xref: /openbsd/sys/dev/pci/drm/i915/gt/uc/intel_huc.c (revision 234b4db0)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016-2019 Intel Corporation
4  */
5 
6 #include <linux/types.h>
7 
8 #include "gt/intel_gt.h"
9 #include "gt/intel_rps.h"
10 #include "intel_guc_reg.h"
11 #include "intel_huc.h"
12 #include "intel_huc_print.h"
13 #include "i915_drv.h"
14 #include "i915_reg.h"
15 #include "pxp/intel_pxp_cmd_interface_43.h"
16 
17 #include <linux/device/bus.h>
18 #include <linux/mei_aux.h>
19 
20 /**
21  * DOC: HuC
22  *
23  * The HuC is a dedicated microcontroller for usage in media HEVC (High
24  * Efficiency Video Coding) operations. Userspace can directly use the firmware
25  * capabilities by adding HuC specific commands to batch buffers.
26  *
27  * The kernel driver is only responsible for loading the HuC firmware and
28  * triggering its security authentication. This is done differently depending
29  * on the platform:
30  *
31  * - older platforms (from Gen9 to most Gen12s): the load is performed via DMA
32  *   and the authentication via GuC
33  * - DG2: load and authentication are both performed via GSC.
34  * - MTL and newer platforms: the load is performed via DMA (same as with
35  *   not-DG2 older platforms), while the authentication is done in 2-steps,
36  *   a first auth for clear-media workloads via GuC and a second one for all
37  *   workloads via GSC.
38  *
39  * On platforms where the GuC does the authentication, to correctly do so the
40  * HuC binary must be loaded before the GuC one.
41  * Loading the HuC is optional; however, not using the HuC might negatively
42  * impact power usage and/or performance of media workloads, depending on the
43  * use-cases.
44  * HuC must be reloaded on events that cause the WOPCM to lose its contents
45  * (S3/S4, FLR); on older platforms the HuC must also be reloaded on GuC/GT
46  * reset, while on newer ones it will survive that.
47  *
48  * See https://github.com/intel/media-driver for the latest details on HuC
49  * functionality.
50  */
51 
52 /**
53  * DOC: HuC Memory Management
54  *
55  * Similarly to the GuC, the HuC can't do any memory allocations on its own,
56  * with the difference being that the allocations for HuC usage are handled by
57  * the userspace driver instead of the kernel one. The HuC accesses the memory
58  * via the PPGTT belonging to the context loaded on the VCS executing the
59  * HuC-specific commands.
60  */
61 
62 /*
63  * MEI-GSC load is an async process. The probing of the exposed aux device
64  * (see intel_gsc.c) usually happens a few seconds after i915 probe, depending
65  * on when the kernel schedules it. Unless something goes terribly wrong, we're
66  * guaranteed for this to happen during boot, so the big timeout is a safety net
67  * that we never expect to need.
68  * MEI-PXP + HuC load usually takes ~300ms, but if the GSC needs to be resumed
69  * and/or reset, this can take longer. Note that the kernel might schedule
70  * other work between the i915 init/resume and the MEI one, which can add to
71  * the delay.
