1 /*
2  * Copyright 2014 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef GrXferProcessor_DEFINED
9 #define GrXferProcessor_DEFINED
10 
11 #include "GrBlend.h"
12 #include "GrColor.h"
13 #include "GrProcessor.h"
14 #include "GrTexture.h"
15 #include "GrTypes.h"
16 #include "SkXfermode.h"
17 
18 class GrShaderCaps;
19 class GrGLSLCaps;
20 class GrGLSLXferProcessor;
21 class GrProcOptInfo;
22 struct GrPipelineOptimizations;
23 
24 /**
25  * Barriers for blending. When a shader reads the dst directly, an Xfer barrier is sometimes
26  * required after a pixel has been written, before it can be safely read again.
27  */
28 enum GrXferBarrierType {
29     kNone_GrXferBarrierType = 0, //<! No barrier is required
30     kTexture_GrXferBarrierType,  //<! Required when a shader reads and renders to the same texture.
31     kBlend_GrXferBarrierType,    //<! Required by certain blend extensions.
32 };
33 /** Should be able to treat kNone as false in boolean expressions */
34 GR_STATIC_ASSERT(SkToBool(kNone_GrXferBarrierType) == false);
35 
36 /**
37  * GrXferProcessor is responsible for implementing the xfer mode that blends the src color and dst
38  * color, and for applying any coverage. It does this by emitting fragment shader code and
39  * controlling the fixed-function blend state. When dual-source blending is available, it may also
40  * write a seconday fragment shader output color. GrXferProcessor has two modes of operation:
41  *
42  * Dst read: When allowed by the backend API, or when supplied a texture of the destination, the
43  * GrXferProcessor may read the destination color. While operating in this mode, the subclass only
44  * provides shader code that blends the src and dst colors, and the base class applies coverage.
45  *
46  * No dst read: When not performing a dst read, the subclass is given full control of the fixed-
47  * function blend state and/or secondary output, and is responsible to apply coverage on its own.
48  *
49  * A GrXferProcessor is never installed directly into our draw state, but instead is created from a
50  * GrXPFactory once we have finalized the state of our draw.
51  */
52 class GrXferProcessor : public GrProcessor {
53 public:
54     /**
55      * A texture that contains the dst pixel values and an integer coord offset from device space
56      * to the space of the texture. Depending on GPU capabilities a DstTexture may be used by a
57      * GrXferProcessor for blending in the fragment shader.
58      */
59     class DstTexture {
60     public:
DstTexture()61         DstTexture() { fOffset.set(0, 0); }
62 
DstTexture(const DstTexture & other)63         DstTexture(const DstTexture& other) {
64             *this = other;
65         }
66 
DstTexture(GrTexture * texture,const SkIPoint & offset)67         DstTexture(GrTexture* texture, const SkIPoint& offset)
68             : fTexture(SkSafeRef(texture))
69             , fOffset(offset) {
70         }
71 
72         DstTexture& operator=(const DstTexture& other) {
73             fTexture.reset(SkSafeRef(other.fTexture.get()));
74             fOffset = other.fOffset;
75             return *this;
76         }
77 
offset()78         const SkIPoint& offset() const { return fOffset; }
79 
setOffset(const SkIPoint & offset)80         void setOffset(const SkIPoint& offset) { fOffset = offset; }
setOffset(int ox,int oy)81         void setOffset(int ox, int oy) { fOffset.set(ox, oy); }
82 
texture()83         GrTexture* texture() const { return fTexture.get(); }
84 
setTexture(GrTexture * texture)85         GrTexture* setTexture(GrTexture* texture) {
86             fTexture.reset(SkSafeRef(texture));
87             return texture;
88         }
89 
90     private:
91         SkAutoTUnref<GrTexture> fTexture;
92         SkIPoint                fOffset;
93     };
94 
95     /**
96      * Sets a unique key on the GrProcessorKeyBuilder calls onGetGLSLProcessorKey(...) to get the
97      * specific subclass's key.
