 2)))
2190 {
2191 tree top0 = TREE_OPERAND (t, 0);
2192 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2193 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2194 }
2195 /* For x ^ y use x != y. */
2196 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2197 t = build2 (NE_EXPR, TREE_TYPE (t),
2198 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2199
2200 if (is_gimple_condexpr (t))
2201 return t;
2202
2203 return NULL_TREE;
2204 }
2205
2206 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2207 the positions marked by the set ARGS_TO_SKIP. */
2208
2209 gcall *
gimple_call_copy_skip_args(gcall * stmt,bitmap args_to_skip)2210 gimple_call_copy_skip_args (gcall *stmt, bitmap args_to_skip)
2211 {
2212 int i;
2213 int nargs = gimple_call_num_args (stmt);
2214 auto_vec<tree> vargs (nargs);
2215 gcall *new_stmt;
2216
2217 for (i = 0; i < nargs; i++)
2218 if (!bitmap_bit_p (args_to_skip, i))
2219 vargs.quick_push (gimple_call_arg (stmt, i));
2220
2221 if (gimple_call_internal_p (stmt))
2222 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2223 vargs);
2224 else
2225 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2226
2227 if (gimple_call_lhs (stmt))
2228 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2229
2230 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2231 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2232
2233 if (gimple_has_location (stmt))
2234 gimple_set_location (new_stmt, gimple_location (stmt));
2235 gimple_call_copy_flags (new_stmt, stmt);
2236 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2237
2238 gimple_set_modified (new_stmt, true);
2239
2240 return new_stmt;
2241 }
2242
2243
2244
2245 /* Return true if the field decls F1 and F2 are at the same offset.
2246
2247 This is intended to be used on GIMPLE types only. */
2248
2249 bool
gimple_compare_field_offset(tree f1,tree f2)2250 gimple_compare_field_offset (tree f1, tree f2)
2251 {
2252 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2253 {
2254 tree offset1 = DECL_FIELD_OFFSET (f1);
2255 tree offset2 = DECL_FIELD_OFFSET (f2);
2256 return ((offset1 == offset2
2257 /* Once gimplification is done, self-referential offsets are
2258 instantiated as operand #2 of the COMPONENT_REF built for
2259 each access and reset. Therefore, they are not relevant
2260 anymore and fields are interchangeable provided that they
2261 represent the same access. */
2262 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2263 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2264 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2265 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2266 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2267 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2268 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2269 || operand_equal_p (offset1, offset2, 0))
2270 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2271 DECL_FIELD_BIT_OFFSET (f2)));
2272 }
2273
2274 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2275 should be, so handle differing ones specially by decomposing
2276 the offset into a byte and bit offset manually. */
2277 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2278 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2279 {
2280 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2281 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2282 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2283 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2284 + bit_offset1 / BITS_PER_UNIT);
2285 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2286 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2287 + bit_offset2 / BITS_PER_UNIT);
2288 if (byte_offset1 != byte_offset2)
2289 return false;
2290 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2291 }
2292
2293 return false;
2294 }
2295
2296
2297 /* Return a type the same as TYPE except unsigned or
2298 signed according to UNSIGNEDP. */
2299
2300 static tree
gimple_signed_or_unsigned_type(bool unsignedp,tree type)2301 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2302 {
2303 tree type1;
2304 int i;
2305
2306 type1 = TYPE_MAIN_VARIANT (type);
2307 if (type1 == signed_char_type_node
2308 || type1 == char_type_node
2309 || type1 == unsigned_char_type_node)
2310 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2311 if (type1 == integer_type_node || type1 == unsigned_type_node)
2312 return unsignedp ? unsigned_type_node : integer_type_node;
2313 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2314 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2315 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2316 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2317 if (type1 == long_long_integer_type_node
2318 || type1 == long_long_unsigned_type_node)
2319 return unsignedp
2320 ? long_long_unsigned_type_node
2321 : long_long_integer_type_node;
2322
2323 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2324 if (int_n_enabled_p[i]
2325 && (type1 == int_n_trees[i].unsigned_type
2326 || type1 == int_n_trees[i].signed_type))
