1 /*
2 * Copyright 2006 Dave Airlie <airlied@linux.ie>
3 * Copyright © 2006-2009 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 *
24 * Authors:
25 * Eric Anholt <eric@anholt.net>
26 * Jesse Barnes <jesse.barnes@intel.com>
27 */
28
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33 #include <linux/string_helpers.h>
34
35 #include <drm/display/drm_hdcp_helper.h>
36 #include <drm/display/drm_hdmi_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_crtc.h>
40 #include <drm/drm_edid.h>
41 #include <drm/intel/intel_lpe_audio.h>
42
43 #include "g4x_hdmi.h"
44 #include "i915_drv.h"
45 #include "i915_reg.h"
46 #include "intel_atomic.h"
47 #include "intel_audio.h"
48 #include "intel_connector.h"
49 #include "intel_cx0_phy.h"
50 #include "intel_ddi.h"
51 #include "intel_de.h"
52 #include "intel_display_driver.h"
53 #include "intel_display_types.h"
54 #include "intel_dp.h"
55 #include "intel_gmbus.h"
56 #include "intel_hdcp.h"
57 #include "intel_hdcp_regs.h"
58 #include "intel_hdmi.h"
59 #include "intel_lspcon.h"
60 #include "intel_panel.h"
61 #include "intel_snps_phy.h"
62
63 static void
assert_hdmi_port_disabled(struct intel_hdmi * intel_hdmi)64 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
65 {
66 struct intel_display *display = to_intel_display(intel_hdmi);
67 u32 enabled_bits;
68
69 enabled_bits = HAS_DDI(display) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
70
71 drm_WARN(display->drm,
72 intel_de_read(display, intel_hdmi->hdmi_reg) & enabled_bits,
73 "HDMI port enabled, expecting disabled\n");
74 }
75
76 static void
assert_hdmi_transcoder_func_disabled(struct intel_display * display,enum transcoder cpu_transcoder)77 assert_hdmi_transcoder_func_disabled(struct intel_display *display,
78 enum transcoder cpu_transcoder)
79 {
80 drm_WARN(display->drm,
81 intel_de_read(display, TRANS_DDI_FUNC_CTL(display, cpu_transcoder)) &
82 TRANS_DDI_FUNC_ENABLE,
83 "HDMI transcoder function enabled, expecting disabled\n");
84 }
85
g4x_infoframe_index(unsigned int type)86 static u32 g4x_infoframe_index(unsigned int type)
87 {
88 switch (type) {
89 case HDMI_PACKET_TYPE_GAMUT_METADATA:
90 return VIDEO_DIP_SELECT_GAMUT;
91 case HDMI_INFOFRAME_TYPE_AVI:
92 return VIDEO_DIP_SELECT_AVI;
93 case HDMI_INFOFRAME_TYPE_SPD:
94 return VIDEO_DIP_SELECT_SPD;
95 case HDMI_INFOFRAME_TYPE_VENDOR:
96 return VIDEO_DIP_SELECT_VENDOR;
97 default:
98 MISSING_CASE(type);
99 return 0;
100 }
101 }
102
g4x_infoframe_enable(unsigned int type)103 static u32 g4x_infoframe_enable(unsigned int type)
104 {
105 switch (type) {
106 case HDMI_PACKET_TYPE_GENERAL_CONTROL:
107 return VIDEO_DIP_ENABLE_GCP;
108 case HDMI_PACKET_TYPE_GAMUT_METADATA:
109 return VIDEO_DIP_ENABLE_GAMUT;
110 case DP_SDP_VSC:
111 return 0;
112 case DP_SDP_ADAPTIVE_SYNC:
113 return 0;
114 case HDMI_INFOFRAME_TYPE_AVI:
115 return VIDEO_DIP_ENABLE_AVI;
116 case HDMI_INFOFRAME_TYPE_SPD:
117 return VIDEO_DIP_ENABLE_SPD;
118 case HDMI_INFOFRAME_TYPE_VENDOR:
119 return VIDEO_DIP_ENABLE_VENDOR;
120 case HDMI_INFOFRAME_TYPE_DRM:
121 return 0;
122 default:
123 MISSING_CASE(type);
124 return 0;
125 }
126 }
127
hsw_infoframe_enable(unsigned int type)128 static u32 hsw_infoframe_enable(unsigned int type)
129 {
130 switch (type) {
131 case HDMI_PACKET_TYPE_GENERAL_CONTROL:
132 return VIDEO_DIP_ENABLE_GCP_HSW;
133 case HDMI_PACKET_TYPE_GAMUT_METADATA:
134 return VIDEO_DIP_ENABLE_GMP_HSW;
135 case DP_SDP_VSC:
136 return VIDEO_DIP_ENABLE_VSC_HSW;
137 case DP_SDP_ADAPTIVE_SYNC:
138 return VIDEO_DIP_ENABLE_AS_ADL;
139 case DP_SDP_PPS:
140 return VDIP_ENABLE_PPS;
141 case HDMI_INFOFRAME_TYPE_AVI:
142 return VIDEO_DIP_ENABLE_AVI_HSW;
143 case HDMI_INFOFRAME_TYPE_SPD:
144 return VIDEO_DIP_ENABLE_SPD_HSW;
145 case HDMI_INFOFRAME_TYPE_VENDOR:
146 return VIDEO_DIP_ENABLE_VS_HSW;
147 case HDMI_INFOFRAME_TYPE_DRM:
148 return VIDEO_DIP_ENABLE_DRM_GLK;
149 default:
150 MISSING_CASE(type);
151 return 0;
152 }
153 }
154
155 static i915_reg_t
hsw_dip_data_reg(struct intel_display * display,enum transcoder cpu_transcoder,unsigned int type,int i)156 hsw_dip_data_reg(struct intel_display *display,
157 enum transcoder cpu_transcoder,
158 unsigned int type,
159 int i)
160 {
161 switch (type) {
162 case HDMI_PACKET_TYPE_GAMUT_METADATA:
163 return HSW_TVIDEO_DIP_GMP_DATA(display, cpu_transcoder, i);
164 case DP_SDP_VSC:
165 return HSW_TVIDEO_DIP_VSC_DATA(display, cpu_transcoder, i);
166 case DP_SDP_ADAPTIVE_SYNC:
167 return ADL_TVIDEO_DIP_AS_SDP_DATA(display, cpu_transcoder, i);
168 case DP_SDP_PPS:
169 return ICL_VIDEO_DIP_PPS_DATA(display, cpu_transcoder, i);
170 case HDMI_INFOFRAME_TYPE_AVI:
171 return HSW_TVIDEO_DIP_AVI_DATA(display, cpu_transcoder, i);
172 case HDMI_INFOFRAME_TYPE_SPD:
173 return HSW_TVIDEO_DIP_SPD_DATA(display, cpu_transcoder, i);
174 case HDMI_INFOFRAME_TYPE_VENDOR:
175 return HSW_TVIDEO_DIP_VS_DATA(display, cpu_transcoder, i);
176 case HDMI_INFOFRAME_TYPE_DRM:
177 return GLK_TVIDEO_DIP_DRM_DATA(display, cpu_transcoder, i);
178 default:
179 MISSING_CASE(type);
180 return INVALID_MMIO_REG;
181 }
182 }
183
hsw_dip_data_size(struct intel_display * display,unsigned int type)184 static int hsw_dip_data_size(struct intel_display *display,
185 unsigned int type)
186 {
187 switch (type) {
188 case DP_SDP_VSC:
189 return VIDEO_DIP_VSC_DATA_SIZE;
190 case DP_SDP_ADAPTIVE_SYNC:
191 return VIDEO_DIP_ASYNC_DATA_SIZE;
192 case DP_SDP_PPS:
193 return VIDEO_DIP_PPS_DATA_SIZE;
194 case HDMI_PACKET_TYPE_GAMUT_METADATA:
195 if (DISPLAY_VER(display) >= 11)
196 return VIDEO_DIP_GMP_DATA_SIZE;
197 else
198 return VIDEO_DIP_DATA_SIZE;
199 default:
200 return VIDEO_DIP_DATA_SIZE;
201 }
202 }
203
g4x_write_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,const void * frame,ssize_t len)204 static void g4x_write_infoframe(struct intel_encoder *encoder,
205 const struct intel_crtc_state *crtc_state,
206 unsigned int type,
207 const void *frame, ssize_t len)
208 {
209 struct intel_display *display = to_intel_display(encoder);
210 const u32 *data = frame;
211 u32 val = intel_de_read(display, VIDEO_DIP_CTL);
212 int i;
213
214 drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
215 "Writing DIP with CTL reg disabled\n");
216
217 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
218 val |= g4x_infoframe_index(type);
219
220 val &= ~g4x_infoframe_enable(type);
221
222 intel_de_write(display, VIDEO_DIP_CTL, val);
223
224 for (i = 0; i < len; i += 4) {
225 intel_de_write(display, VIDEO_DIP_DATA, *data);
226 data++;
227 }
228 /* Write every possible data byte to force correct ECC calculation. */
229 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
230 intel_de_write(display, VIDEO_DIP_DATA, 0);
231
232 val |= g4x_infoframe_enable(type);
233 val &= ~VIDEO_DIP_FREQ_MASK;
234 val |= VIDEO_DIP_FREQ_VSYNC;
235
236 intel_de_write(display, VIDEO_DIP_CTL, val);
237 intel_de_posting_read(display, VIDEO_DIP_CTL);
238 }
239
g4x_read_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,void * frame,ssize_t len)240 static void g4x_read_infoframe(struct intel_encoder *encoder,
241 const struct intel_crtc_state *crtc_state,
242 unsigned int type,
243 void *frame, ssize_t len)
244 {
245 struct intel_display *display = to_intel_display(encoder);
246 u32 *data = frame;
247 int i;
248
249 intel_de_rmw(display, VIDEO_DIP_CTL,
250 VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
251
252 for (i = 0; i < len; i += 4)
253 *data++ = intel_de_read(display, VIDEO_DIP_DATA);
254 }
255
g4x_infoframes_enabled(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)256 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
257 const struct intel_crtc_state *pipe_config)
258 {
259 struct intel_display *display = to_intel_display(encoder);
260 u32 val = intel_de_read(display, VIDEO_DIP_CTL);
261
262 if ((val & VIDEO_DIP_ENABLE) == 0)
263 return 0;
264
265 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
266 return 0;
267
268 return val & (VIDEO_DIP_ENABLE_AVI |
269 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
270 }
271
ibx_write_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,const void * frame,ssize_t len)272 static void ibx_write_infoframe(struct intel_encoder *encoder,
273 const struct intel_crtc_state *crtc_state,
274 unsigned int type,
275 const void *frame, ssize_t len)
276 {
277 struct intel_display *display = to_intel_display(encoder);
278 const u32 *data = frame;
279 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
280 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
281 u32 val = intel_de_read(display, reg);
282 int i;
283
284 drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
285 "Writing DIP with CTL reg disabled\n");
286
287 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
288 val |= g4x_infoframe_index(type);
289
290 val &= ~g4x_infoframe_enable(type);
291
292 intel_de_write(display, reg, val);
293
294 for (i = 0; i < len; i += 4) {
295 intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe),
296 *data);
297 data++;
298 }
299 /* Write every possible data byte to force correct ECC calculation. */
300 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
301 intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe), 0);
302
303 val |= g4x_infoframe_enable(type);
304 val &= ~VIDEO_DIP_FREQ_MASK;
305 val |= VIDEO_DIP_FREQ_VSYNC;
306
307 intel_de_write(display, reg, val);
308 intel_de_posting_read(display, reg);
309 }
310
ibx_read_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,void * frame,ssize_t len)311 static void ibx_read_infoframe(struct intel_encoder *encoder,
312 const struct intel_crtc_state *crtc_state,
313 unsigned int type,
314 void *frame, ssize_t len)
315 {
316 struct intel_display *display = to_intel_display(encoder);
317 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
318 u32 *data = frame;
319 int i;
320
321 intel_de_rmw(display, TVIDEO_DIP_CTL(crtc->pipe),
322 VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
323
324 for (i = 0; i < len; i += 4)
325 *data++ = intel_de_read(display, TVIDEO_DIP_DATA(crtc->pipe));
326 }
327
ibx_infoframes_enabled(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)328 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
329 const struct intel_crtc_state *pipe_config)
330 {
331 struct intel_display *display = to_intel_display(encoder);
332 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
333 i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
334 u32 val = intel_de_read(display, reg);
335
336 if ((val & VIDEO_DIP_ENABLE) == 0)
337 return 0;
338
339 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
340 return 0;
341
342 return val & (VIDEO_DIP_ENABLE_AVI |
343 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
344 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
345 }
346
cpt_write_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,const void * frame,ssize_t len)347 static void cpt_write_infoframe(struct intel_encoder *encoder,
348 const struct intel_crtc_state *crtc_state,
349 unsigned int type,
350 const void *frame, ssize_t len)
351 {
352 struct intel_display *display = to_intel_display(encoder);
353 const u32 *data = frame;
354 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
355 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
356 u32 val = intel_de_read(display, reg);
357 int i;
358
359 drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
360 "Writing DIP with CTL reg disabled\n");
361
362 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
363 val |= g4x_infoframe_index(type);
364
365 /* The DIP control register spec says that we need to update the AVI
366 * infoframe without clearing its enable bit */
367 if (type != HDMI_INFOFRAME_TYPE_AVI)
368 val &= ~g4x_infoframe_enable(type);
369
370 intel_de_write(display, reg, val);
371
372 for (i = 0; i < len; i += 4) {
373 intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe),
374 *data);
375 data++;
376 }
377 /* Write every possible data byte to force correct ECC calculation. */
378 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
379 intel_de_write(display, TVIDEO_DIP_DATA(crtc->pipe), 0);
380
381 val |= g4x_infoframe_enable(type);
382 val &= ~VIDEO_DIP_FREQ_MASK;
383 val |= VIDEO_DIP_FREQ_VSYNC;
384
385 intel_de_write(display, reg, val);
386 intel_de_posting_read(display, reg);
387 }
388
cpt_read_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,void * frame,ssize_t len)389 static void cpt_read_infoframe(struct intel_encoder *encoder,
390 const struct intel_crtc_state *crtc_state,
391 unsigned int type,
392 void *frame, ssize_t len)
393 {
394 struct intel_display *display = to_intel_display(encoder);
395 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
396 u32 *data = frame;
397 int i;
398
399 intel_de_rmw(display, TVIDEO_DIP_CTL(crtc->pipe),
400 VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
401
402 for (i = 0; i < len; i += 4)
403 *data++ = intel_de_read(display, TVIDEO_DIP_DATA(crtc->pipe));
404 }
405
cpt_infoframes_enabled(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)406 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
407 const struct intel_crtc_state *pipe_config)
408 {
409 struct intel_display *display = to_intel_display(encoder);
410 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
411 u32 val = intel_de_read(display, TVIDEO_DIP_CTL(pipe));
412
413 if ((val & VIDEO_DIP_ENABLE) == 0)
414 return 0;
415
416 return val & (VIDEO_DIP_ENABLE_AVI |
417 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
418 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
419 }
420
vlv_write_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,const void * frame,ssize_t len)421 static void vlv_write_infoframe(struct intel_encoder *encoder,
422 const struct intel_crtc_state *crtc_state,
423 unsigned int type,
424 const void *frame, ssize_t len)
425 {
426 struct intel_display *display = to_intel_display(encoder);
427 const u32 *data = frame;
428 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
429 i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
430 u32 val = intel_de_read(display, reg);
431 int i;
432
433 drm_WARN(display->drm, !(val & VIDEO_DIP_ENABLE),
434 "Writing DIP with CTL reg disabled\n");
435
436 val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
437 val |= g4x_infoframe_index(type);
438
439 val &= ~g4x_infoframe_enable(type);
440
441 intel_de_write(display, reg, val);
442
443 for (i = 0; i < len; i += 4) {
444 intel_de_write(display,
445 VLV_TVIDEO_DIP_DATA(crtc->pipe), *data);
446 data++;
447 }
448 /* Write every possible data byte to force correct ECC calculation. */
449 for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
450 intel_de_write(display,
451 VLV_TVIDEO_DIP_DATA(crtc->pipe), 0);
452
453 val |= g4x_infoframe_enable(type);
454 val &= ~VIDEO_DIP_FREQ_MASK;
455 val |= VIDEO_DIP_FREQ_VSYNC;
456
457 intel_de_write(display, reg, val);
458 intel_de_posting_read(display, reg);
459 }
460
vlv_read_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,void * frame,ssize_t len)461 static void vlv_read_infoframe(struct intel_encoder *encoder,
462 const struct intel_crtc_state *crtc_state,
463 unsigned int type,
464 void *frame, ssize_t len)
465 {
466 struct intel_display *display = to_intel_display(encoder);
467 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
468 u32 *data = frame;
469 int i;
470
