1 /*	$NetBSD: intel_device_info.c,v 1.2 2021/12/18 23:45:28 riastradh Exp $	*/
2 
3 /*
4  * Copyright © 2016 Intel Corporation
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23  * IN THE SOFTWARE.
24  *
25  */
26 
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: intel_device_info.c,v 1.2 2021/12/18 23:45:28 riastradh Exp $");
29 
30 #include <drm/drm_print.h>
31 
32 #include "intel_device_info.h"
33 #include "i915_drv.h"
34 
35 #define PLATFORM_NAME(x) [INTEL_##x] = #x
36 static const char * const platform_names[] = {
37 	PLATFORM_NAME(I830),
38 	PLATFORM_NAME(I845G),
39 	PLATFORM_NAME(I85X),
40 	PLATFORM_NAME(I865G),
41 	PLATFORM_NAME(I915G),
42 	PLATFORM_NAME(I915GM),
43 	PLATFORM_NAME(I945G),
44 	PLATFORM_NAME(I945GM),
45 	PLATFORM_NAME(G33),
46 	PLATFORM_NAME(PINEVIEW),
47 	PLATFORM_NAME(I965G),
48 	PLATFORM_NAME(I965GM),
49 	PLATFORM_NAME(G45),
50 	PLATFORM_NAME(GM45),
51 	PLATFORM_NAME(IRONLAKE),
52 	PLATFORM_NAME(SANDYBRIDGE),
53 	PLATFORM_NAME(IVYBRIDGE),
54 	PLATFORM_NAME(VALLEYVIEW),
55 	PLATFORM_NAME(HASWELL),
56 	PLATFORM_NAME(BROADWELL),
57 	PLATFORM_NAME(CHERRYVIEW),
58 	PLATFORM_NAME(SKYLAKE),
59 	PLATFORM_NAME(BROXTON),
60 	PLATFORM_NAME(KABYLAKE),
61 	PLATFORM_NAME(GEMINILAKE),
62 	PLATFORM_NAME(COFFEELAKE),
63 	PLATFORM_NAME(CANNONLAKE),
64 	PLATFORM_NAME(ICELAKE),
65 	PLATFORM_NAME(ELKHARTLAKE),
66 	PLATFORM_NAME(TIGERLAKE),
67 };
68 #undef PLATFORM_NAME
69 
intel_platform_name(enum intel_platform platform)70 const char *intel_platform_name(enum intel_platform platform)
71 {
72 	BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
73 
74 	if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
75 			 platform_names[platform] == NULL))
76 		return "<unknown>";
77 
78 	return platform_names[platform];
79 }
80 
iommu_name(void)81 static const char *iommu_name(void)
82 {
83 	const char *msg = "n/a";
84 
85 #ifdef CONFIG_INTEL_IOMMU
86 	msg = enableddisabled(intel_iommu_gfx_mapped);
87 #endif
88 
89 	return msg;
90 }
91 
intel_device_info_print_static(const struct intel_device_info * info,struct drm_printer * p)92 void intel_device_info_print_static(const struct intel_device_info *info,
93 				    struct drm_printer *p)
94 {
95 	drm_printf(p, "engines: %x\n", info->engine_mask);
96 	drm_printf(p, "gen: %d\n", info->gen);
97 	drm_printf(p, "gt: %d\n", info->gt);
98 	drm_printf(p, "iommu: %s\n", iommu_name());
99 	drm_printf(p, "memory-regions: %x\n", info->memory_regions);
100 	drm_printf(p, "page-sizes: %x\n", info->page_sizes);
101 	drm_printf(p, "platform: %s\n", intel_platform_name(info->platform));
102 	drm_printf(p, "ppgtt-size: %d\n", info->ppgtt_size);
103 	drm_printf(p, "ppgtt-type: %d\n", info->ppgtt_type);
104 
105 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
106 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
107 #undef PRINT_FLAG
108 
109 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
110 	DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
111 #undef PRINT_FLAG
112 }
113 
sseu_dump(const struct sseu_dev_info * sseu,struct drm_printer * p)114 static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
115 {
116 	int s;
117 
118 	drm_printf(p, "slice total: %u, mask=%04x\n",
119 		   hweight8(sseu->slice_mask), sseu->slice_mask);
120 	drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
121 	for (s = 0; s < sseu->max_slices; s++) {
122 		drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
123 			   s, intel_sseu_subslices_per_slice(sseu, s),
124 			   intel_sseu_get_subslices(sseu, s));
125 	}
126 	drm_printf(p, "EU total: %u\n", sseu->eu_total);
127 	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
128 	drm_printf(p, "has slice power gating: %s\n",
129 		   yesno(sseu->has_slice_pg));
130 	drm_printf(p, "has subslice power gating: %s\n",
131 		   yesno(sseu->has_subslice_pg));
132 	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
