1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2008-2015 Intel Corporation
4 */
5
6 #include <linux/highmem.h>
7
8 #include "display/intel_display.h"
9 #include "i915_drv.h"
10 #include "i915_reg.h"
11 #include "i915_scatterlist.h"
12 #include "i915_pvinfo.h"
13 #include "i915_vgpu.h"
14 #include "intel_gt_regs.h"
15 #include "intel_mchbar_regs.h"
16
17 /**
18 * DOC: fence register handling
19 *
20 * Important to avoid confusions: "fences" in the i915 driver are not execution
21 * fences used to track command completion but hardware detiler objects which
22 * wrap a given range of the global GTT. Each platform has only a fairly limited
23 * set of these objects.
24 *
25 * Fences are used to detile GTT memory mappings. They're also connected to the
26 * hardware frontbuffer render tracking and hence interact with frontbuffer
27 * compression. Furthermore on older platforms fences are required for tiled
28 * objects used by the display engine. They can also be used by the render
29 * engine - they're required for blitter commands and are optional for render
30 * commands. But on gen4+ both display (with the exception of fbc) and rendering
31 * have their own tiling state bits and don't need fences.
32 *
33 * Also note that fences only support X and Y tiling and hence can't be used for
34 * the fancier new tiling formats like W, Ys and Yf.
35 *
36 * Finally note that because fences are such a restricted resource they're
37 * dynamically associated with objects. Furthermore fence state is committed to
38 * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
39 * explicitly call i915_gem_object_get_fence() to synchronize fencing status
40 * for cpu access. Also note that some code wants an unfenced view, for those
41 * cases the fence can be removed forcefully with i915_gem_object_put_fence().
42 *
43 * Internally these functions will synchronize with userspace access by removing
44 * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
45 */
46
47 #define pipelined 0
48
fence_to_i915(struct i915_fence_reg * fence)49 static struct drm_i915_private *fence_to_i915(struct i915_fence_reg *fence)
50 {
51 return fence->ggtt->vm.i915;
52 }
53
fence_to_uncore(struct i915_fence_reg * fence)54 static struct intel_uncore *fence_to_uncore(struct i915_fence_reg *fence)
55 {
56 return fence->ggtt->vm.gt->uncore;
57 }
58
i965_write_fence_reg(struct i915_fence_reg * fence)59 static void i965_write_fence_reg(struct i915_fence_reg *fence)
60 {
61 i915_reg_t fence_reg_lo, fence_reg_hi;
62 int fence_pitch_shift;
63 u64 val;
64
65 if (GRAPHICS_VER(fence_to_i915(fence)) >= 6) {
66 fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
67 fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
68 fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
69
70 } else {
71 fence_reg_lo = FENCE_REG_965_LO(fence->id);
72 fence_reg_hi = FENCE_REG_965_HI(fence->id);
73 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
74 }
75
76 val = 0;
77 if (fence->tiling) {
78 unsigned int stride = fence->stride;
79
80 GEM_BUG_ON(!IS_ALIGNED(stride, 128));
81
82 val = fence->start + fence->size - I965_FENCE_PAGE;
83 val <<= 32;
84 val |= fence->start;
85 val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
86 if (fence->tiling == I915_TILING_Y)
87 val |= BIT(I965_FENCE_TILING_Y_SHIFT);
88 val |= I965_FENCE_REG_VALID;
89 }
90
91 if (!pipelined) {
92 struct intel_uncore *uncore = fence_to_uncore(fence);
93
94 /*
95 * To w/a incoherency with non-atomic 64-bit register updates,
96 * we split the 64-bit update into two 32-bit writes. In order
97 * for a partial fence not to be evaluated between writes, we
98 * precede the update with write to turn off the fence register,
99 * and only enable the fence as the last step.
100 *
101 * For extra levels of paranoia, we make sure each step lands
102 * before applying the next step.
