xref: /openbsd/sys/netinet6/ip6_output.c (revision 28c60e63)
1 /*	$OpenBSD: ip6_output.c,v 1.292 2024/07/04 12:50:08 bluhm Exp $	*/
2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
3 
4 /*
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
62  */
63 
64 #include "pf.h"
65 
66 #include <sys/param.h>
67 #include <sys/malloc.h>
68 #include <sys/mbuf.h>
69 #include <sys/errno.h>
70 #include <sys/protosw.h>
71 #include <sys/socket.h>
72 #include <sys/socketvar.h>
73 #include <sys/proc.h>
74 #include <sys/systm.h>
75 
76 #include <net/if.h>
77 #include <net/if_var.h>
78 #include <net/if_enc.h>
79 #include <net/route.h>
80 
81 #include <netinet/in.h>
82 #include <netinet/ip.h>
83 #include <netinet/in_pcb.h>
84 #include <netinet/udp.h>
85 #include <netinet/tcp.h>
86 
87 #include <netinet/ip_var.h>
88 #include <netinet/tcp_timer.h>
89 #include <netinet/tcp_var.h>
90 #include <netinet/udp_var.h>
91 
92 #include <netinet6/in6_var.h>
93 #include <netinet/ip6.h>
94 #include <netinet/icmp6.h>
95 #include <netinet6/ip6_var.h>
96 #include <netinet6/nd6.h>
97 
98 #include <crypto/idgen.h>
99 
100 #if NPF > 0
101 #include <net/pfvar.h>
102 #endif
103 
104 #ifdef IPSEC
105 #include <netinet/ip_ipsp.h>
106 #include <netinet/ip_ah.h>
107 #include <netinet/ip_esp.h>
108 
109 #ifdef ENCDEBUG
110 #define DPRINTF(fmt, args...)						\
111 	do {								\
112 		if (encdebug)						\
113 			printf("%s: " fmt "\n", __func__, ## args);	\
114 	} while (0)
115 #else
116 #define DPRINTF(fmt, args...)						\
117 	do { } while (0)
118 #endif
119 #endif /* IPSEC */
120 
121 struct ip6_exthdrs {
122 	struct mbuf *ip6e_ip6;
123 	struct mbuf *ip6e_hbh;
124 	struct mbuf *ip6e_dest1;
125 	struct mbuf *ip6e_rthdr;
126 	struct mbuf *ip6e_dest2;
127 };
128 
129 int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, int, int);
130 int ip6_getpcbopt(struct ip6_pktopts *, int, struct mbuf *);
131 int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, int, int, int);
132 int ip6_setmoptions(int, struct ip6_moptions **, struct mbuf *, unsigned int);
133 int ip6_getmoptions(int, struct ip6_moptions *, struct mbuf *);
134 int ip6_copyexthdr(struct mbuf **, caddr_t, int);
135 int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
136 	struct ip6_frag **);
137 int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
138 int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
139 int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *);
140 int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *);
141 static __inline u_int16_t __attribute__((__unused__))
142     in6_cksum_phdr(const struct in6_addr *, const struct in6_addr *,
143     u_int32_t, u_int32_t);
144 void in6_delayed_cksum(struct mbuf *, u_int8_t);
145 
146 int ip6_output_ipsec_pmtu_update(struct tdb *, struct route *,
147     struct in6_addr *, int, int, int);
148 
149 /* Context for non-repeating IDs */
150 struct idgen32_ctx ip6_id_ctx;
151 
152 /*
153  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
154  * header (with pri, len, nxt, hlim, src, dst).
155  * This function may modify ver and hlim only.
156  * The mbuf chain containing the packet will be freed.
157  * The mbuf opt, if present, will not be freed.
158  *
159  * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int.
160  * We use u_long to hold largest one, * which is rt_mtu.
161  */
162 int
ip6_output(struct mbuf * m,struct ip6_pktopts * opt,struct route * ro,int flags,struct ip6_moptions * im6o,const struct ipsec_level * seclevel)163 ip6_output(struct mbuf *m, struct ip6_pktopts *opt, struct route *ro,
164     int flags, struct ip6_moptions *im6o, const struct ipsec_level *seclevel)
165 {
166 	struct ip6_hdr *ip6;
167 	struct ifnet *ifp = NULL;
168 	struct mbuf_list ml;
169 	int hlen, tlen;
170 	struct route iproute;
171 	struct rtentry *rt = NULL;
172 	struct sockaddr_in6 *dst;
173 	int error = 0;
174 	u_long mtu;
175 	int dontfrag;
176 	u_int16_t src_scope, dst_scope;
177 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
178 	struct ip6_exthdrs exthdrs;
179 	struct in6_addr finaldst;
180 	struct route *ro_pmtu = NULL;
181 	int hdrsplit = 0;
182 	u_int8_t sproto = 0;
183 	u_char nextproto;
184 #ifdef IPSEC
185 	struct tdb *tdb = NULL;
186 #endif /* IPSEC */
187 
188 	ip6 = mtod(m, struct ip6_hdr *);
189 	finaldst = ip6->ip6_dst;
190 
191 #define MAKE_EXTHDR(hp, mp)						\
192     do {								\
193 	if (hp) {							\
194 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
195 		error = ip6_copyexthdr((mp), (caddr_t)(hp),		\
196 		    ((eh)->ip6e_len + 1) << 3);				\
197 		if (error)						\
198 			goto freehdrs;					\
199 	}								\
200     } while (0)
201 
202 	bzero(&exthdrs, sizeof(exthdrs));
203 
204 	if (opt) {
205 		/* Hop-by-Hop options header */
206 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
207 		/* Destination options header(1st part) */
208 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
209 		/* Routing header */
210 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
211 		/* Destination options header(2nd part) */
212 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
213 	}
214 
215 #ifdef IPSEC
216 	if (ipsec_in_use || seclevel != NULL) {
217 		error = ip6_output_ipsec_lookup(m, seclevel, &tdb);
218 		if (error) {
219 			/*
220 			 * -EINVAL is used to indicate that the packet should
221 			 * be silently dropped, typically because we've asked
222 			 * key management for an SA.
223 			 */
224 			if (error == -EINVAL) /* Should silently drop packet */
225 				error = 0;
226 
227 			goto freehdrs;
228 		}
229 	}
230 #endif /* IPSEC */
231 
232 	/*
233 	 * Calculate the total length of the extension header chain.
234 	 * Keep the length of the unfragmentable part for fragmentation.
235 	 */
236 	optlen = 0;
237 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
238 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
239 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
240 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
241 	/* NOTE: we don't add AH/ESP length here. do that later. */
242 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
243 
244 	/*
245 	 * If we need IPsec, or there is at least one extension header,
246 	 * separate IP6 header from the payload.
247 	 */
248 	if ((sproto || optlen) && !hdrsplit) {
249 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
250 			m = NULL;
251 			goto freehdrs;
252 		}
253 		m = exthdrs.ip6e_ip6;
254 		hdrsplit++;
255 	}
256 
257 	/* adjust pointer */
258 	ip6 = mtod(m, struct ip6_hdr *);
259 
260 	/* adjust mbuf packet header length */
261 	m->m_pkthdr.len += optlen;
262 	plen = m->m_pkthdr.len - sizeof(*ip6);
263 
264 	/* If this is a jumbo payload, insert a jumbo payload option. */
265 	if (plen > IPV6_MAXPACKET) {
266 		if (!hdrsplit) {
267 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
268 				m = NULL;
269 				goto freehdrs;
270 			}
271 			m = exthdrs.ip6e_ip6;
272 			hdrsplit++;
273 		}
274 		/* adjust pointer */
275 		ip6 = mtod(m, struct ip6_hdr *);
276 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
277 			goto freehdrs;
278 		ip6->ip6_plen = 0;
279 	} else
280 		ip6->ip6_plen = htons(plen);
281 
282 	/*
283 	 * Concatenate headers and fill in next header fields.
284 	 * Here we have, on "m"
285 	 *	IPv6 payload
286 	 * and we insert headers accordingly.  Finally, we should be getting:
287 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
288 	 *
289 	 * during the header composing process, "m" points to IPv6 header.
290 	 * "mprev" points to an extension header prior to esp.
291 	 */
292 	{
293 		u_char *nexthdrp = &ip6->ip6_nxt;
294 		struct mbuf *mprev = m;
295 
296 		/*
297 		 * we treat dest2 specially.  this makes IPsec processing
298 		 * much easier.  the goal here is to make mprev point the
299 		 * mbuf prior to dest2.
300 		 *
301 		 * result: IPv6 dest2 payload
302 		 * m and mprev will point to IPv6 header.
303 		 */
304 		if (exthdrs.ip6e_dest2) {
305 			if (!hdrsplit)
306 				panic("%s: assumption failed: hdr not split",
307 				    __func__);
308 			exthdrs.ip6e_dest2->m_next = m->m_next;
309 			m->m_next = exthdrs.ip6e_dest2;
310 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
311 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
312 		}
313 
314 #define MAKE_CHAIN(m, mp, p, i)\
315     do {\
316 	if (m) {\
317 		if (!hdrsplit) \
318 			panic("assumption failed: hdr not split"); \
319 		*mtod((m), u_char *) = *(p);\
320 		*(p) = (i);\
321 		p = mtod((m), u_char *);\
322 		(m)->m_next = (mp)->m_next;\
323 		(mp)->m_next = (m);\
324 		(mp) = (m);\
325 	}\
326     } while (0)
327 		/*
328 		 * result: IPv6 hbh dest1 rthdr dest2 payload
329 		 * m will point to IPv6 header.  mprev will point to the
330 		 * extension header prior to dest2 (rthdr in the above case).
331 		 */
332 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
333 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
334 		    IPPROTO_DSTOPTS);
335 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
336 		    IPPROTO_ROUTING);
337 	}
338 
339 	/*
340 	 * If there is a routing header, replace the destination address field
341 	 * with the first hop of the routing header.
342 	 */
343 	if (exthdrs.ip6e_rthdr) {
344 		struct ip6_rthdr *rh;
345 		struct ip6_rthdr0 *rh0;
346 		struct in6_addr *addr;
347 
348 		rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
349 		    struct ip6_rthdr *));
350 		switch (rh->ip6r_type) {
351 		case IPV6_RTHDR_TYPE_0:
352 			rh0 = (struct ip6_rthdr0 *)rh;
353 			addr = (struct in6_addr *)(rh0 + 1);
354 			ip6->ip6_dst = addr[0];
355 			bcopy(&addr[1], &addr[0],
356 			    sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1));
357 			addr[rh0->ip6r0_segleft - 1] = finaldst;
358 			break;
359 		default:	/* is it possible? */
360 			error = EINVAL;
361 			goto bad;
362 		}
363 	}
364 
365 	/* Source address validation */
366 	if (!(flags & IPV6_UNSPECSRC) &&
367 	    IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
368 		/*
369 		 * XXX: we can probably assume validation in the caller, but
370 		 * we explicitly check the address here for safety.
371 		 */
372 		error = EOPNOTSUPP;
373 		ip6stat_inc(ip6s_badscope);
374 		goto bad;
375 	}
376 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
377 		error = EOPNOTSUPP;
378 		ip6stat_inc(ip6s_badscope);
379 		goto bad;
380 	}
381 
382 	ip6stat_inc(ip6s_localout);
383 
384 	/*
385 	 * Route packet.
386 	 */
387 #if NPF > 0
388 reroute:
389 #endif
390 
391 	/* initialize cached route */
392 	if (ro == NULL) {
393 		ro = &iproute;
394 		ro->ro_rt = NULL;
395 	}
396 	ro_pmtu = ro;
397 	if (opt && opt->ip6po_rthdr)
398 		ro = &opt->ip6po_route;
399 	dst = &ro->ro_dstsin6;
400 
401 	/*
402 	 * if specified, try to fill in the traffic class field.
403 	 * do not override if a non-zero value is already set.
404 	 * we check the diffserv field and the ecn field separately.
405 	 */
406 	if (opt && opt->ip6po_tclass >= 0) {
407 		int mask = 0;
408 
409 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
410 			mask |= 0xfc;
411 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
412 			mask |= 0x03;
413 		if (mask != 0)
414 			ip6->ip6_flow |=
415 			    htonl((opt->ip6po_tclass & mask) << 20);
416 	}
417 
418 	/* fill in or override the hop limit field, if necessary. */
419 	if (opt && opt->ip6po_hlim != -1)
420 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
421 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
422 		if (im6o != NULL)
423 			ip6->ip6_hlim = im6o->im6o_hlim;
424 		else
425 			ip6->ip6_hlim = ip6_defmcasthlim;
426 	}
427 
428 #ifdef IPSEC
429 	if (tdb != NULL) {
430 		/*
431 		 * XXX what should we do if ip6_hlim == 0 and the
432 		 * packet gets tunneled?
433 		 */
434 		/*
435 		 * if we are source-routing, do not attempt to tunnel the
436 		 * packet just because ip6_dst is different from what tdb has.
437 		 * XXX
438 		 */
439 		error = ip6_output_ipsec_send(tdb, m, ro,
440 		    exthdrs.ip6e_rthdr ? 1 : 0, 0);
441 		goto done;
442 	}
443 #endif /* IPSEC */
444 
445 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
446 		struct in6_pktinfo *pi = NULL;
447 
448 		/*
449 		 * If the caller specify the outgoing interface
450 		 * explicitly, use it.