72  */
73 #define GSC_INIT_TIMEOUT_MS 10000
74 #define PXP_INIT_TIMEOUT_MS 5000
75 
sw_fence_dummy_notify(struct i915_sw_fence * sf,enum i915_sw_fence_notify state)76 static int sw_fence_dummy_notify(struct i915_sw_fence *sf,
77 				 enum i915_sw_fence_notify state)
78 {
79 	return NOTIFY_DONE;
80 }
81 
__delayed_huc_load_complete(struct intel_huc * huc)82 static void __delayed_huc_load_complete(struct intel_huc *huc)
83 {
84 	if (!i915_sw_fence_done(&huc->delayed_load.fence))
85 		i915_sw_fence_complete(&huc->delayed_load.fence);
86 }
87 
delayed_huc_load_complete(struct intel_huc * huc)88 static void delayed_huc_load_complete(struct intel_huc *huc)
89 {
90 	hrtimer_cancel(&huc->delayed_load.timer);
91 	__delayed_huc_load_complete(huc);
92 }
93 
__gsc_init_error(struct intel_huc * huc)94 static void __gsc_init_error(struct intel_huc *huc)
95 {
96 	huc->delayed_load.status = INTEL_HUC_DELAYED_LOAD_ERROR;
97 	__delayed_huc_load_complete(huc);
98 }
99 
gsc_init_error(struct intel_huc * huc)100 static void gsc_init_error(struct intel_huc *huc)
101 {
102 	hrtimer_cancel(&huc->delayed_load.timer);
103 	__gsc_init_error(huc);
104 }
105 
gsc_init_done(struct intel_huc * huc)106 static void gsc_init_done(struct intel_huc *huc)
107 {
108 	hrtimer_cancel(&huc->delayed_load.timer);
109 
110 	/* MEI-GSC init is done, now we wait for MEI-PXP to bind */
111 	huc->delayed_load.status = INTEL_HUC_WAITING_ON_PXP;
112 	if (!i915_sw_fence_done(&huc->delayed_load.fence))
113 #ifdef __linux__
114 		hrtimer_start(&huc->delayed_load.timer,
115 			      ms_to_ktime(PXP_INIT_TIMEOUT_MS),
116 			      HRTIMER_MODE_REL);
117 #else
118 		timeout_add_msec(&huc->delayed_load.timer, PXP_INIT_TIMEOUT_MS);
119 #endif
120 }
121 
huc_delayed_load_timer_callback(void * arg)122 static void huc_delayed_load_timer_callback(void *arg)
123 {
124 	struct intel_huc *huc = arg;
125 
126 	if (!intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC)) {
127 		if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_GSC)
128 			huc_notice(huc, "timed out waiting for MEI GSC\n");
129 		else if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_PXP)
130 			huc_notice(huc, "timed out waiting for MEI PXP\n");
131 		else
132 			MISSING_CASE(huc->delayed_load.status);
133 
134 		__gsc_init_error(huc);
135 	}
136 }
137 
huc_delayed_load_start(struct intel_huc * huc)138 static void huc_delayed_load_start(struct intel_huc *huc)
139 {
140 	ktime_t delay;
141 
142 	GEM_BUG_ON(intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC));
143 
144 	/*
145 	 * On resume we don't have to wait for MEI-GSC to be re-probed, but we
146 	 * do need to wait for MEI-PXP to reset & re-bind
147 	 */
148 	switch (huc->delayed_load.status) {
149 	case INTEL_HUC_WAITING_ON_GSC:
150 		delay = ms_to_ktime(GSC_INIT_TIMEOUT_MS);
151 		break;
152 	case INTEL_HUC_WAITING_ON_PXP:
153 		delay = ms_to_ktime(PXP_INIT_TIMEOUT_MS);
154 		break;
155 	default:
156 		gsc_init_error(huc);
157 		return;
158 	}
159 
160 	/*
161 	 * This fence is always complete unless we're waiting for the
162 	 * GSC device to come up to load the HuC. We arm the fence here
163 	 * and complete it when we confirm that the HuC is loaded from
164 	 * the PXP bind callback.
