1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2016 Intel Corporation
4 */
5
6 #include <linux/string_helpers.h>
7
8 #include <drm/drm_print.h>
9
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_print.h"
13 #include "gt/intel_gt_regs.h"
14
15 #include "i915_cmd_parser.h"
16 #include "i915_drv.h"
17 #include "i915_irq.h"
18 #include "i915_reg.h"
19 #include "intel_breadcrumbs.h"
20 #include "intel_context.h"
21 #include "intel_engine.h"
22 #include "intel_engine_pm.h"
23 #include "intel_engine_regs.h"
24 #include "intel_engine_user.h"
25 #include "intel_execlists_submission.h"
26 #include "intel_gt.h"
27 #include "intel_gt_mcr.h"
28 #include "intel_gt_pm.h"
29 #include "intel_gt_requests.h"
30 #include "intel_lrc.h"
31 #include "intel_lrc_reg.h"
32 #include "intel_reset.h"
33 #include "intel_ring.h"
34 #include "uc/intel_guc_submission.h"
35
36 /* Haswell does have the CXT_SIZE register however it does not appear to be
37 * valid. Now, docs explain in dwords what is in the context object. The full
38 * size is 70720 bytes, however, the power context and execlist context will
39 * never be saved (power context is stored elsewhere, and execlists don't work
40 * on HSW) - so the final size, including the extra state required for the
41 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
42 */
43 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE)
44
45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
46 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
47 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
48 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE)
49
50 #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE)
51
52 #define MAX_MMIO_BASES 3
53 struct engine_info {
54 u8 class;
55 u8 instance;
56 /* mmio bases table *must* be sorted in reverse graphics_ver order */
57 struct engine_mmio_base {
58 u32 graphics_ver : 8;
59 u32 base : 24;
60 } mmio_bases[MAX_MMIO_BASES];
61 };
62
63 static const struct engine_info intel_engines[] = {
64 [RCS0] = {
65 .class = RENDER_CLASS,
66 .instance = 0,
67 .mmio_bases = {
68 { .graphics_ver = 1, .base = RENDER_RING_BASE }
69 },
70 },
71 [BCS0] = {
72 .class = COPY_ENGINE_CLASS,
73 .instance = 0,
74 .mmio_bases = {
75 { .graphics_ver = 6, .base = BLT_RING_BASE }
76 },
77 },
78 [BCS1] = {
79 .class = COPY_ENGINE_CLASS,
80 .instance = 1,
81 .mmio_bases = {
82 { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
83 },
84 },
85 [BCS2] = {
86 .class = COPY_ENGINE_CLASS,
87 .instance = 2,
88 .mmio_bases = {
89 { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
90 },
91 },
92 [BCS3] = {
93 .class = COPY_ENGINE_CLASS,
94 .instance = 3,
95 .mmio_bases = {
96 { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
97 },
98 },
99 [BCS4] = {
100 .class = COPY_ENGINE_CLASS,
101 .instance = 4,
102 .mmio_bases = {
103 { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
104 },
105 },
106 [BCS5] = {
107 .class = COPY_ENGINE_CLASS,
108 .instance = 5,
109 .mmio_bases = {
110 { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
111 },
112 },
113 [BCS6] = {
114 .class = COPY_ENGINE_CLASS,
115 .instance = 6,
116 .mmio_bases = {
117 { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
118 },
119 },
120 [BCS7] = {
121 .class = COPY_ENGINE_CLASS,
122 .instance = 7,
123 .mmio_bases = {
124 { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
125 },
126 },
127 [BCS8] = {
128 .class = COPY_ENGINE_CLASS,
129 .instance = 8,
130 .mmio_bases = {
131 { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
132 },
133 },
134 [VCS0] = {
135 .class = VIDEO_DECODE_CLASS,
136 .instance = 0,
137 .mmio_bases = {
138 { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
139 { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
140 { .graphics_ver = 4, .base = BSD_RING_BASE }
141 },
142 },
143 [VCS1] = {
144 .class = VIDEO_DECODE_CLASS,
145 .instance = 1,
146 .mmio_bases = {
147 { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
148 { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
149 },
150 },
151 [VCS2] = {
152 .class = VIDEO_DECODE_CLASS,
153 .instance = 2,
154 .mmio_bases = {
155 { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
156 },
157 },
158 [VCS3] = {
159 .class = VIDEO_DECODE_CLASS,
160 .instance = 3,
161 .mmio_bases = {
162 { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
163 },
164 },
165 [VCS4] = {
166 .class = VIDEO_DECODE_CLASS,
167 .instance = 4,
168 .mmio_bases = {
169 { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
170 },
171 },
172 [VCS5] = {
173 .class = VIDEO_DECODE_CLASS,
174 .instance = 5,
175 .mmio_bases = {
176 { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
177 },
178 },
179 [VCS6] = {
180 .class = VIDEO_DECODE_CLASS,
181 .instance = 6,
182 .mmio_bases = {
183 { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
184 },
185 },
186 [VCS7] = {
187 .class = VIDEO_DECODE_CLASS,
188 .instance = 7,
189 .mmio_bases = {
190 { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
191 },
192 },
193 [VECS0] = {
194 .class = VIDEO_ENHANCEMENT_CLASS,
195 .instance = 0,
196 .mmio_bases = {
197 { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
198 { .graphics_ver = 7, .base = VEBOX_RING_BASE }
199 },
200 },
201 [VECS1] = {
202 .class = VIDEO_ENHANCEMENT_CLASS,
203 .instance = 1,
204 .mmio_bases = {
205 { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
206 },
207 },
208 [VECS2] = {
209 .class = VIDEO_ENHANCEMENT_CLASS,
210 .instance = 2,
211 .mmio_bases = {
212 { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
213 },
214 },
215 [VECS3] = {
216 .class = VIDEO_ENHANCEMENT_CLASS,
217 .instance = 3,
218 .mmio_bases = {
219 { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
220 },
221 },
222 [CCS0] = {
223 .class = COMPUTE_CLASS,
224 .instance = 0,
225 .mmio_bases = {
226 { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
227 }
228 },
229 [CCS1] = {
230 .class = COMPUTE_CLASS,
231 .instance = 1,
232 .mmio_bases = {
233 { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
234 }
235 },
236 [CCS2] = {
237 .class = COMPUTE_CLASS,
238 .instance = 2,
239 .mmio_bases = {
240 { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
241 }
242 },
243 [CCS3] = {
244 .class = COMPUTE_CLASS,
245 .instance = 3,
246 .mmio_bases = {
247 { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
248 }
249 },
250 [GSC0] = {
251 .class = OTHER_CLASS,
252 .instance = OTHER_GSC_INSTANCE,
253 .mmio_bases = {
254 { .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
255 }
256 },
257 };
258
259 /**
260 * intel_engine_context_size() - return the size of the context for an engine
261 * @gt: the gt
262 * @class: engine class
263 *
264 * Each engine class may require a different amount of space for a context
265 * image.
266 *
267 * Return: size (in bytes) of an engine class specific context image
268 *
269 * Note: this size includes the HWSP, which is part of the context image
270 * in LRC mode, but does not include the "shared data page" used with
271 * GuC submission. The caller should account for this if using the GuC.
272 */
intel_engine_context_size(struct intel_gt * gt,u8 class)273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
274 {
275 struct intel_uncore *uncore = gt->uncore;
276 u32 cxt_size;
277
278 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
279
280 switch (class) {
281 case COMPUTE_CLASS:
282 fallthrough;
283 case RENDER_CLASS:
284 switch (GRAPHICS_VER(gt->i915)) {
285 default:
286 MISSING_CASE(GRAPHICS_VER(gt->i915));
287 return DEFAULT_LR_CONTEXT_RENDER_SIZE;
288 case 12:
289 case 11:
290 return GEN11_LR_CONTEXT_RENDER_SIZE;
291 case 9:
292 return GEN9_LR_CONTEXT_RENDER_SIZE;
293 case 8:
294 return GEN8_LR_CONTEXT_RENDER_SIZE;
295 case 7:
296 if (IS_HASWELL(gt->i915))
297 return HSW_CXT_TOTAL_SIZE;
298
299 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
300 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
301 PAGE_SIZE);
302 case 6:
303 cxt_size = intel_uncore_read(uncore, CXT_SIZE);
304 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
305 PAGE_SIZE);
306 case 5:
307 case 4:
308 /*
309 * There is a discrepancy here between the size reported
310 * by the register and the size of the context layout
311 * in the docs. Both are described as authorative!
312 *
313 * The discrepancy is on the order of a few cachelines,
314 * but the total is under one page (4k), which is our
315 * minimum allocation anyway so it should all come
316 * out in the wash.
317 */
318 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
319 drm_dbg(>->i915->drm,
320 "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
321 GRAPHICS_VER(gt->i915), cxt_size * 64,
322 cxt_size - 1);
323 return round_up(cxt_size * 64, PAGE_SIZE);
324 case 3:
325 case 2:
326 /* For the special day when i810 gets merged. */
327 case 1:
328 return 0;
329 }
330 break;
331 default:
332 MISSING_CASE(class);
333 fallthrough;
334 case VIDEO_DECODE_CLASS:
335 case VIDEO_ENHANCEMENT_CLASS:
336 case COPY_ENGINE_CLASS:
337 case OTHER_CLASS:
338 if (GRAPHICS_VER(gt->i915) < 8)
339 return 0;
340 return GEN8_LR_CONTEXT_OTHER_SIZE;
341 }
342 }
343
__engine_mmio_base(struct drm_i915_private * i915,const struct engine_mmio_base * bases)344 static u32 __engine_mmio_base(struct drm_i915_private *i915,
345 const struct engine_mmio_base *bases)
346 {
347 int i;
348
349 for (i = 0; i < MAX_MMIO_BASES; i++)
350 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
351 break;
352
353 GEM_BUG_ON(i == MAX_MMIO_BASES);
354 GEM_BUG_ON(!bases[i].base);
355
356 return bases[i].base;
357 }
358
__sprint_engine_name(struct intel_engine_cs * engine)359 static void __sprint_engine_name(struct intel_engine_cs *engine)
360 {
361 /*
362 * Before we know what the uABI name for this engine will be,
363 * we still would like to keep track of this engine in the debug logs.
364 * We throw in a ' here as a reminder that this isn't its final name.
365 */
366 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
367 intel_engine_class_repr(engine->class),
368 engine->instance) >= sizeof(engine->name));
369 }
370
intel_engine_set_hwsp_writemask(struct intel_engine_cs * engine,u32 mask)371 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
372 {
373 /*
374 * Though they added more rings on g4x/ilk, they did not add
375 * per-engine HWSTAM until gen6.