133 }
134 
intel_device_info_print_runtime(const struct intel_runtime_info * info,struct drm_printer * p)135 void intel_device_info_print_runtime(const struct intel_runtime_info *info,
136 				     struct drm_printer *p)
137 {
138 	sseu_dump(&info->sseu, p);
139 
140 	drm_printf(p, "CS timestamp frequency: %u kHz\n",
141 		   info->cs_timestamp_frequency_khz);
142 }
143 
sseu_eu_idx(const struct sseu_dev_info * sseu,int slice,int subslice)144 static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
145 		       int subslice)
146 {
147 	int slice_stride = sseu->max_subslices * sseu->eu_stride;
148 
149 	return slice * slice_stride + subslice * sseu->eu_stride;
150 }
151 
sseu_get_eus(const struct sseu_dev_info * sseu,int slice,int subslice)152 static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
153 			int subslice)
154 {
155 	int i, offset = sseu_eu_idx(sseu, slice, subslice);
156 	u16 eu_mask = 0;
157 
158 	for (i = 0; i < sseu->eu_stride; i++) {
159 		eu_mask |= ((u16)sseu->eu_mask[offset + i]) <<
160 			(i * BITS_PER_BYTE);
161 	}
162 
163 	return eu_mask;
164 }
165 
sseu_set_eus(struct sseu_dev_info * sseu,int slice,int subslice,u16 eu_mask)166 static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
167 			 u16 eu_mask)
168 {
169 	int i, offset = sseu_eu_idx(sseu, slice, subslice);
170 
171 	for (i = 0; i < sseu->eu_stride; i++) {
172 		sseu->eu_mask[offset + i] =
173 			(eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
174 	}
175 }
176 
intel_device_info_print_topology(const struct sseu_dev_info * sseu,struct drm_printer * p)177 void intel_device_info_print_topology(const struct sseu_dev_info *sseu,
178 				      struct drm_printer *p)
179 {
180 	int s, ss;
181 
182 	if (sseu->max_slices == 0) {
183 		drm_printf(p, "Unavailable\n");
184 		return;
185 	}
186 
187 	for (s = 0; s < sseu->max_slices; s++) {
188 		drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
189 			   s, intel_sseu_subslices_per_slice(sseu, s),
190 			   intel_sseu_get_subslices(sseu, s));
191 
192 		for (ss = 0; ss < sseu->max_subslices; ss++) {
193 			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
194 
195 			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
196 				   ss, hweight16(enabled_eus), enabled_eus);
197 		}
198 	}
199 }
200 
compute_eu_total(const struct sseu_dev_info * sseu)201 static u16 compute_eu_total(const struct sseu_dev_info *sseu)
202 {
203 	u16 i, total = 0;
204 
205 	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
206 		total += hweight8(sseu->eu_mask[i]);
207 
208 	return total;
209 }
210 
gen11_compute_sseu_info(struct sseu_dev_info * sseu,u8 s_en,u32 ss_en,u16 eu_en)211 static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
212 				    u8 s_en, u32 ss_en, u16 eu_en)
213 {
214 	int s, ss;
215 
216 	/* ss_en represents entire subslice mask across all slices */
217 	GEM_BUG_ON(sseu->max_slices * sseu->max_subslices >
218 		   sizeof(ss_en) * BITS_PER_BYTE);
219 
220 	for (s = 0; s < sseu->max_slices; s++) {
221 		if ((s_en & BIT(s)) == 0)
222 			continue;
223 
224 		sseu->slice_mask |= BIT(s);
225 
226 		intel_sseu_set_subslices(sseu, s, ss_en);
227 
228 		for (ss = 0; ss < sseu->max_subslices; ss++)
229 			if (intel_sseu_has_subslice(sseu, s, ss))
230 				sseu_set_eus(sseu, s, ss, eu_en);
231 	}
232 	sseu->eu_per_subslice = hweight16(eu_en);
233 	sseu->eu_total = compute_eu_total(sseu);
234 }
235 
gen12_sseu_info_init(struct drm_i915_private * dev_priv)236 static void gen12_sseu_info_init(struct drm_i915_private *dev_priv)
237 {
238 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
239 	u8 s_en;
240 	u32 dss_en;
241 	u16 eu_en = 0;
242 	u8 eu_en_fuse;
243 	int eu;
244 
245 	/*
246 	 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
247 	 * Instead of splitting these, provide userspace with an array
248 	 * of DSS to more closely represent the hardware resource.