165 	 */
166 	GEM_BUG_ON(!i915_sw_fence_done(&huc->delayed_load.fence));
167 	i915_sw_fence_fini(&huc->delayed_load.fence);
168 	i915_sw_fence_reinit(&huc->delayed_load.fence);
169 	i915_sw_fence_await(&huc->delayed_load.fence);
170 	i915_sw_fence_commit(&huc->delayed_load.fence);
171 
172 #ifdef __linux__
173 	hrtimer_start(&huc->delayed_load.timer, delay, HRTIMER_MODE_REL);
174 #else
175 	timeout_add_nsec(&huc->delayed_load.timer, ktime_to_ns(delay));
176 #endif
177 }
178 
gsc_notifier(struct notifier_block * nb,unsigned long action,void * data)179 static int gsc_notifier(struct notifier_block *nb, unsigned long action, void *data)
180 {
181 	STUB();
182 	return -ENOSYS;
183 #ifdef notyet
184 	struct device *dev = data;
185 	struct intel_huc *huc = container_of(nb, struct intel_huc, delayed_load.nb);
186 	struct intel_gsc_intf *intf = &huc_to_gt(huc)->gsc.intf[0];
187 
188 	if (!intf->adev || &intf->adev->aux_dev.dev != dev)
189 		return 0;
190 
191 	switch (action) {
192 	case BUS_NOTIFY_BOUND_DRIVER: /* mei driver bound to aux device */
193 		gsc_init_done(huc);
194 		break;
195 
196 	case BUS_NOTIFY_DRIVER_NOT_BOUND: /* mei driver fails to be bound */
197 	case BUS_NOTIFY_UNBIND_DRIVER: /* mei driver about to be unbound */
198 		huc_info(huc, "MEI driver not bound, disabling load\n");
199 		gsc_init_error(huc);
200 		break;
201 	}
202 
203 	return 0;
204 #endif
205 }
206 
intel_huc_register_gsc_notifier(struct intel_huc * huc,const struct bus_type * bus)207 void intel_huc_register_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus)
208 {
209 	int ret;
210 
211 	if (!intel_huc_is_loaded_by_gsc(huc))
212 		return;
213 
214 	huc->delayed_load.nb.notifier_call = gsc_notifier;
215 	ret = bus_register_notifier(bus, &huc->delayed_load.nb);
216 	if (ret) {
217 		huc_err(huc, "failed to register GSC notifier %pe\n", ERR_PTR(ret));
218 		huc->delayed_load.nb.notifier_call = NULL;
219 		gsc_init_error(huc);
220 	}
221 }
222 
intel_huc_unregister_gsc_notifier(struct intel_huc * huc,const struct bus_type * bus)223 void intel_huc_unregister_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus)
224 {
225 	if (!huc->delayed_load.nb.notifier_call)
226 		return;
227 
228 	delayed_huc_load_complete(huc);
229 
230 	bus_unregister_notifier(bus, &huc->delayed_load.nb);
231 	huc->delayed_load.nb.notifier_call = NULL;
232 }
233 
delayed_huc_load_init(struct intel_huc * huc)234 static void delayed_huc_load_init(struct intel_huc *huc)
235 {
236 	/*
237 	 * Initialize fence to be complete as this is expected to be complete
238 	 * unless there is a delayed HuC load in progress.
239 	 */
240 	i915_sw_fence_init(&huc->delayed_load.fence,
241 			   sw_fence_dummy_notify);
242 	i915_sw_fence_commit(&huc->delayed_load.fence);
243 
244 #ifdef __linux__
245 	hrtimer_init(&huc->delayed_load.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
246 	huc->delayed_load.timer.function = huc_delayed_load_timer_callback;
247 #else
248 	timeout_set(&huc->delayed_load.timer, huc_delayed_load_timer_callback,
249 	    huc);
250 #endif
251 }
252 
delayed_huc_load_fini(struct intel_huc * huc)253 static void delayed_huc_load_fini(struct intel_huc *huc)
254 {
255 	/*
256 	 * the fence is initialized in init_early, so we need to clean it up
257 	 * even if HuC loading is off.
258 	 */
259 	delayed_huc_load_complete(huc);
260 	i915_sw_fence_fini(&huc->delayed_load.fence);
261 }
262 
intel_huc_sanitize(struct intel_huc * huc)263 int intel_huc_sanitize(struct intel_huc *huc)
264 {
265 	delayed_huc_load_complete(huc);
266 	intel_uc_fw_sanitize(&huc->fw);
267 	return 0;
268 }
269 
vcs_supported(struct intel_gt * gt)270 static bool vcs_supported(struct intel_gt *gt)
271 {
272 	intel_engine_mask_t mask = gt->info.engine_mask;
273 
274 	/*
275 	 * We reach here from i915_driver_early_probe for the primary GT before
276 	 * its engine mask is set, so we use the device info engine mask for it;
277 	 * this means we're not taking VCS fusing into account, but if the
278 	 * primary GT supports VCS engines we expect at least one of them to
279 	 * remain unfused so we're fine.
