1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2020 Intel Corporation
4 */
5
6 #include <asm/set_memory.h>
7 #include <asm/smp.h>
8 #include <linux/types.h>
9 #include <linux/stop_machine.h>
10
11 #include <drm/drm_managed.h>
12 #include <drm/i915_drm.h>
13 #include <drm/intel-gtt.h>
14
15 #include "display/intel_display.h"
16 #include "gem/i915_gem_lmem.h"
17
18 #include "intel_context.h"
19 #include "intel_ggtt_gmch.h"
20 #include "intel_gpu_commands.h"
21 #include "intel_gt.h"
22 #include "intel_gt_regs.h"
23 #include "intel_pci_config.h"
24 #include "intel_ring.h"
25 #include "i915_drv.h"
26 #include "i915_pci.h"
27 #include "i915_reg.h"
28 #include "i915_request.h"
29 #include "i915_scatterlist.h"
30 #include "i915_utils.h"
31 #include "i915_vgpu.h"
32
33 #include "intel_gtt.h"
34 #include "gen8_ppgtt.h"
35 #include "intel_engine_pm.h"
36
i915_ggtt_color_adjust(const struct drm_mm_node * node,unsigned long color,u64 * start,u64 * end)37 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
38 unsigned long color,
39 u64 *start,
40 u64 *end)
41 {
42 if (i915_node_color_differs(node, color))
43 *start += I915_GTT_PAGE_SIZE;
44
45 /*
46 * Also leave a space between the unallocated reserved node after the
47 * GTT and any objects within the GTT, i.e. we use the color adjustment
48 * to insert a guard page to prevent prefetches crossing over the
49 * GTT boundary.
50 */
51 node = list_next_entry(node, node_list);
52 if (node->color != color)
53 *end -= I915_GTT_PAGE_SIZE;
54 }
55
ggtt_init_hw(struct i915_ggtt * ggtt)56 static int ggtt_init_hw(struct i915_ggtt *ggtt)
57 {
58 struct drm_i915_private *i915 = ggtt->vm.i915;
59
60 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
61
62 ggtt->vm.is_ggtt = true;
63
64 /* Only VLV supports read-only GGTT mappings */
65 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
66
67 if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
68 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
69
70 if (ggtt->mappable_end) {
71 #ifdef __linux__
72 if (!io_mapping_init_wc(&ggtt->iomap,
73 ggtt->gmadr.start,
74 ggtt->mappable_end)) {
75 ggtt->vm.cleanup(&ggtt->vm);
76 return -EIO;
77 }
78
79 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
80 ggtt->mappable_end);
81 #else
82 bus_space_handle_t bsh;
83 int i;
84
85 /* XXX would be a lot nicer to get agp info before now */
86 uvm_page_physload(atop(ggtt->gmadr.start),
87 atop(ggtt->gmadr.start + ggtt->mappable_end),
88 atop(ggtt->gmadr.start),
89 atop(ggtt->gmadr.start + ggtt->mappable_end),
90 PHYSLOAD_DEVICE);
91 /* array of vm pages that physload introduced. */
92 i915->pgs = PHYS_TO_VM_PAGE(ggtt->gmadr.start);
93 KASSERT(i915->pgs != NULL);
94 /*
95 * XXX mark all pages write combining so user mmaps get the
96 * right bits. We really need a proper MI api for doing this,
97 * but for now this allows us to use PAT where available.
98 */
99 for (i = 0; i < atop(ggtt->mappable_end); i++)
100 atomic_setbits_int(&(i915->pgs[i].pg_flags),
101 PG_PMAP_WC);
102 if (bus_space_map(i915->bst, ggtt->gmadr.start,
103 ggtt->mappable_end,
104 BUS_SPACE_MAP_LINEAR | BUS_SPACE_MAP_PREFETCHABLE, &bsh))
105 panic("can't map aperture");
106 ggtt->iomap.base = ggtt->gmadr.start;
107 ggtt->iomap.size = ggtt->mappable_end;
108 ggtt->iomap.iomem = bus_space_vaddr(i915->bst, bsh);
109 #endif
110 }
111
112 intel_ggtt_init_fences(ggtt);
113
114 return 0;
115 }
116
117 /**
118 * i915_ggtt_init_hw - Initialize GGTT hardware
119 * @i915: i915 device
120 */
i915_ggtt_init_hw(struct drm_i915_private * i915)121 int i915_ggtt_init_hw(struct drm_i915_private *i915)
122 {
123 int ret;
124
125 /*
126 * Note that we use page colouring to enforce a guard page at the
127 * end of the address space. This is required as the CS may prefetch
128 * beyond the end of the batch buffer, across the page boundary,
129 * and beyond the end of the GTT if we do not provide a guard.
130 */
131 ret = ggtt_init_hw(to_gt(i915)->ggtt);
132 if (ret)
133 return ret;
134
135 return 0;
136 }
137
138 /**
139 * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM
140 * @vm: The VM to suspend the mappings for
141 *
142 * Suspend the memory mappings for all objects mapped to HW via the GGTT or a
143 * DPT page table.
144 */
i915_ggtt_suspend_vm(struct i915_address_space * vm)145 void i915_ggtt_suspend_vm(struct i915_address_space *vm)
146 {
147 struct i915_vma *vma, *vn;
148 int save_skip_rewrite;
149
150 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
151
152 retry:
153 i915_gem_drain_freed_objects(vm->i915);
154
155 mutex_lock(&vm->mutex);
156
157 /*
158 * Skip rewriting PTE on VMA unbind.
159 * FIXME: Use an argument to i915_vma_unbind() instead?
160 */
161 save_skip_rewrite = vm->skip_pte_rewrite;
162 vm->skip_pte_rewrite = true;
163
164 list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
165 struct drm_i915_gem_object *obj = vma->obj;
166
167 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
168
169 if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
170 continue;
171
172 /* unlikely to race when GPU is idle, so no worry about slowpath.. */
173 if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) {
174 /*
175 * No dead objects should appear here, GPU should be
176 * completely idle, and userspace suspended
177 */
178 i915_gem_object_get(obj);
179
180 mutex_unlock(&vm->mutex);
181
182 i915_gem_object_lock(obj, NULL);
183 GEM_WARN_ON(i915_vma_unbind(vma));
184 i915_gem_object_unlock(obj);
185 i915_gem_object_put(obj);
186
187 vm->skip_pte_rewrite = save_skip_rewrite;
188 goto retry;
189 }
190
191 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
192 i915_vma_wait_for_bind(vma);
193
194 __i915_vma_evict(vma, false);
195 drm_mm_remove_node(&vma->node);
196 }
197
198 i915_gem_object_unlock(obj);
199 }
200
201 vm->clear_range(vm, 0, vm->total);
202
203 vm->skip_pte_rewrite = save_skip_rewrite;
204
205 mutex_unlock(&vm->mutex);
206 }
207
i915_ggtt_suspend(struct i915_ggtt * ggtt)208 void i915_ggtt_suspend(struct i915_ggtt *ggtt)
209 {
210 struct intel_gt *gt;
211
212 i915_ggtt_suspend_vm(&ggtt->vm);
213 ggtt->invalidate(ggtt);
214
215 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
216 intel_gt_check_and_clear_faults(gt);
217 }
218
gen6_ggtt_invalidate(struct i915_ggtt * ggtt)219 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
220 {
221 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
222
223 spin_lock_irq(&uncore->lock);
224 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
225 intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
226 spin_unlock_irq(&uncore->lock);
227 }
228
needs_wc_ggtt_mapping(struct drm_i915_private * i915)229 static bool needs_wc_ggtt_mapping(struct drm_i915_private *i915)
230 {
231 /*
232 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range
233 * will be dropped. For WC mappings in general we have 64 byte burst
234 * writes when the WC buffer is flushed, so we can't use it, but have to
235 * resort to an uncached mapping. The WC issue is easily caught by the
236 * readback check when writing GTT PTE entries.