103 */
104 intel_uncore_write_fw(uncore, fence_reg_lo, 0);
105 intel_uncore_posting_read_fw(uncore, fence_reg_lo);
106
107 intel_uncore_write_fw(uncore, fence_reg_hi, upper_32_bits(val));
108 intel_uncore_write_fw(uncore, fence_reg_lo, lower_32_bits(val));
109 intel_uncore_posting_read_fw(uncore, fence_reg_lo);
110 }
111 }
112
i915_write_fence_reg(struct i915_fence_reg * fence)113 static void i915_write_fence_reg(struct i915_fence_reg *fence)
114 {
115 u32 val;
116
117 val = 0;
118 if (fence->tiling) {
119 unsigned int stride = fence->stride;
120 unsigned int tiling = fence->tiling;
121 bool is_y_tiled = tiling == I915_TILING_Y;
122
123 if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence_to_i915(fence)))
124 stride /= 128;
125 else
126 stride /= 512;
127 GEM_BUG_ON(!is_power_of_2(stride));
128
129 val = fence->start;
130 if (is_y_tiled)
131 val |= BIT(I830_FENCE_TILING_Y_SHIFT);
132 val |= I915_FENCE_SIZE_BITS(fence->size);
133 val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
134
135 val |= I830_FENCE_REG_VALID;
136 }
137
138 if (!pipelined) {
139 struct intel_uncore *uncore = fence_to_uncore(fence);
140 i915_reg_t reg = FENCE_REG(fence->id);
141
142 intel_uncore_write_fw(uncore, reg, val);
143 intel_uncore_posting_read_fw(uncore, reg);
144 }
145 }
146
i830_write_fence_reg(struct i915_fence_reg * fence)147 static void i830_write_fence_reg(struct i915_fence_reg *fence)
148 {
149 u32 val;
150
151 val = 0;
152 if (fence->tiling) {
153 unsigned int stride = fence->stride;
154
155 val = fence->start;
156 if (fence->tiling == I915_TILING_Y)
157 val |= BIT(I830_FENCE_TILING_Y_SHIFT);
158 val |= I830_FENCE_SIZE_BITS(fence->size);
159 val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
160 val |= I830_FENCE_REG_VALID;
161 }
162
163 if (!pipelined) {
164 struct intel_uncore *uncore = fence_to_uncore(fence);
165 i915_reg_t reg = FENCE_REG(fence->id);
166
167 intel_uncore_write_fw(uncore, reg, val);
168 intel_uncore_posting_read_fw(uncore, reg);
169 }
170 }
171
fence_write(struct i915_fence_reg * fence)172 static void fence_write(struct i915_fence_reg *fence)
173 {
174 struct drm_i915_private *i915 = fence_to_i915(fence);
175
176 /*
177 * Previous access through the fence register is marshalled by
178 * the mb() inside the fault handlers (i915_gem_release_mmaps)
179 * and explicitly managed for internal users.
180 */
181
182 if (GRAPHICS_VER(i915) == 2)
183 i830_write_fence_reg(fence);
184 else if (GRAPHICS_VER(i915) == 3)
185 i915_write_fence_reg(fence);
186 else
187 i965_write_fence_reg(fence);
188
189 /*
190 * Access through the fenced region afterwards is
191 * ordered by the posting reads whilst writing the registers.
192 */
193 }
194
gpu_uses_fence_registers(struct i915_fence_reg * fence)195 static bool gpu_uses_fence_registers(struct i915_fence_reg *fence)
196 {
197 return GRAPHICS_VER(fence_to_i915(fence)) < 4;
198 }
199
fence_update(struct i915_fence_reg * fence,struct i915_vma * vma)200 static int fence_update(struct i915_fence_reg *fence,
201 struct i915_vma *vma)
202 {
203 struct i915_ggtt *ggtt = fence->ggtt;
204 struct intel_uncore *uncore = fence_to_uncore(fence);
205 intel_wakeref_t wakeref;
206 struct i915_vma *old;
207 int ret;
208
209 fence->tiling = 0;
210 if (vma) {
211 GEM_BUG_ON(!i915_gem_object_get_stride(vma->obj) ||
212 !i915_gem_object_get_tiling(vma->obj));
213
214 if (!i915_vma_is_map_and_fenceable(vma))
215 return -EINVAL;
216
217 if (gpu_uses_fence_registers(fence)) {
218 /* implicit 'unfenced' GPU blits */
219 ret = i915_vma_sync(vma);
220 if (ret)
221 return ret;
222 }
223
224 GEM_BUG_ON(vma->fence_size > i915_vma_size(vma));
225 fence->start = i915_ggtt_offset(vma);
226 fence->size = vma->fence_size;
227 fence->stride = i915_gem_object_get_stride(vma->obj);
228 fence->tiling = i915_gem_object_get_tiling(vma->obj);
229 }
230 WRITE_ONCE(fence->dirty, false);
231
232 old = xchg(&fence->vma, NULL);
233 if (old) {
234 /* XXX Ideally we would move the waiting to outside the mutex */
235 ret = i915_active_wait(&fence->active);
236 if (ret) {
237 fence->vma = old;
238 return ret;
239 }
240
241 i915_vma_flush_writes(old);
242
243 /*
244 * Ensure that all userspace CPU access is completed before
245 * stealing the fence.