280 	 * For other GTs we expect the GT-specific mask to be set before we
281 	 * call this function.
282 	 */
283 	GEM_BUG_ON(!gt_is_root(gt) && !gt->info.engine_mask);
284 
285 	if (gt_is_root(gt))
286 		mask = INTEL_INFO(gt->i915)->platform_engine_mask;
287 	else
288 		mask = gt->info.engine_mask;
289 
290 	return __ENGINE_INSTANCES_MASK(mask, VCS0, I915_MAX_VCS);
291 }
292 
intel_huc_init_early(struct intel_huc * huc)293 void intel_huc_init_early(struct intel_huc *huc)
294 {
295 	struct drm_i915_private *i915 = huc_to_gt(huc)->i915;
296 	struct intel_gt *gt = huc_to_gt(huc);
297 
298 	intel_uc_fw_init_early(&huc->fw, INTEL_UC_FW_TYPE_HUC, true);
299 
300 	/*
301 	 * we always init the fence as already completed, even if HuC is not
302 	 * supported. This way we don't have to distinguish between HuC not
303 	 * supported/disabled or already loaded, and can focus on if the load
304 	 * is currently in progress (fence not complete) or not, which is what
305 	 * we care about for stalling userspace submissions.
306 	 */
307 	delayed_huc_load_init(huc);
308 
309 	if (!vcs_supported(gt)) {
310 		intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_NOT_SUPPORTED);
311 		return;
312 	}
313 
314 	if (GRAPHICS_VER(i915) >= 11) {
315 		huc->status[INTEL_HUC_AUTH_BY_GUC].reg = GEN11_HUC_KERNEL_LOAD_INFO;
316 		huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_LOAD_SUCCESSFUL;
317 		huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_LOAD_SUCCESSFUL;
318 	} else {
319 		huc->status[INTEL_HUC_AUTH_BY_GUC].reg = HUC_STATUS2;
320 		huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_FW_VERIFIED;
321 		huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_FW_VERIFIED;
322 	}
323 
324 	if (IS_DG2(i915)) {
325 		huc->status[INTEL_HUC_AUTH_BY_GSC].reg = GEN11_HUC_KERNEL_LOAD_INFO;
326 		huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HUC_LOAD_SUCCESSFUL;
327 		huc->status[INTEL_HUC_AUTH_BY_GSC].value = HUC_LOAD_SUCCESSFUL;
328 	} else {
329 		huc->status[INTEL_HUC_AUTH_BY_GSC].reg = HECI_FWSTS(MTL_GSC_HECI1_BASE, 5);
330 		huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HECI1_FWSTS5_HUC_AUTH_DONE;
331 		huc->status[INTEL_HUC_AUTH_BY_GSC].value = HECI1_FWSTS5_HUC_AUTH_DONE;
332 	}
333 }
334 
335 #define HUC_LOAD_MODE_STRING(x) (x ? "GSC" : "legacy")
check_huc_loading_mode(struct intel_huc * huc)336 static int check_huc_loading_mode(struct intel_huc *huc)
337 {
338 	struct intel_gt *gt = huc_to_gt(huc);
339 	bool gsc_enabled = huc->fw.has_gsc_headers;
340 
341 	/*
342 	 * The fuse for HuC load via GSC is only valid on platforms that have
343 	 * GuC deprivilege.