249 	 */
250 	intel_sseu_set_info(sseu, 1, 6, 16);
251 
252 	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
253 
254 	dss_en = I915_READ(GEN12_GT_DSS_ENABLE);
255 
256 	/* one bit per pair of EUs */
257 	eu_en_fuse = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
258 	for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
259 		if (eu_en_fuse & BIT(eu))
260 			eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
261 
262 	gen11_compute_sseu_info(sseu, s_en, dss_en, eu_en);
263 
264 	/* TGL only supports slice-level power gating */
265 	sseu->has_slice_pg = 1;
266 }
267 
gen11_sseu_info_init(struct drm_i915_private * dev_priv)268 static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
269 {
270 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
271 	u8 s_en;
272 	u32 ss_en;
273 	u8 eu_en;
274 
275 	if (IS_ELKHARTLAKE(dev_priv))
276 		intel_sseu_set_info(sseu, 1, 4, 8);
277 	else
278 		intel_sseu_set_info(sseu, 1, 8, 8);
279 
280 	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
281 	ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
282 	eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
283 
284 	gen11_compute_sseu_info(sseu, s_en, ss_en, eu_en);
285 
286 	/* ICL has no power gating restrictions. */
287 	sseu->has_slice_pg = 1;
288 	sseu->has_subslice_pg = 1;
289 	sseu->has_eu_pg = 1;
290 }
291 
gen10_sseu_info_init(struct drm_i915_private * dev_priv)292 static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
293 {
294 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
295 	const u32 fuse2 = I915_READ(GEN8_FUSE2);
296 	int s, ss;
297 	const int eu_mask = 0xff;
298 	u32 subslice_mask, eu_en;
299 
300 	intel_sseu_set_info(sseu, 6, 4, 8);
301 
302 	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
303 			    GEN10_F2_S_ENA_SHIFT;
304 
305 	/* Slice0 */
306 	eu_en = ~I915_READ(GEN8_EU_DISABLE0);
307 	for (ss = 0; ss < sseu->max_subslices; ss++)
308 		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
309 	/* Slice1 */
310 	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
311 	eu_en = ~I915_READ(GEN8_EU_DISABLE1);
312 	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
313 	/* Slice2 */
314 	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
315 	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
316 	/* Slice3 */
317 	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
318 	eu_en = ~I915_READ(GEN8_EU_DISABLE2);
319 	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
320 	/* Slice4 */
321 	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
322 	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
323 	/* Slice5 */
324 	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
325 	eu_en = ~I915_READ(GEN10_EU_DISABLE3);
326 	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
327 
328 	subslice_mask = (1 << 4) - 1;
329 	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
330 			   GEN10_F2_SS_DIS_SHIFT);
331 
332 	for (s = 0; s < sseu->max_slices; s++) {
333 		u32 subslice_mask_with_eus = subslice_mask;
334 
335 		for (ss = 0; ss < sseu->max_subslices; ss++) {
336 			if (sseu_get_eus(sseu, s, ss) == 0)
337 				subslice_mask_with_eus &= ~BIT(ss);
338 		}
339 
340 		/*
341 		 * Slice0 can have up to 3 subslices, but there are only 2 in
342 		 * slice1/2.
343 		 */
344 		intel_sseu_set_subslices(sseu, s, s == 0 ?
345 						  subslice_mask_with_eus :
346 						  subslice_mask_with_eus & 0x3);
347 	}
348 
349 	sseu->eu_total = compute_eu_total(sseu);
350 
351 	/*
352 	 * CNL is expected to always have a uniform distribution
353 	 * of EU across subslices with the exception that any one
354 	 * EU in any one subslice may be fused off for die
355 	 * recovery.
356 	 */
357 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
358 				DIV_ROUND_UP(sseu->eu_total,
359 					     intel_sseu_subslice_total(sseu)) :
360 				0;
361 
362 	/* No restrictions on Power Gating */
363 	sseu->has_slice_pg = 1;
364 	sseu->has_subslice_pg = 1;
365 	sseu->has_eu_pg = 1;
366 }
367 
cherryview_sseu_info_init(struct drm_i915_private * dev_priv)368 static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
369 {
370 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
371 	u32 fuse;
372 	u8 subslice_mask = 0;
373 
374 	fuse = I915_READ(CHV_FUSE_GT);
375 
376 	sseu->slice_mask = BIT(0);
377 	intel_sseu_set_info(sseu, 1, 2, 8);
378 
379 	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
380 		u8 disabled_mask =
381 			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
382 			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
383 			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
384 			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
385 
386 		subslice_mask |= BIT(0);
387 		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
388 	}
389 
390 	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
391 		u8 disabled_mask =
392 			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
393 			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
394 			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
395 			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
396 
397 		subslice_mask |= BIT(1);
398 		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
399 	}
400 
401 	intel_sseu_set_subslices(sseu, 0, subslice_mask);
402 
403 	sseu->eu_total = compute_eu_total(sseu);
404 
405 	/*
406 	 * CHV expected to always have a uniform distribution of EU
407 	 * across subslices.
408 	*/
409 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
410 				sseu->eu_total /
411 					intel_sseu_subslice_total(sseu) :
412 				0;
413 	/*
414 	 * CHV supports subslice power gating on devices with more than
415 	 * one subslice, and supports EU power gating on devices with
416 	 * more than one EU pair per subslice.
417 	*/
418 	sseu->has_slice_pg = 0;
419 	sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
420 	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
421 }
422 
gen9_sseu_info_init(struct drm_i915_private * dev_priv)423 static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
424 {
425 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
426 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
427 	int s, ss;
428 	u32 fuse2, eu_disable, subslice_mask;
429 	const u8 eu_mask = 0xff;
430 
431 	fuse2 = I915_READ(GEN8_FUSE2);
432 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
433 
434 	/* BXT has a single slice and at most 3 subslices. */
435 	intel_sseu_set_info(sseu, IS_GEN9_LP(dev_priv) ? 1 : 3,
436 			    IS_GEN9_LP(dev_priv) ? 3 : 4, 8);
437 
438 	/*
439 	 * The subslice disable field is global, i.e. it applies
440 	 * to each of the enabled slices.
441 	*/
442 	subslice_mask = (1 << sseu->max_subslices) - 1;
443 	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
444 			   GEN9_F2_SS_DIS_SHIFT);
445 
446 	/*
447 	 * Iterate through enabled slices and subslices to
448 	 * count the total enabled EU.
