1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 /** @file brw_fs.cpp
25  *
26  * This file drives the GLSL IR -> LIR translation, contains the
27  * optimizations on the LIR, and drives the generation of native code
28  * from the LIR.
29  */
30 
31 #include "main/macros.h"
32 #include "brw_eu.h"
33 #include "brw_fs.h"
34 #include "brw_fs_live_variables.h"
35 #include "brw_nir.h"
36 #include "brw_vec4_gs_visitor.h"
37 #include "brw_cfg.h"
38 #include "brw_dead_control_flow.h"
39 #include "dev/gen_debug.h"
40 #include "compiler/glsl_types.h"
41 #include "compiler/nir/nir_builder.h"
42 #include "program/prog_parameter.h"
43 #include "util/u_math.h"
44 
45 using namespace brw;
46 
47 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
48                                        const fs_inst *inst);
49 
50 void
init(enum opcode opcode,uint8_t exec_size,const fs_reg & dst,const fs_reg * src,unsigned sources)51 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
52               const fs_reg *src, unsigned sources)
53 {
54    memset((void*)this, 0, sizeof(*this));
55 
56    this->src = new fs_reg[MAX2(sources, 3)];
57    for (unsigned i = 0; i < sources; i++)
58       this->src[i] = src[i];
59 
60    this->opcode = opcode;
61    this->dst = dst;
62    this->sources = sources;
63    this->exec_size = exec_size;
64    this->base_mrf = -1;
65 
66    assert(dst.file != IMM && dst.file != UNIFORM);
67 
68    assert(this->exec_size != 0);
69 
70    this->conditional_mod = BRW_CONDITIONAL_NONE;
71 
72    /* This will be the case for almost all instructions. */
73    switch (dst.file) {
74    case VGRF:
75    case ARF:
76    case FIXED_GRF:
77    case MRF:
78    case ATTR:
79       this->size_written = dst.component_size(exec_size);
80       break;
81    case BAD_FILE:
82       this->size_written = 0;
83       break;
84    case IMM:
85    case UNIFORM:
86       unreachable("Invalid destination register file");
87    }
88 
89    this->writes_accumulator = false;
90 }
91 
fs_inst()92 fs_inst::fs_inst()
93 {
94    init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
95 }
96 
fs_inst(enum opcode opcode,uint8_t exec_size)97 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
98 {
99    init(opcode, exec_size, reg_undef, NULL, 0);
100 }
101 
fs_inst(enum opcode opcode,uint8_t exec_size,const fs_reg & dst)102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
103 {
104    init(opcode, exec_size, dst, NULL, 0);
105 }
106 
fs_inst(enum opcode opcode,uint8_t exec_size,const fs_reg & dst,const fs_reg & src0)107 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
108                  const fs_reg &src0)
109 {
110    const fs_reg src[1] = { src0 };
111    init(opcode, exec_size, dst, src, 1);
112 }
113 
fs_inst(enum opcode opcode,uint8_t exec_size,const fs_reg & dst,const fs_reg & src0,const fs_reg & src1)114 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
115                  const fs_reg &src0, const fs_reg &src1)
116 {
117    const fs_reg src[2] = { src0, src1 };
118    init(opcode, exec_size, dst, src, 2);
119 }
120 
fs_inst(enum opcode opcode,uint8_t exec_size,const fs_reg & dst,const fs_reg & src0,const fs_reg & src1,const fs_reg & src2)121 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
122                  const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
123 {
124    const fs_reg src[3] = { src0, src1, src2 };
125    init(opcode, exec_size, dst, src, 3);
126 }
127 
fs_inst(enum opcode opcode,uint8_t exec_width,const fs_reg & dst,const fs_reg src[],unsigned sources)128 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
129                  const fs_reg src[], unsigned sources)
130 {
131    init(opcode, exec_width, dst, src, sources);
132 }
133 
fs_inst(const fs_inst & that)134 fs_inst::fs_inst(const fs_inst &that)
135 {
136    memcpy((void*)this, &that, sizeof(that));
137 
138    this->src = new fs_reg[MAX2(that.sources, 3)];
139 
140    for (unsigned i = 0; i < that.sources; i++)
141       this->src[i] = that.src[i];
142 }
143 
~fs_inst()144 fs_inst::~fs_inst()
145 {
146    delete[] this->src;
147 }
148 
149 void
resize_sources(uint8_t num_sources)150 fs_inst::resize_sources(uint8_t num_sources)
151 {
152    if (this->sources != num_sources) {
153       fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
154 
155       for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
156          src[i] = this->src[i];
157 
158       delete[] this->src;
159       this->src = src;
160       this->sources = num_sources;
161    }
162 }
163 
164 void
VARYING_PULL_CONSTANT_LOAD(const fs_builder & bld,const fs_reg & dst,const fs_reg & surf_index,const fs_reg & varying_offset,uint32_t const_offset)165 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
166                                        const fs_reg &dst,
167                                        const fs_reg &surf_index,
168                                        const fs_reg &varying_offset,
169                                        uint32_t const_offset)
170 {
171    /* We have our constant surface use a pitch of 4 bytes, so our index can
172     * be any component of a vector, and then we load 4 contiguous
173     * components starting from that.
174     *
175     * We break down the const_offset to a portion added to the variable offset
176     * and a portion done using fs_reg::offset, which means that if you have
177     * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
178     * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
179     * later notice that those loads are all the same and eliminate the
180     * redundant ones.
181     */
182    fs_reg vec4_offset = vgrf(glsl_type::uint_type);
183    bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
184 
185    /* The pull load message will load a vec4 (16 bytes). If we are loading
186     * a double this means we are only loading 2 elements worth of data.
187     * We also want to use a 32-bit data type for the dst of the load operation
188     * so other parts of the driver don't get confused about the size of the
189     * result.
190     */
191    fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
192    fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
193                             vec4_result, surf_index, vec4_offset);
194    inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
195 
196    shuffle_from_32bit_read(bld, dst, vec4_result,
197                            (const_offset & 0xf) / type_sz(dst.type), 1);
198 }
199 
200 /**
201  * A helper for MOV generation for fixing up broken hardware SEND dependency
202  * handling.
203  */
204 void
DEP_RESOLVE_MOV(const fs_builder & bld,int grf)205 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
206 {
207    /* The caller always wants uncompressed to emit the minimal extra
208     * dependencies, and to avoid having to deal with aligning its regs to 2.
209     */
210    const fs_builder ubld = bld.annotate("send dependency resolve")
211                               .quarter(0);
212 
213    ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
214 }
215 
216 bool
is_send_from_grf() const217 fs_inst::is_send_from_grf() const
218 {
219    switch (opcode) {
220    case SHADER_OPCODE_SEND:
221    case SHADER_OPCODE_SHADER_TIME_ADD:
222    case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
223    case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
224    case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
225    case SHADER_OPCODE_URB_WRITE_SIMD8:
226    case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
227    case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
228    case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
229    case SHADER_OPCODE_URB_READ_SIMD8:
230    case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
231    case SHADER_OPCODE_INTERLOCK:
232    case SHADER_OPCODE_MEMORY_FENCE:
233    case SHADER_OPCODE_BARRIER:
234       return true;
235    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
236       return src[1].file == VGRF;
237    case FS_OPCODE_FB_WRITE:
238    case FS_OPCODE_FB_READ:
239       return src[0].file == VGRF;
240    default:
241       if (is_tex())
242          return src[0].file == VGRF;
243 
244       return false;
245    }
246 }
247 
248 bool
is_control_source(unsigned arg) const249 fs_inst::is_control_source(unsigned arg) const
250 {
251    switch (opcode) {
252    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
253    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
254    case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
255       return arg == 0;
256 
257    case SHADER_OPCODE_BROADCAST:
258    case SHADER_OPCODE_SHUFFLE:
259    case SHADER_OPCODE_QUAD_SWIZZLE:
260    case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
261    case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
262    case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
263    case SHADER_OPCODE_GET_BUFFER_SIZE:
264       return arg == 1;
265 
266    case SHADER_OPCODE_MOV_INDIRECT:
267    case SHADER_OPCODE_CLUSTER_BROADCAST:
268    case SHADER_OPCODE_TEX:
269    case FS_OPCODE_TXB:
270    case SHADER_OPCODE_TXD:
271    case SHADER_OPCODE_TXF:
272    case SHADER_OPCODE_TXF_LZ:
273    case SHADER_OPCODE_TXF_CMS:
274    case SHADER_OPCODE_TXF_CMS_W:
275    case SHADER_OPCODE_TXF_UMS:
276    case SHADER_OPCODE_TXF_MCS:
277    case SHADER_OPCODE_TXL:
278    case SHADER_OPCODE_TXL_LZ:
279    case SHADER_OPCODE_TXS:
280    case SHADER_OPCODE_LOD:
281    case SHADER_OPCODE_TG4:
282    case SHADER_OPCODE_TG4_OFFSET:
283    case SHADER_OPCODE_SAMPLEINFO:
284       return arg == 1 || arg == 2;
285 
286    case SHADER_OPCODE_SEND:
287       return arg == 0 || arg == 1;
288 
289    default:
290       return false;
291    }
292 }
293 
294 bool
is_payload(unsigned arg) const295 fs_inst::is_payload(unsigned arg) const
296 {
297    switch (opcode) {
298    case FS_OPCODE_FB_WRITE:
299    case FS_OPCODE_FB_READ:
300    case SHADER_OPCODE_URB_WRITE_SIMD8:
301    case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
302    case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
303    case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
304    case SHADER_OPCODE_URB_READ_SIMD8:
305    case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
306    case VEC4_OPCODE_UNTYPED_ATOMIC:
307    case VEC4_OPCODE_UNTYPED_SURFACE_READ:
308    case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
309    case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
310    case SHADER_OPCODE_SHADER_TIME_ADD:
311    case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
312    case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
313    case SHADER_OPCODE_INTERLOCK:
314    case SHADER_OPCODE_MEMORY_FENCE:
315    case SHADER_OPCODE_BARRIER:
316       return arg == 0;
317 
318    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
319       return arg == 1;
320 
321    case SHADER_OPCODE_SEND:
322       return arg == 2 || arg == 3;
323 
324    default:
325       if (is_tex())
326          return arg == 0;
327       else
328          return false;
329    }
330 }
331 
332 /**
333  * Returns true if this instruction's sources and destinations cannot
334  * safely be the same register.
335  *
336  * In most cases, a register can be written over safely by the same
337  * instruction that is its last use.  For a single instruction, the
338  * sources are dereferenced before writing of the destination starts
339  * (naturally).
340  *
341  * However, there are a few cases where this can be problematic:
342  *
343  * - Virtual opcodes that translate to multiple instructions in the
344  *   code generator: if src == dst and one instruction writes the
345  *   destination before a later instruction reads the source, then
346  *   src will have been clobbered.
347  *
348  * - SIMD16 compressed instructions with certain regioning (see below).
349  *
350  * The register allocator uses this information to set up conflicts between
351  * GRF sources and the destination.
352  */
353 bool
has_source_and_destination_hazard() const354 fs_inst::has_source_and_destination_hazard() const
355 {
356    switch (opcode) {
357    case FS_OPCODE_PACK_HALF_2x16_SPLIT:
358       /* Multiple partial writes to the destination */
359       return true;
360    case SHADER_OPCODE_SHUFFLE:
361       /* This instruction returns an arbitrary channel from the source and
362        * gets split into smaller instructions in the generator.  It's possible
363        * that one of the instructions will read from a channel corresponding
364        * to an earlier instruction.
365        */
366    case SHADER_OPCODE_SEL_EXEC:
367       /* This is implemented as
368        *
369        * mov(16)      g4<1>D      0D            { align1 WE_all 1H };
370        * mov(16)      g4<1>D      g5<8,8,1>D    { align1 1H }
371        *
372        * Because the source is only read in the second instruction, the first
373        * may stomp all over it.
374        */
375       return true;
376    case SHADER_OPCODE_QUAD_SWIZZLE:
377       switch (src[1].ud) {
378       case BRW_SWIZZLE_XXXX:
379       case BRW_SWIZZLE_YYYY:
380       case BRW_SWIZZLE_ZZZZ:
381       case BRW_SWIZZLE_WWWW:
382       case BRW_SWIZZLE_XXZZ:
383       case BRW_SWIZZLE_YYWW:
384       case BRW_SWIZZLE_XYXY:
385       case BRW_SWIZZLE_ZWZW:
386          /* These can be implemented as a single Align1 region on all
387           * platforms, so there's never a hazard between source and
388           * destination.  C.f. fs_generator::generate_quad_swizzle().
389           */
390          return false;
391       default:
392          return !is_uniform(src[0]);
393       }
394    default:
395       /* The SIMD16 compressed instruction
396        *
397        * add(16)      g4<1>F      g4<8,8,1>F   g6<8,8,1>F
398        *
399        * is actually decoded in hardware as:
400        *
401        * add(8)       g4<1>F      g4<8,8,1>F   g6<8,8,1>F
402        * add(8)       g5<1>F      g5<8,8,1>F   g7<8,8,1>F
403        *
404        * Which is safe.  However, if we have uniform accesses
405        * happening, we get into trouble:
406        *
407        * add(8)       g4<1>F      g4<0,1,0>F   g6<8,8,1>F
408        * add(8)       g5<1>F      g4<0,1,0>F   g7<8,8,1>F
409        *
410        * Now our destination for the first instruction overwrote the
411        * second instruction's src0, and we get garbage for those 8
412        * pixels.  There's a similar issue for the pre-gen6
413        * pixel_x/pixel_y, which are registers of 16-bit values and thus
414        * would get stomped by the first decode as well.
415        */
416       if (exec_size == 16) {
417          for (int i = 0; i < sources; i++) {
418             if (src[i].file == VGRF && (src[i].stride == 0 ||
419                                         src[i].type == BRW_REGISTER_TYPE_UW ||
420                                         src[i].type == BRW_REGISTER_TYPE_W ||
421                                         src[i].type == BRW_REGISTER_TYPE_UB ||
422                                         src[i].type == BRW_REGISTER_TYPE_B)) {
423                return true;
424             }
425          }
426       }
427       return false;
428    }
429 }
430 
431 bool
can_do_source_mods(const struct gen_device_info * devinfo) const432 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo) const
433 {
434    if (devinfo->gen == 6 && is_math())
435       return false;
436 
437    if (is_send_from_grf())
438       return false;
439 
440    /* From GEN:BUG:1604601757:
441     *
442     * "When multiplying a DW and any lower precision integer, source modifier
443     *  is not supported."
444     */
445    if (devinfo->gen >= 12 && (opcode == BRW_OPCODE_MUL ||
446                               opcode == BRW_OPCODE_MAD)) {
447       const brw_reg_type exec_type = get_exec_type(this);
448       const unsigned min_type_sz = opcode == BRW_OPCODE_MAD ?
449          MIN2(type_sz(src[1].type), type_sz(src[2].type)) :
450          MIN2(type_sz(src[0].type), type_sz(src[1].type));
451 
452       if (brw_reg_type_is_integer(exec_type) &&
453           type_sz(exec_type) >= 4 &&
454           type_sz(exec_type) != min_type_sz)
455          return false;
456    }
457 
458    if (!backend_instruction::can_do_source_mods())
459       return false;
460 
461    return true;
462 }
463 
464 bool
can_do_cmod()465 fs_inst::can_do_cmod()
466 {
467    if (!backend_instruction::can_do_cmod())
468       return false;
469 
470    /* The accumulator result appears to get used for the conditional modifier
471     * generation.  When negating a UD value, there is a 33rd bit generated for
472     * the sign in the accumulator value, so now you can't check, for example,
473     * equality with a 32-bit value.  See piglit fs-op-neg-uvec4.
474     */
475    for (unsigned i = 0; i < sources; i++) {
476       if (type_is_unsigned_int(src[i].type) && src[i].negate)
477          return false;
478    }
479 
480    return true;
481 }
482 
483 bool
can_change_types() const484 fs_inst::can_change_types() const
485 {
486    return dst.type == src[0].type &&
487           !src[0].abs && !src[0].negate && !saturate &&
488           (opcode == BRW_OPCODE_MOV ||
489            (opcode == BRW_OPCODE_SEL &&
490             dst.type == src[1].type &&
491             predicate != BRW_PREDICATE_NONE &&
492             !src[1].abs && !src[1].negate));
493 }
494 
495 void
init()496 fs_reg::init()
497 {
498    memset((void*)this, 0, sizeof(*this));
499    type = BRW_REGISTER_TYPE_UD;
500    stride = 1;
501 }
502 
503 /** Generic unset register constructor. */
fs_reg()504 fs_reg::fs_reg()
505 {
506    init();
507    this->file = BAD_FILE;
508 }
509 
fs_reg(struct::brw_reg reg)510 fs_reg::fs_reg(struct ::brw_reg reg) :
511    backend_reg(reg)
512 {
513    this->offset = 0;
514    this->stride = 1;
515    if (this->file == IMM &&
516        (this->type != BRW_REGISTER_TYPE_V &&
517         this->type != BRW_REGISTER_TYPE_UV &&
518         this->type != BRW_REGISTER_TYPE_VF)) {
519       this->stride = 0;
520    }
521 }
522 
523 bool
equals(const fs_reg & r) const524 fs_reg::equals(const fs_reg &r) const
525 {
526    return (this->backend_reg::equals(r) &&
527            stride == r.stride);
528 }
529 
530 bool
negative_equals(const fs_reg & r) const531 fs_reg::negative_equals(const fs_reg &r) const
532 {
533    return (this->backend_reg::negative_equals(r) &&
534            stride == r.stride);
535 }
536 
537 bool
is_contiguous() const538 fs_reg::is_contiguous() const
539 {
540    switch (file) {
541    case ARF:
542    case FIXED_GRF:
543       return hstride == BRW_HORIZONTAL_STRIDE_1 &&
544              vstride == width + hstride;
545    case MRF:
546    case VGRF:
547    case ATTR:
548       return stride == 1;
549    case UNIFORM:
550    case IMM:
551    case BAD_FILE:
552       return true;
553    }
554 
555    unreachable("Invalid register file");
556 }
557 
558 unsigned
component_size(unsigned width) const559 fs_reg::component_size(unsigned width) const
560 {
561    const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
562                             hstride == 0 ? 0 :
563                             1 << (hstride - 1));
564    return MAX2(width * stride, 1) * type_sz(type);
565 }
566 
567 /**
568  * Create a MOV to read the timestamp register.
569  */
570 fs_reg
get_timestamp(const fs_builder & bld)571 fs_visitor::get_timestamp(const fs_builder &bld)
572 {
573    assert(devinfo->gen >= 7);
574 
575    fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
576                                           BRW_ARF_TIMESTAMP,
577                                           0),
578                              BRW_REGISTER_TYPE_UD));
579 
580    fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
581 
582    /* We want to read the 3 fields we care about even if it's not enabled in
583     * the dispatch.
584     */
585    bld.group(4, 0).exec_all().MOV(dst, ts);
586 
587    return dst;
588 }
589 
590 void
emit_shader_time_begin()591 fs_visitor::emit_shader_time_begin()
592 {
593    /* We want only the low 32 bits of the timestamp.  Since it's running
594     * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
595     * which is plenty of time for our purposes.  It is identical across the
596     * EUs, but since it's tracking GPU core speed it will increment at a
597     * varying rate as render P-states change.
598     */
599    shader_start_time = component(
600       get_timestamp(bld.annotate("shader time start")), 0);
601 }
602 
603 void
emit_shader_time_end()604 fs_visitor::emit_shader_time_end()
605 {
606    /* Insert our code just before the final SEND with EOT. */
607    exec_node *end = this->instructions.get_tail();
608    assert(end && ((fs_inst *) end)->eot);
609    const fs_builder ibld = bld.annotate("shader time end")
610                               .exec_all().at(NULL, end);
611    const fs_reg timestamp = get_timestamp(ibld);
612 
613    /* We only use the low 32 bits of the timestamp - see
614     * emit_shader_time_begin()).
615     *
616     * We could also check if render P-states have changed (or anything
617     * else that might disrupt timing) by setting smear to 2 and checking if
618     * that field is != 0.
619     */
620    const fs_reg shader_end_time = component(timestamp, 0);
621 
622    /* Check that there weren't any timestamp reset events (assuming these
623     * were the only two timestamp reads that happened).
624     */
625    const fs_reg reset = component(timestamp, 2);
626    set_condmod(BRW_CONDITIONAL_Z,
627                ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
628    ibld.IF(BRW_PREDICATE_NORMAL);
629 
630    fs_reg start = shader_start_time;
631    start.negate = true;
632    const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
633                                         BRW_REGISTER_TYPE_UD),
634                                  0);
635    const fs_builder cbld = ibld.group(1, 0);
636    cbld.group(1, 0).ADD(diff, start, shader_end_time);
637 
638    /* If there were no instructions between the two timestamp gets, the diff
639     * is 2 cycles.  Remove that overhead, so I can forget about that when
640     * trying to determine the time taken for single instructions.
641     */
642    cbld.ADD(diff, diff, brw_imm_ud(-2u));
643    SHADER_TIME_ADD(cbld, 0, diff);
644    SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
645    ibld.emit(BRW_OPCODE_ELSE);
646    SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
647    ibld.emit(BRW_OPCODE_ENDIF);
648 }
649 
650 void
SHADER_TIME_ADD(const fs_builder & bld,int shader_time_subindex,fs_reg value)651 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
652                             int shader_time_subindex,
653                             fs_reg value)
654 {
655    int index = shader_time_index * 3 + shader_time_subindex;
656    struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE);
657 
658    fs_reg payload;
659    if (dispatch_width == 8)
660       payload = vgrf(glsl_type::uvec2_type);
661    else
662       payload = vgrf(glsl_type::uint_type);
663 
664    bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
665 }
666 
667 void
vfail(const char * format,va_list va)668 fs_visitor::vfail(const char *format, va_list va)
669 {
670    char *msg;
671 
672    if (failed)
673       return;
674 
675    failed = true;
676 
677    msg = ralloc_vasprintf(mem_ctx, format, va);
678    msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
679 
680    this->fail_msg = msg;
681 
682    if (debug_enabled) {
683       fprintf(stderr, "%s",  msg);
684    }
685 }
686 
687 void
fail(const char * format,...)688 fs_visitor::fail(const char *format, ...)
689 {
690    va_list va;
691 
692    va_start(va, format);
693    vfail(format, va);
694    va_end(va);
695 }
696 
697 /**
698  * Mark this program as impossible to compile with dispatch width greater
699  * than n.
700  *
701  * During the SIMD8 compile (which happens first), we can detect and flag
702  * things that are unsupported in SIMD16+ mode, so the compiler can skip the
703  * SIMD16+ compile altogether.
704  *
705  * During a compile of dispatch width greater than n (if one happens anyway),
706  * this just calls fail().
707  */
708 void
limit_dispatch_width(unsigned n,const char * msg)709 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
710 {
711    if (dispatch_width > n) {
712       fail("%s", msg);
713    } else {
714       max_dispatch_width = n;
715       compiler->shader_perf_log(log_data,
716                                 "Shader dispatch width limited to SIMD%d: %s",
717                                 n, msg);
718    }
719 }
720 
721 /**
722  * Returns true if the instruction has a flag that means it won't
723  * update an entire destination register.
724  *
725  * For example, dead code elimination and live variable analysis want to know
726  * when a write to a variable screens off any preceding values that were in
727  * it.
728  */
729 bool
is_partial_write() const730 fs_inst::is_partial_write() const
731 {
732    return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
733            (this->exec_size * type_sz(this->dst.type)) < 32 ||
734            !this->dst.is_contiguous() ||
735            this->dst.offset % REG_SIZE != 0);
736 }
737 
738 unsigned
components_read(unsigned i) const739 fs_inst::components_read(unsigned i) const
740 {
741    /* Return zero if the source is not present. */
742    if (src[i].file == BAD_FILE)
743       return 0;
744 
745    switch (opcode) {
746    case FS_OPCODE_LINTERP:
747       if (i == 0)
748          return 2;
749       else
750          return 1;
751 
752    case FS_OPCODE_PIXEL_X:
753    case FS_OPCODE_PIXEL_Y:
754       assert(i == 0);
755       return 2;
756 
757    case FS_OPCODE_FB_WRITE_LOGICAL:
758       assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
759       /* First/second FB write color. */
760       if (i < 2)
761          return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
762       else
763          return 1;
764 
765    case SHADER_OPCODE_TEX_LOGICAL:
766    case SHADER_OPCODE_TXD_LOGICAL:
767    case SHADER_OPCODE_TXF_LOGICAL:
768    case SHADER_OPCODE_TXL_LOGICAL:
769    case SHADER_OPCODE_TXS_LOGICAL:
770    case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
771    case FS_OPCODE_TXB_LOGICAL:
772    case SHADER_OPCODE_TXF_CMS_LOGICAL:
773    case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
774    case SHADER_OPCODE_TXF_UMS_LOGICAL:
775    case SHADER_OPCODE_TXF_MCS_LOGICAL:
776    case SHADER_OPCODE_LOD_LOGICAL:
777    case SHADER_OPCODE_TG4_LOGICAL:
778    case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
779    case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
780       assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
781              src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
782       /* Texture coordinates. */
783       if (i == TEX_LOGICAL_SRC_COORDINATE)
784          return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
785       /* Texture derivatives. */
786       else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
787                opcode == SHADER_OPCODE_TXD_LOGICAL)
788          return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
789       /* Texture offset. */
790       else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
791          return 2;
792       /* MCS */
793       else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
794          return 2;
795       else
796          return 1;
797 
798    case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
799    case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
800       assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM);
801       /* Surface coordinates. */
802       if (i == SURFACE_LOGICAL_SRC_ADDRESS)
803          return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
804       /* Surface operation source (ignored for reads). */
805       else if (i == SURFACE_LOGICAL_SRC_DATA)
806          return 0;
807       else
808          return 1;
809 
810    case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
811    case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
812       assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
813              src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
814       /* Surface coordinates. */
815       if (i == SURFACE_LOGICAL_SRC_ADDRESS)
816          return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
817       /* Surface operation source. */
818       else if (i == SURFACE_LOGICAL_SRC_DATA)
819          return src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
820       else
821          return 1;
822 
823    case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
824       assert(src[2].file == IMM);
825       return 1;
826 
827    case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
828       assert(src[2].file == IMM);
829       return i == 1 ? src[2].ud : 1;
830 
831    case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
832    case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
833       assert(src[2].file == IMM);
834       if (i == 1) {
835          /* Data source */
836          const unsigned op = src[2].ud;
837          switch (op) {
838          case BRW_AOP_INC:
839          case BRW_AOP_DEC:
840          case BRW_AOP_PREDEC:
841             return 0;
842          case BRW_AOP_CMPWR:
843             return 2;
844          default:
845             return 1;
846          }
847       } else {
848          return 1;
849       }
850 
851    case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
852       assert(src[2].file == IMM);
853       if (i == 1) {
854          /* Data source */
855          const unsigned op = src[2].ud;
856          return op == BRW_AOP_FCMPWR ? 2 : 1;
857       } else {
858          return 1;
859       }
860 
861    case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
862    case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
863       /* Scattered logical opcodes use the following params:
864        * src[0] Surface coordinates
865        * src[1] Surface operation source (ignored for reads)
866        * src[2] Surface
867        * src[3] IMM with always 1 dimension.
868        * src[4] IMM with arg bitsize for scattered read/write 8, 16, 32
869        */
870       assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
871              src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
872       return i == SURFACE_LOGICAL_SRC_DATA ? 0 : 1;
873 
874    case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
875    case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
876       assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
877              src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
878       return 1;
879 
880    case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
881    case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
882       assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
883              src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
884       const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
885       /* Surface coordinates. */
886       if (i == SURFACE_LOGICAL_SRC_ADDRESS)
887          return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
888       /* Surface operation source. */
889       else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_CMPWR)
890          return 2;
891       else if (i == SURFACE_LOGICAL_SRC_DATA &&
892                (op == BRW_AOP_INC || op == BRW_AOP_DEC || op == BRW_AOP_PREDEC))
893          return 0;
894       else
895          return 1;
896    }
897    case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
898       return (i == 0 ? 2 : 1);
899 
900    case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL: {
901       assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
902              src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
903       const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
904       /* Surface coordinates. */
905       if (i == SURFACE_LOGICAL_SRC_ADDRESS)
906          return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
907       /* Surface operation source. */
908       else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_FCMPWR)
909          return 2;
910       else
911          return 1;
912    }
913 
914    default:
915       return 1;
916    }
917 }
918 
919 unsigned
size_read(int arg) const920 fs_inst::size_read(int arg) const
921 {
922    switch (opcode) {
923    case SHADER_OPCODE_SEND:
924       if (arg == 2) {
925          return mlen * REG_SIZE;
926       } else if (arg == 3) {
927          return ex_mlen * REG_SIZE;
928       }
929       break;
930 
931    case FS_OPCODE_FB_WRITE:
932    case FS_OPCODE_REP_FB_WRITE:
933       if (arg == 0) {
934          if (base_mrf >= 0)
935             return src[0].file == BAD_FILE ? 0 : 2 * REG_SIZE;
936          else
937             return mlen * REG_SIZE;
938       }
939       break;
940 
941    case FS_OPCODE_FB_READ:
942    case SHADER_OPCODE_URB_WRITE_SIMD8:
943    case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
944    case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
945    case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
946    case SHADER_OPCODE_URB_READ_SIMD8:
947    case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
948    case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
949    case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
950       if (arg == 0)
951          return mlen * REG_SIZE;
952       break;
953 
954    case FS_OPCODE_SET_SAMPLE_ID:
955       if (arg == 1)
956          return 1;
957       break;
958 
959    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
960       /* The payload is actually stored in src1 */
961       if (arg == 1)
962          return mlen * REG_SIZE;
963       break;
964 
965    case FS_OPCODE_LINTERP:
966       if (arg == 1)
967          return 16;
968       break;
969 
970    case SHADER_OPCODE_LOAD_PAYLOAD:
971       if (arg < this->header_size)
972          return REG_SIZE;
973       break;
974 
975    case CS_OPCODE_CS_TERMINATE:
976    case SHADER_OPCODE_BARRIER:
977       return REG_SIZE;
978 
979    case SHADER_OPCODE_MOV_INDIRECT:
980       if (arg == 0) {
981          assert(src[2].file == IMM);
982          return src[2].ud;
983       }
984       break;
985 
986    default:
987       if (is_tex() && arg == 0 && src[0].file == VGRF)
988          return mlen * REG_SIZE;
989       break;
990    }
991 
992    switch (src[arg].file) {
993    case UNIFORM:
994    case IMM:
995       return components_read(arg) * type_sz(src[arg].type);
996    case BAD_FILE:
997    case ARF:
998    case FIXED_GRF:
999    case VGRF:
1000    case ATTR:
1001       return components_read(arg) * src[arg].component_size(exec_size);
1002    case MRF:
1003       unreachable("MRF registers are not allowed as sources");
1004    }
1005    return 0;
1006 }
1007 
1008 namespace {
1009    unsigned
predicate_width(brw_predicate predicate)1010    predicate_width(brw_predicate predicate)
1011    {
1012       switch (predicate) {
1013       case BRW_PREDICATE_NONE:            return 1;
1014       case BRW_PREDICATE_NORMAL:          return 1;
1015       case BRW_PREDICATE_ALIGN1_ANY2H:    return 2;
1016       case BRW_PREDICATE_ALIGN1_ALL2H:    return 2;
1017       case BRW_PREDICATE_ALIGN1_ANY4H:    return 4;
1018       case BRW_PREDICATE_ALIGN1_ALL4H:    return 4;
1019       case BRW_PREDICATE_ALIGN1_ANY8H:    return 8;
1020       case BRW_PREDICATE_ALIGN1_ALL8H:    return 8;
1021       case BRW_PREDICATE_ALIGN1_ANY16H:   return 16;
1022       case BRW_PREDICATE_ALIGN1_ALL16H:   return 16;
1023       case BRW_PREDICATE_ALIGN1_ANY32H:   return 32;
1024       case BRW_PREDICATE_ALIGN1_ALL32H:   return 32;
1025       default: unreachable("Unsupported predicate");
1026       }
1027    }
1028 
1029    /* Return the subset of flag registers that an instruction could
1030     * potentially read or write based on the execution controls and flag
1031     * subregister number of the instruction.
1032     */
1033    unsigned
flag_mask(const fs_inst * inst,unsigned width)1034    flag_mask(const fs_inst *inst, unsigned width)
1035    {
1036       assert(util_is_power_of_two_nonzero(width));
1037       const unsigned start = (inst->flag_subreg * 16 + inst->group) &
1038                              ~(width - 1);
1039       const unsigned end = start + ALIGN(inst->exec_size, width);
1040       return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
1041    }
1042 
1043    unsigned
bit_mask(unsigned n)1044    bit_mask(unsigned n)
1045    {
1046       return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1);
1047    }
1048 
1049    unsigned
flag_mask(const fs_reg & r,unsigned sz)1050    flag_mask(const fs_reg &r, unsigned sz)
1051    {
1052       if (r.file == ARF) {
1053          const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
1054          const unsigned end = start + sz;
1055          return bit_mask(end) & ~bit_mask(start);
1056       } else {
1057          return 0;
1058       }
1059    }
1060 }
1061 
1062 unsigned
flags_read(const gen_device_info * devinfo) const1063 fs_inst::flags_read(const gen_device_info *devinfo) const
1064 {
1065    if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
1066        predicate == BRW_PREDICATE_ALIGN1_ALLV) {
1067       /* The vertical predication modes combine corresponding bits from
1068        * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
1069        */
1070       const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
1071       return flag_mask(this, 1) << shift | flag_mask(this, 1);
1072    } else if (predicate) {
1073       return flag_mask(this, predicate_width(predicate));
1074    } else {
1075       unsigned mask = 0;
1076       for (int i = 0; i < sources; i++) {
1077          mask |= flag_mask(src[i], size_read(i));
1078       }
1079       return mask;
1080    }
1081 }
1082 
1083 unsigned
flags_written() const1084 fs_inst::flags_written() const
1085 {
1086    if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
1087                             opcode != BRW_OPCODE_CSEL &&
1088                             opcode != BRW_OPCODE_IF &&
1089                             opcode != BRW_OPCODE_WHILE)) ||
1090        opcode == FS_OPCODE_FB_WRITE) {
1091       return flag_mask(this, 1);
1092    } else if (opcode == SHADER_OPCODE_FIND_LIVE_CHANNEL ||
1093               opcode == FS_OPCODE_LOAD_LIVE_CHANNELS) {
1094       return flag_mask(this, 32);
1095    } else {
1096       return flag_mask(dst, size_written);
1097    }
1098 }
1099 
1100 /**
1101  * Returns how many MRFs an FS opcode will write over.
1102  *
1103  * Note that this is not the 0 or 1 implied writes in an actual gen
1104  * instruction -- the FS opcodes often generate MOVs in addition.
1105  */
1106 unsigned
implied_mrf_writes() const1107 fs_inst::implied_mrf_writes() const
1108 {
1109    if (mlen == 0)
1110       return 0;
1111 
1112    if (base_mrf == -1)
1113       return 0;
1114 
1115    switch (opcode) {
1116    case SHADER_OPCODE_RCP:
1117    case SHADER_OPCODE_RSQ:
1118    case SHADER_OPCODE_SQRT:
1119    case SHADER_OPCODE_EXP2:
1120    case SHADER_OPCODE_LOG2:
1121    case SHADER_OPCODE_SIN:
1122    case SHADER_OPCODE_COS:
1123       return 1 * exec_size / 8;
1124    case SHADER_OPCODE_POW:
1125    case SHADER_OPCODE_INT_QUOTIENT:
1126    case SHADER_OPCODE_INT_REMAINDER:
1127       return 2 * exec_size / 8;
1128    case SHADER_OPCODE_TEX:
1129    case FS_OPCODE_TXB:
1130    case SHADER_OPCODE_TXD:
1131    case SHADER_OPCODE_TXF:
1132    case SHADER_OPCODE_TXF_CMS:
1133    case SHADER_OPCODE_TXF_MCS:
1134    case SHADER_OPCODE_TG4:
1135    case SHADER_OPCODE_TG4_OFFSET:
1136    case SHADER_OPCODE_TXL:
1137    case SHADER_OPCODE_TXS:
1138    case SHADER_OPCODE_LOD:
1139    case SHADER_OPCODE_SAMPLEINFO:
1140       return 1;
1141    case FS_OPCODE_FB_WRITE:
1142    case FS_OPCODE_REP_FB_WRITE:
1143       return src[0].file == BAD_FILE ? 0 : 2;
1144    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
1145    case SHADER_OPCODE_GEN4_SCRATCH_READ:
1146       return 1;
1147    case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
1148       return mlen;
1149    case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
1150       return mlen;
1151    default:
1152       unreachable("not reached");
1153    }
1154 }
1155 
1156 fs_reg
vgrf(const glsl_type * const type)1157 fs_visitor::vgrf(const glsl_type *const type)
1158 {
1159    int reg_width = dispatch_width / 8;
1160    return fs_reg(VGRF,
1161                  alloc.allocate(glsl_count_dword_slots(type, false) * reg_width),
1162                  brw_type_for_base_type(type));
1163 }
1164 
fs_reg(enum brw_reg_file file,int nr)1165 fs_reg::fs_reg(enum brw_reg_file file, int nr)
1166 {
1167    init();
1168    this->file = file;
1169    this->nr = nr;
1170    this->type = BRW_REGISTER_TYPE_F;
1171    this->stride = (file == UNIFORM ? 0 : 1);
1172 }
1173 
fs_reg(enum brw_reg_file file,int nr,enum brw_reg_type type)1174 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1175 {
1176    init();
1177    this->file = file;
1178    this->nr = nr;
1179    this->type = type;
1180    this->stride = (file == UNIFORM ? 0 : 1);
1181 }
1182 
1183 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1184  * This brings in those uniform definitions
1185  */
1186 void
import_uniforms(fs_visitor * v)1187 fs_visitor::import_uniforms(fs_visitor *v)
1188 {
1189    this->push_constant_loc = v->push_constant_loc;
1190    this->pull_constant_loc = v->pull_constant_loc;
1191    this->uniforms = v->uniforms;
1192    this->subgroup_id = v->subgroup_id;
1193    for (unsigned i = 0; i < ARRAY_SIZE(this->group_size); i++)
1194       this->group_size[i] = v->group_size[i];
1195 }
1196 
1197 void
emit_fragcoord_interpolation(fs_reg wpos)1198 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1199 {
1200    assert(stage == MESA_SHADER_FRAGMENT);
1201 
1202    /* gl_FragCoord.x */
1203    bld.MOV(wpos, this->pixel_x);
1204    wpos = offset(wpos, bld, 1);
1205 
1206    /* gl_FragCoord.y */
1207    bld.MOV(wpos, this->pixel_y);
1208    wpos = offset(wpos, bld, 1);
1209 
1210    /* gl_FragCoord.z */
1211    if (devinfo->gen >= 6) {
1212       bld.MOV(wpos, fetch_payload_reg(bld, payload.source_depth_reg));
1213    } else {
1214       bld.emit(FS_OPCODE_LINTERP, wpos,
1215                this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1216                component(interp_reg(VARYING_SLOT_POS, 2), 0));
1217    }
1218    wpos = offset(wpos, bld, 1);
1219 
1220    /* gl_FragCoord.w: Already set up in emit_interpolation */
1221    bld.MOV(wpos, this->wpos_w);
1222 }
1223 
1224 enum brw_barycentric_mode
brw_barycentric_mode(enum glsl_interp_mode mode,nir_intrinsic_op op)1225 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1226 {
1227    /* Barycentric modes don't make sense for flat inputs. */
1228    assert(mode != INTERP_MODE_FLAT);
1229 
1230    unsigned bary;
1231    switch (op) {
1232    case nir_intrinsic_load_barycentric_pixel:
1233    case nir_intrinsic_load_barycentric_at_offset:
1234       bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1235       break;
1236    case nir_intrinsic_load_barycentric_centroid:
1237       bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1238       break;
1239    case nir_intrinsic_load_barycentric_sample:
1240    case nir_intrinsic_load_barycentric_at_sample:
1241       bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1242       break;
1243    default:
1244       unreachable("invalid intrinsic");
1245    }
1246 
1247    if (mode == INTERP_MODE_NOPERSPECTIVE)
1248       bary += 3;
1249 
1250    return (enum brw_barycentric_mode) bary;
1251 }
1252 
1253 /**
1254  * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1255  */
1256 static enum brw_barycentric_mode
centroid_to_pixel(enum brw_barycentric_mode bary)1257 centroid_to_pixel(enum brw_barycentric_mode bary)
1258 {
1259    assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1260           bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1261    return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1262 }
1263 
1264 fs_reg *
emit_frontfacing_interpolation()1265 fs_visitor::emit_frontfacing_interpolation()
1266 {
1267    fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1268 
1269    if (devinfo->gen >= 12) {
1270       fs_reg g1 = fs_reg(retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_W));
1271 
1272       fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_W);
1273       bld.ASR(tmp, g1, brw_imm_d(15));
1274       bld.NOT(*reg, tmp);
1275    } else if (devinfo->gen >= 6) {
1276       /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1277        * a boolean result from this (~0/true or 0/false).
1278        *
1279        * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1280        * this task in only one instruction:
1281        *    - a negation source modifier will flip the bit; and
1282        *    - a W -> D type conversion will sign extend the bit into the high
1283        *      word of the destination.
1284        *
1285        * An ASR 15 fills the low word of the destination.
1286        */
1287       fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1288       g0.negate = true;
1289 
1290       bld.ASR(*reg, g0, brw_imm_d(15));
1291    } else {
1292       /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1293        * a boolean result from this (1/true or 0/false).
1294        *
1295        * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1296        * the negation source modifier to flip it. Unfortunately the SHR
1297        * instruction only operates on UD (or D with an abs source modifier)
1298        * sources without negation.
1299        *
1300        * Instead, use ASR (which will give ~0/true or 0/false).