237 */
238 if (!IS_GEN9_LP(i915) && GRAPHICS_VER(i915) < 11)
239 return true;
240
241 return false;
242 }
243
gen8_ggtt_invalidate(struct i915_ggtt * ggtt)244 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
245 {
246 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
247
248 /*
249 * Note that as an uncached mmio write, this will flush the
250 * WCB of the writes into the GGTT before it triggers the invalidate.
251 *
252 * Only perform this when GGTT is mapped as WC, see ggtt_probe_common().
253 */
254 if (needs_wc_ggtt_mapping(ggtt->vm.i915))
255 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6,
256 GFX_FLSH_CNTL_EN);
257 }
258
guc_ggtt_invalidate(struct i915_ggtt * ggtt)259 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
260 {
261 struct drm_i915_private *i915 = ggtt->vm.i915;
262
263 gen8_ggtt_invalidate(ggtt);
264
265 if (GRAPHICS_VER(i915) >= 12) {
266 struct intel_gt *gt;
267
268 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
269 intel_uncore_write_fw(gt->uncore,
270 GEN12_GUC_TLB_INV_CR,
271 GEN12_GUC_TLB_INV_CR_INVALIDATE);
272 } else {
273 intel_uncore_write_fw(ggtt->vm.gt->uncore,
274 GEN8_GTCR, GEN8_GTCR_INVALIDATE);
275 }
276 }
277
mtl_ggtt_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)278 static u64 mtl_ggtt_pte_encode(dma_addr_t addr,
279 unsigned int pat_index,
280 u32 flags)
281 {
282 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
283
284 WARN_ON_ONCE(addr & ~GEN12_GGTT_PTE_ADDR_MASK);
285
286 if (flags & PTE_LM)
287 pte |= GEN12_GGTT_PTE_LM;
288
289 if (pat_index & BIT(0))
290 pte |= MTL_GGTT_PTE_PAT0;
291
292 if (pat_index & BIT(1))
293 pte |= MTL_GGTT_PTE_PAT1;
294
295 return pte;
296 }
297
gen8_ggtt_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)298 u64 gen8_ggtt_pte_encode(dma_addr_t addr,
299 unsigned int pat_index,
300 u32 flags)
301 {
302 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
303
304 if (flags & PTE_LM)
305 pte |= GEN12_GGTT_PTE_LM;
306
307 return pte;
308 }
309
should_update_ggtt_with_bind(struct i915_ggtt * ggtt)310 static bool should_update_ggtt_with_bind(struct i915_ggtt *ggtt)
311 {
312 struct intel_gt *gt = ggtt->vm.gt;
313
314 return intel_gt_is_bind_context_ready(gt);
315 }
316
gen8_ggtt_bind_get_ce(struct i915_ggtt * ggtt)317 static struct intel_context *gen8_ggtt_bind_get_ce(struct i915_ggtt *ggtt)
318 {
319 struct intel_context *ce;
320 struct intel_gt *gt = ggtt->vm.gt;
321
322 if (intel_gt_is_wedged(gt))
323 return NULL;
324
325 ce = gt->engine[BCS0]->bind_context;
326 GEM_BUG_ON(!ce);
327
328 /*
329 * If the GT is not awake already at this stage then fallback
330 * to pci based GGTT update otherwise __intel_wakeref_get_first()
331 * would conflict with fs_reclaim trying to allocate memory while
332 * doing rpm_resume().
333 */
334 if (!intel_gt_pm_get_if_awake(gt))
335 return NULL;
336
337 intel_engine_pm_get(ce->engine);
338
339 return ce;
340 }
341
gen8_ggtt_bind_put_ce(struct intel_context * ce)342 static void gen8_ggtt_bind_put_ce(struct intel_context *ce)
343 {
344 intel_engine_pm_put(ce->engine);
345 intel_gt_pm_put(ce->engine->gt);
346 }
347
gen8_ggtt_bind_ptes(struct i915_ggtt * ggtt,u32 offset,struct sg_table * pages,u32 num_entries,const gen8_pte_t pte)348 static bool gen8_ggtt_bind_ptes(struct i915_ggtt *ggtt, u32 offset,
349 struct sg_table *pages, u32 num_entries,
350 const gen8_pte_t pte)
351 {
352 struct i915_sched_attr attr = {};
353 struct intel_gt *gt = ggtt->vm.gt;
354 const gen8_pte_t scratch_pte = ggtt->vm.scratch[0]->encode;
355 struct sgt_iter iter;
356 struct i915_request *rq;
357 struct intel_context *ce;
358 u32 *cs;
359
360 if (!num_entries)
361 return true;
362
363 ce = gen8_ggtt_bind_get_ce(ggtt);
364 if (!ce)
365 return false;
366
367 if (pages)
368 iter = __sgt_iter(pages->sgl, true);
369
370 while (num_entries) {
371 int count = 0;
372 dma_addr_t addr;
373 /*
374 * MI_UPDATE_GTT can update 512 entries in a single command but
375 * that end up with engine reset, 511 works.