449 	*/
450 	for (s = 0; s < sseu->max_slices; s++) {
451 		if (!(sseu->slice_mask & BIT(s)))
452 			/* skip disabled slice */
453 			continue;
454 
455 		intel_sseu_set_subslices(sseu, s, subslice_mask);
456 
457 		eu_disable = I915_READ(GEN9_EU_DISABLE(s));
458 		for (ss = 0; ss < sseu->max_subslices; ss++) {
459 			int eu_per_ss;
460 			u8 eu_disabled_mask;
461 
462 			if (!intel_sseu_has_subslice(sseu, s, ss))
463 				/* skip disabled subslice */
464 				continue;
465 
466 			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
467 
468 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
469 
470 			eu_per_ss = sseu->max_eus_per_subslice -
471 				hweight8(eu_disabled_mask);
472 
473 			/*
474 			 * Record which subslice(s) has(have) 7 EUs. we
475 			 * can tune the hash used to spread work among
476 			 * subslices if they are unbalanced.
477 			 */
478 			if (eu_per_ss == 7)
479 				sseu->subslice_7eu[s] |= BIT(ss);
480 		}
481 	}
482 
483 	sseu->eu_total = compute_eu_total(sseu);
484 
485 	/*
486 	 * SKL is expected to always have a uniform distribution
487 	 * of EU across subslices with the exception that any one
488 	 * EU in any one subslice may be fused off for die
489 	 * recovery. BXT is expected to be perfectly uniform in EU
490 	 * distribution.
491 	*/
492 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
493 				DIV_ROUND_UP(sseu->eu_total,
494 					     intel_sseu_subslice_total(sseu)) :
495 				0;
496 	/*
497 	 * SKL+ supports slice power gating on devices with more than
498 	 * one slice, and supports EU power gating on devices with
499 	 * more than one EU pair per subslice. BXT+ supports subslice
500 	 * power gating on devices with more than one subslice, and
501 	 * supports EU power gating on devices with more than one EU
502 	 * pair per subslice.
503 	*/
504 	sseu->has_slice_pg =
505 		!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
506 	sseu->has_subslice_pg =
507 		IS_GEN9_LP(dev_priv) && intel_sseu_subslice_total(sseu) > 1;
508 	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
509 
510 	if (IS_GEN9_LP(dev_priv)) {
511 #define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
512 		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
513 
514 		sseu->min_eu_in_pool = 0;
515 		if (info->has_pooled_eu) {
516 			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
517 				sseu->min_eu_in_pool = 3;
518 			else if (IS_SS_DISABLED(1))
519 				sseu->min_eu_in_pool = 6;
520 			else
521 				sseu->min_eu_in_pool = 9;
522 		}
523 #undef IS_SS_DISABLED
524 	}
525 }
526 
bdw_sseu_info_init(struct drm_i915_private * dev_priv)527 static void bdw_sseu_info_init(struct drm_i915_private *dev_priv)
528 {
529 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
530 	int s, ss;
531 	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
532 
533 	fuse2 = I915_READ(GEN8_FUSE2);
534 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
535 	intel_sseu_set_info(sseu, 3, 3, 8);
536 
537 	/*
538 	 * The subslice disable field is global, i.e. it applies
539 	 * to each of the enabled slices.
540 	 */
541 	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
542 	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
543 			   GEN8_F2_SS_DIS_SHIFT);
544 
545 	eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
546 	eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
547 			((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
548 			 (32 - GEN8_EU_DIS0_S1_SHIFT));
549 	eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
550 			((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
551 			 (32 - GEN8_EU_DIS1_S2_SHIFT));
552 
553 	/*
554 	 * Iterate through enabled slices and subslices to
555 	 * count the total enabled EU.
556 	 */
557 	for (s = 0; s < sseu->max_slices; s++) {
558 		if (!(sseu->slice_mask & BIT(s)))
559 			/* skip disabled slice */
560 			continue;
561 
562 		intel_sseu_set_subslices(sseu, s, subslice_mask);
563 
564 		for (ss = 0; ss < sseu->max_subslices; ss++) {
565 			u8 eu_disabled_mask;
566 			u32 n_disabled;
567 
568 			if (!intel_sseu_has_subslice(sseu, s, ss))
569 				/* skip disabled subslice */
570 				continue;
571 
572 			eu_disabled_mask =
573 				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
574 
575 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
576 
577 			n_disabled = hweight8(eu_disabled_mask);
578 
579 			/*
580 			 * Record which subslices have 7 EUs.
581 			 */
582 			if (sseu->max_eus_per_subslice - n_disabled == 7)
583 				sseu->subslice_7eu[s] |= 1 << ss;
584 		}
585 	}
586 
587 	sseu->eu_total = compute_eu_total(sseu);
588 
589 	/*
590 	 * BDW is expected to always have a uniform distribution of EU across
591 	 * subslices with the exception that any one EU in any one subslice may
592 	 * be fused off for die recovery.
593 	 */
594 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
595 				DIV_ROUND_UP(sseu->eu_total,
596 					     intel_sseu_subslice_total(sseu)) :
597 				0;
598 
599 	/*
600 	 * BDW supports slice power gating on devices with more than
601 	 * one slice.