1301        */
1302       fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1303       g1_6.negate = true;
1304 
1305       bld.ASR(*reg, g1_6, brw_imm_d(31));
1306    }
1307 
1308    return reg;
1309 }
1310 
1311 void
compute_sample_position(fs_reg dst,fs_reg int_sample_pos)1312 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1313 {
1314    assert(stage == MESA_SHADER_FRAGMENT);
1315    struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1316    assert(dst.type == BRW_REGISTER_TYPE_F);
1317 
1318    if (wm_prog_data->persample_dispatch) {
1319       /* Convert int_sample_pos to floating point */
1320       bld.MOV(dst, int_sample_pos);
1321       /* Scale to the range [0, 1] */
1322       bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1323    }
1324    else {
1325       /* From ARB_sample_shading specification:
1326        * "When rendering to a non-multisample buffer, or if multisample
1327        *  rasterization is disabled, gl_SamplePosition will always be
1328        *  (0.5, 0.5).
1329        */
1330       bld.MOV(dst, brw_imm_f(0.5f));
1331    }
1332 }
1333 
1334 fs_reg *
emit_samplepos_setup()1335 fs_visitor::emit_samplepos_setup()
1336 {
1337    assert(devinfo->gen >= 6);
1338 
1339    const fs_builder abld = bld.annotate("compute sample position");
1340    fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1341    fs_reg pos = *reg;
1342    fs_reg int_sample_x = vgrf(glsl_type::int_type);
1343    fs_reg int_sample_y = vgrf(glsl_type::int_type);
1344 
1345    /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1346     * mode will be enabled.
1347     *
1348     * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1349     * R31.1:0         Position Offset X/Y for Slot[3:0]
1350     * R31.3:2         Position Offset X/Y for Slot[7:4]
1351     * .....
1352     *
1353     * The X, Y sample positions come in as bytes in  thread payload. So, read
1354     * the positions using vstride=16, width=8, hstride=2.
1355     */
1356    const fs_reg sample_pos_reg =
1357       fetch_payload_reg(abld, payload.sample_pos_reg, BRW_REGISTER_TYPE_W);
1358 
1359    /* Compute gl_SamplePosition.x */
1360    abld.MOV(int_sample_x, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, 0));
1361    compute_sample_position(offset(pos, abld, 0), int_sample_x);
1362 
1363    /* Compute gl_SamplePosition.y */
1364    abld.MOV(int_sample_y, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, 1));
1365    compute_sample_position(offset(pos, abld, 1), int_sample_y);
1366    return reg;
1367 }
1368 
1369 fs_reg *
emit_sampleid_setup()1370 fs_visitor::emit_sampleid_setup()
1371 {
1372    assert(stage == MESA_SHADER_FRAGMENT);
1373    brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1374    assert(devinfo->gen >= 6);
1375 
1376    const fs_builder abld = bld.annotate("compute sample id");
1377    fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uint_type));
1378 
1379    if (!key->multisample_fbo) {
1380       /* As per GL_ARB_sample_shading specification:
1381        * "When rendering to a non-multisample buffer, or if multisample
1382        *  rasterization is disabled, gl_SampleID will always be zero."
1383        */
1384       abld.MOV(*reg, brw_imm_d(0));
1385    } else if (devinfo->gen >= 8) {
1386       /* Sample ID comes in as 4-bit numbers in g1.0:
1387        *
1388        *    15:12 Slot 3 SampleID (only used in SIMD16)
1389        *     11:8 Slot 2 SampleID (only used in SIMD16)
1390        *      7:4 Slot 1 SampleID
1391        *      3:0 Slot 0 SampleID
1392        *
1393        * Each slot corresponds to four channels, so we want to replicate each
1394        * half-byte value to 4 channels in a row:
1395        *
1396        *    dst+0:    .7    .6    .5    .4    .3    .2    .1    .0
1397        *             7:4   7:4   7:4   7:4   3:0   3:0   3:0   3:0
1398        *
1399        *    dst+1:    .7    .6    .5    .4    .3    .2    .1    .0  (if SIMD16)
1400        *           15:12 15:12 15:12 15:12  11:8  11:8  11:8  11:8
1401        *
1402        * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1403        * channels to read the first byte (7:0), and the second group of 8
1404        * channels to read the second byte (15:8).  Then, we shift right by
1405        * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1406        * values into place.  Finally, we AND with 0xf to keep the low nibble.
1407        *
1408        *    shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1409        *    and(16) dst<1>D tmp<8,8,1>W  0xf:W
1410        *
1411        * TODO: These payload bits exist on Gen7 too, but they appear to always
1412        *       be zero, so this code fails to work.  We should find out why.
1413        */
1414       const fs_reg tmp = abld.vgrf(BRW_REGISTER_TYPE_UW);
1415 
1416       for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) {
1417          const fs_builder hbld = abld.group(MIN2(16, dispatch_width), i);
1418          hbld.SHR(offset(tmp, hbld, i),
1419                   stride(retype(brw_vec1_grf(1 + i, 0), BRW_REGISTER_TYPE_UB),
1420                          1, 8, 0),
1421                   brw_imm_v(0x44440000));
1422       }
1423 
1424       abld.AND(*reg, tmp, brw_imm_w(0xf));
1425    } else {
1426       const fs_reg t1 = component(abld.vgrf(BRW_REGISTER_TYPE_UD), 0);
1427       const fs_reg t2 = abld.vgrf(BRW_REGISTER_TYPE_UW);
1428 
1429       /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1430        * 8x multisampling, subspan 0 will represent sample N (where N
1431        * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1432        * 7. We can find the value of N by looking at R0.0 bits 7:6
1433        * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1434        * (since samples are always delivered in pairs). That is, we
1435        * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1436        * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1437        * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1438        * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1439        * populating a temporary variable with the sequence (0, 1, 2, 3),
1440        * and then reading from it using vstride=1, width=4, hstride=0.
1441        * These computations hold good for 4x multisampling as well.
1442        *
1443        * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1444        * the first four slots are sample 0 of subspan 0; the next four
1445        * are sample 1 of subspan 0; the third group is sample 0 of
1446        * subspan 1, and finally sample 1 of subspan 1.
1447        */
1448 
1449       /* SKL+ has an extra bit for the Starting Sample Pair Index to
1450        * accomodate 16x MSAA.
1451        */
1452       abld.exec_all().group(1, 0)
1453           .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
1454                brw_imm_ud(0xc0));
1455       abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1456 
1457       /* This works for SIMD8-SIMD16.  It also works for SIMD32 but only if we
1458        * can assume 4x MSAA.  Disallow it on IVB+
1459        *
1460        * FINISHME: One day, we could come up with a way to do this that
1461        * actually works on gen7.
1462        */
1463       if (devinfo->gen >= 7)
1464          limit_dispatch_width(16, "gl_SampleId is unsupported in SIMD32 on gen7");
1465       abld.exec_all().group(8, 0).MOV(t2, brw_imm_v(0x32103210));
1466 
1467       /* This special instruction takes care of setting vstride=1,
1468        * width=4, hstride=0 of t2 during an ADD instruction.
1469        */
1470       abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1471    }
1472 
1473    return reg;
1474 }
1475 
1476 fs_reg *
emit_samplemaskin_setup()1477 fs_visitor::emit_samplemaskin_setup()
1478 {
1479    assert(stage == MESA_SHADER_FRAGMENT);
1480    struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1481    assert(devinfo->gen >= 6);
1482 
1483    fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1484 
1485    fs_reg coverage_mask =
1486       fetch_payload_reg(bld, payload.sample_mask_in_reg, BRW_REGISTER_TYPE_D);
1487 
1488    if (wm_prog_data->persample_dispatch) {
1489       /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1490        * and a mask representing which sample is being processed by the
1491        * current shader invocation.
1492        *
1493        * From the OES_sample_variables specification:
1494        * "When per-sample shading is active due to the use of a fragment input
1495        *  qualified by "sample" or due to the use of the gl_SampleID or
1496        *  gl_SamplePosition variables, only the bit for the current sample is
1497        *  set in gl_SampleMaskIn."
1498        */
1499       const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1500 
1501       if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1502          nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1503 
1504       fs_reg one = vgrf(glsl_type::int_type);
1505       fs_reg enabled_mask = vgrf(glsl_type::int_type);
1506       abld.MOV(one, brw_imm_d(1));
1507       abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1508       abld.AND(*reg, enabled_mask, coverage_mask);
1509    } else {
1510       /* In per-pixel mode, the coverage mask is sufficient. */
1511       *reg = coverage_mask;
1512    }
1513    return reg;
1514 }
1515 
1516 fs_reg
resolve_source_modifiers(const fs_reg & src)1517 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1518 {
1519    if (!src.abs && !src.negate)
1520       return src;
1521 
1522    fs_reg temp = bld.vgrf(src.type);
1523    bld.MOV(temp, src);
1524 
1525    return temp;
1526 }
1527 
1528 void
emit_discard_jump()1529 fs_visitor::emit_discard_jump()
1530 {
1531    assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1532 
1533    /* For performance, after a discard, jump to the end of the
1534     * shader if all relevant channels have been discarded.
1535     */
1536    fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1537    discard_jump->flag_subreg = sample_mask_flag_subreg(this);
1538 
1539    discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1540    discard_jump->predicate_inverse = true;
1541 }
1542 
1543 void
emit_gs_thread_end()1544 fs_visitor::emit_gs_thread_end()
1545 {
1546    assert(stage == MESA_SHADER_GEOMETRY);
1547 
1548    struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1549 
1550    if (gs_compile->control_data_header_size_bits > 0) {
1551       emit_gs_control_data_bits(this->final_gs_vertex_count);
1552    }
1553 
1554    const fs_builder abld = bld.annotate("thread end");
1555    fs_inst *inst;
1556 
1557    if (gs_prog_data->static_vertex_count != -1) {
1558       foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1559          if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1560              prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1561              prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1562              prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1563             prev->eot = true;
1564 
1565             /* Delete now dead instructions. */
1566             foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1567                if (dead == prev)
1568                   break;
1569                dead->remove();
1570             }
1571             return;
1572          } else if (prev->is_control_flow() || prev->has_side_effects()) {
1573             break;
1574          }
1575       }
1576       fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1577       abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1578       inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1579       inst->mlen = 1;
1580    } else {
1581       fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1582       fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1583       sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1584       sources[1] = this->final_gs_vertex_count;
1585       abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1586       inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1587       inst->mlen = 2;
1588    }
1589    inst->eot = true;
1590    inst->offset = 0;
1591 }
1592 
1593 void
assign_curb_setup()1594 fs_visitor::assign_curb_setup()
1595 {
1596    unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
1597 
1598    unsigned ubo_push_length = 0;
1599    unsigned ubo_push_start[4];
1600    for (int i = 0; i < 4; i++) {
1601       ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
1602       ubo_push_length += stage_prog_data->ubo_ranges[i].length;
1603    }
1604 
1605    prog_data->curb_read_length = uniform_push_length + ubo_push_length;
1606 
1607    uint64_t used = 0;
1608 
1609    /* Map the offsets in the UNIFORM file to fixed HW regs. */
1610    foreach_block_and_inst(block, fs_inst, inst, cfg) {
1611       for (unsigned int i = 0; i < inst->sources; i++) {
1612 	 if (inst->src[i].file == UNIFORM) {
1613             int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1614             int constant_nr;
1615             if (inst->src[i].nr >= UBO_START) {
1616                /* constant_nr is in 32-bit units, the rest are in bytes */
1617                constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
1618                              inst->src[i].offset / 4;
1619             } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1620                constant_nr = push_constant_loc[uniform_nr];
1621             } else {
1622                /* Section 5.11 of the OpenGL 4.1 spec says:
1623                 * "Out-of-bounds reads return undefined values, which include
1624                 *  values from other variables of the active program or zero."
1625                 * Just return the first push constant.
1626                 */
1627                constant_nr = 0;
1628             }
1629 
1630             assert(constant_nr / 8 < 64);
1631             used |= BITFIELD64_BIT(constant_nr / 8);
1632 
1633 	    struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1634 						  constant_nr / 8,
1635 						  constant_nr % 8);
1636             brw_reg.abs = inst->src[i].abs;
1637             brw_reg.negate = inst->src[i].negate;
1638 
1639             assert(inst->src[i].stride == 0);
1640             inst->src[i] = byte_offset(
1641                retype(brw_reg, inst->src[i].type),
1642                inst->src[i].offset % 4);
1643 	 }
1644       }
1645    }
1646 
1647    uint64_t want_zero = used & stage_prog_data->zero_push_reg;
1648    if (want_zero) {
1649       assert(!compiler->compact_params);
1650       fs_builder ubld = bld.exec_all().group(8, 0).at(
1651          cfg->first_block(), cfg->first_block()->start());
1652 
1653       /* push_reg_mask_param is in 32-bit units */
1654       unsigned mask_param = stage_prog_data->push_reg_mask_param;
1655       struct brw_reg mask = brw_vec1_grf(payload.num_regs + mask_param / 8,
1656                                                             mask_param % 8);
1657 
1658       fs_reg b32;
1659       for (unsigned i = 0; i < 64; i++) {
1660          if (i % 16 == 0 && (want_zero & BITFIELD64_RANGE(i, 16))) {
1661             fs_reg shifted = ubld.vgrf(BRW_REGISTER_TYPE_W, 2);
1662             ubld.SHL(horiz_offset(shifted, 8),
1663                      byte_offset(retype(mask, BRW_REGISTER_TYPE_W), i / 8),
1664                      brw_imm_v(0x01234567));
1665             ubld.SHL(shifted, horiz_offset(shifted, 8), brw_imm_w(8));
1666 
1667             fs_builder ubld16 = ubld.group(16, 0);
1668             b32 = ubld16.vgrf(BRW_REGISTER_TYPE_D);
1669             ubld16.group(16, 0).ASR(b32, shifted, brw_imm_w(15));
1670          }
1671 
1672          if (want_zero & BITFIELD64_BIT(i)) {
1673             assert(i < prog_data->curb_read_length);
1674             struct brw_reg push_reg =
1675                retype(brw_vec8_grf(payload.num_regs + i, 0),
1676                       BRW_REGISTER_TYPE_D);
1677 
1678             ubld.AND(push_reg, push_reg, component(b32, i % 16));
1679          }
1680       }
1681 
1682       invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1683    }
1684 
1685    /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1686    this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1687 }
1688 
1689 /*
1690  * Build up an array of indices into the urb_setup array that
1691  * references the active entries of the urb_setup array.
1692  * Used to accelerate walking the active entries of the urb_setup array
1693  * on each upload.
1694  */
1695 void
brw_compute_urb_setup_index(struct brw_wm_prog_data * wm_prog_data)1696 brw_compute_urb_setup_index(struct brw_wm_prog_data *wm_prog_data)
1697 {
1698    /* Make sure uint8_t is sufficient */
1699    STATIC_ASSERT(VARYING_SLOT_MAX <= 0xff);
1700    uint8_t index = 0;
1701    for (uint8_t attr = 0; attr < VARYING_SLOT_MAX; attr++) {
1702       if (wm_prog_data->urb_setup[attr] >= 0) {
1703          wm_prog_data->urb_setup_attribs[index++] = attr;
1704       }
1705    }
1706    wm_prog_data->urb_setup_attribs_count = index;
1707 }
1708 
1709 static void
calculate_urb_setup(const struct gen_device_info * devinfo,const struct brw_wm_prog_key * key,struct brw_wm_prog_data * prog_data,const nir_shader * nir)1710 calculate_urb_setup(const struct gen_device_info *devinfo,
1711                     const struct brw_wm_prog_key *key,
1712                     struct brw_wm_prog_data *prog_data,
1713                     const nir_shader *nir)
1714 {
1715    memset(prog_data->urb_setup, -1,
1716           sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1717 
1718    int urb_next = 0;
1719    /* Figure out where each of the incoming setup attributes lands. */
1720    if (devinfo->gen >= 6) {
1721       if (util_bitcount64(nir->info.inputs_read &
1722                             BRW_FS_VARYING_INPUT_MASK) <= 16) {
1723          /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1724           * first 16 varying inputs, so we can put them wherever we want.
1725           * Just put them in order.
1726           *
1727           * This is useful because it means that (a) inputs not used by the
1728           * fragment shader won't take up valuable register space, and (b) we
1729           * won't have to recompile the fragment shader if it gets paired with
1730           * a different vertex (or geometry) shader.
1731           */
1732          for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1733             if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1734                 BITFIELD64_BIT(i)) {
1735                prog_data->urb_setup[i] = urb_next++;
1736             }
1737          }
1738       } else {
1739          /* We have enough input varyings that the SF/SBE pipeline stage can't
1740           * arbitrarily rearrange them to suit our whim; we have to put them
1741           * in an order that matches the output of the previous pipeline stage
1742           * (geometry or vertex shader).
1743           */
1744          struct brw_vue_map prev_stage_vue_map;
1745          brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1746                              key->input_slots_valid,
1747                              nir->info.separate_shader, 1);
1748 
1749          int first_slot =
1750             brw_compute_first_urb_slot_required(nir->info.inputs_read,
1751                                                 &prev_stage_vue_map);
1752 
1753          assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1754          for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1755               slot++) {
1756             int varying = prev_stage_vue_map.slot_to_varying[slot];
1757             if (varying != BRW_VARYING_SLOT_PAD &&
1758                 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1759                  BITFIELD64_BIT(varying))) {
1760                prog_data->urb_setup[varying] = slot - first_slot;
1761             }
1762          }
1763          urb_next = prev_stage_vue_map.num_slots - first_slot;
1764       }
1765    } else {
1766       /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1767       for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1768          /* Point size is packed into the header, not as a general attribute */
1769          if (i == VARYING_SLOT_PSIZ)
1770             continue;
1771 
1772 	 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1773 	    /* The back color slot is skipped when the front color is
1774 	     * also written to.  In addition, some slots can be
1775 	     * written in the vertex shader and not read in the
1776 	     * fragment shader.  So the register number must always be
1777 	     * incremented, mapped or not.
1778 	     */
1779 	    if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1780 	       prog_data->urb_setup[i] = urb_next;
1781             urb_next++;
1782 	 }
1783       }
1784 
1785       /*
1786        * It's a FS only attribute, and we did interpolation for this attribute
1787        * in SF thread. So, count it here, too.
1788        *
1789        * See compile_sf_prog() for more info.
1790        */
1791       if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1792          prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1793    }
1794 
1795    prog_data->num_varying_inputs = urb_next;
1796    prog_data->inputs = nir->info.inputs_read;
1797 
1798    brw_compute_urb_setup_index(prog_data);
1799 }
1800 
1801 void
assign_urb_setup()1802 fs_visitor::assign_urb_setup()
1803 {
1804    assert(stage == MESA_SHADER_FRAGMENT);
1805    struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1806 
1807    int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1808 
1809    /* Offset all the urb_setup[] index by the actual position of the
1810     * setup regs, now that the location of the constants has been chosen.
1811     */
1812    foreach_block_and_inst(block, fs_inst, inst, cfg) {
1813       for (int i = 0; i < inst->sources; i++) {
1814          if (inst->src[i].file == ATTR) {
1815             /* ATTR regs in the FS are in units of logical scalar inputs each
1816              * of which consumes half of a GRF register.
1817              */
1818             assert(inst->src[i].offset < REG_SIZE / 2);
1819             const unsigned grf = urb_start + inst->src[i].nr / 2;
1820             const unsigned offset = (inst->src[i].nr % 2) * (REG_SIZE / 2) +
1821                                     inst->src[i].offset;
1822             const unsigned width = inst->src[i].stride == 0 ?
1823                                    1 : MIN2(inst->exec_size, 8);
1824             struct brw_reg reg = stride(
1825                byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1826                            offset),
1827                width * inst->src[i].stride,
1828                width, inst->src[i].stride);
1829             reg.abs = inst->src[i].abs;
1830             reg.negate = inst->src[i].negate;
1831             inst->src[i] = reg;
1832          }
1833       }
1834    }
1835 
1836    /* Each attribute is 4 setup channels, each of which is half a reg. */
1837    this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1838 }
1839 
1840 void
convert_attr_sources_to_hw_regs(fs_inst * inst)1841 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1842 {
1843    for (int i = 0; i < inst->sources; i++) {
1844       if (inst->src[i].file == ATTR) {
1845          int grf = payload.num_regs +
1846                    prog_data->curb_read_length +
1847                    inst->src[i].nr +
1848                    inst->src[i].offset / REG_SIZE;
1849 
1850          /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1851           *
1852           * VertStride must be used to cross GRF register boundaries. This
1853           * rule implies that elements within a 'Width' cannot cross GRF
1854           * boundaries.
1855           *
1856           * So, for registers that are large enough, we have to split the exec
1857           * size in two and trust the compression state to sort it out.
1858           */
1859          unsigned total_size = inst->exec_size *
1860                                inst->src[i].stride *
1861                                type_sz(inst->src[i].type);
1862 
1863          assert(total_size <= 2 * REG_SIZE);
1864          const unsigned exec_size =
1865             (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1866 
1867          unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1868          struct brw_reg reg =
1869             stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1870                                inst->src[i].offset % REG_SIZE),
1871                    exec_size * inst->src[i].stride,
1872                    width, inst->src[i].stride);
1873          reg.abs = inst->src[i].abs;
1874          reg.negate = inst->src[i].negate;
1875 
1876          inst->src[i] = reg;
1877       }
1878    }
1879 }
1880 
1881 void
assign_vs_urb_setup()1882 fs_visitor::assign_vs_urb_setup()
1883 {
1884    struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1885 
1886    assert(stage == MESA_SHADER_VERTEX);
1887 
1888    /* Each attribute is 4 regs. */
1889    this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1890 
1891    assert(vs_prog_data->base.urb_read_length <= 15);
1892 
1893    /* Rewrite all ATTR file references to the hw grf that they land in. */
1894    foreach_block_and_inst(block, fs_inst, inst, cfg) {
1895       convert_attr_sources_to_hw_regs(inst);
1896    }
1897 }
1898 
1899 void
assign_tcs_urb_setup()1900 fs_visitor::assign_tcs_urb_setup()
1901 {
1902    assert(stage == MESA_SHADER_TESS_CTRL);
1903 
1904    /* Rewrite all ATTR file references to HW_REGs. */
1905    foreach_block_and_inst(block, fs_inst, inst, cfg) {
1906       convert_attr_sources_to_hw_regs(inst);
1907    }
1908 }
1909 
1910 void
assign_tes_urb_setup()1911 fs_visitor::assign_tes_urb_setup()
1912 {
1913    assert(stage == MESA_SHADER_TESS_EVAL);
1914 
1915    struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1916 
1917    first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1918 
1919    /* Rewrite all ATTR file references to HW_REGs. */
1920    foreach_block_and_inst(block, fs_inst, inst, cfg) {
1921       convert_attr_sources_to_hw_regs(inst);
1922    }
1923 }
1924 
1925 void
assign_gs_urb_setup()1926 fs_visitor::assign_gs_urb_setup()
1927 {
1928    assert(stage == MESA_SHADER_GEOMETRY);
1929 
1930    struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1931 
1932    first_non_payload_grf +=
1933       8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1934 
1935    foreach_block_and_inst(block, fs_inst, inst, cfg) {
1936       /* Rewrite all ATTR file references to GRFs. */
1937       convert_attr_sources_to_hw_regs(inst);
1938    }
1939 }
1940 
1941 
1942 /**
1943  * Split large virtual GRFs into separate components if we can.
1944  *
1945  * This is mostly duplicated with what brw_fs_vector_splitting does,
1946  * but that's really conservative because it's afraid of doing
1947  * splitting that doesn't result in real progress after the rest of
1948  * the optimization phases, which would cause infinite looping in
1949  * optimization.  We can do it once here, safely.  This also has the
1950  * opportunity to split interpolated values, or maybe even uniforms,
1951  * which we don't have at the IR level.
1952  *
1953  * We want to split, because virtual GRFs are what we register
1954  * allocate and spill (due to contiguousness requirements for some
1955  * instructions), and they're what we naturally generate in the
1956  * codegen process, but most virtual GRFs don't actually need to be
1957  * contiguous sets of GRFs.  If we split, we'll end up with reduced
1958  * live intervals and better dead code elimination and coalescing.
1959  */
1960 void
split_virtual_grfs()1961 fs_visitor::split_virtual_grfs()
1962 {
1963    /* Compact the register file so we eliminate dead vgrfs.  This
1964     * only defines split points for live registers, so if we have
1965     * too large dead registers they will hit assertions later.
1966     */
1967    compact_virtual_grfs();
1968 
1969    int num_vars = this->alloc.count;
1970 
1971    /* Count the total number of registers */
1972    int reg_count = 0;
1973    int vgrf_to_reg[num_vars];
1974    for (int i = 0; i < num_vars; i++) {
1975       vgrf_to_reg[i] = reg_count;
1976       reg_count += alloc.sizes[i];
1977    }
1978 
1979    /* An array of "split points".  For each register slot, this indicates
1980     * if this slot can be separated from the previous slot.  Every time an
1981     * instruction uses multiple elements of a register (as a source or
1982     * destination), we mark the used slots as inseparable.  Then we go
1983     * through and split the registers into the smallest pieces we can.
1984     */
1985    bool *split_points = new bool[reg_count];
1986    memset(split_points, 0, reg_count * sizeof(*split_points));
1987 
1988    /* Mark all used registers as fully splittable */
1989    foreach_block_and_inst(block, fs_inst, inst, cfg) {
1990       if (inst->dst.file == VGRF) {
1991          int reg = vgrf_to_reg[inst->dst.nr];
1992          for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1993             split_points[reg + j] = true;
1994       }
1995 
1996       for (int i = 0; i < inst->sources; i++) {
1997          if (inst->src[i].file == VGRF) {
1998             int reg = vgrf_to_reg[inst->src[i].nr];
1999             for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
2000                split_points[reg + j] = true;
2001          }
2002       }
2003    }
2004 
2005    foreach_block_and_inst(block, fs_inst, inst, cfg) {
2006       /* We fix up undef instructions later */
2007       if (inst->opcode == SHADER_OPCODE_UNDEF) {
2008          /* UNDEF instructions are currently only used to undef entire
2009           * registers.  We need this invariant later when we split them.
2010           */
2011          assert(inst->dst.file == VGRF);
2012          assert(inst->dst.offset == 0);
2013          assert(inst->size_written == alloc.sizes[inst->dst.nr] * REG_SIZE);
2014          continue;
2015       }
2016 
2017       if (inst->dst.file == VGRF) {
2018          int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
2019          for (unsigned j = 1; j < regs_written(inst); j++)
2020             split_points[reg + j] = false;
2021       }
2022       for (int i = 0; i < inst->sources; i++) {
2023          if (inst->src[i].file == VGRF) {
2024             int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
2025             for (unsigned j = 1; j < regs_read(inst, i); j++)
2026                split_points[reg + j] = false;
2027          }
2028       }
2029    }
2030 
2031    int *new_virtual_grf = new int[reg_count];
2032    int *new_reg_offset = new int[reg_count];
2033 
2034    int reg = 0;
2035    for (int i = 0; i < num_vars; i++) {
2036       /* The first one should always be 0 as a quick sanity check. */
2037       assert(split_points[reg] == false);
2038 
2039       /* j = 0 case */
2040       new_reg_offset[reg] = 0;
2041       reg++;
2042       int offset = 1;
2043 
2044       /* j > 0 case */
2045       for (unsigned j = 1; j < alloc.sizes[i]; j++) {
2046          /* If this is a split point, reset the offset to 0 and allocate a
2047           * new virtual GRF for the previous offset many registers
2048           */
2049          if (split_points[reg]) {
2050             assert(offset <= MAX_VGRF_SIZE);
2051             int grf = alloc.allocate(offset);
2052             for (int k = reg - offset; k < reg; k++)
2053                new_virtual_grf[k] = grf;
2054             offset = 0;
2055          }
2056          new_reg_offset[reg] = offset;
2057          offset++;
2058          reg++;
2059       }
2060 
2061       /* The last one gets the original register number */
2062       assert(offset <= MAX_VGRF_SIZE);
2063       alloc.sizes[i] = offset;
2064       for (int k = reg - offset; k < reg; k++)
2065          new_virtual_grf[k] = i;
2066    }
2067    assert(reg == reg_count);
2068 
2069    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2070       if (inst->opcode == SHADER_OPCODE_UNDEF) {
2071          const fs_builder ibld(this, block, inst);
2072          assert(inst->size_written % REG_SIZE == 0);
2073          unsigned reg_offset = 0;
2074          while (reg_offset < inst->size_written / REG_SIZE) {
2075             reg = vgrf_to_reg[inst->dst.nr] + reg_offset;
2076             ibld.UNDEF(fs_reg(VGRF, new_virtual_grf[reg], inst->dst.type));
2077             reg_offset += alloc.sizes[new_virtual_grf[reg]];
2078          }
2079          inst->remove(block);
2080          continue;
2081       }
2082 
2083       if (inst->dst.file == VGRF) {
2084          reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
2085          inst->dst.nr = new_virtual_grf[reg];
2086          inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
2087                             inst->dst.offset % REG_SIZE;
2088          assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
2089       }
2090       for (int i = 0; i < inst->sources; i++) {
2091 	 if (inst->src[i].file == VGRF) {
2092             reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
2093             inst->src[i].nr = new_virtual_grf[reg];
2094             inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
2095                                   inst->src[i].offset % REG_SIZE;
2096             assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
2097          }
2098       }
2099    }
2100    invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
2101 
2102    delete[] split_points;
2103    delete[] new_virtual_grf;
2104    delete[] new_reg_offset;
2105 }
2106 
2107 /**
2108  * Remove unused virtual GRFs and compact the vgrf_* arrays.
2109  *
2110  * During code generation, we create tons of temporary variables, many of
2111  * which get immediately killed and are never used again.  Yet, in later
2112  * optimization and analysis passes, such as compute_live_intervals, we need
2113  * to loop over all the virtual GRFs.  Compacting them can save a lot of
2114  * overhead.
2115  */
2116 bool
compact_virtual_grfs()2117 fs_visitor::compact_virtual_grfs()
2118 {
2119    bool progress = false;
2120    int *remap_table = new int[this->alloc.count];
2121    memset(remap_table, -1, this->alloc.count * sizeof(int));
2122 
2123    /* Mark which virtual GRFs are used. */
2124    foreach_block_and_inst(block, const fs_inst, inst, cfg) {
2125       if (inst->dst.file == VGRF)
2126          remap_table[inst->dst.nr] = 0;
2127 
2128       for (int i = 0; i < inst->sources; i++) {
2129          if (inst->src[i].file == VGRF)
2130             remap_table[inst->src[i].nr] = 0;
2131       }
2132    }
2133 
2134    /* Compact the GRF arrays. */
2135    int new_index = 0;
2136    for (unsigned i = 0; i < this->alloc.count; i++) {
2137       if (remap_table[i] == -1) {
2138          /* We just found an unused register.  This means that we are
2139           * actually going to compact something.
2140           */
2141          progress = true;
2142       } else {
2143          remap_table[i] = new_index;
2144          alloc.sizes[new_index] = alloc.sizes[i];
2145          invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
2146          ++new_index;
2147       }
2148    }
2149 
2150    this->alloc.count = new_index;
2151 
2152    /* Patch all the instructions to use the newly renumbered registers */
2153    foreach_block_and_inst(block, fs_inst, inst, cfg) {
2154       if (inst->dst.file == VGRF)
2155          inst->dst.nr = remap_table[inst->dst.nr];
2156 
2157       for (int i = 0; i < inst->sources; i++) {
2158          if (inst->src[i].file == VGRF)
2159             inst->src[i].nr = remap_table[inst->src[i].nr];
2160       }
2161    }
2162 
2163    /* Patch all the references to delta_xy, since they're used in register
2164     * allocation.  If they're unused, switch them to BAD_FILE so we don't
2165     * think some random VGRF is delta_xy.
2166     */
2167    for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2168       if (delta_xy[i].file == VGRF) {
2169          if (remap_table[delta_xy[i].nr] != -1) {
2170             delta_xy[i].nr = remap_table[delta_xy[i].nr];
2171          } else {
2172             delta_xy[i].file = BAD_FILE;
2173          }
2174       }
2175    }
2176 
2177    delete[] remap_table;
2178 
2179    return progress;
2180 }
2181 
2182 static int
get_subgroup_id_param_index(const brw_stage_prog_data * prog_data)2183 get_subgroup_id_param_index(const brw_stage_prog_data *prog_data)
2184 {
2185    if (prog_data->nr_params == 0)
2186       return -1;
2187 
2188    /* The local thread id is always the last parameter in the list */
2189    uint32_t last_param = prog_data->param[prog_data->nr_params - 1];
2190    if (last_param == BRW_PARAM_BUILTIN_SUBGROUP_ID)
2191       return prog_data->nr_params - 1;
2192 
2193    return -1;
2194 }
2195 
2196 /**
2197  * Struct for handling complex alignments.
2198  *
2199  * A complex alignment is stored as multiplier and an offset.  A value is
2200  * considered to be aligned if it is {offset} larger than a multiple of {mul}.
2201  * For instance, with an alignment of {8, 2}, cplx_align_apply would do the
2202  * following:
2203  *
2204  *  N  | cplx_align_apply({8, 2}, N)
2205  * ----+-----------------------------
2206  *  4  | 6
2207  *  6  | 6
2208  *  8  | 14
2209  *  10 | 14
2210  *  12 | 14
2211  *  14 | 14
2212  *  16 | 22
2213  */
2214 struct cplx_align {
2215    unsigned mul:4;
2216    unsigned offset:4;
2217 };
2218 
2219 #define CPLX_ALIGN_MAX_MUL 8
2220 
2221 static void
cplx_align_assert_sane(struct cplx_align a)2222 cplx_align_assert_sane(struct cplx_align a)
2223 {
2224    assert(a.mul > 0 && util_is_power_of_two_nonzero(a.mul));
2225    assert(a.offset < a.mul);
2226 }
2227 
2228 /**
2229  * Combines two alignments to produce a least multiple of sorts.
2230  *
2231  * The returned alignment is the smallest (in terms of multiplier) such that
2232  * anything aligned to both a and b will be aligned to the new alignment.
2233  * This function will assert-fail if a and b are not compatible, i.e. if the
2234  * offset parameters are such that no common alignment is possible.
2235  */
2236 static struct cplx_align
cplx_align_combine(struct cplx_align a,struct cplx_align b)2237 cplx_align_combine(struct cplx_align a, struct cplx_align b)
2238 {
2239    cplx_align_assert_sane(a);
2240    cplx_align_assert_sane(b);
2241 
2242    /* Assert that the alignments agree. */
2243    assert((a.offset & (b.mul - 1)) == (b.offset & (a.mul - 1)));
2244 
2245    return a.mul > b.mul ? a : b;
2246 }
2247 
2248 /**
2249  * Apply a complex alignment
2250  *
2251  * This function will return the smallest number greater than or equal to
2252  * offset that is aligned to align.
2253  */
2254 static unsigned
cplx_align_apply(struct cplx_align align,unsigned offset)2255 cplx_align_apply(struct cplx_align align, unsigned offset)
2256 {
2257    return ALIGN(offset - align.offset, align.mul) + align.offset;
2258 }
2259 
2260 #define UNIFORM_SLOT_SIZE 4
2261 
2262 struct uniform_slot_info {
2263    /** True if the given uniform slot is live */
2264    unsigned is_live:1;
2265 
2266    /** True if this slot and the next slot must remain contiguous */
2267    unsigned contiguous:1;
2268 
2269    struct cplx_align align;
2270 };
2271 
2272 static void
mark_uniform_slots_read(struct uniform_slot_info * slots,unsigned num_slots,unsigned alignment)2273 mark_uniform_slots_read(struct uniform_slot_info *slots,
2274                         unsigned num_slots, unsigned alignment)
2275 {
2276    assert(alignment > 0 && util_is_power_of_two_nonzero(alignment));
2277    assert(alignment <= CPLX_ALIGN_MAX_MUL);
2278 
2279    /* We can't align a slot to anything less than the slot size */
2280    alignment = MAX2(alignment, UNIFORM_SLOT_SIZE);
2281 
2282    struct cplx_align align = {alignment, 0};
2283    cplx_align_assert_sane(align);
2284 
2285    for (unsigned i = 0; i < num_slots; i++) {
2286       slots[i].is_live = true;
2287       if (i < num_slots - 1)
2288          slots[i].contiguous = true;
2289 
2290       align.offset = (i * UNIFORM_SLOT_SIZE) & (align.mul - 1);
2291       if (slots[i].align.mul == 0) {
2292          slots[i].align = align;
2293       } else {
2294          slots[i].align = cplx_align_combine(slots[i].align, align);
2295       }
2296    }
2297 }
2298 
2299 /**
2300  * Assign UNIFORM file registers to either push constants or pull constants.
2301  *
2302  * We allow a fragment shader to have more than the specified minimum
2303  * maximum number of fragment shader uniform components (64).  If
2304  * there are too many of these, they'd fill up all of register space.
2305  * So, this will push some of them out to the pull constant buffer and
2306  * update the program to load them.
2307  */
2308 void
assign_constant_locations()2309 fs_visitor::assign_constant_locations()
2310 {
2311    /* Only the first compile gets to decide on locations. */
2312    if (push_constant_loc) {
2313       assert(pull_constant_loc);
2314       return;
2315    }
2316 
2317    if (compiler->compact_params) {
2318       struct uniform_slot_info slots[uniforms + 1];
2319       memset(slots, 0, sizeof(slots));
2320 
2321       foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2322          for (int i = 0 ; i < inst->sources; i++) {
2323             if (inst->src[i].file != UNIFORM)
2324                continue;
2325 
2326             /* NIR tightly packs things so the uniform number might not be
2327              * aligned (if we have a double right after a float, for
2328              * instance).  This is fine because the process of re-arranging
2329              * them will ensure that things are properly aligned.  The offset
2330              * into that uniform, however, must be aligned.
2331              *
2332              * In Vulkan, we have explicit offsets but everything is crammed
2333              * into a single "variable" so inst->src[i].nr will always be 0.
2334              * Everything will be properly aligned relative to that one base.
2335              */
2336             assert(inst->src[i].offset % type_sz(inst->src[i].type) == 0);
2337 
2338             unsigned u = inst->src[i].nr +
2339                          inst->src[i].offset / UNIFORM_SLOT_SIZE;
2340 
2341             if (u >= uniforms)
2342                continue;
2343 
2344             unsigned slots_read;
2345             if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
2346                slots_read = DIV_ROUND_UP(inst->src[2].ud, UNIFORM_SLOT_SIZE);
2347             } else {
2348                unsigned bytes_read = inst->components_read(i) *
2349                                      type_sz(inst->src[i].type);
2350                slots_read = DIV_ROUND_UP(bytes_read, UNIFORM_SLOT_SIZE);
2351             }
2352 
2353             assert(u + slots_read <= uniforms);
2354             mark_uniform_slots_read(&slots[u], slots_read,
2355                                     type_sz(inst->src[i].type));
2356          }
2357       }
2358 
2359       int subgroup_id_index = get_subgroup_id_param_index(stage_prog_data);
2360 
2361       /* Only allow 16 registers (128 uniform components) as push constants.
2362        *
2363        * Just demote the end of the list.  We could probably do better
2364        * here, demoting things that are rarely used in the program first.
2365        *
2366        * If changing this value, note the limitation about total_regs in
2367        * brw_curbe.c.
2368        */
2369       unsigned int max_push_components = 16 * 8;
2370       if (subgroup_id_index >= 0)
2371          max_push_components--; /* Save a slot for the thread ID */
2372 
2373       /* We push small arrays, but no bigger than 16 floats.  This is big
2374        * enough for a vec4 but hopefully not large enough to push out other
2375        * stuff.  We should probably use a better heuristic at some point.
2376        */
2377       const unsigned int max_chunk_size = 16;
2378 
2379       unsigned int num_push_constants = 0;
2380       unsigned int num_pull_constants = 0;
2381 
2382       push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2383       pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2384 
2385       /* Default to -1 meaning no location */
2386       memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2387       memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2388 
2389       int chunk_start = -1;
2390       struct cplx_align align;
2391       for (unsigned u = 0; u < uniforms; u++) {
2392          if (!slots[u].is_live) {
2393             assert(chunk_start == -1);
2394             continue;
2395          }
2396 
2397          /* Skip subgroup_id_index to put it in the last push register. */
2398          if (subgroup_id_index == (int)u)
2399             continue;
2400 
2401          if (chunk_start == -1) {
2402             chunk_start = u;
2403             align = slots[u].align;
2404          } else {
2405             /* Offset into the chunk */
2406             unsigned chunk_offset = (u - chunk_start) * UNIFORM_SLOT_SIZE;
2407 
2408             /* Shift the slot alignment down by the chunk offset so it is
2409              * comparable with the base chunk alignment.
2410              */
2411             struct cplx_align slot_align = slots[u].align;
2412             slot_align.offset =
2413                (slot_align.offset - chunk_offset) & (align.mul - 1);
2414 
2415             align = cplx_align_combine(align, slot_align);
2416          }
2417 
2418          /* Sanity check the alignment */
2419          cplx_align_assert_sane(align);
2420 
2421          if (slots[u].contiguous)
2422             continue;
2423 
2424          /* Adjust the alignment to be in terms of slots, not bytes */
2425          assert((align.mul & (UNIFORM_SLOT_SIZE - 1)) == 0);
2426          assert((align.offset & (UNIFORM_SLOT_SIZE - 1)) == 0);
2427          align.mul /= UNIFORM_SLOT_SIZE;
2428          align.offset /= UNIFORM_SLOT_SIZE;
2429 
2430          unsigned push_start_align = cplx_align_apply(align, num_push_constants);
2431          unsigned chunk_size = u - chunk_start + 1;
2432          if ((!compiler->supports_pull_constants && u < UBO_START) ||
2433              (chunk_size < max_chunk_size &&
2434               push_start_align + chunk_size <= max_push_components)) {
2435             /* Align up the number of push constants */
2436             num_push_constants = push_start_align;
2437             for (unsigned i = 0; i < chunk_size; i++)
2438                push_constant_loc[chunk_start + i] = num_push_constants++;
2439          } else {
2440             /* We need to pull this one */
2441             num_pull_constants = cplx_align_apply(align, num_pull_constants);
2442             for (unsigned i = 0; i < chunk_size; i++)
2443                pull_constant_loc[chunk_start + i] = num_pull_constants++;
2444          }
2445 
2446          /* Reset the chunk and start again */
2447          chunk_start = -1;
2448       }
2449 
2450       /* Add the CS local thread ID uniform at the end of the push constants */
2451       if (subgroup_id_index >= 0)
2452          push_constant_loc[subgroup_id_index] = num_push_constants++;
2453 
2454       /* As the uniforms are going to be reordered, stash the old array and
2455        * create two new arrays for push/pull params.