376 */
377 if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
378 return;
379
380 if (GRAPHICS_VER(engine->i915) >= 3)
381 ENGINE_WRITE(engine, RING_HWSTAM, mask);
382 else
383 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
384 }
385
intel_engine_sanitize_mmio(struct intel_engine_cs * engine)386 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
387 {
388 /* Mask off all writes into the unknown HWSP */
389 intel_engine_set_hwsp_writemask(engine, ~0u);
390 }
391
nop_irq_handler(struct intel_engine_cs * engine,u16 iir)392 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
393 {
394 GEM_DEBUG_WARN_ON(iir);
395 }
396
get_reset_domain(u8 ver,enum intel_engine_id id)397 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
398 {
399 u32 reset_domain;
400
401 if (ver >= 11) {
402 static const u32 engine_reset_domains[] = {
403 [RCS0] = GEN11_GRDOM_RENDER,
404 [BCS0] = GEN11_GRDOM_BLT,
405 [BCS1] = XEHPC_GRDOM_BLT1,
406 [BCS2] = XEHPC_GRDOM_BLT2,
407 [BCS3] = XEHPC_GRDOM_BLT3,
408 [BCS4] = XEHPC_GRDOM_BLT4,
409 [BCS5] = XEHPC_GRDOM_BLT5,
410 [BCS6] = XEHPC_GRDOM_BLT6,
411 [BCS7] = XEHPC_GRDOM_BLT7,
412 [BCS8] = XEHPC_GRDOM_BLT8,
413 [VCS0] = GEN11_GRDOM_MEDIA,
414 [VCS1] = GEN11_GRDOM_MEDIA2,
415 [VCS2] = GEN11_GRDOM_MEDIA3,
416 [VCS3] = GEN11_GRDOM_MEDIA4,
417 [VCS4] = GEN11_GRDOM_MEDIA5,
418 [VCS5] = GEN11_GRDOM_MEDIA6,
419 [VCS6] = GEN11_GRDOM_MEDIA7,
420 [VCS7] = GEN11_GRDOM_MEDIA8,
421 [VECS0] = GEN11_GRDOM_VECS,
422 [VECS1] = GEN11_GRDOM_VECS2,
423 [VECS2] = GEN11_GRDOM_VECS3,
424 [VECS3] = GEN11_GRDOM_VECS4,
425 [CCS0] = GEN11_GRDOM_RENDER,
426 [CCS1] = GEN11_GRDOM_RENDER,
427 [CCS2] = GEN11_GRDOM_RENDER,
428 [CCS3] = GEN11_GRDOM_RENDER,
429 [GSC0] = GEN12_GRDOM_GSC,
430 };
431 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
432 !engine_reset_domains[id]);
433 reset_domain = engine_reset_domains[id];
434 } else {
435 static const u32 engine_reset_domains[] = {
436 [RCS0] = GEN6_GRDOM_RENDER,
437 [BCS0] = GEN6_GRDOM_BLT,
438 [VCS0] = GEN6_GRDOM_MEDIA,
439 [VCS1] = GEN8_GRDOM_MEDIA2,
440 [VECS0] = GEN6_GRDOM_VECS,
441 };
442 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
443 !engine_reset_domains[id]);
444 reset_domain = engine_reset_domains[id];
445 }
446
447 return reset_domain;
448 }
449
intel_engine_setup(struct intel_gt * gt,enum intel_engine_id id,u8 logical_instance)450 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
451 u8 logical_instance)
452 {
453 const struct engine_info *info = &intel_engines[id];
454 struct drm_i915_private *i915 = gt->i915;
455 struct intel_engine_cs *engine;
456 u8 guc_class;
457
458 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
459 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
460 BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
461 BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
462
463 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
464 return -EINVAL;
465
466 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
467 return -EINVAL;
468
469 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
470 return -EINVAL;
471
472 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
473 return -EINVAL;
474
475 engine = kzalloc(sizeof(*engine), GFP_KERNEL);
476 if (!engine)
477 return -ENOMEM;
478
479 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
480
481 INIT_LIST_HEAD(&engine->pinned_contexts_list);
482 engine->id = id;
483 engine->legacy_idx = INVALID_ENGINE;
484 engine->mask = BIT(id);
485 engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
486 id);
487 engine->i915 = i915;
488 engine->gt = gt;
489 engine->uncore = gt->uncore;
490 guc_class = engine_class_to_guc_class(info->class);
491 engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
492 engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
493
494 engine->irq_handler = nop_irq_handler;
495
496 engine->class = info->class;
497 engine->instance = info->instance;
498 engine->logical_mask = BIT(logical_instance);
499 __sprint_engine_name(engine);
500
501 if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
502 __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
503 engine->class == RENDER_CLASS)
504 engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
505
506 /* features common between engines sharing EUs */
507 if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
508 engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
509 engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
510 }
511
512 engine->props.heartbeat_interval_ms =
513 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
514 engine->props.max_busywait_duration_ns =
515 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
516 engine->props.preempt_timeout_ms =
517 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
518 engine->props.stop_timeout_ms =
519 CONFIG_DRM_I915_STOP_TIMEOUT;
520 engine->props.timeslice_duration_ms =
521 CONFIG_DRM_I915_TIMESLICE_DURATION;
522
523 /*
524 * Mid-thread pre-emption is not available in Gen12. Unfortunately,
525 * some compute workloads run quite long threads. That means they get
526 * reset due to not pre-empting in a timely manner. So, bump the
527 * pre-emption timeout value to be much higher for compute engines.
528 */
529 if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
530 engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
531
532 /* Cap properties according to any system limits */
533 #define CLAMP_PROP(field) \
534 do { \
535 u64 clamp = intel_clamp_##field(engine, engine->props.field); \
536 if (clamp != engine->props.field) { \
537 drm_notice(&engine->i915->drm, \
538 "Warning, clamping %s to %lld to prevent overflow\n", \
539 #field, clamp); \
540 engine->props.field = clamp; \
541 } \
542 } while (0)
543
544 CLAMP_PROP(heartbeat_interval_ms);
545 CLAMP_PROP(max_busywait_duration_ns);
546 CLAMP_PROP(preempt_timeout_ms);
547 CLAMP_PROP(stop_timeout_ms);
548 CLAMP_PROP(timeslice_duration_ms);
549
550 #undef CLAMP_PROP
551
552 engine->defaults = engine->props; /* never to change again */
553
554 engine->context_size = intel_engine_context_size(gt, engine->class);
555 if (WARN_ON(engine->context_size > BIT(20)))
556 engine->context_size = 0;
557 if (engine->context_size)
558 DRIVER_CAPS(i915)->has_logical_contexts = true;
559
560 ewma__engine_latency_init(&engine->latency);
561
562 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
563
564 /* Scrub mmio state on takeover */
565 intel_engine_sanitize_mmio(engine);
566
567 gt->engine_class[info->class][info->instance] = engine;
568 gt->engine[id] = engine;
569
570 return 0;
571 }
572
intel_clamp_heartbeat_interval_ms(struct intel_engine_cs * engine,u64 value)573 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
574 {
575 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
576
577 return value;
578 }
579
intel_clamp_max_busywait_duration_ns(struct intel_engine_cs * engine,u64 value)580 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
581 {
582 value = min(value, jiffies_to_nsecs(2));
583
584 return value;
585 }
586
intel_clamp_preempt_timeout_ms(struct intel_engine_cs * engine,u64 value)587 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
588 {
589 /*
590 * NB: The GuC API only supports 32bit values. However, the limit is further
591 * reduced due to internal calculations which would otherwise overflow.
592 */
593 if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
594 value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
595
596 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
597
598 return value;
599 }
600
intel_clamp_stop_timeout_ms(struct intel_engine_cs * engine,u64 value)601 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
602 {
603 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
604
605 return value;
606 }
607
intel_clamp_timeslice_duration_ms(struct intel_engine_cs * engine,u64 value)608 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
609 {
610 /*
611 * NB: The GuC API only supports 32bit values. However, the limit is further
612 * reduced due to internal calculations which would otherwise overflow.
613 */
614 if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
615 value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
616
617 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
618
619 return value;
620 }
621
__setup_engine_capabilities(struct intel_engine_cs * engine)622 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
623 {
624 struct drm_i915_private *i915 = engine->i915;
625
626 if (engine->class == VIDEO_DECODE_CLASS) {
627 /*
628 * HEVC support is present on first engine instance
629 * before Gen11 and on all instances afterwards.
630 */
631 if (GRAPHICS_VER(i915) >= 11 ||
632 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
633 engine->uabi_capabilities |=
634 I915_VIDEO_CLASS_CAPABILITY_HEVC;
635
636 /*
637 * SFC block is present only on even logical engine
638 * instances.
639 */
640 if ((GRAPHICS_VER(i915) >= 11 &&
641 (engine->gt->info.vdbox_sfc_access &
642 BIT(engine->instance))) ||
643 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
644 engine->uabi_capabilities |=
645 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
646 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
647 if (GRAPHICS_VER(i915) >= 9 &&
648 engine->gt->info.sfc_mask & BIT(engine->instance))
649 engine->uabi_capabilities |=
650 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
651 }
652 }
653
intel_setup_engine_capabilities(struct intel_gt * gt)654 static void intel_setup_engine_capabilities(struct intel_gt *gt)
655 {
656 struct intel_engine_cs *engine;
657 enum intel_engine_id id;
658
659 for_each_engine(engine, gt, id)
660 __setup_engine_capabilities(engine);
661 }
662
663 /**
664 * intel_engines_release() - free the resources allocated for Command Streamers
665 * @gt: pointer to struct intel_gt
666 */
intel_engines_release(struct intel_gt * gt)667 void intel_engines_release(struct intel_gt *gt)
668 {
669 struct intel_engine_cs *engine;
670 enum intel_engine_id id;
671
672 /*
673 * Before we release the resources held by engine, we must be certain
674 * that the HW is no longer accessing them -- having the GPU scribble
675 * to or read from a page being used for something else causes no end
676 * of fun.
677 *
678 * The GPU should be reset by this point, but assume the worst just
679 * in case we aborted before completely initialising the engines.