376 */
377 u32 n_ptes = min_t(u32, 511, num_entries);
378
379 if (mutex_lock_interruptible(&ce->timeline->mutex))
380 goto put_ce;
381
382 intel_context_enter(ce);
383 rq = __i915_request_create(ce, GFP_NOWAIT | GFP_ATOMIC);
384 intel_context_exit(ce);
385 if (IS_ERR(rq)) {
386 GT_TRACE(gt, "Failed to get bind request\n");
387 mutex_unlock(&ce->timeline->mutex);
388 goto put_ce;
389 }
390
391 cs = intel_ring_begin(rq, 2 * n_ptes + 2);
392 if (IS_ERR(cs)) {
393 GT_TRACE(gt, "Failed to ring space for GGTT bind\n");
394 i915_request_set_error_once(rq, PTR_ERR(cs));
395 /* once a request is created, it must be queued */
396 goto queue_err_rq;
397 }
398
399 *cs++ = MI_UPDATE_GTT | (2 * n_ptes);
400 *cs++ = offset << 12;
401
402 if (pages) {
403 for_each_sgt_daddr_next(addr, iter) {
404 if (count == n_ptes)
405 break;
406 *cs++ = lower_32_bits(pte | addr);
407 *cs++ = upper_32_bits(pte | addr);
408 count++;
409 }
410 /* fill remaining with scratch pte, if any */
411 if (count < n_ptes) {
412 memset64((u64 *)cs, scratch_pte,
413 n_ptes - count);
414 cs += (n_ptes - count) * 2;
415 }
416 } else {
417 memset64((u64 *)cs, pte, n_ptes);
418 cs += n_ptes * 2;
419 }
420
421 intel_ring_advance(rq, cs);
422 queue_err_rq:
423 i915_request_get(rq);
424 __i915_request_commit(rq);
425 __i915_request_queue(rq, &attr);
426
427 mutex_unlock(&ce->timeline->mutex);
428 /* This will break if the request is complete or after engine reset */
429 i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
430 if (rq->fence.error)
431 goto err_rq;
432
433 i915_request_put(rq);
434
435 num_entries -= n_ptes;
436 offset += n_ptes;
437 }
438
439 gen8_ggtt_bind_put_ce(ce);
440 return true;
441
442 err_rq:
443 i915_request_put(rq);
444 put_ce:
445 gen8_ggtt_bind_put_ce(ce);
446 return false;
447 }
448
gen8_set_pte(void __iomem * addr,gen8_pte_t pte)449 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
450 {
451 writeq(pte, addr);
452 }
453
gen8_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,unsigned int pat_index,u32 flags)454 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
455 dma_addr_t addr,
456 u64 offset,
457 unsigned int pat_index,
458 u32 flags)
459 {
460 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
461 gen8_pte_t __iomem *pte =
462 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
463
464 gen8_set_pte(pte, ggtt->vm.pte_encode(addr, pat_index, flags));
465
466 ggtt->invalidate(ggtt);
467 }
468
gen8_ggtt_insert_page_bind(struct i915_address_space * vm,dma_addr_t addr,u64 offset,unsigned int pat_index,u32 flags)469 static void gen8_ggtt_insert_page_bind(struct i915_address_space *vm,
470 dma_addr_t addr, u64 offset,
471 unsigned int pat_index, u32 flags)
472 {
473 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
474 gen8_pte_t pte;
475
476 pte = ggtt->vm.pte_encode(addr, pat_index, flags);
477 if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
478 gen8_ggtt_bind_ptes(ggtt, offset, NULL, 1, pte))
479 return ggtt->invalidate(ggtt);
480
481 gen8_ggtt_insert_page(vm, addr, offset, pat_index, flags);
482 }
483
gen8_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)484 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
485 struct i915_vma_resource *vma_res,
486 unsigned int pat_index,
487 u32 flags)
488 {
489 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
490 const gen8_pte_t pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
491 gen8_pte_t __iomem *gte;
492 gen8_pte_t __iomem *end;
493 struct sgt_iter iter;
494 dma_addr_t addr;
495
496 /*
497 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
498 * not to allow the user to override access to a read only page.
499 */
500
501 gte = (gen8_pte_t __iomem *)ggtt->gsm;
502 gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
503 end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
504 while (gte < end)
505 gen8_set_pte(gte++, vm->scratch[0]->encode);
506 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
507
508 for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
509 gen8_set_pte(gte++, pte_encode | addr);
510 GEM_BUG_ON(gte > end);
511
512 /* Fill the allocated but "unused" space beyond the end of the buffer */
513 while (gte < end)
514 gen8_set_pte(gte++, vm->scratch[0]->encode);
515
516 /*
517 * We want to flush the TLBs only after we're certain all the PTE
518 * updates have finished.
519 */
520 ggtt->invalidate(ggtt);
521 }
522
__gen8_ggtt_insert_entries_bind(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)523 static bool __gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
524 struct i915_vma_resource *vma_res,
525 unsigned int pat_index, u32 flags)
526 {
527 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
528 gen8_pte_t scratch_pte = vm->scratch[0]->encode;
529 gen8_pte_t pte_encode;
530 u64 start, end;
531
532 pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
533 start = (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
534 end = start + vma_res->guard / I915_GTT_PAGE_SIZE;
535 if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
536 goto err;
537
538 start = end;
539 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
540 if (!gen8_ggtt_bind_ptes(ggtt, start, vma_res->bi.pages,
541 vma_res->node_size / I915_GTT_PAGE_SIZE, pte_encode))
542 goto err;
543
544 start += vma_res->node_size / I915_GTT_PAGE_SIZE;
545 if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
546 goto err;
547
548 return true;
549
550 err:
551 return false;
552 }
553
gen8_ggtt_insert_entries_bind(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)554 static void gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
555 struct i915_vma_resource *vma_res,
556 unsigned int pat_index, u32 flags)
557 {
558 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
559
560 if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
561 __gen8_ggtt_insert_entries_bind(vm, vma_res, pat_index, flags))
562 return ggtt->invalidate(ggtt);
563
564 gen8_ggtt_insert_entries(vm, vma_res, pat_index, flags);
565 }
566
gen8_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)567 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
568 u64 start, u64 length)
569 {
570 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
571 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
572 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
573 const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
574 gen8_pte_t __iomem *gtt_base =
575 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
576 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
577 int i;
578
579 if (WARN(num_entries > max_entries,
580 "First entry = %d; Num entries = %d (max=%d)\n",
581 first_entry, num_entries, max_entries))
582 num_entries = max_entries;
583
584 for (i = 0; i < num_entries; i++)
585 gen8_set_pte(>t_base[i], scratch_pte);
586 }
587
gen8_ggtt_scratch_range_bind(struct i915_address_space * vm,u64 start,u64 length)588 static void gen8_ggtt_scratch_range_bind(struct i915_address_space *vm,
589 u64 start, u64 length)
590 {
591 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
592 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
593 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
594 const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
595 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
596
597 if (WARN(num_entries > max_entries,
598 "First entry = %d; Num entries = %d (max=%d)\n",
599 first_entry, num_entries, max_entries))
600 num_entries = max_entries;
601
602 if (should_update_ggtt_with_bind(ggtt) && gen8_ggtt_bind_ptes(ggtt, first_entry,
603 NULL, num_entries, scratch_pte))
604 return ggtt->invalidate(ggtt);
605
606 gen8_ggtt_clear_range(vm, start, length);
607 }
608
gen6_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,unsigned int pat_index,u32 flags)609 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
610 dma_addr_t addr,
611 u64 offset,
612 unsigned int pat_index,
613 u32 flags)
614 {
615 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
616 gen6_pte_t __iomem *pte =
617 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
618
619 iowrite32(vm->pte_encode(addr, pat_index, flags), pte);
620
621 ggtt->invalidate(ggtt);
622 }
623
624 /*
625 * Binds an object into the global gtt with the specified cache level.
626 * The object will be accessible to the GPU via commands whose operands
627 * reference offsets within the global GTT as well as accessible by the GPU
628 * through the GMADR mapped BAR (i915->mm.gtt->gtt).
629 */
gen6_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)630 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
631 struct i915_vma_resource *vma_res,
632 unsigned int pat_index,
633 u32 flags)
634 {
635 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
636 gen6_pte_t __iomem *gte;
637 gen6_pte_t __iomem *end;
638 struct sgt_iter iter;
639 dma_addr_t addr;
640
641 gte = (gen6_pte_t __iomem *)ggtt->gsm;
642 gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
643
644 end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
645 while (gte < end)
646 iowrite32(vm->scratch[0]->encode, gte++);
647 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
648 for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
649 iowrite32(vm->pte_encode(addr, pat_index, flags), gte++);
650 GEM_BUG_ON(gte > end);
651
652 /* Fill the allocated but "unused" space beyond the end of the buffer */
653 while (gte < end)
654 iowrite32(vm->scratch[0]->encode, gte++);
655
656 /*
657 * We want to flush the TLBs only after we're certain all the PTE
658 * updates have finished.
659 */
660 ggtt->invalidate(ggtt);
661 }
662
nop_clear_range(struct i915_address_space * vm,u64 start,u64 length)663 static void nop_clear_range(struct i915_address_space *vm,
664 u64 start, u64 length)
665 {
666 }
667
bxt_vtd_ggtt_wa(struct i915_address_space * vm)668 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
669 {
670 /*
671 * Make sure the internal GAM fifo has been cleared of all GTT
672 * writes before exiting stop_machine(). This guarantees that
673 * any aperture accesses waiting to start in another process
674 * cannot back up behind the GTT writes causing a hang.