344 	 */
345 	if (HAS_GUC_DEPRIVILEGE(gt->i915))
346 		huc->loaded_via_gsc = intel_uncore_read(gt->uncore, GUC_SHIM_CONTROL2) &
347 				      GSC_LOADS_HUC;
348 
349 	if (huc->loaded_via_gsc && !gsc_enabled) {
350 		huc_err(huc, "HW requires a GSC-enabled blob, but we found a legacy one\n");
351 		return -ENOEXEC;
352 	}
353 
354 	/*
355 	 * On newer platforms we have GSC-enabled binaries but we load the HuC
356 	 * via DMA. To do so we need to find the location of the legacy-style
357 	 * binary inside the GSC-enabled one, which we do at fetch time. Make
358 	 * sure that we were able to do so if the fuse says we need to load via
359 	 * DMA and the binary is GSC-enabled.
360 	 */
361 	if (!huc->loaded_via_gsc && gsc_enabled && !huc->fw.dma_start_offset) {
362 		huc_err(huc, "HW in DMA mode, but we have an incompatible GSC-enabled blob\n");
363 		return -ENOEXEC;
364 	}
365 
366 	/*
367 	 * If the HuC is loaded via GSC, we need to be able to access the GSC.
368 	 * On DG2 this is done via the mei components, while on newer platforms
369 	 * it is done via the GSCCS,
370 	 */
371 	if (huc->loaded_via_gsc) {
372 		if (IS_DG2(gt->i915)) {
373 			if (!IS_ENABLED(CONFIG_INTEL_MEI_PXP) ||
374 			    !IS_ENABLED(CONFIG_INTEL_MEI_GSC)) {
375 				huc_info(huc, "can't load due to missing mei modules\n");
376 				return -EIO;
377 			}
378 		} else {
379 			if (!HAS_ENGINE(gt, GSC0)) {
380 				huc_info(huc, "can't load due to missing GSCCS\n");
381 				return -EIO;
382 			}
383 		}
384 	}
385 
386 	huc_dbg(huc, "loaded by GSC = %s\n", str_yes_no(huc->loaded_via_gsc));
387 
388 	return 0;
389 }
390 
intel_huc_init(struct intel_huc * huc)391 int intel_huc_init(struct intel_huc *huc)
392 {
393 	struct intel_gt *gt = huc_to_gt(huc);
394 	int err;
395 
396 	err = check_huc_loading_mode(huc);
397 	if (err)
398 		goto out;
399 
400 	if (HAS_ENGINE(gt, GSC0)) {
401 		struct i915_vma *vma;
402 
403 		vma = intel_guc_allocate_vma(&gt->uc.guc, PXP43_HUC_AUTH_INOUT_SIZE * 2);
404 		if (IS_ERR(vma)) {
405 			err = PTR_ERR(vma);
406 			huc_info(huc, "Failed to allocate heci pkt\n");
407 			goto out;
408 		}
409 
410 		huc->heci_pkt = vma;
411 	}
412 
413 	err = intel_uc_fw_init(&huc->fw);
414 	if (err)
415 		goto out_pkt;
416 
417 	intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOADABLE);
418 
419 	return 0;
420 
421 out_pkt:
422 	if (huc->heci_pkt)
423 		i915_vma_unpin_and_release(&huc->heci_pkt, 0);
424 out:
425 	intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
426 	huc_info(huc, "initialization failed %pe\n", ERR_PTR(err));
427 	return err;
428 }
429 
intel_huc_fini(struct intel_huc * huc)430 void intel_huc_fini(struct intel_huc *huc)
431 {
432 	/*
433 	 * the fence is initialized in init_early, so we need to clean it up
434 	 * even if HuC loading is off.
435 	 */
436 	delayed_huc_load_fini(huc);
437 
438 	if (huc->heci_pkt)
439 		i915_vma_unpin_and_release(&huc->heci_pkt, 0);
440 
441 	if (intel_uc_fw_is_loadable(&huc->fw))
442 		intel_uc_fw_fini(&huc->fw);
443 }
444 
intel_huc_suspend(struct intel_huc * huc)445 void intel_huc_suspend(struct intel_huc *huc)
446 {
447 	if (!intel_uc_fw_is_loadable(&huc->fw))
448 		return;
449 
450 	/*
451 	 * in the unlikely case that we're suspending before the GSC has
452 	 * completed its loading sequence, just stop waiting. We'll restart
453 	 * on resume.