680 */
681 GEM_BUG_ON(intel_gt_pm_is_awake(gt));
682 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
683 __intel_gt_reset(gt, ALL_ENGINES);
684
685 /* Decouple the backend; but keep the layout for late GPU resets */
686 for_each_engine(engine, gt, id) {
687 if (!engine->release)
688 continue;
689
690 intel_wakeref_wait_for_idle(&engine->wakeref);
691 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
692
693 engine->release(engine);
694 engine->release = NULL;
695
696 memset(&engine->reset, 0, sizeof(engine->reset));
697 }
698 }
699
intel_engine_free_request_pool(struct intel_engine_cs * engine)700 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
701 {
702 if (!engine->request_pool)
703 return;
704
705 #ifdef __linux__
706 kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
707 #else
708 pool_put(i915_request_slab_cache(), engine->request_pool);
709 #endif
710 }
711
intel_engines_free(struct intel_gt * gt)712 void intel_engines_free(struct intel_gt *gt)
713 {
714 struct intel_engine_cs *engine;
715 enum intel_engine_id id;
716
717 /* Free the requests! dma-resv keeps fences around for an eternity */
718 rcu_barrier();
719
720 for_each_engine(engine, gt, id) {
721 intel_engine_free_request_pool(engine);
722 kfree(engine);
723 gt->engine[id] = NULL;
724 }
725 }
726
727 static
gen11_vdbox_has_sfc(struct intel_gt * gt,unsigned int physical_vdbox,unsigned int logical_vdbox,u16 vdbox_mask)728 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
729 unsigned int physical_vdbox,
730 unsigned int logical_vdbox, u16 vdbox_mask)
731 {
732 struct drm_i915_private *i915 = gt->i915;
733
734 /*
735 * In Gen11, only even numbered logical VDBOXes are hooked
736 * up to an SFC (Scaler & Format Converter) unit.
737 * In Gen12, Even numbered physical instance always are connected
738 * to an SFC. Odd numbered physical instances have SFC only if
739 * previous even instance is fused off.
740 *
741 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
742 * in the fuse register that tells us whether a specific SFC is present.
743 */
744 if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
745 return false;
746 else if (MEDIA_VER(i915) >= 12)
747 return (physical_vdbox % 2 == 0) ||
748 !(BIT(physical_vdbox - 1) & vdbox_mask);
749 else if (MEDIA_VER(i915) == 11)
750 return logical_vdbox % 2 == 0;
751
752 return false;
753 }
754
engine_mask_apply_media_fuses(struct intel_gt * gt)755 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
756 {
757 struct drm_i915_private *i915 = gt->i915;
758 unsigned int logical_vdbox = 0;
759 unsigned int i;
760 u32 media_fuse, fuse1;
761 u16 vdbox_mask;
762 u16 vebox_mask;
763
764 if (MEDIA_VER(gt->i915) < 11)
765 return;
766
767 /*
768 * On newer platforms the fusing register is called 'enable' and has
769 * enable semantics, while on older platforms it is called 'disable'
770 * and bits have disable semantices.
771 */
772 media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
773 if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
774 media_fuse = ~media_fuse;
775
776 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
777 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
778 GEN11_GT_VEBOX_DISABLE_SHIFT;
779
780 if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
781 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
782 gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
783 } else {
784 gt->info.sfc_mask = ~0;
785 }
786
787 for (i = 0; i < I915_MAX_VCS; i++) {
788 if (!HAS_ENGINE(gt, _VCS(i))) {
789 vdbox_mask &= ~BIT(i);
790 continue;
791 }
792
793 if (!(BIT(i) & vdbox_mask)) {
794 gt->info.engine_mask &= ~BIT(_VCS(i));
795 drm_dbg(&i915->drm, "vcs%u fused off\n", i);
796 continue;
797 }
798
799 if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
800 gt->info.vdbox_sfc_access |= BIT(i);
801 logical_vdbox++;
802 }
803 drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
804 vdbox_mask, VDBOX_MASK(gt));
805 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
806
807 for (i = 0; i < I915_MAX_VECS; i++) {
808 if (!HAS_ENGINE(gt, _VECS(i))) {
809 vebox_mask &= ~BIT(i);
810 continue;
811 }
812
813 if (!(BIT(i) & vebox_mask)) {
814 gt->info.engine_mask &= ~BIT(_VECS(i));
815 drm_dbg(&i915->drm, "vecs%u fused off\n", i);
816 }
817 }
818 drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
819 vebox_mask, VEBOX_MASK(gt));
820 GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
821 }
822
engine_mask_apply_compute_fuses(struct intel_gt * gt)823 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
824 {
825 struct drm_i915_private *i915 = gt->i915;
826 struct intel_gt_info *info = >->info;
827 int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
828 unsigned long ccs_mask;
829 unsigned int i;
830
831 if (GRAPHICS_VER(i915) < 11)
832 return;
833
834 if (hweight32(CCS_MASK(gt)) <= 1)
835 return;
836
837 ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
838 ss_per_ccs);
839 /*
840 * If all DSS in a quadrant are fused off, the corresponding CCS
841 * engine is not available for use.
842 */
843 for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
844 info->engine_mask &= ~BIT(_CCS(i));
845 drm_dbg(&i915->drm, "ccs%u fused off\n", i);
846 }
847 }
848
engine_mask_apply_copy_fuses(struct intel_gt * gt)849 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
850 {
851 struct drm_i915_private *i915 = gt->i915;
852 struct intel_gt_info *info = >->info;
853 unsigned long meml3_mask;
854 unsigned long quad;
855
856 if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
857 GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
858 return;
859
860 meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
861 meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
862
863 /*
864 * Link Copy engines may be fused off according to meml3_mask. Each
865 * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
866 */
867 for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
868 unsigned int instance = quad * 2 + 1;
869 intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
870 _BCS(instance));
871
872 if (mask & info->engine_mask) {
873 drm_dbg(&i915->drm, "bcs%u fused off\n", instance);
874 drm_dbg(&i915->drm, "bcs%u fused off\n", instance + 1);
875
876 info->engine_mask &= ~mask;
877 }
878 }
879 }
880
881 /*
882 * Determine which engines are fused off in our particular hardware.
883 * Note that we have a catch-22 situation where we need to be able to access
884 * the blitter forcewake domain to read the engine fuses, but at the same time
885 * we need to know which engines are available on the system to know which
886 * forcewake domains are present. We solve this by intializing the forcewake
887 * domains based on the full engine mask in the platform capabilities before
888 * calling this function and pruning the domains for fused-off engines
889 * afterwards.
890 */
init_engine_mask(struct intel_gt * gt)891 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
892 {
893 struct intel_gt_info *info = >->info;
894
895 GEM_BUG_ON(!info->engine_mask);
896
897 engine_mask_apply_media_fuses(gt);
898 engine_mask_apply_compute_fuses(gt);
899 engine_mask_apply_copy_fuses(gt);
900
901 /*
902 * The only use of the GSC CS is to load and communicate with the GSC
903 * FW, so we have no use for it if we don't have the FW.
904 *
905 * IMPORTANT: in cases where we don't have the GSC FW, we have a
906 * catch-22 situation that breaks media C6 due to 2 requirements:
907 * 1) once turned on, the GSC power well will not go to sleep unless the
908 * GSC FW is loaded.
909 * 2) to enable idling (which is required for media C6) we need to
910 * initialize the IDLE_MSG register for the GSC CS and do at least 1
911 * submission, which will wake up the GSC power well.
912 */
913 if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(>->uc)) {
914 drm_notice(>->i915->drm,
915 "No GSC FW selected, disabling GSC CS and media C6\n");
916 info->engine_mask &= ~BIT(GSC0);
917 }
918
919 /*
920 * Do not create the command streamer for CCS slices beyond the first.
921 * All the workload submitted to the first engine will be shared among
922 * all the slices.
923 *
924 * Once the user will be allowed to customize the CCS mode, then this
925 * check needs to be removed.
926 */
927 if (IS_DG2(gt->i915)) {
928 u8 first_ccs = __ffs(CCS_MASK(gt));
929
930 /*
931 * Store the number of active cslices before
932 * changing the CCS engine configuration
933 */
934 gt->ccs.cslices = CCS_MASK(gt);
935
936 /* Mask off all the CCS engine */
937 info->engine_mask &= ~GENMASK(CCS3, CCS0);
938 /* Put back in the first CCS engine */
939 info->engine_mask |= BIT(_CCS(first_ccs));
940 }
941
942 return info->engine_mask;
943 }
944
populate_logical_ids(struct intel_gt * gt,u8 * logical_ids,u8 class,const u8 * map,u8 num_instances)945 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
946 u8 class, const u8 *map, u8 num_instances)
947 {
948 int i, j;
949 u8 current_logical_id = 0;
950
951 for (j = 0; j < num_instances; ++j) {
952 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
953 if (!HAS_ENGINE(gt, i) ||
954 intel_engines[i].class != class)
955 continue;
956
957 if (intel_engines[i].instance == map[j]) {
958 logical_ids[intel_engines[i].instance] =
959 current_logical_id++;
960 break;
961 }
962 }
963 }
964 }
965
setup_logical_ids(struct intel_gt * gt,u8 * logical_ids,u8 class)966 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
967 {
968 /*
969 * Logical to physical mapping is needed for proper support
970 * to split-frame feature.
971 */
972 if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
973 const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
974
975 populate_logical_ids(gt, logical_ids, class,
976 map, ARRAY_SIZE(map));
977 } else {
978 int i;
979 u8 map[MAX_ENGINE_INSTANCE + 1];
980
981 for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
982 map[i] = i;
983 populate_logical_ids(gt, logical_ids, class,
984 map, ARRAY_SIZE(map));
985 }
986 }
987
988 /**
989 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
990 * @gt: pointer to struct intel_gt
991 *
992 * Return: non-zero if the initialization failed.
993 */
intel_engines_init_mmio(struct intel_gt * gt)994 int intel_engines_init_mmio(struct intel_gt *gt)
995 {
996 struct drm_i915_private *i915 = gt->i915;
997 const unsigned int engine_mask = init_engine_mask(gt);
998 unsigned int mask = 0;
999 unsigned int i, class;
1000 u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
1001 int err;
1002
1003 drm_WARN_ON(&i915->drm, engine_mask == 0);
1004 drm_WARN_ON(&i915->drm, engine_mask &
1005 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
1006
1007 if (i915_inject_probe_failure(i915))
1008 return -ENODEV;
1009
1010 for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
1011 setup_logical_ids(gt, logical_ids, class);
1012
1013 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
1014 u8 instance = intel_engines[i].instance;
1015
1016 if (intel_engines[i].class != class ||
1017 !HAS_ENGINE(gt, i))
1018 continue;
1019
1020 err = intel_engine_setup(gt, i,
1021 logical_ids[instance]);
1022 if (err)
1023 goto cleanup;
1024
1025 mask |= BIT(i);
1026 }
1027 }
1028
1029 /*
1030 * Catch failures to update intel_engines table when the new engines
1031 * are added to the driver by a warning and disabling the forgotten
1032 * engines.