675 * The register can be any arbitrary GAM register.
676 */
677 intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
678 }
679
680 struct insert_page {
681 struct i915_address_space *vm;
682 dma_addr_t addr;
683 u64 offset;
684 unsigned int pat_index;
685 };
686
bxt_vtd_ggtt_insert_page__cb(void * _arg)687 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
688 {
689 struct insert_page *arg = _arg;
690
691 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset,
692 arg->pat_index, 0);
693 bxt_vtd_ggtt_wa(arg->vm);
694
695 return 0;
696 }
697
bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space * vm,dma_addr_t addr,u64 offset,unsigned int pat_index,u32 unused)698 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
699 dma_addr_t addr,
700 u64 offset,
701 unsigned int pat_index,
702 u32 unused)
703 {
704 struct insert_page arg = { vm, addr, offset, pat_index };
705
706 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
707 }
708
709 struct insert_entries {
710 struct i915_address_space *vm;
711 struct i915_vma_resource *vma_res;
712 unsigned int pat_index;
713 u32 flags;
714 };
715
bxt_vtd_ggtt_insert_entries__cb(void * _arg)716 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
717 {
718 struct insert_entries *arg = _arg;
719
720 gen8_ggtt_insert_entries(arg->vm, arg->vma_res,
721 arg->pat_index, arg->flags);
722 bxt_vtd_ggtt_wa(arg->vm);
723
724 return 0;
725 }
726
bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)727 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
728 struct i915_vma_resource *vma_res,
729 unsigned int pat_index,
730 u32 flags)
731 {
732 struct insert_entries arg = { vm, vma_res, pat_index, flags };
733
734 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
735 }
736
gen6_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)737 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
738 u64 start, u64 length)
739 {
740 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
741 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
742 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
743 gen6_pte_t scratch_pte, __iomem *gtt_base =
744 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
745 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
746 int i;
747
748 if (WARN(num_entries > max_entries,
749 "First entry = %d; Num entries = %d (max=%d)\n",
750 first_entry, num_entries, max_entries))
751 num_entries = max_entries;
752
753 scratch_pte = vm->scratch[0]->encode;
754 for (i = 0; i < num_entries; i++)
755 iowrite32(scratch_pte, >t_base[i]);
756 }
757
intel_ggtt_bind_vma(struct i915_address_space * vm,struct i915_vm_pt_stash * stash,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)758 void intel_ggtt_bind_vma(struct i915_address_space *vm,
759 struct i915_vm_pt_stash *stash,
760 struct i915_vma_resource *vma_res,
761 unsigned int pat_index,
762 u32 flags)
763 {
764 u32 pte_flags;
765
766 if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK))
767 return;
768
769 vma_res->bound_flags |= flags;
770
771 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */
772 pte_flags = 0;
773 if (vma_res->bi.readonly)
774 pte_flags |= PTE_READ_ONLY;
775 if (vma_res->bi.lmem)
776 pte_flags |= PTE_LM;
777
778 vm->insert_entries(vm, vma_res, pat_index, pte_flags);
779 vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE;
780 }
781
intel_ggtt_unbind_vma(struct i915_address_space * vm,struct i915_vma_resource * vma_res)782 void intel_ggtt_unbind_vma(struct i915_address_space *vm,
783 struct i915_vma_resource *vma_res)
784 {
785 vm->clear_range(vm, vma_res->start, vma_res->vma_size);
786 }
787
788 /*
789 * Reserve the top of the GuC address space for firmware images. Addresses
790 * beyond GUC_GGTT_TOP in the GuC address space are inaccessible by GuC,
791 * which makes for a suitable range to hold GuC/HuC firmware images if the
792 * size of the GGTT is 4G. However, on a 32-bit platform the size of the GGTT
793 * is limited to 2G, which is less than GUC_GGTT_TOP, but we reserve a chunk
794 * of the same size anyway, which is far more than needed, to keep the logic
795 * in uc_fw_ggtt_offset() simple.
796 */
797 #define GUC_TOP_RESERVE_SIZE (SZ_4G - GUC_GGTT_TOP)
798
ggtt_reserve_guc_top(struct i915_ggtt * ggtt)799 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
800 {
801 u64 offset;
802 int ret;
803
804 if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
805 return 0;
806
807 GEM_BUG_ON(ggtt->vm.total <= GUC_TOP_RESERVE_SIZE);
808 offset = ggtt->vm.total - GUC_TOP_RESERVE_SIZE;
809
810 ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw,
811 GUC_TOP_RESERVE_SIZE, offset,
812 I915_COLOR_UNEVICTABLE, PIN_NOEVICT);
813 if (ret)
814 drm_dbg(&ggtt->vm.i915->drm,
815 "Failed to reserve top of GGTT for GuC\n");
816
817 return ret;
818 }
819
ggtt_release_guc_top(struct i915_ggtt * ggtt)820 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
821 {
822 if (drm_mm_node_allocated(&ggtt->uc_fw))
823 drm_mm_remove_node(&ggtt->uc_fw);
824 }
825
cleanup_init_ggtt(struct i915_ggtt * ggtt)826 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
827 {
828 ggtt_release_guc_top(ggtt);
829 if (drm_mm_node_allocated(&ggtt->error_capture))
830 drm_mm_remove_node(&ggtt->error_capture);
831 mutex_destroy(&ggtt->error_mutex);
832 }
833
init_ggtt(struct i915_ggtt * ggtt)834 static int init_ggtt(struct i915_ggtt *ggtt)
835 {
836 /*
837 * Let GEM Manage all of the aperture.
838 *
839 * However, leave one page at the end still bound to the scratch page.
840 * There are a number of places where the hardware apparently prefetches
841 * past the end of the object, and we've seen multiple hangs with the
842 * GPU head pointer stuck in a batchbuffer bound at the last page of the
843 * aperture. One page should be enough to keep any prefetching inside
844 * of the aperture.
845 */
846 unsigned long hole_start, hole_end;
847 struct drm_mm_node *entry;
848 int ret;
849
850 /*
851 * GuC requires all resources that we're sharing with it to be placed in
852 * non-WOPCM memory. If GuC is not present or not in use we still need a
853 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
854 * why.
855 */
856 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
857 intel_wopcm_guc_size(&ggtt->vm.gt->wopcm));
858
859 ret = intel_vgt_balloon(ggtt);
860 if (ret)
861 return ret;
862
863 rw_init(&ggtt->error_mutex, "ggtter");
864 if (ggtt->mappable_end) {
865 /*
866 * Reserve a mappable slot for our lockless error capture.
867 *
868 * We strongly prefer taking address 0x0 in order to protect
869 * other critical buffers against accidental overwrites,
870 * as writing to address 0 is a very common mistake.
871 *
872 * Since 0 may already be in use by the system (e.g. the BIOS
873 * framebuffer), we let the reservation fail quietly and hope
874 * 0 remains reserved always.
875 *
876 * If we fail to reserve 0, and then fail to find any space
877 * for an error-capture, remain silent. We can afford not
878 * to reserve an error_capture node as we have fallback
879 * paths, and we trust that 0 will remain reserved. However,
880 * the only likely reason for failure to insert is a driver
881 * bug, which we expect to cause other failures...