454 	 */
455 	delayed_huc_load_complete(huc);
456 }
457 
auth_mode_string(struct intel_huc * huc,enum intel_huc_authentication_type type)458 static const char *auth_mode_string(struct intel_huc *huc,
459 				    enum intel_huc_authentication_type type)
460 {
461 	bool partial = huc->fw.has_gsc_headers && type == INTEL_HUC_AUTH_BY_GUC;
462 
463 	return partial ? "clear media" : "all workloads";
464 }
465 
466 /*
467  * Use a longer timeout for debug builds so that problems can be detected
468  * and analysed. But a shorter timeout for releases so that user's don't
469  * wait forever to find out there is a problem. Note that the only reason
470  * an end user should hit the timeout is in case of extreme thermal throttling.
471  * And a system that is that hot during boot is probably dead anyway!
472  */
473 #if defined(CONFIG_DRM_I915_DEBUG_GEM)
474 #define HUC_LOAD_RETRY_LIMIT   20
475 #else
476 #define HUC_LOAD_RETRY_LIMIT   3
477 #endif
478 
intel_huc_wait_for_auth_complete(struct intel_huc * huc,enum intel_huc_authentication_type type)479 int intel_huc_wait_for_auth_complete(struct intel_huc *huc,
480 				     enum intel_huc_authentication_type type)
481 {
482 	struct intel_gt *gt = huc_to_gt(huc);
483 	struct intel_uncore *uncore = gt->uncore;
484 	ktime_t before, after, delta;
485 	int ret, count;
486 	u64 delta_ms;
487 	u32 before_freq;
488 
489 	/*
490 	 * The KMD requests maximum frequency during driver load, however thermal
491 	 * throttling can force the frequency down to minimum (although the board
492 	 * really should never get that hot in real life!). IFWI  issues have been
493 	 * seen to cause sporadic failures to grant the higher frequency. And at
494 	 * minimum frequency, the authentication time can be in the seconds range.
495 	 * Note that there is a limit on how long an individual wait_for() can wait.
496 	 * So wrap it in a loop.
497 	 */
498 	before_freq = intel_rps_read_actual_frequency(&gt->rps);
499 	before = ktime_get();
500 	for (count = 0; count < HUC_LOAD_RETRY_LIMIT; count++) {
501 		ret = __intel_wait_for_register(gt->uncore,
502 						huc->status[type].reg,
503 						huc->status[type].mask,
504 						huc->status[type].value,
505 						2, 1000, NULL);
506 		if (!ret)
507 			break;
508 
509 		huc_dbg(huc, "auth still in progress, count = %d, freq = %dMHz, status = 0x%08X\n",
510 			count, intel_rps_read_actual_frequency(&gt->rps),
511 			huc->status[type].reg.reg);
512 	}
513 	after = ktime_get();
514 	delta = ktime_sub(after, before);
515 	delta_ms = ktime_to_ms(delta);
516 
517 	if (delta_ms > 50) {
518 		huc_warn(huc, "excessive auth time: %lldms! [status = 0x%08X, count = %d, ret = %d]\n",
519 			 delta_ms, huc->status[type].reg.reg, count, ret);
520 		huc_warn(huc, "excessive auth time: [freq = %dMHz, before = %dMHz, perf_limit_reasons = 0x%08X]\n",
521 			 intel_rps_read_actual_frequency(&gt->rps), before_freq,
522 			 intel_uncore_read(uncore, intel_gt_perf_limit_reasons_reg(gt)));
523 	} else {
524 		huc_dbg(huc, "auth took %lldms, freq = %dMHz, before = %dMHz, status = 0x%08X, count = %d, ret = %d\n",
525 			delta_ms, intel_rps_read_actual_frequency(&gt->rps),
526 			before_freq, huc->status[type].reg.reg, count, ret);
527 	}
528 
529 	/* mark the load process as complete even if the wait failed */
530 	delayed_huc_load_complete(huc);
531 
532 	if (ret) {
533 		huc_err(huc, "firmware not verified for %s: %pe\n",
534 			auth_mode_string(huc, type), ERR_PTR(ret));
535 		intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL);
536 		return ret;
537 	}
538 
539 	intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING);
540 	huc_info(huc, "authenticated for %s\n", auth_mode_string(huc, type));
541 	return 0;
542 }
543 
544 /**
545  * intel_huc_auth() - Authenticate HuC uCode
546  * @huc: intel_huc structure
547  * @type: authentication type (via GuC or via GSC)
548  *
549  * Called after HuC and GuC firmware loading during intel_uc_init_hw().