246 */
247 if (old != vma) {
248 GEM_BUG_ON(old->fence != fence);
249 i915_vma_revoke_mmap(old);
250 old->fence = NULL;
251 }
252
253 list_move(&fence->link, &ggtt->fence_list);
254 }
255
256 /*
257 * We only need to update the register itself if the device is awake.
258 * If the device is currently powered down, we will defer the write
259 * to the runtime resume, see intel_ggtt_restore_fences().
260 *
261 * This only works for removing the fence register, on acquisition
262 * the caller must hold the rpm wakeref. The fence register must
263 * be cleared before we can use any other fences to ensure that
264 * the new fences do not overlap the elided clears, confusing HW.
265 */
266 wakeref = intel_runtime_pm_get_if_in_use(uncore->rpm);
267 if (!wakeref) {
268 GEM_BUG_ON(vma);
269 return 0;
270 }
271
272 WRITE_ONCE(fence->vma, vma);
273 fence_write(fence);
274
275 if (vma) {
276 vma->fence = fence;
277 list_move_tail(&fence->link, &ggtt->fence_list);
278 }
279
280 intel_runtime_pm_put(uncore->rpm, wakeref);
281 return 0;
282 }
283
284 /**
285 * i915_vma_revoke_fence - force-remove fence for a VMA
286 * @vma: vma to map linearly (not through a fence reg)
287 *
288 * This function force-removes any fence from the given object, which is useful
289 * if the kernel wants to do untiled GTT access.
290 */
i915_vma_revoke_fence(struct i915_vma * vma)291 void i915_vma_revoke_fence(struct i915_vma *vma)
292 {
293 struct i915_fence_reg *fence = vma->fence;
294 intel_wakeref_t wakeref;
295
296 lockdep_assert_held(&vma->vm->mutex);
297 if (!fence)
298 return;
299
300 GEM_BUG_ON(fence->vma != vma);
301 i915_active_wait(&fence->active);
302 GEM_BUG_ON(!i915_active_is_idle(&fence->active));
303 GEM_BUG_ON(atomic_read(&fence->pin_count));
304
305 fence->tiling = 0;
306 WRITE_ONCE(fence->vma, NULL);
307 vma->fence = NULL;
308
309 /*
310 * Skip the write to HW if and only if the device is currently
311 * suspended.
312 *
313 * If the driver does not currently hold a wakeref (if_in_use == 0),
314 * the device may currently be runtime suspended, or it may be woken
315 * up before the suspend takes place. If the device is not suspended
316 * (powered down) and we skip clearing the fence register, the HW is
317 * left in an undefined state where we may end up with multiple
318 * registers overlapping.