882 *
883 * Since CPU can perform speculative reads on error capture
884 * (write-combining allows it) add scratch page after error
885 * capture to avoid DMAR errors.
886 */
887 ggtt->error_capture.size = 2 * I915_GTT_PAGE_SIZE;
888 ggtt->error_capture.color = I915_COLOR_UNEVICTABLE;
889 if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture))
890 drm_mm_insert_node_in_range(&ggtt->vm.mm,
891 &ggtt->error_capture,
892 ggtt->error_capture.size, 0,
893 ggtt->error_capture.color,
894 0, ggtt->mappable_end,
895 DRM_MM_INSERT_LOW);
896 }
897 if (drm_mm_node_allocated(&ggtt->error_capture)) {
898 u64 start = ggtt->error_capture.start;
899 u64 size = ggtt->error_capture.size;
900
901 ggtt->vm.scratch_range(&ggtt->vm, start, size);
902 drm_dbg(&ggtt->vm.i915->drm,
903 "Reserved GGTT:[%llx, %llx] for use by error capture\n",
904 start, start + size);
905 }
906
907 /*
908 * The upper portion of the GuC address space has a sizeable hole
909 * (several MB) that is inaccessible by GuC. Reserve this range within
910 * GGTT as it can comfortably hold GuC/HuC firmware images.
911 */
912 ret = ggtt_reserve_guc_top(ggtt);
913 if (ret)
914 goto err;
915
916 /* Clear any non-preallocated blocks */
917 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
918 drm_dbg(&ggtt->vm.i915->drm,
919 "clearing unused GTT space: [%lx, %lx]\n",
920 hole_start, hole_end);
921 ggtt->vm.clear_range(&ggtt->vm, hole_start,
922 hole_end - hole_start);
923 }
924
925 /* And finally clear the reserved guard page */
926 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
927
928 return 0;
929
930 err:
931 cleanup_init_ggtt(ggtt);
932 return ret;
933 }
934
aliasing_gtt_bind_vma(struct i915_address_space * vm,struct i915_vm_pt_stash * stash,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)935 static void aliasing_gtt_bind_vma(struct i915_address_space *vm,
936 struct i915_vm_pt_stash *stash,
937 struct i915_vma_resource *vma_res,
938 unsigned int pat_index,
939 u32 flags)
940 {
941 u32 pte_flags;
942
943 /* Currently applicable only to VLV */
944 pte_flags = 0;
945 if (vma_res->bi.readonly)
946 pte_flags |= PTE_READ_ONLY;
947
948 if (flags & I915_VMA_LOCAL_BIND)
949 ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm,
950 stash, vma_res, pat_index, flags);
951
952 if (flags & I915_VMA_GLOBAL_BIND)
953 vm->insert_entries(vm, vma_res, pat_index, pte_flags);
954
955 vma_res->bound_flags |= flags;
956 }
957
aliasing_gtt_unbind_vma(struct i915_address_space * vm,struct i915_vma_resource * vma_res)958 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm,
959 struct i915_vma_resource *vma_res)
960 {
961 if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND)
962 vm->clear_range(vm, vma_res->start, vma_res->vma_size);
963
964 if (vma_res->bound_flags & I915_VMA_LOCAL_BIND)
965 ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res);
966 }
967
init_aliasing_ppgtt(struct i915_ggtt * ggtt)968 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
969 {
970 struct i915_vm_pt_stash stash = {};
971 struct i915_ppgtt *ppgtt;
972 int err;
973
974 ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0);
975 if (IS_ERR(ppgtt))
976 return PTR_ERR(ppgtt);
977
978 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
979 err = -ENODEV;
980 goto err_ppgtt;
981 }
982
983 err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total);
984 if (err)
985 goto err_ppgtt;
986
987 i915_gem_object_lock(ppgtt->vm.scratch[0], NULL);
988 err = i915_vm_map_pt_stash(&ppgtt->vm, &stash);
989 i915_gem_object_unlock(ppgtt->vm.scratch[0]);
990 if (err)
991 goto err_stash;
992
993 /*
994 * Note we only pre-allocate as far as the end of the global
995 * GTT. On 48b / 4-level page-tables, the difference is very,
996 * very significant! We have to preallocate as GVT/vgpu does
997 * not like the page directory disappearing.
998 */
999 ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total);
1000
1001 ggtt->alias = ppgtt;
1002 ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
1003
1004 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma);
1005 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
1006
1007 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma);
1008 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
1009
1010 i915_vm_free_pt_stash(&ppgtt->vm, &stash);
1011 return 0;
1012
1013 err_stash:
1014 i915_vm_free_pt_stash(&ppgtt->vm, &stash);
1015 err_ppgtt:
1016 i915_vm_put(&ppgtt->vm);
1017 return err;
1018 }
1019
fini_aliasing_ppgtt(struct i915_ggtt * ggtt)1020 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
1021 {
1022 struct i915_ppgtt *ppgtt;
1023
1024 ppgtt = fetch_and_zero(&ggtt->alias);
1025 if (!ppgtt)
1026 return;
1027
1028 i915_vm_put(&ppgtt->vm);
1029
1030 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma;
1031 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
1032 }
1033
i915_init_ggtt(struct drm_i915_private * i915)1034 int i915_init_ggtt(struct drm_i915_private *i915)
1035 {
1036 int ret;
1037
1038 ret = init_ggtt(to_gt(i915)->ggtt);
1039 if (ret)
1040 return ret;
1041
1042 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
1043 ret = init_aliasing_ppgtt(to_gt(i915)->ggtt);
1044 if (ret)
1045 cleanup_init_ggtt(to_gt(i915)->ggtt);
1046 }
1047
1048 return 0;
1049 }
1050
ggtt_cleanup_hw(struct i915_ggtt * ggtt)1051 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
1052 {
1053 struct i915_vma *vma, *vn;
1054
1055 flush_workqueue(ggtt->vm.i915->wq);
1056 i915_gem_drain_freed_objects(ggtt->vm.i915);
1057
1058 mutex_lock(&ggtt->vm.mutex);
1059
1060 ggtt->vm.skip_pte_rewrite = true;
1061
1062 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
1063 struct drm_i915_gem_object *obj = vma->obj;
1064 bool trylock;
1065
1066 trylock = i915_gem_object_trylock(obj, NULL);
1067 WARN_ON(!trylock);
1068
1069 WARN_ON(__i915_vma_unbind(vma));
1070 if (trylock)
1071 i915_gem_object_unlock(obj);
1072 }
1073
1074 if (drm_mm_node_allocated(&ggtt->error_capture))
1075 drm_mm_remove_node(&ggtt->error_capture);
1076 mutex_destroy(&ggtt->error_mutex);
1077
1078 ggtt_release_guc_top(ggtt);
1079 intel_vgt_deballoon(ggtt);
1080
1081 ggtt->vm.cleanup(&ggtt->vm);
1082
1083 mutex_unlock(&ggtt->vm.mutex);
1084 i915_address_space_fini(&ggtt->vm);
1085
1086 #ifdef notyet
1087 arch_phys_wc_del(ggtt->mtrr);
1088
1089 if (ggtt->iomap.size)
1090 io_mapping_fini(&ggtt->iomap);
1091 #endif
1092 }
1093
1094 /**
1095 * i915_ggtt_driver_release - Clean up GGTT hardware initialization
1096 * @i915: i915 device
1097 */
i915_ggtt_driver_release(struct drm_i915_private * i915)1098 void i915_ggtt_driver_release(struct drm_i915_private *i915)
1099 {
1100 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
1101
1102 fini_aliasing_ppgtt(ggtt);
1103
1104 intel_ggtt_fini_fences(ggtt);
1105 ggtt_cleanup_hw(ggtt);
1106 }
1107
1108 /**
1109 * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after
1110 * all free objects have been drained.