471 intel_de_rmw(display, VLV_TVIDEO_DIP_CTL(crtc->pipe),
472 VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
473
474 for (i = 0; i < len; i += 4)
475 *data++ = intel_de_read(display,
476 VLV_TVIDEO_DIP_DATA(crtc->pipe));
477 }
478
vlv_infoframes_enabled(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)479 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
480 const struct intel_crtc_state *pipe_config)
481 {
482 struct intel_display *display = to_intel_display(encoder);
483 enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
484 u32 val = intel_de_read(display, VLV_TVIDEO_DIP_CTL(pipe));
485
486 if ((val & VIDEO_DIP_ENABLE) == 0)
487 return 0;
488
489 if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
490 return 0;
491
492 return val & (VIDEO_DIP_ENABLE_AVI |
493 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
494 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
495 }
496
hsw_write_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,const void * frame,ssize_t len)497 void hsw_write_infoframe(struct intel_encoder *encoder,
498 const struct intel_crtc_state *crtc_state,
499 unsigned int type,
500 const void *frame, ssize_t len)
501 {
502 struct intel_display *display = to_intel_display(encoder);
503 const u32 *data = frame;
504 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
505 i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(display, cpu_transcoder);
506 int data_size;
507 int i;
508 u32 val = intel_de_read(display, ctl_reg);
509
510 data_size = hsw_dip_data_size(display, type);
511
512 drm_WARN_ON(display->drm, len > data_size);
513
514 val &= ~hsw_infoframe_enable(type);
515 intel_de_write(display, ctl_reg, val);
516
517 for (i = 0; i < len; i += 4) {
518 intel_de_write(display,
519 hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2),
520 *data);
521 data++;
522 }
523 /* Write every possible data byte to force correct ECC calculation. */
524 for (; i < data_size; i += 4)
525 intel_de_write(display,
526 hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2),
527 0);
528
529 /* Wa_14013475917 */
530 if (!(IS_DISPLAY_VER(display, 13, 14) && crtc_state->has_psr &&
531 !crtc_state->has_panel_replay && type == DP_SDP_VSC))
532 val |= hsw_infoframe_enable(type);
533
534 if (type == DP_SDP_VSC)
535 val |= VSC_DIP_HW_DATA_SW_HEA;
536
537 intel_de_write(display, ctl_reg, val);
538 intel_de_posting_read(display, ctl_reg);
539 }
540
hsw_read_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type,void * frame,ssize_t len)541 void hsw_read_infoframe(struct intel_encoder *encoder,
542 const struct intel_crtc_state *crtc_state,
543 unsigned int type, void *frame, ssize_t len)
544 {
545 struct intel_display *display = to_intel_display(encoder);
546 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
547 u32 *data = frame;
548 int i;
549
550 for (i = 0; i < len; i += 4)
551 *data++ = intel_de_read(display,
552 hsw_dip_data_reg(display, cpu_transcoder, type, i >> 2));
553 }
554
hsw_infoframes_enabled(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)555 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
556 const struct intel_crtc_state *pipe_config)
557 {
558 struct intel_display *display = to_intel_display(encoder);
559 u32 val = intel_de_read(display,
560 HSW_TVIDEO_DIP_CTL(display, pipe_config->cpu_transcoder));
561 u32 mask;
562
563 mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
564 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
565 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
566
567 if (DISPLAY_VER(display) >= 10)
568 mask |= VIDEO_DIP_ENABLE_DRM_GLK;
569
570 if (HAS_AS_SDP(display))
571 mask |= VIDEO_DIP_ENABLE_AS_ADL;
572
573 return val & mask;
574 }
575
576 static const u8 infoframe_type_to_idx[] = {
577 HDMI_PACKET_TYPE_GENERAL_CONTROL,
578 HDMI_PACKET_TYPE_GAMUT_METADATA,
579 DP_SDP_VSC,
580 DP_SDP_ADAPTIVE_SYNC,
581 HDMI_INFOFRAME_TYPE_AVI,
582 HDMI_INFOFRAME_TYPE_SPD,
583 HDMI_INFOFRAME_TYPE_VENDOR,
584 HDMI_INFOFRAME_TYPE_DRM,
585 };
586
intel_hdmi_infoframe_enable(unsigned int type)587 u32 intel_hdmi_infoframe_enable(unsigned int type)
588 {
589 int i;
590
591 for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
592 if (infoframe_type_to_idx[i] == type)
593 return BIT(i);
594 }
595
596 return 0;
597 }
598
intel_hdmi_infoframes_enabled(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)599 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
600 const struct intel_crtc_state *crtc_state)
601 {
602 struct intel_display *display = to_intel_display(encoder);
603 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
604 u32 val, ret = 0;
605 int i;
606
607 val = dig_port->infoframes_enabled(encoder, crtc_state);
608
609 /* map from hardware bits to dip idx */
610 for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
611 unsigned int type = infoframe_type_to_idx[i];
612
613 if (HAS_DDI(display)) {
614 if (val & hsw_infoframe_enable(type))
615 ret |= BIT(i);
616 } else {
617 if (val & g4x_infoframe_enable(type))
618 ret |= BIT(i);
619 }
620 }
621
622 return ret;
623 }
624
625 /*
626 * The data we write to the DIP data buffer registers is 1 byte bigger than the
627 * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
628 * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
629 * used for both technologies.
630 *
631 * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
632 * DW1: DB3 | DB2 | DB1 | DB0
633 * DW2: DB7 | DB6 | DB5 | DB4
634 * DW3: ...
635 *
636 * (HB is Header Byte, DB is Data Byte)
637 *
638 * The hdmi pack() functions don't know about that hardware specific hole so we
639 * trick them by giving an offset into the buffer and moving back the header
640 * bytes by one.
641 */
intel_write_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,enum hdmi_infoframe_type type,const union hdmi_infoframe * frame)642 static void intel_write_infoframe(struct intel_encoder *encoder,
643 const struct intel_crtc_state *crtc_state,
644 enum hdmi_infoframe_type type,
645 const union hdmi_infoframe *frame)
646 {
647 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
648 u8 buffer[VIDEO_DIP_DATA_SIZE];
649 ssize_t len;
650
651 if ((crtc_state->infoframes.enable &
652 intel_hdmi_infoframe_enable(type)) == 0)
653 return;
654
655 if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
656 return;
657
658 /* see comment above for the reason for this offset */
659 len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
660 if (drm_WARN_ON(encoder->base.dev, len < 0))
661 return;
662
663 /* Insert the 'hole' (see big comment above) at position 3 */
664 memmove(&buffer[0], &buffer[1], 3);
665 buffer[3] = 0;
666 len++;
667
668 dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
669 }
670
intel_read_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,enum hdmi_infoframe_type type,union hdmi_infoframe * frame)671 void intel_read_infoframe(struct intel_encoder *encoder,
672 const struct intel_crtc_state *crtc_state,
673 enum hdmi_infoframe_type type,
674 union hdmi_infoframe *frame)
675 {
676 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
677 u8 buffer[VIDEO_DIP_DATA_SIZE];
678 int ret;
679
680 if ((crtc_state->infoframes.enable &
681 intel_hdmi_infoframe_enable(type)) == 0)
682 return;
683
684 dig_port->read_infoframe(encoder, crtc_state,
685 type, buffer, sizeof(buffer));
686
687 /* Fill the 'hole' (see big comment above) at position 3 */
688 memmove(&buffer[1], &buffer[0], 3);
689
690 /* see comment above for the reason for this offset */
691 ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
692 if (ret) {
693 drm_dbg_kms(encoder->base.dev,
694 "Failed to unpack infoframe type 0x%02x\n", type);
695 return;
696 }
697
698 if (frame->any.type != type)
699 drm_dbg_kms(encoder->base.dev,
700 "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
701 frame->any.type, type);
702 }
703
704 static bool
intel_hdmi_compute_avi_infoframe(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)705 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
706 struct intel_crtc_state *crtc_state,
707 struct drm_connector_state *conn_state)
708 {
709 struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
710 const struct drm_display_mode *adjusted_mode =
711 &crtc_state->hw.adjusted_mode;
712 struct drm_connector *connector = conn_state->connector;
713 int ret;
714
715 if (!crtc_state->has_infoframe)
716 return true;
717
718 crtc_state->infoframes.enable |=
719 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
720
721 ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
722 adjusted_mode);
723 if (ret)
724 return false;
725
726 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
727 frame->colorspace = HDMI_COLORSPACE_YUV420;
728 else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
729 frame->colorspace = HDMI_COLORSPACE_YUV444;
730 else
731 frame->colorspace = HDMI_COLORSPACE_RGB;
732
733 drm_hdmi_avi_infoframe_colorimetry(frame, conn_state);
734
735 /* nonsense combination */
736 drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
737 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
738
739 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
740 drm_hdmi_avi_infoframe_quant_range(frame, connector,
741 adjusted_mode,
742 crtc_state->limited_color_range ?
743 HDMI_QUANTIZATION_RANGE_LIMITED :
744 HDMI_QUANTIZATION_RANGE_FULL);
745 } else {
746 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
747 frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
748 }
749
750 drm_hdmi_avi_infoframe_content_type(frame, conn_state);
751
752 /* TODO: handle pixel repetition for YCBCR420 outputs */
753
754 ret = hdmi_avi_infoframe_check(frame);
755 if (drm_WARN_ON(encoder->base.dev, ret))
756 return false;
757
758 return true;
759 }
760
761 static bool
intel_hdmi_compute_spd_infoframe(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)762 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
763 struct intel_crtc_state *crtc_state,
764 struct drm_connector_state *conn_state)
765 {
766 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
767 struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
768 int ret;
769
770 if (!crtc_state->has_infoframe)
771 return true;
772
773 crtc_state->infoframes.enable |=
774 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
775
776 if (IS_DGFX(i915))
777 ret = hdmi_spd_infoframe_init(frame, "Intel", "Discrete gfx");
778 else
779 ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
780
781 if (drm_WARN_ON(encoder->base.dev, ret))
782 return false;
783
784 frame->sdi = HDMI_SPD_SDI_PC;
785
786 ret = hdmi_spd_infoframe_check(frame);
787 if (drm_WARN_ON(encoder->base.dev, ret))
788 return false;
789
790 return true;
791 }
792
793 static bool
intel_hdmi_compute_hdmi_infoframe(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)794 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
795 struct intel_crtc_state *crtc_state,
796 struct drm_connector_state *conn_state)
797 {
798 struct hdmi_vendor_infoframe *frame =
799 &crtc_state->infoframes.hdmi.vendor.hdmi;
800 const struct drm_display_info *info =
801 &conn_state->connector->display_info;
802 int ret;
803
804 if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
805 return true;
806
807 crtc_state->infoframes.enable |=
808 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
809
810 ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
811 conn_state->connector,
812 &crtc_state->hw.adjusted_mode);
813 if (drm_WARN_ON(encoder->base.dev, ret))
814 return false;
815
816 ret = hdmi_vendor_infoframe_check(frame);
817 if (drm_WARN_ON(encoder->base.dev, ret))
818 return false;
819
820 return true;
821 }
822
823 static bool
intel_hdmi_compute_drm_infoframe(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)824 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
825 struct intel_crtc_state *crtc_state,
826 struct drm_connector_state *conn_state)
827 {
828 struct intel_display *display = to_intel_display(encoder);
829 struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
830 int ret;
831
832 if (DISPLAY_VER(display) < 10)
833 return true;
834
835 if (!crtc_state->has_infoframe)
836 return true;
837
838 if (!conn_state->hdr_output_metadata)
839 return true;
840
841 crtc_state->infoframes.enable |=
842 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
843
844 ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
845 if (ret < 0) {
846 drm_dbg_kms(display->drm,
847 "couldn't set HDR metadata in infoframe\n");
848 return false;
849 }
850
851 ret = hdmi_drm_infoframe_check(frame);
852 if (drm_WARN_ON(display->drm, ret))
853 return false;
854
855 return true;
856 }
857
g4x_set_infoframes(struct intel_encoder * encoder,bool enable,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)858 static void g4x_set_infoframes(struct intel_encoder *encoder,
859 bool enable,
860 const struct intel_crtc_state *crtc_state,
861 const struct drm_connector_state *conn_state)
862 {
863 struct intel_display *display = to_intel_display(encoder);
864 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
865 struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
866 i915_reg_t reg = VIDEO_DIP_CTL;
867 u32 val = intel_de_read(display, reg);
868 u32 port = VIDEO_DIP_PORT(encoder->port);
869
870 assert_hdmi_port_disabled(intel_hdmi);
871
872 /* If the registers were not initialized yet, they might be zeroes,
873 * which means we're selecting the AVI DIP and we're setting its
874 * frequency to once. This seems to really confuse the HW and make
875 * things stop working (the register spec says the AVI always needs to
876 * be sent every VSync). So here we avoid writing to the register more
877 * than we need and also explicitly select the AVI DIP and explicitly
878 * set its frequency to every VSync. Avoiding to write it twice seems to
879 * be enough to solve the problem, but being defensive shouldn't hurt us
880 * either. */
881 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
882
883 if (!enable) {
884 if (!(val & VIDEO_DIP_ENABLE))
885 return;
886 if (port != (val & VIDEO_DIP_PORT_MASK)) {
887 drm_dbg_kms(display->drm,
888 "video DIP still enabled on port %c\n",
889 (val & VIDEO_DIP_PORT_MASK) >> 29);
890 return;
891 }
892 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
893 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
894 intel_de_write(display, reg, val);
895 intel_de_posting_read(display, reg);
896 return;
897 }
898
899 if (port != (val & VIDEO_DIP_PORT_MASK)) {
900 if (val & VIDEO_DIP_ENABLE) {
901 drm_dbg_kms(display->drm,
902 "video DIP already enabled on port %c\n",
903 (val & VIDEO_DIP_PORT_MASK) >> 29);
904 return;
905 }
906 val &= ~VIDEO_DIP_PORT_MASK;
907 val |= port;
908 }
909
910 val |= VIDEO_DIP_ENABLE;
911 val &= ~(VIDEO_DIP_ENABLE_AVI |
912 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
913
914 intel_de_write(display, reg, val);
915 intel_de_posting_read(display, reg);
916
917 intel_write_infoframe(encoder, crtc_state,
918 HDMI_INFOFRAME_TYPE_AVI,
919 &crtc_state->infoframes.avi);
920 intel_write_infoframe(encoder, crtc_state,
921 HDMI_INFOFRAME_TYPE_SPD,
922 &crtc_state->infoframes.spd);
923 intel_write_infoframe(encoder, crtc_state,
924 HDMI_INFOFRAME_TYPE_VENDOR,
925 &crtc_state->infoframes.hdmi);
926 }
927
928 /*
929 * Determine if default_phase=1 can be indicated in the GCP infoframe.