451 		 */
452 		if (opt != NULL && (pi = opt->ip6po_pktinfo) != NULL)
453 			ifp = if_get(pi->ipi6_ifindex);
454 
455 		if (ifp == NULL && im6o != NULL)
456 			ifp = if_get(im6o->im6o_ifidx);
457 	}
458 
459 	if (ifp == NULL) {
460 		rt = in6_selectroute(&ip6->ip6_dst, opt, ro,
461 		    m->m_pkthdr.ph_rtableid);
462 		if (rt == NULL) {
463 			ip6stat_inc(ip6s_noroute);
464 			error = EHOSTUNREACH;
465 			goto bad;
466 		}
467 		if (ISSET(rt->rt_flags, RTF_LOCAL))
468 			ifp = if_get(rtable_loindex(m->m_pkthdr.ph_rtableid));
469 		else
470 			ifp = if_get(rt->rt_ifidx);
471 		/*
472 		 * We aren't using rtisvalid() here because the UP/DOWN state
473 		 * machine is broken with some Ethernet drivers like em(4).
474 		 * As a result we might try to use an invalid cached route
475 		 * entry while an interface is being detached.
476 		 */
477 		if (ifp == NULL) {
478 			ip6stat_inc(ip6s_noroute);
479 			error = EHOSTUNREACH;
480 			goto bad;
481 		}
482 	} else {
483 		route6_cache(ro, &ip6->ip6_dst, NULL, m->m_pkthdr.ph_rtableid);
484 	}
485 
486 	if (rt && (rt->rt_flags & RTF_GATEWAY) &&
487 	    !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
488 		dst = satosin6(rt->rt_gateway);
489 
490 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
491 		/* Unicast */
492 
493 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
494 	} else {
495 		/* Multicast */
496 
497 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
498 
499 		/*
500 		 * Confirm that the outgoing interface supports multicast.
501 		 */
502 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
503 			ip6stat_inc(ip6s_noroute);
504 			error = ENETUNREACH;
505 			goto bad;
506 		}
507 
508 		if ((im6o == NULL || im6o->im6o_loop) &&
509 		    in6_hasmulti(&ip6->ip6_dst, ifp)) {
510 			/*
511 			 * If we belong to the destination multicast group
512 			 * on the outgoing interface, and the caller did not
513 			 * forbid loopback, loop back a copy.
514 			 * Can't defer TCP/UDP checksumming, do the
515 			 * computation now.
516 			 */
517 			in6_proto_cksum_out(m, NULL);
518 			ip6_mloopback(ifp, m, dst);
519 		}
520 #ifdef MROUTING
521 		else {
522 			/*
523 			 * If we are acting as a multicast router, perform
524 			 * multicast forwarding as if the packet had just
525 			 * arrived on the interface to which we are about
526 			 * to send.  The multicast forwarding function
527 			 * recursively calls this function, using the
528 			 * IPV6_FORWARDING flag to prevent infinite recursion.
529 			 *
530 			 * Multicasts that are looped back by ip6_mloopback(),
531 			 * above, will be forwarded by the ip6_input() routine,
532 			 * if necessary.
533 			 */
534 			if (ip6_mforwarding && ip6_mrouter[ifp->if_rdomain] &&
535 			    (flags & IPV6_FORWARDING) == 0) {
536 				if (ip6_mforward(ip6, ifp, m, flags) != 0) {
537 					m_freem(m);
538 					goto done;
539 				}
540 			}
541 		}
542 #endif
543 		/*
544 		 * Multicasts with a hoplimit of zero may be looped back,
545 		 * above, but must not be transmitted on a network.
546 		 * Also, multicasts addressed to the loopback interface
547 		 * are not sent -- the above call to ip6_mloopback() will
548 		 * loop back a copy if this host actually belongs to the
549 		 * destination group on the loopback interface.
550 		 */
551 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
552 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
553 			m_freem(m);
554 			goto done;
555 		}
556 	}
557 
558 	/*
559 	 * If this packet is going through a loopback interface we won't
560 	 * be able to restore its scope ID using the interface index.
561 	 */
562 	if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) {
563 		if (ifp->if_flags & IFF_LOOPBACK)
564 			src_scope = ip6->ip6_src.s6_addr16[1];
565 		ip6->ip6_src.s6_addr16[1] = 0;
566 	}
567 	if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) {
568 		if (ifp->if_flags & IFF_LOOPBACK)
569 			dst_scope = ip6->ip6_dst.s6_addr16[1];
570 		ip6->ip6_dst.s6_addr16[1] = 0;
571 	}
572 
573 	/* Determine path MTU. */
574 	if ((error = ip6_getpmtu(ro_pmtu->ro_rt, ifp, &mtu)) != 0)
575 		goto bad;
576 
577 	/*
578 	 * The caller of this function may specify to use the minimum MTU
579 	 * in some cases.
580 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
581 	 * setting.  The logic is a bit complicated; by default, unicast
582 	 * packets will follow path MTU while multicast packets will be sent at
583 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
584 	 * including unicast ones will be sent at the minimum MTU.  Multicast
585 	 * packets will always be sent at the minimum MTU unless
586 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
587 	 * See RFC 3542 for more details.
588 	 */
589 	if (mtu > IPV6_MMTU) {
590 		if ((flags & IPV6_MINMTU))
591 			mtu = IPV6_MMTU;
592 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
593 			mtu = IPV6_MMTU;
594 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && (opt == NULL ||
595 		    opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
596 			mtu = IPV6_MMTU;
597 		}
598 	}
599 
600 	/*
601 	 * If the outgoing packet contains a hop-by-hop options header,
602 	 * it must be examined and processed even by the source node.
603 	 * (RFC 2460, section 4.)
604 	 */
605 	if (exthdrs.ip6e_hbh) {
606 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
607 		u_int32_t rtalert; /* returned value is ignored */
608 		u_int32_t plen = 0; /* no more than 1 jumbo payload option! */
609 
610 		m->m_pkthdr.ph_ifidx = ifp->if_index;
611 		if (ip6_process_hopopts(&m, (u_int8_t *)(hbh + 1),
612 		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
613 		    &rtalert, &plen) < 0) {
614 			/* m was already freed at this point */
615 			error = EINVAL;/* better error? */
616 			goto done;
617 		}
618 		m->m_pkthdr.ph_ifidx = 0;
619 	}
620 
621 #if NPF > 0
622 	if (pf_test(AF_INET6, PF_OUT, ifp, &m) != PF_PASS) {
623 		error = EACCES;
624 		m_freem(m);
625 		goto done;
626 	}
627 	if (m == NULL)
628 		goto done;
629 	ip6 = mtod(m, struct ip6_hdr *);
630 	if ((m->m_pkthdr.pf.flags & (PF_TAG_REROUTE | PF_TAG_GENERATED)) ==
631 	    (PF_TAG_REROUTE | PF_TAG_GENERATED)) {
632 		/* already rerun the route lookup, go on */
633 		m->m_pkthdr.pf.flags &= ~(PF_TAG_GENERATED | PF_TAG_REROUTE);
634 	} else if (m->m_pkthdr.pf.flags & PF_TAG_REROUTE) {
635 		/* tag as generated to skip over pf_test on rerun */
636 		m->m_pkthdr.pf.flags |= PF_TAG_GENERATED;
637 		finaldst = ip6->ip6_dst;
638 		if (ro == &iproute)
639 			rtfree(ro->ro_rt);
640 		ro = NULL;
641 		if_put(ifp); /* drop reference since destination changed */
642 		ifp = NULL;
643 		goto reroute;
644 	}
645 #endif
646 
647 #ifdef IPSEC
648 	if (ISSET(flags, IPV6_FORWARDING) &&
649 	    ISSET(flags, IPV6_FORWARDING_IPSEC) &&
650 	    !ISSET(m->m_pkthdr.ph_tagsset, PACKET_TAG_IPSEC_IN_DONE)) {
651 		error = EHOSTUNREACH;
652 		goto bad;
653 	}
654 #endif
655 
656 	/*
657 	 * If the packet is not going on the wire it can be destined
658 	 * to any local address.  In this case do not clear its scopes
659 	 * to let ip6_input() find a matching local route.
660 	 */
661 	if (ifp->if_flags & IFF_LOOPBACK) {
662 		if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src))
663 			ip6->ip6_src.s6_addr16[1] = src_scope;
664 		if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst))
665 			ip6->ip6_dst.s6_addr16[1] = dst_scope;
666 	}
667 
668 	/*
669 	 * Send the packet to the outgoing interface.
670 	 * If necessary, do IPv6 fragmentation before sending.
671 	 *
672 	 * the logic here is rather complex:
673 	 * 1: normal case (dontfrag == 0)
674 	 * 1-a: send as is if tlen <= path mtu
675 	 * 1-b: fragment if tlen > path mtu
676 	 *
677 	 * 2: if user asks us not to fragment (dontfrag == 1)
678 	 * 2-a: send as is if tlen <= interface mtu
679 	 * 2-b: error if tlen > interface mtu
680 	 */
681 	tlen = ISSET(m->m_pkthdr.csum_flags, M_TCP_TSO) ?
682 	    m->m_pkthdr.ph_mss : m->m_pkthdr.len;
683 
684 	if (ISSET(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT)) {
685 		CLR(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT);
686 		dontfrag = 1;
687 	} else if (opt && ISSET(opt->ip6po_flags, IP6PO_DONTFRAG))
688 		dontfrag = 1;
689 	else
690 		dontfrag = 0;
691 
692 	if (dontfrag && tlen > ifp->if_mtu) {		/* case 2-b */
693 #ifdef IPSEC
694 		if (ip_mtudisc)
695 			ipsec_adjust_mtu(m, mtu);
696 #endif
697 		error = EMSGSIZE;
698 		goto bad;
699 	}
700 
701 	/*
702 	 * transmit packet without fragmentation
703 	 */
704 	if (dontfrag || tlen <= mtu) {			/* case 1-a and 2-a */
705 		error = if_output_tso(ifp, &m, sin6tosa(dst), ro->ro_rt,
706 		    ifp->if_mtu);
707 		if (error || m == NULL)
708 			goto done;
709 		goto bad;				/* should not happen */
710 	}
711 
712 	/*
713 	 * try to fragment the packet.  case 1-b
714 	 */
715 	if (mtu < IPV6_MMTU) {
716 		/* path MTU cannot be less than IPV6_MMTU */
717 		error = EMSGSIZE;
718 		goto bad;
719 	} else if (ip6->ip6_plen == 0) {
720 		/* jumbo payload cannot be fragmented */
721 		error = EMSGSIZE;
722 		goto bad;
723 	}
724 
725 	/*
726 	 * Too large for the destination or interface;
727 	 * fragment if possible.
728 	 * Must be able to put at least 8 bytes per fragment.
729 	 */
730 	hlen = unfragpartlen;
731 	if (mtu > IPV6_MAXPACKET)
732 		mtu = IPV6_MAXPACKET;
733 
734 	/*
735 	 * If we are doing fragmentation, we can't defer TCP/UDP
736 	 * checksumming; compute the checksum and clear the flag.
737 	 */
738         in6_proto_cksum_out(m, NULL);
739 
740 	/*
741 	 * Change the next header field of the last header in the
742 	 * unfragmentable part.
743 	 */
744 	if (exthdrs.ip6e_rthdr) {
745 		nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
746 		*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
747 	} else if (exthdrs.ip6e_dest1) {
748 		nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
749 		*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
750 	} else if (exthdrs.ip6e_hbh) {
751 		nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
752 		*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
753 	} else {
754 		nextproto = ip6->ip6_nxt;
755 		ip6->ip6_nxt = IPPROTO_FRAGMENT;
756 	}
757 
758 	if ((error = ip6_fragment(m, &ml, hlen, nextproto, mtu)) ||
759 	    (error = if_output_ml(ifp, &ml, sin6tosa(dst), ro->ro_rt)))
760 		goto done;
761 	ip6stat_inc(ip6s_fragmented);
762 	goto done;
763 
764  freehdrs:
765 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
766 	m_freem(exthdrs.ip6e_dest1);
767 	m_freem(exthdrs.ip6e_rthdr);
768 	m_freem(exthdrs.ip6e_dest2);
769  bad:
770 	m_freem(m);
771  done:
772 	if (ro == &iproute)
773 		rtfree(ro->ro_rt);
774 	else if (ro_pmtu == &iproute)
775 		rtfree(ro_pmtu->ro_rt);
776 	if_put(ifp);
777 #ifdef IPSEC
778 	tdb_unref(tdb);
779 #endif /* IPSEC */
780 	return (error);
781 }
782 
783 int
ip6_fragment(struct mbuf * m0,struct mbuf_list * ml,int hlen,u_char nextproto,u_long mtu)784 ip6_fragment(struct mbuf *m0, struct mbuf_list *ml, int hlen, u_char nextproto,
785     u_long mtu)
786 {
787 	struct ip6_hdr *ip6;
788 	u_int32_t id;
789 	int tlen, len, off;
790 	int error;
791 
792 	ml_init(ml);
793 
794 	ip6 = mtod(m0, struct ip6_hdr *);
795 	tlen = m0->m_pkthdr.len;
796 	len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
797 	if (len < 8) {
798 		error = EMSGSIZE;
799 		goto bad;
800 	}
801 	id = htonl(ip6_randomid());
802 
803 	/*
804 	 * Loop through length of payload,
805 	 * make new header and copy data of each part and link onto chain.