2456        */
2457       uint32_t *param = stage_prog_data->param;
2458       stage_prog_data->nr_params = num_push_constants;
2459       if (num_push_constants) {
2460          stage_prog_data->param = rzalloc_array(mem_ctx, uint32_t,
2461                                                 num_push_constants);
2462       } else {
2463          stage_prog_data->param = NULL;
2464       }
2465       assert(stage_prog_data->nr_pull_params == 0);
2466       assert(stage_prog_data->pull_param == NULL);
2467       if (num_pull_constants > 0) {
2468          stage_prog_data->nr_pull_params = num_pull_constants;
2469          stage_prog_data->pull_param = rzalloc_array(mem_ctx, uint32_t,
2470                                                      num_pull_constants);
2471       }
2472 
2473       /* Up until now, the param[] array has been indexed by reg + offset
2474        * of UNIFORM registers.  Move pull constants into pull_param[] and
2475        * condense param[] to only contain the uniforms we chose to push.
2476        *
2477        * NOTE: Because we are condensing the params[] array, we know that
2478        * push_constant_loc[i] <= i and we can do it in one smooth loop without
2479        * having to make a copy.
2480        */
2481       for (unsigned int i = 0; i < uniforms; i++) {
2482          uint32_t value = param[i];
2483          if (pull_constant_loc[i] != -1) {
2484             stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2485          } else if (push_constant_loc[i] != -1) {
2486             stage_prog_data->param[push_constant_loc[i]] = value;
2487          }
2488       }
2489       ralloc_free(param);
2490    } else {
2491       /* If we don't want to compact anything, just set up dummy push/pull
2492        * arrays.  All the rest of the compiler cares about are these arrays.
2493        */
2494       push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2495       pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2496 
2497       for (unsigned u = 0; u < uniforms; u++)
2498          push_constant_loc[u] = u;
2499 
2500       memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2501    }
2502 
2503    /* Now that we know how many regular uniforms we'll push, reduce the
2504     * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
2505     */
2506    unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
2507    for (int i = 0; i < 4; i++) {
2508       struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2509 
2510       if (push_length + range->length > 64)
2511          range->length = 64 - push_length;
2512 
2513       push_length += range->length;
2514    }
2515    assert(push_length <= 64);
2516 }
2517 
2518 bool
get_pull_locs(const fs_reg & src,unsigned * out_surf_index,unsigned * out_pull_index)2519 fs_visitor::get_pull_locs(const fs_reg &src,
2520                           unsigned *out_surf_index,
2521                           unsigned *out_pull_index)
2522 {
2523    assert(src.file == UNIFORM);
2524 
2525    if (src.nr >= UBO_START) {
2526       const struct brw_ubo_range *range =
2527          &prog_data->ubo_ranges[src.nr - UBO_START];
2528 
2529       /* If this access is in our (reduced) range, use the push data. */
2530       if (src.offset / 32 < range->length)
2531          return false;
2532 
2533       *out_surf_index = prog_data->binding_table.ubo_start + range->block;
2534       *out_pull_index = (32 * range->start + src.offset) / 4;
2535 
2536       prog_data->has_ubo_pull = true;
2537       return true;
2538    }
2539 
2540    const unsigned location = src.nr + src.offset / 4;
2541 
2542    if (location < uniforms && pull_constant_loc[location] != -1) {
2543       /* A regular uniform push constant */
2544       *out_surf_index = stage_prog_data->binding_table.pull_constants_start;
2545       *out_pull_index = pull_constant_loc[location];
2546 
2547       prog_data->has_ubo_pull = true;
2548       return true;
2549    }
2550 
2551    return false;
2552 }
2553 
2554 /**
2555  * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2556  * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2557  */
2558 void
lower_constant_loads()2559 fs_visitor::lower_constant_loads()
2560 {
2561    unsigned index, pull_index;
2562 
2563    foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2564       /* Set up the annotation tracking for new generated instructions. */
2565       const fs_builder ibld(this, block, inst);
2566 
2567       for (int i = 0; i < inst->sources; i++) {
2568 	 if (inst->src[i].file != UNIFORM)
2569 	    continue;
2570 
2571          /* We'll handle this case later */
2572          if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2573             continue;
2574 
2575          if (!get_pull_locs(inst->src[i], &index, &pull_index))
2576 	    continue;
2577 
2578          assert(inst->src[i].stride == 0);
2579 
2580          const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2581          const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2582          const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2583          const unsigned base = pull_index * 4;
2584 
2585          ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2586                    dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2587 
2588          /* Rewrite the instruction to use the temporary VGRF. */
2589          inst->src[i].file = VGRF;
2590          inst->src[i].nr = dst.nr;
2591          inst->src[i].offset = (base & (block_sz - 1)) +
2592                                inst->src[i].offset % 4;
2593       }
2594 
2595       if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2596           inst->src[0].file == UNIFORM) {
2597 
2598          if (!get_pull_locs(inst->src[0], &index, &pull_index))
2599             continue;
2600 
2601          VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2602                                     brw_imm_ud(index),
2603                                     inst->src[1],
2604                                     pull_index * 4);
2605          inst->remove(block);
2606       }
2607    }
2608    invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
2609 }
2610 
2611 bool
opt_algebraic()2612 fs_visitor::opt_algebraic()
2613 {
2614    bool progress = false;
2615 
2616    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2617       switch (inst->opcode) {
2618       case BRW_OPCODE_MOV:
2619          if (!devinfo->has_64bit_float &&
2620              !devinfo->has_64bit_int &&
2621              (inst->dst.type == BRW_REGISTER_TYPE_DF ||
2622               inst->dst.type == BRW_REGISTER_TYPE_UQ ||
2623               inst->dst.type == BRW_REGISTER_TYPE_Q)) {
2624             assert(inst->dst.type == inst->src[0].type);
2625             assert(!inst->saturate);
2626             assert(!inst->src[0].abs);
2627             assert(!inst->src[0].negate);
2628             const brw::fs_builder ibld(this, block, inst);
2629 
2630             if (inst->src[0].file == IMM) {
2631                ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2632                         brw_imm_ud(inst->src[0].u64 >> 32));
2633                ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2634                         brw_imm_ud(inst->src[0].u64));
2635             } else {
2636                ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2637                         subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1));
2638                ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2639                         subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0));
2640             }
2641 
2642             inst->remove(block);
2643             progress = true;
2644          }
2645 
2646          if ((inst->conditional_mod == BRW_CONDITIONAL_Z ||
2647               inst->conditional_mod == BRW_CONDITIONAL_NZ) &&
2648              inst->dst.is_null() &&
2649              (inst->src[0].abs || inst->src[0].negate)) {
2650             inst->src[0].abs = false;
2651             inst->src[0].negate = false;
2652             progress = true;
2653             break;
2654          }
2655 
2656          if (inst->src[0].file != IMM)
2657             break;
2658 
2659          if (inst->saturate) {
2660             /* Full mixed-type saturates don't happen.  However, we can end up
2661              * with things like:
2662              *
2663              *    mov.sat(8) g21<1>DF       -1F
2664              *
2665              * Other mixed-size-but-same-base-type cases may also be possible.
2666              */
2667             if (inst->dst.type != inst->src[0].type &&
2668                 inst->dst.type != BRW_REGISTER_TYPE_DF &&
2669                 inst->src[0].type != BRW_REGISTER_TYPE_F)
2670                assert(!"unimplemented: saturate mixed types");
2671 
2672             if (brw_saturate_immediate(inst->src[0].type,
2673                                        &inst->src[0].as_brw_reg())) {
2674                inst->saturate = false;
2675                progress = true;
2676             }
2677          }
2678          break;
2679 
2680       case BRW_OPCODE_MUL:
2681          if (inst->src[1].file != IMM)
2682             continue;
2683 
2684          /* a * 1.0 = a */
2685          if (inst->src[1].is_one()) {
2686             inst->opcode = BRW_OPCODE_MOV;
2687             inst->src[1] = reg_undef;
2688             progress = true;
2689             break;
2690          }
2691 
2692          /* a * -1.0 = -a */
2693          if (inst->src[1].is_negative_one()) {
2694             inst->opcode = BRW_OPCODE_MOV;
2695             inst->src[0].negate = !inst->src[0].negate;
2696             inst->src[1] = reg_undef;
2697             progress = true;
2698             break;
2699          }
2700 
2701          break;
2702       case BRW_OPCODE_ADD:
2703          if (inst->src[1].file != IMM)
2704             continue;
2705 
2706          if (brw_reg_type_is_integer(inst->src[1].type) &&
2707              inst->src[1].is_zero()) {
2708             inst->opcode = BRW_OPCODE_MOV;
2709             inst->src[1] = reg_undef;
2710             progress = true;
2711             break;
2712          }
2713 
2714          if (inst->src[0].file == IMM) {
2715             assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2716             inst->opcode = BRW_OPCODE_MOV;
2717             inst->src[0].f += inst->src[1].f;
2718             inst->src[1] = reg_undef;
2719             progress = true;
2720             break;
2721          }
2722          break;
2723       case BRW_OPCODE_OR:
2724          if (inst->src[0].equals(inst->src[1]) ||
2725              inst->src[1].is_zero()) {
2726             /* On Gen8+, the OR instruction can have a source modifier that
2727              * performs logical not on the operand.  Cases of 'OR r0, ~r1, 0'
2728              * or 'OR r0, ~r1, ~r1' should become a NOT instead of a MOV.
2729              */
2730             if (inst->src[0].negate) {
2731                inst->opcode = BRW_OPCODE_NOT;
2732                inst->src[0].negate = false;
2733             } else {
2734                inst->opcode = BRW_OPCODE_MOV;
2735             }
2736             inst->src[1] = reg_undef;
2737             progress = true;
2738             break;
2739          }
2740          break;
2741       case BRW_OPCODE_CMP:
2742          if ((inst->conditional_mod == BRW_CONDITIONAL_Z ||
2743               inst->conditional_mod == BRW_CONDITIONAL_NZ) &&
2744              inst->src[1].is_zero() &&
2745              (inst->src[0].abs || inst->src[0].negate)) {
2746             inst->src[0].abs = false;
2747             inst->src[0].negate = false;
2748             progress = true;
2749             break;
2750          }
2751          break;
2752       case BRW_OPCODE_SEL:
2753          if (!devinfo->has_64bit_float &&
2754              !devinfo->has_64bit_int &&
2755              (inst->dst.type == BRW_REGISTER_TYPE_DF ||
2756               inst->dst.type == BRW_REGISTER_TYPE_UQ ||
2757               inst->dst.type == BRW_REGISTER_TYPE_Q)) {
2758             assert(inst->dst.type == inst->src[0].type);
2759             assert(!inst->saturate);
2760             assert(!inst->src[0].abs && !inst->src[0].negate);
2761             assert(!inst->src[1].abs && !inst->src[1].negate);
2762             const brw::fs_builder ibld(this, block, inst);
2763 
2764             set_predicate(inst->predicate,
2765                           ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0),
2766                                    subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
2767                                    subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0)));
2768             set_predicate(inst->predicate,
2769                           ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1),
2770                                    subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1),
2771                                    subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1)));
2772 
2773             inst->remove(block);
2774             progress = true;
2775          }
2776          if (inst->src[0].equals(inst->src[1])) {
2777             inst->opcode = BRW_OPCODE_MOV;
2778             inst->src[1] = reg_undef;
2779             inst->predicate = BRW_PREDICATE_NONE;
2780             inst->predicate_inverse = false;
2781             progress = true;
2782          } else if (inst->saturate && inst->src[1].file == IMM) {
2783             switch (inst->conditional_mod) {
2784             case BRW_CONDITIONAL_LE:
2785             case BRW_CONDITIONAL_L:
2786                switch (inst->src[1].type) {
2787                case BRW_REGISTER_TYPE_F:
2788                   if (inst->src[1].f >= 1.0f) {
2789                      inst->opcode = BRW_OPCODE_MOV;
2790                      inst->src[1] = reg_undef;
2791                      inst->conditional_mod = BRW_CONDITIONAL_NONE;
2792                      progress = true;
2793                   }
2794                   break;
2795                default:
2796                   break;
2797                }
2798                break;
2799             case BRW_CONDITIONAL_GE:
2800             case BRW_CONDITIONAL_G:
2801                switch (inst->src[1].type) {
2802                case BRW_REGISTER_TYPE_F:
2803                   if (inst->src[1].f <= 0.0f) {
2804                      inst->opcode = BRW_OPCODE_MOV;
2805                      inst->src[1] = reg_undef;
2806                      inst->conditional_mod = BRW_CONDITIONAL_NONE;
2807                      progress = true;
2808                   }
2809                   break;
2810                default:
2811                   break;
2812                }
2813             default:
2814                break;
2815             }
2816          }
2817          break;
2818       case BRW_OPCODE_MAD:
2819          if (inst->src[0].type != BRW_REGISTER_TYPE_F ||
2820              inst->src[1].type != BRW_REGISTER_TYPE_F ||
2821              inst->src[2].type != BRW_REGISTER_TYPE_F)
2822             break;
2823          if (inst->src[1].is_one()) {
2824             inst->opcode = BRW_OPCODE_ADD;
2825             inst->src[1] = inst->src[2];
2826             inst->src[2] = reg_undef;
2827             progress = true;
2828          } else if (inst->src[2].is_one()) {
2829             inst->opcode = BRW_OPCODE_ADD;
2830             inst->src[2] = reg_undef;
2831             progress = true;
2832          }
2833          break;
2834       case SHADER_OPCODE_BROADCAST:
2835          if (is_uniform(inst->src[0])) {
2836             inst->opcode = BRW_OPCODE_MOV;
2837             inst->sources = 1;
2838             inst->force_writemask_all = true;
2839             progress = true;
2840          } else if (inst->src[1].file == IMM) {
2841             inst->opcode = BRW_OPCODE_MOV;
2842             /* It's possible that the selected component will be too large and
2843              * overflow the register.  This can happen if someone does a
2844              * readInvocation() from GLSL or SPIR-V and provides an OOB
2845              * invocationIndex.  If this happens and we some how manage
2846              * to constant fold it in and get here, then component() may cause
2847              * us to start reading outside of the VGRF which will lead to an
2848              * assert later.  Instead, just let it wrap around if it goes over
2849              * exec_size.
2850              */
2851             const unsigned comp = inst->src[1].ud & (inst->exec_size - 1);
2852             inst->src[0] = component(inst->src[0], comp);
2853             inst->sources = 1;
2854             inst->force_writemask_all = true;
2855             progress = true;
2856          }
2857          break;
2858 
2859       case SHADER_OPCODE_SHUFFLE:
2860          if (is_uniform(inst->src[0])) {
2861             inst->opcode = BRW_OPCODE_MOV;
2862             inst->sources = 1;
2863             progress = true;
2864          } else if (inst->src[1].file == IMM) {
2865             inst->opcode = BRW_OPCODE_MOV;
2866             inst->src[0] = component(inst->src[0],
2867                                      inst->src[1].ud);
2868             inst->sources = 1;
2869             progress = true;
2870          }
2871          break;
2872 
2873       default:
2874 	 break;
2875       }
2876 
2877       /* Swap if src[0] is immediate. */
2878       if (progress && inst->is_commutative()) {
2879          if (inst->src[0].file == IMM) {
2880             fs_reg tmp = inst->src[1];
2881             inst->src[1] = inst->src[0];
2882             inst->src[0] = tmp;
2883          }
2884       }
2885    }
2886 
2887    if (progress)
2888       invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
2889                           DEPENDENCY_INSTRUCTION_DETAIL);
2890 
2891    return progress;
2892 }
2893 
2894 /**
2895  * Optimize sample messages that have constant zero values for the trailing
2896  * texture coordinates. We can just reduce the message length for these
2897  * instructions instead of reserving a register for it. Trailing parameters
2898  * that aren't sent default to zero anyway. This will cause the dead code
2899  * eliminator to remove the MOV instruction that would otherwise be emitted to
2900  * set up the zero value.
2901  */
2902 bool
opt_zero_samples()2903 fs_visitor::opt_zero_samples()
2904 {
2905    /* Gen4 infers the texturing opcode based on the message length so we can't
2906     * change it.
2907     */
2908    if (devinfo->gen < 5)
2909       return false;
2910 
2911    bool progress = false;
2912 
2913    foreach_block_and_inst(block, fs_inst, inst, cfg) {
2914       if (!inst->is_tex())
2915          continue;
2916 
2917       fs_inst *load_payload = (fs_inst *) inst->prev;
2918 
2919       if (load_payload->is_head_sentinel() ||
2920           load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2921          continue;
2922 
2923       /* We don't want to remove the message header or the first parameter.
2924        * Removing the first parameter is not allowed, see the Haswell PRM
2925        * volume 7, page 149:
2926        *
2927        *     "Parameter 0 is required except for the sampleinfo message, which
2928        *      has no parameter 0"
2929        */
2930       while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2931              load_payload->src[(inst->mlen - inst->header_size) /
2932                                (inst->exec_size / 8) +
2933                                inst->header_size - 1].is_zero()) {
2934          inst->mlen -= inst->exec_size / 8;
2935          progress = true;
2936       }
2937    }
2938 
2939    if (progress)
2940       invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
2941 
2942    return progress;
2943 }
2944 
2945 bool
opt_register_renaming()2946 fs_visitor::opt_register_renaming()
2947 {
2948    bool progress = false;
2949    int depth = 0;
2950 
2951    unsigned remap[alloc.count];
2952    memset(remap, ~0u, sizeof(unsigned) * alloc.count);
2953 
2954    foreach_block_and_inst(block, fs_inst, inst, cfg) {
2955       if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2956          depth++;
2957       } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2958                  inst->opcode == BRW_OPCODE_WHILE) {
2959          depth--;
2960       }
2961 
2962       /* Rewrite instruction sources. */
2963       for (int i = 0; i < inst->sources; i++) {
2964          if (inst->src[i].file == VGRF &&
2965              remap[inst->src[i].nr] != ~0u &&
2966              remap[inst->src[i].nr] != inst->src[i].nr) {
2967             inst->src[i].nr = remap[inst->src[i].nr];
2968             progress = true;
2969          }
2970       }
2971 
2972       const unsigned dst = inst->dst.nr;
2973 
2974       if (depth == 0 &&
2975           inst->dst.file == VGRF &&
2976           alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2977           !inst->is_partial_write()) {
2978          if (remap[dst] == ~0u) {
2979             remap[dst] = dst;
2980          } else {
2981             remap[dst] = alloc.allocate(regs_written(inst));
2982             inst->dst.nr = remap[dst];
2983             progress = true;
2984          }
2985       } else if (inst->dst.file == VGRF &&
2986                  remap[dst] != ~0u &&
2987                  remap[dst] != dst) {
2988          inst->dst.nr = remap[dst];
2989          progress = true;
2990       }
2991    }
2992 
2993    if (progress) {
2994       invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
2995                           DEPENDENCY_VARIABLES);
2996 
2997       for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2998          if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != ~0u) {
2999             delta_xy[i].nr = remap[delta_xy[i].nr];
3000          }
3001       }
3002    }
3003 
3004    return progress;
3005 }
3006 
3007 /**
3008  * Remove redundant or useless discard jumps.
3009  *
3010  * For example, we can eliminate jumps in the following sequence:
3011  *
3012  * discard-jump       (redundant with the next jump)
3013  * discard-jump       (useless; jumps to the next instruction)
3014  * placeholder-halt
3015  */
3016 bool
opt_redundant_discard_jumps()3017 fs_visitor::opt_redundant_discard_jumps()
3018 {
3019    bool progress = false;
3020 
3021    bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
3022 
3023    fs_inst *placeholder_halt = NULL;
3024    foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
3025       if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
3026          placeholder_halt = inst;
3027          break;
3028       }
3029    }
3030 
3031    if (!placeholder_halt)
3032       return false;
3033 
3034    /* Delete any HALTs immediately before the placeholder halt. */
3035    for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
3036         !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
3037         prev = (fs_inst *) placeholder_halt->prev) {
3038       prev->remove(last_bblock);
3039       progress = true;
3040    }
3041 
3042    if (progress)
3043       invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3044 
3045    return progress;
3046 }
3047 
3048 /**
3049  * Compute a bitmask with GRF granularity with a bit set for each GRF starting
3050  * from \p r.offset which overlaps the region starting at \p s.offset and
3051  * spanning \p ds bytes.
3052  */
3053 static inline unsigned
mask_relative_to(const fs_reg & r,const fs_reg & s,unsigned ds)3054 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
3055 {
3056    const int rel_offset = reg_offset(s) - reg_offset(r);
3057    const int shift = rel_offset / REG_SIZE;
3058    const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
3059    assert(reg_space(r) == reg_space(s) &&
3060           shift >= 0 && shift < int(8 * sizeof(unsigned)));
3061    return ((1 << n) - 1) << shift;
3062 }
3063 
3064 bool
compute_to_mrf()3065 fs_visitor::compute_to_mrf()
3066 {
3067    bool progress = false;
3068    int next_ip = 0;
3069 
3070    /* No MRFs on Gen >= 7. */
3071    if (devinfo->gen >= 7)
3072       return false;
3073 
3074    const fs_live_variables &live = live_analysis.require();
3075 
3076    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3077       int ip = next_ip;
3078       next_ip++;
3079 
3080       if (inst->opcode != BRW_OPCODE_MOV ||
3081 	  inst->is_partial_write() ||
3082 	  inst->dst.file != MRF || inst->src[0].file != VGRF ||
3083 	  inst->dst.type != inst->src[0].type ||
3084 	  inst->src[0].abs || inst->src[0].negate ||
3085           !inst->src[0].is_contiguous() ||
3086           inst->src[0].offset % REG_SIZE != 0)
3087 	 continue;
3088 
3089       /* Can't compute-to-MRF this GRF if someone else was going to
3090        * read it later.
3091        */
3092       if (live.vgrf_end[inst->src[0].nr] > ip)
3093 	 continue;
3094 
3095       /* Found a move of a GRF to a MRF.  Let's see if we can go rewrite the
3096        * things that computed the value of all GRFs of the source region.  The
3097        * regs_left bitset keeps track of the registers we haven't yet found a
3098        * generating instruction for.
3099        */
3100       unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
3101 
3102       foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3103          if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3104                              inst->src[0], inst->size_read(0))) {
3105 	    /* Found the last thing to write our reg we want to turn
3106 	     * into a compute-to-MRF.
3107 	     */
3108 
3109 	    /* If this one instruction didn't populate all the
3110 	     * channels, bail.  We might be able to rewrite everything
3111 	     * that writes that reg, but it would require smarter
3112 	     * tracking.
3113 	     */
3114 	    if (scan_inst->is_partial_write())
3115 	       break;
3116 
3117             /* Handling things not fully contained in the source of the copy
3118              * would need us to understand coalescing out more than one MOV at
3119              * a time.
3120              */
3121             if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
3122                                      inst->src[0], inst->size_read(0)))
3123                break;
3124 
3125 	    /* SEND instructions can't have MRF as a destination. */
3126 	    if (scan_inst->mlen)
3127 	       break;
3128 
3129 	    if (devinfo->gen == 6) {
3130 	       /* gen6 math instructions must have the destination be
3131 		* GRF, so no compute-to-MRF for them.
3132 		*/
3133 	       if (scan_inst->is_math()) {
3134 		  break;
3135 	       }
3136 	    }
3137 
3138             /* Clear the bits for any registers this instruction overwrites. */
3139             regs_left &= ~mask_relative_to(
3140                inst->src[0], scan_inst->dst, scan_inst->size_written);
3141             if (!regs_left)
3142                break;
3143 	 }
3144 
3145 	 /* We don't handle control flow here.  Most computation of
3146 	  * values that end up in MRFs are shortly before the MRF
3147 	  * write anyway.
3148 	  */
3149 	 if (block->start() == scan_inst)
3150 	    break;
3151 
3152 	 /* You can't read from an MRF, so if someone else reads our
3153 	  * MRF's source GRF that we wanted to rewrite, that stops us.
3154 	  */
3155 	 bool interfered = false;
3156 	 for (int i = 0; i < scan_inst->sources; i++) {
3157             if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
3158                                 inst->src[0], inst->size_read(0))) {
3159 	       interfered = true;
3160 	    }
3161 	 }
3162 	 if (interfered)
3163 	    break;
3164 
3165          if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3166                              inst->dst, inst->size_written)) {
3167 	    /* If somebody else writes our MRF here, we can't
3168 	     * compute-to-MRF before that.
3169 	     */
3170             break;
3171          }
3172 
3173          if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
3174              regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
3175                              inst->dst, inst->size_written)) {
3176 	    /* Found a SEND instruction, which means that there are
3177 	     * live values in MRFs from base_mrf to base_mrf +
3178 	     * scan_inst->mlen - 1.  Don't go pushing our MRF write up
3179 	     * above it.
3180 	     */
3181             break;
3182          }
3183       }
3184 
3185       if (regs_left)
3186          continue;
3187 
3188       /* Found all generating instructions of our MRF's source value, so it
3189        * should be safe to rewrite them to point to the MRF directly.
3190        */
3191       regs_left = (1 << regs_read(inst, 0)) - 1;
3192 
3193       foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3194          if (regions_overlap(scan_inst->dst, scan_inst->size_written,
3195                              inst->src[0], inst->size_read(0))) {
3196             /* Clear the bits for any registers this instruction overwrites. */
3197             regs_left &= ~mask_relative_to(
3198                inst->src[0], scan_inst->dst, scan_inst->size_written);
3199 
3200             const unsigned rel_offset = reg_offset(scan_inst->dst) -
3201                                         reg_offset(inst->src[0]);
3202 
3203             if (inst->dst.nr & BRW_MRF_COMPR4) {
3204                /* Apply the same address transformation done by the hardware
3205                 * for COMPR4 MRF writes.
3206                 */
3207                assert(rel_offset < 2 * REG_SIZE);
3208                scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
3209 
3210                /* Clear the COMPR4 bit if the generating instruction is not
3211                 * compressed.
3212                 */
3213                if (scan_inst->size_written < 2 * REG_SIZE)
3214                   scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
3215 
3216             } else {
3217                /* Calculate the MRF number the result of this instruction is
3218                 * ultimately written to.
3219                 */
3220                scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
3221             }
3222 
3223             scan_inst->dst.file = MRF;
3224             scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
3225             scan_inst->saturate |= inst->saturate;
3226             if (!regs_left)
3227                break;
3228          }
3229       }
3230 
3231       assert(!regs_left);
3232       inst->remove(block);
3233       progress = true;
3234    }
3235 
3236    if (progress)
3237       invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3238 
3239    return progress;
3240 }
3241 
3242 /**
3243  * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
3244  * flow.  We could probably do better here with some form of divergence
3245  * analysis.
3246  */
3247 bool
eliminate_find_live_channel()3248 fs_visitor::eliminate_find_live_channel()
3249 {
3250    bool progress = false;
3251    unsigned depth = 0;
3252 
3253    if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
3254       /* The optimization below assumes that channel zero is live on thread
3255        * dispatch, which may not be the case if the fixed function dispatches
3256        * threads sparsely.
3257        */
3258       return false;
3259    }
3260 
3261    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3262       switch (inst->opcode) {
3263       case BRW_OPCODE_IF:
3264       case BRW_OPCODE_DO:
3265          depth++;
3266          break;
3267 
3268       case BRW_OPCODE_ENDIF:
3269       case BRW_OPCODE_WHILE:
3270          depth--;
3271          break;
3272 
3273       case FS_OPCODE_DISCARD_JUMP:
3274          /* This can potentially make control flow non-uniform until the end
3275           * of the program.
3276           */
3277          return progress;
3278 
3279       case SHADER_OPCODE_FIND_LIVE_CHANNEL:
3280          if (depth == 0) {
3281             inst->opcode = BRW_OPCODE_MOV;
3282             inst->src[0] = brw_imm_ud(0u);
3283             inst->sources = 1;
3284             inst->force_writemask_all = true;
3285             progress = true;
3286          }
3287          break;
3288 
3289       default:
3290          break;
3291       }
3292    }
3293 
3294    if (progress)
3295       invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
3296 
3297    return progress;
3298 }
3299 
3300 /**
3301  * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
3302  * instructions to FS_OPCODE_REP_FB_WRITE.
3303  */
3304 void
emit_repclear_shader()3305 fs_visitor::emit_repclear_shader()
3306 {
3307    brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3308    int base_mrf = 0;
3309    int color_mrf = base_mrf + 2;
3310    fs_inst *mov;
3311 
3312    if (uniforms > 0) {
3313       mov = bld.exec_all().group(4, 0)
3314                .MOV(brw_message_reg(color_mrf),
3315                     fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
3316    } else {
3317       struct brw_reg reg =
3318          brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
3319                  BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
3320                  BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
3321 
3322       mov = bld.exec_all().group(4, 0)
3323                .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
3324    }
3325 
3326    fs_inst *write = NULL;
3327    if (key->nr_color_regions == 1) {
3328       write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3329       write->saturate = key->clamp_fragment_color;
3330       write->base_mrf = color_mrf;
3331       write->target = 0;
3332       write->header_size = 0;
3333       write->mlen = 1;
3334    } else {
3335       assume(key->nr_color_regions > 0);
3336 
3337       struct brw_reg header =
3338          retype(brw_message_reg(base_mrf), BRW_REGISTER_TYPE_UD);
3339       bld.exec_all().group(16, 0)
3340          .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3341 
3342       for (int i = 0; i < key->nr_color_regions; ++i) {
3343          if (i > 0) {
3344             bld.exec_all().group(1, 0)
3345                .MOV(component(header, 2), brw_imm_ud(i));
3346          }
3347 
3348          write = bld.emit(FS_OPCODE_REP_FB_WRITE);
3349          write->saturate = key->clamp_fragment_color;
3350          write->base_mrf = base_mrf;
3351          write->target = i;
3352          write->header_size = 2;
3353          write->mlen = 3;
3354       }
3355    }
3356    write->eot = true;
3357    write->last_rt = true;
3358 
3359    calculate_cfg();
3360 
3361    assign_constant_locations();
3362    assign_curb_setup();
3363 
3364    /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
3365    if (uniforms > 0) {
3366       assert(mov->src[0].file == FIXED_GRF);
3367       mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
3368    }
3369 
3370    lower_scoreboard();
3371 }
3372 
3373 /**
3374  * Walks through basic blocks, looking for repeated MRF writes and
3375  * removing the later ones.
3376  */
3377 bool
remove_duplicate_mrf_writes()3378 fs_visitor::remove_duplicate_mrf_writes()
3379 {
3380    fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
3381    bool progress = false;
3382 
3383    /* Need to update the MRF tracking for compressed instructions. */
3384    if (dispatch_width >= 16)
3385       return false;
3386 
3387    memset(last_mrf_move, 0, sizeof(last_mrf_move));
3388 
3389    foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3390       if (inst->is_control_flow()) {
3391 	 memset(last_mrf_move, 0, sizeof(last_mrf_move));
3392       }
3393 
3394       if (inst->opcode == BRW_OPCODE_MOV &&
3395 	  inst->dst.file == MRF) {
3396          fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3397 	 if (prev_inst && prev_inst->opcode == BRW_OPCODE_MOV &&
3398              inst->dst.equals(prev_inst->dst) &&
3399              inst->src[0].equals(prev_inst->src[0]) &&
3400              inst->saturate == prev_inst->saturate &&
3401              inst->predicate == prev_inst->predicate &&
3402              inst->conditional_mod == prev_inst->conditional_mod &&
3403              inst->exec_size == prev_inst->exec_size) {
3404 	    inst->remove(block);
3405 	    progress = true;
3406 	    continue;
3407 	 }
3408       }
3409 
3410       /* Clear out the last-write records for MRFs that were overwritten. */
3411       if (inst->dst.file == MRF) {
3412          last_mrf_move[inst->dst.nr] = NULL;
3413       }
3414 
3415       if (inst->mlen > 0 && inst->base_mrf != -1) {
3416 	 /* Found a SEND instruction, which will include two or fewer
3417 	  * implied MRF writes.  We could do better here.
3418 	  */
3419 	 for (unsigned i = 0; i < inst->implied_mrf_writes(); i++) {
3420 	    last_mrf_move[inst->base_mrf + i] = NULL;
3421 	 }
3422       }
3423 
3424       /* Clear out any MRF move records whose sources got overwritten. */
3425       for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3426          if (last_mrf_move[i] &&
3427              regions_overlap(inst->dst, inst->size_written,
3428                              last_mrf_move[i]->src[0],
3429                              last_mrf_move[i]->size_read(0))) {
3430             last_mrf_move[i] = NULL;
3431          }
3432       }
3433 
3434       if (inst->opcode == BRW_OPCODE_MOV &&
3435 	  inst->dst.file == MRF &&
3436 	  inst->src[0].file != ARF &&
3437 	  !inst->is_partial_write()) {
3438          last_mrf_move[inst->dst.nr] = inst;
3439       }
3440    }
3441 
3442    if (progress)
3443       invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3444 
3445    return progress;
3446 }
3447 
3448 /**
3449  * Rounding modes for conversion instructions are included for each
3450  * conversion, but right now it is a state. So once it is set,
3451  * we don't need to call it again for subsequent calls.
3452  *
3453  * This is useful for vector/matrices conversions, as setting the
3454  * mode once is enough for the full vector/matrix
3455  */
3456 bool
remove_extra_rounding_modes()3457 fs_visitor::remove_extra_rounding_modes()
3458 {
3459    bool progress = false;
3460    unsigned execution_mode = this->nir->info.float_controls_execution_mode;
3461 
3462    brw_rnd_mode base_mode = BRW_RND_MODE_UNSPECIFIED;
3463    if ((FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16 |
3464         FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32 |
3465         FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64) &
3466        execution_mode)
3467       base_mode = BRW_RND_MODE_RTNE;
3468    if ((FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16 |
3469         FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32 |
3470         FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64) &
3471        execution_mode)
3472       base_mode = BRW_RND_MODE_RTZ;
3473 
3474    foreach_block (block, cfg) {
3475       brw_rnd_mode prev_mode = base_mode;
3476 
3477       foreach_inst_in_block_safe (fs_inst, inst, block) {
3478          if (inst->opcode == SHADER_OPCODE_RND_MODE) {
3479             assert(inst->src[0].file == BRW_IMMEDIATE_VALUE);
3480             const brw_rnd_mode mode = (brw_rnd_mode) inst->src[0].d;
3481             if (mode == prev_mode) {
3482                inst->remove(block);
3483                progress = true;
3484             } else {
3485                prev_mode = mode;
3486             }
3487          }
3488       }
3489    }
3490 
3491    if (progress)
3492       invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3493 
3494    return progress;
3495 }
3496 
3497 static void
clear_deps_for_inst_src(fs_inst * inst,bool * deps,int first_grf,int grf_len)3498 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3499 {
3500    /* Clear the flag for registers that actually got read (as expected). */
3501    for (int i = 0; i < inst->sources; i++) {
3502       int grf;
3503       if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3504          grf = inst->src[i].nr;
3505       } else {
3506          continue;
3507       }
3508 
3509       if (grf >= first_grf &&
3510           grf < first_grf + grf_len) {
3511          deps[grf - first_grf] = false;
3512          if (inst->exec_size == 16)
3513             deps[grf - first_grf + 1] = false;
3514       }
3515    }
3516 }
3517 
3518 /**
3519  * Implements this workaround for the original 965:
3520  *
3521  *     "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3522  *      check for post destination dependencies on this instruction, software
3523  *      must ensure that there is no destination hazard for the case of ‘write
3524  *      followed by a posted write’ shown in the following example.
3525  *
3526  *      1. mov r3 0
3527  *      2. send r3.xy <rest of send instruction>
3528  *      3. mov r2 r3
3529  *
3530  *      Due to no post-destination dependency check on the ‘send’, the above
3531  *      code sequence could have two instructions (1 and 2) in flight at the
3532  *      same time that both consider ‘r3’ as the target of their final writes.
3533  */
3534 void
insert_gen4_pre_send_dependency_workarounds(bblock_t * block,fs_inst * inst)3535 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3536                                                         fs_inst *inst)
3537 {
3538    int write_len = regs_written(inst);
3539    int first_write_grf = inst->dst.nr;
3540    bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3541    assert(write_len < (int)sizeof(needs_dep) - 1);
3542 
3543    memset(needs_dep, false, sizeof(needs_dep));
3544    memset(needs_dep, true, write_len);
3545 
3546    clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3547 
3548    /* Walk backwards looking for writes to registers we're writing which
3549     * aren't read since being written.  If we hit the start of the program,
3550     * we assume that there are no outstanding dependencies on entry to the
3551     * program.
3552     */
3553    foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3554       /* If we hit control flow, assume that there *are* outstanding
3555        * dependencies, and force their cleanup before our instruction.
3556        */
3557       if (block->start() == scan_inst && block->num != 0) {
3558          for (int i = 0; i < write_len; i++) {
3559             if (needs_dep[i])
3560                DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3561                                first_write_grf + i);
3562          }
3563          return;
3564       }
3565 
3566       /* We insert our reads as late as possible on the assumption that any
3567        * instruction but a MOV that might have left us an outstanding
3568        * dependency has more latency than a MOV.
3569        */
3570       if (scan_inst->dst.file == VGRF) {
3571          for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3572             int reg = scan_inst->dst.nr + i;
3573 
3574             if (reg >= first_write_grf &&
3575                 reg < first_write_grf + write_len &&
3576                 needs_dep[reg - first_write_grf]) {
3577                DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3578                needs_dep[reg - first_write_grf] = false;
3579                if (scan_inst->exec_size == 16)
3580                   needs_dep[reg - first_write_grf + 1] = false;
3581             }
3582          }
3583       }
3584 
3585       /* Clear the flag for registers that actually got read (as expected). */
3586       clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3587 
3588       /* Continue the loop only if we haven't resolved all the dependencies */
3589       int i;
3590       for (i = 0; i < write_len; i++) {
3591          if (needs_dep[i])
3592             break;
3593       }
3594       if (i == write_len)
3595          return;
3596    }
3597 }
3598 
3599 /**
3600  * Implements this workaround for the original 965:
3601  *
3602  *     "[DevBW, DevCL] Errata: A destination register from a send can not be
3603  *      used as a destination register until after it has been sourced by an
3604  *      instruction with a different destination register.
3605  */
3606 void
insert_gen4_post_send_dependency_workarounds(bblock_t * block,fs_inst * inst)3607 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3608 {
3609    int write_len = regs_written(inst);
3610    unsigned first_write_grf = inst->dst.nr;
3611    bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3612    assert(write_len < (int)sizeof(needs_dep) - 1);
3613 
3614    memset(needs_dep, false, sizeof(needs_dep));
3615    memset(needs_dep, true, write_len);
3616    /* Walk forwards looking for writes to registers we're writing which aren't
3617     * read before being written.
3618     */
3619    foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3620       /* If we hit control flow, force resolve all remaining dependencies. */
3621       if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3622          for (int i = 0; i < write_len; i++) {
3623             if (needs_dep[i])
3624                DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3625                                first_write_grf + i);
3626          }
3627          return;
3628       }
3629 
3630       /* Clear the flag for registers that actually got read (as expected). */
3631       clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3632 
3633       /* We insert our reads as late as possible since they're reading the
3634        * result of a SEND, which has massive latency.
3635        */
3636       if (scan_inst->dst.file == VGRF &&
3637           scan_inst->dst.nr >= first_write_grf &&
3638           scan_inst->dst.nr < first_write_grf + write_len &&
3639           needs_dep[scan_inst->dst.nr - first_write_grf]) {
3640          DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3641                          scan_inst->dst.nr);
3642          needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3643       }
3644 
3645       /* Continue the loop only if we haven't resolved all the dependencies */
3646       int i;
3647       for (i = 0; i < write_len; i++) {
3648          if (needs_dep[i])
3649             break;
3650       }
3651       if (i == write_len)
3652          return;
3653    }
3654 }
3655 
3656 void
insert_gen4_send_dependency_workarounds()3657 fs_visitor::insert_gen4_send_dependency_workarounds()
3658 {
3659    if (devinfo->gen != 4 || devinfo->is_g4x)
3660       return;
3661 
3662    bool progress = false;
3663 
3664    foreach_block_and_inst(block, fs_inst, inst, cfg) {
3665       if (inst->mlen != 0 && inst->dst.file == VGRF) {
3666          insert_gen4_pre_send_dependency_workarounds(block, inst);
3667          insert_gen4_post_send_dependency_workarounds(block, inst);
3668          progress = true;
3669       }
3670    }
3671 
3672    if (progress)
3673       invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3674 }
3675 
3676 /**
3677  * Turns the generic expression-style uniform pull constant load instruction
3678  * into a hardware-specific series of instructions for loading a pull
3679  * constant.
3680  *
3681  * The expression style allows the CSE pass before this to optimize out
3682  * repeated loads from the same offset, and gives the pre-register-allocation
3683  * scheduling full flexibility, while the conversion to native instructions
3684  * allows the post-register-allocation scheduler the best information
3685  * possible.
3686  *
3687  * Note that execution masking for setting up pull constant loads is special:
3688  * the channels that need to be written are unrelated to the current execution
3689  * mask, since a later instruction will use one of the result channels as a
3690  * source operand for all 8 or 16 of its channels.
3691  */
3692 void
lower_uniform_pull_constant_loads()3693 fs_visitor::lower_uniform_pull_constant_loads()
3694 {
3695    foreach_block_and_inst (block, fs_inst, inst, cfg) {
3696       if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3697          continue;
3698 
3699       if (devinfo->gen >= 7) {
3700          const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3701          const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3702 
3703          ubld.group(8, 0).MOV(payload,
3704                               retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3705          ubld.group(1, 0).MOV(component(payload, 2),
3706                               brw_imm_ud(inst->src[1].ud / 16));
3707 
3708          inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3709          inst->src[1] = payload;
3710          inst->header_size = 1;
3711          inst->mlen = 1;
3712 
3713          invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
3714       } else {
3715          /* Before register allocation, we didn't tell the scheduler about the
3716           * MRF we use.  We know it's safe to use this MRF because nothing
3717           * else does except for register spill/unspill, which generates and
3718           * uses its MRF within a single IR instruction.