930 *
931 * From HDMI specification 1.4a:
932 * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
933 * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
934 * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
935 * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
936 * phase of 0
937 */
gcp_default_phase_possible(int pipe_bpp,const struct drm_display_mode * mode)938 static bool gcp_default_phase_possible(int pipe_bpp,
939 const struct drm_display_mode *mode)
940 {
941 unsigned int pixels_per_group;
942
943 switch (pipe_bpp) {
944 case 30:
945 /* 4 pixels in 5 clocks */
946 pixels_per_group = 4;
947 break;
948 case 36:
949 /* 2 pixels in 3 clocks */
950 pixels_per_group = 2;
951 break;
952 case 48:
953 /* 1 pixel in 2 clocks */
954 pixels_per_group = 1;
955 break;
956 default:
957 /* phase information not relevant for 8bpc */
958 return false;
959 }
960
961 return mode->crtc_hdisplay % pixels_per_group == 0 &&
962 mode->crtc_htotal % pixels_per_group == 0 &&
963 mode->crtc_hblank_start % pixels_per_group == 0 &&
964 mode->crtc_hblank_end % pixels_per_group == 0 &&
965 mode->crtc_hsync_start % pixels_per_group == 0 &&
966 mode->crtc_hsync_end % pixels_per_group == 0 &&
967 ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
968 mode->crtc_htotal/2 % pixels_per_group == 0);
969 }
970
intel_hdmi_set_gcp_infoframe(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)971 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
972 const struct intel_crtc_state *crtc_state,
973 const struct drm_connector_state *conn_state)
974 {
975 struct intel_display *display = to_intel_display(encoder);
976 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
977 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
978 i915_reg_t reg;
979
980 if ((crtc_state->infoframes.enable &
981 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
982 return false;
983
984 if (HAS_DDI(display))
985 reg = HSW_TVIDEO_DIP_GCP(display, crtc_state->cpu_transcoder);
986 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
987 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
988 else if (HAS_PCH_SPLIT(dev_priv))
989 reg = TVIDEO_DIP_GCP(crtc->pipe);
990 else
991 return false;
992
993 intel_de_write(display, reg, crtc_state->infoframes.gcp);
994
995 return true;
996 }
997
intel_hdmi_read_gcp_infoframe(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state)998 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
999 struct intel_crtc_state *crtc_state)
1000 {
1001 struct intel_display *display = to_intel_display(encoder);
1002 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1003 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1004 i915_reg_t reg;
1005
1006 if ((crtc_state->infoframes.enable &
1007 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1008 return;
1009
1010 if (HAS_DDI(display))
1011 reg = HSW_TVIDEO_DIP_GCP(display, crtc_state->cpu_transcoder);
1012 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1013 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1014 else if (HAS_PCH_SPLIT(dev_priv))
1015 reg = TVIDEO_DIP_GCP(crtc->pipe);
1016 else
1017 return;
1018
1019 crtc_state->infoframes.gcp = intel_de_read(display, reg);
1020 }
1021
intel_hdmi_compute_gcp_infoframe(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct drm_connector_state * conn_state)1022 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1023 struct intel_crtc_state *crtc_state,
1024 struct drm_connector_state *conn_state)
1025 {
1026 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1027
1028 if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1029 return;
1030
1031 crtc_state->infoframes.enable |=
1032 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1033
1034 /* Indicate color indication for deep color mode */
1035 if (crtc_state->pipe_bpp > 24)
1036 crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1037
1038 /* Enable default_phase whenever the display mode is suitably aligned */
1039 if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1040 &crtc_state->hw.adjusted_mode))
1041 crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1042 }
1043
ibx_set_infoframes(struct intel_encoder * encoder,bool enable,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)1044 static void ibx_set_infoframes(struct intel_encoder *encoder,
1045 bool enable,
1046 const struct intel_crtc_state *crtc_state,
1047 const struct drm_connector_state *conn_state)
1048 {
1049 struct intel_display *display = to_intel_display(encoder);
1050 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1051 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1052 struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1053 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1054 u32 val = intel_de_read(display, reg);
1055 u32 port = VIDEO_DIP_PORT(encoder->port);
1056
1057 assert_hdmi_port_disabled(intel_hdmi);
1058
1059 /* See the big comment in g4x_set_infoframes() */
1060 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1061
1062 if (!enable) {
1063 if (!(val & VIDEO_DIP_ENABLE))
1064 return;
1065 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1066 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1067 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1068 intel_de_write(display, reg, val);
1069 intel_de_posting_read(display, reg);
1070 return;
1071 }
1072
1073 if (port != (val & VIDEO_DIP_PORT_MASK)) {
1074 drm_WARN(display->drm, val & VIDEO_DIP_ENABLE,
1075 "DIP already enabled on port %c\n",
1076 (val & VIDEO_DIP_PORT_MASK) >> 29);
1077 val &= ~VIDEO_DIP_PORT_MASK;
1078 val |= port;
1079 }
1080
1081 val |= VIDEO_DIP_ENABLE;
1082 val &= ~(VIDEO_DIP_ENABLE_AVI |
1083 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1084 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1085
1086 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1087 val |= VIDEO_DIP_ENABLE_GCP;
1088
1089 intel_de_write(display, reg, val);
1090 intel_de_posting_read(display, reg);
1091
1092 intel_write_infoframe(encoder, crtc_state,
1093 HDMI_INFOFRAME_TYPE_AVI,
1094 &crtc_state->infoframes.avi);
1095 intel_write_infoframe(encoder, crtc_state,
1096 HDMI_INFOFRAME_TYPE_SPD,
1097 &crtc_state->infoframes.spd);
1098 intel_write_infoframe(encoder, crtc_state,
1099 HDMI_INFOFRAME_TYPE_VENDOR,
1100 &crtc_state->infoframes.hdmi);
1101 }
1102
cpt_set_infoframes(struct intel_encoder * encoder,bool enable,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)1103 static void cpt_set_infoframes(struct intel_encoder *encoder,
1104 bool enable,
1105 const struct intel_crtc_state *crtc_state,
1106 const struct drm_connector_state *conn_state)
1107 {
1108 struct intel_display *display = to_intel_display(encoder);
1109 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1110 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1111 i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1112 u32 val = intel_de_read(display, reg);
1113
1114 assert_hdmi_port_disabled(intel_hdmi);
1115
1116 /* See the big comment in g4x_set_infoframes() */
1117 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1118
1119 if (!enable) {
1120 if (!(val & VIDEO_DIP_ENABLE))
1121 return;
1122 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1123 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1124 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1125 intel_de_write(display, reg, val);
1126 intel_de_posting_read(display, reg);
1127 return;
1128 }
1129
1130 /* Set both together, unset both together: see the spec. */
1131 val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1132 val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1133 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1134
1135 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1136 val |= VIDEO_DIP_ENABLE_GCP;
1137
1138 intel_de_write(display, reg, val);
1139 intel_de_posting_read(display, reg);
1140
1141 intel_write_infoframe(encoder, crtc_state,
1142 HDMI_INFOFRAME_TYPE_AVI,
1143 &crtc_state->infoframes.avi);
1144 intel_write_infoframe(encoder, crtc_state,
1145 HDMI_INFOFRAME_TYPE_SPD,
1146 &crtc_state->infoframes.spd);
1147 intel_write_infoframe(encoder, crtc_state,
1148 HDMI_INFOFRAME_TYPE_VENDOR,
1149 &crtc_state->infoframes.hdmi);
1150 }
1151
vlv_set_infoframes(struct intel_encoder * encoder,bool enable,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)1152 static void vlv_set_infoframes(struct intel_encoder *encoder,
1153 bool enable,
1154 const struct intel_crtc_state *crtc_state,
1155 const struct drm_connector_state *conn_state)
1156 {
1157 struct intel_display *display = to_intel_display(encoder);
1158 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1159 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1160 i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
1161 u32 val = intel_de_read(display, reg);
1162 u32 port = VIDEO_DIP_PORT(encoder->port);
1163
1164 assert_hdmi_port_disabled(intel_hdmi);
1165
1166 /* See the big comment in g4x_set_infoframes() */
1167 val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1168
1169 if (!enable) {
1170 if (!(val & VIDEO_DIP_ENABLE))
1171 return;
1172 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1173 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1174 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1175 intel_de_write(display, reg, val);
1176 intel_de_posting_read(display, reg);
1177 return;
1178 }
1179
1180 if (port != (val & VIDEO_DIP_PORT_MASK)) {
1181 drm_WARN(display->drm, val & VIDEO_DIP_ENABLE,
1182 "DIP already enabled on port %c\n",
1183 (val & VIDEO_DIP_PORT_MASK) >> 29);
1184 val &= ~VIDEO_DIP_PORT_MASK;
1185 val |= port;
1186 }
1187
1188 val |= VIDEO_DIP_ENABLE;
1189 val &= ~(VIDEO_DIP_ENABLE_AVI |
1190 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1191 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1192
1193 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1194 val |= VIDEO_DIP_ENABLE_GCP;
1195
1196 intel_de_write(display, reg, val);
1197 intel_de_posting_read(display, reg);
1198
1199 intel_write_infoframe(encoder, crtc_state,
1200 HDMI_INFOFRAME_TYPE_AVI,
1201 &crtc_state->infoframes.avi);
1202 intel_write_infoframe(encoder, crtc_state,
1203 HDMI_INFOFRAME_TYPE_SPD,
1204 &crtc_state->infoframes.spd);
1205 intel_write_infoframe(encoder, crtc_state,
1206 HDMI_INFOFRAME_TYPE_VENDOR,
1207 &crtc_state->infoframes.hdmi);
1208 }
1209
hsw_set_infoframes(struct intel_encoder * encoder,bool enable,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)1210 static void hsw_set_infoframes(struct intel_encoder *encoder,
1211 bool enable,
1212 const struct intel_crtc_state *crtc_state,
1213 const struct drm_connector_state *conn_state)
1214 {
1215 struct intel_display *display = to_intel_display(encoder);
1216 i915_reg_t reg = HSW_TVIDEO_DIP_CTL(display,
1217 crtc_state->cpu_transcoder);
1218 u32 val = intel_de_read(display, reg);
1219
1220 assert_hdmi_transcoder_func_disabled(display,
1221 crtc_state->cpu_transcoder);
1222
1223 val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1224 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1225 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1226 VIDEO_DIP_ENABLE_DRM_GLK | VIDEO_DIP_ENABLE_AS_ADL);
1227
1228 if (!enable) {
1229 intel_de_write(display, reg, val);
1230 intel_de_posting_read(display, reg);
1231 return;
1232 }
1233
1234 if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1235 val |= VIDEO_DIP_ENABLE_GCP_HSW;
1236
1237 intel_de_write(display, reg, val);
1238 intel_de_posting_read(display, reg);
1239
1240 intel_write_infoframe(encoder, crtc_state,
1241 HDMI_INFOFRAME_TYPE_AVI,
1242 &crtc_state->infoframes.avi);
1243 intel_write_infoframe(encoder, crtc_state,
1244 HDMI_INFOFRAME_TYPE_SPD,
1245 &crtc_state->infoframes.spd);
1246 intel_write_infoframe(encoder, crtc_state,
1247 HDMI_INFOFRAME_TYPE_VENDOR,
1248 &crtc_state->infoframes.hdmi);
1249 intel_write_infoframe(encoder, crtc_state,
1250 HDMI_INFOFRAME_TYPE_DRM,
1251 &crtc_state->infoframes.drm);
1252 }
1253
intel_dp_dual_mode_set_tmds_output(struct intel_hdmi * hdmi,bool enable)1254 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1255 {
1256 struct intel_display *display = to_intel_display(hdmi);
1257 struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1258
1259 if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1260 return;
1261
1262 drm_dbg_kms(display->drm, "%s DP dual mode adaptor TMDS output\n",
1263 enable ? "Enabling" : "Disabling");
1264
1265 drm_dp_dual_mode_set_tmds_output(display->drm,
1266 hdmi->dp_dual_mode.type, ddc, enable);
1267 }
1268
intel_hdmi_hdcp_read(struct intel_digital_port * dig_port,unsigned int offset,void * buffer,size_t size)1269 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1270 unsigned int offset, void *buffer, size_t size)
1271 {
1272 struct intel_hdmi *hdmi = &dig_port->hdmi;
1273 struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1274 int ret;
1275 u8 start = offset & 0xff;
1276 struct i2c_msg msgs[] = {
1277 {
1278 .addr = DRM_HDCP_DDC_ADDR,
1279 .flags = 0,
1280 .len = 1,
1281 .buf = &start,
1282 },
1283 {
1284 .addr = DRM_HDCP_DDC_ADDR,
1285 .flags = I2C_M_RD,
1286 .len = size,
1287 .buf = buffer
1288 }
1289 };
1290 ret = i2c_transfer(ddc, msgs, ARRAY_SIZE(msgs));
1291 if (ret == ARRAY_SIZE(msgs))
1292 return 0;
1293 return ret >= 0 ? -EIO : ret;
1294 }
1295
intel_hdmi_hdcp_write(struct intel_digital_port * dig_port,unsigned int offset,void * buffer,size_t size)1296 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1297 unsigned int offset, void *buffer, size_t size)
1298 {
1299 struct intel_hdmi *hdmi = &dig_port->hdmi;
1300 struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1301 int ret;
1302 u8 *write_buf;
1303 struct i2c_msg msg;
1304
1305 write_buf = kzalloc(size + 1, GFP_KERNEL);