1033 */
1034 if (drm_WARN_ON(&i915->drm, mask != engine_mask))
1035 gt->info.engine_mask = mask;
1036
1037 gt->info.num_engines = hweight32(mask);
1038
1039 intel_gt_check_and_clear_faults(gt);
1040
1041 intel_setup_engine_capabilities(gt);
1042
1043 intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
1044
1045 return 0;
1046
1047 cleanup:
1048 intel_engines_free(gt);
1049 return err;
1050 }
1051
intel_engine_init_execlists(struct intel_engine_cs * engine)1052 void intel_engine_init_execlists(struct intel_engine_cs *engine)
1053 {
1054 struct intel_engine_execlists * const execlists = &engine->execlists;
1055
1056 execlists->port_mask = 1;
1057 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1058 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1059
1060 memset(execlists->pending, 0, sizeof(execlists->pending));
1061 execlists->active =
1062 memset(execlists->inflight, 0, sizeof(execlists->inflight));
1063 }
1064
cleanup_status_page(struct intel_engine_cs * engine)1065 static void cleanup_status_page(struct intel_engine_cs *engine)
1066 {
1067 struct i915_vma *vma;
1068
1069 /* Prevent writes into HWSP after returning the page to the system */
1070 intel_engine_set_hwsp_writemask(engine, ~0u);
1071
1072 vma = fetch_and_zero(&engine->status_page.vma);
1073 if (!vma)
1074 return;
1075
1076 if (!HWS_NEEDS_PHYSICAL(engine->i915))
1077 i915_vma_unpin(vma);
1078
1079 i915_gem_object_unpin_map(vma->obj);
1080 i915_gem_object_put(vma->obj);
1081 }
1082
pin_ggtt_status_page(struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,struct i915_vma * vma)1083 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1084 struct i915_gem_ww_ctx *ww,
1085 struct i915_vma *vma)
1086 {
1087 unsigned int flags;
1088
1089 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1090 /*
1091 * On g33, we cannot place HWS above 256MiB, so
1092 * restrict its pinning to the low mappable arena.
1093 * Though this restriction is not documented for
1094 * gen4, gen5, or byt, they also behave similarly
1095 * and hang if the HWS is placed at the top of the
1096 * GTT. To generalise, it appears that all !llc
1097 * platforms have issues with us placing the HWS
1098 * above the mappable region (even though we never
1099 * actually map it).
1100 */
1101 flags = PIN_MAPPABLE;
1102 else
1103 flags = PIN_HIGH;
1104
1105 return i915_ggtt_pin(vma, ww, 0, flags);
1106 }
1107
init_status_page(struct intel_engine_cs * engine)1108 static int init_status_page(struct intel_engine_cs *engine)
1109 {
1110 struct drm_i915_gem_object *obj;
1111 struct i915_gem_ww_ctx ww;
1112 struct i915_vma *vma;
1113 void *vaddr;
1114 int ret;
1115
1116 INIT_LIST_HEAD(&engine->status_page.timelines);
1117
1118 /*
1119 * Though the HWS register does support 36bit addresses, historically
1120 * we have had hangs and corruption reported due to wild writes if
1121 * the HWS is placed above 4G. We only allow objects to be allocated
1122 * in GFP_DMA32 for i965, and no earlier physical address users had
1123 * access to more than 4G.
1124 */
1125 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1126 if (IS_ERR(obj)) {
1127 drm_err(&engine->i915->drm,
1128 "Failed to allocate status page\n");
1129 return PTR_ERR(obj);
1130 }
1131
1132 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1133
1134 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1135 if (IS_ERR(vma)) {
1136 ret = PTR_ERR(vma);
1137 goto err_put;
1138 }
1139
1140 i915_gem_ww_ctx_init(&ww, true);
1141 retry:
1142 ret = i915_gem_object_lock(obj, &ww);
1143 if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1144 ret = pin_ggtt_status_page(engine, &ww, vma);
1145 if (ret)
1146 goto err;
1147
1148 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1149 if (IS_ERR(vaddr)) {
1150 ret = PTR_ERR(vaddr);
1151 goto err_unpin;
1152 }
1153
1154 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1155 engine->status_page.vma = vma;
1156
1157 err_unpin:
1158 if (ret)
1159 i915_vma_unpin(vma);
1160 err:
1161 if (ret == -EDEADLK) {
1162 ret = i915_gem_ww_ctx_backoff(&ww);
1163 if (!ret)
1164 goto retry;
1165 }
1166 i915_gem_ww_ctx_fini(&ww);
1167 err_put:
1168 if (ret)
1169 i915_gem_object_put(obj);
1170 return ret;
1171 }
1172
intel_engine_init_tlb_invalidation(struct intel_engine_cs * engine)1173 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine)
1174 {
1175 static const union intel_engine_tlb_inv_reg gen8_regs[] = {
1176 [RENDER_CLASS].reg = GEN8_RTCR,
1177 [VIDEO_DECODE_CLASS].reg = GEN8_M1TCR, /* , GEN8_M2TCR */
1178 [VIDEO_ENHANCEMENT_CLASS].reg = GEN8_VTCR,
1179 [COPY_ENGINE_CLASS].reg = GEN8_BTCR,
1180 };
1181 static const union intel_engine_tlb_inv_reg gen12_regs[] = {
1182 [RENDER_CLASS].reg = GEN12_GFX_TLB_INV_CR,
1183 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR,
1184 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR,
1185 [COPY_ENGINE_CLASS].reg = GEN12_BLT_TLB_INV_CR,
1186 [COMPUTE_CLASS].reg = GEN12_COMPCTX_TLB_INV_CR,
1187 };
1188 static const union intel_engine_tlb_inv_reg xehp_regs[] = {
1189 [RENDER_CLASS].mcr_reg = XEHP_GFX_TLB_INV_CR,
1190 [VIDEO_DECODE_CLASS].mcr_reg = XEHP_VD_TLB_INV_CR,
1191 [VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR,
1192 [COPY_ENGINE_CLASS].mcr_reg = XEHP_BLT_TLB_INV_CR,
1193 [COMPUTE_CLASS].mcr_reg = XEHP_COMPCTX_TLB_INV_CR,
1194 };
1195 static const union intel_engine_tlb_inv_reg xelpmp_regs[] = {
1196 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR,
1197 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR,
1198 [OTHER_CLASS].reg = XELPMP_GSC_TLB_INV_CR,
1199 };
1200 struct drm_i915_private *i915 = engine->i915;
1201 const unsigned int instance = engine->instance;
1202 const unsigned int class = engine->class;
1203 const union intel_engine_tlb_inv_reg *regs;
1204 union intel_engine_tlb_inv_reg reg;
1205 unsigned int num = 0;
1206 u32 val;
1207
1208 /*
1209 * New platforms should not be added with catch-all-newer (>=)
1210 * condition so that any later platform added triggers the below warning
1211 * and in turn mandates a human cross-check of whether the invalidation
1212 * flows have compatible semantics.
1213 *
1214 * For instance with the 11.00 -> 12.00 transition three out of five
1215 * respective engine registers were moved to masked type. Then after the
1216 * 12.00 -> 12.50 transition multi cast handling is required too.
1217 */
1218
1219 if (engine->gt->type == GT_MEDIA) {
1220 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) {
1221 regs = xelpmp_regs;
1222 num = ARRAY_SIZE(xelpmp_regs);
1223 }
1224 } else {
1225 if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) ||
1226 GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) ||
1227 GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) ||
1228 GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
1229 regs = xehp_regs;
1230 num = ARRAY_SIZE(xehp_regs);
1231 } else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
1232 GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
1233 regs = gen12_regs;
1234 num = ARRAY_SIZE(gen12_regs);
1235 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1236 regs = gen8_regs;
1237 num = ARRAY_SIZE(gen8_regs);
1238 } else if (GRAPHICS_VER(i915) < 8) {
1239 return 0;
1240 }
1241 }
1242
1243 if (gt_WARN_ONCE(engine->gt, !num,
1244 "Platform does not implement TLB invalidation!"))
1245 return -ENODEV;
1246
1247 if (gt_WARN_ON_ONCE(engine->gt,
1248 class >= num ||
1249 (!regs[class].reg.reg &&
1250 !regs[class].mcr_reg.reg)))
1251 return -ERANGE;
1252
1253 reg = regs[class];
1254
1255 if (regs == xelpmp_regs && class == OTHER_CLASS) {
1256 /*
1257 * There's only a single GSC instance, but it uses register bit
1258 * 1 instead of either 0 or OTHER_GSC_INSTANCE.
1259 */
1260 GEM_WARN_ON(instance != OTHER_GSC_INSTANCE);
1261 val = 1;
1262 } else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) {
1263 reg.reg = GEN8_M2TCR;
1264 val = 0;
1265 } else {
1266 val = instance;
1267 }
1268
1269 val = BIT(val);
1270
1271 engine->tlb_inv.mcr = regs == xehp_regs;
1272 engine->tlb_inv.reg = reg;
1273 engine->tlb_inv.done = val;
1274
1275 if (GRAPHICS_VER(i915) >= 12 &&
1276 (engine->class == VIDEO_DECODE_CLASS ||
1277 engine->class == VIDEO_ENHANCEMENT_CLASS ||
1278 engine->class == COMPUTE_CLASS ||
1279 engine->class == OTHER_CLASS))
1280 engine->tlb_inv.request = _MASKED_BIT_ENABLE(val);
1281 else
1282 engine->tlb_inv.request = val;
1283
1284 return 0;
1285 }
1286
engine_setup_common(struct intel_engine_cs * engine)1287 static int engine_setup_common(struct intel_engine_cs *engine)
1288 {
1289 int err;
1290
1291 init_llist_head(&engine->barrier_tasks);
1292
1293 err = intel_engine_init_tlb_invalidation(engine);
1294 if (err)
1295 return err;
1296
1297 err = init_status_page(engine);
1298 if (err)
1299 return err;
1300
1301 engine->breadcrumbs = intel_breadcrumbs_create(engine);
1302 if (!engine->breadcrumbs) {
1303 err = -ENOMEM;
1304 goto err_status;
1305 }
1306
1307 engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1308 if (!engine->sched_engine) {
1309 err = -ENOMEM;
1310 goto err_sched_engine;
1311 }
1312 engine->sched_engine->private_data = engine;
1313
1314 err = intel_engine_init_cmd_parser(engine);
1315 if (err)
1316 goto err_cmd_parser;
1317
1318 intel_engine_init_execlists(engine);
1319 intel_engine_init__pm(engine);
1320 intel_engine_init_retire(engine);
1321
1322 /* Use the whole device by default */
1323 engine->sseu =
1324 intel_sseu_from_device_info(&engine->gt->info.sseu);
1325
1326 intel_engine_init_workarounds(engine);
1327 intel_engine_init_whitelist(engine);
1328 intel_engine_init_ctx_wa(engine);
1329
1330 if (GRAPHICS_VER(engine->i915) >= 12)
1331 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1332
1333 return 0;
1334
1335 err_cmd_parser:
1336 i915_sched_engine_put(engine->sched_engine);
1337 err_sched_engine:
1338 intel_breadcrumbs_put(engine->breadcrumbs);
1339 err_status:
1340 cleanup_status_page(engine);
1341 return err;
1342 }
1343
1344 struct measure_breadcrumb {
1345 struct i915_request rq;
1346 struct intel_ring ring;
1347 u32 cs[2048];
1348 };
1349
measure_breadcrumb_dw(struct intel_context * ce)1350 static int measure_breadcrumb_dw(struct intel_context *ce)
1351 {
1352 struct intel_engine_cs *engine = ce->engine;
1353 struct measure_breadcrumb *frame;
1354 int dw;
1355
1356 GEM_BUG_ON(!engine->gt->scratch);
1357
1358 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1359 if (!frame)
1360 return -ENOMEM;
1361
1362 frame->rq.i915 = engine->i915;
1363 frame->rq.engine = engine;
1364 frame->rq.context = ce;
1365 rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1366 frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1367
1368 frame->ring.vaddr = frame->cs;
1369 frame->ring.size = sizeof(frame->cs);
1370 frame->ring.wrap =
1371 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1372 frame->ring.effective_size = frame->ring.size;
1373 intel_ring_update_space(&frame->ring);
1374 frame->rq.ring = &frame->ring;
1375
1376 mutex_lock(&ce->timeline->mutex);
1377 spin_lock_irq(&engine->sched_engine->lock);
1378
1379 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1380
1381 spin_unlock_irq(&engine->sched_engine->lock);
1382 mutex_unlock(&ce->timeline->mutex);
1383
1384 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1385
1386 kfree(frame);
1387 return dw;
1388 }
1389
1390 struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs * engine,struct i915_address_space * vm,unsigned int ring_size,unsigned int hwsp,struct lock_class_key * key,const char * name)1391 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1392 struct i915_address_space *vm,
1393 unsigned int ring_size,
1394 unsigned int hwsp,
1395 struct lock_class_key *key,
1396 const char *name)
1397 {
1398 struct intel_context *ce;
1399 int err;
1400
1401 ce = intel_context_create(engine);
1402 if (IS_ERR(ce))
1403 return ce;
1404
1405 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1406 ce->timeline = page_pack_bits(NULL, hwsp);
1407 ce->ring = NULL;
1408 ce->ring_size = ring_size;
1409
1410 i915_vm_put(ce->vm);
1411 ce->vm = i915_vm_get(vm);
1412
1413 err = intel_context_pin(ce); /* perma-pin so it is always available */
1414 if (err) {
1415 intel_context_put(ce);
1416 return ERR_PTR(err);
1417 }
1418
1419 list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1420
1421 /*
1422 * Give our perma-pinned kernel timelines a separate lockdep class,
1423 * so that we can use them from within the normal user timelines
1424 * should we need to inject GPU operations during their request
1425 * construction.