1111 * @i915: i915 device
1112 */
i915_ggtt_driver_late_release(struct drm_i915_private * i915)1113 void i915_ggtt_driver_late_release(struct drm_i915_private *i915)
1114 {
1115 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
1116
1117 GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1);
1118 dma_resv_fini(&ggtt->vm._resv);
1119 }
1120
gen6_get_total_gtt_size(u16 snb_gmch_ctl)1121 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1122 {
1123 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1124 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1125 return snb_gmch_ctl << 20;
1126 }
1127
gen8_get_total_gtt_size(u16 bdw_gmch_ctl)1128 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1129 {
1130 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1131 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1132 if (bdw_gmch_ctl)
1133 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1134
1135 #ifdef CONFIG_X86_32
1136 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
1137 if (bdw_gmch_ctl > 4)
1138 bdw_gmch_ctl = 4;
1139 #endif
1140
1141 return bdw_gmch_ctl << 20;
1142 }
1143
chv_get_total_gtt_size(u16 gmch_ctrl)1144 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
1145 {
1146 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
1147 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
1148
1149 if (gmch_ctrl)
1150 return 1 << (20 + gmch_ctrl);
1151
1152 return 0;
1153 }
1154
gen6_gttmmadr_size(struct drm_i915_private * i915)1155 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915)
1156 {
1157 /*
1158 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset
1159 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset
1160 */
1161 GEM_BUG_ON(GRAPHICS_VER(i915) < 6);
1162 return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M;
1163 }
1164
gen6_gttadr_offset(struct drm_i915_private * i915)1165 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915)
1166 {
1167 return gen6_gttmmadr_size(i915) / 2;
1168 }
1169
1170 #ifdef __linux__
1171
ggtt_probe_common(struct i915_ggtt * ggtt,u64 size)1172 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
1173 {
1174 struct drm_i915_private *i915 = ggtt->vm.i915;
1175 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
1176 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1177 phys_addr_t phys_addr;
1178 u32 pte_flags;
1179 int ret;
1180
1181 GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915));
1182
1183 if (i915_direct_stolen_access(i915)) {
1184 drm_dbg(&i915->drm, "Using direct GSM access\n");
1185 phys_addr = intel_uncore_read64(uncore, GEN6_GSMBASE) & GEN11_BDSM_MASK;
1186 } else {
1187 phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915);
1188 }
1189
1190 if (needs_wc_ggtt_mapping(i915))
1191 ggtt->gsm = ioremap_wc(phys_addr, size);
1192 else
1193 ggtt->gsm = ioremap(phys_addr, size);
1194
1195 if (!ggtt->gsm) {
1196 drm_err(&i915->drm, "Failed to map the ggtt page table\n");
1197 return -ENOMEM;
1198 }
1199
1200 kref_init(&ggtt->vm.resv_ref);
1201 ret = setup_scratch_page(&ggtt->vm);
1202 if (ret) {
1203 drm_err(&i915->drm, "Scratch setup failed\n");
1204 /* iounmap will also get called at remove, but meh */
1205 iounmap(ggtt->gsm);
1206 return ret;
1207 }
1208
1209 pte_flags = 0;
1210 if (i915_gem_object_is_lmem(ggtt->vm.scratch[0]))
1211 pte_flags |= PTE_LM;
1212
1213 ggtt->vm.scratch[0]->encode =
1214 ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]),
1215 i915_gem_get_pat_index(i915,
1216 I915_CACHE_NONE),
1217 pte_flags);
1218
1219 return 0;
1220 }
1221
1222 #else
1223
ggtt_probe_common(struct i915_ggtt * ggtt,u64 size)1224 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
1225 {
1226 struct drm_i915_private *i915 = ggtt->vm.i915;
1227 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
1228 struct pci_dev *pdev = i915->drm.pdev;
1229 phys_addr_t phys_addr;
1230 bus_addr_t addr;
1231 bus_size_t len;
1232 pcireg_t type;
1233 int flags;
1234 u32 pte_flags;
1235 int ret;
1236
1237 type = pci_mapreg_type(i915->pc, i915->tag, 0x10);
1238 ret = -pci_mapreg_info(i915->pc, i915->tag, 0x10, type,
1239 &addr, &len, NULL);
1240 if (ret)
1241 return ret;
1242
1243 GEM_WARN_ON(len != gen6_gttmmadr_size(i915));
1244
1245 if (i915_direct_stolen_access(i915)) {
1246 drm_dbg(&i915->drm, "Using direct GSM access\n");
1247 phys_addr = intel_uncore_read64(uncore, GEN6_GSMBASE) & GEN11_BDSM_MASK;
1248 } else {
1249 phys_addr = addr + gen6_gttadr_offset(i915);
1250 }
1251
1252 if (needs_wc_ggtt_mapping(i915))
1253 flags = BUS_SPACE_MAP_PREFETCHABLE;
1254 else
1255 flags = 0;
1256
1257 ret = -bus_space_map(i915->bst, phys_addr, size,
1258 flags | BUS_SPACE_MAP_LINEAR, &ggtt->gsm_bsh);
1259 if (ret) {
1260 drm_err(&i915->drm, "Failed to map the ggtt page table\n");
1261 return ret;
1262 }
1263 ggtt->gsm = bus_space_vaddr(i915->bst, ggtt->gsm_bsh);
1264 ggtt->gsm_size = size;
1265 if (!ggtt->gsm) {
1266 drm_err(&i915->drm, "Failed to map the ggtt page table\n");
1267 return -ENOMEM;
1268 }
1269
1270 kref_init(&ggtt->vm.resv_ref);
1271 ret = setup_scratch_page(&ggtt->vm);
1272 if (ret) {
1273 drm_err(&i915->drm, "Scratch setup failed\n");
1274 /* iounmap will also get called at remove, but meh */
1275 bus_space_unmap(i915->bst, ggtt->gsm_bsh, size);
1276 return ret;
1277 }
1278
1279 pte_flags = 0;
1280 if (i915_gem_object_is_lmem(ggtt->vm.scratch[0]))
1281 pte_flags |= PTE_LM;
1282
1283 ggtt->vm.scratch[0]->encode =
1284 ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]),
1285 i915_gem_get_pat_index(i915,
1286 I915_CACHE_NONE),
1287 pte_flags);
1288
1289 return 0;
1290 }
1291
1292 #endif
1293
gen6_gmch_remove(struct i915_address_space * vm)1294 static void gen6_gmch_remove(struct i915_address_space *vm)
1295 {
1296 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
1297
1298 #ifdef __linux__
1299 iounmap(ggtt->gsm);
1300 #else
1301 bus_space_unmap(vm->i915->bst, ggtt->gsm_bsh, ggtt->gsm_size);
1302 #endif
1303 free_scratch(vm);
1304 }
1305
1306 #ifdef __linux__
pci_resource(struct pci_dev * pdev,int bar)1307 static struct resource pci_resource(struct pci_dev *pdev, int bar)
1308 {
1309 return DEFINE_RES_MEM(pci_resource_start(pdev, bar),
1310 pci_resource_len(pdev, bar));
1311 }
1312 #endif
1313
gen8_gmch_probe(struct i915_ggtt * ggtt)1314 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
1315 {
1316 struct drm_i915_private *i915 = ggtt->vm.i915;
1317 struct pci_dev *pdev = i915->drm.pdev;
1318 unsigned int size;
1319 u16 snb_gmch_ctl;
1320
1321 if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) {
1322 #ifdef __linux__
1323 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1324 return -ENXIO;
1325
1326 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1327 ggtt->mappable_end = resource_size(&ggtt->gmadr);
1328 #else
1329 bus_addr_t base;
1330 bus_size_t sz;
1331 pcireg_t type;
1332 int err;
1333
1334 type = pci_mapreg_type(i915->pc, i915->tag, 0x18);
1335 err = -pci_mapreg_info(i915->pc, i915->tag, 0x18, type,
1336 &base, &sz, NULL);
1337 if (err)
1338 return err;
1339 ggtt->gmadr.start = base;
1340 ggtt->mappable_end = sz;
1341 #endif
1342 }
1343
1344 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1345 if (IS_CHERRYVIEW(i915))
1346 size = chv_get_total_gtt_size(snb_gmch_ctl);
1347 else
1348 size = gen8_get_total_gtt_size(snb_gmch_ctl);
1349
1350 ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1351 ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1352 ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY;
1353
1354 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
1355 ggtt->vm.cleanup = gen6_gmch_remove;
1356 ggtt->vm.insert_page = gen8_ggtt_insert_page;
1357 ggtt->vm.clear_range = nop_clear_range;
1358 ggtt->vm.scratch_range = gen8_ggtt_clear_range;
1359
1360 ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
1361
1362 /*
1363 * Serialize GTT updates with aperture access on BXT if VT-d is on,
1364 * and always on CHV.