2327 return unsignedp
2328 ? int_n_trees[i].unsigned_type
2329 : int_n_trees[i].signed_type;
2330
2331 #if HOST_BITS_PER_WIDE_INT >= 64
2332 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2333 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2334 #endif
2335 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2336 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2337 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2338 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2339 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2340 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2341 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2342 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2343
2344 #define GIMPLE_FIXED_TYPES(NAME) \
2345 if (type1 == short_ ## NAME ## _type_node \
2346 || type1 == unsigned_short_ ## NAME ## _type_node) \
2347 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2348 : short_ ## NAME ## _type_node; \
2349 if (type1 == NAME ## _type_node \
2350 || type1 == unsigned_ ## NAME ## _type_node) \
2351 return unsignedp ? unsigned_ ## NAME ## _type_node \
2352 : NAME ## _type_node; \
2353 if (type1 == long_ ## NAME ## _type_node \
2354 || type1 == unsigned_long_ ## NAME ## _type_node) \
2355 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2356 : long_ ## NAME ## _type_node; \
2357 if (type1 == long_long_ ## NAME ## _type_node \
2358 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2359 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2360 : long_long_ ## NAME ## _type_node;
2361
2362 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2363 if (type1 == NAME ## _type_node \
2364 || type1 == u ## NAME ## _type_node) \
2365 return unsignedp ? u ## NAME ## _type_node \
2366 : NAME ## _type_node;
2367
2368 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2369 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2370 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2371 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2372 : sat_ ## short_ ## NAME ## _type_node; \
2373 if (type1 == sat_ ## NAME ## _type_node \
2374 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2375 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2376 : sat_ ## NAME ## _type_node; \
2377 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2378 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2379 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2380 : sat_ ## long_ ## NAME ## _type_node; \
2381 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2382 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2383 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2384 : sat_ ## long_long_ ## NAME ## _type_node;
2385
2386 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2387 if (type1 == sat_ ## NAME ## _type_node \
2388 || type1 == sat_ ## u ## NAME ## _type_node) \
2389 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2390 : sat_ ## NAME ## _type_node;
2391
2392 GIMPLE_FIXED_TYPES (fract);
2393 GIMPLE_FIXED_TYPES_SAT (fract);
2394 GIMPLE_FIXED_TYPES (accum);
2395 GIMPLE_FIXED_TYPES_SAT (accum);
2396
2397 GIMPLE_FIXED_MODE_TYPES (qq);
2398 GIMPLE_FIXED_MODE_TYPES (hq);
2399 GIMPLE_FIXED_MODE_TYPES (sq);
2400 GIMPLE_FIXED_MODE_TYPES (dq);
2401 GIMPLE_FIXED_MODE_TYPES (tq);
2402 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2403 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2404 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2405 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2406 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2407 GIMPLE_FIXED_MODE_TYPES (ha);
2408 GIMPLE_FIXED_MODE_TYPES (sa);
2409 GIMPLE_FIXED_MODE_TYPES (da);
2410 GIMPLE_FIXED_MODE_TYPES (ta);
2411 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2412 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2413 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2414 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2415
2416 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2417 the precision; they have precision set to match their range, but
2418 may use a wider mode to match an ABI. If we change modes, we may
2419 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2420 the precision as well, so as to yield correct results for
2421 bit-field types. C++ does not have these separate bit-field
2422 types, and producing a signed or unsigned variant of an
2423 ENUMERAL_TYPE may cause other problems as well. */
2424 if (!INTEGRAL_TYPE_P (type)
2425 || TYPE_UNSIGNED (type) == unsignedp)
2426 return type;
2427
2428 #define TYPE_OK(node) \
2429 (TYPE_MODE (type) == TYPE_MODE (node) \
2430 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2431 if (TYPE_OK (signed_char_type_node))
2432 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2433 if (TYPE_OK (integer_type_node))
2434 return unsignedp ? unsigned_type_node : integer_type_node;
2435 if (TYPE_OK (short_integer_type_node))
2436 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2437 if (TYPE_OK (long_integer_type_node))