1426 */
1427 lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1428
1429 return ce;
1430 }
1431
intel_engine_destroy_pinned_context(struct intel_context * ce)1432 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1433 {
1434 struct intel_engine_cs *engine = ce->engine;
1435 struct i915_vma *hwsp = engine->status_page.vma;
1436
1437 GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1438
1439 mutex_lock(&hwsp->vm->mutex);
1440 list_del(&ce->timeline->engine_link);
1441 mutex_unlock(&hwsp->vm->mutex);
1442
1443 list_del(&ce->pinned_contexts_link);
1444 intel_context_unpin(ce);
1445 intel_context_put(ce);
1446 }
1447
1448 static struct intel_context *
create_ggtt_bind_context(struct intel_engine_cs * engine)1449 create_ggtt_bind_context(struct intel_engine_cs *engine)
1450 {
1451 static struct lock_class_key kernel;
1452
1453 /*
1454 * MI_UPDATE_GTT can insert up to 511 PTE entries and there could be multiple
1455 * bind requets at a time so get a bigger ring.
1456 */
1457 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_512K,
1458 I915_GEM_HWS_GGTT_BIND_ADDR,
1459 &kernel, "ggtt_bind_context");
1460 }
1461
1462 static struct intel_context *
create_kernel_context(struct intel_engine_cs * engine)1463 create_kernel_context(struct intel_engine_cs *engine)
1464 {
1465 static struct lock_class_key kernel;
1466
1467 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1468 I915_GEM_HWS_SEQNO_ADDR,
1469 &kernel, "kernel_context");
1470 }
1471
1472 /*
1473 * engine_init_common - initialize engine state which might require hw access
1474 * @engine: Engine to initialize.
1475 *
1476 * Initializes @engine@ structure members shared between legacy and execlists
1477 * submission modes which do require hardware access.
1478 *
1479 * Typcally done at later stages of submission mode specific engine setup.
1480 *
1481 * Returns zero on success or an error code on failure.
1482 */
engine_init_common(struct intel_engine_cs * engine)1483 static int engine_init_common(struct intel_engine_cs *engine)
1484 {
1485 struct intel_context *ce, *bce = NULL;
1486 int ret;
1487
1488 engine->set_default_submission(engine);
1489
1490 /*
1491 * We may need to do things with the shrinker which
1492 * require us to immediately switch back to the default
1493 * context. This can cause a problem as pinning the
1494 * default context also requires GTT space which may not
1495 * be available. To avoid this we always pin the default
1496 * context.
1497 */
1498 ce = create_kernel_context(engine);
1499 if (IS_ERR(ce))
1500 return PTR_ERR(ce);
1501 /*
1502 * Create a separate pinned context for GGTT update with blitter engine
1503 * if a platform require such service. MI_UPDATE_GTT works on other
1504 * engines as well but BCS should be less busy engine so pick that for
1505 * GGTT updates.
1506 */
1507 if (i915_ggtt_require_binder(engine->i915) && engine->id == BCS0) {
1508 bce = create_ggtt_bind_context(engine);
1509 if (IS_ERR(bce)) {
1510 ret = PTR_ERR(bce);
1511 goto err_ce_context;
1512 }
1513 }
1514
1515 ret = measure_breadcrumb_dw(ce);
1516 if (ret < 0)
1517 goto err_bce_context;
1518
1519 engine->emit_fini_breadcrumb_dw = ret;
1520 engine->kernel_context = ce;
1521 engine->bind_context = bce;
1522
1523 return 0;
1524
1525 err_bce_context:
1526 if (bce)
1527 intel_engine_destroy_pinned_context(bce);
1528 err_ce_context:
1529 intel_engine_destroy_pinned_context(ce);
1530 return ret;
1531 }
1532
intel_engines_init(struct intel_gt * gt)1533 int intel_engines_init(struct intel_gt *gt)
1534 {
1535 int (*setup)(struct intel_engine_cs *engine);
1536 struct intel_engine_cs *engine;
1537 enum intel_engine_id id;
1538 int err;
1539
1540 if (intel_uc_uses_guc_submission(>->uc)) {
1541 gt->submission_method = INTEL_SUBMISSION_GUC;
1542 setup = intel_guc_submission_setup;
1543 } else if (HAS_EXECLISTS(gt->i915)) {
1544 gt->submission_method = INTEL_SUBMISSION_ELSP;
1545 setup = intel_execlists_submission_setup;
1546 } else {
1547 gt->submission_method = INTEL_SUBMISSION_RING;
1548 setup = intel_ring_submission_setup;
1549 }
1550
1551 for_each_engine(engine, gt, id) {
1552 err = engine_setup_common(engine);
1553 if (err)
1554 return err;
1555
1556 err = setup(engine);
1557 if (err) {
1558 intel_engine_cleanup_common(engine);
1559 return err;
1560 }
1561
1562 /* The backend should now be responsible for cleanup */
1563 GEM_BUG_ON(engine->release == NULL);
1564
1565 err = engine_init_common(engine);
1566 if (err)
1567 return err;
1568
1569 intel_engine_add_user(engine);
1570 }
1571
1572 return 0;
1573 }
1574
1575 /**
1576 * intel_engine_cleanup_common - cleans up the engine state created by
1577 * the common initiailizers.
1578 * @engine: Engine to cleanup.
1579 *
1580 * This cleans up everything created by the common helpers.
1581 */
intel_engine_cleanup_common(struct intel_engine_cs * engine)1582 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1583 {
1584 GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1585
1586 i915_sched_engine_put(engine->sched_engine);
1587 intel_breadcrumbs_put(engine->breadcrumbs);
1588
1589 intel_engine_fini_retire(engine);
1590 intel_engine_cleanup_cmd_parser(engine);
1591
1592 if (engine->default_state)
1593 uao_detach(engine->default_state);
1594
1595 if (engine->kernel_context)
1596 intel_engine_destroy_pinned_context(engine->kernel_context);
1597
1598 if (engine->bind_context)
1599 intel_engine_destroy_pinned_context(engine->bind_context);
1600
1601
1602 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1603 cleanup_status_page(engine);
1604
1605 intel_wa_list_free(&engine->ctx_wa_list);
1606 intel_wa_list_free(&engine->wa_list);
1607 intel_wa_list_free(&engine->whitelist);
1608 }
1609
1610 /**
1611 * intel_engine_resume - re-initializes the HW state of the engine
1612 * @engine: Engine to resume.
1613 *
1614 * Returns zero on success or an error code on failure.
1615 */
intel_engine_resume(struct intel_engine_cs * engine)1616 int intel_engine_resume(struct intel_engine_cs *engine)
1617 {
1618 intel_engine_apply_workarounds(engine);
1619 intel_engine_apply_whitelist(engine);
1620
1621 return engine->resume(engine);
1622 }
1623
intel_engine_get_active_head(const struct intel_engine_cs * engine)1624 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1625 {
1626 struct drm_i915_private *i915 = engine->i915;
1627
1628 u64 acthd;
1629
1630 if (GRAPHICS_VER(i915) >= 8)
1631 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1632 else if (GRAPHICS_VER(i915) >= 4)
1633 acthd = ENGINE_READ(engine, RING_ACTHD);
1634 else
1635 acthd = ENGINE_READ(engine, ACTHD);
1636
1637 return acthd;
1638 }
1639
intel_engine_get_last_batch_head(const struct intel_engine_cs * engine)1640 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1641 {
1642 u64 bbaddr;
1643
1644 if (GRAPHICS_VER(engine->i915) >= 8)
1645 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1646 else
1647 bbaddr = ENGINE_READ(engine, RING_BBADDR);
1648
1649 return bbaddr;
1650 }
1651
stop_timeout(const struct intel_engine_cs * engine)1652 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1653 {
1654 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1655 return 0;
1656
1657 /*
1658 * If we are doing a normal GPU reset, we can take our time and allow
1659 * the engine to quiesce. We've stopped submission to the engine, and
1660 * if we wait long enough an innocent context should complete and
1661 * leave the engine idle. So they should not be caught unaware by
1662 * the forthcoming GPU reset (which usually follows the stop_cs)!