1365 */
1366 if (intel_vm_no_concurrent_access_wa(i915)) {
1367 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
1368 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL;
1369
1370 /*
1371 * Calling stop_machine() version of GGTT update function
1372 * at error capture/reset path will raise lockdep warning.
1373 * Allow calling gen8_ggtt_insert_* directly at reset path
1374 * which is safe from parallel GGTT updates.
1375 */
1376 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1377 ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries;
1378
1379 ggtt->vm.bind_async_flags =
1380 I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
1381 }
1382
1383 if (i915_ggtt_require_binder(i915)) {
1384 ggtt->vm.scratch_range = gen8_ggtt_scratch_range_bind;
1385 ggtt->vm.insert_page = gen8_ggtt_insert_page_bind;
1386 ggtt->vm.insert_entries = gen8_ggtt_insert_entries_bind;
1387 /*
1388 * On GPU is hung, we might bind VMAs for error capture.
1389 * Fallback to CPU GGTT updates in that case.
1390 */
1391 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1392 }
1393
1394 if (intel_uc_wants_guc(&ggtt->vm.gt->uc))
1395 ggtt->invalidate = guc_ggtt_invalidate;
1396 else
1397 ggtt->invalidate = gen8_ggtt_invalidate;
1398
1399 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma;
1400 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
1401
1402 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1403 ggtt->vm.pte_encode = mtl_ggtt_pte_encode;
1404 else
1405 ggtt->vm.pte_encode = gen8_ggtt_pte_encode;
1406
1407 return ggtt_probe_common(ggtt, size);
1408 }
1409
1410 /*
1411 * For pre-gen8 platforms pat_index is the same as enum i915_cache_level,
1412 * so the switch-case statements in these PTE encode functions are still valid.
1413 * See translation table LEGACY_CACHELEVEL.
1414 */
snb_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1415 static u64 snb_pte_encode(dma_addr_t addr,
1416 unsigned int pat_index,
1417 u32 flags)
1418 {
1419 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1420
1421 switch (pat_index) {
1422 case I915_CACHE_L3_LLC:
1423 case I915_CACHE_LLC:
1424 pte |= GEN6_PTE_CACHE_LLC;
1425 break;
1426 case I915_CACHE_NONE:
1427 pte |= GEN6_PTE_UNCACHED;
1428 break;
1429 default:
1430 MISSING_CASE(pat_index);
1431 }
1432
1433 return pte;
1434 }
1435
ivb_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1436 static u64 ivb_pte_encode(dma_addr_t addr,
1437 unsigned int pat_index,
1438 u32 flags)
1439 {
1440 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1441
1442 switch (pat_index) {
1443 case I915_CACHE_L3_LLC:
1444 pte |= GEN7_PTE_CACHE_L3_LLC;
1445 break;
1446 case I915_CACHE_LLC:
1447 pte |= GEN6_PTE_CACHE_LLC;
1448 break;
1449 case I915_CACHE_NONE:
1450 pte |= GEN6_PTE_UNCACHED;
1451 break;
1452 default:
1453 MISSING_CASE(pat_index);
1454 }
1455
1456 return pte;
1457 }
1458
byt_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1459 static u64 byt_pte_encode(dma_addr_t addr,
1460 unsigned int pat_index,
1461 u32 flags)
1462 {
1463 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1464
1465 if (!(flags & PTE_READ_ONLY))
1466 pte |= BYT_PTE_WRITEABLE;
1467
1468 if (pat_index != I915_CACHE_NONE)
1469 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
1470
1471 return pte;
1472 }
1473
hsw_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1474 static u64 hsw_pte_encode(dma_addr_t addr,
1475 unsigned int pat_index,
1476 u32 flags)
1477 {
1478 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1479
1480 if (pat_index != I915_CACHE_NONE)
1481 pte |= HSW_WB_LLC_AGE3;
1482
1483 return pte;
1484 }
1485
iris_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1486 static u64 iris_pte_encode(dma_addr_t addr,
1487 unsigned int pat_index,
1488 u32 flags)
1489 {
1490 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1491
1492 switch (pat_index) {
1493 case I915_CACHE_NONE:
1494 break;
1495 case I915_CACHE_WT:
1496 pte |= HSW_WT_ELLC_LLC_AGE3;
1497 break;
1498 default:
1499 pte |= HSW_WB_ELLC_LLC_AGE3;
1500 break;
1501 }
1502
1503 return pte;
1504 }
1505
gen6_gmch_probe(struct i915_ggtt * ggtt)1506 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
1507 {
1508 struct drm_i915_private *i915 = ggtt->vm.i915;
1509 struct pci_dev *pdev = i915->drm.pdev;
1510 unsigned int size;
1511 u16 snb_gmch_ctl;
1512
1513 #ifdef __linux__
1514 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1515 return -ENXIO;
1516
1517 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1518 ggtt->mappable_end = resource_size(&ggtt->gmadr);
1519 #else
1520 bus_addr_t base;
1521 bus_size_t sz;
1522 pcireg_t type;
1523 int err;
1524
1525 type = pci_mapreg_type(i915->pc, i915->tag, 0x18);
1526 err = -pci_mapreg_info(i915->pc, i915->tag, 0x18, type,
1527 &base, &sz, NULL);
1528 if (err)
1529 return err;
1530 ggtt->gmadr.start = base;
1531 ggtt->mappable_end = sz;
1532 #endif
1533
1534 /*
1535 * 64/512MB is the current min/max we actually know of, but this is
1536 * just a coarse sanity check.