806 	 */
807 	for (off = hlen; off < tlen; off += len) {
808 		struct mbuf *m;
809 		struct mbuf *mlast;
810 		struct ip6_hdr *mhip6;
811 		struct ip6_frag *ip6f;
812 
813 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
814 		if (m == NULL) {
815 			error = ENOBUFS;
816 			goto bad;
817 		}
818 		ml_enqueue(ml, m);
819 		if ((error = m_dup_pkthdr(m, m0, M_DONTWAIT)) != 0)
820 			goto bad;
821 		m->m_data += max_linkhdr;
822 		mhip6 = mtod(m, struct ip6_hdr *);
823 		*mhip6 = *ip6;
824 		m->m_len = sizeof(struct ip6_hdr);
825 
826 		if ((error = ip6_insertfraghdr(m0, m, hlen, &ip6f)) != 0)
827 			goto bad;
828 		ip6f->ip6f_offlg = htons((off - hlen) & ~7);
829 		if (off + len >= tlen)
830 			len = tlen - off;
831 		else
832 			ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
833 
834 		m->m_pkthdr.len = hlen + sizeof(struct ip6_frag) + len;
835 		mhip6->ip6_plen = htons(m->m_pkthdr.len -
836 		    sizeof(struct ip6_hdr));
837 		for (mlast = m; mlast->m_next; mlast = mlast->m_next)
838 			;
839 		mlast->m_next = m_copym(m0, off, len, M_DONTWAIT);
840 		if (mlast->m_next == NULL) {
841 			error = ENOBUFS;
842 			goto bad;
843 		}
844 
845 		ip6f->ip6f_reserved = 0;
846 		ip6f->ip6f_ident = id;
847 		ip6f->ip6f_nxt = nextproto;
848 	}
849 
850 	ip6stat_add(ip6s_ofragments, ml_len(ml));
851 	m_freem(m0);
852 	return (0);
853 
854 bad:
855 	ip6stat_inc(ip6s_odropped);
856 	ml_purge(ml);
857 	m_freem(m0);
858 	return (error);
859 }
860 
861 int
ip6_copyexthdr(struct mbuf ** mp,caddr_t hdr,int hlen)862 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
863 {
864 	struct mbuf *m;
865 
866 	if (hlen > MCLBYTES)
867 		return (ENOBUFS); /* XXX */
868 
869 	MGET(m, M_DONTWAIT, MT_DATA);
870 	if (!m)
871 		return (ENOBUFS);
872 
873 	if (hlen > MLEN) {
874 		MCLGET(m, M_DONTWAIT);
875 		if ((m->m_flags & M_EXT) == 0) {
876 			m_free(m);
877 			return (ENOBUFS);
878 		}
879 	}
880 	m->m_len = hlen;
881 	if (hdr)
882 		memcpy(mtod(m, caddr_t), hdr, hlen);
883 
884 	*mp = m;
885 	return (0);
886 }
887 
888 /*
889  * Insert jumbo payload option.
890  */
891 int
ip6_insert_jumboopt(struct ip6_exthdrs * exthdrs,u_int32_t plen)892 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
893 {
894 	struct mbuf *mopt;
895 	u_int8_t *optbuf;
896 	u_int32_t v;
897 
898 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
899 
900 	/*
901 	 * If there is no hop-by-hop options header, allocate new one.
902 	 * If there is one but it doesn't have enough space to store the
903 	 * jumbo payload option, allocate a cluster to store the whole options.
904 	 * Otherwise, use it to store the options.
905 	 */
906 	if (exthdrs->ip6e_hbh == 0) {
907 		MGET(mopt, M_DONTWAIT, MT_DATA);
908 		if (mopt == NULL)
909 			return (ENOBUFS);
910 		mopt->m_len = JUMBOOPTLEN;
911 		optbuf = mtod(mopt, u_int8_t *);
912 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
913 		exthdrs->ip6e_hbh = mopt;
914 	} else {
915 		struct ip6_hbh *hbh;
916 
917 		mopt = exthdrs->ip6e_hbh;
918 		if (m_trailingspace(mopt) < JUMBOOPTLEN) {
919 			/*
920 			 * XXX assumption:
921 			 * - exthdrs->ip6e_hbh is not referenced from places
922 			 *   other than exthdrs.
923 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
924 			 */
925 			int oldoptlen = mopt->m_len;
926 			struct mbuf *n;
927 
928 			/*
929 			 * XXX: give up if the whole (new) hbh header does
930 			 * not fit even in an mbuf cluster.
931 			 */
932 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
933 				return (ENOBUFS);
934 
935 			/*
936 			 * As a consequence, we must always prepare a cluster
937 			 * at this point.
938 			 */
939 			MGET(n, M_DONTWAIT, MT_DATA);
940 			if (n) {
941 				MCLGET(n, M_DONTWAIT);
942 				if ((n->m_flags & M_EXT) == 0) {
943 					m_freem(n);
944 					n = NULL;
945 				}
946 			}
947 			if (!n)
948 				return (ENOBUFS);
949 			n->m_len = oldoptlen + JUMBOOPTLEN;
950 			memcpy(mtod(n, caddr_t), mtod(mopt, caddr_t),
951 			      oldoptlen);
952 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
953 			m_freem(mopt);
954 			mopt = exthdrs->ip6e_hbh = n;
955 		} else {
956 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
957 			mopt->m_len += JUMBOOPTLEN;
958 		}
959 		optbuf[0] = IP6OPT_PADN;
960 		optbuf[1] = 0;
961 
962 		/*
963 		 * Adjust the header length according to the pad and
964 		 * the jumbo payload option.
965 		 */
966 		hbh = mtod(mopt, struct ip6_hbh *);
967 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
968 	}
969 
970 	/* fill in the option. */
971 	optbuf[2] = IP6OPT_JUMBO;
972 	optbuf[3] = 4;
973 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
974 	memcpy(&optbuf[4], &v, sizeof(u_int32_t));
975 
976 	/* finally, adjust the packet header length */
977 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
978 
979 	return (0);
980 #undef JUMBOOPTLEN
981 }
982 
983 /*
984  * Insert fragment header and copy unfragmentable header portions.
985  */
986 int
ip6_insertfraghdr(struct mbuf * m0,struct mbuf * m,int hlen,struct ip6_frag ** frghdrp)987 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
988     struct ip6_frag **frghdrp)
989 {
990 	struct mbuf *n, *mlast;
991 
992 	if (hlen > sizeof(struct ip6_hdr)) {
993 		n = m_copym(m0, sizeof(struct ip6_hdr),
994 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
995 		if (n == NULL)
996 			return (ENOBUFS);
997 		m->m_next = n;
998 	} else
999 		n = m;
1000 
1001 	/* Search for the last mbuf of unfragmentable part. */
1002 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1003 		;
1004 
1005 	if ((mlast->m_flags & M_EXT) == 0 &&
1006 	    m_trailingspace(mlast) >= sizeof(struct ip6_frag)) {
1007 		/* use the trailing space of the last mbuf for fragment hdr */
1008 		*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1009 		    mlast->m_len);
1010 		mlast->m_len += sizeof(struct ip6_frag);
1011 		m->m_pkthdr.len += sizeof(struct ip6_frag);
1012 	} else {
1013 		/* allocate a new mbuf for the fragment header */
1014 		struct mbuf *mfrg;
1015 
1016 		MGET(mfrg, M_DONTWAIT, MT_DATA);
1017 		if (mfrg == NULL)
1018 			return (ENOBUFS);
1019 		mfrg->m_len = sizeof(struct ip6_frag);
1020 		*frghdrp = mtod(mfrg, struct ip6_frag *);
1021 		mlast->m_next = mfrg;
1022 	}
1023 
1024 	return (0);
1025 }
1026 
1027 int
ip6_getpmtu(struct rtentry * rt,struct ifnet * ifp,u_long * mtup)1028 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup)
1029 {
1030 	u_int32_t mtu = 0;
1031 	int error = 0;
1032 
1033 	if (rt != NULL) {
1034 		mtu = rt->rt_mtu;
1035 		if (mtu == 0)
1036 			mtu = ifp->if_mtu;
1037 		else if (mtu < IPV6_MMTU) {
1038 			/* RFC8021 IPv6 Atomic Fragments Considered Harmful */
1039 			mtu = IPV6_MMTU;
1040 		} else if (mtu > ifp->if_mtu) {
1041 			/*
1042 			 * The MTU on the route is larger than the MTU on
1043 			 * the interface!  This shouldn't happen, unless the
1044 			 * MTU of the interface has been changed after the
1045 			 * interface was brought up.  Change the MTU in the
1046 			 * route to match the interface MTU (as long as the
1047 			 * field isn't locked).
1048 			 */
1049 			mtu = ifp->if_mtu;
1050 			if (!(rt->rt_locks & RTV_MTU))
1051 				rt->rt_mtu = mtu;
1052 		}
1053 	} else {
1054 		mtu = ifp->if_mtu;
1055 	}
1056 
1057 	*mtup = mtu;
1058 	return (error);
1059 }
1060 
1061 /*
1062  * IP6 socket option processing.
1063  */
1064 int
ip6_ctloutput(int op,struct socket * so,int level,int optname,struct mbuf * m)1065 ip6_ctloutput(int op, struct socket *so, int level, int optname,
1066     struct mbuf *m)
1067 {
1068 	int privileged, optdatalen, uproto;
1069 	void *optdata;
1070 	struct inpcb *inp = sotoinpcb(so);
1071 	int error, optval;
1072 	struct proc *p = curproc; /* For IPsec and rdomain */
1073 	u_int rtableid, rtid = 0;
1074 
1075 	error = optval = 0;
1076 
1077 	privileged = (inp->inp_socket->so_state & SS_PRIV);
1078 	uproto = (int)so->so_proto->pr_protocol;
1079 
1080 	if (level != IPPROTO_IPV6)
1081 		return (EINVAL);
1082 
1083 	rtableid = p->p_p->ps_rtableid;
1084 
1085 	switch (op) {
1086 	case PRCO_SETOPT:
1087 		switch (optname) {
1088 		/*
1089 		 * Use of some Hop-by-Hop options or some
1090 		 * Destination options, might require special
1091 		 * privilege.  That is, normal applications
1092 		 * (without special privilege) might be forbidden
1093 		 * from setting certain options in outgoing packets,
1094 		 * and might never see certain options in received
1095 		 * packets. [RFC 2292 Section 6]
1096 		 * KAME specific note:
1097 		 *  KAME prevents non-privileged users from sending or
1098 		 *  receiving ANY hbh/dst options in order to avoid
1099 		 *  overhead of parsing options in the kernel.
1100 		 */
1101 		case IPV6_RECVHOPOPTS:
1102 		case IPV6_RECVDSTOPTS:
1103 			if (!privileged) {
1104 				error = EPERM;
1105 				break;
1106 			}
1107 			/* FALLTHROUGH */
1108 		case IPV6_UNICAST_HOPS:
1109 		case IPV6_MINHOPCOUNT:
1110 		case IPV6_HOPLIMIT:
1111 
1112 		case IPV6_RECVPKTINFO:
1113 		case IPV6_RECVHOPLIMIT:
1114 		case IPV6_RECVRTHDR:
1115 		case IPV6_RECVPATHMTU:
1116 		case IPV6_RECVTCLASS:
1117 		case IPV6_V6ONLY:
1118 		case IPV6_AUTOFLOWLABEL:
1119 		case IPV6_RECVDSTPORT:
1120 			if (m == NULL || m->m_len != sizeof(int)) {
1121 				error = EINVAL;
1122 				break;
1123 			}
1124 			optval = *mtod(m, int *);
1125 			switch (optname) {
1126 
1127 			case IPV6_UNICAST_HOPS:
1128 				if (optval < -1 || optval >= 256)
1129 					error = EINVAL;
1130 				else {
1131 					/* -1 = kernel default */
1132 					inp->inp_hops = optval;
1133 				}
1134 				break;
1135 
1136 			case IPV6_MINHOPCOUNT:
1137 				if (optval < 0 || optval > 255)
1138 					error = EINVAL;
1139 				else
1140 					inp->inp_ip6_minhlim = optval;
1141 				break;
1142 
1143 #define OPTSET(bit) \
1144 do { \
1145 	if (optval) \
1146 		inp->inp_flags |= (bit); \
1147 	else \
1148 		inp->inp_flags &= ~(bit); \
1149 } while (/*CONSTCOND*/ 0)
1150 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0)
1151 
1152 			case IPV6_RECVPKTINFO:
1153 				OPTSET(IN6P_PKTINFO);
1154 				break;
1155 
1156 			case IPV6_HOPLIMIT:
1157 			{
1158 				struct ip6_pktopts **optp;
1159 
1160 				optp = &inp->inp_outputopts6;
1161 				error = ip6_pcbopt(IPV6_HOPLIMIT,
1162 				    (u_char *)&optval, sizeof(optval), optp,
1163 				    privileged, uproto);
1164 				break;
1165 			}
1166 
1167 			case IPV6_RECVHOPLIMIT:
1168 				OPTSET(IN6P_HOPLIMIT);
1169 				break;
1170 
1171 			case IPV6_RECVHOPOPTS:
1172 				OPTSET(IN6P_HOPOPTS);
1173 				break;
1174 
1175 			case IPV6_RECVDSTOPTS:
1176 				OPTSET(IN6P_DSTOPTS);
1177 				break;
1178 
1179 			case IPV6_RECVRTHDR:
1180 				OPTSET(IN6P_RTHDR);
1181 				break;
1182 
1183 			case IPV6_RECVPATHMTU:
1184 				/*
1185 				 * We ignore this option for TCP
1186 				 * sockets.