1663 */
1664 return READ_ONCE(engine->props.stop_timeout_ms);
1665 }
1666
__intel_engine_stop_cs(struct intel_engine_cs * engine,int fast_timeout_us,int slow_timeout_ms)1667 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1668 int fast_timeout_us,
1669 int slow_timeout_ms)
1670 {
1671 struct intel_uncore *uncore = engine->uncore;
1672 const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1673 int err;
1674
1675 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1676
1677 /*
1678 * Wa_22011802037: Prior to doing a reset, ensure CS is
1679 * stopped, set ring stop bit and prefetch disable bit to halt CS
1680 */
1681 if (intel_engine_reset_needs_wa_22011802037(engine->gt))
1682 intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1683 _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1684
1685 err = __intel_wait_for_register_fw(engine->uncore, mode,
1686 MODE_IDLE, MODE_IDLE,
1687 fast_timeout_us,
1688 slow_timeout_ms,
1689 NULL);
1690
1691 /* A final mmio read to let GPU writes be hopefully flushed to memory */
1692 intel_uncore_posting_read_fw(uncore, mode);
1693 return err;
1694 }
1695
intel_engine_stop_cs(struct intel_engine_cs * engine)1696 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1697 {
1698 int err = 0;
1699
1700 if (GRAPHICS_VER(engine->i915) < 3)
1701 return -ENODEV;
1702
1703 ENGINE_TRACE(engine, "\n");
1704 /*
1705 * TODO: Find out why occasionally stopping the CS times out. Seen
1706 * especially with gem_eio tests.
1707 *
1708 * Occasionally trying to stop the cs times out, but does not adversely
1709 * affect functionality. The timeout is set as a config parameter that
1710 * defaults to 100ms. In most cases the follow up operation is to wait
1711 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1712 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1713 * caused, the caller must check and handle the return from this
1714 * function.
1715 */
1716 if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1717 ENGINE_TRACE(engine,
1718 "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1719 ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1720 ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1721
1722 /*
1723 * Sometimes we observe that the idle flag is not
1724 * set even though the ring is empty. So double
1725 * check before giving up.
1726 */
1727 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1728 (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1729 err = -ETIMEDOUT;
1730 }
1731
1732 return err;
1733 }
1734
intel_engine_cancel_stop_cs(struct intel_engine_cs * engine)1735 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1736 {
1737 ENGINE_TRACE(engine, "\n");
1738
1739 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1740 }
1741
__cs_pending_mi_force_wakes(struct intel_engine_cs * engine)1742 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1743 {
1744 static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1745 [RCS0] = MSG_IDLE_CS,
1746 [BCS0] = MSG_IDLE_BCS,
1747 [VCS0] = MSG_IDLE_VCS0,
1748 [VCS1] = MSG_IDLE_VCS1,
1749 [VCS2] = MSG_IDLE_VCS2,
1750 [VCS3] = MSG_IDLE_VCS3,
1751 [VCS4] = MSG_IDLE_VCS4,
1752 [VCS5] = MSG_IDLE_VCS5,
1753 [VCS6] = MSG_IDLE_VCS6,
1754 [VCS7] = MSG_IDLE_VCS7,
1755 [VECS0] = MSG_IDLE_VECS0,
1756 [VECS1] = MSG_IDLE_VECS1,
1757 [VECS2] = MSG_IDLE_VECS2,
1758 [VECS3] = MSG_IDLE_VECS3,
1759 [CCS0] = MSG_IDLE_CS,
1760 [CCS1] = MSG_IDLE_CS,
1761 [CCS2] = MSG_IDLE_CS,
1762 [CCS3] = MSG_IDLE_CS,
1763 };
1764 u32 val;
1765
1766 if (!_reg[engine->id].reg)
1767 return 0;
1768
1769 val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1770
1771 /* bits[29:25] & bits[13:9] >> shift */
1772 return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1773 }
1774
__gpm_wait_for_fw_complete(struct intel_gt * gt,u32 fw_mask)1775 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1776 {
1777 int ret;
1778
1779 /* Ensure GPM receives fw up/down after CS is stopped */
1780 udelay(1);
1781
1782 /* Wait for forcewake request to complete in GPM */
1783 ret = __intel_wait_for_register_fw(gt->uncore,
1784 GEN9_PWRGT_DOMAIN_STATUS,
1785 fw_mask, fw_mask, 5000, 0, NULL);
1786
1787 /* Ensure CS receives fw ack from GPM */
1788 udelay(1);
1789
1790 if (ret)
1791 GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1792 }
1793
1794 /*
1795 * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1796 * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1797 * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1798 * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1799 * are concerned only with the gt reset here, we use a logical OR of pending
1800 * forcewakeups from all reset domains and then wait for them to complete by
1801 * querying PWRGT_DOMAIN_STATUS.
1802 */
intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs * engine)1803 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1804 {
1805 u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1806
1807 if (fw_pending)
1808 __gpm_wait_for_fw_complete(engine->gt, fw_pending);
1809 }
1810
1811 /* NB: please notice the memset */
intel_engine_get_instdone(const struct intel_engine_cs * engine,struct intel_instdone * instdone)1812 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1813 struct intel_instdone *instdone)
1814 {
1815 struct drm_i915_private *i915 = engine->i915;
1816 struct intel_uncore *uncore = engine->uncore;
1817 u32 mmio_base = engine->mmio_base;
1818 int slice;
1819 int subslice;
1820 int iter;
1821
1822 memset(instdone, 0, sizeof(*instdone));
1823
1824 if (GRAPHICS_VER(i915) >= 8) {
1825 instdone->instdone =
1826 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1827
1828 if (engine->id != RCS0)
1829 return;
1830
1831 instdone->slice_common =
1832 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1833 if (GRAPHICS_VER(i915) >= 12) {
1834 instdone->slice_common_extra[0] =
1835 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1836 instdone->slice_common_extra[1] =
1837 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1838 }
1839
1840 for_each_ss_steering(iter, engine->gt, slice, subslice) {
1841 instdone->sampler[slice][subslice] =
1842 intel_gt_mcr_read(engine->gt,
1843 GEN8_SAMPLER_INSTDONE,
1844 slice, subslice);
1845 instdone->row[slice][subslice] =
1846 intel_gt_mcr_read(engine->gt,
1847 GEN8_ROW_INSTDONE,
1848 slice, subslice);
1849 }
1850
1851 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1852 for_each_ss_steering(iter, engine->gt, slice, subslice)
1853 instdone->geom_svg[slice][subslice] =
1854 intel_gt_mcr_read(engine->gt,
1855 XEHPG_INSTDONE_GEOM_SVG,
1856 slice, subslice);
1857 }
1858 } else if (GRAPHICS_VER(i915) >= 7) {
1859 instdone->instdone =
1860 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1861
1862 if (engine->id != RCS0)
1863 return;
1864
1865 instdone->slice_common =
1866 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1867 instdone->sampler[0][0] =
1868 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1869 instdone->row[0][0] =
1870 intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1871 } else if (GRAPHICS_VER(i915) >= 4) {
1872 instdone->instdone =
1873 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1874 if (engine->id == RCS0)
1875 /* HACK: Using the wrong struct member */
1876 instdone->slice_common =
1877 intel_uncore_read(uncore, GEN4_INSTDONE1);
1878 } else {
1879 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1880 }
1881 }
1882
ring_is_idle(struct intel_engine_cs * engine)1883 static bool ring_is_idle(struct intel_engine_cs *engine)
1884 {
1885 bool idle = true;
1886
1887 if (I915_SELFTEST_ONLY(!engine->mmio_base))
1888 return true;
1889
1890 if (!intel_engine_pm_get_if_awake(engine))
1891 return true;
1892
1893 /* First check that no commands are left in the ring */
1894 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1895 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1896 idle = false;
1897
1898 /* No bit for gen2, so assume the CS parser is idle */
1899 if (GRAPHICS_VER(engine->i915) > 2 &&
1900 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1901 idle = false;
1902
1903 intel_engine_pm_put(engine);
1904
1905 return idle;
1906 }
1907
__intel_engine_flush_submission(struct intel_engine_cs * engine,bool sync)1908 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1909 {
1910 struct tasklet_struct *t = &engine->sched_engine->tasklet;
1911
1912 if (!t->callback)
1913 return;
1914
1915 local_bh_disable();
1916 if (tasklet_trylock(t)) {
1917 /* Must wait for any GPU reset in progress. */
1918 if (__tasklet_is_enabled(t))
1919 t->callback(t);
1920 tasklet_unlock(t);
1921 }
1922 local_bh_enable();
1923
1924 /* Synchronise and wait for the tasklet on another CPU */
1925 if (sync)
1926 tasklet_unlock_wait(t);
1927 }
1928
1929 /**
1930 * intel_engine_is_idle() - Report if the engine has finished process all work
1931 * @engine: the intel_engine_cs
1932 *
1933 * Return true if there are no requests pending, nothing left to be submitted
1934 * to hardware, and that the engine is idle.
1935 */
intel_engine_is_idle(struct intel_engine_cs * engine)1936 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1937 {
1938 /* More white lies, if wedged, hw state is inconsistent */
1939 if (intel_gt_is_wedged(engine->gt))
1940 return true;
1941
1942 if (!intel_engine_pm_is_awake(engine))
1943 return true;
1944
1945 /* Waiting to drain ELSP? */
1946 intel_synchronize_hardirq(engine->i915);
1947 intel_engine_flush_submission(engine);
1948
1949 /* ELSP is empty, but there are ready requests? E.g. after reset */
1950 if (!i915_sched_engine_is_empty(engine->sched_engine))
1951 return false;
1952
1953 /* Ring stopped? */
1954 return ring_is_idle(engine);
1955 }
1956
intel_engines_are_idle(struct intel_gt * gt)1957 bool intel_engines_are_idle(struct intel_gt *gt)
1958 {
1959 struct intel_engine_cs *engine;
1960 enum intel_engine_id id;
1961
1962 /*
1963 * If the driver is wedged, HW state may be very inconsistent and
1964 * report that it is still busy, even though we have stopped using it.