319 */
320 with_intel_runtime_pm_if_active(fence_to_uncore(fence)->rpm, wakeref)
321 fence_write(fence);
322 }
323
fence_is_active(const struct i915_fence_reg * fence)324 static bool fence_is_active(const struct i915_fence_reg *fence)
325 {
326 return fence->vma && i915_vma_is_active(fence->vma);
327 }
328
fence_find(struct i915_ggtt * ggtt)329 static struct i915_fence_reg *fence_find(struct i915_ggtt *ggtt)
330 {
331 struct i915_fence_reg *active = NULL;
332 struct i915_fence_reg *fence, *fn;
333
334 list_for_each_entry_safe(fence, fn, &ggtt->fence_list, link) {
335 GEM_BUG_ON(fence->vma && fence->vma->fence != fence);
336
337 if (fence == active) /* now seen this fence twice */
338 active = ERR_PTR(-EAGAIN);
339
340 /* Prefer idle fences so we do not have to wait on the GPU */
341 if (active != ERR_PTR(-EAGAIN) && fence_is_active(fence)) {
342 if (!active)
343 active = fence;
344
345 list_move_tail(&fence->link, &ggtt->fence_list);
346 continue;
347 }
348
349 if (atomic_read(&fence->pin_count))
350 continue;
351
352 return fence;
353 }
354
355 /* Wait for completion of pending flips which consume fences */
356 if (intel_has_pending_fb_unpin(ggtt->vm.i915))
357 return ERR_PTR(-EAGAIN);
358
359 return ERR_PTR(-ENOBUFS);
360 }
361
__i915_vma_pin_fence(struct i915_vma * vma)362 int __i915_vma_pin_fence(struct i915_vma *vma)
363 {
364 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
365 struct i915_fence_reg *fence;
366 struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
367 int err;
368
369 lockdep_assert_held(&vma->vm->mutex);
370
371 /* Just update our place in the LRU if our fence is getting reused. */
372 if (vma->fence) {
373 fence = vma->fence;
374 GEM_BUG_ON(fence->vma != vma);
375 atomic_inc(&fence->pin_count);
376 if (!fence->dirty) {
377 list_move_tail(&fence->link, &ggtt->fence_list);
378 return 0;
379 }
380 } else if (set) {
381 fence = fence_find(ggtt);
382 if (IS_ERR(fence))
383 return PTR_ERR(fence);
384
385 GEM_BUG_ON(atomic_read(&fence->pin_count));
386 atomic_inc(&fence->pin_count);
387 } else {
388 return 0;
389 }
390
391 err = fence_update(fence, set);
392 if (err)
393 goto out_unpin;
394
395 GEM_BUG_ON(fence->vma != set);
396 GEM_BUG_ON(vma->fence != (set ? fence : NULL));
397
398 if (set)
399 return 0;
400
401 out_unpin:
402 atomic_dec(&fence->pin_count);
403 return err;
404 }
405
406 /**
407 * i915_vma_pin_fence - set up fencing for a vma
408 * @vma: vma to map through a fence reg
409 *
410 * When mapping objects through the GTT, userspace wants to be able to write
411 * to them without having to worry about swizzling if the object is tiled.
412 * This function walks the fence regs looking for a free one for @obj,
413 * stealing one if it can't find any.
414 *
415 * It then sets up the reg based on the object's properties: address, pitch
416 * and tiling format.
417 *
418 * For an untiled surface, this removes any existing fence.
419 *
420 * Returns:
421 *
422 * 0 on success, negative error code on failure.
423 */
i915_vma_pin_fence(struct i915_vma * vma)424 int i915_vma_pin_fence(struct i915_vma *vma)
425 {
426 int err;
427
428 if (!vma->fence && !i915_gem_object_is_tiled(vma->obj))
429 return 0;
430
431 /*
432 * Note that we revoke fences on runtime suspend. Therefore the user
433 * must keep the device awake whilst using the fence.
434 */
435 assert_rpm_wakelock_held(vma->vm->gt->uncore->rpm);
436 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
437
438 err = mutex_lock_interruptible(&vma->vm->mutex);
439 if (err)
440 return err;
441
442 err = __i915_vma_pin_fence(vma);
443 mutex_unlock(&vma->vm->mutex);
444
445 return err;
446 }
447
448 /**
449 * i915_reserve_fence - Reserve a fence for vGPU
450 * @ggtt: Global GTT
451 *
452 * This function walks the fence regs looking for a free one and remove
453 * it from the fence_list. It is used to reserve fence for vGPU to use.