2438 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2439 if (TYPE_OK (long_long_integer_type_node))
2440 return (unsignedp
2441 ? long_long_unsigned_type_node
2442 : long_long_integer_type_node);
2443
2444 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2445 if (int_n_enabled_p[i]
2446 && TYPE_MODE (type) == int_n_data[i].m
2447 && TYPE_PRECISION (type) == int_n_data[i].bitsize)
2448 return unsignedp
2449 ? int_n_trees[i].unsigned_type
2450 : int_n_trees[i].signed_type;
2451
2452 #if HOST_BITS_PER_WIDE_INT >= 64
2453 if (TYPE_OK (intTI_type_node))
2454 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2455 #endif
2456 if (TYPE_OK (intDI_type_node))
2457 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2458 if (TYPE_OK (intSI_type_node))
2459 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2460 if (TYPE_OK (intHI_type_node))
2461 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2462 if (TYPE_OK (intQI_type_node))
2463 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2464
2465 #undef GIMPLE_FIXED_TYPES
2466 #undef GIMPLE_FIXED_MODE_TYPES
2467 #undef GIMPLE_FIXED_TYPES_SAT
2468 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2469 #undef TYPE_OK
2470
2471 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2472 }
2473
2474
2475 /* Return an unsigned type the same as TYPE in other respects. */
2476
2477 tree
gimple_unsigned_type(tree type)2478 gimple_unsigned_type (tree type)
2479 {
2480 return gimple_signed_or_unsigned_type (true, type);
2481 }
2482
2483
2484 /* Return a signed type the same as TYPE in other respects. */
2485
2486 tree
gimple_signed_type(tree type)2487 gimple_signed_type (tree type)
2488 {
2489 return gimple_signed_or_unsigned_type (false, type);
2490 }
2491
2492
2493 /* Return the typed-based alias set for T, which may be an expression
2494 or a type. Return -1 if we don't do anything special. */
2495
2496 alias_set_type
gimple_get_alias_set(tree t)2497 gimple_get_alias_set (tree t)
2498 {
2499 /* That's all the expressions we handle specially. */
2500 if (!TYPE_P (t))
2501 return -1;
2502
2503 /* For convenience, follow the C standard when dealing with
2504 character types. Any object may be accessed via an lvalue that
2505 has character type. */
2506 if (t == char_type_node
2507 || t == signed_char_type_node
2508 || t == unsigned_char_type_node)
2509 return 0;
2510
2511 /* Allow aliasing between signed and unsigned variants of the same
2512 type. We treat the signed variant as canonical. */
2513 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2514 {
2515 tree t1 = gimple_signed_type (t);
2516
2517 /* t1 == t can happen for boolean nodes which are always unsigned. */
2518 if (t1 != t)
2519 return get_alias_set (t1);
2520 }
2521
2522 return -1;
2523 }
2524
2525
2526 /* Helper for gimple_ior_addresses_taken_1. */
2527
2528 static bool
gimple_ior_addresses_taken_1(gimple *,tree addr,tree,void * data)2529 gimple_ior_addresses_taken_1 (gimple *, tree addr, tree, void *data)
2530 {
2531 bitmap addresses_taken = (bitmap)data;
2532 addr = get_base_address (addr);
2533 if (addr
2534 && DECL_P (addr))
2535 {
2536 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2537 return true;
2538 }
2539 return false;
2540 }
2541
2542 /* Set the bit for the uid of all decls that have their address taken
2543 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2544 were any in this stmt. */
2545
2546 bool
gimple_ior_addresses_taken(bitmap addresses_taken,gimple * stmt)2547 gimple_ior_addresses_taken (bitmap addresses_taken, gimple *stmt)
2548 {
2549 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2550 gimple_ior_addresses_taken_1);
2551 }
2552
2553
2554 /* Return true when STMTs arguments and return value match those of FNDECL,
2555 a decl of a builtin function. */
2556
2557 bool
gimple_builtin_call_types_compatible_p(const gimple * stmt,tree fndecl)2558 gimple_builtin_call_types_compatible_p (const gimple *stmt, tree fndecl)
2559 {
2560 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2561
2562 tree ret = gimple_call_lhs (stmt);
2563 if (ret
2564 && !useless_type_conversion_p (TREE_TYPE (ret),
2565 TREE_TYPE (TREE_TYPE (fndecl))))
2566 return false;
2567
2568 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2569 unsigned nargs = gimple_call_num_args (stmt);
2570 for (unsigned i = 0; i < nargs; ++i)
2571 {
2572 /* Variadic args follow. */
2573 if (!targs)
2574 return true;
2575 tree arg = gimple_call_arg (stmt, i);
2576 tree type = TREE_VALUE (targs);
2577 if (!useless_type_conversion_p (type, TREE_TYPE (arg))
2578 /* char/short integral arguments are promoted to int
2579 by several frontends if targetm.calls.promote_prototypes
2580 is true. Allow such promotion too. */
2581 && !(INTEGRAL_TYPE_P (type)
2582 && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)
2583 && targetm.calls.promote_prototypes (TREE_TYPE (fndecl))
2584 && useless_type_conversion_p (integer_type_node,
2585 TREE_TYPE (arg))))
2586 return false;
2587 targs = TREE_CHAIN (targs);
2588 }
2589 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2590 return false;
2591 return true;
2592 }
2593