1306 if (!write_buf)
1307 return -ENOMEM;
1308
1309 write_buf[0] = offset & 0xff;
1310 memcpy(&write_buf[1], buffer, size);
1311
1312 msg.addr = DRM_HDCP_DDC_ADDR;
1313 msg.flags = 0,
1314 msg.len = size + 1,
1315 msg.buf = write_buf;
1316
1317 ret = i2c_transfer(ddc, &msg, 1);
1318 if (ret == 1)
1319 ret = 0;
1320 else if (ret >= 0)
1321 ret = -EIO;
1322
1323 kfree(write_buf);
1324 return ret;
1325 }
1326
1327 static
intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port * dig_port,u8 * an)1328 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1329 u8 *an)
1330 {
1331 struct intel_display *display = to_intel_display(dig_port);
1332 struct intel_hdmi *hdmi = &dig_port->hdmi;
1333 struct i2c_adapter *ddc = hdmi->attached_connector->base.ddc;
1334 int ret;
1335
1336 ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1337 DRM_HDCP_AN_LEN);
1338 if (ret) {
1339 drm_dbg_kms(display->drm, "Write An over DDC failed (%d)\n",
1340 ret);
1341 return ret;
1342 }
1343
1344 ret = intel_gmbus_output_aksv(ddc);
1345 if (ret < 0) {
1346 drm_dbg_kms(display->drm, "Failed to output aksv (%d)\n", ret);
1347 return ret;
1348 }
1349 return 0;
1350 }
1351
intel_hdmi_hdcp_read_bksv(struct intel_digital_port * dig_port,u8 * bksv)1352 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1353 u8 *bksv)
1354 {
1355 struct intel_display *display = to_intel_display(dig_port);
1356
1357 int ret;
1358 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1359 DRM_HDCP_KSV_LEN);
1360 if (ret)
1361 drm_dbg_kms(display->drm, "Read Bksv over DDC failed (%d)\n",
1362 ret);
1363 return ret;
1364 }
1365
1366 static
intel_hdmi_hdcp_read_bstatus(struct intel_digital_port * dig_port,u8 * bstatus)1367 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1368 u8 *bstatus)
1369 {
1370 struct intel_display *display = to_intel_display(dig_port);
1371
1372 int ret;
1373 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1374 bstatus, DRM_HDCP_BSTATUS_LEN);
1375 if (ret)
1376 drm_dbg_kms(display->drm,
1377 "Read bstatus over DDC failed (%d)\n",
1378 ret);
1379 return ret;
1380 }
1381
1382 static
intel_hdmi_hdcp_repeater_present(struct intel_digital_port * dig_port,bool * repeater_present)1383 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1384 bool *repeater_present)
1385 {
1386 struct intel_display *display = to_intel_display(dig_port);
1387 int ret;
1388 u8 val;
1389
1390 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1391 if (ret) {
1392 drm_dbg_kms(display->drm, "Read bcaps over DDC failed (%d)\n",
1393 ret);
1394 return ret;
1395 }
1396 *repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1397 return 0;
1398 }
1399
1400 static
intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port * dig_port,u8 * ri_prime)1401 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1402 u8 *ri_prime)
1403 {
1404 struct intel_display *display = to_intel_display(dig_port);
1405
1406 int ret;
1407 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1408 ri_prime, DRM_HDCP_RI_LEN);
1409 if (ret)
1410 drm_dbg_kms(display->drm, "Read Ri' over DDC failed (%d)\n",
1411 ret);
1412 return ret;
1413 }
1414
1415 static
intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port * dig_port,bool * ksv_ready)1416 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1417 bool *ksv_ready)
1418 {
1419 struct intel_display *display = to_intel_display(dig_port);
1420 int ret;
1421 u8 val;
1422
1423 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1424 if (ret) {
1425 drm_dbg_kms(display->drm, "Read bcaps over DDC failed (%d)\n",
1426 ret);
1427 return ret;
1428 }
1429 *ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1430 return 0;
1431 }
1432
1433 static
intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port * dig_port,int num_downstream,u8 * ksv_fifo)1434 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1435 int num_downstream, u8 *ksv_fifo)
1436 {
1437 struct intel_display *display = to_intel_display(dig_port);
1438 int ret;
1439 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1440 ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1441 if (ret) {
1442 drm_dbg_kms(display->drm,
1443 "Read ksv fifo over DDC failed (%d)\n", ret);
1444 return ret;
1445 }
1446 return 0;
1447 }
1448
1449 static
intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port * dig_port,int i,u32 * part)1450 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1451 int i, u32 *part)
1452 {
1453 struct intel_display *display = to_intel_display(dig_port);
1454 int ret;
1455
1456 if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1457 return -EINVAL;
1458
1459 ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1460 part, DRM_HDCP_V_PRIME_PART_LEN);
1461 if (ret)
1462 drm_dbg_kms(display->drm,
1463 "Read V'[%d] over DDC failed (%d)\n",
1464 i, ret);
1465 return ret;
1466 }
1467
kbl_repositioning_enc_en_signal(struct intel_connector * connector,enum transcoder cpu_transcoder)1468 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1469 enum transcoder cpu_transcoder)
1470 {
1471 struct intel_display *display = to_intel_display(connector);
1472 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1473 struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc);
1474 u32 scanline;
1475 int ret;
1476
1477 for (;;) {
1478 scanline = intel_de_read(display,
1479 PIPEDSL(display, crtc->pipe));
1480 if (scanline > 100 && scanline < 200)
1481 break;
1482 usleep_range(25, 50);
1483 }
1484
1485 ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1486 false, TRANS_DDI_HDCP_SIGNALLING);
1487 if (ret) {
1488 drm_err(display->drm,
1489 "Disable HDCP signalling failed (%d)\n", ret);
1490 return ret;
1491 }
1492
1493 ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1494 true, TRANS_DDI_HDCP_SIGNALLING);
1495 if (ret) {
1496 drm_err(display->drm,
1497 "Enable HDCP signalling failed (%d)\n", ret);
1498 return ret;
1499 }
1500
1501 return 0;
1502 }
1503
1504 static
intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port * dig_port,enum transcoder cpu_transcoder,bool enable)1505 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1506 enum transcoder cpu_transcoder,
1507 bool enable)
1508 {
1509 struct intel_display *display = to_intel_display(dig_port);
1510 struct intel_hdmi *hdmi = &dig_port->hdmi;
1511 struct intel_connector *connector = hdmi->attached_connector;
1512 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1513 int ret;
1514
1515 if (!enable)
1516 usleep_range(6, 60); /* Bspec says >= 6us */
1517
1518 ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1519 cpu_transcoder, enable,
1520 TRANS_DDI_HDCP_SIGNALLING);
1521 if (ret) {
1522 drm_err(display->drm, "%s HDCP signalling failed (%d)\n",
1523 enable ? "Enable" : "Disable", ret);
1524 return ret;
1525 }
1526
1527 /*
1528 * WA: To fix incorrect positioning of the window of
1529 * opportunity and enc_en signalling in KABYLAKE.
1530 */
1531 if (IS_KABYLAKE(dev_priv) && enable)
1532 return kbl_repositioning_enc_en_signal(connector,
1533 cpu_transcoder);
1534
1535 return 0;
1536 }
1537
1538 static
intel_hdmi_hdcp_check_link_once(struct intel_digital_port * dig_port,struct intel_connector * connector)1539 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1540 struct intel_connector *connector)
1541 {
1542 struct intel_display *display = to_intel_display(dig_port);
1543 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1544 enum port port = dig_port->base.port;
1545 enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1546 int ret;
1547 union {
1548 u32 reg;
1549 u8 shim[DRM_HDCP_RI_LEN];
1550 } ri;
1551
1552 ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1553 if (ret)
1554 return false;
1555
1556 intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1557
1558 /* Wait for Ri prime match */
1559 if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1560 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1561 (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1562 drm_dbg_kms(display->drm, "Ri' mismatch detected (%x)\n",
1563 intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1564 port)));
1565 return false;
1566 }
1567 return true;
1568 }
1569
1570 static
intel_hdmi_hdcp_check_link(struct intel_digital_port * dig_port,struct intel_connector * connector)1571 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1572 struct intel_connector *connector)
1573 {
1574 struct intel_display *display = to_intel_display(dig_port);
1575 int retry;
1576
1577 for (retry = 0; retry < 3; retry++)
1578 if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1579 return true;
1580
1581 drm_err(display->drm, "Link check failed\n");
1582 return false;
1583 }
1584
1585 struct hdcp2_hdmi_msg_timeout {
1586 u8 msg_id;
1587 u16 timeout;
1588 };
1589
1590 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1591 { HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1592 { HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1593 { HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1594 { HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1595 { HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1596 };
1597
1598 static
intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port * dig_port,u8 * rx_status)1599 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1600 u8 *rx_status)
1601 {
1602 return intel_hdmi_hdcp_read(dig_port,
1603 HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1604 rx_status,
1605 HDCP_2_2_HDMI_RXSTATUS_LEN);
1606 }
1607
get_hdcp2_msg_timeout(u8 msg_id,bool is_paired)1608 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1609 {
1610 int i;
1611
1612 if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1613 if (is_paired)
1614 return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1615 else
1616 return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1617 }
1618
1619 for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1620 if (hdcp2_msg_timeout[i].msg_id == msg_id)
1621 return hdcp2_msg_timeout[i].timeout;
1622 }
1623
1624 return -EINVAL;
1625 }
1626
1627 static int
hdcp2_detect_msg_availability(struct intel_digital_port * dig_port,u8 msg_id,bool * msg_ready,ssize_t * msg_sz)1628 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1629 u8 msg_id, bool *msg_ready,
1630 ssize_t *msg_sz)
1631 {
1632 struct intel_display *display = to_intel_display(dig_port);
1633 u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1634 int ret;
1635
1636 ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1637 if (ret < 0) {
1638 drm_dbg_kms(display->drm, "rx_status read failed. Err %d\n",
1639 ret);
1640 return ret;
1641 }
1642
1643 *msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1644 rx_status[0]);
1645
1646 if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1647 *msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1648 *msg_sz);
1649 else
1650 *msg_ready = *msg_sz;
1651
1652 return 0;
1653 }
1654
1655 static ssize_t
intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port * dig_port,u8 msg_id,bool paired)1656 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1657 u8 msg_id, bool paired)
1658 {
1659 struct intel_display *display = to_intel_display(dig_port);
1660 bool msg_ready = false;
1661 int timeout, ret;
1662 ssize_t msg_sz = 0;
1663
1664 timeout = get_hdcp2_msg_timeout(msg_id, paired);
1665 if (timeout < 0)
1666 return timeout;
1667
1668 ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1669 msg_id, &msg_ready,
1670 &msg_sz),
1671 !ret && msg_ready && msg_sz, timeout * 1000,
1672 1000, 5 * 1000);
1673 if (ret)
1674 drm_dbg_kms(display->drm,
1675 "msg_id: %d, ret: %d, timeout: %d\n",
1676 msg_id, ret, timeout);
1677
1678 return ret ? ret : msg_sz;
1679 }
1680
1681 static
intel_hdmi_hdcp2_write_msg(struct intel_connector * connector,void * buf,size_t size)1682 int intel_hdmi_hdcp2_write_msg(struct intel_connector *connector,
1683 void *buf, size_t size)
1684 {
1685 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1686 unsigned int offset;
1687
1688 offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1689 return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1690 }
1691
1692 static
intel_hdmi_hdcp2_read_msg(struct intel_connector * connector,u8 msg_id,void * buf,size_t size)1693 int intel_hdmi_hdcp2_read_msg(struct intel_connector *connector,
1694 u8 msg_id, void *buf, size_t size)
1695 {
1696 struct intel_display *display = to_intel_display(connector);
1697 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1698 struct intel_hdmi *hdmi = &dig_port->hdmi;
1699 struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1700 unsigned int offset;
1701 ssize_t ret;
1702
1703 ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1704 hdcp->is_paired);
1705 if (ret < 0)
1706 return ret;
1707
1708 /*
1709 * Available msg size should be equal to or lesser than the
1710 * available buffer.
1711 */
1712 if (ret > size) {
1713 drm_dbg_kms(display->drm,
1714 "msg_sz(%zd) is more than exp size(%zu)\n",
1715 ret, size);
1716 return -EINVAL;
1717 }
1718
1719 offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1720 ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1721 if (ret)
1722 drm_dbg_kms(display->drm, "Failed to read msg_id: %d(%zd)\n",
1723 msg_id, ret);
1724
1725 return ret;
1726 }
1727
1728 static
intel_hdmi_hdcp2_check_link(struct intel_digital_port * dig_port,struct intel_connector * connector)1729 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1730 struct intel_connector *connector)
1731 {
1732 u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1733 int ret;
1734
1735 ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1736 if (ret)
1737 return ret;
1738
1739 /*
1740 * Re-auth request and Link Integrity Failures are represented by
1741 * same bit. i.e reauth_req.