3719           */
3720          inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3721          inst->mlen = 1;
3722       }
3723    }
3724 }
3725 
3726 bool
lower_load_payload()3727 fs_visitor::lower_load_payload()
3728 {
3729    bool progress = false;
3730 
3731    foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3732       if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3733          continue;
3734 
3735       assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3736       assert(inst->saturate == false);
3737       fs_reg dst = inst->dst;
3738 
3739       /* Get rid of COMPR4.  We'll add it back in if we need it */
3740       if (dst.file == MRF)
3741          dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3742 
3743       const fs_builder ibld(this, block, inst);
3744       const fs_builder ubld = ibld.exec_all();
3745 
3746       for (uint8_t i = 0; i < inst->header_size;) {
3747          /* Number of header GRFs to initialize at once with a single MOV
3748           * instruction.
3749           */
3750          const unsigned n =
3751             (i + 1 < inst->header_size && inst->src[i].stride == 1 &&
3752              inst->src[i + 1].equals(byte_offset(inst->src[i], REG_SIZE))) ?
3753             2 : 1;
3754 
3755          if (inst->src[i].file != BAD_FILE)
3756             ubld.group(8 * n, 0).MOV(retype(dst, BRW_REGISTER_TYPE_UD),
3757                                      retype(inst->src[i], BRW_REGISTER_TYPE_UD));
3758 
3759          dst = byte_offset(dst, n * REG_SIZE);
3760          i += n;
3761       }
3762 
3763       if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3764           inst->exec_size > 8) {
3765          /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3766           * a straightforward copy.  Instead, the result of the
3767           * LOAD_PAYLOAD is treated as interleaved and the first four
3768           * non-header sources are unpacked as:
3769           *
3770           * m + 0: r0
3771           * m + 1: g0
3772           * m + 2: b0
3773           * m + 3: a0
3774           * m + 4: r1
3775           * m + 5: g1
3776           * m + 6: b1
3777           * m + 7: a1
3778           *
3779           * This is used for gen <= 5 fb writes.
3780           */
3781          assert(inst->exec_size == 16);
3782          assert(inst->header_size + 4 <= inst->sources);
3783          for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3784             if (inst->src[i].file != BAD_FILE) {
3785                if (devinfo->has_compr4) {
3786                   fs_reg compr4_dst = retype(dst, inst->src[i].type);
3787                   compr4_dst.nr |= BRW_MRF_COMPR4;
3788                   ibld.MOV(compr4_dst, inst->src[i]);
3789                } else {
3790                   /* Platform doesn't have COMPR4.  We have to fake it */
3791                   fs_reg mov_dst = retype(dst, inst->src[i].type);
3792                   ibld.quarter(0).MOV(mov_dst, quarter(inst->src[i], 0));
3793                   mov_dst.nr += 4;
3794                   ibld.quarter(1).MOV(mov_dst, quarter(inst->src[i], 1));
3795                }
3796             }
3797 
3798             dst.nr++;
3799          }
3800 
3801          /* The loop above only ever incremented us through the first set
3802           * of 4 registers.  However, thanks to the magic of COMPR4, we
3803           * actually wrote to the first 8 registers, so we need to take
3804           * that into account now.
3805           */
3806          dst.nr += 4;
3807 
3808          /* The COMPR4 code took care of the first 4 sources.  We'll let
3809           * the regular path handle any remaining sources.  Yes, we are
3810           * modifying the instruction but we're about to delete it so
3811           * this really doesn't hurt anything.
3812           */
3813          inst->header_size += 4;
3814       }
3815 
3816       for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3817          if (inst->src[i].file != BAD_FILE) {
3818             dst.type = inst->src[i].type;
3819             ibld.MOV(dst, inst->src[i]);
3820          } else {
3821             dst.type = BRW_REGISTER_TYPE_UD;
3822          }
3823          dst = offset(dst, ibld, 1);
3824       }
3825 
3826       inst->remove(block);
3827       progress = true;
3828    }
3829 
3830    if (progress)
3831       invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
3832 
3833    return progress;
3834 }
3835 
3836 void
lower_mul_dword_inst(fs_inst * inst,bblock_t * block)3837 fs_visitor::lower_mul_dword_inst(fs_inst *inst, bblock_t *block)
3838 {
3839    const fs_builder ibld(this, block, inst);
3840 
3841    const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3842    if (inst->src[1].file == IMM &&
3843        (( ud && inst->src[1].ud <= UINT16_MAX) ||
3844         (!ud && inst->src[1].d <= INT16_MAX && inst->src[1].d >= INT16_MIN))) {
3845       /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3846        * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3847        * src1 are used.
3848        *
3849        * If multiplying by an immediate value that fits in 16-bits, do a
3850        * single MUL instruction with that value in the proper location.
3851        */
3852       if (devinfo->gen < 7) {
3853          fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8), inst->dst.type);
3854          ibld.MOV(imm, inst->src[1]);
3855          ibld.MUL(inst->dst, imm, inst->src[0]);
3856       } else {
3857          ibld.MUL(inst->dst, inst->src[0],
3858                   ud ? brw_imm_uw(inst->src[1].ud)
3859                      : brw_imm_w(inst->src[1].d));
3860       }
3861    } else {
3862       /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3863        * do 32-bit integer multiplication in one instruction, but instead
3864        * must do a sequence (which actually calculates a 64-bit result):
3865        *
3866        *    mul(8)  acc0<1>D   g3<8,8,1>D      g4<8,8,1>D
3867        *    mach(8) null       g3<8,8,1>D      g4<8,8,1>D
3868        *    mov(8)  g2<1>D     acc0<8,8,1>D
3869        *
3870        * But on Gen > 6, the ability to use second accumulator register
3871        * (acc1) for non-float data types was removed, preventing a simple
3872        * implementation in SIMD16. A 16-channel result can be calculated by
3873        * executing the three instructions twice in SIMD8, once with quarter
3874        * control of 1Q for the first eight channels and again with 2Q for
3875        * the second eight channels.
3876        *
3877        * Which accumulator register is implicitly accessed (by AccWrEnable
3878        * for instance) is determined by the quarter control. Unfortunately
3879        * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3880        * implicit accumulator access by an instruction with 2Q will access
3881        * acc1 regardless of whether the data type is usable in acc1.
3882        *
3883        * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3884        * integer data types.
3885        *
3886        * Since we only want the low 32-bits of the result, we can do two
3887        * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3888        * adjust the high result and add them (like the mach is doing):
3889        *
3890        *    mul(8)  g7<1>D     g3<8,8,1>D      g4.0<8,8,1>UW
3891        *    mul(8)  g8<1>D     g3<8,8,1>D      g4.1<8,8,1>UW
3892        *    shl(8)  g9<1>D     g8<8,8,1>D      16D
3893        *    add(8)  g2<1>D     g7<8,8,1>D      g8<8,8,1>D
3894        *
3895        * We avoid the shl instruction by realizing that we only want to add
3896        * the low 16-bits of the "high" result to the high 16-bits of the
3897        * "low" result and using proper regioning on the add:
3898        *
3899        *    mul(8)  g7<1>D     g3<8,8,1>D      g4.0<16,8,2>UW
3900        *    mul(8)  g8<1>D     g3<8,8,1>D      g4.1<16,8,2>UW
3901        *    add(8)  g7.1<2>UW  g7.1<16,8,2>UW  g8<16,8,2>UW
3902        *
3903        * Since it does not use the (single) accumulator register, we can
3904        * schedule multi-component multiplications much better.
3905        */
3906 
3907       bool needs_mov = false;
3908       fs_reg orig_dst = inst->dst;
3909 
3910       /* Get a new VGRF for the "low" 32x16-bit multiplication result if
3911        * reusing the original destination is impossible due to hardware
3912        * restrictions, source/destination overlap, or it being the null
3913        * register.
3914        */
3915       fs_reg low = inst->dst;
3916       if (orig_dst.is_null() || orig_dst.file == MRF ||
3917           regions_overlap(inst->dst, inst->size_written,
3918                           inst->src[0], inst->size_read(0)) ||
3919           regions_overlap(inst->dst, inst->size_written,
3920                           inst->src[1], inst->size_read(1)) ||
3921           inst->dst.stride >= 4) {
3922          needs_mov = true;
3923          low = fs_reg(VGRF, alloc.allocate(regs_written(inst)),
3924                       inst->dst.type);
3925       }
3926 
3927       /* Get a new VGRF but keep the same stride as inst->dst */
3928       fs_reg high(VGRF, alloc.allocate(regs_written(inst)), inst->dst.type);
3929       high.stride = inst->dst.stride;
3930       high.offset = inst->dst.offset % REG_SIZE;
3931 
3932       if (devinfo->gen >= 7) {
3933          if (inst->src[1].abs)
3934             lower_src_modifiers(this, block, inst, 1);
3935 
3936          if (inst->src[1].file == IMM) {
3937             ibld.MUL(low, inst->src[0],
3938                      brw_imm_uw(inst->src[1].ud & 0xffff));
3939             ibld.MUL(high, inst->src[0],
3940                      brw_imm_uw(inst->src[1].ud >> 16));
3941          } else {
3942             ibld.MUL(low, inst->src[0],
3943                      subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3944             ibld.MUL(high, inst->src[0],
3945                      subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3946          }
3947       } else {
3948          if (inst->src[0].abs)
3949             lower_src_modifiers(this, block, inst, 0);
3950 
3951          ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3952                   inst->src[1]);
3953          ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3954                   inst->src[1]);
3955       }
3956 
3957       ibld.ADD(subscript(low, BRW_REGISTER_TYPE_UW, 1),
3958                subscript(low, BRW_REGISTER_TYPE_UW, 1),
3959                subscript(high, BRW_REGISTER_TYPE_UW, 0));
3960 
3961       if (needs_mov || inst->conditional_mod)
3962          set_condmod(inst->conditional_mod, ibld.MOV(orig_dst, low));
3963    }
3964 }
3965 
3966 void
lower_mul_qword_inst(fs_inst * inst,bblock_t * block)3967 fs_visitor::lower_mul_qword_inst(fs_inst *inst, bblock_t *block)
3968 {
3969    const fs_builder ibld(this, block, inst);
3970 
3971    /* Considering two 64-bit integers ab and cd where each letter        ab
3972     * corresponds to 32 bits, we get a 128-bit result WXYZ. We         * cd
3973     * only need to provide the YZ part of the result.               -------
3974     *                                                                    BD
3975     *  Only BD needs to be 64 bits. For AD and BC we only care       +  AD
3976     *  about the lower 32 bits (since they are part of the upper     +  BC
3977     *  32 bits of our result). AC is not needed since it starts      + AC
3978     *  on the 65th bit of the result.                               -------
3979     *                                                                  WXYZ
3980     */
3981    unsigned int q_regs = regs_written(inst);
3982    unsigned int d_regs = (q_regs + 1) / 2;
3983 
3984    fs_reg bd(VGRF, alloc.allocate(q_regs), BRW_REGISTER_TYPE_UQ);
3985    fs_reg ad(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
3986    fs_reg bc(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
3987 
3988    /* Here we need the full 64 bit result for 32b * 32b. */
3989    if (devinfo->has_integer_dword_mul) {
3990       ibld.MUL(bd, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
3991                subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
3992    } else {
3993       fs_reg bd_high(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
3994       fs_reg bd_low(VGRF, alloc.allocate(d_regs), BRW_REGISTER_TYPE_UD);
3995       fs_reg acc = retype(brw_acc_reg(inst->exec_size), BRW_REGISTER_TYPE_UD);
3996 
3997       fs_inst *mul = ibld.MUL(acc,
3998                             subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
3999                             subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
4000       mul->writes_accumulator = true;
4001 
4002       ibld.MACH(bd_high, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4003                 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4004       ibld.MOV(bd_low, acc);
4005 
4006       ibld.MOV(subscript(bd, BRW_REGISTER_TYPE_UD, 0), bd_low);
4007       ibld.MOV(subscript(bd, BRW_REGISTER_TYPE_UD, 1), bd_high);
4008    }
4009 
4010    ibld.MUL(ad, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1),
4011             subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0));
4012    ibld.MUL(bc, subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0),
4013             subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1));
4014 
4015    ibld.ADD(ad, ad, bc);
4016    ibld.ADD(subscript(bd, BRW_REGISTER_TYPE_UD, 1),
4017             subscript(bd, BRW_REGISTER_TYPE_UD, 1), ad);
4018 
4019    ibld.MOV(inst->dst, bd);
4020 }
4021 
4022 void
lower_mulh_inst(fs_inst * inst,bblock_t * block)4023 fs_visitor::lower_mulh_inst(fs_inst *inst, bblock_t *block)
4024 {
4025    const fs_builder ibld(this, block, inst);
4026 
4027    /* According to the BDW+ BSpec page for the "Multiply Accumulate
4028     * High" instruction:
4029     *
4030     *  "An added preliminary mov is required for source modification on
4031     *   src1:
4032     *      mov (8) r3.0<1>:d -r3<8;8,1>:d
4033     *      mul (8) acc0:d r2.0<8;8,1>:d r3.0<16;8,2>:uw
4034     *      mach (8) r5.0<1>:d r2.0<8;8,1>:d r3.0<8;8,1>:d"
4035     */
4036    if (devinfo->gen >= 8 && (inst->src[1].negate || inst->src[1].abs))
4037       lower_src_modifiers(this, block, inst, 1);
4038 
4039    /* Should have been lowered to 8-wide. */
4040    assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
4041    const fs_reg acc = retype(brw_acc_reg(inst->exec_size), inst->dst.type);
4042    fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
4043    fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
4044 
4045    if (devinfo->gen >= 8) {
4046       /* Until Gen8, integer multiplies read 32-bits from one source,
4047        * and 16-bits from the other, and relying on the MACH instruction
4048        * to generate the high bits of the result.
4049        *
4050        * On Gen8, the multiply instruction does a full 32x32-bit
4051        * multiply, but in order to do a 64-bit multiply we can simulate
4052        * the previous behavior and then use a MACH instruction.
4053        */
4054       assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
4055              mul->src[1].type == BRW_REGISTER_TYPE_UD);
4056       mul->src[1].type = BRW_REGISTER_TYPE_UW;
4057       mul->src[1].stride *= 2;
4058 
4059       if (mul->src[1].file == IMM) {
4060          mul->src[1] = brw_imm_uw(mul->src[1].ud);
4061       }
4062    } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
4063               inst->group > 0) {
4064       /* Among other things the quarter control bits influence which
4065        * accumulator register is used by the hardware for instructions
4066        * that access the accumulator implicitly (e.g. MACH).  A
4067        * second-half instruction would normally map to acc1, which
4068        * doesn't exist on Gen7 and up (the hardware does emulate it for
4069        * floating-point instructions *only* by taking advantage of the
4070        * extra precision of acc0 not normally used for floating point
4071        * arithmetic).
4072        *
4073        * HSW and up are careful enough not to try to access an
4074        * accumulator register that doesn't exist, but on earlier Gen7
4075        * hardware we need to make sure that the quarter control bits are
4076        * zero to avoid non-deterministic behaviour and emit an extra MOV
4077        * to get the result masked correctly according to the current
4078        * channel enables.
4079        */
4080       mach->group = 0;
4081       mach->force_writemask_all = true;
4082       mach->dst = ibld.vgrf(inst->dst.type);
4083       ibld.MOV(inst->dst, mach->dst);
4084    }
4085 }
4086 
4087 bool
lower_integer_multiplication()4088 fs_visitor::lower_integer_multiplication()
4089 {
4090    bool progress = false;
4091 
4092    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4093       if (inst->opcode == BRW_OPCODE_MUL) {
4094          /* If the instruction is already in a form that does not need lowering,
4095           * return early.
4096           */
4097          if (devinfo->gen >= 7) {
4098             if (type_sz(inst->src[1].type) < 4 && type_sz(inst->src[0].type) <= 4)
4099                continue;
4100          } else {
4101             if (type_sz(inst->src[0].type) < 4 && type_sz(inst->src[1].type) <= 4)
4102                continue;
4103          }
4104 
4105          if ((inst->dst.type == BRW_REGISTER_TYPE_Q ||
4106               inst->dst.type == BRW_REGISTER_TYPE_UQ) &&
4107              (inst->src[0].type == BRW_REGISTER_TYPE_Q ||
4108               inst->src[0].type == BRW_REGISTER_TYPE_UQ) &&
4109              (inst->src[1].type == BRW_REGISTER_TYPE_Q ||
4110               inst->src[1].type == BRW_REGISTER_TYPE_UQ)) {
4111             lower_mul_qword_inst(inst, block);
4112             inst->remove(block);
4113             progress = true;
4114          } else if (!inst->dst.is_accumulator() &&
4115                     (inst->dst.type == BRW_REGISTER_TYPE_D ||
4116                      inst->dst.type == BRW_REGISTER_TYPE_UD) &&
4117                     !devinfo->has_integer_dword_mul) {
4118             lower_mul_dword_inst(inst, block);
4119             inst->remove(block);
4120             progress = true;
4121          }
4122       } else if (inst->opcode == SHADER_OPCODE_MULH) {
4123          lower_mulh_inst(inst, block);
4124          inst->remove(block);
4125          progress = true;
4126       }
4127 
4128    }
4129 
4130    if (progress)
4131       invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
4132 
4133    return progress;
4134 }
4135 
4136 bool
lower_minmax()4137 fs_visitor::lower_minmax()
4138 {
4139    assert(devinfo->gen < 6);
4140 
4141    bool progress = false;
4142 
4143    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4144       const fs_builder ibld(this, block, inst);
4145 
4146       if (inst->opcode == BRW_OPCODE_SEL &&
4147           inst->predicate == BRW_PREDICATE_NONE) {
4148          /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
4149           *        the original SEL.L/GE instruction
4150           */
4151          ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
4152                   inst->conditional_mod);
4153          inst->predicate = BRW_PREDICATE_NORMAL;
4154          inst->conditional_mod = BRW_CONDITIONAL_NONE;
4155 
4156          progress = true;
4157       }
4158    }
4159 
4160    if (progress)
4161       invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
4162 
4163    return progress;
4164 }
4165 
4166 bool
lower_sub_sat()4167 fs_visitor::lower_sub_sat()
4168 {
4169    bool progress = false;
4170 
4171    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4172       const fs_builder ibld(this, block, inst);
4173 
4174       if (inst->opcode == SHADER_OPCODE_USUB_SAT ||
4175           inst->opcode == SHADER_OPCODE_ISUB_SAT) {
4176          /* The fundamental problem is the hardware performs source negation
4177           * at the bit width of the source.  If the source is 0x80000000D, the
4178           * negation is 0x80000000D.  As a result, subtractSaturate(0,
4179           * 0x80000000) will produce 0x80000000 instead of 0x7fffffff.  There
4180           * are at least three ways to resolve this:
4181           *
4182           * 1. Use the accumulator for the negated source.  The accumulator is
4183           *    33 bits, so our source 0x80000000 is sign-extended to
4184           *    0x1800000000.  The negation of which is 0x080000000.  This
4185           *    doesn't help for 64-bit integers (which are already bigger than
4186           *    33 bits).  There are also only 8 accumulators, so SIMD16 or
4187           *    SIMD32 instructions would have to be split into multiple SIMD8
4188           *    instructions.
4189           *
4190           * 2. Use slightly different math.  For any n-bit value x, we know (x
4191           *    >> 1) != -(x >> 1).  We can use this fact to only do
4192           *    subtractions involving (x >> 1).  subtractSaturate(a, b) ==
4193           *    subtractSaturate(subtractSaturate(a, (b >> 1)), b - (b >> 1)).
4194           *
4195           * 3. For unsigned sources, it is sufficient to replace the
4196           *    subtractSaturate with (a > b) ? a - b : 0.
4197           *
4198           * It may also be possible to use the SUBB instruction.  This
4199           * implicitly writes the accumulator, so it could only be used in the
4200           * same situations as #1 above.  It is further limited by only
4201           * allowing UD sources.
4202           */
4203          if (inst->exec_size == 8 && inst->src[0].type != BRW_REGISTER_TYPE_Q &&
4204              inst->src[0].type != BRW_REGISTER_TYPE_UQ) {
4205             fs_reg acc(ARF, BRW_ARF_ACCUMULATOR, inst->src[1].type);
4206 
4207             ibld.MOV(acc, inst->src[1]);
4208             fs_inst *add = ibld.ADD(inst->dst, acc, inst->src[0]);
4209             add->saturate = true;
4210             add->src[0].negate = true;
4211          } else if (inst->opcode == SHADER_OPCODE_ISUB_SAT) {
4212             /* tmp = src1 >> 1;
4213              * dst = add.sat(add.sat(src0, -tmp), -(src1 - tmp));
4214              */
4215             fs_reg tmp1 = ibld.vgrf(inst->src[0].type);
4216             fs_reg tmp2 = ibld.vgrf(inst->src[0].type);
4217             fs_reg tmp3 = ibld.vgrf(inst->src[0].type);
4218             fs_inst *add;
4219 
4220             ibld.SHR(tmp1, inst->src[1], brw_imm_d(1));
4221 
4222             add = ibld.ADD(tmp2, inst->src[1], tmp1);
4223             add->src[1].negate = true;
4224 
4225             add = ibld.ADD(tmp3, inst->src[0], tmp1);
4226             add->src[1].negate = true;
4227             add->saturate = true;
4228 
4229             add = ibld.ADD(inst->dst, tmp3, tmp2);
4230             add->src[1].negate = true;
4231             add->saturate = true;
4232          } else {
4233             /* a > b ? a - b : 0 */
4234             ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
4235                      BRW_CONDITIONAL_G);
4236 
4237             fs_inst *add = ibld.ADD(inst->dst, inst->src[0], inst->src[1]);
4238             add->src[1].negate = !add->src[1].negate;
4239 
4240             ibld.SEL(inst->dst, inst->dst, brw_imm_ud(0))
4241                ->predicate = BRW_PREDICATE_NORMAL;
4242          }
4243 
4244          inst->remove(block);
4245          progress = true;
4246       }
4247    }
4248 
4249    if (progress)
4250       invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
4251 
4252    return progress;
4253 }
4254 
4255 /**
4256  * Get the mask of SIMD channels enabled during dispatch and not yet disabled
4257  * by discard.  Due to the layout of the sample mask in the fragment shader
4258  * thread payload, \p bld is required to have a dispatch_width() not greater
4259  * than 16 for fragment shaders.
4260  */
4261 static fs_reg
sample_mask_reg(const fs_builder & bld)4262 sample_mask_reg(const fs_builder &bld)
4263 {
4264    const fs_visitor *v = static_cast<const fs_visitor *>(bld.shader);
4265 
4266    if (v->stage != MESA_SHADER_FRAGMENT) {
4267       return brw_imm_ud(0xffffffff);
4268    } else if (brw_wm_prog_data(v->stage_prog_data)->uses_kill) {
4269       assert(bld.dispatch_width() <= 16);
4270       return brw_flag_subreg(sample_mask_flag_subreg(v) + bld.group() / 16);
4271    } else {
4272       assert(v->devinfo->gen >= 6 && bld.dispatch_width() <= 16);
4273       return retype(brw_vec1_grf((bld.group() >= 16 ? 2 : 1), 7),
4274                     BRW_REGISTER_TYPE_UW);
4275    }
4276 }
4277 
4278 static void
setup_color_payload(const fs_builder & bld,const brw_wm_prog_key * key,fs_reg * dst,fs_reg color,unsigned components)4279 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
4280                     fs_reg *dst, fs_reg color, unsigned components)
4281 {
4282    if (key->clamp_fragment_color) {
4283       fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
4284       assert(color.type == BRW_REGISTER_TYPE_F);
4285 
4286       for (unsigned i = 0; i < components; i++)
4287          set_saturate(true,
4288                       bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
4289 
4290       color = tmp;
4291    }
4292 
4293    for (unsigned i = 0; i < components; i++)
4294       dst[i] = offset(color, bld, i);
4295 }
4296 
4297 uint32_t
brw_fb_write_msg_control(const fs_inst * inst,const struct brw_wm_prog_data * prog_data)4298 brw_fb_write_msg_control(const fs_inst *inst,
4299                          const struct brw_wm_prog_data *prog_data)
4300 {
4301    uint32_t mctl;
4302 
4303    if (inst->opcode == FS_OPCODE_REP_FB_WRITE) {
4304       assert(inst->group == 0 && inst->exec_size == 16);
4305       mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
4306    } else if (prog_data->dual_src_blend) {
4307       assert(inst->exec_size == 8);
4308 
4309       if (inst->group % 16 == 0)
4310          mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
4311       else if (inst->group % 16 == 8)
4312          mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
4313       else
4314          unreachable("Invalid dual-source FB write instruction group");
4315    } else {
4316       assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16));
4317 
4318       if (inst->exec_size == 16)
4319          mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
4320       else if (inst->exec_size == 8)
4321          mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
4322       else
4323          unreachable("Invalid FB write execution size");
4324    }
4325 
4326    return mctl;
4327 }
4328 
4329 static void
lower_fb_write_logical_send(const fs_builder & bld,fs_inst * inst,const struct brw_wm_prog_data * prog_data,const brw_wm_prog_key * key,const fs_visitor::thread_payload & payload)4330 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
4331                             const struct brw_wm_prog_data *prog_data,
4332                             const brw_wm_prog_key *key,
4333                             const fs_visitor::thread_payload &payload)
4334 {
4335    assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
4336    const gen_device_info *devinfo = bld.shader->devinfo;
4337    const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
4338    const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
4339    const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
4340    const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
4341    const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
4342    const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
4343    fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
4344    const unsigned components =
4345       inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
4346 
4347    assert(inst->target != 0 || src0_alpha.file == BAD_FILE);
4348 
4349    /* We can potentially have a message length of up to 15, so we have to set
4350     * base_mrf to either 0 or 1 in order to fit in m0..m15.
4351     */
4352    fs_reg sources[15];
4353    int header_size = 2, payload_header_size;
4354    unsigned length = 0;
4355 
4356    if (devinfo->gen < 6) {
4357       /* TODO: Support SIMD32 on gen4-5 */
4358       assert(bld.group() < 16);
4359 
4360       /* For gen4-5, we always have a header consisting of g0 and g1.  We have
4361        * an implied MOV from g0,g1 to the start of the message.  The MOV from
4362        * g0 is handled by the hardware and the MOV from g1 is provided by the
4363        * generator.  This is required because, on gen4-5, the generator may
4364        * generate two write messages with different message lengths in order
4365        * to handle AA data properly.
4366        *
4367        * Also, since the pixel mask goes in the g0 portion of the message and
4368        * since render target writes are the last thing in the shader, we write
4369        * the pixel mask directly into g0 and it will get copied as part of the
4370        * implied write.
4371        */
4372       if (prog_data->uses_kill) {
4373          bld.exec_all().group(1, 0)
4374             .MOV(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW),
4375                  sample_mask_reg(bld));
4376       }
4377 
4378       assert(length == 0);
4379       length = 2;
4380    } else if ((devinfo->gen <= 7 && !devinfo->is_haswell &&
4381                prog_data->uses_kill) ||
4382               (devinfo->gen < 11 &&
4383                (color1.file != BAD_FILE || key->nr_color_regions > 1))) {
4384       /* From the Sandy Bridge PRM, volume 4, page 198:
4385        *
4386        *     "Dispatched Pixel Enables. One bit per pixel indicating
4387        *      which pixels were originally enabled when the thread was
4388        *      dispatched. This field is only required for the end-of-
4389        *      thread message and on all dual-source messages."
4390        */
4391       const fs_builder ubld = bld.exec_all().group(8, 0);
4392 
4393       fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4394       if (bld.group() < 16) {
4395          /* The header starts off as g0 and g1 for the first half */
4396          ubld.group(16, 0).MOV(header, retype(brw_vec8_grf(0, 0),
4397                                               BRW_REGISTER_TYPE_UD));
4398       } else {
4399          /* The header starts off as g0 and g2 for the second half */
4400          assert(bld.group() < 32);
4401          const fs_reg header_sources[2] = {
4402             retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD),
4403             retype(brw_vec8_grf(2, 0), BRW_REGISTER_TYPE_UD),
4404          };
4405          ubld.LOAD_PAYLOAD(header, header_sources, 2, 0);
4406 
4407          /* Gen12 will require additional fix-ups if we ever hit this path. */
4408          assert(devinfo->gen < 12);
4409       }
4410 
4411       uint32_t g00_bits = 0;
4412 
4413       /* Set "Source0 Alpha Present to RenderTarget" bit in message
4414        * header.
4415        */
4416       if (src0_alpha.file != BAD_FILE)
4417          g00_bits |= 1 << 11;
4418 
4419       /* Set computes stencil to render target */
4420       if (prog_data->computed_stencil)
4421          g00_bits |= 1 << 14;
4422 
4423       if (g00_bits) {
4424          /* OR extra bits into g0.0 */
4425          ubld.group(1, 0).OR(component(header, 0),
4426                              retype(brw_vec1_grf(0, 0),
4427                                     BRW_REGISTER_TYPE_UD),
4428                              brw_imm_ud(g00_bits));
4429       }
4430 
4431       /* Set the render target index for choosing BLEND_STATE. */
4432       if (inst->target > 0) {
4433          ubld.group(1, 0).MOV(component(header, 2), brw_imm_ud(inst->target));
4434       }
4435 
4436       if (prog_data->uses_kill) {
4437          ubld.group(1, 0).MOV(retype(component(header, 15),
4438                                      BRW_REGISTER_TYPE_UW),
4439                               sample_mask_reg(bld));
4440       }
4441 
4442       assert(length == 0);
4443       sources[0] = header;
4444       sources[1] = horiz_offset(header, 8);
4445       length = 2;
4446    }
4447    assert(length == 0 || length == 2);
4448    header_size = length;
4449 
4450    if (payload.aa_dest_stencil_reg[0]) {
4451       assert(inst->group < 16);
4452       sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
4453       bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
4454          .MOV(sources[length],
4455               fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg[0], 0)));
4456       length++;
4457    }
4458 
4459    if (src0_alpha.file != BAD_FILE) {
4460       for (unsigned i = 0; i < bld.dispatch_width() / 8; i++) {
4461          const fs_builder &ubld = bld.exec_all().group(8, i)
4462                                     .annotate("FB write src0 alpha");
4463          const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_F);
4464          ubld.MOV(tmp, horiz_offset(src0_alpha, i * 8));
4465          setup_color_payload(ubld, key, &sources[length], tmp, 1);
4466          length++;
4467       }
4468    }
4469 
4470    if (sample_mask.file != BAD_FILE) {
4471       sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
4472                                BRW_REGISTER_TYPE_UD);
4473 
4474       /* Hand over gl_SampleMask.  Only the lower 16 bits of each channel are
4475        * relevant.  Since it's unsigned single words one vgrf is always
4476        * 16-wide, but only the lower or higher 8 channels will be used by the
4477        * hardware when doing a SIMD8 write depending on whether we have
4478        * selected the subspans for the first or second half respectively.
4479        */
4480       assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
4481       sample_mask.type = BRW_REGISTER_TYPE_UW;
4482       sample_mask.stride *= 2;
4483 
4484       bld.exec_all().annotate("FB write oMask")
4485          .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
4486                            inst->group % 16),
4487               sample_mask);
4488       length++;
4489    }
4490 
4491    payload_header_size = length;
4492 
4493    setup_color_payload(bld, key, &sources[length], color0, components);
4494    length += 4;
4495 
4496    if (color1.file != BAD_FILE) {
4497       setup_color_payload(bld, key, &sources[length], color1, components);
4498       length += 4;
4499    }
4500 
4501    if (src_depth.file != BAD_FILE) {
4502       sources[length] = src_depth;
4503       length++;
4504    }
4505 
4506    if (dst_depth.file != BAD_FILE) {
4507       sources[length] = dst_depth;
4508       length++;
4509    }
4510 
4511    if (src_stencil.file != BAD_FILE) {
4512       assert(devinfo->gen >= 9);
4513       assert(bld.dispatch_width() == 8);
4514 
4515       /* XXX: src_stencil is only available on gen9+. dst_depth is never
4516        * available on gen9+. As such it's impossible to have both enabled at the
4517        * same time and therefore length cannot overrun the array.
4518        */
4519       assert(length < 15);
4520 
4521       sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
4522       bld.exec_all().annotate("FB write OS")
4523          .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
4524               subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
4525       length++;
4526    }
4527 
4528    fs_inst *load;
4529    if (devinfo->gen >= 7) {
4530       /* Send from the GRF */
4531       fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
4532       load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
4533       payload.nr = bld.shader->alloc.allocate(regs_written(load));
4534       load->dst = payload;
4535 
4536       uint32_t msg_ctl = brw_fb_write_msg_control(inst, prog_data);
4537       uint32_t ex_desc = 0;
4538 
4539       inst->desc =
4540          (inst->group / 16) << 11 | /* rt slot group */
4541          brw_dp_write_desc(devinfo, inst->target, msg_ctl,
4542                            GEN6_DATAPORT_WRITE_MESSAGE_RENDER_TARGET_WRITE,
4543                            inst->last_rt, false);
4544 
4545       if (devinfo->gen >= 11) {
4546          /* Set the "Render Target Index" and "Src0 Alpha Present" fields
4547           * in the extended message descriptor, in lieu of using a header.
4548           */
4549          ex_desc = inst->target << 12 | (src0_alpha.file != BAD_FILE) << 15;
4550 
4551          if (key->nr_color_regions == 0)
4552             ex_desc |= 1 << 20; /* Null Render Target */
4553       }
4554 
4555       inst->opcode = SHADER_OPCODE_SEND;
4556       inst->resize_sources(3);
4557       inst->sfid = GEN6_SFID_DATAPORT_RENDER_CACHE;
4558       inst->src[0] = brw_imm_ud(inst->desc);
4559       inst->src[1] = brw_imm_ud(ex_desc);
4560       inst->src[2] = payload;
4561       inst->mlen = regs_written(load);
4562       inst->ex_mlen = 0;
4563       inst->header_size = header_size;
4564       inst->check_tdr = true;
4565       inst->send_has_side_effects = true;
4566    } else {
4567       /* Send from the MRF */
4568       load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
4569                               sources, length, payload_header_size);
4570 
4571       /* On pre-SNB, we have to interlace the color values.  LOAD_PAYLOAD
4572        * will do this for us if we just give it a COMPR4 destination.
4573        */
4574       if (devinfo->gen < 6 && bld.dispatch_width() == 16)
4575          load->dst.nr |= BRW_MRF_COMPR4;
4576 
4577       if (devinfo->gen < 6) {
4578          /* Set up src[0] for the implied MOV from grf0-1 */
4579          inst->resize_sources(1);
4580          inst->src[0] = brw_vec8_grf(0, 0);
4581       } else {
4582          inst->resize_sources(0);
4583       }
4584       inst->base_mrf = 1;
4585       inst->opcode = FS_OPCODE_FB_WRITE;
4586       inst->mlen = regs_written(load);
4587       inst->header_size = header_size;
4588    }
4589 }
4590 
4591 static void
lower_fb_read_logical_send(const fs_builder & bld,fs_inst * inst)4592 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
4593 {
4594    const gen_device_info *devinfo = bld.shader->devinfo;
4595    const fs_builder &ubld = bld.exec_all().group(8, 0);
4596    const unsigned length = 2;
4597    const fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD, length);
4598 
4599    if (bld.group() < 16) {
4600       ubld.group(16, 0).MOV(header, retype(brw_vec8_grf(0, 0),
4601                                            BRW_REGISTER_TYPE_UD));
4602    } else {
4603       assert(bld.group() < 32);
4604       const fs_reg header_sources[] = {
4605          retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD),
4606          retype(brw_vec8_grf(2, 0), BRW_REGISTER_TYPE_UD)
4607       };
4608       ubld.LOAD_PAYLOAD(header, header_sources, ARRAY_SIZE(header_sources), 0);
4609 
4610       if (devinfo->gen >= 12) {
4611          /* On Gen12 the Viewport and Render Target Array Index fields (AKA
4612           * Poly 0 Info) are provided in r1.1 instead of r0.0, and the render
4613           * target message header format was updated accordingly -- However
4614           * the updated format only works for the lower 16 channels in a
4615           * SIMD32 thread, since the higher 16 channels want the subspan data
4616           * from r2 instead of r1, so we need to copy over the contents of
4617           * r1.1 in order to fix things up.
4618           */
4619          ubld.group(1, 0).MOV(component(header, 9),
4620                               retype(brw_vec1_grf(1, 1), BRW_REGISTER_TYPE_UD));
4621       }
4622    }
4623 
4624    inst->resize_sources(1);
4625    inst->src[0] = header;
4626    inst->opcode = FS_OPCODE_FB_READ;
4627    inst->mlen = length;
4628    inst->header_size = length;
4629 }
4630 
4631 static void
lower_sampler_logical_send_gen4(const fs_builder & bld,fs_inst * inst,opcode op,const fs_reg & coordinate,const fs_reg & shadow_c,const fs_reg & lod,const fs_reg & lod2,const fs_reg & surface,const fs_reg & sampler,unsigned coord_components,unsigned grad_components)4632 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
4633                                 const fs_reg &coordinate,
4634                                 const fs_reg &shadow_c,
4635                                 const fs_reg &lod, const fs_reg &lod2,
4636                                 const fs_reg &surface,
4637                                 const fs_reg &sampler,
4638                                 unsigned coord_components,
4639                                 unsigned grad_components)
4640 {
4641    const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
4642                          op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
4643    fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
4644    fs_reg msg_end = msg_begin;
4645 
4646    /* g0 header. */
4647    msg_end = offset(msg_end, bld.group(8, 0), 1);
4648 
4649    for (unsigned i = 0; i < coord_components; i++)
4650       bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
4651               offset(coordinate, bld, i));
4652 
4653    msg_end = offset(msg_end, bld, coord_components);
4654 
4655    /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
4656     * require all three components to be present and zero if they are unused.
4657     */
4658    if (coord_components > 0 &&
4659        (has_lod || shadow_c.file != BAD_FILE ||
4660         (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
4661       assert(coord_components <= 3);
4662       for (unsigned i = 0; i < 3 - coord_components; i++)
4663          bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
4664 
4665       msg_end = offset(msg_end, bld, 3 - coord_components);
4666    }
4667 
4668    if (op == SHADER_OPCODE_TXD) {
4669       /* TXD unsupported in SIMD16 mode. */
4670       assert(bld.dispatch_width() == 8);
4671 
4672       /* the slots for u and v are always present, but r is optional */
4673       if (coord_components < 2)
4674          msg_end = offset(msg_end, bld, 2 - coord_components);
4675 
4676       /*  P   = u, v, r
4677        * dPdx = dudx, dvdx, drdx
4678        * dPdy = dudy, dvdy, drdy
4679        *
4680        * 1-arg: Does not exist.
4681        *
4682        * 2-arg: dudx   dvdx   dudy   dvdy
4683        *        dPdx.x dPdx.y dPdy.x dPdy.y
4684        *        m4     m5     m6     m7
4685        *
4686        * 3-arg: dudx   dvdx   drdx   dudy   dvdy   drdy
4687        *        dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
4688        *        m5     m6     m7     m8     m9     m10
4689        */
4690       for (unsigned i = 0; i < grad_components; i++)
4691          bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
4692 
4693       msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4694 
4695       for (unsigned i = 0; i < grad_components; i++)
4696          bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
4697 
4698       msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
4699    }
4700 
4701    if (has_lod) {
4702       /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
4703        * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
4704        */
4705       assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
4706              bld.dispatch_width() == 16);
4707 
4708       const brw_reg_type type =
4709          (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
4710           BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
4711       bld.MOV(retype(msg_end, type), lod);
4712       msg_end = offset(msg_end, bld, 1);
4713    }
4714 
4715    if (shadow_c.file != BAD_FILE) {
4716       if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
4717          /* There's no plain shadow compare message, so we use shadow
4718           * compare with a bias of 0.0.
4719           */
4720          bld.MOV(msg_end, brw_imm_f(0.0f));
4721          msg_end = offset(msg_end, bld, 1);
4722       }
4723 
4724       bld.MOV(msg_end, shadow_c);
4725       msg_end = offset(msg_end, bld, 1);
4726    }
4727 
4728    inst->opcode = op;
4729    inst->src[0] = reg_undef;
4730    inst->src[1] = surface;
4731    inst->src[2] = sampler;
4732    inst->resize_sources(3);
4733    inst->base_mrf = msg_begin.nr;
4734    inst->mlen = msg_end.nr - msg_begin.nr;
4735    inst->header_size = 1;
4736 }
4737 
4738 static void
lower_sampler_logical_send_gen5(const fs_builder & bld,fs_inst * inst,opcode op,const fs_reg & coordinate,const fs_reg & shadow_c,const fs_reg & lod,const fs_reg & lod2,const fs_reg & sample_index,const fs_reg & surface,const fs_reg & sampler,unsigned coord_components,unsigned grad_components)4739 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
4740                                 const fs_reg &coordinate,
4741                                 const fs_reg &shadow_c,
4742                                 const fs_reg &lod, const fs_reg &lod2,
4743                                 const fs_reg &sample_index,
4744                                 const fs_reg &surface,
4745                                 const fs_reg &sampler,
4746                                 unsigned coord_components,
4747                                 unsigned grad_components)
4748 {
4749    fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
4750    fs_reg msg_coords = message;
4751    unsigned header_size = 0;
4752 
4753    if (inst->offset != 0) {
4754       /* The offsets set up by the visitor are in the m1 header, so we can't
4755        * go headerless.