454 */
i915_reserve_fence(struct i915_ggtt * ggtt)455 struct i915_fence_reg *i915_reserve_fence(struct i915_ggtt *ggtt)
456 {
457 struct i915_fence_reg *fence;
458 int count;
459 int ret;
460
461 lockdep_assert_held(&ggtt->vm.mutex);
462
463 /* Keep at least one fence available for the display engine. */
464 count = 0;
465 list_for_each_entry(fence, &ggtt->fence_list, link)
466 count += !atomic_read(&fence->pin_count);
467 if (count <= 1)
468 return ERR_PTR(-ENOSPC);
469
470 fence = fence_find(ggtt);
471 if (IS_ERR(fence))
472 return fence;
473
474 if (fence->vma) {
475 /* Force-remove fence from VMA */
476 ret = fence_update(fence, NULL);
477 if (ret)
478 return ERR_PTR(ret);
479 }
480
481 list_del(&fence->link);
482
483 return fence;
484 }
485
486 /**
487 * i915_unreserve_fence - Reclaim a reserved fence
488 * @fence: the fence reg
489 *
490 * This function add a reserved fence register from vGPU to the fence_list.
491 */
i915_unreserve_fence(struct i915_fence_reg * fence)492 void i915_unreserve_fence(struct i915_fence_reg *fence)
493 {
494 struct i915_ggtt *ggtt = fence->ggtt;
495
496 lockdep_assert_held(&ggtt->vm.mutex);
497
498 list_add(&fence->link, &ggtt->fence_list);
499 }
500
501 /**
502 * intel_ggtt_restore_fences - restore fence state
503 * @ggtt: Global GTT
504 *
505 * Restore the hw fence state to match the software tracking again, to be called
506 * after a gpu reset and on resume. Note that on runtime suspend we only cancel
507 * the fences, to be reacquired by the user later.
508 */
intel_ggtt_restore_fences(struct i915_ggtt * ggtt)509 void intel_ggtt_restore_fences(struct i915_ggtt *ggtt)
510 {
511 int i;
512
513 for (i = 0; i < ggtt->num_fences; i++)
514 fence_write(&ggtt->fence_regs[i]);
515 }
516
517 /**
518 * DOC: tiling swizzling details
519 *
520 * The idea behind tiling is to increase cache hit rates by rearranging
521 * pixel data so that a group of pixel accesses are in the same cacheline.
522 * Performance improvement from doing this on the back/depth buffer are on
523 * the order of 30%.
524 *
525 * Intel architectures make this somewhat more complicated, though, by
526 * adjustments made to addressing of data when the memory is in interleaved
527 * mode (matched pairs of DIMMS) to improve memory bandwidth.
528 * For interleaved memory, the CPU sends every sequential 64 bytes
529 * to an alternate memory channel so it can get the bandwidth from both.
530 *
531 * The GPU also rearranges its accesses for increased bandwidth to interleaved
532 * memory, and it matches what the CPU does for non-tiled. However, when tiled
533 * it does it a little differently, since one walks addresses not just in the
534 * X direction but also Y. So, along with alternating channels when bit
535 * 6 of the address flips, it also alternates when other bits flip -- Bits 9
536 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
537 * are common to both the 915 and 965-class hardware.
538 *
539 * The CPU also sometimes XORs in higher bits as well, to improve
540 * bandwidth doing strided access like we do so frequently in graphics. This
541 * is called "Channel XOR Randomization" in the MCH documentation. The result
542 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
543 * decode.
544 *
545 * All of this bit 6 XORing has an effect on our memory management,
546 * as we need to make sure that the 3d driver can correctly address object
547 * contents.
548 *
549 * If we don't have interleaved memory, all tiling is safe and no swizzling is
550 * required.
551 *
552 * When bit 17 is XORed in, we simply refuse to tile at all. Bit
553 * 17 is not just a page offset, so as we page an object out and back in,
554 * individual pages in it will have different bit 17 addresses, resulting in
555 * each 64 bytes being swapped with its neighbor!
556 *
557 * Otherwise, if interleaved, we have to tell the 3d driver what the address
558 * swizzling it needs to do is, since it's writing with the CPU to the pages
559 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
560 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
561 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
562 * to match what the GPU expects.
563 */
564
565 /**
566 * detect_bit_6_swizzle - detect bit 6 swizzling pattern
567 * @ggtt: Global GGTT
568 *
569 * Detects bit 6 swizzling of address lookup between IGD access and CPU
570 * access through main memory.