1187 				 * (RFC3542 leaves this case
1188 				 * unspecified.)
1189 				 */
1190 				if (uproto != IPPROTO_TCP)
1191 					OPTSET(IN6P_MTU);
1192 				break;
1193 
1194 			case IPV6_V6ONLY:
1195 				/*
1196 				 * make setsockopt(IPV6_V6ONLY)
1197 				 * available only prior to bind(2).
1198 				 * see ipng mailing list, Jun 22 2001.
1199 				 */
1200 				if (inp->inp_lport || !IN6_IS_ADDR_UNSPECIFIED(
1201 				    &inp->inp_laddr6)) {
1202 					error = EINVAL;
1203 					break;
1204 				}
1205 				/* No support for IPv4-mapped addresses. */
1206 				if (!optval)
1207 					error = EINVAL;
1208 				else
1209 					error = 0;
1210 				break;
1211 			case IPV6_RECVTCLASS:
1212 				OPTSET(IN6P_TCLASS);
1213 				break;
1214 			case IPV6_AUTOFLOWLABEL:
1215 				OPTSET(IN6P_AUTOFLOWLABEL);
1216 				break;
1217 
1218 			case IPV6_RECVDSTPORT:
1219 				OPTSET(IN6P_RECVDSTPORT);
1220 				break;
1221 			}
1222 			break;
1223 
1224 		case IPV6_TCLASS:
1225 		case IPV6_DONTFRAG:
1226 		case IPV6_USE_MIN_MTU:
1227 			if (m == NULL || m->m_len != sizeof(optval)) {
1228 				error = EINVAL;
1229 				break;
1230 			}
1231 			optval = *mtod(m, int *);
1232 			{
1233 				struct ip6_pktopts **optp;
1234 				optp = &inp->inp_outputopts6;
1235 				error = ip6_pcbopt(optname, (u_char *)&optval,
1236 				    sizeof(optval), optp, privileged, uproto);
1237 				break;
1238 			}
1239 
1240 		case IPV6_PKTINFO:
1241 		case IPV6_HOPOPTS:
1242 		case IPV6_RTHDR:
1243 		case IPV6_DSTOPTS:
1244 		case IPV6_RTHDRDSTOPTS:
1245 		{
1246 			/* new advanced API (RFC3542) */
1247 			u_char *optbuf;
1248 			int optbuflen;
1249 			struct ip6_pktopts **optp;
1250 
1251 			if (m && m->m_next) {
1252 				error = EINVAL;	/* XXX */
1253 				break;
1254 			}
1255 			if (m) {
1256 				optbuf = mtod(m, u_char *);
1257 				optbuflen = m->m_len;
1258 			} else {
1259 				optbuf = NULL;
1260 				optbuflen = 0;
1261 			}
1262 			optp = &inp->inp_outputopts6;
1263 			error = ip6_pcbopt(optname, optbuf, optbuflen, optp,
1264 			    privileged, uproto);
1265 			break;
1266 		}
1267 #undef OPTSET
1268 
1269 		case IPV6_MULTICAST_IF:
1270 		case IPV6_MULTICAST_HOPS:
1271 		case IPV6_MULTICAST_LOOP:
1272 		case IPV6_JOIN_GROUP:
1273 		case IPV6_LEAVE_GROUP:
1274 			error =	ip6_setmoptions(optname,
1275 						&inp->inp_moptions6,
1276 						m, inp->inp_rtableid);
1277 			break;
1278 
1279 		case IPV6_PORTRANGE:
1280 			if (m == NULL || m->m_len != sizeof(int)) {
1281 				error = EINVAL;
1282 				break;
1283 			}
1284 			optval = *mtod(m, int *);
1285 
1286 			switch (optval) {
1287 			case IPV6_PORTRANGE_DEFAULT:
1288 				inp->inp_flags &= ~(IN6P_LOWPORT);
1289 				inp->inp_flags &= ~(IN6P_HIGHPORT);
1290 				break;
1291 
1292 			case IPV6_PORTRANGE_HIGH:
1293 				inp->inp_flags &= ~(IN6P_LOWPORT);
1294 				inp->inp_flags |= IN6P_HIGHPORT;
1295 				break;
1296 
1297 			case IPV6_PORTRANGE_LOW:
1298 				inp->inp_flags &= ~(IN6P_HIGHPORT);
1299 				inp->inp_flags |= IN6P_LOWPORT;
1300 				break;
1301 
1302 			default:
1303 				error = EINVAL;
1304 				break;
1305 			}
1306 			break;
1307 
1308 		case IPSEC6_OUTSA:
1309 			error = EINVAL;
1310 			break;
1311 
1312 		case IPV6_AUTH_LEVEL:
1313 		case IPV6_ESP_TRANS_LEVEL:
1314 		case IPV6_ESP_NETWORK_LEVEL:
1315 		case IPV6_IPCOMP_LEVEL:
1316 #ifndef IPSEC
1317 			error = EINVAL;
1318 #else
1319 			if (m == NULL || m->m_len != sizeof(int)) {
1320 				error = EINVAL;
1321 				break;
1322 			}
1323 			optval = *mtod(m, int *);
1324 
1325 			if (optval < IPSEC_LEVEL_BYPASS ||
1326 			    optval > IPSEC_LEVEL_UNIQUE) {
1327 				error = EINVAL;
1328 				break;
1329 			}
1330 
1331 			switch (optname) {
1332 			case IPV6_AUTH_LEVEL:
1333 				if (optval < IPSEC_AUTH_LEVEL_DEFAULT &&
1334 				    suser(p)) {
1335 					error = EACCES;
1336 					break;
1337 				}
1338 				inp->inp_seclevel.sl_auth = optval;
1339 				break;
1340 
1341 			case IPV6_ESP_TRANS_LEVEL:
1342 				if (optval < IPSEC_ESP_TRANS_LEVEL_DEFAULT &&
1343 				    suser(p)) {
1344 					error = EACCES;
1345 					break;
1346 				}
1347 				inp->inp_seclevel.sl_esp_trans = optval;
1348 				break;
1349 
1350 			case IPV6_ESP_NETWORK_LEVEL:
1351 				if (optval < IPSEC_ESP_NETWORK_LEVEL_DEFAULT &&
1352 				    suser(p)) {
1353 					error = EACCES;
1354 					break;
1355 				}
1356 				inp->inp_seclevel.sl_esp_network = optval;
1357 				break;
1358 
1359 			case IPV6_IPCOMP_LEVEL:
1360 				if (optval < IPSEC_IPCOMP_LEVEL_DEFAULT &&
1361 				    suser(p)) {
1362 					error = EACCES;
1363 					break;
1364 				}
1365 				inp->inp_seclevel.sl_ipcomp = optval;
1366 				break;
1367 			}
1368 #endif
1369 			break;
1370 		case SO_RTABLE:
1371 			if (m == NULL || m->m_len < sizeof(u_int)) {
1372 				error = EINVAL;
1373 				break;
1374 			}
1375 			rtid = *mtod(m, u_int *);
1376 			if (inp->inp_rtableid == rtid)
1377 				break;
1378 			/* needs privileges to switch when already set */
1379 			if (rtableid != rtid && rtableid != 0 &&
1380 			    (error = suser(p)) != 0)
1381 				break;
1382 			error = in_pcbset_rtableid(inp, rtid);
1383 			break;
1384 		case IPV6_PIPEX:
1385 			if (m != NULL && m->m_len == sizeof(int))
1386 				inp->inp_pipex = *mtod(m, int *);
1387 			else
1388 				error = EINVAL;
1389 			break;
1390 
1391 		default:
1392 			error = ENOPROTOOPT;
1393 			break;
1394 		}
1395 		break;
1396 
1397 	case PRCO_GETOPT:
1398 		switch (optname) {
1399 
1400 		case IPV6_RECVHOPOPTS:
1401 		case IPV6_RECVDSTOPTS:
1402 		case IPV6_UNICAST_HOPS:
1403 		case IPV6_MINHOPCOUNT:
1404 		case IPV6_RECVPKTINFO:
1405 		case IPV6_RECVHOPLIMIT:
1406 		case IPV6_RECVRTHDR:
1407 		case IPV6_RECVPATHMTU:
1408 
1409 		case IPV6_V6ONLY:
1410 		case IPV6_PORTRANGE:
1411 		case IPV6_RECVTCLASS:
1412 		case IPV6_AUTOFLOWLABEL:
1413 		case IPV6_RECVDSTPORT:
1414 			switch (optname) {
1415 
1416 			case IPV6_RECVHOPOPTS:
1417 				optval = OPTBIT(IN6P_HOPOPTS);
1418 				break;
1419 
1420 			case IPV6_RECVDSTOPTS:
1421 				optval = OPTBIT(IN6P_DSTOPTS);
1422 				break;
1423 
1424 			case IPV6_UNICAST_HOPS:
1425 				optval = inp->inp_hops;
1426 				break;
1427 
1428 			case IPV6_MINHOPCOUNT:
1429 				optval = inp->inp_ip6_minhlim;
1430 				break;
1431 
1432 			case IPV6_RECVPKTINFO:
1433 				optval = OPTBIT(IN6P_PKTINFO);
1434 				break;
1435 
1436 			case IPV6_RECVHOPLIMIT:
1437 				optval = OPTBIT(IN6P_HOPLIMIT);
1438 				break;
1439 
1440 			case IPV6_RECVRTHDR:
1441 				optval = OPTBIT(IN6P_RTHDR);
1442 				break;
1443 
1444 			case IPV6_RECVPATHMTU:
1445 				optval = OPTBIT(IN6P_MTU);
1446 				break;
1447 
1448 			case IPV6_V6ONLY:
1449 				optval = 1;
1450 				break;
1451 
1452 			case IPV6_PORTRANGE:
1453 			    {
1454 				int flags;
1455 				flags = inp->inp_flags;
1456 				if (flags & IN6P_HIGHPORT)
1457 					optval = IPV6_PORTRANGE_HIGH;
1458 				else if (flags & IN6P_LOWPORT)
1459 					optval = IPV6_PORTRANGE_LOW;
1460 				else
1461 					optval = 0;
1462 				break;
1463 			    }
1464 			case IPV6_RECVTCLASS:
1465 				optval = OPTBIT(IN6P_TCLASS);
1466 				break;
1467 
1468 			case IPV6_AUTOFLOWLABEL:
1469 				optval = OPTBIT(IN6P_AUTOFLOWLABEL);
1470 				break;
1471 
1472 			case IPV6_RECVDSTPORT:
1473 				optval = OPTBIT(IN6P_RECVDSTPORT);
1474 				break;
1475 			}
1476 			if (error)
1477 				break;
1478 			m->m_len = sizeof(int);
1479 			*mtod(m, int *) = optval;
1480 			break;
1481 
1482 		case IPV6_PATHMTU:
1483 		{
1484 			u_long pmtu = 0;
1485 			struct ip6_mtuinfo mtuinfo;
1486 			struct ifnet *ifp;
1487 			struct rtentry *rt;
1488 
1489 			if (!(so->so_state & SS_ISCONNECTED))
1490 				return (ENOTCONN);
1491 
1492 			rt = in6_pcbrtentry(inp);
1493 			if (!rtisvalid(rt))
1494 				return (EHOSTUNREACH);
1495 
1496 			ifp = if_get(rt->rt_ifidx);
1497 			if (ifp == NULL)
1498 				return (EHOSTUNREACH);
1499 			/*
1500 			 * XXX: we dot not consider the case of source
1501 			 * routing, or optional information to specify
1502 			 * the outgoing interface.