2594 /* Return true when STMT is builtins call. */
2595
2596 bool
gimple_call_builtin_p(const gimple * stmt)2597 gimple_call_builtin_p (const gimple *stmt)
2598 {
2599 tree fndecl;
2600 if (is_gimple_call (stmt)
2601 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2602 && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2603 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2604 return false;
2605 }
2606
2607 /* Return true when STMT is builtins call to CLASS. */
2608
2609 bool
gimple_call_builtin_p(const gimple * stmt,enum built_in_class klass)2610 gimple_call_builtin_p (const gimple *stmt, enum built_in_class klass)
2611 {
2612 tree fndecl;
2613 if (is_gimple_call (stmt)
2614 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2615 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2616 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2617 return false;
2618 }
2619
2620 /* Return true when STMT is builtins call to CODE of CLASS. */
2621
2622 bool
gimple_call_builtin_p(const gimple * stmt,enum built_in_function code)2623 gimple_call_builtin_p (const gimple *stmt, enum built_in_function code)
2624 {
2625 tree fndecl;
2626 if (is_gimple_call (stmt)
2627 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2628 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2629 && DECL_FUNCTION_CODE (fndecl) == code)
2630 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2631 return false;
2632 }
2633
2634 /* If CALL is a call to a combined_fn (i.e. an internal function or
2635 a normal built-in function), return its code, otherwise return
2636 CFN_LAST. */
2637
2638 combined_fn
gimple_call_combined_fn(const gimple * stmt)2639 gimple_call_combined_fn (const gimple *stmt)
2640 {
2641 if (const gcall *call = dyn_cast <const gcall *> (stmt))
2642 {
2643 if (gimple_call_internal_p (call))
2644 return as_combined_fn (gimple_call_internal_fn (call));
2645
2646 tree fndecl = gimple_call_fndecl (stmt);
2647 if (fndecl
2648 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2649 && gimple_builtin_call_types_compatible_p (stmt, fndecl))
2650 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
2651 }
2652 return CFN_LAST;
2653 }
2654
2655 /* Return true if STMT clobbers memory. STMT is required to be a
2656 GIMPLE_ASM. */
2657
2658 bool
gimple_asm_clobbers_memory_p(const gasm * stmt)2659 gimple_asm_clobbers_memory_p (const gasm *stmt)
2660 {
2661 unsigned i;
2662
2663 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2664 {
2665 tree op = gimple_asm_clobber_op (stmt, i);
2666 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2667 return true;
2668 }
2669
2670 /* Non-empty basic ASM implicitly clobbers memory. */
2671 if (gimple_asm_input_p (stmt) && strlen (gimple_asm_string (stmt)) != 0)
2672 return true;
2673
2674 return false;
2675 }
2676
2677 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2678
2679 void
dump_decl_set(FILE * file,bitmap set)2680 dump_decl_set (FILE *file, bitmap set)
2681 {
2682 if (set)
2683 {
2684 bitmap_iterator bi;
2685 unsigned i;
2686
2687 fprintf (file, "{ ");
2688
2689 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2690 {
2691 fprintf (file, "D.%u", i);
2692 fprintf (file, " ");
2693 }
2694
2695 fprintf (file, "}");
2696 }
2697 else
2698 fprintf (file, "NIL");
2699 }
2700
2701 /* Return true when CALL is a call stmt that definitely doesn't
2702 free any memory or makes it unavailable otherwise. */
2703 bool
nonfreeing_call_p(gimple * call)2704 nonfreeing_call_p (gimple *call)
2705 {
2706 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2707 && gimple_call_flags (call) & ECF_LEAF)
2708 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2709 {
2710 /* Just in case these become ECF_LEAF in the future. */
2711 case BUILT_IN_FREE:
2712 case BUILT_IN_TM_FREE:
2713 case BUILT_IN_REALLOC:
2714 case BUILT_IN_STACK_RESTORE:
2715 return false;
2716 default:
2717 return true;
2718 }
2719 else if (gimple_call_internal_p (call))
2720 switch (gimple_call_internal_fn (call))
2721 {
2722 case IFN_ABNORMAL_DISPATCHER:
2723 return true;
2724 case IFN_ASAN_MARK:
2725 return tree_to_uhwi (gimple_call_arg (call, 0)) == ASAN_MARK_UNPOISON;
2726 default:
2727 if (gimple_call_flags (call) & ECF_LEAF)
2728 return true;
2729 return false;
2730 }
2731
2732 tree fndecl = gimple_call_fndecl (call);
2733 if (!fndecl)
2734 return false;
2735 struct cgraph_node *n = cgraph_node::get (fndecl);
2736 if (!n)
2737 return false;
2738 enum availability availability;
2739 n = n->function_symbol (&availability);
2740 if (!n || availability <= AVAIL_INTERPOSABLE)
2741 return false;
2742 return n->nonfreeing_fn;
2743 }
2744
2745 /* Return true when CALL is a call stmt that definitely need not
2746 be considered to be a memory barrier. */
2747 bool
nonbarrier_call_p(gimple * call)2748 nonbarrier_call_p (gimple *call)
2749 {
2750 if (gimple_call_flags (call) & (ECF_PURE | ECF_CONST))
2751 return true;
2752 /* Should extend this to have a nonbarrier_fn flag, just as above in
2753 the nonfreeing case. */
2754 return false;
2755 }
2756
2757 /* Callback for walk_stmt_load_store_ops.