4756        */
4757       header_size = 1;
4758       message.nr--;
4759    }
4760 
4761    for (unsigned i = 0; i < coord_components; i++)
4762       bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
4763               offset(coordinate, bld, i));
4764 
4765    fs_reg msg_end = offset(msg_coords, bld, coord_components);
4766    fs_reg msg_lod = offset(msg_coords, bld, 4);
4767 
4768    if (shadow_c.file != BAD_FILE) {
4769       fs_reg msg_shadow = msg_lod;
4770       bld.MOV(msg_shadow, shadow_c);
4771       msg_lod = offset(msg_shadow, bld, 1);
4772       msg_end = msg_lod;
4773    }
4774 
4775    switch (op) {
4776    case SHADER_OPCODE_TXL:
4777    case FS_OPCODE_TXB:
4778       bld.MOV(msg_lod, lod);
4779       msg_end = offset(msg_lod, bld, 1);
4780       break;
4781    case SHADER_OPCODE_TXD:
4782       /**
4783        *  P   =  u,    v,    r
4784        * dPdx = dudx, dvdx, drdx
4785        * dPdy = dudy, dvdy, drdy
4786        *
4787        * Load up these values:
4788        * - dudx   dudy   dvdx   dvdy   drdx   drdy
4789        * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
4790        */
4791       msg_end = msg_lod;
4792       for (unsigned i = 0; i < grad_components; i++) {
4793          bld.MOV(msg_end, offset(lod, bld, i));
4794          msg_end = offset(msg_end, bld, 1);
4795 
4796          bld.MOV(msg_end, offset(lod2, bld, i));
4797          msg_end = offset(msg_end, bld, 1);
4798       }
4799       break;
4800    case SHADER_OPCODE_TXS:
4801       msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
4802       bld.MOV(msg_lod, lod);
4803       msg_end = offset(msg_lod, bld, 1);
4804       break;
4805    case SHADER_OPCODE_TXF:
4806       msg_lod = offset(msg_coords, bld, 3);
4807       bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
4808       msg_end = offset(msg_lod, bld, 1);
4809       break;
4810    case SHADER_OPCODE_TXF_CMS:
4811       msg_lod = offset(msg_coords, bld, 3);
4812       /* lod */
4813       bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
4814       /* sample index */
4815       bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
4816       msg_end = offset(msg_lod, bld, 2);
4817       break;
4818    default:
4819       break;
4820    }
4821 
4822    inst->opcode = op;
4823    inst->src[0] = reg_undef;
4824    inst->src[1] = surface;
4825    inst->src[2] = sampler;
4826    inst->resize_sources(3);
4827    inst->base_mrf = message.nr;
4828    inst->mlen = msg_end.nr - message.nr;
4829    inst->header_size = header_size;
4830 
4831    /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4832    assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4833 }
4834 
4835 static bool
is_high_sampler(const struct gen_device_info * devinfo,const fs_reg & sampler)4836 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
4837 {
4838    if (devinfo->gen < 8 && !devinfo->is_haswell)
4839       return false;
4840 
4841    return sampler.file != IMM || sampler.ud >= 16;
4842 }
4843 
4844 static unsigned
sampler_msg_type(const gen_device_info * devinfo,opcode opcode,bool shadow_compare)4845 sampler_msg_type(const gen_device_info *devinfo,
4846                  opcode opcode, bool shadow_compare)
4847 {
4848    assert(devinfo->gen >= 5);
4849    switch (opcode) {
4850    case SHADER_OPCODE_TEX:
4851       return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE :
4852                               GEN5_SAMPLER_MESSAGE_SAMPLE;
4853    case FS_OPCODE_TXB:
4854       return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE :
4855                               GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS;
4856    case SHADER_OPCODE_TXL:
4857       return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE :
4858                               GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
4859    case SHADER_OPCODE_TXL_LZ:
4860       return shadow_compare ? GEN9_SAMPLER_MESSAGE_SAMPLE_C_LZ :
4861                               GEN9_SAMPLER_MESSAGE_SAMPLE_LZ;
4862    case SHADER_OPCODE_TXS:
4863    case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
4864       return GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
4865    case SHADER_OPCODE_TXD:
4866       assert(!shadow_compare || devinfo->gen >= 8 || devinfo->is_haswell);
4867       return shadow_compare ? HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE :
4868                               GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
4869    case SHADER_OPCODE_TXF:
4870       return GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
4871    case SHADER_OPCODE_TXF_LZ:
4872       assert(devinfo->gen >= 9);
4873       return GEN9_SAMPLER_MESSAGE_SAMPLE_LD_LZ;
4874    case SHADER_OPCODE_TXF_CMS_W:
4875       assert(devinfo->gen >= 9);
4876       return GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
4877    case SHADER_OPCODE_TXF_CMS:
4878       return devinfo->gen >= 7 ? GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS :
4879                                  GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
4880    case SHADER_OPCODE_TXF_UMS:
4881       assert(devinfo->gen >= 7);
4882       return GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS;
4883    case SHADER_OPCODE_TXF_MCS:
4884       assert(devinfo->gen >= 7);
4885       return GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
4886    case SHADER_OPCODE_LOD:
4887       return GEN5_SAMPLER_MESSAGE_LOD;
4888    case SHADER_OPCODE_TG4:
4889       assert(devinfo->gen >= 7);
4890       return shadow_compare ? GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C :
4891                               GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
4892       break;
4893    case SHADER_OPCODE_TG4_OFFSET:
4894       assert(devinfo->gen >= 7);
4895       return shadow_compare ? GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C :
4896                               GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
4897    case SHADER_OPCODE_SAMPLEINFO:
4898       return GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
4899    default:
4900       unreachable("not reached");
4901    }
4902 }
4903 
4904 static void
lower_sampler_logical_send_gen7(const fs_builder & bld,fs_inst * inst,opcode op,const fs_reg & coordinate,const fs_reg & shadow_c,fs_reg lod,const fs_reg & lod2,const fs_reg & min_lod,const fs_reg & sample_index,const fs_reg & mcs,const fs_reg & surface,const fs_reg & sampler,const fs_reg & surface_handle,const fs_reg & sampler_handle,const fs_reg & tg4_offset,unsigned coord_components,unsigned grad_components)4905 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4906                                 const fs_reg &coordinate,
4907                                 const fs_reg &shadow_c,
4908                                 fs_reg lod, const fs_reg &lod2,
4909                                 const fs_reg &min_lod,
4910                                 const fs_reg &sample_index,
4911                                 const fs_reg &mcs,
4912                                 const fs_reg &surface,
4913                                 const fs_reg &sampler,
4914                                 const fs_reg &surface_handle,
4915                                 const fs_reg &sampler_handle,
4916                                 const fs_reg &tg4_offset,
4917                                 unsigned coord_components,
4918                                 unsigned grad_components)
4919 {
4920    const gen_device_info *devinfo = bld.shader->devinfo;
4921    const brw_stage_prog_data *prog_data = bld.shader->stage_prog_data;
4922    unsigned reg_width = bld.dispatch_width() / 8;
4923    unsigned header_size = 0, length = 0;
4924    fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4925    for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4926       sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4927 
4928    /* We must have exactly one of surface/sampler and surface/sampler_handle */
4929    assert((surface.file == BAD_FILE) != (surface_handle.file == BAD_FILE));
4930    assert((sampler.file == BAD_FILE) != (sampler_handle.file == BAD_FILE));
4931 
4932    if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4933        inst->offset != 0 || inst->eot ||
4934        op == SHADER_OPCODE_SAMPLEINFO ||
4935        sampler_handle.file != BAD_FILE ||
4936        is_high_sampler(devinfo, sampler)) {
4937       /* For general texture offsets (no txf workaround), we need a header to
4938        * put them in.
4939        *
4940        * TG4 needs to place its channel select in the header, for interaction
4941        * with ARB_texture_swizzle.  The sampler index is only 4-bits, so for
4942        * larger sampler numbers we need to offset the Sampler State Pointer in
4943        * the header.
4944        */
4945       fs_reg header = retype(sources[0], BRW_REGISTER_TYPE_UD);
4946       header_size = 1;
4947       length++;
4948 
4949       /* If we're requesting fewer than four channels worth of response,
4950        * and we have an explicit header, we need to set up the sampler
4951        * writemask.  It's reversed from normal: 1 means "don't write".
4952        */
4953       if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4954          assert(regs_written(inst) % reg_width == 0);
4955          unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4956          inst->offset |= mask << 12;
4957       }
4958 
4959       /* Build the actual header */
4960       const fs_builder ubld = bld.exec_all().group(8, 0);
4961       const fs_builder ubld1 = ubld.group(1, 0);
4962       ubld.MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
4963       if (inst->offset) {
4964          ubld1.MOV(component(header, 2), brw_imm_ud(inst->offset));
4965       } else if (bld.shader->stage != MESA_SHADER_VERTEX &&
4966                  bld.shader->stage != MESA_SHADER_FRAGMENT) {
4967          /* The vertex and fragment stages have g0.2 set to 0, so
4968           * header0.2 is 0 when g0 is copied. Other stages may not, so we
4969           * must set it to 0 to avoid setting undesirable bits in the
4970           * message.
4971           */
4972          ubld1.MOV(component(header, 2), brw_imm_ud(0));
4973       }
4974 
4975       if (sampler_handle.file != BAD_FILE) {
4976          /* Bindless sampler handles aren't relative to the sampler state
4977           * pointer passed into the shader through SAMPLER_STATE_POINTERS_*.
4978           * Instead, it's an absolute pointer relative to dynamic state base
4979           * address.
4980           *
4981           * Sampler states are 16 bytes each and the pointer we give here has
4982           * to be 32-byte aligned.  In order to avoid more indirect messages
4983           * than required, we assume that all bindless sampler states are
4984           * 32-byte aligned.  This sacrifices a bit of general state base
4985           * address space but means we can do something more efficient in the
4986           * shader.
4987           */
4988          ubld1.MOV(component(header, 3), sampler_handle);
4989       } else if (is_high_sampler(devinfo, sampler)) {
4990          fs_reg sampler_state_ptr =
4991             retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD);
4992 
4993          /* Gen11+ sampler message headers include bits in 4:0 which conflict
4994           * with the ones included in g0.3 bits 4:0.  Mask them out.
4995           */
4996          if (devinfo->gen >= 11) {
4997             sampler_state_ptr = ubld1.vgrf(BRW_REGISTER_TYPE_UD);
4998             ubld1.AND(sampler_state_ptr,
4999                       retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
5000                       brw_imm_ud(INTEL_MASK(31, 5)));
5001          }
5002 
5003          if (sampler.file == BRW_IMMEDIATE_VALUE) {
5004             assert(sampler.ud >= 16);
5005             const int sampler_state_size = 16; /* 16 bytes */
5006 
5007             ubld1.ADD(component(header, 3), sampler_state_ptr,
5008                       brw_imm_ud(16 * (sampler.ud / 16) * sampler_state_size));
5009          } else {
5010             fs_reg tmp = ubld1.vgrf(BRW_REGISTER_TYPE_UD);
5011             ubld1.AND(tmp, sampler, brw_imm_ud(0x0f0));
5012             ubld1.SHL(tmp, tmp, brw_imm_ud(4));
5013             ubld1.ADD(component(header, 3), sampler_state_ptr, tmp);
5014          }
5015       } else if (devinfo->gen >= 11) {
5016          /* Gen11+ sampler message headers include bits in 4:0 which conflict
5017           * with the ones included in g0.3 bits 4:0.  Mask them out.
5018           */
5019          ubld1.AND(component(header, 3),
5020                    retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD),
5021                    brw_imm_ud(INTEL_MASK(31, 5)));
5022       }
5023    }
5024 
5025    if (shadow_c.file != BAD_FILE) {
5026       bld.MOV(sources[length], shadow_c);
5027       length++;
5028    }
5029 
5030    bool coordinate_done = false;
5031 
5032    /* Set up the LOD info */
5033    switch (op) {
5034    case FS_OPCODE_TXB:
5035    case SHADER_OPCODE_TXL:
5036       if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
5037          op = SHADER_OPCODE_TXL_LZ;
5038          break;
5039       }
5040       bld.MOV(sources[length], lod);
5041       length++;
5042       break;
5043    case SHADER_OPCODE_TXD:
5044       /* TXD should have been lowered in SIMD16 mode. */
5045       assert(bld.dispatch_width() == 8);
5046 
5047       /* Load dPdx and the coordinate together:
5048        * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
5049        */
5050       for (unsigned i = 0; i < coord_components; i++) {
5051          bld.MOV(sources[length++], offset(coordinate, bld, i));
5052 
5053          /* For cube map array, the coordinate is (u,v,r,ai) but there are
5054           * only derivatives for (u, v, r).
5055           */
5056          if (i < grad_components) {
5057             bld.MOV(sources[length++], offset(lod, bld, i));
5058             bld.MOV(sources[length++], offset(lod2, bld, i));
5059          }
5060       }
5061 
5062       coordinate_done = true;
5063       break;
5064    case SHADER_OPCODE_TXS:
5065       bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
5066       length++;
5067       break;
5068    case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5069       /* We need an LOD; just use 0 */
5070       bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), brw_imm_ud(0));
5071       length++;
5072       break;
5073    case SHADER_OPCODE_TXF:
5074       /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
5075        * On Gen9 they are u, v, lod, r
5076        */
5077       bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
5078 
5079       if (devinfo->gen >= 9) {
5080          if (coord_components >= 2) {
5081             bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
5082                     offset(coordinate, bld, 1));
5083          } else {
5084             sources[length] = brw_imm_d(0);
5085          }
5086          length++;
5087       }
5088 
5089       if (devinfo->gen >= 9 && lod.is_zero()) {
5090          op = SHADER_OPCODE_TXF_LZ;
5091       } else {
5092          bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
5093          length++;
5094       }
5095 
5096       for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
5097          bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5098                  offset(coordinate, bld, i));
5099 
5100       coordinate_done = true;
5101       break;
5102 
5103    case SHADER_OPCODE_TXF_CMS:
5104    case SHADER_OPCODE_TXF_CMS_W:
5105    case SHADER_OPCODE_TXF_UMS:
5106    case SHADER_OPCODE_TXF_MCS:
5107       if (op == SHADER_OPCODE_TXF_UMS ||
5108           op == SHADER_OPCODE_TXF_CMS ||
5109           op == SHADER_OPCODE_TXF_CMS_W) {
5110          bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
5111          length++;
5112       }
5113 
5114       if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
5115          /* Data from the multisample control surface. */
5116          bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
5117          length++;
5118 
5119          /* On Gen9+ we'll use ld2dms_w instead which has two registers for
5120           * the MCS data.
5121           */
5122          if (op == SHADER_OPCODE_TXF_CMS_W) {
5123             bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
5124                     mcs.file == IMM ?
5125                     mcs :
5126                     offset(mcs, bld, 1));
5127             length++;
5128          }
5129       }
5130 
5131       /* There is no offsetting for this message; just copy in the integer
5132        * texture coordinates.
5133        */
5134       for (unsigned i = 0; i < coord_components; i++)
5135          bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5136                  offset(coordinate, bld, i));
5137 
5138       coordinate_done = true;
5139       break;
5140    case SHADER_OPCODE_TG4_OFFSET:
5141       /* More crazy intermixing */
5142       for (unsigned i = 0; i < 2; i++) /* u, v */
5143          bld.MOV(sources[length++], offset(coordinate, bld, i));
5144 
5145       for (unsigned i = 0; i < 2; i++) /* offu, offv */
5146          bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
5147                  offset(tg4_offset, bld, i));
5148 
5149       if (coord_components == 3) /* r if present */
5150          bld.MOV(sources[length++], offset(coordinate, bld, 2));
5151 
5152       coordinate_done = true;
5153       break;
5154    default:
5155       break;
5156    }
5157 
5158    /* Set up the coordinate (except for cases where it was done above) */
5159    if (!coordinate_done) {
5160       for (unsigned i = 0; i < coord_components; i++)
5161          bld.MOV(sources[length++], offset(coordinate, bld, i));
5162    }
5163 
5164    if (min_lod.file != BAD_FILE) {
5165       /* Account for all of the missing coordinate sources */
5166       length += 4 - coord_components;
5167       if (op == SHADER_OPCODE_TXD)
5168          length += (3 - grad_components) * 2;
5169 
5170       bld.MOV(sources[length++], min_lod);
5171    }
5172 
5173    unsigned mlen;
5174    if (reg_width == 2)
5175       mlen = length * reg_width - header_size;
5176    else
5177       mlen = length * reg_width;
5178 
5179    const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
5180                                      BRW_REGISTER_TYPE_F);
5181    bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
5182 
5183    /* Generate the SEND. */
5184    inst->opcode = SHADER_OPCODE_SEND;
5185    inst->mlen = mlen;
5186    inst->header_size = header_size;
5187 
5188    const unsigned msg_type =
5189       sampler_msg_type(devinfo, op, inst->shadow_compare);
5190    const unsigned simd_mode =
5191       inst->exec_size <= 8 ? BRW_SAMPLER_SIMD_MODE_SIMD8 :
5192                              BRW_SAMPLER_SIMD_MODE_SIMD16;
5193 
5194    uint32_t base_binding_table_index;
5195    switch (op) {
5196    case SHADER_OPCODE_TG4:
5197    case SHADER_OPCODE_TG4_OFFSET:
5198       base_binding_table_index = prog_data->binding_table.gather_texture_start;
5199       break;
5200    case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5201       base_binding_table_index = prog_data->binding_table.image_start;
5202       break;
5203    default:
5204       base_binding_table_index = prog_data->binding_table.texture_start;
5205       break;
5206    }
5207 
5208    inst->sfid = BRW_SFID_SAMPLER;
5209    if (surface.file == IMM &&
5210        (sampler.file == IMM || sampler_handle.file != BAD_FILE)) {
5211       inst->desc = brw_sampler_desc(devinfo,
5212                                     surface.ud + base_binding_table_index,
5213                                     sampler.file == IMM ? sampler.ud % 16 : 0,
5214                                     msg_type,
5215                                     simd_mode,
5216                                     0 /* return_format unused on gen7+ */);
5217       inst->src[0] = brw_imm_ud(0);
5218       inst->src[1] = brw_imm_ud(0); /* ex_desc */
5219    } else if (surface_handle.file != BAD_FILE) {
5220       /* Bindless surface */
5221       assert(devinfo->gen >= 9);
5222       inst->desc = brw_sampler_desc(devinfo,
5223                                     GEN9_BTI_BINDLESS,
5224                                     sampler.file == IMM ? sampler.ud % 16 : 0,
5225                                     msg_type,
5226                                     simd_mode,
5227                                     0 /* return_format unused on gen7+ */);
5228 
5229       /* For bindless samplers, the entire address is included in the message
5230        * header so we can leave the portion in the message descriptor 0.
5231        */
5232       if (sampler_handle.file != BAD_FILE || sampler.file == IMM) {
5233          inst->src[0] = brw_imm_ud(0);
5234       } else {
5235          const fs_builder ubld = bld.group(1, 0).exec_all();
5236          fs_reg desc = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5237          ubld.SHL(desc, sampler, brw_imm_ud(8));
5238          inst->src[0] = desc;
5239       }
5240 
5241       /* We assume that the driver provided the handle in the top 20 bits so
5242        * we can use the surface handle directly as the extended descriptor.
5243        */
5244       inst->src[1] = retype(surface_handle, BRW_REGISTER_TYPE_UD);
5245    } else {
5246       /* Immediate portion of the descriptor */
5247       inst->desc = brw_sampler_desc(devinfo,
5248                                     0, /* surface */
5249                                     0, /* sampler */
5250                                     msg_type,
5251                                     simd_mode,
5252                                     0 /* return_format unused on gen7+ */);
5253       const fs_builder ubld = bld.group(1, 0).exec_all();
5254       fs_reg desc = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5255       if (surface.equals(sampler)) {
5256          /* This case is common in GL */
5257          ubld.MUL(desc, surface, brw_imm_ud(0x101));
5258       } else {
5259          if (sampler_handle.file != BAD_FILE) {
5260             ubld.MOV(desc, surface);
5261          } else if (sampler.file == IMM) {
5262             ubld.OR(desc, surface, brw_imm_ud(sampler.ud << 8));
5263          } else {
5264             ubld.SHL(desc, sampler, brw_imm_ud(8));
5265             ubld.OR(desc, desc, surface);
5266          }
5267       }
5268       if (base_binding_table_index)
5269          ubld.ADD(desc, desc, brw_imm_ud(base_binding_table_index));
5270       ubld.AND(desc, desc, brw_imm_ud(0xfff));
5271 
5272       inst->src[0] = component(desc, 0);
5273       inst->src[1] = brw_imm_ud(0); /* ex_desc */
5274    }
5275 
5276    inst->src[2] = src_payload;
5277    inst->resize_sources(3);
5278 
5279    if (inst->eot) {
5280       /* EOT sampler messages don't make sense to split because it would
5281        * involve ending half of the thread early.
5282        */
5283       assert(inst->group == 0);
5284       /* We need to use SENDC for EOT sampler messages */
5285       inst->check_tdr = true;
5286       inst->send_has_side_effects = true;
5287    }
5288 
5289    /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
5290    assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
5291 }
5292 
5293 static void
lower_sampler_logical_send(const fs_builder & bld,fs_inst * inst,opcode op)5294 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
5295 {
5296    const gen_device_info *devinfo = bld.shader->devinfo;
5297    const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
5298    const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
5299    const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
5300    const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
5301    const fs_reg &min_lod = inst->src[TEX_LOGICAL_SRC_MIN_LOD];
5302    const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
5303    const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
5304    const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
5305    const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
5306    const fs_reg &surface_handle = inst->src[TEX_LOGICAL_SRC_SURFACE_HANDLE];
5307    const fs_reg &sampler_handle = inst->src[TEX_LOGICAL_SRC_SAMPLER_HANDLE];
5308    const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
5309    assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
5310    const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
5311    assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
5312    const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
5313 
5314    if (devinfo->gen >= 7) {
5315       lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
5316                                       shadow_c, lod, lod2, min_lod,
5317                                       sample_index,
5318                                       mcs, surface, sampler,
5319                                       surface_handle, sampler_handle,
5320                                       tg4_offset,
5321                                       coord_components, grad_components);
5322    } else if (devinfo->gen >= 5) {
5323       lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
5324                                       shadow_c, lod, lod2, sample_index,
5325                                       surface, sampler,
5326                                       coord_components, grad_components);
5327    } else {
5328       lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
5329                                       shadow_c, lod, lod2,
5330                                       surface, sampler,
5331                                       coord_components, grad_components);
5332    }
5333 }
5334 
5335 /**
5336  * Predicate the specified instruction on the sample mask.
5337  */
5338 static void
emit_predicate_on_sample_mask(const fs_builder & bld,fs_inst * inst)5339 emit_predicate_on_sample_mask(const fs_builder &bld, fs_inst *inst)
5340 {
5341    assert(bld.shader->stage == MESA_SHADER_FRAGMENT &&
5342           bld.group() == inst->group &&
5343           bld.dispatch_width() == inst->exec_size);
5344 
5345    const fs_visitor *v = static_cast<const fs_visitor *>(bld.shader);
5346    const fs_reg sample_mask = sample_mask_reg(bld);
5347    const unsigned subreg = sample_mask_flag_subreg(v);
5348 
5349    if (brw_wm_prog_data(v->stage_prog_data)->uses_kill) {
5350       assert(sample_mask.file == ARF &&
5351              sample_mask.nr == brw_flag_subreg(subreg).nr &&
5352              sample_mask.subnr == brw_flag_subreg(
5353                 subreg + inst->group / 16).subnr);
5354    } else {
5355       bld.group(1, 0).exec_all()
5356          .MOV(brw_flag_subreg(subreg + inst->group / 16), sample_mask);
5357    }
5358 
5359    if (inst->predicate) {
5360       assert(inst->predicate == BRW_PREDICATE_NORMAL);
5361       assert(!inst->predicate_inverse);
5362       assert(inst->flag_subreg == 0);
5363       /* Combine the sample mask with the existing predicate by using a
5364        * vertical predication mode.
5365        */
5366       inst->predicate = BRW_PREDICATE_ALIGN1_ALLV;
5367    } else {
5368       inst->flag_subreg = subreg;
5369       inst->predicate = BRW_PREDICATE_NORMAL;
5370       inst->predicate_inverse = false;
5371    }
5372 }
5373 
5374 static void
lower_surface_logical_send(const fs_builder & bld,fs_inst * inst)5375 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst)
5376 {
5377    const gen_device_info *devinfo = bld.shader->devinfo;
5378 
5379    /* Get the logical send arguments. */
5380    const fs_reg &addr = inst->src[SURFACE_LOGICAL_SRC_ADDRESS];
5381    const fs_reg &src = inst->src[SURFACE_LOGICAL_SRC_DATA];
5382    const fs_reg &surface = inst->src[SURFACE_LOGICAL_SRC_SURFACE];
5383    const fs_reg &surface_handle = inst->src[SURFACE_LOGICAL_SRC_SURFACE_HANDLE];
5384    const UNUSED fs_reg &dims = inst->src[SURFACE_LOGICAL_SRC_IMM_DIMS];
5385    const fs_reg &arg = inst->src[SURFACE_LOGICAL_SRC_IMM_ARG];
5386    const fs_reg &allow_sample_mask =
5387       inst->src[SURFACE_LOGICAL_SRC_ALLOW_SAMPLE_MASK];
5388    assert(arg.file == IMM);
5389    assert(allow_sample_mask.file == IMM);
5390 
5391    /* We must have exactly one of surface and surface_handle */
5392    assert((surface.file == BAD_FILE) != (surface_handle.file == BAD_FILE));
5393 
5394    /* Calculate the total number of components of the payload. */
5395    const unsigned addr_sz = inst->components_read(SURFACE_LOGICAL_SRC_ADDRESS);
5396    const unsigned src_sz = inst->components_read(SURFACE_LOGICAL_SRC_DATA);
5397 
5398    const bool is_typed_access =
5399       inst->opcode == SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL ||
5400       inst->opcode == SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL ||
5401       inst->opcode == SHADER_OPCODE_TYPED_ATOMIC_LOGICAL;
5402 
5403    const bool is_surface_access = is_typed_access ||
5404       inst->opcode == SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL ||
5405       inst->opcode == SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL ||
5406       inst->opcode == SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL;
5407 
5408    const bool is_stateless =
5409       surface.file == IMM && (surface.ud == BRW_BTI_STATELESS ||
5410                               surface.ud == GEN8_BTI_STATELESS_NON_COHERENT);
5411 
5412    const bool has_side_effects = inst->has_side_effects();
5413 
5414    fs_reg sample_mask = allow_sample_mask.ud ? sample_mask_reg(bld) :
5415                                                fs_reg(brw_imm_d(0xffff));
5416 
5417    /* From the BDW PRM Volume 7, page 147:
5418     *
5419     *  "For the Data Cache Data Port*, the header must be present for the
5420     *   following message types: [...] Typed read/write/atomics"
5421     *
5422     * Earlier generations have a similar wording.  Because of this restriction
5423     * we don't attempt to implement sample masks via predication for such
5424     * messages prior to Gen9, since we have to provide a header anyway.  On
5425     * Gen11+ the header has been removed so we can only use predication.
5426     *
5427     * For all stateless A32 messages, we also need a header
5428     */
5429    fs_reg header;
5430    if ((devinfo->gen < 9 && is_typed_access) || is_stateless) {
5431       fs_builder ubld = bld.exec_all().group(8, 0);
5432       header = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5433       ubld.MOV(header, brw_imm_d(0));
5434       if (is_stateless) {
5435          /* Both the typed and scattered byte/dword A32 messages take a buffer
5436           * base address in R0.5:[31:0] (See MH1_A32_PSM for typed messages or
5437           * MH_A32_GO for byte/dword scattered messages in the SKL PRM Vol. 2d
5438           * for more details.)  This is conveniently where the HW places the
5439           * scratch surface base address.
5440           *
5441           * From the SKL PRM Vol. 7 "Per-Thread Scratch Space":
5442           *
5443           *    "When a thread becomes 'active' it is allocated a portion of
5444           *    scratch space, sized according to PerThreadScratchSpace. The
5445           *    starting location of each thread’s scratch space allocation,
5446           *    ScratchSpaceOffset, is passed in the thread payload in
5447           *    R0.5[31:10] and is specified as a 1KB-granular offset from the
5448           *    GeneralStateBaseAddress.  The computation of ScratchSpaceOffset
5449           *    includes the starting address of the stage’s scratch space
5450           *    allocation, as programmed by ScratchSpaceBasePointer."
5451           *
5452           * The base address is passed in bits R0.5[31:10] and the bottom 10
5453           * bits of R0.5 are used for other things.  Therefore, we have to
5454           * mask off the bottom 10 bits so that we don't get a garbage base
5455           * address.
5456           */
5457          ubld.group(1, 0).AND(component(header, 5),
5458                               retype(brw_vec1_grf(0, 5), BRW_REGISTER_TYPE_UD),
5459                               brw_imm_ud(0xfffffc00));
5460       }
5461       if (is_surface_access)
5462          ubld.group(1, 0).MOV(component(header, 7), sample_mask);
5463    }
5464    const unsigned header_sz = header.file != BAD_FILE ? 1 : 0;
5465 
5466    fs_reg payload, payload2;
5467    unsigned mlen, ex_mlen = 0;
5468    if (devinfo->gen >= 9 &&
5469        (src.file == BAD_FILE || header.file == BAD_FILE)) {
5470       /* We have split sends on gen9 and above */
5471       if (header.file == BAD_FILE) {
5472          payload = bld.move_to_vgrf(addr, addr_sz);
5473          payload2 = bld.move_to_vgrf(src, src_sz);
5474          mlen = addr_sz * (inst->exec_size / 8);
5475          ex_mlen = src_sz * (inst->exec_size / 8);
5476       } else {
5477          assert(src.file == BAD_FILE);
5478          payload = header;
5479          payload2 = bld.move_to_vgrf(addr, addr_sz);
5480          mlen = header_sz;
5481          ex_mlen = addr_sz * (inst->exec_size / 8);
5482       }
5483    } else {
5484       /* Allocate space for the payload. */
5485       const unsigned sz = header_sz + addr_sz + src_sz;
5486       payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
5487       fs_reg *const components = new fs_reg[sz];
5488       unsigned n = 0;
5489 
5490       /* Construct the payload. */
5491       if (header.file != BAD_FILE)
5492          components[n++] = header;
5493 
5494       for (unsigned i = 0; i < addr_sz; i++)
5495          components[n++] = offset(addr, bld, i);
5496 
5497       for (unsigned i = 0; i < src_sz; i++)
5498          components[n++] = offset(src, bld, i);
5499 
5500       bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
5501       mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
5502 
5503       delete[] components;
5504    }
5505 
5506    /* Predicate the instruction on the sample mask if no header is
5507     * provided.
5508     */
5509    if ((header.file == BAD_FILE || !is_surface_access) &&
5510        sample_mask.file != BAD_FILE && sample_mask.file != IMM)
5511       emit_predicate_on_sample_mask(bld, inst);
5512 
5513    uint32_t sfid;
5514    switch (inst->opcode) {
5515    case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5516    case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5517       /* Byte scattered opcodes go through the normal data cache */
5518       sfid = GEN7_SFID_DATAPORT_DATA_CACHE;
5519       break;
5520 
5521    case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
5522    case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
5523       sfid =  devinfo->gen >= 7 ? GEN7_SFID_DATAPORT_DATA_CACHE :
5524               devinfo->gen >= 6 ? GEN6_SFID_DATAPORT_RENDER_CACHE :
5525                                   BRW_DATAPORT_READ_TARGET_RENDER_CACHE;
5526       break;
5527 
5528    case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5529    case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5530    case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5531    case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5532       /* Untyped Surface messages go through the data cache but the SFID value
5533        * changed on Haswell.
5534        */
5535       sfid = (devinfo->gen >= 8 || devinfo->is_haswell ?
5536               HSW_SFID_DATAPORT_DATA_CACHE_1 :
5537               GEN7_SFID_DATAPORT_DATA_CACHE);
5538       break;
5539 
5540    case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5541    case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5542    case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5543       /* Typed surface messages go through the render cache on IVB and the
5544        * data cache on HSW+.
5545        */
5546       sfid = (devinfo->gen >= 8 || devinfo->is_haswell ?
5547               HSW_SFID_DATAPORT_DATA_CACHE_1 :
5548               GEN6_SFID_DATAPORT_RENDER_CACHE);
5549       break;
5550 
5551    default:
5552       unreachable("Unsupported surface opcode");
5553    }
5554 
5555    uint32_t desc;
5556    switch (inst->opcode) {
5557    case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5558       desc = brw_dp_untyped_surface_rw_desc(devinfo, inst->exec_size,
5559                                             arg.ud, /* num_channels */
5560                                             false   /* write */);
5561       break;
5562 
5563    case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5564       desc = brw_dp_untyped_surface_rw_desc(devinfo, inst->exec_size,
5565                                             arg.ud, /* num_channels */
5566                                             true    /* write */);
5567       break;
5568 
5569    case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5570       desc = brw_dp_byte_scattered_rw_desc(devinfo, inst->exec_size,
5571                                            arg.ud, /* bit_size */
5572                                            false   /* write */);
5573       break;
5574 
5575    case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5576       desc = brw_dp_byte_scattered_rw_desc(devinfo, inst->exec_size,
5577                                            arg.ud, /* bit_size */
5578                                            true    /* write */);
5579       break;
5580 
5581    case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
5582       assert(arg.ud == 32); /* bit_size */
5583       desc = brw_dp_dword_scattered_rw_desc(devinfo, inst->exec_size,
5584                                             false  /* write */);
5585       break;
5586 
5587    case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
5588       assert(arg.ud == 32); /* bit_size */
5589       desc = brw_dp_dword_scattered_rw_desc(devinfo, inst->exec_size,
5590                                             true   /* write */);
5591       break;
5592 
5593    case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5594       desc = brw_dp_untyped_atomic_desc(devinfo, inst->exec_size,
5595                                         arg.ud, /* atomic_op */
5596                                         !inst->dst.is_null());
5597       break;
5598 
5599    case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5600       desc = brw_dp_untyped_atomic_float_desc(devinfo, inst->exec_size,
5601                                               arg.ud, /* atomic_op */
5602                                               !inst->dst.is_null());
5603       break;
5604 
5605    case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5606       desc = brw_dp_typed_surface_rw_desc(devinfo, inst->exec_size, inst->group,
5607                                           arg.ud, /* num_channels */
5608                                           false   /* write */);
5609       break;
5610 
5611    case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5612       desc = brw_dp_typed_surface_rw_desc(devinfo, inst->exec_size, inst->group,
5613                                           arg.ud, /* num_channels */
5614                                           true    /* write */);
5615       break;
5616 
5617    case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5618       desc = brw_dp_typed_atomic_desc(devinfo, inst->exec_size, inst->group,
5619                                       arg.ud, /* atomic_op */
5620                                       !inst->dst.is_null());
5621       break;
5622 
5623    default:
5624       unreachable("Unknown surface logical instruction");
5625    }
5626 
5627    /* Update the original instruction. */
5628    inst->opcode = SHADER_OPCODE_SEND;
5629    inst->mlen = mlen;
5630    inst->ex_mlen = ex_mlen;
5631    inst->header_size = header_sz;
5632    inst->send_has_side_effects = has_side_effects;
5633    inst->send_is_volatile = !has_side_effects;
5634 
5635    /* Set up SFID and descriptors */
5636    inst->sfid = sfid;
5637    inst->desc = desc;
5638    if (surface.file == IMM) {
5639       inst->desc |= surface.ud & 0xff;
5640       inst->src[0] = brw_imm_ud(0);
5641       inst->src[1] = brw_imm_ud(0); /* ex_desc */
5642    } else if (surface_handle.file != BAD_FILE) {
5643       /* Bindless surface */
5644       assert(devinfo->gen >= 9);
5645       inst->desc |= GEN9_BTI_BINDLESS;
5646       inst->src[0] = brw_imm_ud(0);
5647 
5648       /* We assume that the driver provided the handle in the top 20 bits so
5649        * we can use the surface handle directly as the extended descriptor.
5650        */
5651       inst->src[1] = retype(surface_handle, BRW_REGISTER_TYPE_UD);
5652    } else {
5653       const fs_builder ubld = bld.exec_all().group(1, 0);
5654       fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5655       ubld.AND(tmp, surface, brw_imm_ud(0xff));
5656       inst->src[0] = component(tmp, 0);
5657       inst->src[1] = brw_imm_ud(0); /* ex_desc */
5658    }
5659 
5660    /* Finally, the payload */
5661    inst->src[2] = payload;
5662    inst->src[3] = payload2;
5663 
5664    inst->resize_sources(4);
5665 }
5666 
5667 static void
lower_a64_logical_send(const fs_builder & bld,fs_inst * inst)5668 lower_a64_logical_send(const fs_builder &bld, fs_inst *inst)
5669 {
5670    const gen_device_info *devinfo = bld.shader->devinfo;
5671 
5672    const fs_reg &addr = inst->src[0];
5673    const fs_reg &src = inst->src[1];
5674    const unsigned src_comps = inst->components_read(1);
5675    assert(inst->src[2].file == IMM);
5676    const unsigned arg = inst->src[2].ud;
5677    const bool has_side_effects = inst->has_side_effects();
5678 
5679    /* If the surface message has side effects and we're a fragment shader, we
5680     * have to predicate with the sample mask to avoid helper invocations.
5681     */
5682    if (has_side_effects && bld.shader->stage == MESA_SHADER_FRAGMENT)
5683       emit_predicate_on_sample_mask(bld, inst);
5684 
5685    fs_reg payload, payload2;
5686    unsigned mlen, ex_mlen = 0;
5687    if (devinfo->gen >= 9) {
5688       /* On Skylake and above, we have SENDS */
5689       mlen = 2 * (inst->exec_size / 8);
5690       ex_mlen = src_comps * type_sz(src.type) * inst->exec_size / REG_SIZE;
5691       payload = retype(bld.move_to_vgrf(addr, 1), BRW_REGISTER_TYPE_UD);
5692       payload2 = retype(bld.move_to_vgrf(src, src_comps),
5693                         BRW_REGISTER_TYPE_UD);
5694    } else {
5695       /* Add two because the address is 64-bit */
5696       const unsigned dwords = 2 + src_comps;
5697       mlen = dwords * (inst->exec_size / 8);
5698 
5699       fs_reg sources[5];
5700 
5701       sources[0] = addr;
5702 
5703       for (unsigned i = 0; i < src_comps; i++)
5704          sources[1 + i] = offset(src, bld, i);
5705 
5706       payload = bld.vgrf(BRW_REGISTER_TYPE_UD, dwords);
5707       bld.LOAD_PAYLOAD(payload, sources, 1 + src_comps, 0);
5708    }
5709 
5710    uint32_t desc;
5711    switch (inst->opcode) {
5712    case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
5713       desc = brw_dp_a64_untyped_surface_rw_desc(devinfo, inst->exec_size,
5714                                                 arg,   /* num_channels */
5715                                                 false  /* write */);
5716       break;
5717 
5718    case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
5719       desc = brw_dp_a64_untyped_surface_rw_desc(devinfo, inst->exec_size,
5720                                                 arg,   /* num_channels */
5721                                                 true   /* write */);
5722       break;
5723 
5724    case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
5725       desc = brw_dp_a64_byte_scattered_rw_desc(devinfo, inst->exec_size,
5726                                                arg,   /* bit_size */
5727                                                false  /* write */);
5728       break;
5729 
5730    case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
5731       desc = brw_dp_a64_byte_scattered_rw_desc(devinfo, inst->exec_size,
5732                                                arg,   /* bit_size */
5733                                                true   /* write */);
5734       break;
5735 
5736    case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
5737       desc = brw_dp_a64_untyped_atomic_desc(devinfo, inst->exec_size, 32,
5738                                             arg,   /* atomic_op */
5739                                             !inst->dst.is_null());
5740       break;
5741 
5742    case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
5743       desc = brw_dp_a64_untyped_atomic_desc(devinfo, inst->exec_size, 64,
5744                                             arg,   /* atomic_op */
5745                                             !inst->dst.is_null());
5746       break;
5747 
5748 
5749    case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5750       desc = brw_dp_a64_untyped_atomic_float_desc(devinfo, inst->exec_size,
5751                                                   arg,   /* atomic_op */
5752                                                   !inst->dst.is_null());
5753       break;
5754 
5755    default:
5756       unreachable("Unknown A64 logical instruction");
5757    }
5758 
5759    /* Update the original instruction. */
5760    inst->opcode = SHADER_OPCODE_SEND;
5761    inst->mlen = mlen;
5762    inst->ex_mlen = ex_mlen;
5763    inst->header_size = 0;
5764    inst->send_has_side_effects = has_side_effects;
5765    inst->send_is_volatile = !has_side_effects;
5766 
5767    /* Set up SFID and descriptors */
5768    inst->sfid = HSW_SFID_DATAPORT_DATA_CACHE_1;
5769    inst->desc = desc;
5770    inst->resize_sources(4);
5771    inst->src[0] = brw_imm_ud(0); /* desc */
5772    inst->src[1] = brw_imm_ud(0); /* ex_desc */
5773    inst->src[2] = payload;
5774    inst->src[3] = payload2;
5775 }
5776 
5777 static void
lower_varying_pull_constant_logical_send(const fs_builder & bld,fs_inst * inst)5778 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
5779 {
5780    const gen_device_info *devinfo = bld.shader->devinfo;
5781 
5782    if (devinfo->gen >= 7) {
5783       fs_reg index = inst->src[0];
5784       /* We are switching the instruction from an ALU-like instruction to a
5785        * send-from-grf instruction.  Since sends can't handle strides or
5786        * source modifiers, we have to make a copy of the offset source.
5787        */
5788       fs_reg offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
5789       bld.MOV(offset, inst->src[1]);
5790 
5791       const unsigned simd_mode =
5792          inst->exec_size <= 8 ? BRW_SAMPLER_SIMD_MODE_SIMD8 :
5793                                 BRW_SAMPLER_SIMD_MODE_SIMD16;
5794 
5795       inst->opcode = SHADER_OPCODE_SEND;
5796       inst->mlen = inst->exec_size / 8;
5797       inst->resize_sources(3);
5798 
5799       inst->sfid = BRW_SFID_SAMPLER;
5800       inst->desc = brw_sampler_desc(devinfo, 0, 0,
5801                                     GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
5802                                     simd_mode, 0);
5803       if (index.file == IMM) {
5804          inst->desc |= index.ud & 0xff;
5805          inst->src[0] = brw_imm_ud(0);
5806       } else {
5807          const fs_builder ubld = bld.exec_all().group(1, 0);
5808          fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD);
5809          ubld.AND(tmp, index, brw_imm_ud(0xff));
5810          inst->src[0] = component(tmp, 0);
5811       }
5812       inst->src[1] = brw_imm_ud(0); /* ex_desc */
5813       inst->src[2] = offset; /* payload */
5814    } else {
5815       const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
5816                            BRW_REGISTER_TYPE_UD);
5817 
5818       bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
5819 
5820       inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
5821       inst->resize_sources(1);
5822       inst->base_mrf = payload.nr;
5823       inst->header_size = 1;
5824       inst->mlen = 1 + inst->exec_size / 8;
5825    }
5826 }
5827 
5828 static void
lower_math_logical_send(const fs_builder & bld,fs_inst * inst)5829 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
5830 {
5831    assert(bld.shader->devinfo->gen < 6);
5832 
5833    inst->base_mrf = 2;
5834    inst->mlen = inst->sources * inst->exec_size / 8;
5835 
5836    if (inst->sources > 1) {
5837       /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
5838        * "Message Payload":
5839        *
5840        * "Operand0[7].  For the INT DIV functions, this operand is the
5841        *  denominator."