1503 			 */
1504 			error = ip6_getpmtu(rt, ifp, &pmtu);
1505 			if_put(ifp);
1506 			if (error)
1507 				break;
1508 			if (pmtu > IPV6_MAXPACKET)
1509 				pmtu = IPV6_MAXPACKET;
1510 
1511 			bzero(&mtuinfo, sizeof(mtuinfo));
1512 			mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1513 			optdata = (void *)&mtuinfo;
1514 			optdatalen = sizeof(mtuinfo);
1515 			if (optdatalen > MCLBYTES)
1516 				return (EMSGSIZE); /* XXX */
1517 			if (optdatalen > MLEN)
1518 				MCLGET(m, M_WAIT);
1519 			m->m_len = optdatalen;
1520 			bcopy(optdata, mtod(m, void *), optdatalen);
1521 			break;
1522 		}
1523 
1524 		case IPV6_PKTINFO:
1525 		case IPV6_HOPOPTS:
1526 		case IPV6_RTHDR:
1527 		case IPV6_DSTOPTS:
1528 		case IPV6_RTHDRDSTOPTS:
1529 		case IPV6_TCLASS:
1530 		case IPV6_DONTFRAG:
1531 		case IPV6_USE_MIN_MTU:
1532 			error = ip6_getpcbopt(inp->inp_outputopts6,
1533 			    optname, m);
1534 			break;
1535 
1536 		case IPV6_MULTICAST_IF:
1537 		case IPV6_MULTICAST_HOPS:
1538 		case IPV6_MULTICAST_LOOP:
1539 		case IPV6_JOIN_GROUP:
1540 		case IPV6_LEAVE_GROUP:
1541 			error = ip6_getmoptions(optname,
1542 			    inp->inp_moptions6, m);
1543 			break;
1544 
1545 		case IPSEC6_OUTSA:
1546 			error = EINVAL;
1547 			break;
1548 
1549 		case IPV6_AUTH_LEVEL:
1550 		case IPV6_ESP_TRANS_LEVEL:
1551 		case IPV6_ESP_NETWORK_LEVEL:
1552 		case IPV6_IPCOMP_LEVEL:
1553 #ifndef IPSEC
1554 			m->m_len = sizeof(int);
1555 			*mtod(m, int *) = IPSEC_LEVEL_NONE;
1556 #else
1557 			m->m_len = sizeof(int);
1558 			switch (optname) {
1559 			case IPV6_AUTH_LEVEL:
1560 				optval = inp->inp_seclevel.sl_auth;
1561 				break;
1562 
1563 			case IPV6_ESP_TRANS_LEVEL:
1564 				optval =
1565 				    inp->inp_seclevel.sl_esp_trans;
1566 				break;
1567 
1568 			case IPV6_ESP_NETWORK_LEVEL:
1569 				optval =
1570 				    inp->inp_seclevel.sl_esp_network;
1571 				break;
1572 
1573 			case IPV6_IPCOMP_LEVEL:
1574 				optval = inp->inp_seclevel.sl_ipcomp;
1575 				break;
1576 			}
1577 			*mtod(m, int *) = optval;
1578 #endif
1579 			break;
1580 		case SO_RTABLE:
1581 			m->m_len = sizeof(u_int);
1582 			*mtod(m, u_int *) = inp->inp_rtableid;
1583 			break;
1584 		case IPV6_PIPEX:
1585 			m->m_len = sizeof(int);
1586 			*mtod(m, int *) = inp->inp_pipex;
1587 			break;
1588 
1589 		default:
1590 			error = ENOPROTOOPT;
1591 			break;
1592 		}
1593 		break;
1594 	}
1595 	return (error);
1596 }
1597 
1598 int
ip6_raw_ctloutput(int op,struct socket * so,int level,int optname,struct mbuf * m)1599 ip6_raw_ctloutput(int op, struct socket *so, int level, int optname,
1600     struct mbuf *m)
1601 {
1602 	int error = 0, optval;
1603 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1604 	struct inpcb *inp = sotoinpcb(so);
1605 
1606 	if (level != IPPROTO_IPV6)
1607 		return (EINVAL);
1608 
1609 	switch (optname) {
1610 	case IPV6_CHECKSUM:
1611 		/*
1612 		 * For ICMPv6 sockets, no modification allowed for checksum
1613 		 * offset, permit "no change" values to help existing apps.
1614 		 *
1615 		 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
1616 		 * for an ICMPv6 socket will fail."
1617 		 * The current behavior does not meet RFC3542.
1618 		 */
1619 		switch (op) {
1620 		case PRCO_SETOPT:
1621 			if (m == NULL || m->m_len != sizeof(int)) {
1622 				error = EINVAL;
1623 				break;
1624 			}
1625 			optval = *mtod(m, int *);
1626 			if (optval < -1 ||
1627 			    (optval > 0 && (optval % 2) != 0)) {
1628 				/*
1629 				 * The API assumes non-negative even offset
1630 				 * values or -1 as a special value.
1631 				 */
1632 				error = EINVAL;
1633 			} else if (so->so_proto->pr_protocol ==
1634 			    IPPROTO_ICMPV6) {
1635 				if (optval != icmp6off)
1636 					error = EINVAL;
1637 			} else
1638 				inp->inp_cksum6 = optval;
1639 			break;
1640 
1641 		case PRCO_GETOPT:
1642 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
1643 				optval = icmp6off;
1644 			else
1645 				optval = inp->inp_cksum6;
1646 
1647 			m->m_len = sizeof(int);
1648 			*mtod(m, int *) = optval;
1649 			break;
1650 
1651 		default:
1652 			error = EINVAL;
1653 			break;
1654 		}
1655 		break;
1656 
1657 	default:
1658 		error = ENOPROTOOPT;
1659 		break;
1660 	}
1661 
1662 	return (error);
1663 }
1664 
1665 /*
1666  * initialize ip6_pktopts.  beware that there are non-zero default values in
1667  * the struct.
1668  */
1669 void
ip6_initpktopts(struct ip6_pktopts * opt)1670 ip6_initpktopts(struct ip6_pktopts *opt)
1671 {
1672 	bzero(opt, sizeof(*opt));
1673 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
1674 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
1675 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
1676 }
1677 
1678 int
ip6_pcbopt(int optname,u_char * buf,int len,struct ip6_pktopts ** pktopt,int priv,int uproto)1679 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
1680     int priv, int uproto)
1681 {
1682 	struct ip6_pktopts *opt;
1683 
1684 	if (*pktopt == NULL) {
1685 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
1686 		    M_WAITOK);
1687 		ip6_initpktopts(*pktopt);
1688 	}
1689 	opt = *pktopt;
1690 
1691 	return (ip6_setpktopt(optname, buf, len, opt, priv, 1, uproto));
1692 }
1693 
1694 int
ip6_getpcbopt(struct ip6_pktopts * pktopt,int optname,struct mbuf * m)1695 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct mbuf *m)
1696 {
1697 	void *optdata = NULL;
1698 	int optdatalen = 0;
1699 	struct ip6_ext *ip6e;
1700 	int error = 0;
1701 	struct in6_pktinfo null_pktinfo;
1702 	int deftclass = 0, on;
1703 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
1704 
1705 	switch (optname) {
1706 	case IPV6_PKTINFO:
1707 		if (pktopt && pktopt->ip6po_pktinfo)
1708 			optdata = (void *)pktopt->ip6po_pktinfo;
1709 		else {
1710 			/* XXX: we don't have to do this every time... */
1711 			bzero(&null_pktinfo, sizeof(null_pktinfo));
1712 			optdata = (void *)&null_pktinfo;
1713 		}
1714 		optdatalen = sizeof(struct in6_pktinfo);
1715 		break;
1716 	case IPV6_TCLASS:
1717 		if (pktopt && pktopt->ip6po_tclass >= 0)
1718 			optdata = (void *)&pktopt->ip6po_tclass;
1719 		else
1720 			optdata = (void *)&deftclass;
1721 		optdatalen = sizeof(int);
1722 		break;
1723 	case IPV6_HOPOPTS:
1724 		if (pktopt && pktopt->ip6po_hbh) {
1725 			optdata = (void *)pktopt->ip6po_hbh;
1726 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
1727 			optdatalen = (ip6e->ip6e_len + 1) << 3;
1728 		}
1729 		break;
1730 	case IPV6_RTHDR:
1731 		if (pktopt && pktopt->ip6po_rthdr) {
1732 			optdata = (void *)pktopt->ip6po_rthdr;
1733 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
1734 			optdatalen = (ip6e->ip6e_len + 1) << 3;
1735 		}
1736 		break;
1737 	case IPV6_RTHDRDSTOPTS:
1738 		if (pktopt && pktopt->ip6po_dest1) {
1739 			optdata = (void *)pktopt->ip6po_dest1;
1740 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
1741 			optdatalen = (ip6e->ip6e_len + 1) << 3;
1742 		}
1743 		break;
1744 	case IPV6_DSTOPTS:
1745 		if (pktopt && pktopt->ip6po_dest2) {
1746 			optdata = (void *)pktopt->ip6po_dest2;
1747 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
1748 			optdatalen = (ip6e->ip6e_len + 1) << 3;
1749 		}
1750 		break;
1751 	case IPV6_USE_MIN_MTU:
1752 		if (pktopt)
1753 			optdata = (void *)&pktopt->ip6po_minmtu;
1754 		else
1755 			optdata = (void *)&defminmtu;
1756 		optdatalen = sizeof(int);
1757 		break;
1758 	case IPV6_DONTFRAG:
1759 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
1760 			on = 1;
1761 		else
1762 			on = 0;
1763 		optdata = (void *)&on;
1764 		optdatalen = sizeof(on);
1765 		break;
1766 	default:		/* should not happen */
1767 #ifdef DIAGNOSTIC
1768 		panic("%s: unexpected option", __func__);
1769 #endif
1770 		return (ENOPROTOOPT);
1771 	}
1772 
1773 	if (optdatalen > MCLBYTES)
1774 		return (EMSGSIZE); /* XXX */
1775 	if (optdatalen > MLEN)
1776 		MCLGET(m, M_WAIT);
1777 	m->m_len = optdatalen;
1778 	if (optdatalen)
1779 		bcopy(optdata, mtod(m, void *), optdatalen);
1780 
1781 	return (error);
1782 }
1783 
1784 void
ip6_clearpktopts(struct ip6_pktopts * pktopt,int optname)1785 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
1786 {
1787 	if (optname == -1 || optname == IPV6_PKTINFO) {
1788 		if (pktopt->ip6po_pktinfo)
1789 			free(pktopt->ip6po_pktinfo, M_IP6OPT, 0);
1790 		pktopt->ip6po_pktinfo = NULL;
1791 	}
1792 	if (optname == -1 || optname == IPV6_HOPLIMIT)
1793 		pktopt->ip6po_hlim = -1;
1794 	if (optname == -1 || optname == IPV6_TCLASS)
1795 		pktopt->ip6po_tclass = -1;
1796 	if (optname == -1 || optname == IPV6_HOPOPTS) {
1797 		if (pktopt->ip6po_hbh)
1798 			free(pktopt->ip6po_hbh, M_IP6OPT, 0);
1799 		pktopt->ip6po_hbh = NULL;
1800 	}
1801 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
1802 		if (pktopt->ip6po_dest1)
1803 			free(pktopt->ip6po_dest1, M_IP6OPT, 0);
1804 		pktopt->ip6po_dest1 = NULL;
1805 	}
1806 	if (optname == -1 || optname == IPV6_RTHDR) {
1807 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
1808 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT, 0);
1809 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
1810 		if (pktopt->ip6po_route.ro_rt) {
1811 			rtfree(pktopt->ip6po_route.ro_rt);
1812 			pktopt->ip6po_route.ro_rt = NULL;
1813 		}
1814 	}
1815 	if (optname == -1 || optname == IPV6_DSTOPTS) {
1816 		if (pktopt->ip6po_dest2)
1817 			free(pktopt->ip6po_dest2, M_IP6OPT, 0);
1818 		pktopt->ip6po_dest2 = NULL;
1819 	}
1820 }
1821 
1822 #define PKTOPT_EXTHDRCPY(type) \
1823 do {\
1824 	if (src->type) {\
1825 		size_t hlen;\
1826 		hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
1827 		dst->type = malloc(hlen, M_IP6OPT, M_NOWAIT);\
1828 		if (dst->type == NULL)\
1829 			goto bad;\
1830 		memcpy(dst->type, src->type, hlen);\
1831 	}\
1832 } while (/*CONSTCOND*/ 0)
1833 
1834 int
copypktopts(struct ip6_pktopts * dst,struct ip6_pktopts * src)1835 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src)
1836 {
1837 	dst->ip6po_hlim = src->ip6po_hlim;
1838 	dst->ip6po_tclass = src->ip6po_tclass;
1839 	dst->ip6po_flags = src->ip6po_flags;
1840 	if (src->ip6po_pktinfo) {
1841 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
1842 		    M_IP6OPT, M_NOWAIT);
1843 		if (dst->ip6po_pktinfo == NULL)
1844 			goto bad;
1845 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
1846 	}
1847 	PKTOPT_EXTHDRCPY(ip6po_hbh);
1848 	PKTOPT_EXTHDRCPY(ip6po_dest1);
1849 	PKTOPT_EXTHDRCPY(ip6po_dest2);
1850 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
1851 	return (0);
1852 
1853   bad:
1854 	ip6_clearpktopts(dst, -1);
1855 	return (ENOBUFS);
1856 }
1857 #undef PKTOPT_EXTHDRCPY
1858 
1859 void
ip6_freepcbopts(struct ip6_pktopts * pktopt)1860 ip6_freepcbopts(struct ip6_pktopts *pktopt)
1861 {
1862 	if (pktopt == NULL)
1863 		return;
1864 
1865 	ip6_clearpktopts(pktopt, -1);
1866 
1867 	free(pktopt, M_IP6OPT, 0);
1868 }
1869 
1870 /*
1871  * Set the IP6 multicast options in response to user setsockopt().