2758
2759 Return TRUE if OP will dereference the tree stored in DATA, FALSE
2760 otherwise.
2761
2762 This routine only makes a superficial check for a dereference. Thus
2763 it must only be used if it is safe to return a false negative. */
2764 static bool
check_loadstore(gimple *,tree op,tree,void * data)2765 check_loadstore (gimple *, tree op, tree, void *data)
2766 {
2767 if (TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2768 {
2769 /* Some address spaces may legitimately dereference zero. */
2770 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (op));
2771 if (targetm.addr_space.zero_address_valid (as))
2772 return false;
2773
2774 return operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0);
2775 }
2776 return false;
2777 }
2778
2779
2780 /* Return true if OP can be inferred to be non-NULL after STMT executes,
2781 either by using a pointer dereference or attributes. */
2782 bool
infer_nonnull_range(gimple * stmt,tree op)2783 infer_nonnull_range (gimple *stmt, tree op)
2784 {
2785 return infer_nonnull_range_by_dereference (stmt, op)
2786 || infer_nonnull_range_by_attribute (stmt, op);
2787 }
2788
2789 /* Return true if OP can be inferred to be non-NULL after STMT
2790 executes by using a pointer dereference. */
2791 bool
infer_nonnull_range_by_dereference(gimple * stmt,tree op)2792 infer_nonnull_range_by_dereference (gimple *stmt, tree op)
2793 {
2794 /* We can only assume that a pointer dereference will yield
2795 non-NULL if -fdelete-null-pointer-checks is enabled. */
2796 if (!flag_delete_null_pointer_checks
2797 || !POINTER_TYPE_P (TREE_TYPE (op))
2798 || gimple_code (stmt) == GIMPLE_ASM)
2799 return false;
2800
2801 if (walk_stmt_load_store_ops (stmt, (void *)op,
2802 check_loadstore, check_loadstore))
2803 return true;
2804
2805 return false;
2806 }
2807
2808 /* Return true if OP can be inferred to be a non-NULL after STMT
2809 executes by using attributes. */
2810 bool
infer_nonnull_range_by_attribute(gimple * stmt,tree op)2811 infer_nonnull_range_by_attribute (gimple *stmt, tree op)
2812 {
2813 /* We can only assume that a pointer dereference will yield
2814 non-NULL if -fdelete-null-pointer-checks is enabled. */
2815 if (!flag_delete_null_pointer_checks
2816 || !POINTER_TYPE_P (TREE_TYPE (op))
2817 || gimple_code (stmt) == GIMPLE_ASM)
2818 return false;
2819
2820 if (is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2821 {
2822 tree fntype = gimple_call_fntype (stmt);
2823 tree attrs = TYPE_ATTRIBUTES (fntype);
2824 for (; attrs; attrs = TREE_CHAIN (attrs))
2825 {
2826 attrs = lookup_attribute ("nonnull", attrs);
2827
2828 /* If "nonnull" wasn't specified, we know nothing about
2829 the argument. */
2830 if (attrs == NULL_TREE)
2831 return false;
2832
2833 /* If "nonnull" applies to all the arguments, then ARG
2834 is non-null if it's in the argument list. */
2835 if (TREE_VALUE (attrs) == NULL_TREE)
2836 {
2837 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2838 {
2839 if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
2840 && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2841 return true;
2842 }
2843 return false;
2844 }
2845
2846 /* Now see if op appears in the nonnull list. */
2847 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2848 {
2849 unsigned int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
2850 if (idx < gimple_call_num_args (stmt))
2851 {
2852 tree arg = gimple_call_arg (stmt, idx);
2853 if (operand_equal_p (op, arg, 0))
2854 return true;
2855 }
2856 }
2857 }
2858 }
2859
2860 /* If this function is marked as returning non-null, then we can
2861 infer OP is non-null if it is used in the return statement. */
2862 if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2863 if (gimple_return_retval (return_stmt)
2864 && operand_equal_p (gimple_return_retval (return_stmt), op, 0)
2865 && lookup_attribute ("returns_nonnull",
2866 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2867 return true;
2868
2869 return false;
2870 }
2871
2872 /* Compare two case labels. Because the front end should already have
2873 made sure that case ranges do not overlap, it is enough to only compare
2874 the CASE_LOW values of each case label. */
2875
2876 static int
compare_case_labels(const void * p1,const void * p2)2877 compare_case_labels (const void *p1, const void *p2)
2878 {
2879 const_tree const case1 = *(const_tree const*)p1;
2880 const_tree const case2 = *(const_tree const*)p2;
2881
2882 /* The 'default' case label always goes first. */
2883 if (!CASE_LOW (case1))
2884 return -1;
2885 else if (!CASE_LOW (case2))
2886 return 1;
2887 else
2888 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
2889 }
2890
2891 /* Sort the case labels in LABEL_VEC in place in ascending order. */
2892
2893 void
sort_case_labels(vec<tree> label_vec)2894 sort_case_labels (vec<tree> label_vec)
2895 {
2896 label_vec.qsort (compare_case_labels);