550  *
551  * This function invokes the GuC action to authenticate the HuC firmware,
552  * passing the offset of the RSA signature to intel_guc_auth_huc(). It then
553  * waits for up to 50ms for firmware verification ACK.
554  */
intel_huc_auth(struct intel_huc * huc,enum intel_huc_authentication_type type)555 int intel_huc_auth(struct intel_huc *huc, enum intel_huc_authentication_type type)
556 {
557 	struct intel_gt *gt = huc_to_gt(huc);
558 	struct intel_guc *guc = &gt->uc.guc;
559 	int ret;
560 
561 	if (!intel_uc_fw_is_loaded(&huc->fw))
562 		return -ENOEXEC;
563 
564 	/* GSC will do the auth with the load */
565 	if (intel_huc_is_loaded_by_gsc(huc))
566 		return -ENODEV;
567 
568 	if (intel_huc_is_authenticated(huc, type))
569 		return -EEXIST;
570 
571 	ret = i915_inject_probe_error(gt->i915, -ENXIO);
572 	if (ret)
573 		goto fail;
574 
575 	switch (type) {
576 	case INTEL_HUC_AUTH_BY_GUC:
577 		ret = intel_guc_auth_huc(guc, intel_guc_ggtt_offset(guc, huc->fw.rsa_data));
578 		break;
579 	case INTEL_HUC_AUTH_BY_GSC:
580 		ret = intel_huc_fw_auth_via_gsccs(huc);
581 		break;
582 	default:
583 		MISSING_CASE(type);
584 		ret = -EINVAL;
585 	}
586 	if (ret)
587 		goto fail;
588 
589 	/* Check authentication status, it should be done by now */
590 	ret = intel_huc_wait_for_auth_complete(huc, type);
591 	if (ret)
592 		goto fail;
593 
594 	return 0;
595 
596 fail:
597 	huc_probe_error(huc, "%s authentication failed %pe\n",
598 			auth_mode_string(huc, type), ERR_PTR(ret));
599 	return ret;
600 }
601 
intel_huc_is_authenticated(struct intel_huc * huc,enum intel_huc_authentication_type type)602 bool intel_huc_is_authenticated(struct intel_huc *huc,
603 				enum intel_huc_authentication_type type)
604 {
605 	struct intel_gt *gt = huc_to_gt(huc);
606 	intel_wakeref_t wakeref;
607 	u32 status = 0;
608 
609 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
610 		status = intel_uncore_read(gt->uncore, huc->status[type].reg);
611 
612 	return (status & huc->status[type].mask) == huc->status[type].value;
613 }
614 
huc_is_fully_authenticated(struct intel_huc * huc)615 static bool huc_is_fully_authenticated(struct intel_huc *huc)
616 {
617 	struct intel_uc_fw *huc_fw = &huc->fw;
618 
619 	if (!huc_fw->has_gsc_headers)
620 		return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC);
621 	else if (intel_huc_is_loaded_by_gsc(huc) || HAS_ENGINE(huc_to_gt(huc), GSC0))
622 		return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC);
623 	else
624 		return false;
625 }
626 
627 /**
628  * intel_huc_check_status() - check HuC status
629  * @huc: intel_huc structure
630  *
631  * This function reads status register to verify if HuC
632  * firmware was successfully loaded.