602 	 */
603 	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
604 	sseu->has_subslice_pg = 0;
605 	sseu->has_eu_pg = 0;
606 }
607 
hsw_sseu_info_init(struct drm_i915_private * dev_priv)608 static void hsw_sseu_info_init(struct drm_i915_private *dev_priv)
609 {
610 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
611 	u32 fuse1;
612 	u8 subslice_mask = 0;
613 	int s, ss;
614 
615 	/*
616 	 * There isn't a register to tell us how many slices/subslices. We
617 	 * work off the PCI-ids here.
618 	 */
619 	switch (INTEL_INFO(dev_priv)->gt) {
620 	default:
621 		MISSING_CASE(INTEL_INFO(dev_priv)->gt);
622 		/* fall through */
623 	case 1:
624 		sseu->slice_mask = BIT(0);
625 		subslice_mask = BIT(0);
626 		break;
627 	case 2:
628 		sseu->slice_mask = BIT(0);
629 		subslice_mask = BIT(0) | BIT(1);
630 		break;
631 	case 3:
632 		sseu->slice_mask = BIT(0) | BIT(1);
633 		subslice_mask = BIT(0) | BIT(1);
634 		break;
635 	}
636 
637 	fuse1 = I915_READ(HSW_PAVP_FUSE1);
638 	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
639 	default:
640 		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
641 			     HSW_F1_EU_DIS_SHIFT);
642 		/* fall through */
643 	case HSW_F1_EU_DIS_10EUS:
644 		sseu->eu_per_subslice = 10;
645 		break;
646 	case HSW_F1_EU_DIS_8EUS:
647 		sseu->eu_per_subslice = 8;
648 		break;
649 	case HSW_F1_EU_DIS_6EUS:
650 		sseu->eu_per_subslice = 6;
651 		break;
652 	}
653 
654 	intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
655 			    hweight8(subslice_mask),
656 			    sseu->eu_per_subslice);
657 
658 	for (s = 0; s < sseu->max_slices; s++) {
659 		intel_sseu_set_subslices(sseu, s, subslice_mask);
660 
661 		for (ss = 0; ss < sseu->max_subslices; ss++) {
662 			sseu_set_eus(sseu, s, ss,
663 				     (1UL << sseu->eu_per_subslice) - 1);
664 		}
665 	}
666 
667 	sseu->eu_total = compute_eu_total(sseu);
668 
669 	/* No powergating for you. */
670 	sseu->has_slice_pg = 0;
671 	sseu->has_subslice_pg = 0;
672 	sseu->has_eu_pg = 0;
673 }
674 
read_reference_ts_freq(struct drm_i915_private * dev_priv)675 static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
676 {
677 	u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
678 	u32 base_freq, frac_freq;
679 
680 	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
681 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
682 	base_freq *= 1000;
683 
684 	frac_freq = ((ts_override &
685 		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
686 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
687 	frac_freq = 1000 / (frac_freq + 1);
688 
689 	return base_freq + frac_freq;
690 }
691 
gen10_get_crystal_clock_freq(struct drm_i915_private * dev_priv,u32 rpm_config_reg)692 static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
693 					u32 rpm_config_reg)
694 {
695 	u32 f19_2_mhz = 19200;
696 	u32 f24_mhz = 24000;
697 	u32 crystal_clock = (rpm_config_reg &
698 			     GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
699 			    GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
700 
701 	switch (crystal_clock) {
702 	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
703 		return f19_2_mhz;
704 	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
705 		return f24_mhz;
706 	default:
707 		MISSING_CASE(crystal_clock);
708 		return 0;
709 	}
710 }
711 
gen11_get_crystal_clock_freq(struct drm_i915_private * dev_priv,u32 rpm_config_reg)712 static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
713 					u32 rpm_config_reg)
714 {
715 	u32 f19_2_mhz = 19200;
716 	u32 f24_mhz = 24000;
717 	u32 f25_mhz = 25000;
718 	u32 f38_4_mhz = 38400;
719 	u32 crystal_clock = (rpm_config_reg &
720 			     GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
721 			    GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
722 
723 	switch (crystal_clock) {
724 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
725 		return f24_mhz;
726 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
727 		return f19_2_mhz;
728 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
729 		return f38_4_mhz;
730 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
731 		return f25_mhz;
732 	default:
733 		MISSING_CASE(crystal_clock);
734 		return 0;
735 	}
736 }
737 
read_timestamp_frequency(struct drm_i915_private * dev_priv)738 static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
739 {
740 	u32 f12_5_mhz = 12500;
741 	u32 f19_2_mhz = 19200;
742 	u32 f24_mhz = 24000;
743 
744 	if (INTEL_GEN(dev_priv) <= 4) {
745 		/* PRMs say:
746 		 *
747 		 *     "The value in this register increments once every 16
748 		 *      hclks." (through the “Clocking Configuration”
749 		 *      (“CLKCFG”) MCHBAR register)
750 		 */
751 		return dev_priv->rawclk_freq / 16;
752 	} else if (INTEL_GEN(dev_priv) <= 8) {
753 		/* PRMs say:
754 		 *
755 		 *     "The PCU TSC counts 10ns increments; this timestamp
756 		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
757 		 *      rolling over every 1.5 hours).