5842        *  ...
5843        * "Operand1[7].  For the INT DIV functions, this operand is the
5844        *  numerator."
5845        */
5846       const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
5847       const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
5848       const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
5849 
5850       inst->resize_sources(1);
5851       inst->src[0] = src0;
5852 
5853       assert(inst->exec_size == 8);
5854       bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
5855    }
5856 }
5857 
5858 bool
lower_logical_sends()5859 fs_visitor::lower_logical_sends()
5860 {
5861    bool progress = false;
5862 
5863    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5864       const fs_builder ibld(this, block, inst);
5865 
5866       switch (inst->opcode) {
5867       case FS_OPCODE_FB_WRITE_LOGICAL:
5868          assert(stage == MESA_SHADER_FRAGMENT);
5869          lower_fb_write_logical_send(ibld, inst,
5870                                      brw_wm_prog_data(prog_data),
5871                                      (const brw_wm_prog_key *)key,
5872                                      payload);
5873          break;
5874 
5875       case FS_OPCODE_FB_READ_LOGICAL:
5876          lower_fb_read_logical_send(ibld, inst);
5877          break;
5878 
5879       case SHADER_OPCODE_TEX_LOGICAL:
5880          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
5881          break;
5882 
5883       case SHADER_OPCODE_TXD_LOGICAL:
5884          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
5885          break;
5886 
5887       case SHADER_OPCODE_TXF_LOGICAL:
5888          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
5889          break;
5890 
5891       case SHADER_OPCODE_TXL_LOGICAL:
5892          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
5893          break;
5894 
5895       case SHADER_OPCODE_TXS_LOGICAL:
5896          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
5897          break;
5898 
5899       case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
5900          lower_sampler_logical_send(ibld, inst,
5901                                     SHADER_OPCODE_IMAGE_SIZE_LOGICAL);
5902          break;
5903 
5904       case FS_OPCODE_TXB_LOGICAL:
5905          lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
5906          break;
5907 
5908       case SHADER_OPCODE_TXF_CMS_LOGICAL:
5909          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
5910          break;
5911 
5912       case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
5913          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
5914          break;
5915 
5916       case SHADER_OPCODE_TXF_UMS_LOGICAL:
5917          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
5918          break;
5919 
5920       case SHADER_OPCODE_TXF_MCS_LOGICAL:
5921          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
5922          break;
5923 
5924       case SHADER_OPCODE_LOD_LOGICAL:
5925          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
5926          break;
5927 
5928       case SHADER_OPCODE_TG4_LOGICAL:
5929          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
5930          break;
5931 
5932       case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
5933          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
5934          break;
5935 
5936       case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
5937          lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
5938          break;
5939 
5940       case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
5941       case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
5942       case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
5943       case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
5944       case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
5945       case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
5946       case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
5947       case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5948       case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
5949       case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
5950       case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
5951          lower_surface_logical_send(ibld, inst);
5952          break;
5953 
5954       case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
5955       case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
5956       case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
5957       case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
5958       case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
5959       case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
5960       case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
5961          lower_a64_logical_send(ibld, inst);
5962          break;
5963 
5964       case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
5965          lower_varying_pull_constant_logical_send(ibld, inst);
5966          break;
5967 
5968       case SHADER_OPCODE_RCP:
5969       case SHADER_OPCODE_RSQ:
5970       case SHADER_OPCODE_SQRT:
5971       case SHADER_OPCODE_EXP2:
5972       case SHADER_OPCODE_LOG2:
5973       case SHADER_OPCODE_SIN:
5974       case SHADER_OPCODE_COS:
5975       case SHADER_OPCODE_POW:
5976       case SHADER_OPCODE_INT_QUOTIENT:
5977       case SHADER_OPCODE_INT_REMAINDER:
5978          /* The math opcodes are overloaded for the send-like and
5979           * expression-like instructions which seems kind of icky.  Gen6+ has
5980           * a native (but rather quirky) MATH instruction so we don't need to
5981           * do anything here.  On Gen4-5 we'll have to lower the Gen6-like
5982           * logical instructions (which we can easily recognize because they
5983           * have mlen = 0) into send-like virtual instructions.
5984           */
5985          if (devinfo->gen < 6 && inst->mlen == 0) {
5986             lower_math_logical_send(ibld, inst);
5987             break;
5988 
5989          } else {
5990             continue;
5991          }
5992 
5993       default:
5994          continue;
5995       }
5996 
5997       progress = true;
5998    }
5999 
6000    if (progress)
6001       invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
6002 
6003    return progress;
6004 }
6005 
6006 static bool
is_mixed_float_with_fp32_dst(const fs_inst * inst)6007 is_mixed_float_with_fp32_dst(const fs_inst *inst)
6008 {
6009    /* This opcode sometimes uses :W type on the source even if the operand is
6010     * a :HF, because in gen7 there is no support for :HF, and thus it uses :W.
6011     */
6012    if (inst->opcode == BRW_OPCODE_F16TO32)
6013       return true;
6014 
6015    if (inst->dst.type != BRW_REGISTER_TYPE_F)
6016       return false;
6017 
6018    for (int i = 0; i < inst->sources; i++) {
6019       if (inst->src[i].type == BRW_REGISTER_TYPE_HF)
6020          return true;
6021    }
6022 
6023    return false;
6024 }
6025 
6026 static bool
is_mixed_float_with_packed_fp16_dst(const fs_inst * inst)6027 is_mixed_float_with_packed_fp16_dst(const fs_inst *inst)
6028 {
6029    /* This opcode sometimes uses :W type on the destination even if the
6030     * destination is a :HF, because in gen7 there is no support for :HF, and
6031     * thus it uses :W.
6032     */
6033    if (inst->opcode == BRW_OPCODE_F32TO16 &&
6034        inst->dst.stride == 1)
6035       return true;
6036 
6037    if (inst->dst.type != BRW_REGISTER_TYPE_HF ||
6038        inst->dst.stride != 1)
6039       return false;
6040 
6041    for (int i = 0; i < inst->sources; i++) {
6042       if (inst->src[i].type == BRW_REGISTER_TYPE_F)
6043          return true;
6044    }
6045 
6046    return false;
6047 }
6048 
6049 /**
6050  * Get the closest allowed SIMD width for instruction \p inst accounting for
6051  * some common regioning and execution control restrictions that apply to FPU
6052  * instructions.  These restrictions don't necessarily have any relevance to
6053  * instructions not executed by the FPU pipeline like extended math, control
6054  * flow or send message instructions.
6055  *
6056  * For virtual opcodes it's really up to the instruction -- In some cases
6057  * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
6058  * instructions) it may simplify virtual instruction lowering if we can
6059  * enforce FPU-like regioning restrictions already on the virtual instruction,
6060  * in other cases (e.g. virtual send-like instructions) this may be
6061  * excessively restrictive.
6062  */
6063 static unsigned
get_fpu_lowered_simd_width(const struct gen_device_info * devinfo,const fs_inst * inst)6064 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
6065                            const fs_inst *inst)
6066 {
6067    /* Maximum execution size representable in the instruction controls. */
6068    unsigned max_width = MIN2(32, inst->exec_size);
6069 
6070    /* According to the PRMs:
6071     *  "A. In Direct Addressing mode, a source cannot span more than 2
6072     *      adjacent GRF registers.
6073     *   B. A destination cannot span more than 2 adjacent GRF registers."
6074     *
6075     * Look for the source or destination with the largest register region
6076     * which is the one that is going to limit the overall execution size of
6077     * the instruction due to this rule.
6078     */
6079    unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
6080 
6081    for (unsigned i = 0; i < inst->sources; i++)
6082       reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
6083 
6084    /* Calculate the maximum execution size of the instruction based on the
6085     * factor by which it goes over the hardware limit of 2 GRFs.
6086     */
6087    if (reg_count > 2)
6088       max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
6089 
6090    /* According to the IVB PRMs:
6091     *  "When destination spans two registers, the source MUST span two
6092     *   registers. The exception to the above rule:
6093     *
6094     *    - When source is scalar, the source registers are not incremented.
6095     *    - When source is packed integer Word and destination is packed
6096     *      integer DWord, the source register is not incremented but the
6097     *      source sub register is incremented."
6098     *
6099     * The hardware specs from Gen4 to Gen7.5 mention similar regioning
6100     * restrictions.  The code below intentionally doesn't check whether the
6101     * destination type is integer because empirically the hardware doesn't
6102     * seem to care what the actual type is as long as it's dword-aligned.
6103     */
6104    if (devinfo->gen < 8) {
6105       for (unsigned i = 0; i < inst->sources; i++) {
6106          /* IVB implements DF scalars as <0;2,1> regions. */
6107          const bool is_scalar_exception = is_uniform(inst->src[i]) &&
6108             (devinfo->is_haswell || type_sz(inst->src[i].type) != 8);
6109          const bool is_packed_word_exception =
6110             type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
6111             type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1;
6112 
6113          /* We check size_read(i) against size_written instead of REG_SIZE
6114           * because we want to properly handle SIMD32.  In SIMD32, you can end
6115           * up with writes to 4 registers and a source that reads 2 registers
6116           * and we may still need to lower all the way to SIMD8 in that case.
6117           */
6118          if (inst->size_written > REG_SIZE &&
6119              inst->size_read(i) != 0 &&
6120              inst->size_read(i) < inst->size_written &&
6121              !is_scalar_exception && !is_packed_word_exception) {
6122             const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
6123             max_width = MIN2(max_width, inst->exec_size / reg_count);
6124          }
6125       }
6126    }
6127 
6128    if (devinfo->gen < 6) {
6129       /* From the G45 PRM, Volume 4 Page 361:
6130        *
6131        *    "Operand Alignment Rule: With the exceptions listed below, a
6132        *     source/destination operand in general should be aligned to even
6133        *     256-bit physical register with a region size equal to two 256-bit
6134        *     physical registers."
6135        *
6136        * Normally we enforce this by allocating virtual registers to the
6137        * even-aligned class.  But we need to handle payload registers.
6138        */
6139       for (unsigned i = 0; i < inst->sources; i++) {
6140          if (inst->src[i].file == FIXED_GRF && (inst->src[i].nr & 1) &&
6141              inst->size_read(i) > REG_SIZE) {
6142             max_width = MIN2(max_width, 8);
6143          }
6144       }
6145    }
6146 
6147    /* From the IVB PRMs:
6148     *  "When an instruction is SIMD32, the low 16 bits of the execution mask
6149     *   are applied for both halves of the SIMD32 instruction. If different
6150     *   execution mask channels are required, split the instruction into two
6151     *   SIMD16 instructions."
6152     *
6153     * There is similar text in the HSW PRMs.  Gen4-6 don't even implement
6154     * 32-wide control flow support in hardware and will behave similarly.
6155     */
6156    if (devinfo->gen < 8 && !inst->force_writemask_all)
6157       max_width = MIN2(max_width, 16);
6158 
6159    /* From the IVB PRMs (applies to HSW too):
6160     *  "Instructions with condition modifiers must not use SIMD32."
6161     *
6162     * From the BDW PRMs (applies to later hardware too):
6163     *  "Ternary instruction with condition modifiers must not use SIMD32."
6164     */
6165    if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
6166       max_width = MIN2(max_width, 16);
6167 
6168    /* From the IVB PRMs (applies to other devices that don't have the
6169     * gen_device_info::supports_simd16_3src flag set):
6170     *  "In Align16 access mode, SIMD16 is not allowed for DW operations and
6171     *   SIMD8 is not allowed for DF operations."
6172     */
6173    if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
6174       max_width = MIN2(max_width, inst->exec_size / reg_count);
6175 
6176    /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
6177     * the 8-bit quarter of the execution mask signals specified in the
6178     * instruction control fields) for the second compressed half of any
6179     * single-precision instruction (for double-precision instructions
6180     * it's hardwired to use NibCtrl+1, at least on HSW), which means that
6181     * the EU will apply the wrong execution controls for the second
6182     * sequential GRF write if the number of channels per GRF is not exactly
6183     * eight in single-precision mode (or four in double-float mode).
6184     *
6185     * In this situation we calculate the maximum size of the split
6186     * instructions so they only ever write to a single register.
6187     */
6188    if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
6189        !inst->force_writemask_all) {
6190       const unsigned channels_per_grf = inst->exec_size /
6191          DIV_ROUND_UP(inst->size_written, REG_SIZE);
6192       const unsigned exec_type_size = get_exec_type_size(inst);
6193       assert(exec_type_size);
6194 
6195       /* The hardware shifts exactly 8 channels per compressed half of the
6196        * instruction in single-precision mode and exactly 4 in double-precision.
6197        */
6198       if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
6199          max_width = MIN2(max_width, channels_per_grf);
6200 
6201       /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT
6202        * because HW applies the same channel enable signals to both halves of
6203        * the compressed instruction which will be just wrong under
6204        * non-uniform control flow.
6205        */
6206       if (devinfo->gen == 7 && !devinfo->is_haswell &&
6207           (exec_type_size == 8 || type_sz(inst->dst.type) == 8))
6208          max_width = MIN2(max_width, 4);
6209    }
6210 
6211    /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
6212     * Float Operations:
6213     *
6214     *    "No SIMD16 in mixed mode when destination is f32. Instruction
6215     *     execution size must be no more than 8."
6216     *
6217     * FIXME: the simulator doesn't seem to complain if we don't do this and
6218     * empirical testing with existing CTS tests show that they pass just fine
6219     * without implementing this, however, since our interpretation of the PRM
6220     * is that conversion MOVs between HF and F are still mixed-float
6221     * instructions (and therefore subject to this restriction) we decided to
6222     * split them to be safe. Might be useful to do additional investigation to
6223     * lift the restriction if we can ensure that it is safe though, since these
6224     * conversions are common when half-float types are involved since many
6225     * instructions do not support HF types and conversions from/to F are
6226     * required.
6227     */
6228    if (is_mixed_float_with_fp32_dst(inst))
6229       max_width = MIN2(max_width, 8);
6230 
6231    /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
6232     * Float Operations:
6233     *
6234     *    "No SIMD16 in mixed mode when destination is packed f16 for both
6235     *     Align1 and Align16."
6236     */
6237    if (is_mixed_float_with_packed_fp16_dst(inst))
6238       max_width = MIN2(max_width, 8);
6239 
6240    /* Only power-of-two execution sizes are representable in the instruction
6241     * control fields.
6242     */
6243    return 1 << util_logbase2(max_width);
6244 }
6245 
6246 /**
6247  * Get the maximum allowed SIMD width for instruction \p inst accounting for
6248  * various payload size restrictions that apply to sampler message
6249  * instructions.
6250  *
6251  * This is only intended to provide a maximum theoretical bound for the
6252  * execution size of the message based on the number of argument components
6253  * alone, which in most cases will determine whether the SIMD8 or SIMD16
6254  * variant of the message can be used, though some messages may have
6255  * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
6256  * the message length to determine the exact SIMD width and argument count,
6257  * which makes a number of sampler message combinations impossible to
6258  * represent).
6259  */
6260 static unsigned
get_sampler_lowered_simd_width(const struct gen_device_info * devinfo,const fs_inst * inst)6261 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
6262                                const fs_inst *inst)
6263 {
6264    /* If we have a min_lod parameter on anything other than a simple sample
6265     * message, it will push it over 5 arguments and we have to fall back to
6266     * SIMD8.
6267     */
6268    if (inst->opcode != SHADER_OPCODE_TEX &&
6269        inst->components_read(TEX_LOGICAL_SRC_MIN_LOD))
6270       return 8;
6271 
6272    /* Calculate the number of coordinate components that have to be present
6273     * assuming that additional arguments follow the texel coordinates in the
6274     * message payload.  On IVB+ there is no need for padding, on ILK-SNB we
6275     * need to pad to four or three components depending on the message,
6276     * pre-ILK we need to pad to at most three components.
6277     */
6278    const unsigned req_coord_components =
6279       (devinfo->gen >= 7 ||
6280        !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
6281       (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
6282                             inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
6283       3;
6284 
6285    /* On Gen9+ the LOD argument is for free if we're able to use the LZ
6286     * variant of the TXL or TXF message.
6287     */
6288    const bool implicit_lod = devinfo->gen >= 9 &&
6289                              (inst->opcode == SHADER_OPCODE_TXL ||
6290                               inst->opcode == SHADER_OPCODE_TXF) &&
6291                              inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
6292 
6293    /* Calculate the total number of argument components that need to be passed
6294     * to the sampler unit.
6295     */
6296    const unsigned num_payload_components =
6297       MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
6298            req_coord_components) +
6299       inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
6300       (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
6301       inst->components_read(TEX_LOGICAL_SRC_LOD2) +
6302       inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
6303       (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
6304        inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
6305       inst->components_read(TEX_LOGICAL_SRC_MCS);
6306 
6307    /* SIMD16 messages with more than five arguments exceed the maximum message
6308     * size supported by the sampler, regardless of whether a header is
6309     * provided or not.
6310     */
6311    return MIN2(inst->exec_size,
6312                num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
6313 }
6314 
6315 /**
6316  * Get the closest native SIMD width supported by the hardware for instruction
6317  * \p inst.  The instruction will be left untouched by
6318  * fs_visitor::lower_simd_width() if the returned value is equal to the
6319  * original execution size.
6320  */
6321 static unsigned
get_lowered_simd_width(const struct gen_device_info * devinfo,const fs_inst * inst)6322 get_lowered_simd_width(const struct gen_device_info *devinfo,
6323                        const fs_inst *inst)
6324 {
6325    switch (inst->opcode) {
6326    case BRW_OPCODE_MOV:
6327    case BRW_OPCODE_SEL:
6328    case BRW_OPCODE_NOT:
6329    case BRW_OPCODE_AND:
6330    case BRW_OPCODE_OR:
6331    case BRW_OPCODE_XOR:
6332    case BRW_OPCODE_SHR:
6333    case BRW_OPCODE_SHL:
6334    case BRW_OPCODE_ASR:
6335    case BRW_OPCODE_ROR:
6336    case BRW_OPCODE_ROL:
6337    case BRW_OPCODE_CMPN:
6338    case BRW_OPCODE_CSEL:
6339    case BRW_OPCODE_F32TO16:
6340    case BRW_OPCODE_F16TO32:
6341    case BRW_OPCODE_BFREV:
6342    case BRW_OPCODE_BFE:
6343    case BRW_OPCODE_ADD:
6344    case BRW_OPCODE_MUL:
6345    case BRW_OPCODE_AVG:
6346    case BRW_OPCODE_FRC:
6347    case BRW_OPCODE_RNDU:
6348    case BRW_OPCODE_RNDD:
6349    case BRW_OPCODE_RNDE:
6350    case BRW_OPCODE_RNDZ:
6351    case BRW_OPCODE_LZD:
6352    case BRW_OPCODE_FBH:
6353    case BRW_OPCODE_FBL:
6354    case BRW_OPCODE_CBIT:
6355    case BRW_OPCODE_SAD2:
6356    case BRW_OPCODE_MAD:
6357    case BRW_OPCODE_LRP:
6358    case FS_OPCODE_PACK:
6359    case SHADER_OPCODE_SEL_EXEC:
6360    case SHADER_OPCODE_CLUSTER_BROADCAST:
6361       return get_fpu_lowered_simd_width(devinfo, inst);
6362 
6363    case BRW_OPCODE_CMP: {
6364       /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
6365        * when the destination is a GRF the dependency-clear bit on the flag
6366        * register is cleared early.
6367        *
6368        * Suggested workarounds are to disable coissuing CMP instructions
6369        * or to split CMP(16) instructions into two CMP(8) instructions.
6370        *
6371        * We choose to split into CMP(8) instructions since disabling
6372        * coissuing would affect CMP instructions not otherwise affected by
6373        * the errata.
6374        */
6375       const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
6376                                   !inst->dst.is_null() ? 8 : ~0);
6377       return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
6378    }
6379    case BRW_OPCODE_BFI1:
6380    case BRW_OPCODE_BFI2:
6381       /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
6382        * should
6383        *  "Force BFI instructions to be executed always in SIMD8."
6384        */
6385       return MIN2(devinfo->is_haswell ? 8 : ~0u,
6386                   get_fpu_lowered_simd_width(devinfo, inst));
6387 
6388    case BRW_OPCODE_IF:
6389       assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
6390       return inst->exec_size;
6391 
6392    case SHADER_OPCODE_RCP:
6393    case SHADER_OPCODE_RSQ:
6394    case SHADER_OPCODE_SQRT:
6395    case SHADER_OPCODE_EXP2:
6396    case SHADER_OPCODE_LOG2:
6397    case SHADER_OPCODE_SIN:
6398    case SHADER_OPCODE_COS: {
6399       /* Unary extended math instructions are limited to SIMD8 on Gen4 and
6400        * Gen6. Extended Math Function is limited to SIMD8 with half-float.
6401        */
6402       if (devinfo->gen == 6 || (devinfo->gen == 4 && !devinfo->is_g4x))
6403          return MIN2(8, inst->exec_size);
6404       if (inst->dst.type == BRW_REGISTER_TYPE_HF)
6405          return MIN2(8, inst->exec_size);
6406       return MIN2(16, inst->exec_size);
6407    }
6408 
6409    case SHADER_OPCODE_POW: {
6410       /* SIMD16 is only allowed on Gen7+. Extended Math Function is limited
6411        * to SIMD8 with half-float
6412        */
6413       if (devinfo->gen < 7)
6414          return MIN2(8, inst->exec_size);
6415       if (inst->dst.type == BRW_REGISTER_TYPE_HF)
6416          return MIN2(8, inst->exec_size);
6417       return MIN2(16, inst->exec_size);
6418    }
6419 
6420    case SHADER_OPCODE_USUB_SAT:
6421    case SHADER_OPCODE_ISUB_SAT:
6422       return get_fpu_lowered_simd_width(devinfo, inst);
6423 
6424    case SHADER_OPCODE_INT_QUOTIENT:
6425    case SHADER_OPCODE_INT_REMAINDER:
6426       /* Integer division is limited to SIMD8 on all generations. */
6427       return MIN2(8, inst->exec_size);
6428 
6429    case FS_OPCODE_LINTERP:
6430    case SHADER_OPCODE_GET_BUFFER_SIZE:
6431    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
6432    case FS_OPCODE_PACK_HALF_2x16_SPLIT:
6433    case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
6434    case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
6435    case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
6436       return MIN2(16, inst->exec_size);
6437 
6438    case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
6439       /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
6440        * message used to implement varying pull constant loads, so expand it
6441        * to SIMD16.  An alternative with longer message payload length but
6442        * shorter return payload would be to use the SIMD8 sampler message that
6443        * takes (header, u, v, r) as parameters instead of (header, u).
6444        */
6445       return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
6446 
6447    case FS_OPCODE_DDX_COARSE:
6448    case FS_OPCODE_DDX_FINE:
6449    case FS_OPCODE_DDY_COARSE:
6450    case FS_OPCODE_DDY_FINE:
6451       /* The implementation of this virtual opcode may require emitting
6452        * compressed Align16 instructions, which are severely limited on some
6453        * generations.
6454        *
6455        * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
6456        * Region Restrictions):
6457        *
6458        *  "In Align16 access mode, SIMD16 is not allowed for DW operations
6459        *   and SIMD8 is not allowed for DF operations."
6460        *
6461        * In this context, "DW operations" means "operations acting on 32-bit
6462        * values", so it includes operations on floats.
6463        *
6464        * Gen4 has a similar restriction.  From the i965 PRM, section 11.5.3
6465        * (Instruction Compression -> Rules and Restrictions):
6466        *
6467        *  "A compressed instruction must be in Align1 access mode. Align16
6468        *   mode instructions cannot be compressed."
6469        *
6470        * Similar text exists in the g45 PRM.
6471        *
6472        * Empirically, compressed align16 instructions using odd register
6473        * numbers don't appear to work on Sandybridge either.
6474        */
6475       return (devinfo->gen == 4 || devinfo->gen == 6 ||
6476               (devinfo->gen == 7 && !devinfo->is_haswell) ?
6477               MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
6478 
6479    case SHADER_OPCODE_MULH:
6480       /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
6481        * is 8-wide on Gen7+.
6482        */
6483       return (devinfo->gen >= 7 ? 8 :
6484               get_fpu_lowered_simd_width(devinfo, inst));
6485 
6486    case FS_OPCODE_FB_WRITE_LOGICAL:
6487       /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
6488        * here.
6489        */
6490       assert(devinfo->gen != 6 ||
6491              inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
6492              inst->exec_size == 8);
6493       /* Dual-source FB writes are unsupported in SIMD16 mode. */
6494       return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
6495               8 : MIN2(16, inst->exec_size));
6496 
6497    case FS_OPCODE_FB_READ_LOGICAL:
6498       return MIN2(16, inst->exec_size);
6499 
6500    case SHADER_OPCODE_TEX_LOGICAL:
6501    case SHADER_OPCODE_TXF_CMS_LOGICAL:
6502    case SHADER_OPCODE_TXF_UMS_LOGICAL:
6503    case SHADER_OPCODE_TXF_MCS_LOGICAL:
6504    case SHADER_OPCODE_LOD_LOGICAL:
6505    case SHADER_OPCODE_TG4_LOGICAL:
6506    case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
6507    case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
6508    case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
6509       return get_sampler_lowered_simd_width(devinfo, inst);
6510 
6511    case SHADER_OPCODE_TXD_LOGICAL:
6512       /* TXD is unsupported in SIMD16 mode. */
6513       return 8;
6514 
6515    case SHADER_OPCODE_TXL_LOGICAL:
6516    case FS_OPCODE_TXB_LOGICAL:
6517       /* Only one execution size is representable pre-ILK depending on whether
6518        * the shadow reference argument is present.
6519        */
6520       if (devinfo->gen == 4)
6521          return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
6522       else
6523          return get_sampler_lowered_simd_width(devinfo, inst);
6524 
6525    case SHADER_OPCODE_TXF_LOGICAL:
6526    case SHADER_OPCODE_TXS_LOGICAL:
6527       /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
6528        * messages.  Use SIMD16 instead.
6529        */
6530       if (devinfo->gen == 4)
6531          return 16;
6532       else
6533          return get_sampler_lowered_simd_width(devinfo, inst);
6534 
6535    case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
6536    case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
6537    case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
6538       return 8;
6539 
6540    case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
6541    case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL:
6542    case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
6543    case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
6544    case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
6545    case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
6546    case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
6547    case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
6548       return MIN2(16, inst->exec_size);
6549 
6550    case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
6551    case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
6552    case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL:
6553    case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL:
6554       return devinfo->gen <= 8 ? 8 : MIN2(16, inst->exec_size);
6555 
6556    case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
6557    case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL:
6558    case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL:
6559       return 8;
6560 
6561    case SHADER_OPCODE_URB_READ_SIMD8:
6562    case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
6563    case SHADER_OPCODE_URB_WRITE_SIMD8:
6564    case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
6565    case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
6566    case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
6567       return MIN2(8, inst->exec_size);
6568 
6569    case SHADER_OPCODE_QUAD_SWIZZLE: {
6570       const unsigned swiz = inst->src[1].ud;
6571       return (is_uniform(inst->src[0]) ?
6572                  get_fpu_lowered_simd_width(devinfo, inst) :
6573               devinfo->gen < 11 && type_sz(inst->src[0].type) == 4 ? 8 :
6574               swiz == BRW_SWIZZLE_XYXY || swiz == BRW_SWIZZLE_ZWZW ? 4 :
6575               get_fpu_lowered_simd_width(devinfo, inst));
6576    }
6577    case SHADER_OPCODE_MOV_INDIRECT: {
6578       /* From IVB and HSW PRMs:
6579        *
6580        * "2.When the destination requires two registers and the sources are
6581        *  indirect, the sources must use 1x1 regioning mode.
6582        *
6583        * In case of DF instructions in HSW/IVB, the exec_size is limited by
6584        * the EU decompression logic not handling VxH indirect addressing
6585        * correctly.
6586        */
6587       const unsigned max_size = (devinfo->gen >= 8 ? 2 : 1) * REG_SIZE;
6588       /* Prior to Broadwell, we only have 8 address subregisters. */
6589       return MIN3(devinfo->gen >= 8 ? 16 : 8,
6590                   max_size / (inst->dst.stride * type_sz(inst->dst.type)),
6591                   inst->exec_size);
6592    }
6593 
6594    case SHADER_OPCODE_LOAD_PAYLOAD: {
6595       const unsigned reg_count =
6596          DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
6597 
6598       if (reg_count > 2) {
6599          /* Only LOAD_PAYLOAD instructions with per-channel destination region
6600           * can be easily lowered (which excludes headers and heterogeneous
6601           * types).
6602           */
6603          assert(!inst->header_size);
6604          for (unsigned i = 0; i < inst->sources; i++)
6605             assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
6606                    inst->src[i].file == BAD_FILE);
6607 
6608          return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
6609       } else {
6610          return inst->exec_size;
6611       }
6612    }
6613    default:
6614       return inst->exec_size;
6615    }
6616 }
6617 
6618 /**
6619  * Return true if splitting out the group of channels of instruction \p inst
6620  * given by lbld.group() requires allocating a temporary for the i-th source
6621  * of the lowered instruction.
6622  */
6623 static inline bool
needs_src_copy(const fs_builder & lbld,const fs_inst * inst,unsigned i)6624 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
6625 {
6626    return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
6627             (inst->components_read(i) == 1 &&
6628              lbld.dispatch_width() <= inst->exec_size)) ||
6629           (inst->flags_written() &
6630            flag_mask(inst->src[i], type_sz(inst->src[i].type)));
6631 }
6632 
6633 /**
6634  * Extract the data that would be consumed by the channel group given by
6635  * lbld.group() from the i-th source region of instruction \p inst and return
6636  * it as result in packed form.
6637  */
6638 static fs_reg
emit_unzip(const fs_builder & lbld,fs_inst * inst,unsigned i)6639 emit_unzip(const fs_builder &lbld, fs_inst *inst, unsigned i)
6640 {
6641    assert(lbld.group() >= inst->group);
6642 
6643    /* Specified channel group from the source region. */
6644    const fs_reg src = horiz_offset(inst->src[i], lbld.group() - inst->group);
6645 
6646    if (needs_src_copy(lbld, inst, i)) {
6647       /* Builder of the right width to perform the copy avoiding uninitialized
6648        * data if the lowered execution size is greater than the original
6649        * execution size of the instruction.
6650        */
6651       const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
6652                                               inst->exec_size), 0);
6653       const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
6654 
6655       for (unsigned k = 0; k < inst->components_read(i); ++k)
6656          cbld.MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
6657 
6658       return tmp;
6659 
6660    } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
6661       /* The source is invariant for all dispatch_width-wide groups of the
6662        * original region.
6663        */
6664       return inst->src[i];
6665 
6666    } else {
6667       /* We can just point the lowered instruction at the right channel group
6668        * from the original region.
6669        */
6670       return src;
6671    }
6672 }
6673 
6674 /**
6675  * Return true if splitting out the group of channels of instruction \p inst
6676  * given by lbld.group() requires allocating a temporary for the destination
6677  * of the lowered instruction and copying the data back to the original
6678  * destination region.
6679  */
6680 static inline bool
needs_dst_copy(const fs_builder & lbld,const fs_inst * inst)6681 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
6682 {
6683    /* If the instruction writes more than one component we'll have to shuffle
6684     * the results of multiple lowered instructions in order to make sure that
6685     * they end up arranged correctly in the original destination region.
6686     */
6687    if (inst->size_written > inst->dst.component_size(inst->exec_size))
6688       return true;
6689 
6690    /* If the lowered execution size is larger than the original the result of
6691     * the instruction won't fit in the original destination, so we'll have to
6692     * allocate a temporary in any case.
6693     */
6694    if (lbld.dispatch_width() > inst->exec_size)
6695       return true;
6696 
6697    for (unsigned i = 0; i < inst->sources; i++) {
6698       /* If we already made a copy of the source for other reasons there won't
6699        * be any overlap with the destination.
6700        */
6701       if (needs_src_copy(lbld, inst, i))
6702          continue;
6703 
6704       /* In order to keep the logic simple we emit a copy whenever the
6705        * destination region doesn't exactly match an overlapping source, which
6706        * may point at the source and destination not being aligned group by
6707        * group which could cause one of the lowered instructions to overwrite
6708        * the data read from the same source by other lowered instructions.
6709        */
6710       if (regions_overlap(inst->dst, inst->size_written,
6711                           inst->src[i], inst->size_read(i)) &&
6712           !inst->dst.equals(inst->src[i]))
6713         return true;
6714    }
6715 
6716    return false;
6717 }
6718 
6719 /**
6720  * Insert data from a packed temporary into the channel group given by
6721  * lbld.group() of the destination region of instruction \p inst and return
6722  * the temporary as result.  Any copy instructions that are required for
6723  * unzipping the previous value (in the case of partial writes) will be
6724  * inserted using \p lbld_before and any copy instructions required for
6725  * zipping up the destination of \p inst will be inserted using \p lbld_after.
6726  */
6727 static fs_reg
emit_zip(const fs_builder & lbld_before,const fs_builder & lbld_after,fs_inst * inst)6728 emit_zip(const fs_builder &lbld_before, const fs_builder &lbld_after,
6729          fs_inst *inst)
6730 {
6731    assert(lbld_before.dispatch_width() == lbld_after.dispatch_width());
6732    assert(lbld_before.group() == lbld_after.group());
6733    assert(lbld_after.group() >= inst->group);
6734 
6735    /* Specified channel group from the destination region. */
6736    const fs_reg dst = horiz_offset(inst->dst, lbld_after.group() - inst->group);
6737    const unsigned dst_size = inst->size_written /
6738       inst->dst.component_size(inst->exec_size);
6739 
6740    if (needs_dst_copy(lbld_after, inst)) {
6741       const fs_reg tmp = lbld_after.vgrf(inst->dst.type, dst_size);
6742 
6743       if (inst->predicate) {
6744          /* Handle predication by copying the original contents of
6745           * the destination into the temporary before emitting the
6746           * lowered instruction.
6747           */
6748          const fs_builder gbld_before =
6749             lbld_before.group(MIN2(lbld_before.dispatch_width(),
6750                                    inst->exec_size), 0);
6751          for (unsigned k = 0; k < dst_size; ++k) {
6752             gbld_before.MOV(offset(tmp, lbld_before, k),
6753                             offset(dst, inst->exec_size, k));
6754          }
6755       }
6756 
6757       const fs_builder gbld_after =
6758          lbld_after.group(MIN2(lbld_after.dispatch_width(),
6759                                inst->exec_size), 0);
6760       for (unsigned k = 0; k < dst_size; ++k) {
6761          /* Use a builder of the right width to perform the copy avoiding
6762           * uninitialized data if the lowered execution size is greater than
6763           * the original execution size of the instruction.
6764           */
6765          gbld_after.MOV(offset(dst, inst->exec_size, k),
6766                         offset(tmp, lbld_after, k));
6767       }
6768 
6769       return tmp;
6770 
6771    } else {
6772       /* No need to allocate a temporary for the lowered instruction, just
6773        * take the right group of channels from the original region.
6774        */
6775       return dst;
6776    }
6777 }
6778 
6779 bool
lower_simd_width()6780 fs_visitor::lower_simd_width()
6781 {
6782    bool progress = false;
6783 
6784    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
6785       const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
6786 
6787       if (lower_width != inst->exec_size) {
6788          /* Builder matching the original instruction.  We may also need to
6789           * emit an instruction of width larger than the original, set the
6790           * execution size of the builder to the highest of both for now so
6791           * we're sure that both cases can be handled.
6792           */
6793          const unsigned max_width = MAX2(inst->exec_size, lower_width);
6794          const fs_builder ibld = bld.at(block, inst)
6795                                     .exec_all(inst->force_writemask_all)
6796                                     .group(max_width, inst->group / max_width);
6797 
6798          /* Split the copies in chunks of the execution width of either the
6799           * original or the lowered instruction, whichever is lower.
6800           */
6801          const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
6802          const unsigned dst_size = inst->size_written /
6803             inst->dst.component_size(inst->exec_size);
6804 
6805          assert(!inst->writes_accumulator && !inst->mlen);
6806 
6807          /* Inserting the zip, unzip, and duplicated instructions in all of
6808           * the right spots is somewhat tricky.  All of the unzip and any
6809           * instructions from the zip which unzip the destination prior to
6810           * writing need to happen before all of the per-group instructions
6811           * and the zip instructions need to happen after.  In order to sort
6812           * this all out, we insert the unzip instructions before \p inst,
6813           * insert the per-group instructions after \p inst (i.e. before
6814           * inst->next), and insert the zip instructions before the
6815           * instruction after \p inst.  Since we are inserting instructions
6816           * after \p inst, inst->next is a moving target and we need to save
6817           * it off here so that we insert the zip instructions in the right
6818           * place.
6819           *
6820           * Since we're inserting split instructions after after_inst, the
6821           * instructions will end up in the reverse order that we insert them.
6822           * However, certain render target writes require that the low group
6823           * instructions come before the high group.  From the Ivy Bridge PRM
6824           * Vol. 4, Pt. 1, Section 3.9.11:
6825           *
6826           *    "If multiple SIMD8 Dual Source messages are delivered by the
6827           *    pixel shader thread, each SIMD8_DUALSRC_LO message must be
6828           *    issued before the SIMD8_DUALSRC_HI message with the same Slot
6829           *    Group Select setting."
6830           *
6831           * And, from Section 3.9.11.1 of the same PRM:
6832           *
6833           *    "When SIMD32 or SIMD16 PS threads send render target writes
6834           *    with multiple SIMD8 and SIMD16 messages, the following must
6835           *    hold:
6836           *
6837           *    All the slots (as described above) must have a corresponding
6838           *    render target write irrespective of the slot's validity. A slot
6839           *    is considered valid when at least one sample is enabled. For
6840           *    example, a SIMD16 PS thread must send two SIMD8 render target
6841           *    writes to cover all the slots.
6842           *
6843           *    PS thread must send SIMD render target write messages with
6844           *    increasing slot numbers. For example, SIMD16 thread has
6845           *    Slot[15:0] and if two SIMD8 render target writes are used, the
6846           *    first SIMD8 render target write must send Slot[7:0] and the
6847           *    next one must send Slot[15:8]."
6848           *
6849           * In order to make low group instructions come before high group
6850           * instructions (this is required for some render target writes), we
6851           * split from the highest group to lowest.
6852           */
6853          exec_node *const after_inst = inst->next;
6854          for (int i = n - 1; i >= 0; i--) {
6855             /* Emit a copy of the original instruction with the lowered width.
6856              * If the EOT flag was set throw it away except for the last
6857              * instruction to avoid killing the thread prematurely.
6858              */
6859             fs_inst split_inst = *inst;
6860             split_inst.exec_size = lower_width;
6861             split_inst.eot = inst->eot && i == int(n - 1);
6862 
6863             /* Select the correct channel enables for the i-th group, then
6864              * transform the sources and destination and emit the lowered
6865              * instruction.
6866              */
6867             const fs_builder lbld = ibld.group(lower_width, i);
6868 
6869             for (unsigned j = 0; j < inst->sources; j++)
6870                split_inst.src[j] = emit_unzip(lbld.at(block, inst), inst, j);
6871 
6872             split_inst.dst = emit_zip(lbld.at(block, inst),
6873                                       lbld.at(block, after_inst), inst);
6874             split_inst.size_written =
6875                split_inst.dst.component_size(lower_width) * dst_size;
6876 
6877             lbld.at(block, inst->next).emit(split_inst);
6878          }
6879 
6880          inst->remove(block);
6881          progress = true;
6882       }
6883    }
6884 
6885    if (progress)
6886       invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
6887 
6888    return progress;
6889 }
6890 
6891 /**
6892  * Transform barycentric vectors into the interleaved form expected by the PLN
6893  * instruction and returned by the Gen7+ PI shared function.
6894  *
6895  * For channels 0-15 in SIMD16 mode they are expected to be laid out as
6896  * follows in the register file:
6897  *
6898  *    rN+0: X[0-7]
6899  *    rN+1: Y[0-7]
6900  *    rN+2: X[8-15]
6901  *    rN+3: Y[8-15]
6902  *
6903  * There is no need to handle SIMD32 here -- This is expected to be run after
6904  * SIMD lowering, since SIMD lowering relies on vectors having the standard
6905  * component layout.