1742 */
1743 if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1744 ret = HDCP_REAUTH_REQUEST;
1745 else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1746 ret = HDCP_TOPOLOGY_CHANGE;
1747
1748 return ret;
1749 }
1750
1751 static
intel_hdmi_hdcp2_get_capability(struct intel_connector * connector,bool * capable)1752 int intel_hdmi_hdcp2_get_capability(struct intel_connector *connector,
1753 bool *capable)
1754 {
1755 struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1756 u8 hdcp2_version;
1757 int ret;
1758
1759 *capable = false;
1760 ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1761 &hdcp2_version, sizeof(hdcp2_version));
1762 if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1763 *capable = true;
1764
1765 return ret;
1766 }
1767
1768 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1769 .write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1770 .read_bksv = intel_hdmi_hdcp_read_bksv,
1771 .read_bstatus = intel_hdmi_hdcp_read_bstatus,
1772 .repeater_present = intel_hdmi_hdcp_repeater_present,
1773 .read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1774 .read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1775 .read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1776 .read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1777 .toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1778 .check_link = intel_hdmi_hdcp_check_link,
1779 .write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1780 .read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1781 .check_2_2_link = intel_hdmi_hdcp2_check_link,
1782 .hdcp_2_2_get_capability = intel_hdmi_hdcp2_get_capability,
1783 .protocol = HDCP_PROTOCOL_HDMI,
1784 };
1785
intel_hdmi_source_max_tmds_clock(struct intel_encoder * encoder)1786 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1787 {
1788 struct intel_display *display = to_intel_display(encoder);
1789 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1790 int max_tmds_clock, vbt_max_tmds_clock;
1791
1792 if (DISPLAY_VER(display) >= 13 || IS_ALDERLAKE_S(dev_priv))
1793 max_tmds_clock = 600000;
1794 else if (DISPLAY_VER(display) >= 10)
1795 max_tmds_clock = 594000;
1796 else if (DISPLAY_VER(display) >= 8 || IS_HASWELL(dev_priv))
1797 max_tmds_clock = 300000;
1798 else if (DISPLAY_VER(display) >= 5)
1799 max_tmds_clock = 225000;
1800 else
1801 max_tmds_clock = 165000;
1802
1803 vbt_max_tmds_clock = intel_bios_hdmi_max_tmds_clock(encoder->devdata);
1804 if (vbt_max_tmds_clock)
1805 max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1806
1807 return max_tmds_clock;
1808 }
1809
intel_has_hdmi_sink(struct intel_hdmi * hdmi,const struct drm_connector_state * conn_state)1810 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1811 const struct drm_connector_state *conn_state)
1812 {
1813 struct intel_connector *connector = hdmi->attached_connector;
1814
1815 return connector->base.display_info.is_hdmi &&
1816 READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1817 }
1818
intel_hdmi_is_ycbcr420(const struct intel_crtc_state * crtc_state)1819 static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state)
1820 {
1821 return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420;
1822 }
1823
hdmi_port_clock_limit(struct intel_hdmi * hdmi,bool respect_downstream_limits,bool has_hdmi_sink)1824 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1825 bool respect_downstream_limits,
1826 bool has_hdmi_sink)
1827 {
1828 struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1829 int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1830
1831 if (respect_downstream_limits) {
1832 struct intel_connector *connector = hdmi->attached_connector;
1833 const struct drm_display_info *info = &connector->base.display_info;
1834
1835 if (hdmi->dp_dual_mode.max_tmds_clock)
1836 max_tmds_clock = min(max_tmds_clock,
1837 hdmi->dp_dual_mode.max_tmds_clock);
1838
1839 if (info->max_tmds_clock)
1840 max_tmds_clock = min(max_tmds_clock,
1841 info->max_tmds_clock);
1842 else if (!has_hdmi_sink)
1843 max_tmds_clock = min(max_tmds_clock, 165000);
1844 }
1845
1846 return max_tmds_clock;
1847 }
1848
1849 static enum drm_mode_status
hdmi_port_clock_valid(struct intel_hdmi * hdmi,int clock,bool respect_downstream_limits,bool has_hdmi_sink)1850 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1851 int clock, bool respect_downstream_limits,
1852 bool has_hdmi_sink)
1853 {
1854 struct intel_display *display = to_intel_display(hdmi);
1855 struct drm_i915_private *dev_priv = to_i915(display->drm);
1856 struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1857
1858 if (clock < 25000)
1859 return MODE_CLOCK_LOW;
1860 if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1861 has_hdmi_sink))
1862 return MODE_CLOCK_HIGH;
1863
1864 /* GLK DPLL can't generate 446-480 MHz */
1865 if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1866 return MODE_CLOCK_RANGE;
1867
1868 /* BXT/GLK DPLL can't generate 223-240 MHz */
1869 if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1870 clock > 223333 && clock < 240000)
1871 return MODE_CLOCK_RANGE;
1872
1873 /* CHV DPLL can't generate 216-240 MHz */
1874 if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1875 return MODE_CLOCK_RANGE;
1876
1877 /* ICL+ combo PHY PLL can't generate 500-533.2 MHz */
1878 if (intel_encoder_is_combo(encoder) && clock > 500000 && clock < 533200)
1879 return MODE_CLOCK_RANGE;
1880
1881 /* ICL+ TC PHY PLL can't generate 500-532.8 MHz */
1882 if (intel_encoder_is_tc(encoder) && clock > 500000 && clock < 532800)
1883 return MODE_CLOCK_RANGE;
1884
1885 /*
1886 * SNPS PHYs' MPLLB table-based programming can only handle a fixed
1887 * set of link rates.
1888 *
1889 * FIXME: We will hopefully get an algorithmic way of programming
1890 * the MPLLB for HDMI in the future.
1891 */
1892 if (DISPLAY_VER(display) >= 14)
1893 return intel_cx0_phy_check_hdmi_link_rate(hdmi, clock);
1894 else if (IS_DG2(dev_priv))
1895 return intel_snps_phy_check_hdmi_link_rate(clock);
1896
1897 return MODE_OK;
1898 }
1899
intel_hdmi_tmds_clock(int clock,int bpc,enum intel_output_format sink_format)1900 int intel_hdmi_tmds_clock(int clock, int bpc,
1901 enum intel_output_format sink_format)
1902 {
1903 /* YCBCR420 TMDS rate requirement is half the pixel clock */
1904 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1905 clock /= 2;
1906
1907 /*
1908 * Need to adjust the port link by:
1909 * 1.5x for 12bpc
1910 * 1.25x for 10bpc
1911 */
1912 return DIV_ROUND_CLOSEST(clock * bpc, 8);
1913 }
1914
intel_hdmi_source_bpc_possible(struct intel_display * display,int bpc)1915 static bool intel_hdmi_source_bpc_possible(struct intel_display *display, int bpc)
1916 {
1917 switch (bpc) {
1918 case 12:
1919 return !HAS_GMCH(display);
1920 case 10:
1921 return DISPLAY_VER(display) >= 11;
1922 case 8:
1923 return true;
1924 default:
1925 MISSING_CASE(bpc);
1926 return false;
1927 }
1928 }
1929
intel_hdmi_sink_bpc_possible(struct drm_connector * connector,int bpc,bool has_hdmi_sink,enum intel_output_format sink_format)1930 static bool intel_hdmi_sink_bpc_possible(struct drm_connector *connector,
1931 int bpc, bool has_hdmi_sink,
1932 enum intel_output_format sink_format)
1933 {
1934 const struct drm_display_info *info = &connector->display_info;
1935 const struct drm_hdmi_info *hdmi = &info->hdmi;
1936
1937 switch (bpc) {
1938 case 12:
1939 if (!has_hdmi_sink)
1940 return false;
1941
1942 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1943 return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1944 else
1945 return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36;
1946 case 10:
1947 if (!has_hdmi_sink)
1948 return false;
1949
1950 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1951 return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1952 else
1953 return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30;
1954 case 8:
1955 return true;
1956 default:
1957 MISSING_CASE(bpc);
1958 return false;
1959 }
1960 }
1961
1962 static enum drm_mode_status
intel_hdmi_mode_clock_valid(struct drm_connector * connector,int clock,bool has_hdmi_sink,enum intel_output_format sink_format)1963 intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
1964 bool has_hdmi_sink,
1965 enum intel_output_format sink_format)
1966 {
1967 struct intel_display *display = to_intel_display(connector->dev);
1968 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1969 enum drm_mode_status status = MODE_OK;
1970 int bpc;
1971
1972 /*
1973 * Try all color depths since valid port clock range
1974 * can have holes. Any mode that can be used with at
1975 * least one color depth is accepted.
1976 */
1977 for (bpc = 12; bpc >= 8; bpc -= 2) {
1978 int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, sink_format);
1979
1980 if (!intel_hdmi_source_bpc_possible(display, bpc))
1981 continue;
1982
1983 if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, sink_format))
1984 continue;
1985
1986 status = hdmi_port_clock_valid(hdmi, tmds_clock, true, has_hdmi_sink);
1987 if (status == MODE_OK)
1988 return MODE_OK;
1989 }
1990
1991 /* can never happen */
1992 drm_WARN_ON(display->drm, status == MODE_OK);
1993
1994 return status;
1995 }
1996
1997 static enum drm_mode_status
intel_hdmi_mode_valid(struct drm_connector * connector,struct drm_display_mode * mode)1998 intel_hdmi_mode_valid(struct drm_connector *connector,
1999 struct drm_display_mode *mode)
2000 {
2001 struct intel_display *display = to_intel_display(connector->dev);
2002 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2003 struct drm_i915_private *dev_priv = to_i915(display->drm);
2004 enum drm_mode_status status;
2005 int clock = mode->clock;
2006 int max_dotclk = to_i915(connector->dev)->display.cdclk.max_dotclk_freq;
2007 bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
2008 bool ycbcr_420_only;
2009 enum intel_output_format sink_format;
2010
2011 status = intel_cpu_transcoder_mode_valid(dev_priv, mode);
2012 if (status != MODE_OK)
2013 return status;
2014
2015 if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
2016 clock *= 2;
2017
2018 if (clock > max_dotclk)
2019 return MODE_CLOCK_HIGH;
2020
2021 if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
2022 if (!has_hdmi_sink)
2023 return MODE_CLOCK_LOW;
2024 clock *= 2;
2025 }
2026
2027 /*
2028 * HDMI2.1 requires higher resolution modes like 8k60, 4K120 to be
2029 * enumerated only if FRL is supported. Current platforms do not support
2030 * FRL so prune the higher resolution modes that require doctclock more
2031 * than 600MHz.
2032 */
2033 if (clock > 600000)
2034 return MODE_CLOCK_HIGH;
2035
2036 ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
2037
2038 if (ycbcr_420_only)
2039 sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2040 else
2041 sink_format = INTEL_OUTPUT_FORMAT_RGB;
2042
2043 status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format);
2044 if (status != MODE_OK) {
2045 if (ycbcr_420_only ||
2046 !connector->ycbcr_420_allowed ||
2047 !drm_mode_is_420_also(&connector->display_info, mode))
2048 return status;
2049
2050 sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2051 status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format);
2052 if (status != MODE_OK)
2053 return status;
2054 }
2055
2056 return intel_mode_valid_max_plane_size(dev_priv, mode, false);
2057 }
2058
intel_hdmi_bpc_possible(const struct intel_crtc_state * crtc_state,int bpc,bool has_hdmi_sink)2059 bool intel_hdmi_bpc_possible(const struct intel_crtc_state *crtc_state,
2060 int bpc, bool has_hdmi_sink)
2061 {
2062 struct drm_atomic_state *state = crtc_state->uapi.state;
2063 struct drm_connector_state *connector_state;
2064 struct drm_connector *connector;
2065 int i;
2066
2067 for_each_new_connector_in_state(state, connector, connector_state, i) {
2068 if (connector_state->crtc != crtc_state->uapi.crtc)
2069 continue;
2070
2071 if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink,
2072 crtc_state->sink_format))
2073 return false;
2074 }
2075
2076 return true;
2077 }
2078
hdmi_bpc_possible(const struct intel_crtc_state * crtc_state,int bpc)2079 static bool hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc)
2080 {
2081 struct intel_display *display = to_intel_display(crtc_state);
2082 const struct drm_display_mode *adjusted_mode =
2083 &crtc_state->hw.adjusted_mode;
2084
2085 if (!intel_hdmi_source_bpc_possible(display, bpc))
2086 return false;
2087
2088 /* Display Wa_1405510057:icl,ehl */
2089 if (intel_hdmi_is_ycbcr420(crtc_state) &&
2090 bpc == 10 && DISPLAY_VER(display) == 11 &&
2091 (adjusted_mode->crtc_hblank_end -
2092 adjusted_mode->crtc_hblank_start) % 8 == 2)
2093 return false;
2094
2095 return intel_hdmi_bpc_possible(crtc_state, bpc, crtc_state->has_hdmi_sink);
2096 }
2097
intel_hdmi_compute_bpc(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,int clock,bool respect_downstream_limits)2098 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2099 struct intel_crtc_state *crtc_state,
2100 int clock, bool respect_downstream_limits)
2101 {
2102 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2103 int bpc;
2104
2105 /*
2106 * pipe_bpp could already be below 8bpc due to FDI
2107 * bandwidth constraints. HDMI minimum is 8bpc however.
2108 */
2109 bpc = max(crtc_state->pipe_bpp / 3, 8);
2110
2111 /*
2112 * We will never exceed downstream TMDS clock limits while
2113 * attempting deep color. If the user insists on forcing an
2114 * out of spec mode they will have to be satisfied with 8bpc.
2115 */
2116 if (!respect_downstream_limits)
2117 bpc = 8;
2118
2119 for (; bpc >= 8; bpc -= 2) {
2120 int tmds_clock = intel_hdmi_tmds_clock(clock, bpc,
2121 crtc_state->sink_format);
2122
2123 if (hdmi_bpc_possible(crtc_state, bpc) &&
2124 hdmi_port_clock_valid(intel_hdmi, tmds_clock,
2125 respect_downstream_limits,
2126 crtc_state->has_hdmi_sink) == MODE_OK)
2127 return bpc;
2128 }
2129
2130 return -EINVAL;
2131 }
2132
intel_hdmi_compute_clock(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,bool respect_downstream_limits)2133 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2134 struct intel_crtc_state *crtc_state,
2135 bool respect_downstream_limits)
2136 {
2137 struct intel_display *display = to_intel_display(encoder);
2138 const struct drm_display_mode *adjusted_mode =
2139 &crtc_state->hw.adjusted_mode;
2140 int bpc, clock = adjusted_mode->crtc_clock;
2141
2142 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2143 clock *= 2;
2144
2145 bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock,
2146 respect_downstream_limits);
2147 if (bpc < 0)
2148 return bpc;
2149
2150 crtc_state->port_clock =
2151 intel_hdmi_tmds_clock(clock, bpc, crtc_state->sink_format);
2152
2153 /*
2154 * pipe_bpp could already be below 8bpc due to
2155 * FDI bandwidth constraints. We shouldn't bump it
2156 * back up to the HDMI minimum 8bpc in that case.