1872  */
1873 int
ip6_setmoptions(int optname,struct ip6_moptions ** im6op,struct mbuf * m,unsigned int rtableid)1874 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m,
1875     unsigned int rtableid)
1876 {
1877 	int error = 0;
1878 	u_int loop, ifindex;
1879 	struct ipv6_mreq *mreq;
1880 	struct ifnet *ifp;
1881 	struct ip6_moptions *im6o = *im6op;
1882 	struct in6_multi_mship *imm;
1883 	struct proc *p = curproc;	/* XXX */
1884 
1885 	if (im6o == NULL) {
1886 		/*
1887 		 * No multicast option buffer attached to the pcb;
1888 		 * allocate one and initialize to default values.
1889 		 */
1890 		im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1891 		if (im6o == NULL)
1892 			return (ENOBUFS);
1893 		*im6op = im6o;
1894 		im6o->im6o_ifidx = 0;
1895 		im6o->im6o_hlim = ip6_defmcasthlim;
1896 		im6o->im6o_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1897 		LIST_INIT(&im6o->im6o_memberships);
1898 	}
1899 
1900 	switch (optname) {
1901 
1902 	case IPV6_MULTICAST_IF:
1903 		/*
1904 		 * Select the interface for outgoing multicast packets.
1905 		 */
1906 		if (m == NULL || m->m_len != sizeof(u_int)) {
1907 			error = EINVAL;
1908 			break;
1909 		}
1910 		memcpy(&ifindex, mtod(m, u_int *), sizeof(ifindex));
1911 		if (ifindex != 0) {
1912 			ifp = if_get(ifindex);
1913 			if (ifp == NULL) {
1914 				error = ENXIO;	/* XXX EINVAL? */
1915 				break;
1916 			}
1917 			if (ifp->if_rdomain != rtable_l2(rtableid) ||
1918 			    (ifp->if_flags & IFF_MULTICAST) == 0) {
1919 				error = EADDRNOTAVAIL;
1920 				if_put(ifp);
1921 				break;
1922 			}
1923 			if_put(ifp);
1924 		}
1925 		im6o->im6o_ifidx = ifindex;
1926 		break;
1927 
1928 	case IPV6_MULTICAST_HOPS:
1929 	    {
1930 		/*
1931 		 * Set the IP6 hoplimit for outgoing multicast packets.
1932 		 */
1933 		int optval;
1934 		if (m == NULL || m->m_len != sizeof(int)) {
1935 			error = EINVAL;
1936 			break;
1937 		}
1938 		memcpy(&optval, mtod(m, u_int *), sizeof(optval));
1939 		if (optval < -1 || optval >= 256)
1940 			error = EINVAL;
1941 		else if (optval == -1)
1942 			im6o->im6o_hlim = ip6_defmcasthlim;
1943 		else
1944 			im6o->im6o_hlim = optval;
1945 		break;
1946 	    }
1947 
1948 	case IPV6_MULTICAST_LOOP:
1949 		/*
1950 		 * Set the loopback flag for outgoing multicast packets.
1951 		 * Must be zero or one.
1952 		 */
1953 		if (m == NULL || m->m_len != sizeof(u_int)) {
1954 			error = EINVAL;
1955 			break;
1956 		}
1957 		memcpy(&loop, mtod(m, u_int *), sizeof(loop));
1958 		if (loop > 1) {
1959 			error = EINVAL;
1960 			break;
1961 		}
1962 		im6o->im6o_loop = loop;
1963 		break;
1964 
1965 	case IPV6_JOIN_GROUP:
1966 		/*
1967 		 * Add a multicast group membership.
1968 		 * Group must be a valid IP6 multicast address.
1969 		 */
1970 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1971 			error = EINVAL;
1972 			break;
1973 		}
1974 		mreq = mtod(m, struct ipv6_mreq *);
1975 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1976 			/*
1977 			 * We use the unspecified address to specify to accept
1978 			 * all multicast addresses. Only super user is allowed
1979 			 * to do this.
1980 			 */
1981 			if (suser(p))
1982 			{
1983 				error = EACCES;
1984 				break;
1985 			}
1986 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1987 			error = EINVAL;
1988 			break;
1989 		}
1990 
1991 		/*
1992 		 * If no interface was explicitly specified, choose an
1993 		 * appropriate one according to the given multicast address.
1994 		 */
1995 		if (mreq->ipv6mr_interface == 0) {
1996 			struct rtentry *rt;
1997 			struct sockaddr_in6 dst;
1998 
1999 			memset(&dst, 0, sizeof(dst));
2000 			dst.sin6_len = sizeof(dst);
2001 			dst.sin6_family = AF_INET6;
2002 			dst.sin6_addr = mreq->ipv6mr_multiaddr;
2003 			rt = rtalloc(sin6tosa(&dst), RT_RESOLVE, rtableid);
2004 			if (rt == NULL) {
2005 				error = EADDRNOTAVAIL;
2006 				break;
2007 			}
2008 			ifp = if_get(rt->rt_ifidx);
2009 			rtfree(rt);
2010 		} else {
2011 			/*
2012 			 * If the interface is specified, validate it.
2013 			 */
2014 			ifp = if_get(mreq->ipv6mr_interface);
2015 			if (ifp == NULL) {
2016 				error = ENXIO;	/* XXX EINVAL? */
2017 				break;
2018 			}
2019 		}
2020 
2021 		/*
2022 		 * See if we found an interface, and confirm that it
2023 		 * supports multicast
2024 		 */
2025 		if (ifp == NULL || ifp->if_rdomain != rtable_l2(rtableid) ||
2026 		    (ifp->if_flags & IFF_MULTICAST) == 0) {
2027 			if_put(ifp);
2028 			error = EADDRNOTAVAIL;
2029 			break;
2030 		}
2031 		/*
2032 		 * Put interface index into the multicast address,
2033 		 * if the address has link/interface-local scope.
2034 		 */
2035 		if (IN6_IS_SCOPE_EMBED(&mreq->ipv6mr_multiaddr)) {
2036 			mreq->ipv6mr_multiaddr.s6_addr16[1] =
2037 			    htons(ifp->if_index);
2038 		}
2039 		/*
2040 		 * See if the membership already exists.
2041 		 */
2042 		LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain)
2043 			if (imm->i6mm_maddr->in6m_ifidx == ifp->if_index &&
2044 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2045 			    &mreq->ipv6mr_multiaddr))
2046 				break;
2047 		if (imm != NULL) {
2048 			if_put(ifp);
2049 			error = EADDRINUSE;
2050 			break;
2051 		}
2052 		/*
2053 		 * Everything looks good; add a new record to the multicast
2054 		 * address list for the given interface.
2055 		 */
2056 		imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error);
2057 		if_put(ifp);
2058 		if (!imm)
2059 			break;
2060 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2061 		break;
2062 
2063 	case IPV6_LEAVE_GROUP:
2064 		/*
2065 		 * Drop a multicast group membership.
2066 		 * Group must be a valid IP6 multicast address.
2067 		 */
2068 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2069 			error = EINVAL;
2070 			break;
2071 		}
2072 		mreq = mtod(m, struct ipv6_mreq *);
2073 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2074 			if (suser(p)) {
2075 				error = EACCES;
2076 				break;
2077 			}
2078 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2079 			error = EINVAL;
2080 			break;
2081 		}
2082 
2083 		/*
2084 		 * Put interface index into the multicast address,
2085 		 * if the address has link-local scope.
2086 		 */
2087 		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2088 			mreq->ipv6mr_multiaddr.s6_addr16[1] =
2089 			    htons(mreq->ipv6mr_interface);
2090 		}
2091 
2092 		/*
2093 		 * If an interface address was specified, get a pointer
2094 		 * to its ifnet structure.
2095 		 */
2096 		if (mreq->ipv6mr_interface == 0)
2097 			ifp = NULL;
2098 		else {
2099 			ifp = if_get(mreq->ipv6mr_interface);
2100 			if (ifp == NULL) {
2101 				error = ENXIO;	/* XXX EINVAL? */
2102 				break;
2103 			}
2104 		}
2105 
2106 		/*
2107 		 * Find the membership in the membership list.
2108 		 */
2109 		LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
2110 			if ((ifp == NULL ||
2111 			    imm->i6mm_maddr->in6m_ifidx == ifp->if_index) &&
2112 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2113 			    &mreq->ipv6mr_multiaddr))
2114 				break;
2115 		}
2116 
2117 		if_put(ifp);
2118 
2119 		if (imm == NULL) {
2120 			/* Unable to resolve interface */
2121 			error = EADDRNOTAVAIL;
2122 			break;
2123 		}
2124 		/*
2125 		 * Give up the multicast address record to which the
2126 		 * membership points.
2127 		 */
2128 		LIST_REMOVE(imm, i6mm_chain);
2129 		in6_leavegroup(imm);
2130 		break;
2131 
2132 	default:
2133 		error = EOPNOTSUPP;
2134 		break;
2135 	}
2136 
2137 	/*
2138 	 * If all options have default values, no need to keep the option
2139 	 * structure.
2140 	 */
2141 	if (im6o->im6o_ifidx == 0 &&
2142 	    im6o->im6o_hlim == ip6_defmcasthlim &&
2143 	    im6o->im6o_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2144 	    LIST_EMPTY(&im6o->im6o_memberships)) {
2145 		free(*im6op, M_IPMOPTS, sizeof(**im6op));
2146 		*im6op = NULL;
2147 	}
2148 
2149 	return (error);
2150 }
2151 
2152 /*
2153  * Return the IP6 multicast options in response to user getsockopt().
2154  */
2155 int
ip6_getmoptions(int optname,struct ip6_moptions * im6o,struct mbuf * m)2156 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf *m)
2157 {
2158 	u_int *hlim, *loop, *ifindex;
2159 
2160 	switch (optname) {
2161 	case IPV6_MULTICAST_IF:
2162 		ifindex = mtod(m, u_int *);
2163 		m->m_len = sizeof(u_int);
2164 		if (im6o == NULL || im6o->im6o_ifidx == 0)
2165 			*ifindex = 0;
2166 		else
2167 			*ifindex = im6o->im6o_ifidx;
2168 		return (0);
2169 
2170 	case IPV6_MULTICAST_HOPS:
2171 		hlim = mtod(m, u_int *);
2172 		m->m_len = sizeof(u_int);
2173 		if (im6o == NULL)
2174 			*hlim = ip6_defmcasthlim;
2175 		else
2176 			*hlim = im6o->im6o_hlim;
2177 		return (0);
2178 
2179 	case IPV6_MULTICAST_LOOP:
2180 		loop = mtod(m, u_int *);
2181 		m->m_len = sizeof(u_int);
2182 		if (im6o == NULL)
2183 			*loop = ip6_defmcasthlim;
2184 		else
2185 			*loop = im6o->im6o_loop;
2186 		return (0);
2187 
2188 	default:
2189 		return (EOPNOTSUPP);
2190 	}
2191 }
2192 
2193 /*
2194  * Discard the IP6 multicast options.
2195  */
2196 void
ip6_freemoptions(struct ip6_moptions * im6o)2197 ip6_freemoptions(struct ip6_moptions *im6o)
2198 {
2199 	struct in6_multi_mship *imm;
2200 
2201 	if (im6o == NULL)
2202 		return;
2203 
2204 	while (!LIST_EMPTY(&im6o->im6o_memberships)) {
2205 		imm = LIST_FIRST(&im6o->im6o_memberships);
2206 		LIST_REMOVE(imm, i6mm_chain);
2207 		in6_leavegroup(imm);
2208 	}
2209 	free(im6o, M_IPMOPTS, sizeof(*im6o));
2210 }
2211 
2212 /*
2213  * Set IPv6 outgoing packet options based on advanced API.
2214  */
2215 int
ip6_setpktopts(struct mbuf * control,struct ip6_pktopts * opt,struct ip6_pktopts * stickyopt,int priv,int uproto)2216 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2217     struct ip6_pktopts *stickyopt, int priv, int uproto)
2218 {
2219 	u_int clen;
2220 	struct cmsghdr *cm = 0;
2221 	caddr_t cmsgs;
2222 	int error;
2223 
2224 	if (control == NULL || opt == NULL)
2225 		return (EINVAL);
2226 
2227 	ip6_initpktopts(opt);
2228 	if (stickyopt) {
2229 		int error;
2230 
2231 		/*
2232 		 * If stickyopt is provided, make a local copy of the options
2233 		 * for this particular packet, then override them by ancillary
2234 		 * objects.
2235 		 * XXX: copypktopts() does not copy the cached route to a next
2236 		 * hop (if any).  This is not very good in terms of efficiency,
2237 		 * but we can allow this since this option should be rarely
2238 		 * used.
2239 		 */
2240 		if ((error = copypktopts(opt, stickyopt)) != 0)
2241 			return (error);
2242 	}
2243 
2244 	/*
2245 	 * XXX: Currently, we assume all the optional information is stored
2246 	 * in a single mbuf.
2247 	 */
2248 	if (control->m_next)
2249 		return (EINVAL);
2250 
2251 	clen = control->m_len;
2252 	cmsgs = mtod(control, caddr_t);
2253 	do {
2254 		if (clen < CMSG_LEN(0))
2255 			return (EINVAL);
2256 		cm = (struct cmsghdr *)cmsgs;
2257 		if (cm->cmsg_len < CMSG_LEN(0) || cm->cmsg_len > clen ||
2258 		    CMSG_ALIGN(cm->cmsg_len) > clen)
2259 			return (EINVAL);
2260 		if (cm->cmsg_level == IPPROTO_IPV6) {
2261 			error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2262 			    cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, uproto);
2263 			if (error)
2264 				return (error);
2265 		}
2266 
2267 		clen -= CMSG_ALIGN(cm->cmsg_len);
2268 		cmsgs += CMSG_ALIGN(cm->cmsg_len);
2269 	} while (clen);
2270 
2271 	return (0);
2272 }
2273 
2274 /*
2275  * Set a particular packet option, as a sticky option or an ancillary data
2276  * item.  "len" can be 0 only when it's a sticky option.