758 		 */
759 		return f12_5_mhz;
760 	} else if (INTEL_GEN(dev_priv) <= 9) {
761 		u32 ctc_reg = I915_READ(CTC_MODE);
762 		u32 freq = 0;
763 
764 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
765 			freq = read_reference_ts_freq(dev_priv);
766 		} else {
767 			freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
768 
769 			/* Now figure out how the command stream's timestamp
770 			 * register increments from this frequency (it might
771 			 * increment only every few clock cycle).
772 			 */
773 			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
774 				      CTC_SHIFT_PARAMETER_SHIFT);
775 		}
776 
777 		return freq;
778 	} else if (INTEL_GEN(dev_priv) <= 12) {
779 		u32 ctc_reg = I915_READ(CTC_MODE);
780 		u32 freq = 0;
781 
782 		/* First figure out the reference frequency. There are 2 ways
783 		 * we can compute the frequency, either through the
784 		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
785 		 * tells us which one we should use.
786 		 */
787 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
788 			freq = read_reference_ts_freq(dev_priv);
789 		} else {
790 			u32 rpm_config_reg = I915_READ(RPM_CONFIG0);
791 
792 			if (INTEL_GEN(dev_priv) <= 10)
793 				freq = gen10_get_crystal_clock_freq(dev_priv,
794 								rpm_config_reg);
795 			else
796 				freq = gen11_get_crystal_clock_freq(dev_priv,
797 								rpm_config_reg);
798 
799 			/* Now figure out how the command stream's timestamp
800 			 * register increments from this frequency (it might
801 			 * increment only every few clock cycle).
802 			 */
803 			freq >>= 3 - ((rpm_config_reg &
804 				       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
805 				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
806 		}
807 
808 		return freq;
809 	}
810 
811 	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
812 	return 0;
813 }
814 
815 #undef INTEL_VGA_DEVICE
816 #define INTEL_VGA_DEVICE(id, info) (id)
817 
818 static const u16 subplatform_ult_ids[] = {
819 	INTEL_HSW_ULT_GT1_IDS(0),
820 	INTEL_HSW_ULT_GT2_IDS(0),
821 	INTEL_HSW_ULT_GT3_IDS(0),
822 	INTEL_BDW_ULT_GT1_IDS(0),
823 	INTEL_BDW_ULT_GT2_IDS(0),
824 	INTEL_BDW_ULT_GT3_IDS(0),
825 	INTEL_BDW_ULT_RSVD_IDS(0),
826 	INTEL_SKL_ULT_GT1_IDS(0),
827 	INTEL_SKL_ULT_GT2_IDS(0),
828 	INTEL_SKL_ULT_GT3_IDS(0),
829 	INTEL_KBL_ULT_GT1_IDS(0),
830 	INTEL_KBL_ULT_GT2_IDS(0),
831 	INTEL_KBL_ULT_GT3_IDS(0),
832 	INTEL_CFL_U_GT2_IDS(0),
833 	INTEL_CFL_U_GT3_IDS(0),
834 	INTEL_WHL_U_GT1_IDS(0),
835 	INTEL_WHL_U_GT2_IDS(0),
836 	INTEL_WHL_U_GT3_IDS(0),
837 	INTEL_CML_U_GT1_IDS(0),
838 	INTEL_CML_U_GT2_IDS(0),
839 };
840 
841 static const u16 subplatform_ulx_ids[] = {
842 	INTEL_HSW_ULX_GT1_IDS(0),
843 	INTEL_HSW_ULX_GT2_IDS(0),
844 	INTEL_BDW_ULX_GT1_IDS(0),
845 	INTEL_BDW_ULX_GT2_IDS(0),
846 	INTEL_BDW_ULX_GT3_IDS(0),
847 	INTEL_BDW_ULX_RSVD_IDS(0),
848 	INTEL_SKL_ULX_GT1_IDS(0),
849 	INTEL_SKL_ULX_GT2_IDS(0),
850 	INTEL_KBL_ULX_GT1_IDS(0),
851 	INTEL_KBL_ULX_GT2_IDS(0),
852 	INTEL_AML_KBL_GT2_IDS(0),
853 	INTEL_AML_CFL_GT2_IDS(0),
854 };
855 
856 static const u16 subplatform_portf_ids[] = {
857 	INTEL_CNL_PORT_F_IDS(0),
858 	INTEL_ICL_PORT_F_IDS(0),
859 };
860 
find_devid(u16 id,const u16 * p,unsigned int num)861 static bool find_devid(u16 id, const u16 *p, unsigned int num)
862 {
863 	for (; num; num--, p++) {
864 		if (*p == id)
865 			return true;
866 	}
867 
868 	return false;
869 }
870 
intel_device_info_subplatform_init(struct drm_i915_private * i915)871 void intel_device_info_subplatform_init(struct drm_i915_private *i915)
872 {
873 	const struct intel_device_info *info = INTEL_INFO(i915);
874 	const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915);
875 	const unsigned int pi = __platform_mask_index(rinfo, info->platform);
876 	const unsigned int pb = __platform_mask_bit(rinfo, info->platform);
877 	u16 devid = INTEL_DEVID(i915);
878 	u32 mask = 0;
879 
880 	/* Make sure IS_<platform> checks are working. */
881 	RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb);
882 
883 	/* Find and mark subplatform bits based on the PCI device id. */
884 	if (find_devid(devid, subplatform_ult_ids,
885 		       ARRAY_SIZE(subplatform_ult_ids))) {
886 		mask = BIT(INTEL_SUBPLATFORM_ULT);
887 	} else if (find_devid(devid, subplatform_ulx_ids,
888 			      ARRAY_SIZE(subplatform_ulx_ids))) {
889 		mask = BIT(INTEL_SUBPLATFORM_ULX);
890 		if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
891 			/* ULX machines are also considered ULT. */
892 			mask |= BIT(INTEL_SUBPLATFORM_ULT);
893 		}
894 	} else if (find_devid(devid, subplatform_portf_ids,
895 			      ARRAY_SIZE(subplatform_portf_ids))) {
896 		mask = BIT(INTEL_SUBPLATFORM_PORTF);
897 	}
898 
899 	GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS);
900 
901 	RUNTIME_INFO(i915)->platform_mask[pi] |= mask;
902 }
903 
904 /**
905  * intel_device_info_runtime_init - initialize runtime info
906  * @dev_priv: the i915 device
907  *
908  * Determine various intel_device_info fields at runtime.