1965 */
1966 if (intel_gt_is_wedged(gt))
1967 return true;
1968
1969 /* Already parked (and passed an idleness test); must still be idle */
1970 if (!READ_ONCE(gt->awake))
1971 return true;
1972
1973 for_each_engine(engine, gt, id) {
1974 if (!intel_engine_is_idle(engine))
1975 return false;
1976 }
1977
1978 return true;
1979 }
1980
intel_engine_irq_enable(struct intel_engine_cs * engine)1981 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1982 {
1983 if (!engine->irq_enable)
1984 return false;
1985
1986 /* Caller disables interrupts */
1987 spin_lock(engine->gt->irq_lock);
1988 engine->irq_enable(engine);
1989 spin_unlock(engine->gt->irq_lock);
1990
1991 return true;
1992 }
1993
intel_engine_irq_disable(struct intel_engine_cs * engine)1994 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1995 {
1996 if (!engine->irq_disable)
1997 return;
1998
1999 /* Caller disables interrupts */
2000 spin_lock(engine->gt->irq_lock);
2001 engine->irq_disable(engine);
2002 spin_unlock(engine->gt->irq_lock);
2003 }
2004
intel_engines_reset_default_submission(struct intel_gt * gt)2005 void intel_engines_reset_default_submission(struct intel_gt *gt)
2006 {
2007 struct intel_engine_cs *engine;
2008 enum intel_engine_id id;
2009
2010 for_each_engine(engine, gt, id) {
2011 if (engine->sanitize)
2012 engine->sanitize(engine);
2013
2014 engine->set_default_submission(engine);
2015 }
2016 }
2017
intel_engine_can_store_dword(struct intel_engine_cs * engine)2018 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
2019 {
2020 switch (GRAPHICS_VER(engine->i915)) {
2021 case 2:
2022 return false; /* uses physical not virtual addresses */
2023 case 3:
2024 /* maybe only uses physical not virtual addresses */
2025 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
2026 case 4:
2027 return !IS_I965G(engine->i915); /* who knows! */
2028 case 6:
2029 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
2030 default:
2031 return true;
2032 }
2033 }
2034
get_timeline(struct i915_request * rq)2035 static struct intel_timeline *get_timeline(struct i915_request *rq)
2036 {
2037 struct intel_timeline *tl;
2038
2039 /*
2040 * Even though we are holding the engine->sched_engine->lock here, there
2041 * is no control over the submission queue per-se and we are
2042 * inspecting the active state at a random point in time, with an
2043 * unknown queue. Play safe and make sure the timeline remains valid.
2044 * (Only being used for pretty printing, one extra kref shouldn't
2045 * cause a camel stampede!)
2046 */
2047 rcu_read_lock();
2048 tl = rcu_dereference(rq->timeline);
2049 if (!kref_get_unless_zero(&tl->kref))
2050 tl = NULL;
2051 rcu_read_unlock();
2052
2053 return tl;
2054 }
2055
print_ring(char * buf,int sz,struct i915_request * rq)2056 static int print_ring(char *buf, int sz, struct i915_request *rq)
2057 {
2058 int len = 0;
2059
2060 if (!i915_request_signaled(rq)) {
2061 struct intel_timeline *tl = get_timeline(rq);
2062
2063 len = scnprintf(buf, sz,
2064 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
2065 i915_ggtt_offset(rq->ring->vma),
2066 tl ? tl->hwsp_offset : 0,
2067 hwsp_seqno(rq),
2068 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
2069 1000 * 1000));
2070
2071 if (tl)
2072 intel_timeline_put(tl);
2073 }
2074
2075 return len;
2076 }
2077
hexdump(struct drm_printer * m,const void * buf,size_t len)2078 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
2079 {
2080 STUB();
2081 #ifdef notyet
2082 const size_t rowsize = 8 * sizeof(u32);
2083 const void *prev = NULL;
2084 bool skip = false;
2085 size_t pos;
2086
2087 for (pos = 0; pos < len; pos += rowsize) {
2088 char line[128];
2089
2090 if (prev && !memcmp(prev, buf + pos, rowsize)) {
2091 if (!skip) {
2092 drm_printf(m, "*\n");
2093 skip = true;
2094 }
2095 continue;
2096 }
2097
2098 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
2099 rowsize, sizeof(u32),
2100 line, sizeof(line),
2101 false) >= sizeof(line));
2102 drm_printf(m, "[%04zx] %s\n", pos, line);
2103
2104 prev = buf + pos;
2105 skip = false;
2106 }
2107 #endif
2108 }
2109
repr_timer(const struct timeout * t)2110 static const char *repr_timer(const struct timeout *t)
2111 {
2112 if (!READ_ONCE(t->to_time))
2113 return "inactive";
2114
2115 if (timer_pending(t))
2116 return "active";
2117
2118 return "expired";
2119 }
2120
intel_engine_print_registers(struct intel_engine_cs * engine,struct drm_printer * m)2121 static void intel_engine_print_registers(struct intel_engine_cs *engine,
2122 struct drm_printer *m)
2123 {
2124 struct drm_i915_private *i915 = engine->i915;
2125 struct intel_engine_execlists * const execlists = &engine->execlists;
2126 u64 addr;
2127
2128 if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7))
2129 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
2130 if (HAS_EXECLISTS(i915)) {
2131 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
2132 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
2133 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
2134 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
2135 }
2136 drm_printf(m, "\tRING_START: 0x%08x\n",
2137 ENGINE_READ(engine, RING_START));
2138 drm_printf(m, "\tRING_HEAD: 0x%08x\n",
2139 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
2140 drm_printf(m, "\tRING_TAIL: 0x%08x\n",
2141 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
2142 drm_printf(m, "\tRING_CTL: 0x%08x%s\n",
2143 ENGINE_READ(engine, RING_CTL),
2144 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
2145 if (GRAPHICS_VER(engine->i915) > 2) {
2146 drm_printf(m, "\tRING_MODE: 0x%08x%s\n",
2147 ENGINE_READ(engine, RING_MI_MODE),
2148 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
2149 }
2150
2151 if (GRAPHICS_VER(i915) >= 6) {
2152 drm_printf(m, "\tRING_IMR: 0x%08x\n",
2153 ENGINE_READ(engine, RING_IMR));
2154 drm_printf(m, "\tRING_ESR: 0x%08x\n",
2155 ENGINE_READ(engine, RING_ESR));
2156 drm_printf(m, "\tRING_EMR: 0x%08x\n",
2157 ENGINE_READ(engine, RING_EMR));
2158 drm_printf(m, "\tRING_EIR: 0x%08x\n",
2159 ENGINE_READ(engine, RING_EIR));
2160 }
2161
2162 addr = intel_engine_get_active_head(engine);
2163 drm_printf(m, "\tACTHD: 0x%08x_%08x\n",
2164 upper_32_bits(addr), lower_32_bits(addr));
2165 addr = intel_engine_get_last_batch_head(engine);
2166 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
2167 upper_32_bits(addr), lower_32_bits(addr));
2168 if (GRAPHICS_VER(i915) >= 8)
2169 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
2170 else if (GRAPHICS_VER(i915) >= 4)
2171 addr = ENGINE_READ(engine, RING_DMA_FADD);
2172 else
2173 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
2174 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
2175 upper_32_bits(addr), lower_32_bits(addr));
2176 if (GRAPHICS_VER(i915) >= 4) {
2177 drm_printf(m, "\tIPEIR: 0x%08x\n",
2178 ENGINE_READ(engine, RING_IPEIR));
2179 drm_printf(m, "\tIPEHR: 0x%08x\n",
2180 ENGINE_READ(engine, RING_IPEHR));
2181 } else {
2182 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
2183 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
2184 }
2185
2186 if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) {
2187 struct i915_request * const *port, *rq;
2188 const u32 *hws =
2189 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2190 const u8 num_entries = execlists->csb_size;
2191 unsigned int idx;
2192 u8 read, write;
2193
2194 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
2195 str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
2196 str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
2197 repr_timer(&engine->execlists.preempt),
2198 repr_timer(&engine->execlists.timer));
2199
2200 read = execlists->csb_head;
2201 write = READ_ONCE(*execlists->csb_write);
2202
2203 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2204 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2205 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2206 read, write, num_entries);
2207
2208 if (read >= num_entries)
2209 read = 0;
2210 if (write >= num_entries)
2211 write = 0;
2212 if (read > write)
2213 write += num_entries;
2214 while (read < write) {
2215 idx = ++read % num_entries;
2216 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2217 idx, hws[idx * 2], hws[idx * 2 + 1]);
2218 }
2219
2220 i915_sched_engine_active_lock_bh(engine->sched_engine);
2221 rcu_read_lock();
2222 for (port = execlists->active; (rq = *port); port++) {
2223 char hdr[160];
2224 int len;
2225
2226 len = scnprintf(hdr, sizeof(hdr),
2227 "\t\tActive[%d]: ccid:%08x%s%s, ",
2228 (int)(port - execlists->active),
2229 rq->context->lrc.ccid,
2230 intel_context_is_closed(rq->context) ? "!" : "",
2231 intel_context_is_banned(rq->context) ? "*" : "");
2232 len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2233 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2234 i915_request_show(m, rq, hdr, 0);
2235 }
2236 for (port = execlists->pending; (rq = *port); port++) {
2237 char hdr[160];
2238 int len;
2239
2240 len = scnprintf(hdr, sizeof(hdr),
2241 "\t\tPending[%d]: ccid:%08x%s%s, ",
2242 (int)(port - execlists->pending),
2243 rq->context->lrc.ccid,
2244 intel_context_is_closed(rq->context) ? "!" : "",
2245 intel_context_is_banned(rq->context) ? "*" : "");
2246 len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2247 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2248 i915_request_show(m, rq, hdr, 0);
2249 }
2250 rcu_read_unlock();
2251 i915_sched_engine_active_unlock_bh(engine->sched_engine);
2252 } else if (GRAPHICS_VER(i915) > 6) {
2253 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2254 ENGINE_READ(engine, RING_PP_DIR_BASE));
2255 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2256 ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2257 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2258 ENGINE_READ(engine, RING_PP_DIR_DCLV));
2259 }
2260 }
2261
print_request_ring(struct drm_printer * m,struct i915_request * rq)2262 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2263 {
2264 struct i915_vma_resource *vma_res = rq->batch_res;
2265 void *ring;
2266 int size;
2267
2268 drm_printf(m,
2269 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2270 rq->head, rq->postfix, rq->tail,
2271 vma_res ? upper_32_bits(vma_res->start) : ~0u,
2272 vma_res ? lower_32_bits(vma_res->start) : ~0u);
2273
2274 size = rq->tail - rq->head;
2275 if (rq->tail < rq->head)
2276 size += rq->ring->size;
2277
2278 ring = kmalloc(size, GFP_ATOMIC);
2279 if (ring) {
2280 const void *vaddr = rq->ring->vaddr;
2281 unsigned int head = rq->head;
2282 unsigned int len = 0;
2283
2284 if (rq->tail < head) {
2285 len = rq->ring->size - head;
2286 memcpy(ring, vaddr + head, len);
2287 head = 0;
2288 }
2289 memcpy(ring + len, vaddr + head, size - len);