98      */
99     void getGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const;
100 
101     /** Returns a new instance of the appropriate *GL* implementation class
102         for the given GrXferProcessor; caller is responsible for deleting
103         the object. */
104     virtual GrGLSLXferProcessor* createGLSLInstance() const = 0;
105 
106     /**
107      * Optimizations for blending / coverage that an OptDrawState should apply to itself.
108      */
109     enum OptFlags {
110         /**
111          * The draw can be skipped completely.
112          */
113         kSkipDraw_OptFlag                 = 0x1,
114         /**
115          * GrXferProcessor will ignore color, thus no need to provide
116          */
117         kIgnoreColor_OptFlag              = 0x2,
118         /**
119          * GrXferProcessor will ignore coverage, thus no need to provide
120          */
121         kIgnoreCoverage_OptFlag           = 0x4,
122         /**
123          * Clear color stages and override input color to that returned by getOptimizations
124          */
125         kOverrideColor_OptFlag            = 0x8,
126         /**
127          * Can tweak alpha for coverage. Currently this flag should only be used by a batch
128          */
129         kCanTweakAlphaForCoverage_OptFlag = 0x20,
130     };
131 
132     static const OptFlags kNone_OptFlags = (OptFlags)0;
133 
134     GR_DECL_BITFIELD_OPS_FRIENDS(OptFlags);
135 
136     /**
137      * Determines which optimizations (as described by the ptFlags above) can be performed by
138      * the draw with this xfer processor. If this function is called, the xfer processor may change
139      * its state to reflected the given blend optimizations. If the XP needs to see a specific input
140      * color to blend correctly, it will set the OverrideColor flag and the output parameter
141      * overrideColor will be the required value that should be passed into the XP.
142      * A caller who calls this function on a XP is required to honor the returned OptFlags
143      * and color values for its draw.
144      */
145     OptFlags getOptimizations(const GrPipelineOptimizations& optimizations,
146                               bool doesStencilWrite,
147                               GrColor* overrideColor,
148                               const GrCaps& caps) const;
149 
150     /**
151      * Returns whether this XP will require an Xfer barrier on the given rt. If true, outBarrierType
152      * is updated to contain the type of barrier needed.
153      */
154     GrXferBarrierType xferBarrierType(const GrRenderTarget* rt, const GrCaps& caps) const;
155 
156     struct BlendInfo {
resetBlendInfo157         void reset() {
158             fEquation = kAdd_GrBlendEquation;
159             fSrcBlend = kOne_GrBlendCoeff;
160             fDstBlend = kZero_GrBlendCoeff;
161             fBlendConstant = 0;
162             fWriteColor = true;
163         }
164 
165         SkDEBUGCODE(SkString dump() const;)
166 
167         GrBlendEquation fEquation;
168         GrBlendCoeff    fSrcBlend;
169         GrBlendCoeff    fDstBlend;
170         GrColor         fBlendConstant;
171         bool            fWriteColor;
172     };
173 
174     void getBlendInfo(BlendInfo* blendInfo) const;
175 
willReadDstColor()176     bool willReadDstColor() const { return fWillReadDstColor; }
177 
178     /**
179      * Returns the texture to be used as the destination when reading the dst in the fragment
180      * shader. If the returned texture is NULL then the XP is either not reading the dst or we have
181      * extentions that support framebuffer fetching and thus don't need a copy of the dst texture.
182      */
getDstTexture()183     const GrTexture* getDstTexture() const { return fDstTexture.getTexture(); }
184 
185     /**
186      * Returns the offset in device coords to use when accessing the dst texture to get the dst
187      * pixel color in the shader. This value is only valid if getDstTexture() != NULL.
188      */
dstTextureOffset()189     const SkIPoint& dstTextureOffset() const {
190         SkASSERT(this->getDstTexture());
191         return fDstTextureOffset;
192     }
193 
194     /**
195      * If we are performing a dst read, returns whether the base class will use mixed samples to
196      * antialias the shader's final output. If not doing a dst read, the subclass is responsible
197      * for antialiasing and this returns false.