571 */
detect_bit_6_swizzle(struct i915_ggtt * ggtt)572 static void detect_bit_6_swizzle(struct i915_ggtt *ggtt)
573 {
574 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
575 struct drm_i915_private *i915 = ggtt->vm.i915;
576 u32 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
577 u32 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
578
579 if (GRAPHICS_VER(i915) >= 8 || IS_VALLEYVIEW(i915)) {
580 /*
581 * On BDW+, swizzling is not used. We leave the CPU memory
582 * controller in charge of optimizing memory accesses without
583 * the extra address manipulation GPU side.
584 *
585 * VLV and CHV don't have GPU swizzling.
586 */
587 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
588 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
589 } else if (GRAPHICS_VER(i915) >= 6) {
590 if (i915->preserve_bios_swizzle) {
591 if (intel_uncore_read(uncore, DISP_ARB_CTL) &
592 DISP_TILE_SURFACE_SWIZZLING) {
593 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
594 swizzle_y = I915_BIT_6_SWIZZLE_9;
595 } else {
596 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
597 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
598 }
599 } else {
600 u32 dimm_c0, dimm_c1;
601
602 dimm_c0 = intel_uncore_read(uncore, MAD_DIMM_C0);
603 dimm_c1 = intel_uncore_read(uncore, MAD_DIMM_C1);
604 dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
605 dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
606 /*
607 * Enable swizzling when the channels are populated
608 * with identically sized dimms. We don't need to check
609 * the 3rd channel because no cpu with gpu attached
610 * ships in that configuration. Also, swizzling only
611 * makes sense for 2 channels anyway.
612 */
613 if (dimm_c0 == dimm_c1) {
614 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
615 swizzle_y = I915_BIT_6_SWIZZLE_9;
616 } else {
617 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
618 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
619 }
620 }
621 } else if (GRAPHICS_VER(i915) == 5) {
622 /*
623 * On Ironlake whatever DRAM config, GPU always do
624 * same swizzling setup.
625 */
626 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
627 swizzle_y = I915_BIT_6_SWIZZLE_9;
628 } else if (GRAPHICS_VER(i915) == 2) {
629 /*
630 * As far as we know, the 865 doesn't have these bit 6
631 * swizzling issues.
632 */
633 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
634 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
635 } else if (IS_G45(i915) || IS_I965G(i915) || IS_G33(i915)) {
636 /*
637 * The 965, G33, and newer, have a very flexible memory
638 * configuration. It will enable dual-channel mode
639 * (interleaving) on as much memory as it can, and the GPU
640 * will additionally sometimes enable different bit 6
641 * swizzling for tiled objects from the CPU.
642 *
643 * Here's what I found on the G965:
644 * slot fill memory size swizzling
645 * 0A 0B 1A 1B 1-ch 2-ch
646 * 512 0 0 0 512 0 O
647 * 512 0 512 0 16 1008 X
648 * 512 0 0 512 16 1008 X
649 * 0 512 0 512 16 1008 X
650 * 1024 1024 1024 0 2048 1024 O
651 *
652 * We could probably detect this based on either the DRB
653 * matching, which was the case for the swizzling required in
654 * the table above, or from the 1-ch value being less than
655 * the minimum size of a rank.
656 *
657 * Reports indicate that the swizzling actually
658 * varies depending upon page placement inside the
659 * channels, i.e. we see swizzled pages where the
660 * banks of memory are paired and unswizzled on the
661 * uneven portion, so leave that as unknown.
662 */
663 if (intel_uncore_read16(uncore, C0DRB3_BW) ==
664 intel_uncore_read16(uncore, C1DRB3_BW)) {
665 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
666 swizzle_y = I915_BIT_6_SWIZZLE_9;
667 }
668 } else {
669 u32 dcc = intel_uncore_read(uncore, DCC);
670
671 /*
672 * On 9xx chipsets, channel interleave by the CPU is
673 * determined by DCC. For single-channel, neither the CPU
674 * nor the GPU do swizzling. For dual channel interleaved,
675 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
676 * 9 for Y tiled. The CPU's interleave is independent, and
677 * can be based on either bit 11 (haven't seen this yet) or
678 * bit 17 (common).