1537 */
1538 if (ggtt->mappable_end < (64 << 20) ||
1539 ggtt->mappable_end > (512 << 20)) {
1540 drm_err(&i915->drm, "Unknown GMADR size (%pa)\n",
1541 &ggtt->mappable_end);
1542 return -ENXIO;
1543 }
1544
1545 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1546
1547 size = gen6_get_total_gtt_size(snb_gmch_ctl);
1548 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1549
1550 ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1551 ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1552
1553 ggtt->vm.clear_range = nop_clear_range;
1554 if (!HAS_FULL_PPGTT(i915))
1555 ggtt->vm.clear_range = gen6_ggtt_clear_range;
1556 ggtt->vm.scratch_range = gen6_ggtt_clear_range;
1557 ggtt->vm.insert_page = gen6_ggtt_insert_page;
1558 ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1559 ggtt->vm.cleanup = gen6_gmch_remove;
1560
1561 ggtt->invalidate = gen6_ggtt_invalidate;
1562
1563 if (HAS_EDRAM(i915))
1564 ggtt->vm.pte_encode = iris_pte_encode;
1565 else if (IS_HASWELL(i915))
1566 ggtt->vm.pte_encode = hsw_pte_encode;
1567 else if (IS_VALLEYVIEW(i915))
1568 ggtt->vm.pte_encode = byt_pte_encode;
1569 else if (GRAPHICS_VER(i915) >= 7)
1570 ggtt->vm.pte_encode = ivb_pte_encode;
1571 else
1572 ggtt->vm.pte_encode = snb_pte_encode;
1573
1574 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma;
1575 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
1576
1577 return ggtt_probe_common(ggtt, size);
1578 }
1579
ggtt_probe_hw(struct i915_ggtt * ggtt,struct intel_gt * gt)1580 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1581 {
1582 struct drm_i915_private *i915 = gt->i915;
1583 int ret;
1584
1585 ggtt->vm.gt = gt;
1586 ggtt->vm.i915 = i915;
1587 #ifdef notyet
1588 ggtt->vm.dma = i915->drm.dev;
1589 #endif
1590 dma_resv_init(&ggtt->vm._resv);
1591
1592 if (GRAPHICS_VER(i915) >= 8)
1593 ret = gen8_gmch_probe(ggtt);
1594 else if (GRAPHICS_VER(i915) >= 6)
1595 ret = gen6_gmch_probe(ggtt);
1596 else
1597 ret = intel_ggtt_gmch_probe(ggtt);
1598
1599 if (ret) {
1600 dma_resv_fini(&ggtt->vm._resv);
1601 return ret;
1602 }
1603
1604 if ((ggtt->vm.total - 1) >> 32) {
1605 drm_err(&i915->drm,
1606 "We never expected a Global GTT with more than 32bits"
1607 " of address space! Found %lldM!\n",
1608 ggtt->vm.total >> 20);
1609 ggtt->vm.total = 1ULL << 32;
1610 ggtt->mappable_end =
1611 min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1612 }
1613
1614 if (ggtt->mappable_end > ggtt->vm.total) {
1615 drm_err(&i915->drm,
1616 "mappable aperture extends past end of GGTT,"
1617 " aperture=%pa, total=%llx\n",
1618 &ggtt->mappable_end, ggtt->vm.total);
1619 ggtt->mappable_end = ggtt->vm.total;
1620 }
1621
1622 /* GMADR is the PCI mmio aperture into the global GTT. */
1623 drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20);
1624 drm_dbg(&i915->drm, "GMADR size = %lluM\n",
1625 (u64)ggtt->mappable_end >> 20);
1626 drm_dbg(&i915->drm, "DSM size = %lluM\n",
1627 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
1628
1629 return 0;
1630 }
1631
1632 /**
1633 * i915_ggtt_probe_hw - Probe GGTT hardware location
1634 * @i915: i915 device
1635 */
i915_ggtt_probe_hw(struct drm_i915_private * i915)1636 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1637 {
1638 struct intel_gt *gt;
1639 int ret, i;
1640
1641 for_each_gt(gt, i915, i) {
1642 ret = intel_gt_assign_ggtt(gt);
1643 if (ret)
1644 return ret;
1645 }
1646
1647 ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915));
1648 if (ret)
1649 return ret;
1650
1651 if (i915_vtd_active(i915))
1652 drm_info(&i915->drm, "VT-d active for gfx access\n");
1653
1654 return 0;
1655 }
1656
i915_ggtt_create(struct drm_i915_private * i915)1657 struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915)
1658 {
1659 struct i915_ggtt *ggtt;
1660
1661 ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL);
1662 if (!ggtt)
1663 return ERR_PTR(-ENOMEM);
1664
1665 INIT_LIST_HEAD(&ggtt->gt_list);
1666
1667 return ggtt;
1668 }
1669
i915_ggtt_enable_hw(struct drm_i915_private * i915)1670 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1671 {
1672 if (GRAPHICS_VER(i915) < 6)
1673 return intel_ggtt_gmch_enable_hw(i915);
1674
1675 return 0;
1676 }
1677
1678 /**
1679 * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM
1680 * @vm: The VM to restore the mappings for
1681 *
1682 * Restore the memory mappings for all objects mapped to HW via the GGTT or a
1683 * DPT page table.
1684 *
1685 * Returns %true if restoring the mapping for any object that was in a write
1686 * domain before suspend.
1687 */
i915_ggtt_resume_vm(struct i915_address_space * vm)1688 bool i915_ggtt_resume_vm(struct i915_address_space *vm)
1689 {
1690 struct i915_vma *vma;
1691 bool write_domain_objs = false;
1692
1693 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
1694
1695 /* First fill our portion of the GTT with scratch pages */
1696 vm->clear_range(vm, 0, vm->total);
1697
1698 /* clflush objects bound into the GGTT and rebind them. */
1699 list_for_each_entry(vma, &vm->bound_list, vm_link) {
1700 struct drm_i915_gem_object *obj = vma->obj;
1701 unsigned int was_bound =
1702 atomic_read(&vma->flags) & I915_VMA_BIND_MASK;
1703
1704 GEM_BUG_ON(!was_bound);
1705
1706 /*
1707 * Clear the bound flags of the vma resource to allow
1708 * ptes to be repopulated.
1709 */
1710 vma->resource->bound_flags = 0;
1711 vma->ops->bind_vma(vm, NULL, vma->resource,
1712 obj ? obj->pat_index :
1713 i915_gem_get_pat_index(vm->i915,
1714 I915_CACHE_NONE),
1715 was_bound);
1716
1717 if (obj) { /* only used during resume => exclusive access */
1718 write_domain_objs |= fetch_and_zero(&obj->write_domain);
1719 obj->read_domains |= I915_GEM_DOMAIN_GTT;
1720 }
1721 }
1722
1723 return write_domain_objs;
1724 }
1725
i915_ggtt_resume(struct i915_ggtt * ggtt)1726 void i915_ggtt_resume(struct i915_ggtt *ggtt)
1727 {
1728 struct intel_gt *gt;
1729 bool flush;
1730
1731 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1732 intel_gt_check_and_clear_faults(gt);
1733
1734 flush = i915_ggtt_resume_vm(&ggtt->vm);
1735
1736 if (drm_mm_node_allocated(&ggtt->error_capture))
1737 ggtt->vm.scratch_range(&ggtt->vm, ggtt->error_capture.start,
1738 ggtt->error_capture.size);
1739
1740 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1741 intel_uc_resume_mappings(>->uc);
1742
1743 ggtt->invalidate(ggtt);
1744
1745 if (flush)
1746 wbinvd_on_all_cpus();
1747
1748 intel_ggtt_restore_fences(ggtt);
1749 }
1750