198      */
dstReadUsesMixedSamples()199     bool dstReadUsesMixedSamples() const { return fDstReadUsesMixedSamples; }
200 
201     /**
202      * Returns whether or not this xferProcossor will set a secondary output to be used with dual
203      * source blending.
204      */
205     bool hasSecondaryOutput() const;
206 
207     /** Returns true if this and other processor conservatively draw identically. It can only return
208         true when the two processor are of the same subclass (i.e. they return the same object from
209         from getFactory()).
210 
211         A return value of true from isEqual() should not be used to test whether the processor would
212         generate the same shader code. To test for identical code generation use getGLSLProcessorKey
213       */
214 
isEqual(const GrXferProcessor & that)215     bool isEqual(const GrXferProcessor& that) const {
216         if (this->classID() != that.classID()) {
217             return false;
218         }
219         if (this->fWillReadDstColor != that.fWillReadDstColor) {
220             return false;
221         }
222         if (this->fDstTexture.getTexture() != that.fDstTexture.getTexture()) {
223             return false;
224         }
225         if (this->fDstTextureOffset != that.fDstTextureOffset) {
226             return false;
227         }
228         if (this->fDstReadUsesMixedSamples != that.fDstReadUsesMixedSamples) {
229             return false;
230         }
231         return this->onIsEqual(that);
232     }
233 
234 protected:
235     GrXferProcessor();
236     GrXferProcessor(const DstTexture*, bool willReadDstColor, bool hasMixedSamples);
237 
238 private:
notifyRefCntIsZero()239     void notifyRefCntIsZero() const final {}
240 
241     virtual OptFlags onGetOptimizations(const GrPipelineOptimizations& optimizations,
242                                         bool doesStencilWrite,
243                                         GrColor* overrideColor,
244                                         const GrCaps& caps) const = 0;
245 
246     /**
247      * Sets a unique key on the GrProcessorKeyBuilder that is directly associated with this xfer
248      * processor's GL backend implementation.
249      */
250     virtual void onGetGLSLProcessorKey(const GrGLSLCaps& caps,
251                                        GrProcessorKeyBuilder* b) const = 0;
252 
253     /**
254      * Determines the type of barrier (if any) required by the subclass. Note that the possibility
255      * that a kTexture type barrier is required is handled by the base class and need not be
256      * considered by subclass overrides of this function.
257      */
onXferBarrier(const GrRenderTarget *,const GrCaps &)258     virtual GrXferBarrierType onXferBarrier(const GrRenderTarget*, const GrCaps&) const {
259         return kNone_GrXferBarrierType;
260     }
261 
262     /**
263      * If we are not performing a dst read, returns whether the subclass will set a secondary
264      * output. When using dst reads, the base class controls the secondary output and this method
265      * will not be called.
266      */
onHasSecondaryOutput()267     virtual bool onHasSecondaryOutput() const { return false; }
268 
269     /**
270      * If we are not performing a dst read, retrieves the fixed-function blend state required by the
271      * subclass. When using dst reads, the base class controls the fixed-function blend state and
272      * this method will not be called. The BlendInfo struct comes initialized to "no blending".
273      */
onGetBlendInfo(BlendInfo *)274     virtual void onGetBlendInfo(BlendInfo*) const {}
275 
276     virtual bool onIsEqual(const GrXferProcessor&) const = 0;
277 
278     bool                    fWillReadDstColor;
279     bool                    fDstReadUsesMixedSamples;
280     SkIPoint                fDstTextureOffset;
281     GrTextureAccess         fDstTexture;
282 
283     typedef GrFragmentProcessor INHERITED;
284 };
285 
286 GR_MAKE_BITFIELD_OPS(GrXferProcessor::OptFlags);
287 
288 ///////////////////////////////////////////////////////////////////////////////
289 
290 /**
291  * We install a GrXPFactory (XPF) early on in the pipeline before all the final draw information is
292  * known (e.g. whether there is fractional pixel coverage, will coverage be 1 or 4 channel, is the
293  * draw opaque, etc.). Once the state of the draw is finalized, we use the XPF along with all the
294  * draw information to create a GrXferProcessor (XP) which can implement the desired blending for
295  * the draw.