2157 */
2158 crtc_state->pipe_bpp = min(crtc_state->pipe_bpp, bpc * 3);
2159
2160 drm_dbg_kms(display->drm,
2161 "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2162 bpc, crtc_state->pipe_bpp);
2163
2164 return 0;
2165 }
2166
intel_hdmi_limited_color_range(const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2167 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2168 const struct drm_connector_state *conn_state)
2169 {
2170 const struct intel_digital_connector_state *intel_conn_state =
2171 to_intel_digital_connector_state(conn_state);
2172 const struct drm_display_mode *adjusted_mode =
2173 &crtc_state->hw.adjusted_mode;
2174
2175 /*
2176 * Our YCbCr output is always limited range.
2177 * crtc_state->limited_color_range only applies to RGB,
2178 * and it must never be set for YCbCr or we risk setting
2179 * some conflicting bits in TRANSCONF which will mess up
2180 * the colors on the monitor.
2181 */
2182 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2183 return false;
2184
2185 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2186 /* See CEA-861-E - 5.1 Default Encoding Parameters */
2187 return crtc_state->has_hdmi_sink &&
2188 drm_default_rgb_quant_range(adjusted_mode) ==
2189 HDMI_QUANTIZATION_RANGE_LIMITED;
2190 } else {
2191 return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2192 }
2193 }
2194
intel_hdmi_has_audio(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2195 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2196 const struct intel_crtc_state *crtc_state,
2197 const struct drm_connector_state *conn_state)
2198 {
2199 struct drm_connector *connector = conn_state->connector;
2200 const struct intel_digital_connector_state *intel_conn_state =
2201 to_intel_digital_connector_state(conn_state);
2202
2203 if (!crtc_state->has_hdmi_sink)
2204 return false;
2205
2206 if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2207 return connector->display_info.has_audio;
2208 else
2209 return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2210 }
2211
2212 static enum intel_output_format
intel_hdmi_sink_format(const struct intel_crtc_state * crtc_state,struct intel_connector * connector,bool ycbcr_420_output)2213 intel_hdmi_sink_format(const struct intel_crtc_state *crtc_state,
2214 struct intel_connector *connector,
2215 bool ycbcr_420_output)
2216 {
2217 if (!crtc_state->has_hdmi_sink)
2218 return INTEL_OUTPUT_FORMAT_RGB;
2219
2220 if (connector->base.ycbcr_420_allowed && ycbcr_420_output)
2221 return INTEL_OUTPUT_FORMAT_YCBCR420;
2222 else
2223 return INTEL_OUTPUT_FORMAT_RGB;
2224 }
2225
2226 static enum intel_output_format
intel_hdmi_output_format(const struct intel_crtc_state * crtc_state)2227 intel_hdmi_output_format(const struct intel_crtc_state *crtc_state)
2228 {
2229 return crtc_state->sink_format;
2230 }
2231
intel_hdmi_compute_output_format(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state,bool respect_downstream_limits)2232 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2233 struct intel_crtc_state *crtc_state,
2234 const struct drm_connector_state *conn_state,
2235 bool respect_downstream_limits)
2236 {
2237 struct intel_display *display = to_intel_display(encoder);
2238 struct intel_connector *connector = to_intel_connector(conn_state->connector);
2239 const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2240 const struct drm_display_info *info = &connector->base.display_info;
2241 bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode);
2242 int ret;
2243
2244 crtc_state->sink_format =
2245 intel_hdmi_sink_format(crtc_state, connector, ycbcr_420_only);
2246
2247 if (ycbcr_420_only && crtc_state->sink_format != INTEL_OUTPUT_FORMAT_YCBCR420) {
2248 drm_dbg_kms(display->drm,
2249 "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2250 crtc_state->sink_format = INTEL_OUTPUT_FORMAT_RGB;
2251 }
2252
2253 crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2254 ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2255 if (ret) {
2256 if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
2257 !crtc_state->has_hdmi_sink ||
2258 !connector->base.ycbcr_420_allowed ||
2259 !drm_mode_is_420_also(info, adjusted_mode))
2260 return ret;
2261
2262 crtc_state->sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2263 crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2264 ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2265 }
2266
2267 return ret;
2268 }
2269
intel_hdmi_is_cloned(const struct intel_crtc_state * crtc_state)2270 static bool intel_hdmi_is_cloned(const struct intel_crtc_state *crtc_state)
2271 {
2272 return crtc_state->uapi.encoder_mask &&
2273 !is_power_of_2(crtc_state->uapi.encoder_mask);
2274 }
2275
source_supports_scrambling(struct intel_encoder * encoder)2276 static bool source_supports_scrambling(struct intel_encoder *encoder)
2277 {
2278 /*
2279 * Gen 10+ support HDMI 2.0 : the max tmds clock is 594MHz, and
2280 * scrambling is supported.
2281 * But there seem to be cases where certain platforms that support
2282 * HDMI 2.0, have an HDMI1.4 retimer chip, and the max tmds clock is
2283 * capped by VBT to less than 340MHz.
2284 *
2285 * In such cases when an HDMI2.0 sink is connected, it creates a
2286 * problem : the platform and the sink both support scrambling but the
2287 * HDMI 1.4 retimer chip doesn't.
2288 *
2289 * So go for scrambling, based on the max tmds clock taking into account,
2290 * restrictions coming from VBT.
2291 */
2292 return intel_hdmi_source_max_tmds_clock(encoder) > 340000;
2293 }
2294
intel_hdmi_compute_has_hdmi_sink(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2295 bool intel_hdmi_compute_has_hdmi_sink(struct intel_encoder *encoder,
2296 const struct intel_crtc_state *crtc_state,
2297 const struct drm_connector_state *conn_state)
2298 {
2299 struct intel_hdmi *hdmi = enc_to_intel_hdmi(encoder);
2300
2301 return intel_has_hdmi_sink(hdmi, conn_state) &&
2302 !intel_hdmi_is_cloned(crtc_state);
2303 }
2304
intel_hdmi_compute_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state)2305 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2306 struct intel_crtc_state *pipe_config,
2307 struct drm_connector_state *conn_state)
2308 {
2309 struct intel_display *display = to_intel_display(encoder);
2310 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2311 struct drm_connector *connector = conn_state->connector;
2312 struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2313 int ret;
2314
2315 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2316 return -EINVAL;
2317
2318 if (!connector->interlace_allowed &&
2319 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2320 return -EINVAL;
2321
2322 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2323
2324 if (pipe_config->has_hdmi_sink)
2325 pipe_config->has_infoframe = true;
2326
2327 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2328 pipe_config->pixel_multiplier = 2;
2329
2330 pipe_config->has_audio =
2331 intel_hdmi_has_audio(encoder, pipe_config, conn_state) &&
2332 intel_audio_compute_config(encoder, pipe_config, conn_state);
2333
2334 /*
2335 * Try to respect downstream TMDS clock limits first, if
2336 * that fails assume the user might know something we don't.
2337 */
2338 ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, true);
2339 if (ret)
2340 ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, false);
2341 if (ret) {
2342 drm_dbg_kms(display->drm,
2343 "unsupported HDMI clock (%d kHz), rejecting mode\n",
2344 pipe_config->hw.adjusted_mode.crtc_clock);
2345 return ret;
2346 }
2347
2348 if (intel_hdmi_is_ycbcr420(pipe_config)) {
2349 ret = intel_panel_fitting(pipe_config, conn_state);
2350 if (ret)
2351 return ret;
2352 }
2353
2354 pipe_config->limited_color_range =
2355 intel_hdmi_limited_color_range(pipe_config, conn_state);
2356
2357 if (conn_state->picture_aspect_ratio)
2358 adjusted_mode->picture_aspect_ratio =
2359 conn_state->picture_aspect_ratio;
2360
2361 pipe_config->lane_count = 4;
2362
2363 if (scdc->scrambling.supported && source_supports_scrambling(encoder)) {
2364 if (scdc->scrambling.low_rates)
2365 pipe_config->hdmi_scrambling = true;
2366
2367 if (pipe_config->port_clock > 340000) {
2368 pipe_config->hdmi_scrambling = true;
2369 pipe_config->hdmi_high_tmds_clock_ratio = true;
2370 }
2371 }
2372
2373 intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2374 conn_state);
2375
2376 if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2377 drm_dbg_kms(display->drm, "bad AVI infoframe\n");
2378 return -EINVAL;
2379 }
2380
2381 if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2382 drm_dbg_kms(display->drm, "bad SPD infoframe\n");
2383 return -EINVAL;
2384 }
2385
2386 if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2387 drm_dbg_kms(display->drm, "bad HDMI infoframe\n");
2388 return -EINVAL;
2389 }
2390
2391 if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2392 drm_dbg_kms(display->drm, "bad DRM infoframe\n");
2393 return -EINVAL;
2394 }
2395
2396 return 0;
2397 }
2398
intel_hdmi_encoder_shutdown(struct intel_encoder * encoder)2399 void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder)
2400 {
2401 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2402
2403 /*
2404 * Give a hand to buggy BIOSen which forget to turn
2405 * the TMDS output buffers back on after a reboot.
2406 */
2407 intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
2408 }
2409
2410 static void
intel_hdmi_unset_edid(struct drm_connector * connector)2411 intel_hdmi_unset_edid(struct drm_connector *connector)
2412 {
2413 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2414
2415 intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2416 intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2417
2418 drm_edid_free(to_intel_connector(connector)->detect_edid);
2419 to_intel_connector(connector)->detect_edid = NULL;
2420 }
2421
2422 static void
intel_hdmi_dp_dual_mode_detect(struct drm_connector * connector)2423 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector)
2424 {
2425 struct intel_display *display = to_intel_display(connector->dev);
2426 struct drm_i915_private *dev_priv = to_i915(connector->dev);
2427 struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2428 struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
2429 struct i2c_adapter *ddc = connector->ddc;
2430 enum drm_dp_dual_mode_type type;
2431
2432 type = drm_dp_dual_mode_detect(display->drm, ddc);
2433
2434 /*
2435 * Type 1 DVI adaptors are not required to implement any
2436 * registers, so we can't always detect their presence.
2437 * Ideally we should be able to check the state of the
2438 * CONFIG1 pin, but no such luck on our hardware.
2439 *
2440 * The only method left to us is to check the VBT to see
2441 * if the port is a dual mode capable DP port.