909  *
910  * Use it when either:
911  *   - it's judged too laborious to fill n static structures with the limit
912  *     when a simple if statement does the job,
913  *   - run-time checks (eg read fuse/strap registers) are needed.
914  *
915  * This function needs to be called:
916  *   - after the MMIO has been setup as we are reading registers,
917  *   - after the PCH has been detected,
918  *   - before the first usage of the fields it can tweak.
919  */
intel_device_info_runtime_init(struct drm_i915_private * dev_priv)920 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
921 {
922 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
923 	struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
924 	enum pipe pipe;
925 
926 	if (INTEL_GEN(dev_priv) >= 10) {
927 		for_each_pipe(dev_priv, pipe)
928 			runtime->num_scalers[pipe] = 2;
929 	} else if (IS_GEN(dev_priv, 9)) {
930 		runtime->num_scalers[PIPE_A] = 2;
931 		runtime->num_scalers[PIPE_B] = 2;
932 		runtime->num_scalers[PIPE_C] = 1;
933 	}
934 
935 	BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES);
936 
937 	if (INTEL_GEN(dev_priv) >= 11)
938 		for_each_pipe(dev_priv, pipe)
939 			runtime->num_sprites[pipe] = 6;
940 	else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
941 		for_each_pipe(dev_priv, pipe)
942 			runtime->num_sprites[pipe] = 3;
943 	else if (IS_BROXTON(dev_priv)) {
944 		/*
945 		 * Skylake and Broxton currently don't expose the topmost plane as its
946 		 * use is exclusive with the legacy cursor and we only want to expose
947 		 * one of those, not both. Until we can safely expose the topmost plane
948 		 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
949 		 * we don't expose the topmost plane at all to prevent ABI breakage
950 		 * down the line.
951 		 */
952 
953 		runtime->num_sprites[PIPE_A] = 2;
954 		runtime->num_sprites[PIPE_B] = 2;
955 		runtime->num_sprites[PIPE_C] = 1;
956 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
957 		for_each_pipe(dev_priv, pipe)
958 			runtime->num_sprites[pipe] = 2;
959 	} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
960 		for_each_pipe(dev_priv, pipe)
961 			runtime->num_sprites[pipe] = 1;
962 	}
963 
964 	if (HAS_DISPLAY(dev_priv) && IS_GEN_RANGE(dev_priv, 7, 8) &&
965 	    HAS_PCH_SPLIT(dev_priv)) {
966 		u32 fuse_strap = I915_READ(FUSE_STRAP);
967 		u32 sfuse_strap = I915_READ(SFUSE_STRAP);
968 
969 		/*
970 		 * SFUSE_STRAP is supposed to have a bit signalling the display
971 		 * is fused off. Unfortunately it seems that, at least in
972 		 * certain cases, fused off display means that PCH display
973 		 * reads don't land anywhere. In that case, we read 0s.
974 		 *
975 		 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
976 		 * should be set when taking over after the firmware.
977 		 */
978 		if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
979 		    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
980 		    (HAS_PCH_CPT(dev_priv) &&
981 		     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
982 			DRM_INFO("Display fused off, disabling\n");
983 			info->pipe_mask = 0;
984 		} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
985 			DRM_INFO("PipeC fused off\n");
986 			info->pipe_mask &= ~BIT(PIPE_C);
987 		}
988 	} else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
989 		u32 dfsm = I915_READ(SKL_DFSM);
990 		u8 enabled_mask = info->pipe_mask;
991 
992 		if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
993 			enabled_mask &= ~BIT(PIPE_A);
994 		if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
995 			enabled_mask &= ~BIT(PIPE_B);
996 		if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
997 			enabled_mask &= ~BIT(PIPE_C);
998 		if (INTEL_GEN(dev_priv) >= 12 &&
999 		    (dfsm & TGL_DFSM_PIPE_D_DISABLE))
1000 			enabled_mask &= ~BIT(PIPE_D);
1001 
1002 		/*
1003 		 * At least one pipe should be enabled and if there are
1004 		 * disabled pipes, they should be the last ones, with no holes
1005 		 * in the mask.