296  *
297  * Before the XP is created, the XPF is able to answer queries about what functionality the XPs it
298  * creates will have. For example, can it create an XP that supports RGB coverage or will the XP
299  * blend with the destination color.
300  */
301 class GrXPFactory : public SkRefCnt {
302 public:
303     typedef GrXferProcessor::DstTexture DstTexture;
304     GrXferProcessor* createXferProcessor(const GrPipelineOptimizations& optimizations,
305                                          bool hasMixedSamples,
306                                          const DstTexture*,
307                                          const GrCaps& caps) const;
308     /**
309      * Known color information after blending, but before accounting for any coverage.
310      */
311     struct InvariantBlendedColor {
312         bool                     fWillBlendWithDst;
313         GrColor                  fKnownColor;
314         GrColorComponentFlags    fKnownColorFlags;
315     };
316 
317     /**
318      * Returns information about the output color, produced by XPs from this factory, that will be
319      * known after blending. Note that we can conflate coverage and color, so the actual values
320      * written to pixels with partial coverage may not always seem consistent with the invariant
321      * information returned by this function.
322      */
323     virtual void getInvariantBlendedColor(const GrProcOptInfo& colorPOI,
324                                           InvariantBlendedColor*) const = 0;
325 
326     bool willNeedDstTexture(const GrCaps& caps, const GrPipelineOptimizations& optimizations) const;
327 
isEqual(const GrXPFactory & that)328     bool isEqual(const GrXPFactory& that) const {
329         if (this->classID() != that.classID()) {
330             return false;
331         }
332         return this->onIsEqual(that);
333     }
334 
335     /**
336       * Helper for down-casting to a GrXPFactory subclass
337       */
cast()338     template <typename T> const T& cast() const { return *static_cast<const T*>(this); }
339 
classID()340     uint32_t classID() const { SkASSERT(kIllegalXPFClassID != fClassID); return fClassID; }
341 
342 protected:
GrXPFactory()343     GrXPFactory() : fClassID(kIllegalXPFClassID) {}
344 
initClassID()345     template <typename XPF_SUBCLASS> void initClassID() {
346          static uint32_t kClassID = GenClassID();
347          fClassID = kClassID;
348     }
349 
350     uint32_t fClassID;
351 
352 private:
353     virtual GrXferProcessor* onCreateXferProcessor(const GrCaps& caps,
354                                                    const GrPipelineOptimizations& optimizations,
355                                                    bool hasMixedSamples,
356                                                    const DstTexture*) const = 0;
357 
358     virtual bool onIsEqual(const GrXPFactory&) const = 0;
359 
360     bool willReadDstColor(const GrCaps&, const GrPipelineOptimizations&) const;
361     /**
362      *  Returns true if the XP generated by this factory will explicitly read dst in the fragment
363      *  shader.
364      */
365     virtual bool onWillReadDstColor(const GrCaps&, const GrPipelineOptimizations&) const = 0;
366 
GenClassID()367     static uint32_t GenClassID() {
368         // fCurrXPFactoryID has been initialized to kIllegalXPFactoryID. The
369         // atomic inc returns the old value not the incremented value. So we add
370         // 1 to the returned value.
371         uint32_t id = static_cast<uint32_t>(sk_atomic_inc(&gCurrXPFClassID)) + 1;
372         if (!id) {
373             SkFAIL("This should never wrap as it should only be called once for each GrXPFactory "
374                    "subclass.");
375         }
376         return id;
377     }
378 
379     enum {
380         kIllegalXPFClassID = 0,
381     };
382     static int32_t gCurrXPFClassID;
383 
384     typedef GrProgramElement INHERITED;
385 };
386 
387 #endif
388 
389