2897 }
2898
2899 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
2900
2901 LABELS is a vector that contains all case labels to look at.
2902
2903 INDEX_TYPE is the type of the switch index expression. Case labels
2904 in LABELS are discarded if their values are not in the value range
2905 covered by INDEX_TYPE. The remaining case label values are folded
2906 to INDEX_TYPE.
2907
2908 If a default case exists in LABELS, it is removed from LABELS and
2909 returned in DEFAULT_CASEP. If no default case exists, but the
2910 case labels already cover the whole range of INDEX_TYPE, a default
2911 case is returned pointing to one of the existing case labels.
2912 Otherwise DEFAULT_CASEP is set to NULL_TREE.
2913
2914 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
2915 apply and no action is taken regardless of whether a default case is
2916 found or not. */
2917
2918 void
preprocess_case_label_vec_for_gimple(vec<tree> labels,tree index_type,tree * default_casep)2919 preprocess_case_label_vec_for_gimple (vec<tree> labels,
2920 tree index_type,
2921 tree *default_casep)
2922 {
2923 tree min_value, max_value;
2924 tree default_case = NULL_TREE;
2925 size_t i, len;
2926
2927 i = 0;
2928 min_value = TYPE_MIN_VALUE (index_type);
2929 max_value = TYPE_MAX_VALUE (index_type);
2930 while (i < labels.length ())
2931 {
2932 tree elt = labels[i];
2933 tree low = CASE_LOW (elt);
2934 tree high = CASE_HIGH (elt);
2935 bool remove_element = FALSE;
2936
2937 if (low)
2938 {
2939 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
2940 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
2941
2942 /* This is a non-default case label, i.e. it has a value.
2943
2944 See if the case label is reachable within the range of
2945 the index type. Remove out-of-range case values. Turn
2946 case ranges into a canonical form (high > low strictly)
2947 and convert the case label values to the index type.
2948
2949 NB: The type of gimple_switch_index() may be the promoted
2950 type, but the case labels retain the original type. */
2951
2952 if (high)
2953 {
2954 /* This is a case range. Discard empty ranges.
2955 If the bounds or the range are equal, turn this
2956 into a simple (one-value) case. */
2957 int cmp = tree_int_cst_compare (high, low);
2958 if (cmp < 0)
2959 remove_element = TRUE;
2960 else if (cmp == 0)
2961 high = NULL_TREE;
2962 }
2963
2964 if (! high)
2965 {
2966 /* If the simple case value is unreachable, ignore it. */
2967 if ((TREE_CODE (min_value) == INTEGER_CST
2968 && tree_int_cst_compare (low, min_value) < 0)
2969 || (TREE_CODE (max_value) == INTEGER_CST
2970 && tree_int_cst_compare (low, max_value) > 0))
2971 remove_element = TRUE;
2972 else
2973 low = fold_convert (index_type, low);
2974 }
2975 else
2976 {
2977 /* If the entire case range is unreachable, ignore it. */
2978 if ((TREE_CODE (min_value) == INTEGER_CST
2979 && tree_int_cst_compare (high, min_value) < 0)
2980 || (TREE_CODE (max_value) == INTEGER_CST
2981 && tree_int_cst_compare (low, max_value) > 0))
2982 remove_element = TRUE;
2983 else
2984 {
2985 /* If the lower bound is less than the index type's
2986 minimum value, truncate the range bounds. */
2987 if (TREE_CODE (min_value) == INTEGER_CST
2988 && tree_int_cst_compare (low, min_value) < 0)
2989 low = min_value;
2990 low = fold_convert (index_type, low);
2991
2992 /* If the upper bound is greater than the index type's
2993 maximum value, truncate the range bounds. */
2994 if (TREE_CODE (max_value) == INTEGER_CST
2995 && tree_int_cst_compare (high, max_value) > 0)
2996 high = max_value;
2997 high = fold_convert (index_type, high);
2998
2999 /* We may have folded a case range to a one-value case. */
3000 if (tree_int_cst_equal (low, high))
3001 high = NULL_TREE;
3002 }
3003 }
3004
3005 CASE_LOW (elt) = low;
3006 CASE_HIGH (elt) = high;
3007 }
3008 else
3009 {
3010 gcc_assert (!default_case);
3011 default_case = elt;