633  *
634  * The return values match what is expected for the I915_PARAM_HUC_STATUS
635  * getparam.
636  */
intel_huc_check_status(struct intel_huc * huc)637 int intel_huc_check_status(struct intel_huc *huc)
638 {
639 	struct intel_uc_fw *huc_fw = &huc->fw;
640 
641 	switch (__intel_uc_fw_status(huc_fw)) {
642 	case INTEL_UC_FIRMWARE_NOT_SUPPORTED:
643 		return -ENODEV;
644 	case INTEL_UC_FIRMWARE_DISABLED:
645 		return -EOPNOTSUPP;
646 	case INTEL_UC_FIRMWARE_MISSING:
647 		return -ENOPKG;
648 	case INTEL_UC_FIRMWARE_ERROR:
649 		return -ENOEXEC;
650 	case INTEL_UC_FIRMWARE_INIT_FAIL:
651 		return -ENOMEM;
652 	case INTEL_UC_FIRMWARE_LOAD_FAIL:
653 		return -EIO;
654 	default:
655 		break;
656 	}
657 
658 	/*
659 	 * GSC-enabled binaries loaded via DMA are first partially
660 	 * authenticated by GuC and then fully authenticated by GSC
661 	 */
662 	if (huc_is_fully_authenticated(huc))
663 		return 1; /* full auth */
664 	else if (huc_fw->has_gsc_headers && !intel_huc_is_loaded_by_gsc(huc) &&
665 		 intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC))
666 		return 2; /* clear media only */
667 	else
668 		return 0;
669 }
670 
huc_has_delayed_load(struct intel_huc * huc)671 static bool huc_has_delayed_load(struct intel_huc *huc)
672 {
673 	return intel_huc_is_loaded_by_gsc(huc) &&
674 	       (huc->delayed_load.status != INTEL_HUC_DELAYED_LOAD_ERROR);
675 }
676 
intel_huc_update_auth_status(struct intel_huc * huc)677 void intel_huc_update_auth_status(struct intel_huc *huc)
678 {
679 	if (!intel_uc_fw_is_loadable(&huc->fw))
680 		return;
681 
682 	if (!huc->fw.has_gsc_headers)
683 		return;
684 
685 	if (huc_is_fully_authenticated(huc))
686 		intel_uc_fw_change_status(&huc->fw,
687 					  INTEL_UC_FIRMWARE_RUNNING);
688 	else if (huc_has_delayed_load(huc))
689 		huc_delayed_load_start(huc);
690 }
691 
692 /**
693  * intel_huc_load_status - dump information about HuC load status
694  * @huc: the HuC
695  * @p: the &drm_printer
696  *
697  * Pretty printer for HuC load status.
698  */
intel_huc_load_status(struct intel_huc * huc,struct drm_printer * p)699 void intel_huc_load_status(struct intel_huc *huc, struct drm_printer *p)
700 {
701 	struct intel_gt *gt = huc_to_gt(huc);
702 	intel_wakeref_t wakeref;
703 
704 	if (!intel_huc_is_supported(huc)) {
705 		drm_printf(p, "HuC not supported\n");
706 		return;
707 	}
708 
709 	if (!intel_huc_is_wanted(huc)) {
710 		drm_printf(p, "HuC disabled\n");
711 		return;
712 	}
713 
714 	intel_uc_fw_dump(&huc->fw, p);
715 
716 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
717 		drm_printf(p, "HuC status: 0x%08x\n",
718 			   intel_uncore_read(gt->uncore, huc->status[INTEL_HUC_AUTH_BY_GUC].reg));
719 }
720