6906  */
6907 bool
lower_barycentrics()6908 fs_visitor::lower_barycentrics()
6909 {
6910    const bool has_interleaved_layout = devinfo->has_pln || devinfo->gen >= 7;
6911    bool progress = false;
6912 
6913    if (stage != MESA_SHADER_FRAGMENT || !has_interleaved_layout)
6914       return false;
6915 
6916    foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
6917       if (inst->exec_size < 16)
6918          continue;
6919 
6920       const fs_builder ibld(this, block, inst);
6921       const fs_builder ubld = ibld.exec_all().group(8, 0);
6922 
6923       switch (inst->opcode) {
6924       case FS_OPCODE_LINTERP : {
6925          assert(inst->exec_size == 16);
6926          const fs_reg tmp = ibld.vgrf(inst->src[0].type, 2);
6927          fs_reg srcs[4];
6928 
6929          for (unsigned i = 0; i < ARRAY_SIZE(srcs); i++)
6930             srcs[i] = horiz_offset(offset(inst->src[0], ibld, i % 2),
6931                                    8 * (i / 2));
6932 
6933          ubld.LOAD_PAYLOAD(tmp, srcs, ARRAY_SIZE(srcs), ARRAY_SIZE(srcs));
6934 
6935          inst->src[0] = tmp;
6936          progress = true;
6937          break;
6938       }
6939       case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
6940       case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
6941       case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: {
6942          assert(inst->exec_size == 16);
6943          const fs_reg tmp = ibld.vgrf(inst->dst.type, 2);
6944 
6945          for (unsigned i = 0; i < 2; i++) {
6946             for (unsigned g = 0; g < inst->exec_size / 8; g++) {
6947                fs_inst *mov = ibld.at(block, inst->next).group(8, g)
6948                                   .MOV(horiz_offset(offset(inst->dst, ibld, i),
6949                                                     8 * g),
6950                                        offset(tmp, ubld, 2 * g + i));
6951                mov->predicate = inst->predicate;
6952                mov->predicate_inverse = inst->predicate_inverse;
6953                mov->flag_subreg = inst->flag_subreg;
6954             }
6955          }
6956 
6957          inst->dst = tmp;
6958          progress = true;
6959          break;
6960       }
6961       default:
6962          break;
6963       }
6964    }
6965 
6966    if (progress)
6967       invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
6968 
6969    return progress;
6970 }
6971 
6972 void
dump_instructions() const6973 fs_visitor::dump_instructions() const
6974 {
6975    dump_instructions(NULL);
6976 }
6977 
6978 void
dump_instructions(const char * name) const6979 fs_visitor::dump_instructions(const char *name) const
6980 {
6981    FILE *file = stderr;
6982    if (name && geteuid() != 0) {
6983       file = fopen(name, "w");
6984       if (!file)
6985          file = stderr;
6986    }
6987 
6988    if (cfg) {
6989       const register_pressure &rp = regpressure_analysis.require();
6990       unsigned ip = 0, max_pressure = 0;
6991       foreach_block_and_inst(block, backend_instruction, inst, cfg) {
6992          max_pressure = MAX2(max_pressure, rp.regs_live_at_ip[ip]);
6993          fprintf(file, "{%3d} %4d: ", rp.regs_live_at_ip[ip], ip);
6994          dump_instruction(inst, file);
6995          ip++;
6996       }
6997       fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
6998    } else {
6999       int ip = 0;
7000       foreach_in_list(backend_instruction, inst, &instructions) {
7001          fprintf(file, "%4d: ", ip++);
7002          dump_instruction(inst, file);
7003       }
7004    }
7005 
7006    if (file != stderr) {
7007       fclose(file);
7008    }
7009 }
7010 
7011 void
dump_instruction(const backend_instruction * be_inst) const7012 fs_visitor::dump_instruction(const backend_instruction *be_inst) const
7013 {
7014    dump_instruction(be_inst, stderr);
7015 }
7016 
7017 void
dump_instruction(const backend_instruction * be_inst,FILE * file) const7018 fs_visitor::dump_instruction(const backend_instruction *be_inst, FILE *file) const
7019 {
7020    const fs_inst *inst = (const fs_inst *)be_inst;
7021 
7022    if (inst->predicate) {
7023       fprintf(file, "(%cf%d.%d) ",
7024               inst->predicate_inverse ? '-' : '+',
7025               inst->flag_subreg / 2,
7026               inst->flag_subreg % 2);
7027    }
7028 
7029    fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
7030    if (inst->saturate)
7031       fprintf(file, ".sat");
7032    if (inst->conditional_mod) {
7033       fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
7034       if (!inst->predicate &&
7035           (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
7036                                 inst->opcode != BRW_OPCODE_CSEL &&
7037                                 inst->opcode != BRW_OPCODE_IF &&
7038                                 inst->opcode != BRW_OPCODE_WHILE))) {
7039          fprintf(file, ".f%d.%d", inst->flag_subreg / 2,
7040                  inst->flag_subreg % 2);
7041       }
7042    }
7043    fprintf(file, "(%d) ", inst->exec_size);
7044 
7045    if (inst->mlen) {
7046       fprintf(file, "(mlen: %d) ", inst->mlen);
7047    }
7048 
7049    if (inst->ex_mlen) {
7050       fprintf(file, "(ex_mlen: %d) ", inst->ex_mlen);
7051    }
7052 
7053    if (inst->eot) {
7054       fprintf(file, "(EOT) ");
7055    }
7056 
7057    switch (inst->dst.file) {
7058    case VGRF:
7059       fprintf(file, "vgrf%d", inst->dst.nr);
7060       break;
7061    case FIXED_GRF:
7062       fprintf(file, "g%d", inst->dst.nr);
7063       break;
7064    case MRF:
7065       fprintf(file, "m%d", inst->dst.nr);
7066       break;
7067    case BAD_FILE:
7068       fprintf(file, "(null)");
7069       break;
7070    case UNIFORM:
7071       fprintf(file, "***u%d***", inst->dst.nr);
7072       break;
7073    case ATTR:
7074       fprintf(file, "***attr%d***", inst->dst.nr);
7075       break;
7076    case ARF:
7077       switch (inst->dst.nr) {
7078       case BRW_ARF_NULL:
7079          fprintf(file, "null");
7080          break;
7081       case BRW_ARF_ADDRESS:
7082          fprintf(file, "a0.%d", inst->dst.subnr);
7083          break;
7084       case BRW_ARF_ACCUMULATOR:
7085          fprintf(file, "acc%d", inst->dst.subnr);
7086          break;
7087       case BRW_ARF_FLAG:
7088          fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
7089          break;
7090       default:
7091          fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
7092          break;
7093       }
7094       break;
7095    case IMM:
7096       unreachable("not reached");
7097    }
7098 
7099    if (inst->dst.offset ||
7100        (inst->dst.file == VGRF &&
7101         alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
7102       const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
7103       fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
7104               inst->dst.offset % reg_size);
7105    }
7106 
7107    if (inst->dst.stride != 1)
7108       fprintf(file, "<%u>", inst->dst.stride);
7109    fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type));
7110 
7111    for (int i = 0; i < inst->sources; i++) {
7112       if (inst->src[i].negate)
7113          fprintf(file, "-");
7114       if (inst->src[i].abs)
7115          fprintf(file, "|");
7116       switch (inst->src[i].file) {
7117       case VGRF:
7118          fprintf(file, "vgrf%d", inst->src[i].nr);
7119          break;
7120       case FIXED_GRF:
7121          fprintf(file, "g%d", inst->src[i].nr);
7122          break;
7123       case MRF:
7124          fprintf(file, "***m%d***", inst->src[i].nr);
7125          break;
7126       case ATTR:
7127          fprintf(file, "attr%d", inst->src[i].nr);
7128          break;
7129       case UNIFORM:
7130          fprintf(file, "u%d", inst->src[i].nr);
7131          break;
7132       case BAD_FILE:
7133          fprintf(file, "(null)");
7134          break;
7135       case IMM:
7136          switch (inst->src[i].type) {
7137          case BRW_REGISTER_TYPE_F:
7138             fprintf(file, "%-gf", inst->src[i].f);
7139             break;
7140          case BRW_REGISTER_TYPE_DF:
7141             fprintf(file, "%fdf", inst->src[i].df);
7142             break;
7143          case BRW_REGISTER_TYPE_W:
7144          case BRW_REGISTER_TYPE_D:
7145             fprintf(file, "%dd", inst->src[i].d);
7146             break;
7147          case BRW_REGISTER_TYPE_UW:
7148          case BRW_REGISTER_TYPE_UD:
7149             fprintf(file, "%uu", inst->src[i].ud);
7150             break;
7151          case BRW_REGISTER_TYPE_Q:
7152             fprintf(file, "%" PRId64 "q", inst->src[i].d64);
7153             break;
7154          case BRW_REGISTER_TYPE_UQ:
7155             fprintf(file, "%" PRIu64 "uq", inst->src[i].u64);
7156             break;
7157          case BRW_REGISTER_TYPE_VF:
7158             fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
7159                     brw_vf_to_float((inst->src[i].ud >>  0) & 0xff),
7160                     brw_vf_to_float((inst->src[i].ud >>  8) & 0xff),
7161                     brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
7162                     brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
7163             break;
7164          case BRW_REGISTER_TYPE_V:
7165          case BRW_REGISTER_TYPE_UV:
7166             fprintf(file, "%08x%s", inst->src[i].ud,
7167                     inst->src[i].type == BRW_REGISTER_TYPE_V ? "V" : "UV");
7168             break;
7169          default:
7170             fprintf(file, "???");
7171             break;
7172          }
7173          break;
7174       case ARF:
7175          switch (inst->src[i].nr) {
7176          case BRW_ARF_NULL:
7177             fprintf(file, "null");
7178             break;
7179          case BRW_ARF_ADDRESS:
7180             fprintf(file, "a0.%d", inst->src[i].subnr);
7181             break;
7182          case BRW_ARF_ACCUMULATOR:
7183             fprintf(file, "acc%d", inst->src[i].subnr);
7184             break;
7185          case BRW_ARF_FLAG:
7186             fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
7187             break;
7188          default:
7189             fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
7190             break;
7191          }
7192          break;
7193       }
7194 
7195       if (inst->src[i].offset ||
7196           (inst->src[i].file == VGRF &&
7197            alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
7198          const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
7199          fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
7200                  inst->src[i].offset % reg_size);
7201       }
7202 
7203       if (inst->src[i].abs)
7204          fprintf(file, "|");
7205 
7206       if (inst->src[i].file != IMM) {
7207          unsigned stride;
7208          if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
7209             unsigned hstride = inst->src[i].hstride;
7210             stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
7211          } else {
7212             stride = inst->src[i].stride;
7213          }
7214          if (stride != 1)
7215             fprintf(file, "<%u>", stride);
7216 
7217          fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
7218       }
7219 
7220       if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
7221          fprintf(file, ", ");
7222    }
7223 
7224    fprintf(file, " ");
7225 
7226    if (inst->force_writemask_all)
7227       fprintf(file, "NoMask ");
7228 
7229    if (inst->exec_size != dispatch_width)
7230       fprintf(file, "group%d ", inst->group);
7231 
7232    fprintf(file, "\n");
7233 }
7234 
7235 void
setup_fs_payload_gen6()7236 fs_visitor::setup_fs_payload_gen6()
7237 {
7238    assert(stage == MESA_SHADER_FRAGMENT);
7239    struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
7240    const unsigned payload_width = MIN2(16, dispatch_width);
7241    assert(dispatch_width % payload_width == 0);
7242    assert(devinfo->gen >= 6);
7243 
7244    /* R0: PS thread payload header. */
7245    payload.num_regs++;
7246 
7247    for (unsigned j = 0; j < dispatch_width / payload_width; j++) {
7248       /* R1: masks, pixel X/Y coordinates. */
7249       payload.subspan_coord_reg[j] = payload.num_regs++;
7250    }
7251 
7252    for (unsigned j = 0; j < dispatch_width / payload_width; j++) {
7253       /* R3-26: barycentric interpolation coordinates.  These appear in the
7254        * same order that they appear in the brw_barycentric_mode enum.  Each
7255        * set of coordinates occupies 2 registers if dispatch width == 8 and 4
7256        * registers if dispatch width == 16.  Coordinates only appear if they
7257        * were enabled using the "Barycentric Interpolation Mode" bits in
7258        * WM_STATE.
7259        */
7260       for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
7261          if (prog_data->barycentric_interp_modes & (1 << i)) {
7262             payload.barycentric_coord_reg[i][j] = payload.num_regs;
7263             payload.num_regs += payload_width / 4;
7264          }
7265       }
7266 
7267       /* R27-28: interpolated depth if uses source depth */
7268       if (prog_data->uses_src_depth) {
7269          payload.source_depth_reg[j] = payload.num_regs;
7270          payload.num_regs += payload_width / 8;
7271       }
7272 
7273       /* R29-30: interpolated W set if GEN6_WM_USES_SOURCE_W. */
7274       if (prog_data->uses_src_w) {
7275          payload.source_w_reg[j] = payload.num_regs;
7276          payload.num_regs += payload_width / 8;
7277       }
7278 
7279       /* R31: MSAA position offsets. */
7280       if (prog_data->uses_pos_offset) {
7281          payload.sample_pos_reg[j] = payload.num_regs;
7282          payload.num_regs++;
7283       }
7284 
7285       /* R32-33: MSAA input coverage mask */
7286       if (prog_data->uses_sample_mask) {
7287          assert(devinfo->gen >= 7);
7288          payload.sample_mask_in_reg[j] = payload.num_regs;
7289          payload.num_regs += payload_width / 8;
7290       }
7291    }
7292 
7293    if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
7294       source_depth_to_render_target = true;
7295    }
7296 }
7297 
7298 void
setup_vs_payload()7299 fs_visitor::setup_vs_payload()
7300 {
7301    /* R0: thread header, R1: urb handles */
7302    payload.num_regs = 2;
7303 }
7304 
7305 void
setup_gs_payload()7306 fs_visitor::setup_gs_payload()
7307 {
7308    assert(stage == MESA_SHADER_GEOMETRY);
7309 
7310    struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
7311    struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
7312 
7313    /* R0: thread header, R1: output URB handles */
7314    payload.num_regs = 2;
7315 
7316    if (gs_prog_data->include_primitive_id) {
7317       /* R2: Primitive ID 0..7 */
7318       payload.num_regs++;
7319    }
7320 
7321    /* Always enable VUE handles so we can safely use pull model if needed.
7322     *
7323     * The push model for a GS uses a ton of register space even for trivial
7324     * scenarios with just a few inputs, so just make things easier and a bit
7325     * safer by always having pull model available.
7326     */
7327    gs_prog_data->base.include_vue_handles = true;
7328 
7329    /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
7330    payload.num_regs += nir->info.gs.vertices_in;
7331 
7332    /* Use a maximum of 24 registers for push-model inputs. */
7333    const unsigned max_push_components = 24;
7334 
7335    /* If pushing our inputs would take too many registers, reduce the URB read
7336     * length (which is in HWords, or 8 registers), and resort to pulling.
7337     *
7338     * Note that the GS reads <URB Read Length> HWords for every vertex - so we
7339     * have to multiply by VerticesIn to obtain the total storage requirement.
7340     */
7341    if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
7342        max_push_components) {
7343       vue_prog_data->urb_read_length =
7344          ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
7345    }
7346 }
7347 
7348 void
setup_cs_payload()7349 fs_visitor::setup_cs_payload()
7350 {
7351    assert(devinfo->gen >= 7);
7352    payload.num_regs = 1;
7353 }
7354 
register_pressure(const fs_visitor * v)7355 brw::register_pressure::register_pressure(const fs_visitor *v)
7356 {
7357    const fs_live_variables &live = v->live_analysis.require();
7358    const unsigned num_instructions = v->cfg->num_blocks ?
7359       v->cfg->blocks[v->cfg->num_blocks - 1]->end_ip + 1 : 0;
7360 
7361    regs_live_at_ip = new unsigned[num_instructions]();
7362 
7363    for (unsigned reg = 0; reg < v->alloc.count; reg++) {
7364       for (int ip = live.vgrf_start[reg]; ip <= live.vgrf_end[reg]; ip++)
7365          regs_live_at_ip[ip] += v->alloc.sizes[reg];
7366    }
7367 }
7368 
~register_pressure()7369 brw::register_pressure::~register_pressure()
7370 {
7371    delete[] regs_live_at_ip;
7372 }
7373 
7374 void
invalidate_analysis(brw::analysis_dependency_class c)7375 fs_visitor::invalidate_analysis(brw::analysis_dependency_class c)
7376 {
7377    backend_shader::invalidate_analysis(c);
7378    live_analysis.invalidate(c);
7379    regpressure_analysis.invalidate(c);
7380 }
7381 
7382 void
optimize()7383 fs_visitor::optimize()
7384 {
7385    /* Start by validating the shader we currently have. */
7386    validate();
7387 
7388    /* bld is the common builder object pointing at the end of the program we
7389     * used to translate it into i965 IR.  For the optimization and lowering
7390     * passes coming next, any code added after the end of the program without
7391     * having explicitly called fs_builder::at() clearly points at a mistake.
7392     * Ideally optimization passes wouldn't be part of the visitor so they
7393     * wouldn't have access to bld at all, but they do, so just in case some
7394     * pass forgets to ask for a location explicitly set it to NULL here to
7395     * make it trip.  The dispatch width is initialized to a bogus value to
7396     * make sure that optimizations set the execution controls explicitly to
7397     * match the code they are manipulating instead of relying on the defaults.
7398     */
7399    bld = fs_builder(this, 64);
7400 
7401    assign_constant_locations();
7402    lower_constant_loads();
7403 
7404    validate();
7405 
7406    split_virtual_grfs();
7407    validate();
7408 
7409 #define OPT(pass, args...) ({                                           \
7410       pass_num++;                                                       \
7411       bool this_progress = pass(args);                                  \
7412                                                                         \
7413       if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) {   \
7414          char filename[64];                                             \
7415          snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass,              \
7416                   stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
7417                                                                         \
7418          backend_shader::dump_instructions(filename);                   \
7419       }                                                                 \
7420                                                                         \
7421       validate();                                                       \
7422                                                                         \
7423       progress = progress || this_progress;                             \
7424       this_progress;                                                    \
7425    })
7426 
7427    if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
7428       char filename[64];
7429       snprintf(filename, 64, "%s%d-%s-00-00-start",
7430                stage_abbrev, dispatch_width, nir->info.name);
7431 
7432       backend_shader::dump_instructions(filename);
7433    }
7434 
7435    bool progress = false;
7436    int iteration = 0;
7437    int pass_num = 0;
7438 
7439    /* Before anything else, eliminate dead code.  The results of some NIR
7440     * instructions may effectively be calculated twice.  Once when the
7441     * instruction is encountered, and again when the user of that result is
7442     * encountered.  Wipe those away before algebraic optimizations and
7443     * especially copy propagation can mix things up.
7444     */
7445    OPT(dead_code_eliminate);
7446 
7447    OPT(remove_extra_rounding_modes);
7448 
7449    do {
7450       progress = false;
7451       pass_num = 0;
7452       iteration++;
7453 
7454       OPT(remove_duplicate_mrf_writes);
7455 
7456       OPT(opt_algebraic);
7457       OPT(opt_cse);
7458       OPT(opt_copy_propagation);
7459       OPT(opt_predicated_break, this);
7460       OPT(opt_cmod_propagation);
7461       OPT(dead_code_eliminate);
7462       OPT(opt_peephole_sel);
7463       OPT(dead_control_flow_eliminate, this);
7464       OPT(opt_register_renaming);
7465       OPT(opt_saturate_propagation);
7466       OPT(register_coalesce);
7467       OPT(compute_to_mrf);
7468       OPT(eliminate_find_live_channel);
7469 
7470       OPT(compact_virtual_grfs);
7471    } while (progress);
7472 
7473    progress = false;
7474    pass_num = 0;
7475 
7476    if (OPT(lower_pack)) {
7477       OPT(register_coalesce);
7478       OPT(dead_code_eliminate);
7479    }
7480 
7481    OPT(lower_simd_width);
7482    OPT(lower_barycentrics);
7483    OPT(lower_logical_sends);
7484 
7485    /* After logical SEND lowering. */
7486    OPT(fixup_nomask_control_flow);
7487 
7488    if (progress) {
7489       OPT(opt_copy_propagation);
7490       /* Only run after logical send lowering because it's easier to implement
7491        * in terms of physical sends.
7492        */
7493       if (OPT(opt_zero_samples))
7494          OPT(opt_copy_propagation);
7495       /* Run after logical send lowering to give it a chance to CSE the
7496        * LOAD_PAYLOAD instructions created to construct the payloads of
7497        * e.g. texturing messages in cases where it wasn't possible to CSE the
7498        * whole logical instruction.
7499        */
7500       OPT(opt_cse);
7501       OPT(register_coalesce);
7502       OPT(compute_to_mrf);
7503       OPT(dead_code_eliminate);
7504       OPT(remove_duplicate_mrf_writes);
7505       OPT(opt_peephole_sel);
7506    }
7507 
7508    OPT(opt_redundant_discard_jumps);
7509 
7510    if (OPT(lower_load_payload)) {
7511       split_virtual_grfs();
7512 
7513       /* Lower 64 bit MOVs generated by payload lowering. */
7514       if (!devinfo->has_64bit_float && !devinfo->has_64bit_int)
7515          OPT(opt_algebraic);
7516 
7517       OPT(register_coalesce);
7518       OPT(lower_simd_width);
7519       OPT(compute_to_mrf);
7520       OPT(dead_code_eliminate);
7521    }
7522 
7523    OPT(opt_combine_constants);
7524    OPT(lower_integer_multiplication);
7525    OPT(lower_sub_sat);
7526 
7527    if (devinfo->gen <= 5 && OPT(lower_minmax)) {
7528       OPT(opt_cmod_propagation);
7529       OPT(opt_cse);
7530       OPT(opt_copy_propagation);
7531       OPT(dead_code_eliminate);
7532    }
7533 
7534    if (OPT(lower_regioning)) {
7535       OPT(opt_copy_propagation);
7536       OPT(dead_code_eliminate);
7537       OPT(lower_simd_width);
7538    }
7539 
7540    OPT(fixup_sends_duplicate_payload);
7541 
7542    lower_uniform_pull_constant_loads();
7543 
7544    validate();
7545 }
7546 
7547 /**
7548  * From the Skylake PRM Vol. 2a docs for sends:
7549  *
7550  *    "It is required that the second block of GRFs does not overlap with the
7551  *    first block."
7552  *
7553  * There are plenty of cases where we may accidentally violate this due to
7554  * having, for instance, both sources be the constant 0.  This little pass
7555  * just adds a new vgrf for the second payload and copies it over.
7556  */
7557 bool
fixup_sends_duplicate_payload()7558 fs_visitor::fixup_sends_duplicate_payload()
7559 {
7560    bool progress = false;
7561 
7562    foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
7563       if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 &&
7564           regions_overlap(inst->src[2], inst->mlen * REG_SIZE,
7565                           inst->src[3], inst->ex_mlen * REG_SIZE)) {
7566          fs_reg tmp = fs_reg(VGRF, alloc.allocate(inst->ex_mlen),
7567                              BRW_REGISTER_TYPE_UD);
7568          /* Sadly, we've lost all notion of channels and bit sizes at this
7569           * point.  Just WE_all it.
7570           */
7571          const fs_builder ibld = bld.at(block, inst).exec_all().group(16, 0);
7572          fs_reg copy_src = retype(inst->src[3], BRW_REGISTER_TYPE_UD);
7573          fs_reg copy_dst = tmp;
7574          for (unsigned i = 0; i < inst->ex_mlen; i += 2) {
7575             if (inst->ex_mlen == i + 1) {
7576                /* Only one register left; do SIMD8 */
7577                ibld.group(8, 0).MOV(copy_dst, copy_src);
7578             } else {
7579                ibld.MOV(copy_dst, copy_src);
7580             }
7581             copy_src = offset(copy_src, ibld, 1);
7582             copy_dst = offset(copy_dst, ibld, 1);
7583          }
7584          inst->src[3] = tmp;
7585          progress = true;
7586       }
7587    }
7588 
7589    if (progress)
7590       invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
7591 
7592    return progress;
7593 }
7594 
7595 /**
7596  * Three source instruction must have a GRF/MRF destination register.
7597  * ARF NULL is not allowed.  Fix that up by allocating a temporary GRF.
7598  */
7599 void
fixup_3src_null_dest()7600 fs_visitor::fixup_3src_null_dest()
7601 {
7602    bool progress = false;
7603 
7604    foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
7605       if (inst->is_3src(devinfo) && inst->dst.is_null()) {
7606          inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
7607                             inst->dst.type);
7608          progress = true;
7609       }
7610    }
7611 
7612    if (progress)
7613       invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
7614                           DEPENDENCY_VARIABLES);
7615 }
7616 
7617 /**
7618  * Find the first instruction in the program that might start a region of
7619  * divergent control flow due to a HALT jump.  There is no
7620  * find_halt_control_flow_region_end(), the region of divergence extends until
7621  * the only FS_OPCODE_PLACEHOLDER_HALT in the program.
7622  */
7623 static const fs_inst *
find_halt_control_flow_region_start(const fs_visitor * v)7624 find_halt_control_flow_region_start(const fs_visitor *v)
7625 {
7626    if (v->stage == MESA_SHADER_FRAGMENT &&
7627        brw_wm_prog_data(v->prog_data)->uses_kill) {
7628       foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
7629          if (inst->opcode == FS_OPCODE_DISCARD_JUMP ||
7630              inst->opcode == FS_OPCODE_PLACEHOLDER_HALT)
7631             return inst;
7632       }
7633    }
7634 
7635    return NULL;
7636 }
7637 
7638 /**
7639  * Work around the Gen12 hardware bug filed as GEN:BUG:1407528679.  EU fusion
7640  * can cause a BB to be executed with all channels disabled, which will lead
7641  * to the execution of any NoMask instructions in it, even though any
7642  * execution-masked instructions will be correctly shot down.  This may break
7643  * assumptions of some NoMask SEND messages whose descriptor depends on data
7644  * generated by live invocations of the shader.
7645  *
7646  * This avoids the problem by predicating certain instructions on an ANY
7647  * horizontal predicate that makes sure that their execution is omitted when
7648  * all channels of the program are disabled.
7649  */
7650 bool
fixup_nomask_control_flow()7651 fs_visitor::fixup_nomask_control_flow()
7652 {
7653    if (devinfo->gen != 12)
7654       return false;
7655 
7656    const brw_predicate pred = dispatch_width > 16 ? BRW_PREDICATE_ALIGN1_ANY32H :
7657                               dispatch_width > 8 ? BRW_PREDICATE_ALIGN1_ANY16H :
7658                               BRW_PREDICATE_ALIGN1_ANY8H;
7659    const fs_inst *halt_start = find_halt_control_flow_region_start(this);
7660    unsigned depth = 0;
7661    bool progress = false;
7662 
7663    const fs_live_variables &live_vars = live_analysis.require();
7664 
7665    /* Scan the program backwards in order to be able to easily determine
7666     * whether the flag register is live at any point.
7667     */
7668    foreach_block_reverse_safe(block, cfg) {
7669       BITSET_WORD flag_liveout = live_vars.block_data[block->num]
7670                                                .flag_liveout[0];
7671       STATIC_ASSERT(ARRAY_SIZE(live_vars.block_data[0].flag_liveout) == 1);
7672 
7673       foreach_inst_in_block_reverse_safe(fs_inst, inst, block) {
7674          if (!inst->predicate && inst->exec_size >= 8)
7675             flag_liveout &= ~inst->flags_written();
7676 
7677          switch (inst->opcode) {
7678          case BRW_OPCODE_DO:
7679          case BRW_OPCODE_IF:
7680             /* Note that this doesn't handle FS_OPCODE_DISCARD_JUMP since only
7681              * the first one in the program closes the region of divergent
7682              * control flow due to any HALT instructions -- Instead this is
7683              * handled with the halt_start check below.
7684              */
7685             depth--;
7686             break;
7687 
7688          case BRW_OPCODE_WHILE:
7689          case BRW_OPCODE_ENDIF:
7690          case FS_OPCODE_PLACEHOLDER_HALT:
7691             depth++;
7692             break;
7693 
7694          default:
7695             /* Note that the vast majority of NoMask SEND instructions in the
7696              * program are harmless while executed in a block with all
7697              * channels disabled, since any instructions with side effects we
7698              * could hit here should be execution-masked.
7699              *
7700              * The main concern is NoMask SEND instructions where the message
7701              * descriptor or header depends on data generated by live
7702              * invocations of the shader (RESINFO and
7703              * FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD with a dynamically
7704              * computed surface index seem to be the only examples right now
7705              * where this could easily lead to GPU hangs).  Unfortunately we
7706              * have no straightforward way to detect that currently, so just
7707              * predicate any NoMask SEND instructions we find under control
7708              * flow.
7709              *
7710              * If this proves to have a measurable performance impact it can
7711              * be easily extended with a whitelist of messages we know we can
7712              * safely omit the predication for.
7713              */
7714             if (depth && inst->force_writemask_all &&
7715                 is_send(inst) && !inst->predicate) {
7716                /* We need to load the execution mask into the flag register by
7717                 * using a builder with channel group matching the whole shader
7718                 * (rather than the default which is derived from the original
7719                 * instruction), in order to avoid getting a right-shifted
7720                 * value.
7721                 */
7722                const fs_builder ubld = fs_builder(this, block, inst)
7723                                        .exec_all().group(dispatch_width, 0);
7724                const fs_reg flag = retype(brw_flag_reg(0, 0),
7725                                           BRW_REGISTER_TYPE_UD);
7726 
7727                /* Due to the lack of flag register allocation we need to save
7728                 * and restore the flag register if it's live.
7729                 */
7730                const bool save_flag = flag_liveout &
7731                                       flag_mask(flag, dispatch_width / 8);
7732                const fs_reg tmp = ubld.group(1, 0).vgrf(flag.type);
7733 
7734                if (save_flag)
7735                   ubld.group(1, 0).MOV(tmp, flag);
7736 
7737                ubld.emit(FS_OPCODE_LOAD_LIVE_CHANNELS);
7738 
7739                set_predicate(pred, inst);
7740                inst->flag_subreg = 0;
7741 
7742                if (save_flag)
7743                   ubld.group(1, 0).at(block, inst->next).MOV(flag, tmp);
7744 
7745                progress = true;
7746             }
7747             break;
7748          }
7749 
7750          if (inst == halt_start)
7751             depth--;
7752 
7753          flag_liveout |= inst->flags_read(devinfo);
7754       }
7755    }
7756 
7757    if (progress)
7758       invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
7759 
7760    return progress;
7761 }
7762 
7763 void
allocate_registers(bool allow_spilling)7764 fs_visitor::allocate_registers(bool allow_spilling)
7765 {
7766    bool allocated;
7767 
7768    static const enum instruction_scheduler_mode pre_modes[] = {
7769       SCHEDULE_PRE,
7770       SCHEDULE_PRE_NON_LIFO,
7771       SCHEDULE_PRE_LIFO,
7772    };
7773 
7774    static const char *scheduler_mode_name[] = {
7775       "top-down",
7776       "non-lifo",
7777       "lifo"
7778    };
7779 
7780    bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
7781 
7782    /* Try each scheduling heuristic to see if it can successfully register
7783     * allocate without spilling.  They should be ordered by decreasing
7784     * performance but increasing likelihood of allocating.
7785     */
7786    for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
7787       schedule_instructions(pre_modes[i]);
7788       this->shader_stats.scheduler_mode = scheduler_mode_name[i];
7789 
7790       if (0) {
7791          assign_regs_trivial();
7792          allocated = true;
7793          break;
7794       }
7795 
7796       /* Scheduling may create additional opportunities for CMOD propagation,
7797        * so let's do it again.  If CMOD propagation made any progress,
7798        * elminate dead code one more time.
7799        */
7800       bool progress = false;
7801       const int iteration = 99;
7802       int pass_num = 0;
7803 
7804       if (OPT(opt_cmod_propagation)) {
7805          /* dead_code_eliminate "undoes" the fixing done by
7806           * fixup_3src_null_dest, so we have to do it again if
7807           * dead_code_eliminiate makes any progress.
7808           */
7809          if (OPT(dead_code_eliminate))
7810             fixup_3src_null_dest();
7811       }
7812 
7813       bool can_spill = allow_spilling &&
7814                        (i == ARRAY_SIZE(pre_modes) - 1);
7815 
7816       /* We should only spill registers on the last scheduling. */
7817       assert(!spilled_any_registers);
7818 
7819       allocated = assign_regs(can_spill, spill_all);
7820       if (allocated)
7821          break;
7822    }
7823 
7824    if (!allocated) {
7825       fail("Failure to register allocate.  Reduce number of "
7826            "live scalar values to avoid this.");
7827    } else if (spilled_any_registers) {
7828       compiler->shader_perf_log(log_data,
7829                                 "%s shader triggered register spilling.  "
7830                                 "Try reducing the number of live scalar "
7831                                 "values to improve performance.\n",
7832                                 stage_name);
7833    }
7834 
7835    /* This must come after all optimization and register allocation, since
7836     * it inserts dead code that happens to have side effects, and it does
7837     * so based on the actual physical registers in use.
7838     */
7839    insert_gen4_send_dependency_workarounds();
7840 
7841    if (failed)
7842       return;
7843 
7844    opt_bank_conflicts();
7845 
7846    schedule_instructions(SCHEDULE_POST);
7847 
7848    if (last_scratch > 0) {
7849       ASSERTED unsigned max_scratch_size = 2 * 1024 * 1024;
7850 
7851       prog_data->total_scratch = brw_get_scratch_size(last_scratch);
7852 
7853       if (stage == MESA_SHADER_COMPUTE) {
7854          if (devinfo->is_haswell) {
7855             /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
7856              * field documentation, Haswell supports a minimum of 2kB of
7857              * scratch space for compute shaders, unlike every other stage
7858              * and platform.
7859              */
7860             prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
7861          } else if (devinfo->gen <= 7) {
7862             /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
7863              * field documentation, platforms prior to Haswell measure scratch
7864              * size linearly with a range of [1kB, 12kB] and 1kB granularity.
7865              */
7866             prog_data->total_scratch = ALIGN(last_scratch, 1024);
7867             max_scratch_size = 12 * 1024;
7868          }
7869       }
7870 
7871       /* We currently only support up to 2MB of scratch space.  If we
7872        * need to support more eventually, the documentation suggests
7873        * that we could allocate a larger buffer, and partition it out
7874        * ourselves.  We'd just have to undo the hardware's address
7875        * calculation by subtracting (FFTID * Per Thread Scratch Space)
7876        * and then add FFTID * (Larger Per Thread Scratch Space).
7877        *
7878        * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
7879        * Thread Group Tracking > Local Memory/Scratch Space.
7880        */
7881       assert(prog_data->total_scratch < max_scratch_size);
7882    }
7883 
7884    lower_scoreboard();
7885 }
7886 
7887 bool
run_vs()7888 fs_visitor::run_vs()
7889 {
7890    assert(stage == MESA_SHADER_VERTEX);
7891 
7892    setup_vs_payload();
7893 
7894    if (shader_time_index >= 0)
7895       emit_shader_time_begin();
7896 
7897    emit_nir_code();
7898 
7899    if (failed)
7900       return false;
7901 
7902    emit_urb_writes();
7903 
7904    if (shader_time_index >= 0)
7905       emit_shader_time_end();
7906 
7907    calculate_cfg();
7908 
7909    optimize();
7910 
7911    assign_curb_setup();
7912    assign_vs_urb_setup();
7913 
7914    fixup_3src_null_dest();
7915    allocate_registers(true /* allow_spilling */);
7916 
7917    return !failed;
7918 }
7919 
7920 void
set_tcs_invocation_id()7921 fs_visitor::set_tcs_invocation_id()
7922 {
7923    struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
7924    struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
7925 
7926    const unsigned instance_id_mask =
7927       devinfo->gen >= 11 ? INTEL_MASK(22, 16) : INTEL_MASK(23, 17);
7928    const unsigned instance_id_shift =
7929       devinfo->gen >= 11 ? 16 : 17;
7930 
7931    /* Get instance number from g0.2 bits 22:16 or 23:17 */
7932    fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
7933    bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
7934            brw_imm_ud(instance_id_mask));
7935 
7936    invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
7937 
7938    if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH) {
7939       /* gl_InvocationID is just the thread number */
7940       bld.SHR(invocation_id, t, brw_imm_ud(instance_id_shift));
7941       return;
7942    }
7943 
7944    assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH);
7945 
7946    fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
7947    fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
7948    bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
7949    bld.MOV(channels_ud, channels_uw);
7950 
7951    if (tcs_prog_data->instances == 1) {
7952       invocation_id = channels_ud;
7953    } else {
7954       fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
7955       bld.SHR(instance_times_8, t, brw_imm_ud(instance_id_shift - 3));
7956       bld.ADD(invocation_id, instance_times_8, channels_ud);
7957    }
7958 }
7959 
7960 bool
run_tcs()7961 fs_visitor::run_tcs()
7962 {
7963    assert(stage == MESA_SHADER_TESS_CTRL);
7964 
7965    struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
7966    struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
7967    struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
7968 
7969    assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH ||
7970           vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
7971 
7972    if (vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH) {
7973       /* r1-r4 contain the ICP handles. */
7974       payload.num_regs = 5;
7975    } else {
7976       assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_8_PATCH);
7977       assert(tcs_key->input_vertices > 0);
7978       /* r1 contains output handles, r2 may contain primitive ID, then the
7979        * ICP handles occupy the next 1-32 registers.
7980        */
7981       payload.num_regs = 2 + tcs_prog_data->include_primitive_id +
7982                          tcs_key->input_vertices;
7983    }
7984 
7985    if (shader_time_index >= 0)
7986       emit_shader_time_begin();
7987 
7988    /* Initialize gl_InvocationID */
7989    set_tcs_invocation_id();
7990 
7991    const bool fix_dispatch_mask =
7992       vue_prog_data->dispatch_mode == DISPATCH_MODE_TCS_SINGLE_PATCH &&
7993       (nir->info.tess.tcs_vertices_out % 8) != 0;
7994 
7995    /* Fix the disptach mask */
7996    if (fix_dispatch_mask) {
7997       bld.CMP(bld.null_reg_ud(), invocation_id,
7998               brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
7999       bld.IF(BRW_PREDICATE_NORMAL);
8000    }
8001 
8002    emit_nir_code();
8003 
8004    if (fix_dispatch_mask) {
8005       bld.emit(BRW_OPCODE_ENDIF);
8006    }
8007 
8008    /* Emit EOT write; set TR DS Cache bit */
8009    fs_reg srcs[3] = {
8010       fs_reg(get_tcs_output_urb_handle()),
8011       fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
8012       fs_reg(brw_imm_ud(0)),
8013    };
8014    fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
8015    bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
8016 
8017    fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
8018                             bld.null_reg_ud(), payload);
8019    inst->mlen = 3;
8020    inst->eot = true;
8021 
8022    if (shader_time_index >= 0)
8023       emit_shader_time_end();
8024 
8025    if (failed)
8026       return false;
8027 
8028    calculate_cfg();
8029 
8030    optimize();
8031 
8032    assign_curb_setup();
8033    assign_tcs_urb_setup();
8034 
8035    fixup_3src_null_dest();
8036    allocate_registers(true /* allow_spilling */);
8037 
8038    return !failed;
8039 }
8040 
8041 bool
run_tes()8042 fs_visitor::run_tes()
8043 {
8044    assert(stage == MESA_SHADER_TESS_EVAL);
8045 
8046    /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
8047    payload.num_regs = 5;
8048 
8049    if (shader_time_index >= 0)
8050       emit_shader_time_begin();
8051 
8052    emit_nir_code();
8053 
8054    if (failed)
8055       return false;
8056 
8057    emit_urb_writes();
8058 
8059    if (shader_time_index >= 0)
8060       emit_shader_time_end();
8061 
8062    calculate_cfg();
8063 
8064    optimize();
8065 
8066    assign_curb_setup();
8067    assign_tes_urb_setup();
8068 
8069    fixup_3src_null_dest();
8070    allocate_registers(true /* allow_spilling */);
8071 
8072    return !failed;
8073 }
8074 
8075 bool
run_gs()8076 fs_visitor::run_gs()
8077 {
8078    assert(stage == MESA_SHADER_GEOMETRY);
8079 
8080    setup_gs_payload();
8081 
8082    this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
8083 
8084    if (gs_compile->control_data_header_size_bits > 0) {
8085       /* Create a VGRF to store accumulated control data bits. */
8086       this->control_data_bits = vgrf(glsl_type::uint_type);
8087 
8088       /* If we're outputting more than 32 control data bits, then EmitVertex()
8089        * will set control_data_bits to 0 after emitting the first vertex.
8090        * Otherwise, we need to initialize it to 0 here.
8091        */
8092       if (gs_compile->control_data_header_size_bits <= 32) {
8093          const fs_builder abld = bld.annotate("initialize control data bits");
8094          abld.MOV(this->control_data_bits, brw_imm_ud(0u));
8095       }
8096    }
8097 
8098    if (shader_time_index >= 0)
8099       emit_shader_time_begin();
8100 
8101    emit_nir_code();
8102 
8103    emit_gs_thread_end();
8104 
8105    if (shader_time_index >= 0)
8106       emit_shader_time_end();
8107 
8108    if (failed)
8109       return false;
8110 
8111    calculate_cfg();
8112 
8113    optimize();
8114 
8115    assign_curb_setup();
8116    assign_gs_urb_setup();
8117 
8118    fixup_3src_null_dest();
8119    allocate_registers(true /* allow_spilling */);
8120 
8121    return !failed;
8122 }
8123 
8124 /* From the SKL PRM, Volume 16, Workarounds:
8125  *
8126  *   0877  3D   Pixel Shader Hang possible when pixel shader dispatched with
8127  *              only header phases (R0-R2)
8128  *
8129  *   WA: Enable a non-header phase (e.g. push constant) when dispatch would
8130  *       have been header only.
8131  *
8132  * Instead of enabling push constants one can alternatively enable one of the
8133  * inputs. Here one simply chooses "layer" which shouldn't impose much
8134  * overhead.
8135  */
8136 static void
gen9_ps_header_only_workaround(struct brw_wm_prog_data * wm_prog_data)8137 gen9_ps_header_only_workaround(struct brw_wm_prog_data *wm_prog_data)
8138 {
8139    if (wm_prog_data->num_varying_inputs)
8140       return;
8141 
8142    if (wm_prog_data->base.curb_read_length)
8143       return;
8144 
8145    wm_prog_data->urb_setup[VARYING_SLOT_LAYER] = 0;
8146    wm_prog_data->num_varying_inputs = 1;
8147 
8148    brw_compute_urb_setup_index(wm_prog_data);
8149 }
8150 
8151 bool
run_fs(bool allow_spilling,bool do_rep_send)8152 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
8153 {
8154    struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
8155    brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
8156 
8157    assert(stage == MESA_SHADER_FRAGMENT);
8158 
8159    if (devinfo->gen >= 6)
8160       setup_fs_payload_gen6();
8161    else
8162       setup_fs_payload_gen4();
8163 
8164    if (0) {
8165       emit_dummy_fs();
8166    } else if (do_rep_send) {
8167       assert(dispatch_width == 16);
8168       emit_repclear_shader();
8169    } else {
8170       if (shader_time_index >= 0)
8171          emit_shader_time_begin();
8172 
8173       if (nir->info.inputs_read > 0 ||
8174           (nir->info.system_values_read & (1ull << SYSTEM_VALUE_FRAG_COORD)) ||
8175           (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
8176          if (devinfo->gen < 6)
8177             emit_interpolation_setup_gen4();
8178          else
8179             emit_interpolation_setup_gen6();
8180       }
8181 
8182       /* We handle discards by keeping track of the still-live pixels in f0.1.