2277  */
2278 int
ip6_setpktopt(int optname,u_char * buf,int len,struct ip6_pktopts * opt,int priv,int sticky,int uproto)2279 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2280     int priv, int sticky, int uproto)
2281 {
2282 	int minmtupolicy;
2283 
2284 	switch (optname) {
2285 	case IPV6_PKTINFO:
2286 	{
2287 		struct ifnet *ifp = NULL;
2288 		struct in6_pktinfo *pktinfo;
2289 
2290 		if (len != sizeof(struct in6_pktinfo))
2291 			return (EINVAL);
2292 
2293 		pktinfo = (struct in6_pktinfo *)buf;
2294 
2295 		/*
2296 		 * An application can clear any sticky IPV6_PKTINFO option by
2297 		 * doing a "regular" setsockopt with ipi6_addr being
2298 		 * in6addr_any and ipi6_ifindex being zero.
2299 		 * [RFC 3542, Section 6]
2300 		 */
2301 		if (opt->ip6po_pktinfo &&
2302 		    pktinfo->ipi6_ifindex == 0 &&
2303 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2304 			ip6_clearpktopts(opt, optname);
2305 			break;
2306 		}
2307 
2308 		if (uproto == IPPROTO_TCP &&
2309 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2310 			return (EINVAL);
2311 		}
2312 
2313 		if (pktinfo->ipi6_ifindex) {
2314 			ifp = if_get(pktinfo->ipi6_ifindex);
2315 			if (ifp == NULL)
2316 				return (ENXIO);
2317 			if_put(ifp);
2318 		}
2319 
2320 		/*
2321 		 * We store the address anyway, and let in6_selectsrc()
2322 		 * validate the specified address.  This is because ipi6_addr
2323 		 * may not have enough information about its scope zone, and
2324 		 * we may need additional information (such as outgoing
2325 		 * interface or the scope zone of a destination address) to
2326 		 * disambiguate the scope.
2327 		 * XXX: the delay of the validation may confuse the
2328 		 * application when it is used as a sticky option.
2329 		 */
2330 		if (opt->ip6po_pktinfo == NULL) {
2331 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2332 			    M_IP6OPT, M_NOWAIT);
2333 			if (opt->ip6po_pktinfo == NULL)
2334 				return (ENOBUFS);
2335 		}
2336 		bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2337 		break;
2338 	}
2339 
2340 	case IPV6_HOPLIMIT:
2341 	{
2342 		int *hlimp;
2343 
2344 		/*
2345 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2346 		 * to simplify the ordering among hoplimit options.
2347 		 */
2348 		if (sticky)
2349 			return (ENOPROTOOPT);
2350 
2351 		if (len != sizeof(int))
2352 			return (EINVAL);
2353 		hlimp = (int *)buf;
2354 		if (*hlimp < -1 || *hlimp > 255)
2355 			return (EINVAL);
2356 
2357 		opt->ip6po_hlim = *hlimp;
2358 		break;
2359 	}
2360 
2361 	case IPV6_TCLASS:
2362 	{
2363 		int tclass;
2364 
2365 		if (len != sizeof(int))
2366 			return (EINVAL);
2367 		tclass = *(int *)buf;
2368 		if (tclass < -1 || tclass > 255)
2369 			return (EINVAL);
2370 
2371 		opt->ip6po_tclass = tclass;
2372 		break;
2373 	}
2374 	case IPV6_HOPOPTS:
2375 	{
2376 		struct ip6_hbh *hbh;
2377 		int hbhlen;
2378 
2379 		/*
2380 		 * XXX: We don't allow a non-privileged user to set ANY HbH
2381 		 * options, since per-option restriction has too much
2382 		 * overhead.
2383 		 */
2384 		if (!priv)
2385 			return (EPERM);
2386 
2387 		if (len == 0) {
2388 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
2389 			break;	/* just remove the option */
2390 		}
2391 
2392 		/* message length validation */
2393 		if (len < sizeof(struct ip6_hbh))
2394 			return (EINVAL);
2395 		hbh = (struct ip6_hbh *)buf;
2396 		hbhlen = (hbh->ip6h_len + 1) << 3;
2397 		if (len != hbhlen)
2398 			return (EINVAL);
2399 
2400 		/* turn off the previous option, then set the new option. */
2401 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
2402 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
2403 		if (opt->ip6po_hbh == NULL)
2404 			return (ENOBUFS);
2405 		memcpy(opt->ip6po_hbh, hbh, hbhlen);
2406 
2407 		break;
2408 	}
2409 
2410 	case IPV6_DSTOPTS:
2411 	case IPV6_RTHDRDSTOPTS:
2412 	{
2413 		struct ip6_dest *dest, **newdest = NULL;
2414 		int destlen;
2415 
2416 		if (!priv)	/* XXX: see the comment for IPV6_HOPOPTS */
2417 			return (EPERM);
2418 
2419 		if (len == 0) {
2420 			ip6_clearpktopts(opt, optname);
2421 			break;	/* just remove the option */
2422 		}
2423 
2424 		/* message length validation */
2425 		if (len < sizeof(struct ip6_dest))
2426 			return (EINVAL);
2427 		dest = (struct ip6_dest *)buf;
2428 		destlen = (dest->ip6d_len + 1) << 3;
2429 		if (len != destlen)
2430 			return (EINVAL);
2431 		/*
2432 		 * Determine the position that the destination options header
2433 		 * should be inserted; before or after the routing header.
2434 		 */
2435 		switch (optname) {
2436 		case IPV6_RTHDRDSTOPTS:
2437 			newdest = &opt->ip6po_dest1;
2438 			break;
2439 		case IPV6_DSTOPTS:
2440 			newdest = &opt->ip6po_dest2;
2441 			break;
2442 		}
2443 
2444 		/* turn off the previous option, then set the new option. */
2445 		ip6_clearpktopts(opt, optname);
2446 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
2447 		if (*newdest == NULL)
2448 			return (ENOBUFS);
2449 		memcpy(*newdest, dest, destlen);
2450 
2451 		break;
2452 	}
2453 
2454 	case IPV6_RTHDR:
2455 	{
2456 		struct ip6_rthdr *rth;
2457 		int rthlen;
2458 
2459 		if (len == 0) {
2460 			ip6_clearpktopts(opt, IPV6_RTHDR);
2461 			break;	/* just remove the option */
2462 		}
2463 
2464 		/* message length validation */
2465 		if (len < sizeof(struct ip6_rthdr))
2466 			return (EINVAL);
2467 		rth = (struct ip6_rthdr *)buf;
2468 		rthlen = (rth->ip6r_len + 1) << 3;
2469 		if (len != rthlen)
2470 			return (EINVAL);
2471 
2472 		switch (rth->ip6r_type) {
2473 		case IPV6_RTHDR_TYPE_0:
2474 			if (rth->ip6r_len == 0)	/* must contain one addr */
2475 				return (EINVAL);
2476 			if (rth->ip6r_len % 2) /* length must be even */
2477 				return (EINVAL);
2478 			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
2479 				return (EINVAL);
2480 			break;
2481 		default:
2482 			return (EINVAL);	/* not supported */
2483 		}
2484 		/* turn off the previous option */
2485 		ip6_clearpktopts(opt, IPV6_RTHDR);
2486 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
2487 		if (opt->ip6po_rthdr == NULL)
2488 			return (ENOBUFS);
2489 		memcpy(opt->ip6po_rthdr, rth, rthlen);
2490 		break;
2491 	}
2492 
2493 	case IPV6_USE_MIN_MTU:
2494 		if (len != sizeof(int))
2495 			return (EINVAL);
2496 		minmtupolicy = *(int *)buf;
2497 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
2498 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
2499 		    minmtupolicy != IP6PO_MINMTU_ALL) {
2500 			return (EINVAL);
2501 		}
2502 		opt->ip6po_minmtu = minmtupolicy;
2503 		break;
2504 
2505 	case IPV6_DONTFRAG:
2506 		if (len != sizeof(int))
2507 			return (EINVAL);
2508 
2509 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
2510 			/*
2511 			 * we ignore this option for TCP sockets.
2512 			 * (RFC3542 leaves this case unspecified.)
2513 			 */
2514 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
2515 		} else
2516 			opt->ip6po_flags |= IP6PO_DONTFRAG;
2517 		break;
2518 
2519 	default:
2520 		return (ENOPROTOOPT);
2521 	} /* end of switch */
2522 
2523 	return (0);
2524 }
2525 
2526 /*
2527  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2528  * packet to the input queue of a specified interface.
2529  */
2530 void
ip6_mloopback(struct ifnet * ifp,struct mbuf * m,struct sockaddr_in6 * dst)2531 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
2532 {
2533 	struct mbuf *copym;
2534 	struct ip6_hdr *ip6;
2535 
2536 	/*
2537 	 * Duplicate the packet.
2538 	 */
2539 	copym = m_copym(m, 0, M_COPYALL, M_NOWAIT);
2540 	if (copym == NULL)
2541 		return;
2542 
2543 	/*
2544 	 * Make sure to deep-copy IPv6 header portion in case the data
2545 	 * is in an mbuf cluster, so that we can safely override the IPv6
2546 	 * header portion later.
2547 	 */
2548 	if ((copym->m_flags & M_EXT) != 0 ||
2549 	    copym->m_len < sizeof(struct ip6_hdr)) {
2550 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
2551 		if (copym == NULL)
2552 			return;
2553 	}
2554 
2555 #ifdef DIAGNOSTIC
2556 	if (copym->m_len < sizeof(*ip6)) {
2557 		m_freem(copym);
2558 		return;
2559 	}
2560 #endif
2561 
2562 	ip6 = mtod(copym, struct ip6_hdr *);
2563 	if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src))
2564 		ip6->ip6_src.s6_addr16[1] = 0;
2565 	if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst))
2566 		ip6->ip6_dst.s6_addr16[1] = 0;
2567 
2568 	if_input_local(ifp, copym, dst->sin6_family);
2569 }
2570 
2571 /*
2572  * Chop IPv6 header off from the payload.
2573  */
2574 int
ip6_splithdr(struct mbuf * m,struct ip6_exthdrs * exthdrs)2575 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
2576 {
2577 	struct mbuf *mh;
2578 	struct ip6_hdr *ip6;
2579 
2580 	ip6 = mtod(m, struct ip6_hdr *);
2581 	if (m->m_len > sizeof(*ip6)) {
2582 		MGET(mh, M_DONTWAIT, MT_HEADER);
2583 		if (mh == NULL) {
2584 			m_freem(m);
2585 			return ENOBUFS;
2586 		}
2587 		M_MOVE_PKTHDR(mh, m);
2588 		m_align(mh, sizeof(*ip6));
2589 		m->m_len -= sizeof(*ip6);
2590 		m->m_data += sizeof(*ip6);
2591 		mh->m_next = m;
2592 		m = mh;
2593 		m->m_len = sizeof(*ip6);
2594 		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2595 	}
2596 	exthdrs->ip6e_ip6 = m;
2597 	return 0;
2598 }
2599 
2600 u_int32_t
ip6_randomid(void)2601 ip6_randomid(void)
2602 {
2603 	return idgen32(&ip6_id_ctx);
2604 }
2605 
2606 void
ip6_randomid_init(void)2607 ip6_randomid_init(void)
2608 {
2609 	idgen32_init(&ip6_id_ctx);
2610 }
2611 
2612 /*
2613  *	Compute significant parts of the IPv6 checksum pseudo-header
2614  *	for use in a delayed TCP/UDP checksum calculation.
2615  */
2616 static __inline u_int16_t __attribute__((__unused__))
in6_cksum_phdr(const struct in6_addr * src,const struct in6_addr * dst,u_int32_t len,u_int32_t nxt)2617 in6_cksum_phdr(const struct in6_addr *src, const struct in6_addr *dst,
2618     u_int32_t len, u_int32_t nxt)
2619 {
2620 	u_int32_t sum = 0;
2621 	const u_int16_t *w;
2622 
2623 	w = (const u_int16_t *) src;
2624 	sum += w[0];
2625 	if (!IN6_IS_SCOPE_EMBED(src))
2626 		sum += w[1];
2627 	sum += w[2]; sum += w[3]; sum += w[4]; sum += w[5];
2628 	sum += w[6]; sum += w[7];
2629 
2630 	w = (const u_int16_t *) dst;
2631 	sum += w[0];
2632 	if (!IN6_IS_SCOPE_EMBED(dst))
2633 		sum += w[1];
2634 	sum += w[2]; sum += w[3]; sum += w[4]; sum += w[5];
2635 	sum += w[6]; sum += w[7];
2636 
2637 	sum += (u_int16_t)(len >> 16) + (u_int16_t)(len /*& 0xffff*/);
2638 
2639 	sum += (u_int16_t)(nxt >> 16) + (u_int16_t)(nxt /*& 0xffff*/);
2640 
2641 	sum = (u_int16_t)(sum >> 16) + (u_int16_t)(sum /*& 0xffff*/);
2642 
2643 	if (sum > 0xffff)
2644 		sum -= 0xffff;
2645 
2646 	return (sum);
2647 }
2648 
2649 /*
2650  * Process a delayed payload checksum calculation.