679 */
680 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
681 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
682 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
683 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
684 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
685 break;
686 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
687 if (dcc & DCC_CHANNEL_XOR_DISABLE) {
688 /*
689 * This is the base swizzling by the GPU for
690 * tiled buffers.
691 */
692 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
693 swizzle_y = I915_BIT_6_SWIZZLE_9;
694 } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
695 /* Bit 11 swizzling by the CPU in addition. */
696 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
697 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
698 } else {
699 /* Bit 17 swizzling by the CPU in addition. */
700 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
701 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
702 }
703 break;
704 }
705
706 /* check for L-shaped memory aka modified enhanced addressing */
707 if (GRAPHICS_VER(i915) == 4 &&
708 !(intel_uncore_read(uncore, DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
709 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
710 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
711 }
712
713 if (dcc == 0xffffffff) {
714 drm_err(&i915->drm, "Couldn't read from MCHBAR. "
715 "Disabling tiling.\n");
716 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
717 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
718 }
719 }
720
721 if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
722 swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
723 /*
724 * Userspace likes to explode if it sees unknown swizzling,
725 * so lie. We will finish the lie when reporting through
726 * the get-tiling-ioctl by reporting the physical swizzle
727 * mode as unknown instead.
728 *
729 * As we don't strictly know what the swizzling is, it may be
730 * bit17 dependent, and so we need to also prevent the pages
731 * from being moved.
732 */
733 i915->gem_quirks |= GEM_QUIRK_PIN_SWIZZLED_PAGES;
734 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
735 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
736 }
737
738 to_gt(i915)->ggtt->bit_6_swizzle_x = swizzle_x;
739 to_gt(i915)->ggtt->bit_6_swizzle_y = swizzle_y;
740 }
741
742 /*
743 * Swap every 64 bytes of this page around, to account for it having a new
744 * bit 17 of its physical address and therefore being interpreted differently
745 * by the GPU.
746 */
swizzle_page(struct vm_page * page)747 static void swizzle_page(struct vm_page *page)
748 {
749 char temp[64];
750 char *vaddr;
751 int i;
752
753 vaddr = kmap(page);
754
755 for (i = 0; i < PAGE_SIZE; i += 128) {
756 memcpy(temp, &vaddr[i], 64);
757 memcpy(&vaddr[i], &vaddr[i + 64], 64);
758 memcpy(&vaddr[i + 64], temp, 64);
759 }
760
761 #ifdef __linux__
762 kunmap(page);
763 #else
764 kunmap_va(vaddr);
765 #endif
766 }
767
768 /**
769 * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
770 * @obj: i915 GEM buffer object
771 * @pages: the scattergather list of physical pages
772 *
773 * This function fixes up the swizzling in case any page frame number for this
774 * object has changed in bit 17 since that state has been saved with
775 * i915_gem_object_save_bit_17_swizzle().
776 *
777 * This is called when pinning backing storage again, since the kernel is free
778 * to move unpinned backing storage around (either by directly moving pages or
779 * by swapping them out and back in again).
780 */
781 void
i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object * obj,struct sg_table * pages)782 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
783 struct sg_table *pages)
784 {
785 struct sgt_iter sgt_iter;
786 struct vm_page *page;
787 int i;
788
789 if (obj->bit_17 == NULL)
790 return;
791
792 i = 0;
793 for_each_sgt_page(page, sgt_iter, pages) {
794 char new_bit_17 = page_to_phys(page) >> 17;
795
796 if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
797 swizzle_page(page);
798 set_page_dirty(page);
799 }
800
801 i++;
802 }
803 }
804
805 /**
806 * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
807 * @obj: i915 GEM buffer object
808 * @pages: the scattergather list of physical pages
809 *
810 * This function saves the bit 17 of each page frame number so that swizzling
811 * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
812 * be called before the backing storage can be unpinned.