8183        * Initialize it with the dispatched pixels.
8184        */
8185       if (wm_prog_data->uses_kill) {
8186          const unsigned lower_width = MIN2(dispatch_width, 16);
8187          for (unsigned i = 0; i < dispatch_width / lower_width; i++) {
8188             const fs_reg dispatch_mask =
8189                devinfo->gen >= 6 ? brw_vec1_grf((i ? 2 : 1), 7) :
8190                brw_vec1_grf(0, 0);
8191             bld.exec_all().group(1, 0)
8192                .MOV(sample_mask_reg(bld.group(lower_width, i)),
8193                     retype(dispatch_mask, BRW_REGISTER_TYPE_UW));
8194          }
8195       }
8196 
8197       if (nir->info.writes_memory)
8198          wm_prog_data->has_side_effects = true;
8199 
8200       emit_nir_code();
8201 
8202       if (failed)
8203 	 return false;
8204 
8205       if (wm_prog_data->uses_kill)
8206          bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
8207 
8208       if (wm_key->alpha_test_func)
8209          emit_alpha_test();
8210 
8211       emit_fb_writes();
8212 
8213       if (shader_time_index >= 0)
8214          emit_shader_time_end();
8215 
8216       calculate_cfg();
8217 
8218       optimize();
8219 
8220       assign_curb_setup();
8221 
8222       if (devinfo->gen >= 9)
8223          gen9_ps_header_only_workaround(wm_prog_data);
8224 
8225       assign_urb_setup();
8226 
8227       fixup_3src_null_dest();
8228 
8229       allocate_registers(allow_spilling);
8230 
8231       if (failed)
8232          return false;
8233    }
8234 
8235    return !failed;
8236 }
8237 
8238 bool
run_cs(bool allow_spilling)8239 fs_visitor::run_cs(bool allow_spilling)
8240 {
8241    assert(stage == MESA_SHADER_COMPUTE);
8242 
8243    setup_cs_payload();
8244 
8245    if (shader_time_index >= 0)
8246       emit_shader_time_begin();
8247 
8248    if (devinfo->is_haswell && prog_data->total_shared > 0) {
8249       /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
8250       const fs_builder abld = bld.exec_all().group(1, 0);
8251       abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
8252                suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
8253    }
8254 
8255    emit_nir_code();
8256 
8257    if (failed)
8258       return false;
8259 
8260    emit_cs_terminate();
8261 
8262    if (shader_time_index >= 0)
8263       emit_shader_time_end();
8264 
8265    calculate_cfg();
8266 
8267    optimize();
8268 
8269    assign_curb_setup();
8270 
8271    fixup_3src_null_dest();
8272    allocate_registers(allow_spilling);
8273 
8274    if (failed)
8275       return false;
8276 
8277    return !failed;
8278 }
8279 
8280 static bool
is_used_in_not_interp_frag_coord(nir_ssa_def * def)8281 is_used_in_not_interp_frag_coord(nir_ssa_def *def)
8282 {
8283    nir_foreach_use(src, def) {
8284       if (src->parent_instr->type != nir_instr_type_intrinsic)
8285          return true;
8286 
8287       nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(src->parent_instr);
8288       if (intrin->intrinsic != nir_intrinsic_load_frag_coord)
8289          return true;
8290    }
8291 
8292    nir_foreach_if_use(src, def)
8293       return true;
8294 
8295    return false;
8296 }
8297 
8298 /**
8299  * Return a bitfield where bit n is set if barycentric interpolation mode n
8300  * (see enum brw_barycentric_mode) is needed by the fragment shader.
8301  *
8302  * We examine the load_barycentric intrinsics rather than looking at input
8303  * variables so that we catch interpolateAtCentroid() messages too, which
8304  * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
8305  */
8306 static unsigned
brw_compute_barycentric_interp_modes(const struct gen_device_info * devinfo,const nir_shader * shader)8307 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
8308                                      const nir_shader *shader)
8309 {
8310    unsigned barycentric_interp_modes = 0;
8311 
8312    nir_foreach_function(f, shader) {
8313       if (!f->impl)
8314          continue;
8315 
8316       nir_foreach_block(block, f->impl) {
8317          nir_foreach_instr(instr, block) {
8318             if (instr->type != nir_instr_type_intrinsic)
8319                continue;
8320 
8321             nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
8322             switch (intrin->intrinsic) {
8323             case nir_intrinsic_load_barycentric_pixel:
8324             case nir_intrinsic_load_barycentric_centroid:
8325             case nir_intrinsic_load_barycentric_sample:
8326                break;
8327             default:
8328                continue;
8329             }
8330 
8331             /* Ignore WPOS; it doesn't require interpolation. */
8332             assert(intrin->dest.is_ssa);
8333             if (!is_used_in_not_interp_frag_coord(&intrin->dest.ssa))
8334                continue;
8335 
8336             enum glsl_interp_mode interp = (enum glsl_interp_mode)
8337                nir_intrinsic_interp_mode(intrin);
8338             nir_intrinsic_op bary_op = intrin->intrinsic;
8339             enum brw_barycentric_mode bary =
8340                brw_barycentric_mode(interp, bary_op);
8341 
8342             barycentric_interp_modes |= 1 << bary;
8343 
8344             if (devinfo->needs_unlit_centroid_workaround &&
8345                 bary_op == nir_intrinsic_load_barycentric_centroid)
8346                barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
8347          }
8348       }
8349    }
8350 
8351    return barycentric_interp_modes;
8352 }
8353 
8354 static void
brw_compute_flat_inputs(struct brw_wm_prog_data * prog_data,const nir_shader * shader)8355 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
8356                         const nir_shader *shader)
8357 {
8358    prog_data->flat_inputs = 0;
8359 
8360    nir_foreach_shader_in_variable(var, shader) {
8361       unsigned slots = glsl_count_attribute_slots(var->type, false);
8362       for (unsigned s = 0; s < slots; s++) {
8363          int input_index = prog_data->urb_setup[var->data.location + s];
8364 
8365          if (input_index < 0)
8366             continue;
8367 
8368          /* flat shading */
8369          if (var->data.interpolation == INTERP_MODE_FLAT)
8370             prog_data->flat_inputs |= 1 << input_index;
8371       }
8372    }
8373 }
8374 
8375 static uint8_t
computed_depth_mode(const nir_shader * shader)8376 computed_depth_mode(const nir_shader *shader)
8377 {
8378    if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
8379       switch (shader->info.fs.depth_layout) {
8380       case FRAG_DEPTH_LAYOUT_NONE:
8381       case FRAG_DEPTH_LAYOUT_ANY:
8382          return BRW_PSCDEPTH_ON;
8383       case FRAG_DEPTH_LAYOUT_GREATER:
8384          return BRW_PSCDEPTH_ON_GE;
8385       case FRAG_DEPTH_LAYOUT_LESS:
8386          return BRW_PSCDEPTH_ON_LE;
8387       case FRAG_DEPTH_LAYOUT_UNCHANGED:
8388          return BRW_PSCDEPTH_OFF;
8389       }
8390    }
8391    return BRW_PSCDEPTH_OFF;
8392 }
8393 
8394 /**
8395  * Move load_interpolated_input with simple (payload-based) barycentric modes
8396  * to the top of the program so we don't emit multiple PLNs for the same input.
8397  *
8398  * This works around CSE not being able to handle non-dominating cases
8399  * such as:
8400  *
8401  *    if (...) {
8402  *       interpolate input
8403  *    } else {
8404  *       interpolate the same exact input
8405  *    }
8406  *
8407  * This should be replaced by global value numbering someday.
8408  */
8409 bool
brw_nir_move_interpolation_to_top(nir_shader * nir)8410 brw_nir_move_interpolation_to_top(nir_shader *nir)
8411 {
8412    bool progress = false;
8413 
8414    nir_foreach_function(f, nir) {
8415       if (!f->impl)
8416          continue;
8417 
8418       nir_block *top = nir_start_block(f->impl);
8419       exec_node *cursor_node = NULL;
8420 
8421       nir_foreach_block(block, f->impl) {
8422          if (block == top)
8423             continue;
8424 
8425          nir_foreach_instr_safe(instr, block) {
8426             if (instr->type != nir_instr_type_intrinsic)
8427                continue;
8428 
8429             nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
8430             if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
8431                continue;
8432             nir_intrinsic_instr *bary_intrinsic =
8433                nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
8434             nir_intrinsic_op op = bary_intrinsic->intrinsic;
8435 
8436             /* Leave interpolateAtSample/Offset() where they are. */
8437             if (op == nir_intrinsic_load_barycentric_at_sample ||
8438                 op == nir_intrinsic_load_barycentric_at_offset)
8439                continue;
8440 
8441             nir_instr *move[3] = {
8442                &bary_intrinsic->instr,
8443                intrin->src[1].ssa->parent_instr,
8444                instr
8445             };
8446 
8447             for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
8448                if (move[i]->block != top) {
8449                   move[i]->block = top;
8450                   exec_node_remove(&move[i]->node);
8451                   if (cursor_node) {
8452                      exec_node_insert_after(cursor_node, &move[i]->node);
8453                   } else {
8454                      exec_list_push_head(&top->instr_list, &move[i]->node);
8455                   }
8456                   cursor_node = &move[i]->node;
8457                   progress = true;
8458                }
8459             }
8460          }
8461       }
8462       nir_metadata_preserve(f->impl, (nir_metadata)
8463                             ((unsigned) nir_metadata_block_index |
8464                              (unsigned) nir_metadata_dominance));
8465    }
8466 
8467    return progress;
8468 }
8469 
8470 /**
8471  * Demote per-sample barycentric intrinsics to centroid.
8472  *
8473  * Useful when rendering to a non-multisampled buffer.
8474  */
8475 bool
brw_nir_demote_sample_qualifiers(nir_shader * nir)8476 brw_nir_demote_sample_qualifiers(nir_shader *nir)
8477 {
8478    bool progress = true;
8479 
8480    nir_foreach_function(f, nir) {
8481       if (!f->impl)
8482          continue;
8483 
8484       nir_builder b;
8485       nir_builder_init(&b, f->impl);
8486 
8487       nir_foreach_block(block, f->impl) {
8488          nir_foreach_instr_safe(instr, block) {
8489             if (instr->type != nir_instr_type_intrinsic)
8490                continue;
8491 
8492             nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
8493             if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
8494                 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
8495                continue;
8496 
8497             b.cursor = nir_before_instr(instr);
8498             nir_ssa_def *centroid =
8499                nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
8500                                     nir_intrinsic_interp_mode(intrin));
8501             nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
8502                                      nir_src_for_ssa(centroid));
8503             nir_instr_remove(instr);
8504             progress = true;
8505          }
8506       }
8507 
8508       nir_metadata_preserve(f->impl, (nir_metadata)
8509                             ((unsigned) nir_metadata_block_index |
8510                              (unsigned) nir_metadata_dominance));
8511    }
8512 
8513    return progress;
8514 }
8515 
8516 void
brw_nir_populate_wm_prog_data(const nir_shader * shader,const struct gen_device_info * devinfo,const struct brw_wm_prog_key * key,struct brw_wm_prog_data * prog_data)8517 brw_nir_populate_wm_prog_data(const nir_shader *shader,
8518                               const struct gen_device_info *devinfo,
8519                               const struct brw_wm_prog_key *key,
8520                               struct brw_wm_prog_data *prog_data)
8521 {
8522    prog_data->uses_src_depth = prog_data->uses_src_w =
8523       shader->info.system_values_read & BITFIELD64_BIT(SYSTEM_VALUE_FRAG_COORD);
8524 
8525    /* key->alpha_test_func means simulating alpha testing via discards,
8526     * so the shader definitely kills pixels.
8527     */
8528    prog_data->uses_kill = shader->info.fs.uses_discard ||
8529       key->alpha_test_func;
8530    prog_data->uses_omask = !key->ignore_sample_mask_out &&
8531       (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK));
8532    prog_data->computed_depth_mode = computed_depth_mode(shader);
8533    prog_data->computed_stencil =
8534       shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
8535 
8536    prog_data->persample_dispatch =
8537       key->multisample_fbo &&
8538       (key->persample_interp ||
8539        (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
8540                                             SYSTEM_BIT_SAMPLE_POS)) ||
8541        shader->info.fs.uses_sample_qualifier ||
8542        shader->info.outputs_read);
8543 
8544    if (devinfo->gen >= 6) {
8545       prog_data->uses_sample_mask =
8546          shader->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN;
8547 
8548       /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
8549        *
8550        *    "MSDISPMODE_PERSAMPLE is required in order to select
8551        *    POSOFFSET_SAMPLE"
8552        *
8553        * So we can only really get sample positions if we are doing real
8554        * per-sample dispatch.  If we need gl_SamplePosition and we don't have
8555        * persample dispatch, we hard-code it to 0.5.
8556        */
8557       prog_data->uses_pos_offset = prog_data->persample_dispatch &&
8558          (shader->info.system_values_read & SYSTEM_BIT_SAMPLE_POS);
8559    }
8560 
8561    prog_data->has_render_target_reads = shader->info.outputs_read != 0ull;
8562 
8563    prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
8564    prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
8565    prog_data->inner_coverage = shader->info.fs.inner_coverage;
8566 
8567    prog_data->barycentric_interp_modes =
8568       brw_compute_barycentric_interp_modes(devinfo, shader);
8569 
8570    calculate_urb_setup(devinfo, key, prog_data, shader);
8571    brw_compute_flat_inputs(prog_data, shader);
8572 }
8573 
8574 /**
8575  * Pre-gen6, the register file of the EUs was shared between threads,
8576  * and each thread used some subset allocated on a 16-register block
8577  * granularity.  The unit states wanted these block counts.
8578  */
8579 static inline int
brw_register_blocks(int reg_count)8580 brw_register_blocks(int reg_count)
8581 {
8582    return ALIGN(reg_count, 16) / 16 - 1;
8583 }
8584 
8585 const unsigned *
brw_compile_fs(const struct brw_compiler * compiler,void * log_data,void * mem_ctx,const struct brw_wm_prog_key * key,struct brw_wm_prog_data * prog_data,nir_shader * shader,int shader_time_index8,int shader_time_index16,int shader_time_index32,bool allow_spilling,bool use_rep_send,struct brw_vue_map * vue_map,struct brw_compile_stats * stats,char ** error_str)8586 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
8587                void *mem_ctx,
8588                const struct brw_wm_prog_key *key,
8589                struct brw_wm_prog_data *prog_data,
8590                nir_shader *shader,
8591                int shader_time_index8, int shader_time_index16,
8592                int shader_time_index32, bool allow_spilling,
8593                bool use_rep_send, struct brw_vue_map *vue_map,
8594                struct brw_compile_stats *stats,
8595                char **error_str)
8596 {
8597    const struct gen_device_info *devinfo = compiler->devinfo;
8598    const unsigned max_subgroup_size = compiler->devinfo->gen >= 6 ? 32 : 16;
8599 
8600    brw_nir_apply_key(shader, compiler, &key->base, max_subgroup_size, true);
8601    brw_nir_lower_fs_inputs(shader, devinfo, key);
8602    brw_nir_lower_fs_outputs(shader);
8603 
8604    if (devinfo->gen < 6)
8605       brw_setup_vue_interpolation(vue_map, shader, prog_data);
8606 
8607    /* From the SKL PRM, Volume 7, "Alpha Coverage":
8608     *  "If Pixel Shader outputs oMask, AlphaToCoverage is disabled in
8609     *   hardware, regardless of the state setting for this feature."
8610     */
8611    if (devinfo->gen > 6 && key->alpha_to_coverage) {
8612       /* Run constant fold optimization in order to get the correct source
8613        * offset to determine render target 0 store instruction in
8614        * emit_alpha_to_coverage pass.
8615        */
8616       NIR_PASS_V(shader, nir_opt_constant_folding);
8617       NIR_PASS_V(shader, brw_nir_lower_alpha_to_coverage);
8618    }
8619 
8620    if (!key->multisample_fbo)
8621       NIR_PASS_V(shader, brw_nir_demote_sample_qualifiers);
8622    NIR_PASS_V(shader, brw_nir_move_interpolation_to_top);
8623    brw_postprocess_nir(shader, compiler, true);
8624 
8625    brw_nir_populate_wm_prog_data(shader, compiler->devinfo, key, prog_data);
8626 
8627    fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL;
8628    cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL, *simd32_cfg = NULL;
8629    float throughput = 0;
8630    bool has_spilled = false;
8631 
8632    v8 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
8633                        &prog_data->base, shader, 8, shader_time_index8);
8634    if (!v8->run_fs(allow_spilling, false /* do_rep_send */)) {
8635       if (error_str)
8636          *error_str = ralloc_strdup(mem_ctx, v8->fail_msg);
8637 
8638       delete v8;
8639       return NULL;
8640    } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
8641       simd8_cfg = v8->cfg;
8642       prog_data->base.dispatch_grf_start_reg = v8->payload.num_regs;
8643       prog_data->reg_blocks_8 = brw_register_blocks(v8->grf_used);
8644       const performance &perf = v8->performance_analysis.require();
8645       throughput = MAX2(throughput, perf.throughput);
8646       has_spilled = v8->spilled_any_registers;
8647       allow_spilling = false;
8648    }
8649 
8650    /* Limit dispatch width to simd8 with dual source blending on gen8.
8651     * See: https://gitlab.freedesktop.org/mesa/mesa/-/issues/1917
8652     */
8653    if (devinfo->gen == 8 && prog_data->dual_src_blend &&
8654        !(INTEL_DEBUG & DEBUG_NO8)) {
8655       assert(!use_rep_send);
8656       v8->limit_dispatch_width(8, "gen8 workaround: "
8657                                "using SIMD8 when dual src blending.\n");
8658    }
8659 
8660    if (!has_spilled &&
8661        v8->max_dispatch_width >= 16 &&
8662        likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
8663       /* Try a SIMD16 compile */
8664       v16 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
8665                            &prog_data->base, shader, 16, shader_time_index16);
8666       v16->import_uniforms(v8);
8667       if (!v16->run_fs(allow_spilling, use_rep_send)) {
8668          compiler->shader_perf_log(log_data,
8669                                    "SIMD16 shader failed to compile: %s",
8670                                    v16->fail_msg);
8671       } else {
8672          simd16_cfg = v16->cfg;
8673          prog_data->dispatch_grf_start_reg_16 = v16->payload.num_regs;
8674          prog_data->reg_blocks_16 = brw_register_blocks(v16->grf_used);
8675          const performance &perf = v16->performance_analysis.require();
8676          throughput = MAX2(throughput, perf.throughput);
8677          has_spilled = v16->spilled_any_registers;
8678          allow_spilling = false;
8679       }
8680    }
8681 
8682    const bool simd16_failed = v16 && !simd16_cfg;
8683 
8684    /* Currently, the compiler only supports SIMD32 on SNB+ */
8685    if (!has_spilled &&
8686        v8->max_dispatch_width >= 32 && !use_rep_send &&
8687        devinfo->gen >= 6 && !simd16_failed &&
8688        !(INTEL_DEBUG & DEBUG_NO32)) {
8689       /* Try a SIMD32 compile */
8690       v32 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
8691                            &prog_data->base, shader, 32, shader_time_index32);
8692       v32->import_uniforms(v8);
8693       if (!v32->run_fs(allow_spilling, false)) {
8694          compiler->shader_perf_log(log_data,
8695                                    "SIMD32 shader failed to compile: %s",
8696                                    v32->fail_msg);
8697       } else {
8698          const performance &perf = v32->performance_analysis.require();
8699 
8700          if (!(INTEL_DEBUG & DEBUG_DO32) && throughput >= perf.throughput) {
8701             compiler->shader_perf_log(log_data, "SIMD32 shader inefficient\n");
8702          } else {
8703             simd32_cfg = v32->cfg;
8704             prog_data->dispatch_grf_start_reg_32 = v32->payload.num_regs;
8705             prog_data->reg_blocks_32 = brw_register_blocks(v32->grf_used);
8706             throughput = MAX2(throughput, perf.throughput);
8707          }
8708       }
8709    }
8710 
8711    /* When the caller requests a repclear shader, they want SIMD16-only */
8712    if (use_rep_send)
8713       simd8_cfg = NULL;
8714 
8715    /* Prior to Iron Lake, the PS had a single shader offset with a jump table
8716     * at the top to select the shader.  We've never implemented that.
8717     * Instead, we just give them exactly one shader and we pick the widest one
8718     * available.
8719     */
8720    if (compiler->devinfo->gen < 5) {
8721       if (simd32_cfg || simd16_cfg)
8722          simd8_cfg = NULL;
8723       if (simd32_cfg)
8724          simd16_cfg = NULL;
8725    }
8726 
8727    /* If computed depth is enabled SNB only allows SIMD8. */
8728    if (compiler->devinfo->gen == 6 &&
8729        prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF)
8730       assert(simd16_cfg == NULL && simd32_cfg == NULL);
8731 
8732    if (compiler->devinfo->gen <= 5 && !simd8_cfg) {
8733       /* Iron lake and earlier only have one Dispatch GRF start field.  Make
8734        * the data available in the base prog data struct for convenience.
8735        */
8736       if (simd16_cfg) {
8737          prog_data->base.dispatch_grf_start_reg =
8738             prog_data->dispatch_grf_start_reg_16;
8739       } else if (simd32_cfg) {
8740          prog_data->base.dispatch_grf_start_reg =
8741             prog_data->dispatch_grf_start_reg_32;
8742       }
8743    }
8744 
8745    if (prog_data->persample_dispatch) {
8746       /* Starting with SandyBridge (where we first get MSAA), the different
8747        * pixel dispatch combinations are grouped into classifications A
8748        * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1).  On most hardware
8749        * generations, the only configurations supporting persample dispatch
8750        * are those in which only one dispatch width is enabled.
8751        *
8752        * The Gen12 hardware spec has a similar dispatch grouping table, but
8753        * the following conflicting restriction applies (from the page on
8754        * "Structure_3DSTATE_PS_BODY"), so we need to keep the SIMD16 shader:
8755        *
8756        *  "SIMD32 may only be enabled if SIMD16 or (dual)SIMD8 is also
8757        *   enabled."
8758        */
8759       if (simd32_cfg || simd16_cfg)
8760          simd8_cfg = NULL;
8761       if (simd32_cfg && devinfo->gen < 12)
8762          simd16_cfg = NULL;
8763    }
8764 
8765    fs_generator g(compiler, log_data, mem_ctx, &prog_data->base,
8766                   v8->runtime_check_aads_emit, MESA_SHADER_FRAGMENT);
8767 
8768    if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
8769       g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
8770                                      shader->info.label ?
8771                                         shader->info.label : "unnamed",
8772                                      shader->info.name));
8773    }
8774 
8775    if (simd8_cfg) {
8776       prog_data->dispatch_8 = true;
8777       g.generate_code(simd8_cfg, 8, v8->shader_stats,
8778                       v8->performance_analysis.require(), stats);
8779       stats = stats ? stats + 1 : NULL;
8780    }
8781 
8782    if (simd16_cfg) {
8783       prog_data->dispatch_16 = true;
8784       prog_data->prog_offset_16 = g.generate_code(
8785          simd16_cfg, 16, v16->shader_stats,
8786          v16->performance_analysis.require(), stats);
8787       stats = stats ? stats + 1 : NULL;
8788    }
8789 
8790    if (simd32_cfg) {
8791       prog_data->dispatch_32 = true;
8792       prog_data->prog_offset_32 = g.generate_code(
8793          simd32_cfg, 32, v32->shader_stats,
8794          v32->performance_analysis.require(), stats);
8795       stats = stats ? stats + 1 : NULL;
8796    }
8797 
8798    delete v8;
8799    delete v16;
8800    delete v32;
8801 
8802    return g.get_assembly();
8803 }
8804 
8805 fs_reg *
emit_cs_work_group_id_setup()8806 fs_visitor::emit_cs_work_group_id_setup()
8807 {
8808    assert(stage == MESA_SHADER_COMPUTE);
8809 
8810    fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
8811 
8812    struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
8813    struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
8814    struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
8815 
8816    bld.MOV(*reg, r0_1);
8817    bld.MOV(offset(*reg, bld, 1), r0_6);
8818    bld.MOV(offset(*reg, bld, 2), r0_7);
8819 
8820    return reg;
8821 }
8822 
8823 unsigned
brw_cs_push_const_total_size(const struct brw_cs_prog_data * cs_prog_data,unsigned threads)8824 brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data,
8825                              unsigned threads)
8826 {
8827    assert(cs_prog_data->push.per_thread.size % REG_SIZE == 0);
8828    assert(cs_prog_data->push.cross_thread.size % REG_SIZE == 0);
8829    return cs_prog_data->push.per_thread.size * threads +
8830           cs_prog_data->push.cross_thread.size;
8831 }
8832 
8833 static void
fill_push_const_block_info(struct brw_push_const_block * block,unsigned dwords)8834 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
8835 {
8836    block->dwords = dwords;
8837    block->regs = DIV_ROUND_UP(dwords, 8);
8838    block->size = block->regs * 32;
8839 }
8840 
8841 static void
cs_fill_push_const_info(const struct gen_device_info * devinfo,struct brw_cs_prog_data * cs_prog_data)8842 cs_fill_push_const_info(const struct gen_device_info *devinfo,
8843                         struct brw_cs_prog_data *cs_prog_data)
8844 {
8845    const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
8846    int subgroup_id_index = get_subgroup_id_param_index(prog_data);
8847    bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
8848 
8849    /* The thread ID should be stored in the last param dword */
8850    assert(subgroup_id_index == -1 ||
8851           subgroup_id_index == (int)prog_data->nr_params - 1);
8852 
8853    unsigned cross_thread_dwords, per_thread_dwords;
8854    if (!cross_thread_supported) {
8855       cross_thread_dwords = 0u;
8856       per_thread_dwords = prog_data->nr_params;
8857    } else if (subgroup_id_index >= 0) {
8858       /* Fill all but the last register with cross-thread payload */
8859       cross_thread_dwords = 8 * (subgroup_id_index / 8);
8860       per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
8861       assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
8862    } else {
8863       /* Fill all data using cross-thread payload */
8864       cross_thread_dwords = prog_data->nr_params;
8865       per_thread_dwords = 0u;
8866    }
8867 
8868    fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
8869    fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
8870 
8871    assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
8872           cs_prog_data->push.per_thread.size == 0);
8873    assert(cs_prog_data->push.cross_thread.dwords +
8874           cs_prog_data->push.per_thread.dwords ==
8875              prog_data->nr_params);
8876 }
8877 
8878 static bool
filter_simd(const nir_instr * instr,const void * _options)8879 filter_simd(const nir_instr *instr, const void *_options)
8880 {
8881    if (instr->type != nir_instr_type_intrinsic)
8882       return false;
8883 
8884    switch (nir_instr_as_intrinsic(instr)->intrinsic) {
8885    case nir_intrinsic_load_simd_width_intel:
8886    case nir_intrinsic_load_subgroup_id:
8887       return true;
8888 
8889    default:
8890       return false;
8891    }
8892 }
8893 
8894 static nir_ssa_def *
lower_simd(nir_builder * b,nir_instr * instr,void * options)8895 lower_simd(nir_builder *b, nir_instr *instr, void *options)
8896 {
8897    uintptr_t simd_width = (uintptr_t)options;
8898 
8899    switch (nir_instr_as_intrinsic(instr)->intrinsic) {
8900    case nir_intrinsic_load_simd_width_intel:
8901       return nir_imm_int(b, simd_width);
8902 
8903    case nir_intrinsic_load_subgroup_id:
8904       /* If the whole workgroup fits in one thread, we can lower subgroup_id
8905        * to a constant zero.
8906        */
8907       if (!b->shader->info.cs.local_size_variable) {
8908          unsigned local_workgroup_size = b->shader->info.cs.local_size[0] *
8909                                          b->shader->info.cs.local_size[1] *
8910                                          b->shader->info.cs.local_size[2];
8911          if (local_workgroup_size <= simd_width)
8912             return nir_imm_int(b, 0);
8913       }
8914       return NULL;
8915 
8916    default:
8917       return NULL;
8918    }
8919 }
8920 
8921 static void
brw_nir_lower_simd(nir_shader * nir,unsigned dispatch_width)8922 brw_nir_lower_simd(nir_shader *nir, unsigned dispatch_width)
8923 {
8924    nir_shader_lower_instructions(nir, filter_simd, lower_simd,
8925                                  (void *)(uintptr_t)dispatch_width);
8926 }
8927 
8928 static nir_shader *
compile_cs_to_nir(const struct brw_compiler * compiler,void * mem_ctx,const struct brw_cs_prog_key * key,const nir_shader * src_shader,unsigned dispatch_width)8929 compile_cs_to_nir(const struct brw_compiler *compiler,
8930                   void *mem_ctx,
8931                   const struct brw_cs_prog_key *key,
8932                   const nir_shader *src_shader,
8933                   unsigned dispatch_width)
8934 {
8935    nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
8936    brw_nir_apply_key(shader, compiler, &key->base, dispatch_width, true);
8937 
8938    NIR_PASS_V(shader, brw_nir_lower_simd, dispatch_width);
8939 
8940    /* Clean up after the local index and ID calculations. */
8941    NIR_PASS_V(shader, nir_opt_constant_folding);
8942    NIR_PASS_V(shader, nir_opt_dce);
8943 
8944    brw_postprocess_nir(shader, compiler, true);
8945 
8946    return shader;
8947 }
8948 
8949 const unsigned *
brw_compile_cs(const struct brw_compiler * compiler,void * log_data,void * mem_ctx,const struct brw_cs_prog_key * key,struct brw_cs_prog_data * prog_data,const nir_shader * src_shader,int shader_time_index,struct brw_compile_stats * stats,char ** error_str)8950 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
8951                void *mem_ctx,
8952                const struct brw_cs_prog_key *key,
8953                struct brw_cs_prog_data *prog_data,
8954                const nir_shader *src_shader,
8955                int shader_time_index,
8956                struct brw_compile_stats *stats,
8957                char **error_str)
8958 {
8959    prog_data->base.total_shared = src_shader->info.cs.shared_size;
8960    prog_data->slm_size = src_shader->num_shared;
8961 
8962    /* Generate code for all the possible SIMD variants. */
8963    bool generate_all;
8964 
8965    unsigned min_dispatch_width;
8966    unsigned max_dispatch_width;
8967 
8968    if (src_shader->info.cs.local_size_variable) {
8969       generate_all = true;
8970       min_dispatch_width = 8;
8971       max_dispatch_width = 32;
8972    } else {
8973       generate_all = false;
8974       prog_data->local_size[0] = src_shader->info.cs.local_size[0];
8975       prog_data->local_size[1] = src_shader->info.cs.local_size[1];
8976       prog_data->local_size[2] = src_shader->info.cs.local_size[2];
8977       unsigned local_workgroup_size = prog_data->local_size[0] *
8978                                       prog_data->local_size[1] *
8979                                       prog_data->local_size[2];
8980 
8981       /* Limit max_threads to 64 for the GPGPU_WALKER command */
8982       const uint32_t max_threads = MIN2(64, compiler->devinfo->max_cs_threads);
8983       min_dispatch_width = util_next_power_of_two(
8984          MAX2(8, DIV_ROUND_UP(local_workgroup_size, max_threads)));
8985       assert(min_dispatch_width <= 32);
8986       max_dispatch_width = 32;
8987    }
8988 
8989    if ((int)key->base.subgroup_size_type >= (int)BRW_SUBGROUP_SIZE_REQUIRE_8) {
8990       /* These enum values are expressly chosen to be equal to the subgroup
8991        * size that they require.
8992        */
8993       const unsigned required_dispatch_width =
8994          (unsigned)key->base.subgroup_size_type;
8995       assert(required_dispatch_width == 8 ||
8996              required_dispatch_width == 16 ||
8997              required_dispatch_width == 32);
8998       if (required_dispatch_width < min_dispatch_width ||
8999           required_dispatch_width > max_dispatch_width) {
9000          if (error_str) {
9001             *error_str = ralloc_strdup(mem_ctx,
9002                                        "Cannot satisfy explicit subgroup size");
9003          }
9004          return NULL;
9005       }
9006       min_dispatch_width = max_dispatch_width = required_dispatch_width;
9007    }
9008 
9009    assert(min_dispatch_width <= max_dispatch_width);
9010 
9011    fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL;
9012    fs_visitor *v = NULL;
9013 
9014    if (likely(!(INTEL_DEBUG & DEBUG_NO8)) &&
9015        min_dispatch_width <= 8 && max_dispatch_width >= 8) {
9016       nir_shader *nir8 = compile_cs_to_nir(compiler, mem_ctx, key,
9017                                            src_shader, 8);
9018       v8 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
9019                           &prog_data->base,
9020                           nir8, 8, shader_time_index);
9021       if (!v8->run_cs(true /* allow_spilling */)) {
9022          if (error_str)
9023             *error_str = ralloc_strdup(mem_ctx, v8->fail_msg);
9024          delete v8;
9025          return NULL;
9026       }
9027 
9028       /* We should always be able to do SIMD32 for compute shaders */
9029       assert(v8->max_dispatch_width >= 32);
9030 
9031       v = v8;
9032       prog_data->prog_mask |= 1 << 0;
9033       if (v8->spilled_any_registers)
9034          prog_data->prog_spilled |= 1 << 0;
9035       cs_fill_push_const_info(compiler->devinfo, prog_data);
9036    }
9037 
9038    if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
9039        (generate_all || !prog_data->prog_spilled) &&
9040        min_dispatch_width <= 16 && max_dispatch_width >= 16) {
9041       /* Try a SIMD16 compile */
9042       nir_shader *nir16 = compile_cs_to_nir(compiler, mem_ctx, key,
9043                                             src_shader, 16);
9044       v16 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
9045                            &prog_data->base,
9046                            nir16, 16, shader_time_index);
9047       if (v8)
9048          v16->import_uniforms(v8);
9049 
9050       const bool allow_spilling = generate_all || v == NULL;
9051       if (!v16->run_cs(allow_spilling)) {
9052          compiler->shader_perf_log(log_data,
9053                                    "SIMD16 shader failed to compile: %s",
9054                                    v16->fail_msg);
9055          if (!v) {
9056             assert(v8 == NULL);
9057             if (error_str) {
9058                *error_str = ralloc_asprintf(
9059                   mem_ctx, "Not enough threads for SIMD8 and "
9060                   "couldn't generate SIMD16: %s", v16->fail_msg);
9061             }
9062             delete v16;
9063             return NULL;
9064          }
9065       } else {
9066          /* We should always be able to do SIMD32 for compute shaders */
9067          assert(v16->max_dispatch_width >= 32);
9068 
9069          v = v16;
9070          prog_data->prog_mask |= 1 << 1;
9071          if (v16->spilled_any_registers)
9072             prog_data->prog_spilled |= 1 << 1;
9073          cs_fill_push_const_info(compiler->devinfo, prog_data);
9074       }
9075    }
9076 
9077    /* The SIMD32 is only enabled for cases it is needed unless forced.
9078     *
9079     * TODO: Use performance_analysis and drop this boolean.
9080     */
9081    const bool needs_32 = v == NULL ||
9082                          (INTEL_DEBUG & DEBUG_DO32) ||
9083                          generate_all;
9084 
9085    if (likely(!(INTEL_DEBUG & DEBUG_NO32)) &&
9086        (generate_all || !prog_data->prog_spilled) &&
9087        needs_32 &&
9088        min_dispatch_width <= 32 && max_dispatch_width >= 32) {
9089       /* Try a SIMD32 compile */
9090       nir_shader *nir32 = compile_cs_to_nir(compiler, mem_ctx, key,
9091                                             src_shader, 32);
9092       v32 = new fs_visitor(compiler, log_data, mem_ctx, &key->base,
9093                            &prog_data->base,
9094                            nir32, 32, shader_time_index);
9095       if (v8)
9096          v32->import_uniforms(v8);
9097       else if (v16)
9098          v32->import_uniforms(v16);
9099 
9100       const bool allow_spilling = generate_all || v == NULL;
9101       if (!v32->run_cs(allow_spilling)) {
9102          compiler->shader_perf_log(log_data,
9103                                    "SIMD32 shader failed to compile: %s",
9104                                    v32->fail_msg);
9105          if (!v) {
9106             assert(v8 == NULL);
9107             assert(v16 == NULL);
9108             if (error_str) {
9109                *error_str = ralloc_asprintf(
9110                   mem_ctx, "Not enough threads for SIMD16 and "
9111                   "couldn't generate SIMD32: %s", v32->fail_msg);
9112             }
9113             delete v32;
9114             return NULL;
9115          }
9116       } else {
9117          v = v32;
9118          prog_data->prog_mask |= 1 << 2;
9119          if (v32->spilled_any_registers)
9120             prog_data->prog_spilled |= 1 << 2;
9121          cs_fill_push_const_info(compiler->devinfo, prog_data);
9122       }
9123    }
9124 
9125    if (unlikely(!v && (INTEL_DEBUG & (DEBUG_NO8 | DEBUG_NO16 | DEBUG_NO32)))) {
9126       if (error_str) {
9127          *error_str =
9128             ralloc_strdup(mem_ctx,
9129                           "Cannot satisfy INTEL_DEBUG flags SIMD restrictions");
9130       }
9131       return NULL;
9132    }
9133 
9134    assert(v);
9135 
9136    const unsigned *ret = NULL;
9137 
9138    fs_generator g(compiler, log_data, mem_ctx, &prog_data->base,
9139                   v->runtime_check_aads_emit, MESA_SHADER_COMPUTE);
9140    if (INTEL_DEBUG & DEBUG_CS) {
9141       char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
9142                                    src_shader->info.label ?
9143                                    src_shader->info.label : "unnamed",
9144                                    src_shader->info.name);
9145       g.enable_debug(name);
9146    }
9147 
9148    if (generate_all) {
9149       if (prog_data->prog_mask & (1 << 0)) {
9150          assert(v8);
9151          prog_data->prog_offset[0] =
9152             g.generate_code(v8->cfg, 8, v8->shader_stats,
9153                             v8->performance_analysis.require(), stats);
9154          stats = stats ? stats + 1 : NULL;
9155       }
9156 
9157       if (prog_data->prog_mask & (1 << 1)) {
9158          assert(v16);
9159          prog_data->prog_offset[1] =
9160             g.generate_code(v16->cfg, 16, v16->shader_stats,
9161                             v16->performance_analysis.require(), stats);
9162          stats = stats ? stats + 1 : NULL;
9163       }
9164 
9165       if (prog_data->prog_mask & (1 << 2)) {
9166          assert(v32);
9167          prog_data->prog_offset[2] =
9168             g.generate_code(v32->cfg, 32, v32->shader_stats,
9169                             v32->performance_analysis.require(), stats);
9170          stats = stats ? stats + 1 : NULL;
9171       }
9172    } else {
9173       /* Only one dispatch width will be valid, and will be at offset 0,
9174        * which is already the default value of prog_offset_* fields.
9175        */
9176       prog_data->prog_mask = 1 << (v->dispatch_width / 16);
9177       g.generate_code(v->cfg, v->dispatch_width, v->shader_stats,
9178                       v->performance_analysis.require(), stats);
9179    }
9180 
9181    ret = g.get_assembly();
9182 
9183    delete v8;
9184    delete v16;
9185    delete v32;
9186 
9187    return ret;
9188 }
9189 
9190 unsigned
brw_cs_simd_size_for_group_size(const struct gen_device_info * devinfo,const struct brw_cs_prog_data * cs_prog_data,unsigned group_size)9191 brw_cs_simd_size_for_group_size(const struct gen_device_info *devinfo,
9192                                 const struct brw_cs_prog_data *cs_prog_data,
9193                                 unsigned group_size)
9194 {
9195    const unsigned mask = cs_prog_data->prog_mask;
9196    assert(mask != 0);
9197 
9198    static const unsigned simd8  = 1 << 0;
9199    static const unsigned simd16 = 1 << 1;
9200    static const unsigned simd32 = 1 << 2;
9201 
9202    if (unlikely(INTEL_DEBUG & DEBUG_DO32) && (mask & simd32))
9203       return 32;
9204 
9205    /* Limit max_threads to 64 for the GPGPU_WALKER command */
9206    const uint32_t max_threads = MIN2(64, devinfo->max_cs_threads);
9207 
9208    if ((mask & simd8) && group_size <= 8 * max_threads) {
9209       /* Prefer SIMD16 if can do without spilling.  Matches logic in
9210        * brw_compile_cs.
9211        */
9212       if ((mask & simd16) && (~cs_prog_data->prog_spilled & simd16))
9213          return 16;
9214       return 8;
9215    }
9216 
9217    if ((mask & simd16) && group_size <= 16 * max_threads)
9218       return 16;
9219 
9220    assert(mask & simd32);
9221    assert(group_size <= 32 * max_threads);
9222    return 32;
9223 }
9224 
9225 /**
9226  * Test the dispatch mask packing assumptions of
9227  * brw_stage_has_packed_dispatch().  Call this from e.g. the top of
9228  * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
9229  * executed with an unexpected dispatch mask.
9230  */
9231 static UNUSED void
brw_fs_test_dispatch_packing(const fs_builder & bld)9232 brw_fs_test_dispatch_packing(const fs_builder &bld)
9233 {
9234    const gl_shader_stage stage = bld.shader->stage;
9235 
9236    if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
9237                                      bld.shader->stage_prog_data)) {
9238       const fs_builder ubld = bld.exec_all().group(1, 0);
9239       const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
9240       const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
9241                            brw_dmask_reg());
9242 
9243       ubld.ADD(tmp, mask, brw_imm_ud(1));
9244       ubld.AND(tmp, mask, tmp);
9245 
9246       /* This will loop forever if the dispatch mask doesn't have the expected
9247        * form '2^n-1', in which case tmp will be non-zero.
9248        */
9249       bld.emit(BRW_OPCODE_DO);
9250       bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
9251       set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
9252    }
9253 }
9254 
9255 unsigned
workgroup_size() const9256 fs_visitor::workgroup_size() const
9257 {
9258    assert(stage == MESA_SHADER_COMPUTE);
9259    const struct brw_cs_prog_data *cs = brw_cs_prog_data(prog_data);
9260    return cs->local_size[0] * cs->local_size[1] * cs->local_size[2];
9261 }
9262