2290
2291 hexdump(m, ring, size);
2292 kfree(ring);
2293 }
2294 }
2295
read_ul(void * p,size_t x)2296 static unsigned long read_ul(void *p, size_t x)
2297 {
2298 return *(unsigned long *)(p + x);
2299 }
2300
print_properties(struct intel_engine_cs * engine,struct drm_printer * m)2301 static void print_properties(struct intel_engine_cs *engine,
2302 struct drm_printer *m)
2303 {
2304 static const struct pmap {
2305 size_t offset;
2306 const char *name;
2307 } props[] = {
2308 #define P(x) { \
2309 .offset = offsetof(typeof(engine->props), x), \
2310 .name = #x \
2311 }
2312 P(heartbeat_interval_ms),
2313 P(max_busywait_duration_ns),
2314 P(preempt_timeout_ms),
2315 P(stop_timeout_ms),
2316 P(timeslice_duration_ms),
2317
2318 {},
2319 #undef P
2320 };
2321 const struct pmap *p;
2322
2323 drm_printf(m, "\tProperties:\n");
2324 for (p = props; p->name; p++)
2325 drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2326 p->name,
2327 read_ul(&engine->props, p->offset),
2328 read_ul(&engine->defaults, p->offset));
2329 }
2330
engine_dump_request(struct i915_request * rq,struct drm_printer * m,const char * msg)2331 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2332 {
2333 struct intel_timeline *tl = get_timeline(rq);
2334
2335 i915_request_show(m, rq, msg, 0);
2336
2337 drm_printf(m, "\t\tring->start: 0x%08x\n",
2338 i915_ggtt_offset(rq->ring->vma));
2339 drm_printf(m, "\t\tring->head: 0x%08x\n",
2340 rq->ring->head);
2341 drm_printf(m, "\t\tring->tail: 0x%08x\n",
2342 rq->ring->tail);
2343 drm_printf(m, "\t\tring->emit: 0x%08x\n",
2344 rq->ring->emit);
2345 drm_printf(m, "\t\tring->space: 0x%08x\n",
2346 rq->ring->space);
2347
2348 if (tl) {
2349 drm_printf(m, "\t\tring->hwsp: 0x%08x\n",
2350 tl->hwsp_offset);
2351 intel_timeline_put(tl);
2352 }
2353
2354 print_request_ring(m, rq);
2355
2356 if (rq->context->lrc_reg_state) {
2357 drm_printf(m, "Logical Ring Context:\n");
2358 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2359 }
2360 }
2361
intel_engine_dump_active_requests(struct list_head * requests,struct i915_request * hung_rq,struct drm_printer * m)2362 void intel_engine_dump_active_requests(struct list_head *requests,
2363 struct i915_request *hung_rq,
2364 struct drm_printer *m)
2365 {
2366 struct i915_request *rq;
2367 const char *msg;
2368 enum i915_request_state state;
2369
2370 list_for_each_entry(rq, requests, sched.link) {
2371 if (rq == hung_rq)
2372 continue;
2373
2374 state = i915_test_request_state(rq);
2375 if (state < I915_REQUEST_QUEUED)
2376 continue;
2377
2378 if (state == I915_REQUEST_ACTIVE)
2379 msg = "\t\tactive on engine";
2380 else
2381 msg = "\t\tactive in queue";
2382
2383 engine_dump_request(rq, m, msg);
2384 }
2385 }
2386
engine_dump_active_requests(struct intel_engine_cs * engine,struct drm_printer * m)2387 static void engine_dump_active_requests(struct intel_engine_cs *engine,
2388 struct drm_printer *m)
2389 {
2390 struct intel_context *hung_ce = NULL;
2391 struct i915_request *hung_rq = NULL;
2392
2393 /*
2394 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2395 * The GPU is still running so requests are still executing and any
2396 * hardware reads will be out of date by the time they are reported.
2397 * But the intention here is just to report an instantaneous snapshot
2398 * so that's fine.
2399 */
2400 intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2401
2402 drm_printf(m, "\tRequests:\n");
2403
2404 if (hung_rq)
2405 engine_dump_request(hung_rq, m, "\t\thung");
2406 else if (hung_ce)
2407 drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2408
2409 if (intel_uc_uses_guc_submission(&engine->gt->uc))
2410 intel_guc_dump_active_requests(engine, hung_rq, m);
2411 else
2412 intel_execlists_dump_active_requests(engine, hung_rq, m);
2413
2414 if (hung_rq)
2415 i915_request_put(hung_rq);
2416 }
2417
intel_engine_dump(struct intel_engine_cs * engine,struct drm_printer * m,const char * header,...)2418 void intel_engine_dump(struct intel_engine_cs *engine,
2419 struct drm_printer *m,
2420 const char *header, ...)
2421 {
2422 struct i915_gpu_error * const error = &engine->i915->gpu_error;
2423 struct i915_request *rq;
2424 intel_wakeref_t wakeref;
2425 ktime_t dummy;
2426
2427 if (header) {
2428 va_list ap;
2429
2430 va_start(ap, header);
2431 drm_vprintf(m, header, &ap);
2432 va_end(ap);
2433 }
2434
2435 if (intel_gt_is_wedged(engine->gt))
2436 drm_printf(m, "*** WEDGED ***\n");
2437
2438 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2439 drm_printf(m, "\tBarriers?: %s\n",
2440 str_yes_no(!llist_empty(&engine->barrier_tasks)));
2441 drm_printf(m, "\tLatency: %luus\n",
2442 ewma__engine_latency_read(&engine->latency));
2443 if (intel_engine_supports_stats(engine))
2444 drm_printf(m, "\tRuntime: %llums\n",
2445 ktime_to_ms(intel_engine_get_busy_time(engine,
2446 &dummy)));
2447 drm_printf(m, "\tForcewake: %x domains, %d active\n",
2448 engine->fw_domain, READ_ONCE(engine->fw_active));
2449
2450 rcu_read_lock();
2451 rq = READ_ONCE(engine->heartbeat.systole);
2452 if (rq)
2453 drm_printf(m, "\tHeartbeat: %d ms ago\n",
2454 jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2455 rcu_read_unlock();
2456 drm_printf(m, "\tReset count: %d (global %d)\n",
2457 i915_reset_engine_count(error, engine),
2458 i915_reset_count(error));
2459 print_properties(engine, m);
2460
2461 engine_dump_active_requests(engine, m);
2462
2463 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base);
2464 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2465 if (wakeref) {
2466 intel_engine_print_registers(engine, m);
2467 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2468 } else {
2469 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2470 }
2471
2472 intel_execlists_show_requests(engine, m, i915_request_show, 8);
2473
2474 drm_printf(m, "HWSP:\n");
2475 hexdump(m, engine->status_page.addr, PAGE_SIZE);
2476
2477 drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2478
2479 intel_engine_print_breadcrumbs(engine, m);
2480 }
2481
2482 /**
2483 * intel_engine_get_busy_time() - Return current accumulated engine busyness
2484 * @engine: engine to report on
2485 * @now: monotonic timestamp of sampling
2486 *
2487 * Returns accumulated time @engine was busy since engine stats were enabled.
2488 */
intel_engine_get_busy_time(struct intel_engine_cs * engine,ktime_t * now)2489 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2490 {
2491 return engine->busyness(engine, now);
2492 }
2493
2494 struct intel_context *
intel_engine_create_virtual(struct intel_engine_cs ** siblings,unsigned int count,unsigned long flags)2495 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2496 unsigned int count, unsigned long flags)
2497 {
2498 if (count == 0)
2499 return ERR_PTR(-EINVAL);
2500
2501 if (count == 1 && !(flags & FORCE_VIRTUAL))
2502 return intel_context_create(siblings[0]);
2503
2504 GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2505 return siblings[0]->cops->create_virtual(siblings, count, flags);
2506 }
2507
engine_execlist_find_hung_request(struct intel_engine_cs * engine)2508 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2509 {
2510 struct i915_request *request, *active = NULL;
2511
2512 /*
2513 * This search does not work in GuC submission mode. However, the GuC
2514 * will report the hanging context directly to the driver itself. So
2515 * the driver should never get here when in GuC mode.
2516 */
2517 GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2518
2519 /*
2520 * We are called by the error capture, reset and to dump engine
2521 * state at random points in time. In particular, note that neither is
2522 * crucially ordered with an interrupt. After a hang, the GPU is dead
2523 * and we assume that no more writes can happen (we waited long enough
2524 * for all writes that were in transaction to be flushed) - adding an
2525 * extra delay for a recent interrupt is pointless. Hence, we do
2526 * not need an engine->irq_seqno_barrier() before the seqno reads.
2527 * At all other times, we must assume the GPU is still running, but
2528 * we only care about the snapshot of this moment.
2529 */
2530 lockdep_assert_held(&engine->sched_engine->lock);
2531
2532 rcu_read_lock();
2533 request = execlists_active(&engine->execlists);
2534 if (request) {
2535 struct intel_timeline *tl = request->context->timeline;
2536
2537 list_for_each_entry_from_reverse(request, &tl->requests, link) {
2538 if (__i915_request_is_complete(request))
2539 break;
2540
2541 active = request;
2542 }
2543 }
2544 rcu_read_unlock();
2545 if (active)
2546 return active;
2547
2548 list_for_each_entry(request, &engine->sched_engine->requests,
2549 sched.link) {
2550 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2551 continue;
2552
2553 active = request;
2554 break;
2555 }
2556
2557 return active;
2558 }
2559
intel_engine_get_hung_entity(struct intel_engine_cs * engine,struct intel_context ** ce,struct i915_request ** rq)2560 void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2561 struct intel_context **ce, struct i915_request **rq)
2562 {
2563 unsigned long flags;
2564
2565 *ce = intel_engine_get_hung_context(engine);
2566 if (*ce) {
2567 intel_engine_clear_hung_context(engine);
2568
2569 *rq = intel_context_get_active_request(*ce);
2570 return;
2571 }
2572
2573 /*
2574 * Getting here with GuC enabled means it is a forced error capture
2575 * with no actual hang. So, no need to attempt the execlist search.
2576 */
2577 if (intel_uc_uses_guc_submission(&engine->gt->uc))
2578 return;
2579
2580 spin_lock_irqsave(&engine->sched_engine->lock, flags);
2581 *rq = engine_execlist_find_hung_request(engine);
2582 if (*rq)
2583 *rq = i915_request_get_rcu(*rq);
2584 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2585 }
2586
xehp_enable_ccs_engines(struct intel_engine_cs * engine)2587 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2588 {
2589 /*
2590 * If there are any non-fused-off CCS engines, we need to enable CCS
2591 * support in the RCU_MODE register. This only needs to be done once,
2592 * so for simplicity we'll take care of this in the RCS engine's
2593 * resume handler; since the RCS and all CCS engines belong to the
2594 * same reset domain and are reset together, this will also take care
2595 * of re-applying the setting after i915-triggered resets.
2596 */
2597 if (!CCS_MASK(engine->gt))
2598 return;
2599
2600 intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2601 _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2602 }
2603
2604 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2605 #include "mock_engine.c"
2606 #include "selftest_engine.c"
2607 #include "selftest_engine_cs.c"
2608 #endif
2609