2651  */
2652 void
in6_delayed_cksum(struct mbuf * m,u_int8_t nxt)2653 in6_delayed_cksum(struct mbuf *m, u_int8_t nxt)
2654 {
2655 	int nxtp, offset;
2656 	u_int16_t csum;
2657 
2658 	offset = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxtp);
2659 	if (offset <= 0 || nxtp != nxt)
2660 		/* If the desired next protocol isn't found, punt. */
2661 		return;
2662 	csum = (u_int16_t)(in6_cksum(m, 0, offset, m->m_pkthdr.len - offset));
2663 
2664 	switch (nxt) {
2665 	case IPPROTO_TCP:
2666 		offset += offsetof(struct tcphdr, th_sum);
2667 		break;
2668 
2669 	case IPPROTO_UDP:
2670 		offset += offsetof(struct udphdr, uh_sum);
2671 		if (csum == 0)
2672 			csum = 0xffff;
2673 		break;
2674 
2675 	case IPPROTO_ICMPV6:
2676 		offset += offsetof(struct icmp6_hdr, icmp6_cksum);
2677 		break;
2678 	}
2679 
2680 	if ((offset + sizeof(u_int16_t)) > m->m_len)
2681 		m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT);
2682 	else
2683 		*(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
2684 }
2685 
2686 void
in6_proto_cksum_out(struct mbuf * m,struct ifnet * ifp)2687 in6_proto_cksum_out(struct mbuf *m, struct ifnet *ifp)
2688 {
2689 	struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
2690 
2691 	/* some hw and in6_delayed_cksum need the pseudo header cksum */
2692 	if (m->m_pkthdr.csum_flags &
2693 	    (M_TCP_CSUM_OUT|M_UDP_CSUM_OUT|M_ICMP_CSUM_OUT)) {
2694 		int nxt, offset;
2695 		u_int16_t csum;
2696 
2697 		offset = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxt);
2698 		if (ISSET(m->m_pkthdr.csum_flags, M_TCP_TSO) &&
2699 		    in_ifcap_cksum(m, ifp, IFCAP_TSOv6)) {
2700 			csum = in6_cksum_phdr(&ip6->ip6_src, &ip6->ip6_dst,
2701 			    htonl(0), htonl(nxt));
2702 		} else {
2703 			csum = in6_cksum_phdr(&ip6->ip6_src, &ip6->ip6_dst,
2704 			    htonl(m->m_pkthdr.len - offset), htonl(nxt));
2705 		}
2706 		if (nxt == IPPROTO_TCP)
2707 			offset += offsetof(struct tcphdr, th_sum);
2708 		else if (nxt == IPPROTO_UDP)
2709 			offset += offsetof(struct udphdr, uh_sum);
2710 		else if (nxt == IPPROTO_ICMPV6)
2711 			offset += offsetof(struct icmp6_hdr, icmp6_cksum);
2712 		if ((offset + sizeof(u_int16_t)) > m->m_len)
2713 			m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT);
2714 		else
2715 			*(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
2716 	}
2717 
2718 	if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) {
2719 		if (!ifp || !(ifp->if_capabilities & IFCAP_CSUM_TCPv6) ||
2720 		    ip6->ip6_nxt != IPPROTO_TCP ||
2721 		    ifp->if_bridgeidx != 0) {
2722 			tcpstat_inc(tcps_outswcsum);
2723 			in6_delayed_cksum(m, IPPROTO_TCP);
2724 			m->m_pkthdr.csum_flags &= ~M_TCP_CSUM_OUT; /* Clear */
2725 		}
2726 	} else if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) {
2727 		if (!ifp || !(ifp->if_capabilities & IFCAP_CSUM_UDPv6) ||
2728 		    ip6->ip6_nxt != IPPROTO_UDP ||
2729 		    ifp->if_bridgeidx != 0) {
2730 			udpstat_inc(udps_outswcsum);
2731 			in6_delayed_cksum(m, IPPROTO_UDP);
2732 			m->m_pkthdr.csum_flags &= ~M_UDP_CSUM_OUT; /* Clear */
2733 		}
2734 	} else if (m->m_pkthdr.csum_flags & M_ICMP_CSUM_OUT) {
2735 		in6_delayed_cksum(m, IPPROTO_ICMPV6);
2736 		m->m_pkthdr.csum_flags &= ~M_ICMP_CSUM_OUT; /* Clear */
2737 	}
2738 }
2739 
2740 #ifdef IPSEC
2741 int
ip6_output_ipsec_lookup(struct mbuf * m,const struct ipsec_level * seclevel,struct tdb ** tdbout)2742 ip6_output_ipsec_lookup(struct mbuf *m, const struct ipsec_level *seclevel,
2743     struct tdb **tdbout)
2744 {
2745 	struct tdb *tdb;
2746 	struct m_tag *mtag;
2747 	struct tdb_ident *tdbi;
2748 	int error;
2749 
2750 	/*
2751 	 * Check if there was an outgoing SA bound to the flow
2752 	 * from a transport protocol.
2753 	 */
2754 
2755 	/* Do we have any pending SAs to apply ? */
2756 	error = ipsp_spd_lookup(m, AF_INET6, sizeof(struct ip6_hdr),
2757 	    IPSP_DIRECTION_OUT, NULL, seclevel, &tdb, NULL);
2758 	if (error || tdb == NULL) {
2759 		*tdbout = NULL;
2760 		return error;
2761 	}
2762 	/* Loop detection */
2763 	for (mtag = m_tag_first(m); mtag != NULL; mtag = m_tag_next(m, mtag)) {
2764 		if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE)
2765 			continue;
2766 		tdbi = (struct tdb_ident *)(mtag + 1);
2767 		if (tdbi->spi == tdb->tdb_spi &&
2768 		    tdbi->proto == tdb->tdb_sproto &&
2769 		    tdbi->rdomain == tdb->tdb_rdomain &&
2770 		    !memcmp(&tdbi->dst, &tdb->tdb_dst,
2771 		    sizeof(union sockaddr_union))) {
2772 			/* no IPsec needed */
2773 			tdb_unref(tdb);
2774 			*tdbout = NULL;
2775 			return 0;
2776 		}
2777 	}
2778 	*tdbout = tdb;
2779 	return 0;
2780 }
2781 
2782 int
ip6_output_ipsec_pmtu_update(struct tdb * tdb,struct route * ro,struct in6_addr * dst,int ifidx,int rtableid,int transportmode)2783 ip6_output_ipsec_pmtu_update(struct tdb *tdb, struct route *ro,
2784     struct in6_addr *dst, int ifidx, int rtableid, int transportmode)
2785 {
2786 	struct rtentry *rt = NULL;
2787 	int rt_mtucloned = 0;
2788 
2789 	/* Find a host route to store the mtu in */
2790 	if (ro != NULL)
2791 		rt = ro->ro_rt;
2792 	/* but don't add a PMTU route for transport mode SAs */
2793 	if (transportmode)
2794 		rt = NULL;
2795 	else if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0) {
2796 		struct sockaddr_in6 sin6;
2797 		int error;
2798 
2799 		memset(&sin6, 0, sizeof(sin6));
2800 		sin6.sin6_family = AF_INET6;
2801 		sin6.sin6_len = sizeof(sin6);
2802 		sin6.sin6_addr = *dst;
2803 		sin6.sin6_scope_id = in6_addr2scopeid(ifidx, dst);
2804 		error = in6_embedscope(dst, &sin6, NULL, NULL);
2805 		if (error) {
2806 			/* should be impossible */
2807 			return error;
2808 		}
2809 		rt = icmp6_mtudisc_clone(&sin6, rtableid, 1);
2810 		rt_mtucloned = 1;
2811 	}
2812 	DPRINTF("spi %08x mtu %d rt %p cloned %d",
2813 	    ntohl(tdb->tdb_spi), tdb->tdb_mtu, rt, rt_mtucloned);
2814 	if (rt != NULL) {
2815 		rt->rt_mtu = tdb->tdb_mtu;
2816 		if (ro != NULL && ro->ro_rt != NULL) {
2817 			rtfree(ro->ro_rt);
2818 			ro->ro_rt = rtalloc(&ro->ro_dstsa, RT_RESOLVE,
2819 			    rtableid);
2820 		}
2821 		if (rt_mtucloned)
2822 			rtfree(rt);
2823 	}
2824 	return 0;
2825 }
2826 
2827 int
ip6_output_ipsec_send(struct tdb * tdb,struct mbuf * m,struct route * ro,int tunalready,int fwd)2828 ip6_output_ipsec_send(struct tdb *tdb, struct mbuf *m, struct route *ro,
2829     int tunalready, int fwd)
2830 {
2831 	struct mbuf_list ml;
2832 	struct ifnet *encif = NULL;
2833 	struct ip6_hdr *ip6;
2834 	struct in6_addr dst;
2835 	u_int len;
2836 	int error, ifidx, rtableid, tso = 0;
2837 
2838 #if NPF > 0
2839 	/*
2840 	 * Packet filter
2841 	 */
2842 	if ((encif = enc_getif(tdb->tdb_rdomain, tdb->tdb_tap)) == NULL ||
2843 	    pf_test(AF_INET6, fwd ? PF_FWD : PF_OUT, encif, &m) != PF_PASS) {
2844 		m_freem(m);
2845 		return EACCES;
2846 	}
2847 	if (m == NULL)
2848 		return 0;
2849 	/*
2850 	 * PF_TAG_REROUTE handling or not...
2851 	 * Packet is entering IPsec so the routing is
2852 	 * already overruled by the IPsec policy.
2853 	 * Until now the change was not reconsidered.
2854 	 * What's the behaviour?
2855 	 */
2856 #endif
2857 
2858 	/* Check if we can chop the TCP packet */
2859 	ip6 = mtod(m, struct ip6_hdr *);
2860 	if (ISSET(m->m_pkthdr.csum_flags, M_TCP_TSO) &&
2861 	    m->m_pkthdr.ph_mss <= tdb->tdb_mtu) {
2862 		tso = 1;
2863 		len = m->m_pkthdr.ph_mss;
2864 	} else
2865 		len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2866 
2867 	/* Check if we are allowed to fragment */
2868 	dst = ip6->ip6_dst;
2869 	ifidx = m->m_pkthdr.ph_ifidx;
2870 	rtableid = m->m_pkthdr.ph_rtableid;
2871 	if (ip_mtudisc && tdb->tdb_mtu &&
2872 	    len > tdb->tdb_mtu && tdb->tdb_mtutimeout > gettime()) {
2873 		int transportmode;
2874 
2875 		transportmode = (tdb->tdb_dst.sa.sa_family == AF_INET6) &&
2876 		    (IN6_ARE_ADDR_EQUAL(&tdb->tdb_dst.sin6.sin6_addr, &dst));
2877 		error = ip6_output_ipsec_pmtu_update(tdb, ro, &dst, ifidx,
2878 		    rtableid, transportmode);
2879 		if (error) {
2880 			ipsecstat_inc(ipsec_odrops);
2881 			tdbstat_inc(tdb, tdb_odrops);
2882 			m_freem(m);
2883 			return error;
2884 		}
2885 		ipsec_adjust_mtu(m, tdb->tdb_mtu);
2886 		m_freem(m);
2887 		return EMSGSIZE;
2888 	}
2889 	/* propagate don't fragment for v6-over-v6 */
2890 	if (ip_mtudisc)
2891 		SET(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT);
2892 
2893 	/*
2894 	 * Clear these -- they'll be set in the recursive invocation
2895 	 * as needed.
2896 	 */
2897 	m->m_flags &= ~(M_BCAST | M_MCAST);
2898 
2899 	if (tso) {
2900 		error = tcp_chopper(m, &ml, encif, len);
2901 		if (error)
2902 			goto done;
2903 	} else {
2904 		CLR(m->m_pkthdr.csum_flags, M_TCP_TSO);
2905 		in6_proto_cksum_out(m, encif);
2906 		ml_init(&ml);
2907 		ml_enqueue(&ml, m);
2908 	}
2909 
2910 	KERNEL_LOCK();
2911 	while ((m = ml_dequeue(&ml)) != NULL) {
2912 		/* Callee frees mbuf */
2913 		error = ipsp_process_packet(m, tdb, AF_INET6, tunalready);
2914 		if (error)
2915 			break;
2916 	}
2917 	KERNEL_UNLOCK();
2918  done:
2919 	if (error) {
2920 		ml_purge(&ml);
2921 		ipsecstat_inc(ipsec_odrops);
2922 		tdbstat_inc(tdb, tdb_odrops);
2923 	}
2924 	if (!error && tso)
2925 		tcpstat_inc(tcps_outswtso);
2926 	if (ip_mtudisc && error == EMSGSIZE)
2927 		ip6_output_ipsec_pmtu_update(tdb, ro, &dst, ifidx, rtableid, 0);
2928 	return error;
2929 }
2930 #endif /* IPSEC */
2931