1006 		 */
1007 		if (enabled_mask == 0 || !is_power_of_2(enabled_mask + 1))
1008 			DRM_ERROR("invalid pipe fuse configuration: enabled_mask=0x%x\n",
1009 				  enabled_mask);
1010 		else
1011 			info->pipe_mask = enabled_mask;
1012 
1013 		if (dfsm & SKL_DFSM_DISPLAY_HDCP_DISABLE)
1014 			info->display.has_hdcp = 0;
1015 
1016 		if (dfsm & SKL_DFSM_DISPLAY_PM_DISABLE)
1017 			info->display.has_fbc = 0;
1018 
1019 		if (INTEL_GEN(dev_priv) >= 11 && (dfsm & ICL_DFSM_DMC_DISABLE))
1020 			info->display.has_csr = 0;
1021 
1022 		if (INTEL_GEN(dev_priv) >= 10 &&
1023 		    (dfsm & CNL_DFSM_DISPLAY_DSC_DISABLE))
1024 			info->display.has_dsc = 0;
1025 	}
1026 
1027 	/* Initialize slice/subslice/EU info */
1028 	if (IS_HASWELL(dev_priv))
1029 		hsw_sseu_info_init(dev_priv);
1030 	else if (IS_CHERRYVIEW(dev_priv))
1031 		cherryview_sseu_info_init(dev_priv);
1032 	else if (IS_BROADWELL(dev_priv))
1033 		bdw_sseu_info_init(dev_priv);
1034 	else if (IS_GEN(dev_priv, 9))
1035 		gen9_sseu_info_init(dev_priv);
1036 	else if (IS_GEN(dev_priv, 10))
1037 		gen10_sseu_info_init(dev_priv);
1038 	else if (IS_GEN(dev_priv, 11))
1039 		gen11_sseu_info_init(dev_priv);
1040 	else if (INTEL_GEN(dev_priv) >= 12)
1041 		gen12_sseu_info_init(dev_priv);
1042 
1043 	if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
1044 		DRM_INFO("Disabling ppGTT for VT-d support\n");
1045 		info->ppgtt_type = INTEL_PPGTT_NONE;
1046 	}
1047 
1048 	/* Initialize command stream timestamp frequency */
1049 	runtime->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
1050 }
1051 
intel_driver_caps_print(const struct intel_driver_caps * caps,struct drm_printer * p)1052 void intel_driver_caps_print(const struct intel_driver_caps *caps,
1053 			     struct drm_printer *p)
1054 {
1055 	drm_printf(p, "Has logical contexts? %s\n",
1056 		   yesno(caps->has_logical_contexts));
1057 	drm_printf(p, "scheduler: %x\n", caps->scheduler);
1058 }
1059 
1060 /*
1061  * Determine which engines are fused off in our particular hardware. Since the
1062  * fuse register is in the blitter powerwell, we need forcewake to be ready at
1063  * this point (but later we need to prune the forcewake domains for engines that
1064  * are indeed fused off).
1065  */
intel_device_info_init_mmio(struct drm_i915_private * dev_priv)1066 void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
1067 {
1068 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
1069 	unsigned int logical_vdbox = 0;
1070 	unsigned int i;
1071 	u32 media_fuse;
1072 	u16 vdbox_mask;
1073 	u16 vebox_mask;
1074 
1075 	if (INTEL_GEN(dev_priv) < 11)
1076 		return;
1077 
1078 	media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);
1079 
1080 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
1081 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
1082 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
1083 
1084 	for (i = 0; i < I915_MAX_VCS; i++) {
1085 		if (!HAS_ENGINE(dev_priv, _VCS(i))) {
1086 			vdbox_mask &= ~BIT(i);
1087 			continue;
1088 		}
1089 
1090 		if (!(BIT(i) & vdbox_mask)) {
1091 			info->engine_mask &= ~BIT(_VCS(i));
1092 			DRM_DEBUG_DRIVER("vcs%u fused off\n", i);
1093 			continue;
1094 		}
1095 
1096 		/*
1097 		 * In Gen11, only even numbered logical VDBOXes are
1098 		 * hooked up to an SFC (Scaler & Format Converter) unit.
1099 		 * In TGL each VDBOX has access to an SFC.
1100 		 */
1101 		if (INTEL_GEN(dev_priv) >= 12 || logical_vdbox++ % 2 == 0)
1102 			RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i);
1103 	}
1104 	DRM_DEBUG_DRIVER("vdbox enable: %04x, instances: %04lx\n",
1105 			 vdbox_mask, VDBOX_MASK(dev_priv));
1106 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(dev_priv));
1107 
1108 	for (i = 0; i < I915_MAX_VECS; i++) {
1109 		if (!HAS_ENGINE(dev_priv, _VECS(i))) {
1110 			vebox_mask &= ~BIT(i);
1111 			continue;
1112 		}
1113 
1114 		if (!(BIT(i) & vebox_mask)) {
1115 			info->engine_mask &= ~BIT(_VECS(i));
1116 			DRM_DEBUG_DRIVER("vecs%u fused off\n", i);
1117 		}
1118 	}
1119 	DRM_DEBUG_DRIVER("vebox enable: %04x, instances: %04lx\n",
1120 			 vebox_mask, VEBOX_MASK(dev_priv));
1121 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(dev_priv));
1122 }
1123