813 */
814 void
i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object * obj,struct sg_table * pages)815 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
816 struct sg_table *pages)
817 {
818 const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
819 struct sgt_iter sgt_iter;
820 struct vm_page *page;
821 int i;
822
823 if (obj->bit_17 == NULL) {
824 obj->bit_17 = bitmap_zalloc(page_count, GFP_KERNEL);
825 if (obj->bit_17 == NULL) {
826 drm_err(obj->base.dev,
827 "Failed to allocate memory for bit 17 record\n");
828 return;
829 }
830 }
831
832 i = 0;
833
834 for_each_sgt_page(page, sgt_iter, pages) {
835 if (page_to_phys(page) & (1 << 17))
836 __set_bit(i, obj->bit_17);
837 else
838 __clear_bit(i, obj->bit_17);
839 i++;
840 }
841 }
842
intel_ggtt_init_fences(struct i915_ggtt * ggtt)843 void intel_ggtt_init_fences(struct i915_ggtt *ggtt)
844 {
845 struct drm_i915_private *i915 = ggtt->vm.i915;
846 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
847 int num_fences;
848 int i;
849
850 INIT_LIST_HEAD(&ggtt->fence_list);
851 INIT_LIST_HEAD(&ggtt->userfault_list);
852
853 detect_bit_6_swizzle(ggtt);
854
855 if (!i915_ggtt_has_aperture(ggtt))
856 num_fences = 0;
857 else if (GRAPHICS_VER(i915) >= 7 &&
858 !(IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)))
859 num_fences = 32;
860 else if (GRAPHICS_VER(i915) >= 4 ||
861 IS_I945G(i915) || IS_I945GM(i915) ||
862 IS_G33(i915) || IS_PINEVIEW(i915))
863 num_fences = 16;
864 else
865 num_fences = 8;
866
867 if (intel_vgpu_active(i915))
868 num_fences = intel_uncore_read(uncore,
869 vgtif_reg(avail_rs.fence_num));
870 ggtt->fence_regs = kcalloc(num_fences,
871 sizeof(*ggtt->fence_regs),
872 GFP_KERNEL);
873 if (!ggtt->fence_regs)
874 num_fences = 0;
875
876 /* Initialize fence registers to zero */
877 for (i = 0; i < num_fences; i++) {
878 struct i915_fence_reg *fence = &ggtt->fence_regs[i];
879
880 i915_active_init(&fence->active, NULL, NULL, 0);
881 fence->ggtt = ggtt;
882 fence->id = i;
883 list_add_tail(&fence->link, &ggtt->fence_list);
884 }
885 ggtt->num_fences = num_fences;
886
887 intel_ggtt_restore_fences(ggtt);
888 }
889
intel_ggtt_fini_fences(struct i915_ggtt * ggtt)890 void intel_ggtt_fini_fences(struct i915_ggtt *ggtt)
891 {
892 int i;
893
894 for (i = 0; i < ggtt->num_fences; i++) {
895 struct i915_fence_reg *fence = &ggtt->fence_regs[i];
896
897 i915_active_fini(&fence->active);
898 }
899
900 kfree(ggtt->fence_regs);
901 }
902
intel_gt_init_swizzling(struct intel_gt * gt)903 void intel_gt_init_swizzling(struct intel_gt *gt)
904 {
905 struct drm_i915_private *i915 = gt->i915;
906 struct intel_uncore *uncore = gt->uncore;
907
908 if (GRAPHICS_VER(i915) < 5 ||
909 to_gt(i915)->ggtt->bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
910 return;
911
912 intel_uncore_rmw(uncore, DISP_ARB_CTL, 0, DISP_TILE_SURFACE_SWIZZLING);
913
914 if (GRAPHICS_VER(i915) == 5)
915 return;
916
917 intel_uncore_rmw(uncore, TILECTL, 0, TILECTL_SWZCTL);
918
919 if (GRAPHICS_VER(i915) == 6)
920 intel_uncore_write(uncore,
921 ARB_MODE,
922 _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
923 else if (GRAPHICS_VER(i915) == 7)
924 intel_uncore_write(uncore,
925 ARB_MODE,
926 _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
927 else if (GRAPHICS_VER(i915) == 8)
928 intel_uncore_write(uncore,
929 GAMTARBMODE,
930 _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
931 else
932 MISSING_CASE(GRAPHICS_VER(i915));
933 }
934