3012 /* The default case must be passed separately to the
3013 gimple_build_switch routine. But if DEFAULT_CASEP
3014 is NULL, we do not remove the default case (it would
3015 be completely lost). */
3016 if (default_casep)
3017 remove_element = TRUE;
3018 }
3019
3020 if (remove_element)
3021 labels.ordered_remove (i);
3022 else
3023 i++;
3024 }
3025 len = i;
3026
3027 if (!labels.is_empty ())
3028 sort_case_labels (labels);
3029
3030 if (default_casep && !default_case)
3031 {
3032 /* If the switch has no default label, add one, so that we jump
3033 around the switch body. If the labels already cover the whole
3034 range of the switch index_type, add the default label pointing
3035 to one of the existing labels. */
3036 if (len
3037 && TYPE_MIN_VALUE (index_type)
3038 && TYPE_MAX_VALUE (index_type)
3039 && tree_int_cst_equal (CASE_LOW (labels[0]),
3040 TYPE_MIN_VALUE (index_type)))
3041 {
3042 tree low, high = CASE_HIGH (labels[len - 1]);
3043 if (!high)
3044 high = CASE_LOW (labels[len - 1]);
3045 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
3046 {
3047 tree widest_label = labels[0];
3048 for (i = 1; i < len; i++)
3049 {
3050 high = CASE_LOW (labels[i]);
3051 low = CASE_HIGH (labels[i - 1]);
3052 if (!low)
3053 low = CASE_LOW (labels[i - 1]);
3054
3055 if (CASE_HIGH (labels[i]) != NULL_TREE
3056 && (CASE_HIGH (widest_label) == NULL_TREE
3057 || (wi::gtu_p
3058 (wi::to_wide (CASE_HIGH (labels[i]))
3059 - wi::to_wide (CASE_LOW (labels[i])),
3060 wi::to_wide (CASE_HIGH (widest_label))
3061 - wi::to_wide (CASE_LOW (widest_label))))))
3062 widest_label = labels[i];
3063
3064 if (wi::to_wide (low) + 1 != wi::to_wide (high))
3065 break;
3066 }
3067 if (i == len)
3068 {
3069 /* Designate the label with the widest range to be the
3070 default label. */
3071 tree label = CASE_LABEL (widest_label);
3072 default_case = build_case_label (NULL_TREE, NULL_TREE,
3073 label);
3074 }
3075 }
3076 }
3077 }
3078
3079 if (default_casep)
3080 *default_casep = default_case;
3081 }
3082
3083 /* Set the location of all statements in SEQ to LOC. */
3084
3085 void
gimple_seq_set_location(gimple_seq seq,location_t loc)3086 gimple_seq_set_location (gimple_seq seq, location_t loc)
3087 {
3088 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
3089 gimple_set_location (gsi_stmt (i), loc);
3090 }
3091
3092 /* Release SSA_NAMEs in SEQ as well as the GIMPLE statements. */
3093
3094 void
gimple_seq_discard(gimple_seq seq)3095 gimple_seq_discard (gimple_seq seq)
3096 {
3097 gimple_stmt_iterator gsi;
3098
3099 for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
3100 {
3101 gimple *stmt = gsi_stmt (gsi);
3102 gsi_remove (&gsi, true);
3103 release_defs (stmt);
3104 ggc_free (stmt);
3105 }
3106 }
3107
3108 /* See if STMT now calls function that takes no parameters and if so, drop
3109 call arguments. This is used when devirtualization machinery redirects
3110 to __builtin_unreachable or __cxa_pure_virtual. */
3111
3112 void
maybe_remove_unused_call_args(struct function * fn,gimple * stmt)3113 maybe_remove_unused_call_args (struct function *fn, gimple *stmt)
3114 {
3115 tree decl = gimple_call_fndecl (stmt);
3116 if (TYPE_ARG_TYPES (TREE_TYPE (decl))
3117 && TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))) == void_type_node
3118 && gimple_call_num_args (stmt))
3119 {
3120 gimple_set_num_ops (stmt, 3);
3121 update_stmt_fn (fn, stmt);
3122 }
3123 }
3124
3125 /* Return false if STMT will likely expand to real function call. */
3126
3127 bool
gimple_inexpensive_call_p(gcall * stmt)3128 gimple_inexpensive_call_p (gcall *stmt)
3129 {
3130 if (gimple_call_internal_p (stmt))
3131 return true;
3132 tree decl = gimple_call_fndecl (stmt);
3133 if (decl && is_inexpensive_builtin (decl))
3134 return true;
3135 return false;
3136 }
3137
3138 #if CHECKING_P
3139
3140 namespace selftest {
3141
3142 /* Selftests for core gimple structures. */
3143
3144 /* Verify that STMT is pretty-printed as EXPECTED.