2442 */
2443 if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2444 if (!connector->force &&
2445 intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2446 drm_dbg_kms(display->drm,
2447 "Assuming DP dual mode adaptor presence based on VBT\n");
2448 type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2449 } else {
2450 type = DRM_DP_DUAL_MODE_NONE;
2451 }
2452 }
2453
2454 if (type == DRM_DP_DUAL_MODE_NONE)
2455 return;
2456
2457 hdmi->dp_dual_mode.type = type;
2458 hdmi->dp_dual_mode.max_tmds_clock =
2459 drm_dp_dual_mode_max_tmds_clock(display->drm, type, ddc);
2460
2461 drm_dbg_kms(display->drm,
2462 "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2463 drm_dp_get_dual_mode_type_name(type),
2464 hdmi->dp_dual_mode.max_tmds_clock);
2465
2466 /* Older VBTs are often buggy and can't be trusted :( Play it safe. */
2467 if ((DISPLAY_VER(display) >= 8 || IS_HASWELL(dev_priv)) &&
2468 !intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2469 drm_dbg_kms(display->drm,
2470 "Ignoring DP dual mode adaptor max TMDS clock for native HDMI port\n");
2471 hdmi->dp_dual_mode.max_tmds_clock = 0;
2472 }
2473 }
2474
2475 static bool
intel_hdmi_set_edid(struct drm_connector * connector)2476 intel_hdmi_set_edid(struct drm_connector *connector)
2477 {
2478 struct intel_display *display = to_intel_display(connector->dev);
2479 struct drm_i915_private *dev_priv = to_i915(connector->dev);
2480 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2481 struct i2c_adapter *ddc = connector->ddc;
2482 intel_wakeref_t wakeref;
2483 const struct drm_edid *drm_edid;
2484 bool connected = false;
2485
2486 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2487
2488 drm_edid = drm_edid_read_ddc(connector, ddc);
2489
2490 if (!drm_edid && !intel_gmbus_is_forced_bit(ddc)) {
2491 drm_dbg_kms(display->drm,
2492 "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2493 intel_gmbus_force_bit(ddc, true);
2494 drm_edid = drm_edid_read_ddc(connector, ddc);
2495 intel_gmbus_force_bit(ddc, false);
2496 }
2497
2498 /* Below we depend on display info having been updated */
2499 drm_edid_connector_update(connector, drm_edid);
2500
2501 to_intel_connector(connector)->detect_edid = drm_edid;
2502
2503 if (drm_edid_is_digital(drm_edid)) {
2504 intel_hdmi_dp_dual_mode_detect(connector);
2505
2506 connected = true;
2507 }
2508
2509 intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2510
2511 cec_notifier_set_phys_addr(intel_hdmi->cec_notifier,
2512 connector->display_info.source_physical_address);
2513
2514 return connected;
2515 }
2516
2517 static enum drm_connector_status
intel_hdmi_detect(struct drm_connector * connector,bool force)2518 intel_hdmi_detect(struct drm_connector *connector, bool force)
2519 {
2520 struct intel_display *display = to_intel_display(connector->dev);
2521 enum drm_connector_status status = connector_status_disconnected;
2522 struct drm_i915_private *dev_priv = to_i915(connector->dev);
2523 struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2524 struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2525 intel_wakeref_t wakeref;
2526
2527 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s]\n",
2528 connector->base.id, connector->name);
2529
2530 if (!intel_display_device_enabled(dev_priv))
2531 return connector_status_disconnected;
2532
2533 if (!intel_display_driver_check_access(dev_priv))
2534 return connector->status;
2535
2536 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2537
2538 if (DISPLAY_VER(display) >= 11 &&
2539 !intel_digital_port_connected(encoder))
2540 goto out;
2541
2542 intel_hdmi_unset_edid(connector);
2543
2544 if (intel_hdmi_set_edid(connector))
2545 status = connector_status_connected;
2546
2547 out:
2548 intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2549
2550 if (status != connector_status_connected)
2551 cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2552
2553 return status;
2554 }
2555
2556 static void
intel_hdmi_force(struct drm_connector * connector)2557 intel_hdmi_force(struct drm_connector *connector)
2558 {
2559 struct intel_display *display = to_intel_display(connector->dev);
2560 struct drm_i915_private *i915 = to_i915(connector->dev);
2561
2562 drm_dbg_kms(display->drm, "[CONNECTOR:%d:%s]\n",
2563 connector->base.id, connector->name);
2564
2565 if (!intel_display_driver_check_access(i915))
2566 return;
2567
2568 intel_hdmi_unset_edid(connector);
2569
2570 if (connector->status != connector_status_connected)
2571 return;
2572
2573 intel_hdmi_set_edid(connector);
2574 }
2575
intel_hdmi_get_modes(struct drm_connector * connector)2576 static int intel_hdmi_get_modes(struct drm_connector *connector)
2577 {
2578 /* drm_edid_connector_update() done in ->detect() or ->force() */
2579 return drm_edid_connector_add_modes(connector);
2580 }
2581
2582 static int
intel_hdmi_connector_register(struct drm_connector * connector)2583 intel_hdmi_connector_register(struct drm_connector *connector)
2584 {
2585 int ret;
2586
2587 ret = intel_connector_register(connector);
2588 if (ret)
2589 return ret;
2590
2591 return ret;
2592 }
2593
intel_hdmi_connector_unregister(struct drm_connector * connector)2594 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2595 {
2596 struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2597
2598 cec_notifier_conn_unregister(n);
2599
2600 intel_connector_unregister(connector);
2601 }
2602
2603 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2604 .detect = intel_hdmi_detect,
2605 .force = intel_hdmi_force,
2606 .fill_modes = drm_helper_probe_single_connector_modes,
2607 .atomic_get_property = intel_digital_connector_atomic_get_property,
2608 .atomic_set_property = intel_digital_connector_atomic_set_property,
2609 .late_register = intel_hdmi_connector_register,
2610 .early_unregister = intel_hdmi_connector_unregister,
2611 .destroy = intel_connector_destroy,
2612 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2613 .atomic_duplicate_state = intel_digital_connector_duplicate_state,
2614 };
2615
intel_hdmi_connector_atomic_check(struct drm_connector * connector,struct drm_atomic_state * state)2616 static int intel_hdmi_connector_atomic_check(struct drm_connector *connector,
2617 struct drm_atomic_state *state)
2618 {
2619 struct intel_display *display = to_intel_display(connector->dev);
2620
2621 if (HAS_DDI(display))
2622 return intel_digital_connector_atomic_check(connector, state);
2623 else
2624 return g4x_hdmi_connector_atomic_check(connector, state);
2625 }
2626
2627 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2628 .get_modes = intel_hdmi_get_modes,
2629 .mode_valid = intel_hdmi_mode_valid,
2630 .atomic_check = intel_hdmi_connector_atomic_check,
2631 };
2632
2633 static void
intel_hdmi_add_properties(struct intel_hdmi * intel_hdmi,struct drm_connector * connector)2634 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2635 {
2636 struct intel_display *display = to_intel_display(intel_hdmi);
2637
2638 intel_attach_force_audio_property(connector);
2639 intel_attach_broadcast_rgb_property(connector);
2640 intel_attach_aspect_ratio_property(connector);
2641
2642 intel_attach_hdmi_colorspace_property(connector);
2643 drm_connector_attach_content_type_property(connector);
2644
2645 if (DISPLAY_VER(display) >= 10)
2646 drm_connector_attach_hdr_output_metadata_property(connector);
2647
2648 if (!HAS_GMCH(display))
2649 drm_connector_attach_max_bpc_property(connector, 8, 12);
2650 }
2651
2652 /*
2653 * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2654 * @encoder: intel_encoder
2655 * @connector: drm_connector
2656 * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2657 * or reset the high tmds clock ratio for scrambling
2658 * @scrambling: bool to Indicate if the function needs to set or reset
2659 * sink scrambling
2660 *
2661 * This function handles scrambling on HDMI 2.0 capable sinks.
2662 * If required clock rate is > 340 Mhz && scrambling is supported by sink
2663 * it enables scrambling. This should be called before enabling the HDMI
2664 * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2665 * detect a scrambled clock within 100 ms.
2666 *
2667 * Returns:
2668 * True on success, false on failure.
2669 */
intel_hdmi_handle_sink_scrambling(struct intel_encoder * encoder,struct drm_connector * connector,bool high_tmds_clock_ratio,bool scrambling)2670 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2671 struct drm_connector *connector,
2672 bool high_tmds_clock_ratio,
2673 bool scrambling)
2674 {
2675 struct intel_display *display = to_intel_display(encoder);
2676 struct drm_scrambling *sink_scrambling =
2677 &connector->display_info.hdmi.scdc.scrambling;
2678
2679 if (!sink_scrambling->supported)
2680 return true;
2681
2682 drm_dbg_kms(display->drm,
2683 "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2684 connector->base.id, connector->name,
2685 str_yes_no(scrambling), high_tmds_clock_ratio ? 40 : 10);
2686
2687 /* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2688 return drm_scdc_set_high_tmds_clock_ratio(connector, high_tmds_clock_ratio) &&
2689 drm_scdc_set_scrambling(connector, scrambling);
2690 }
2691
chv_encoder_to_ddc_pin(struct intel_encoder * encoder)2692 static u8 chv_encoder_to_ddc_pin(struct intel_encoder *encoder)
2693 {
2694 enum port port = encoder->port;
2695 u8 ddc_pin;
2696
2697 switch (port) {
2698 case PORT_B:
2699 ddc_pin = GMBUS_PIN_DPB;
2700 break;
2701 case PORT_C:
2702 ddc_pin = GMBUS_PIN_DPC;
2703 break;
2704 case PORT_D:
2705 ddc_pin = GMBUS_PIN_DPD_CHV;
2706 break;
2707 default:
2708 MISSING_CASE(port);
2709 ddc_pin = GMBUS_PIN_DPB;
2710 break;
2711 }
2712 return ddc_pin;
2713 }
2714
bxt_encoder_to_ddc_pin(struct intel_encoder * encoder)2715 static u8 bxt_encoder_to_ddc_pin(struct intel_encoder *encoder)
2716 {
2717 enum port port = encoder->port;
2718 u8 ddc_pin;
2719
2720 switch (port) {
2721 case PORT_B:
2722 ddc_pin = GMBUS_PIN_1_BXT;
2723 break;
2724 case PORT_C:
2725 ddc_pin = GMBUS_PIN_2_BXT;
2726 break;
2727 default:
2728 MISSING_CASE(port);
2729 ddc_pin = GMBUS_PIN_1_BXT;
2730 break;
2731 }
2732 return ddc_pin;
2733 }
2734
cnp_encoder_to_ddc_pin(struct intel_encoder * encoder)2735 static u8 cnp_encoder_to_ddc_pin(struct intel_encoder *encoder)
2736 {
2737 enum port port = encoder->port;
2738 u8 ddc_pin;
2739
2740 switch (port) {
2741 case PORT_B:
2742 ddc_pin = GMBUS_PIN_1_BXT;
2743 break;
2744 case PORT_C:
2745 ddc_pin = GMBUS_PIN_2_BXT;
2746 break;
2747 case PORT_D:
2748 ddc_pin = GMBUS_PIN_4_CNP;
2749 break;
2750 case PORT_F:
2751 ddc_pin = GMBUS_PIN_3_BXT;
2752 break;
2753 default:
2754 MISSING_CASE(port);
2755 ddc_pin = GMBUS_PIN_1_BXT;
2756 break;
2757 }
2758 return ddc_pin;
2759 }
2760
icl_encoder_to_ddc_pin(struct intel_encoder * encoder)2761 static u8 icl_encoder_to_ddc_pin(struct intel_encoder *encoder)
2762 {
2763 struct intel_display *display = to_intel_display(encoder);
2764 enum port port = encoder->port;
2765
2766 if (intel_encoder_is_combo(encoder))
2767 return GMBUS_PIN_1_BXT + port;
2768 else if (intel_encoder_is_tc(encoder))
2769 return GMBUS_PIN_9_TC1_ICP + intel_encoder_to_tc(encoder);
2770
2771 drm_WARN(display->drm, 1, "Unknown port:%c\n", port_name(port));
2772 return GMBUS_PIN_2_BXT;
2773 }
2774
mcc_encoder_to_ddc_pin(struct intel_encoder * encoder)2775 static u8 mcc_encoder_to_ddc_pin(struct intel_encoder *encoder)
2776 {
2777 enum phy phy = intel_encoder_to_phy(encoder);
2778 u8 ddc_pin;
2779
2780 switch (phy) {
2781 case PHY_A:
2782 ddc_pin = GMBUS_PIN_1_BXT;
2783 break;
2784 case PHY_B:
2785 ddc_pin = GMBUS_PIN_2_BXT;
2786 break;
2787 case PHY_C:
2788 ddc_pin = GMBUS_PIN_9_TC1_ICP;
2789 break;
2790 default:
2791 MISSING_CASE(phy);
2792 ddc_pin = GMBUS_PIN_1_BXT;
2793 break;
2794 }
2795 return ddc_pin;
2796 }
2797
rkl_encoder_to_ddc_pin(struct intel_encoder * encoder)2798 static u8 rkl_encoder_to_ddc_pin(struct intel_encoder *encoder)
2799 {
2800 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2801 enum phy phy = intel_encoder_to_phy(encoder);
2802
2803 WARN_ON(encoder->port == PORT_C);
2804
2805 /*
2806 * Pin mapping for RKL depends on which PCH is present. With TGP, the
2807 * final two outputs use type-c pins, even though they're actually
2808 * combo outputs. With CMP, the traditional DDI A-D pins are used for
2809 * all outputs.
2810 */
2811 if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2812 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2813
2814 return GMBUS_PIN_1_BXT + phy;
2815 }
2816
gen9bc_tgp_encoder_to_ddc_pin(struct intel_encoder * encoder)2817 static u8 gen9bc_tgp_encoder_to_ddc_pin(struct intel_encoder *encoder)
2818 {
2819 struct intel_display *display = to_intel_display(encoder);
2820 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2821 enum phy phy = intel_encoder_to_phy(encoder);
2822
2823 drm_WARN_ON(display->drm, encoder->port == PORT_A);
2824
2825 /*
2826 * Pin mapping for GEN9 BC depends on which PCH is present. With TGP,
2827 * final two outputs use type-c pins, even though they're actually
2828 * combo outputs. With CMP, the traditional DDI A-D pins are used for
2829 * all outputs.
2830 */
2831 if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2832 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2833
2834 return GMBUS_PIN_1_BXT + phy;
2835 }
2836
dg1_encoder_to_ddc_pin(struct intel_encoder * encoder)2837 static u8 dg1_encoder_to_ddc_pin(struct intel_encoder *encoder)
2838 {
2839 return intel_encoder_to_phy(encoder) + 1;
2840 }
2841
adls_encoder_to_ddc_pin(struct intel_encoder * encoder)2842 static u8 adls_encoder_to_ddc_pin(struct intel_encoder *encoder)
2843 {
2844 enum phy phy = intel_encoder_to_phy(encoder);
2845
2846 WARN_ON(encoder->port == PORT_B || encoder->port == PORT_C);
2847
2848 /*
2849 * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2850 * except first combo output.