3145 Helper function for selftests. */
3146
3147 static void
verify_gimple_pp(const char * expected,gimple * stmt)3148 verify_gimple_pp (const char *expected, gimple *stmt)
3149 {
3150 pretty_printer pp;
3151 pp_gimple_stmt_1 (&pp, stmt, 0 /* spc */, 0 /* flags */);
3152 ASSERT_STREQ (expected, pp_formatted_text (&pp));
3153 }
3154
3155 /* Build a GIMPLE_ASSIGN equivalent to
3156 tmp = 5;
3157 and verify various properties of it. */
3158
3159 static void
test_assign_single()3160 test_assign_single ()
3161 {
3162 tree type = integer_type_node;
3163 tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3164 get_identifier ("tmp"),
3165 type);
3166 tree rhs = build_int_cst (type, 5);
3167 gassign *stmt = gimple_build_assign (lhs, rhs);
3168 verify_gimple_pp ("tmp = 5;", stmt);
3169
3170 ASSERT_TRUE (is_gimple_assign (stmt));
3171 ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
3172 ASSERT_EQ (lhs, gimple_get_lhs (stmt));
3173 ASSERT_EQ (rhs, gimple_assign_rhs1 (stmt));
3174 ASSERT_EQ (NULL, gimple_assign_rhs2 (stmt));
3175 ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
3176 ASSERT_TRUE (gimple_assign_single_p (stmt));
3177 ASSERT_EQ (INTEGER_CST, gimple_assign_rhs_code (stmt));
3178 }
3179
3180 /* Build a GIMPLE_ASSIGN equivalent to
3181 tmp = a * b;
3182 and verify various properties of it. */
3183
3184 static void
test_assign_binop()3185 test_assign_binop ()
3186 {
3187 tree type = integer_type_node;
3188 tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3189 get_identifier ("tmp"),
3190 type);
3191 tree a = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3192 get_identifier ("a"),
3193 type);
3194 tree b = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3195 get_identifier ("b"),
3196 type);
3197 gassign *stmt = gimple_build_assign (lhs, MULT_EXPR, a, b);
3198 verify_gimple_pp ("tmp = a * b;", stmt);
3199
3200 ASSERT_TRUE (is_gimple_assign (stmt));
3201 ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
3202 ASSERT_EQ (lhs, gimple_get_lhs (stmt));
3203 ASSERT_EQ (a, gimple_assign_rhs1 (stmt));
3204 ASSERT_EQ (b, gimple_assign_rhs2 (stmt));
3205 ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
3206 ASSERT_FALSE (gimple_assign_single_p (stmt));
3207 ASSERT_EQ (MULT_EXPR, gimple_assign_rhs_code (stmt));
3208 }
3209
3210 /* Build a GIMPLE_NOP and verify various properties of it. */
3211
3212 static void
test_nop_stmt()3213 test_nop_stmt ()
3214 {
3215 gimple *stmt = gimple_build_nop ();
3216 verify_gimple_pp ("GIMPLE_NOP", stmt);
3217 ASSERT_EQ (GIMPLE_NOP, gimple_code (stmt));
3218 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3219 ASSERT_FALSE (gimple_assign_single_p (stmt));
3220 }
3221
3222 /* Build a GIMPLE_RETURN equivalent to
3223 return 7;
3224 and verify various properties of it. */
3225
3226 static void
test_return_stmt()3227 test_return_stmt ()
3228 {
3229 tree type = integer_type_node;
3230 tree val = build_int_cst (type, 7);
3231 greturn *stmt = gimple_build_return (val);
3232 verify_gimple_pp ("return 7;", stmt);
3233
3234 ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
3235 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3236 ASSERT_EQ (val, gimple_return_retval (stmt));
3237 ASSERT_FALSE (gimple_assign_single_p (stmt));
3238 }
3239
3240 /* Build a GIMPLE_RETURN equivalent to
3241 return;
3242 and verify various properties of it. */
3243
3244 static void
test_return_without_value()3245 test_return_without_value ()
3246 {
3247 greturn *stmt = gimple_build_return (NULL);
3248 verify_gimple_pp ("return;", stmt);
3249
3250 ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
3251 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3252 ASSERT_EQ (NULL, gimple_return_retval (stmt));
3253 ASSERT_FALSE (gimple_assign_single_p (stmt));
3254 }
3255
3256 /* Run all of the selftests within this file. */
3257
3258 void
gimple_c_tests()3259 gimple_c_tests ()
3260 {
3261 test_assign_single ();
3262 test_assign_binop ();
3263 test_nop_stmt ();
3264 test_return_stmt ();
3265 test_return_without_value ();
3266 }
3267
3268 } // namespace selftest
3269
3270
3271 #endif /* CHECKING_P */
3272