2851 */
2852 if (phy == PHY_A)
2853 return GMBUS_PIN_1_BXT;
2854
2855 return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2856 }
2857
g4x_encoder_to_ddc_pin(struct intel_encoder * encoder)2858 static u8 g4x_encoder_to_ddc_pin(struct intel_encoder *encoder)
2859 {
2860 enum port port = encoder->port;
2861 u8 ddc_pin;
2862
2863 switch (port) {
2864 case PORT_B:
2865 ddc_pin = GMBUS_PIN_DPB;
2866 break;
2867 case PORT_C:
2868 ddc_pin = GMBUS_PIN_DPC;
2869 break;
2870 case PORT_D:
2871 ddc_pin = GMBUS_PIN_DPD;
2872 break;
2873 default:
2874 MISSING_CASE(port);
2875 ddc_pin = GMBUS_PIN_DPB;
2876 break;
2877 }
2878 return ddc_pin;
2879 }
2880
intel_hdmi_default_ddc_pin(struct intel_encoder * encoder)2881 static u8 intel_hdmi_default_ddc_pin(struct intel_encoder *encoder)
2882 {
2883 struct intel_display *display = to_intel_display(encoder);
2884 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2885 u8 ddc_pin;
2886
2887 if (IS_ALDERLAKE_S(dev_priv))
2888 ddc_pin = adls_encoder_to_ddc_pin(encoder);
2889 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2890 ddc_pin = dg1_encoder_to_ddc_pin(encoder);
2891 else if (IS_ROCKETLAKE(dev_priv))
2892 ddc_pin = rkl_encoder_to_ddc_pin(encoder);
2893 else if (DISPLAY_VER(display) == 9 && HAS_PCH_TGP(dev_priv))
2894 ddc_pin = gen9bc_tgp_encoder_to_ddc_pin(encoder);
2895 else if ((IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) &&
2896 HAS_PCH_TGP(dev_priv))
2897 ddc_pin = mcc_encoder_to_ddc_pin(encoder);
2898 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2899 ddc_pin = icl_encoder_to_ddc_pin(encoder);
2900 else if (HAS_PCH_CNP(dev_priv))
2901 ddc_pin = cnp_encoder_to_ddc_pin(encoder);
2902 else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2903 ddc_pin = bxt_encoder_to_ddc_pin(encoder);
2904 else if (IS_CHERRYVIEW(dev_priv))
2905 ddc_pin = chv_encoder_to_ddc_pin(encoder);
2906 else
2907 ddc_pin = g4x_encoder_to_ddc_pin(encoder);
2908
2909 return ddc_pin;
2910 }
2911
2912 static struct intel_encoder *
get_encoder_by_ddc_pin(struct intel_encoder * encoder,u8 ddc_pin)2913 get_encoder_by_ddc_pin(struct intel_encoder *encoder, u8 ddc_pin)
2914 {
2915 struct intel_display *display = to_intel_display(encoder);
2916 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2917 struct intel_encoder *other;
2918
2919 for_each_intel_encoder(display->drm, other) {
2920 struct intel_connector *connector;
2921
2922 if (other == encoder)
2923 continue;
2924
2925 if (!intel_encoder_is_dig_port(other))
2926 continue;
2927
2928 connector = enc_to_dig_port(other)->hdmi.attached_connector;
2929
2930 if (connector && connector->base.ddc == intel_gmbus_get_adapter(i915, ddc_pin))
2931 return other;
2932 }
2933
2934 return NULL;
2935 }
2936
intel_hdmi_ddc_pin(struct intel_encoder * encoder)2937 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2938 {
2939 struct intel_display *display = to_intel_display(encoder);
2940 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2941 struct intel_encoder *other;
2942 const char *source;
2943 u8 ddc_pin;
2944
2945 ddc_pin = intel_bios_hdmi_ddc_pin(encoder->devdata);
2946 source = "VBT";
2947
2948 if (!ddc_pin) {
2949 ddc_pin = intel_hdmi_default_ddc_pin(encoder);
2950 source = "platform default";
2951 }
2952
2953 if (!intel_gmbus_is_valid_pin(i915, ddc_pin)) {
2954 drm_dbg_kms(display->drm,
2955 "[ENCODER:%d:%s] Invalid DDC pin %d\n",
2956 encoder->base.base.id, encoder->base.name, ddc_pin);
2957 return 0;
2958 }
2959
2960 other = get_encoder_by_ddc_pin(encoder, ddc_pin);
2961 if (other) {
2962 drm_dbg_kms(display->drm,
2963 "[ENCODER:%d:%s] DDC pin %d already claimed by [ENCODER:%d:%s]\n",
2964 encoder->base.base.id, encoder->base.name, ddc_pin,
2965 other->base.base.id, other->base.name);
2966 return 0;
2967 }
2968
2969 drm_dbg_kms(display->drm,
2970 "[ENCODER:%d:%s] Using DDC pin 0x%x (%s)\n",
2971 encoder->base.base.id, encoder->base.name,
2972 ddc_pin, source);
2973
2974 return ddc_pin;
2975 }
2976
intel_infoframe_init(struct intel_digital_port * dig_port)2977 void intel_infoframe_init(struct intel_digital_port *dig_port)
2978 {
2979 struct intel_display *display = to_intel_display(dig_port);
2980 struct drm_i915_private *dev_priv =
2981 to_i915(dig_port->base.base.dev);
2982
2983 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2984 dig_port->write_infoframe = vlv_write_infoframe;
2985 dig_port->read_infoframe = vlv_read_infoframe;
2986 dig_port->set_infoframes = vlv_set_infoframes;
2987 dig_port->infoframes_enabled = vlv_infoframes_enabled;
2988 } else if (IS_G4X(dev_priv)) {
2989 dig_port->write_infoframe = g4x_write_infoframe;
2990 dig_port->read_infoframe = g4x_read_infoframe;
2991 dig_port->set_infoframes = g4x_set_infoframes;
2992 dig_port->infoframes_enabled = g4x_infoframes_enabled;
2993 } else if (HAS_DDI(display)) {
2994 if (intel_bios_encoder_is_lspcon(dig_port->base.devdata)) {
2995 dig_port->write_infoframe = lspcon_write_infoframe;
2996 dig_port->read_infoframe = lspcon_read_infoframe;
2997 dig_port->set_infoframes = lspcon_set_infoframes;
2998 dig_port->infoframes_enabled = lspcon_infoframes_enabled;
2999 } else {
3000 dig_port->write_infoframe = hsw_write_infoframe;
3001 dig_port->read_infoframe = hsw_read_infoframe;
3002 dig_port->set_infoframes = hsw_set_infoframes;
3003 dig_port->infoframes_enabled = hsw_infoframes_enabled;
3004 }
3005 } else if (HAS_PCH_IBX(dev_priv)) {
3006 dig_port->write_infoframe = ibx_write_infoframe;
3007 dig_port->read_infoframe = ibx_read_infoframe;
3008 dig_port->set_infoframes = ibx_set_infoframes;
3009 dig_port->infoframes_enabled = ibx_infoframes_enabled;
3010 } else {
3011 dig_port->write_infoframe = cpt_write_infoframe;
3012 dig_port->read_infoframe = cpt_read_infoframe;
3013 dig_port->set_infoframes = cpt_set_infoframes;
3014 dig_port->infoframes_enabled = cpt_infoframes_enabled;
3015 }
3016 }
3017
intel_hdmi_init_connector(struct intel_digital_port * dig_port,struct intel_connector * intel_connector)3018 void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
3019 struct intel_connector *intel_connector)
3020 {
3021 struct intel_display *display = to_intel_display(dig_port);
3022 struct drm_connector *connector = &intel_connector->base;
3023 struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
3024 struct intel_encoder *intel_encoder = &dig_port->base;
3025 struct drm_device *dev = intel_encoder->base.dev;
3026 struct drm_i915_private *dev_priv = to_i915(dev);
3027 enum port port = intel_encoder->port;
3028 struct cec_connector_info conn_info;
3029 u8 ddc_pin;
3030
3031 drm_dbg_kms(display->drm,
3032 "Adding HDMI connector on [ENCODER:%d:%s]\n",
3033 intel_encoder->base.base.id, intel_encoder->base.name);
3034
3035 if (DISPLAY_VER(display) < 12 && drm_WARN_ON(dev, port == PORT_A))
3036 return;
3037
3038 if (drm_WARN(dev, dig_port->max_lanes < 4,
3039 "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
3040 dig_port->max_lanes, intel_encoder->base.base.id,
3041 intel_encoder->base.name))
3042 return;
3043
3044 ddc_pin = intel_hdmi_ddc_pin(intel_encoder);
3045 if (!ddc_pin)
3046 return;
3047
3048 drm_connector_init_with_ddc(dev, connector,
3049 &intel_hdmi_connector_funcs,
3050 DRM_MODE_CONNECTOR_HDMIA,
3051 intel_gmbus_get_adapter(dev_priv, ddc_pin));
3052
3053 drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
3054
3055 if (DISPLAY_VER(display) < 12)
3056 connector->interlace_allowed = true;
3057
3058 connector->stereo_allowed = true;
3059
3060 if (DISPLAY_VER(display) >= 10)
3061 connector->ycbcr_420_allowed = true;
3062
3063 intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
3064 intel_connector->base.polled = intel_connector->polled;
3065
3066 if (HAS_DDI(display))
3067 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3068 else
3069 intel_connector->get_hw_state = intel_connector_get_hw_state;
3070
3071 intel_hdmi_add_properties(intel_hdmi, connector);
3072
3073 intel_connector_attach_encoder(intel_connector, intel_encoder);
3074 intel_hdmi->attached_connector = intel_connector;
3075
3076 if (is_hdcp_supported(dev_priv, port)) {
3077 int ret = intel_hdcp_init(intel_connector, dig_port,
3078 &intel_hdmi_hdcp_shim);
3079 if (ret)
3080 drm_dbg_kms(display->drm,
3081 "HDCP init failed, skipping.\n");
3082 }
3083
3084 cec_fill_conn_info_from_drm(&conn_info, connector);
3085
3086 intel_hdmi->cec_notifier =
3087 cec_notifier_conn_register(dev->dev, port_identifier(port),
3088 &conn_info);
3089 if (!intel_hdmi->cec_notifier)
3090 drm_dbg_kms(display->drm, "CEC notifier get failed\n");
3091 }
3092
3093 /*
3094 * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
3095 * @vactive: Vactive of a display mode
3096 *
3097 * @return: appropriate dsc slice height for a given mode.
3098 */
intel_hdmi_dsc_get_slice_height(int vactive)3099 int intel_hdmi_dsc_get_slice_height(int vactive)
3100 {
3101 int slice_height;
3102
3103 /*
3104 * Slice Height determination : HDMI2.1 Section 7.7.5.2
3105 * Select smallest slice height >=96, that results in a valid PPS and
3106 * requires minimum padding lines required for final slice.
3107 *
3108 * Assumption : Vactive is even.
3109 */
3110 for (slice_height = 96; slice_height <= vactive; slice_height += 2)
3111 if (vactive % slice_height == 0)
3112 return slice_height;
3113
3114 return 0;
3115 }
3116
3117 /*
3118 * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
3119 * and dsc decoder capabilities
3120 *
3121 * @crtc_state: intel crtc_state
3122 * @src_max_slices: maximum slices supported by the DSC encoder
3123 * @src_max_slice_width: maximum slice width supported by DSC encoder
3124 * @hdmi_max_slices: maximum slices supported by sink DSC decoder
3125 * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
3126 *
3127 * @return: num of dsc slices that can be supported by the dsc encoder
3128 * and decoder.
3129 */
3130 int
intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state * crtc_state,int src_max_slices,int src_max_slice_width,int hdmi_max_slices,int hdmi_throughput)3131 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
3132 int src_max_slices, int src_max_slice_width,
3133 int hdmi_max_slices, int hdmi_throughput)
3134 {
3135 /* Pixel rates in KPixels/sec */
3136 #define HDMI_DSC_PEAK_PIXEL_RATE 2720000
3137 /*
3138 * Rates at which the source and sink are required to process pixels in each
3139 * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
3140 */
3141 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0 340000
3142 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1 400000
3143
3144 /* Spec limits the slice width to 2720 pixels */
3145 #define MAX_HDMI_SLICE_WIDTH 2720
3146 int kslice_adjust;
3147 int adjusted_clk_khz;
3148 int min_slices;
3149 int target_slices;
3150 int max_throughput; /* max clock freq. in khz per slice */
3151 int max_slice_width;
3152 int slice_width;
3153 int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
3154
3155 if (!hdmi_throughput)
3156 return 0;
3157
3158 /*
3159 * Slice Width determination : HDMI2.1 Section 7.7.5.1
3160 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
3161 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
3162 * dividing adjusted clock value by 10.
3163 */
3164 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3165 crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
3166 kslice_adjust = 10;
3167 else
3168 kslice_adjust = 5;
3169
3170 /*
3171 * As per spec, the rate at which the source and the sink process
3172 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
3173 * This depends upon the pixel clock rate and output formats
3174 * (kslice adjust).
3175 * If pixel clock * kslice adjust >= 2720MHz slices can be processed
3176 * at max 340MHz, otherwise they can be processed at max 400MHz.
3177 */
3178
3179 adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
3180
3181 if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
3182 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
3183 else
3184 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3185
3186 /*
3187 * Taking into account the sink's capability for maximum
3188 * clock per slice (in MHz) as read from HF-VSDB.
3189 */
3190 max_throughput = min(max_throughput, hdmi_throughput * 1000);
3191
3192 min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3193 max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3194
3195 /*
3196 * Keep on increasing the num of slices/line, starting from min_slices
3197 * per line till we get such a number, for which the slice_width is
3198 * just less than max_slice_width. The slices/line selected should be
3199 * less than or equal to the max horizontal slices that the combination
3200 * of PCON encoder and HDMI decoder can support.
3201 */
3202 slice_width = max_slice_width;
3203
3204 do {
3205 if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3206 target_slices = 1;
3207 else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3208 target_slices = 2;
3209 else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3210 target_slices = 4;
3211 else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3212 target_slices = 8;
3213 else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3214 target_slices = 12;
3215 else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3216 target_slices = 16;
3217 else
3218 return 0;
3219
3220 slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3221 if (slice_width >= max_slice_width)
3222 min_slices = target_slices + 1;
3223 } while (slice_width >= max_slice_width);
3224
3225 return target_slices;
3226 }
3227
3228 /*
3229 * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3230 * source and sink capabilities.
3231 *
3232 * @src_fraction_bpp: fractional bpp supported by the source
3233 * @slice_width: dsc slice width supported by the source and sink
3234 * @num_slices: num of slices supported by the source and sink
3235 * @output_format: video output format
3236 * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3237 * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3238 *
3239 * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3240 */
3241 int
intel_hdmi_dsc_get_bpp(int src_fractional_bpp,int slice_width,int num_slices,int output_format,bool hdmi_all_bpp,int hdmi_max_chunk_bytes)3242 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3243 int output_format, bool hdmi_all_bpp,
3244 int hdmi_max_chunk_bytes)
3245 {
3246 int max_dsc_bpp, min_dsc_bpp;
3247 int target_bytes;
3248 bool bpp_found = false;
3249 int bpp_decrement_x16;
3250 int bpp_target;
3251 int bpp_target_x16;
3252
3253 /*
3254 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3255 * Start with the max bpp and keep on decrementing with
3256 * fractional bpp, if supported by PCON DSC encoder
3257 *
3258 * for each bpp we check if no of bytes can be supported by HDMI sink
3259 */
3260
3261 /* Assuming: bpc as 8*/
3262 if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3263 min_dsc_bpp = 6;
3264 max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3265 } else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3266 output_format == INTEL_OUTPUT_FORMAT_RGB) {
3267 min_dsc_bpp = 8;
3268 max_dsc_bpp = 3 * 8; /* 3*bpc */
3269 } else {
3270 /* Assuming 4:2:2 encoding */
3271 min_dsc_bpp = 7;
3272 max_dsc_bpp = 2 * 8; /* 2*bpc */
3273 }
3274
3275 /*
3276 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3277 * Section 7.7.34 : Source shall not enable compressed Video
3278 * Transport with bpp_target settings above 12 bpp unless
3279 * DSC_all_bpp is set to 1.
3280 */
3281 if (!hdmi_all_bpp)
3282 max_dsc_bpp = min(max_dsc_bpp, 12);
3283
3284 /*
3285 * The Sink has a limit of compressed data in bytes for a scanline,
3286 * as described in max_chunk_bytes field in HFVSDB block of edid.
3287 * The no. of bytes depend on the target bits per pixel that the
3288 * source configures. So we start with the max_bpp and calculate
3289 * the target_chunk_bytes. We keep on decrementing the target_bpp,
3290 * till we get the target_chunk_bytes just less than what the sink's
3291 * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3292 *
3293 * The decrement is according to the fractional support from PCON DSC
3294 * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3295 *
3296 * bpp_target_x16 = bpp_target * 16
3297 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3298 * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3299 */
3300
3301 bpp_target = max_dsc_bpp;
3302
3303 /* src does not support fractional bpp implies decrement by 16 for bppx16 */
3304 if (!src_fractional_bpp)
3305 src_fractional_bpp = 1;
3306 bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3307 bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3308
3309 while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3310 int bpp;
3311
3312 bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3313 target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3314 if (target_bytes <= hdmi_max_chunk_bytes) {
3315 bpp_found = true;
3316 break;
3317 }
3318 bpp_target_x16 -= bpp_decrement_x16;
3319 }
3320 if (bpp_found)
3321 return bpp_target_x16;
3322
3323 return 0;
3324 }
3325