xref: /netbsd/sys/kern/subr_ipi.c (revision e9b81bf0)
1 /*	$NetBSD: subr_ipi.c,v 1.11 2023/02/24 11:02:27 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2014 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Mindaugas Rasiukevicius.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Inter-processor interrupt (IPI) interface: asynchronous IPIs to
34  * invoke functions with a constant argument and synchronous IPIs
35  * with the cross-call support.
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: subr_ipi.c,v 1.11 2023/02/24 11:02:27 riastradh Exp $");
40 
41 #include <sys/param.h>
42 #include <sys/types.h>
43 
44 #include <sys/atomic.h>
45 #include <sys/evcnt.h>
46 #include <sys/cpu.h>
47 #include <sys/ipi.h>
48 #include <sys/intr.h>
49 #include <sys/kcpuset.h>
50 #include <sys/kmem.h>
51 #include <sys/lock.h>
52 #include <sys/mutex.h>
53 
54 /*
55  * An array of the IPI handlers used for asynchronous invocation.
56  * The lock protects the slot allocation.
57  */
58 
59 typedef struct {
60 	ipi_func_t	func;
61 	void *		arg;
62 } ipi_intr_t;
63 
64 static kmutex_t		ipi_mngmt_lock;
65 static ipi_intr_t	ipi_intrs[IPI_MAXREG]	__cacheline_aligned;
66 
67 /*
68  * Per-CPU mailbox for IPI messages: it is a single cache line storing
69  * up to IPI_MSG_MAX messages.  This interface is built on top of the
70  * synchronous IPIs.
71  */
72 
73 #define	IPI_MSG_SLOTS	(CACHE_LINE_SIZE / sizeof(ipi_msg_t *))
74 #define	IPI_MSG_MAX	IPI_MSG_SLOTS
75 
76 typedef struct {
77 	ipi_msg_t *	msg[IPI_MSG_SLOTS];
78 } ipi_mbox_t;
79 
80 
81 /* Mailboxes for the synchronous IPIs. */
82 static ipi_mbox_t *	ipi_mboxes	__read_mostly;
83 static struct evcnt	ipi_mboxfull_ev	__cacheline_aligned;
84 static void		ipi_msg_cpu_handler(void *);
85 
86 /* Handler for the synchronous IPIs - it must be zero. */
87 #define	IPI_SYNCH_ID	0
88 
89 #ifndef MULTIPROCESSOR
90 #define	cpu_ipi(ci)	KASSERT(ci == NULL)
91 #endif
92 
93 void
ipi_sysinit(void)94 ipi_sysinit(void)
95 {
96 
97 	mutex_init(&ipi_mngmt_lock, MUTEX_DEFAULT, IPL_NONE);
98 	memset(ipi_intrs, 0, sizeof(ipi_intrs));
99 
100 	/*
101 	 * Register the handler for synchronous IPIs.  This mechanism
102 	 * is built on top of the asynchronous interface.  Slot zero is
103 	 * reserved permanently; it is also handy to use zero as a failure
104 	 * for other registers (as it is potentially less error-prone).
105 	 */
106 	ipi_intrs[IPI_SYNCH_ID].func = ipi_msg_cpu_handler;
107 
108 	evcnt_attach_dynamic(&ipi_mboxfull_ev, EVCNT_TYPE_MISC, NULL,
109 	   "ipi", "full");
110 }
111 
112 void
ipi_percpu_init(void)113 ipi_percpu_init(void)
114 {
115 	const size_t len = ncpu * sizeof(ipi_mbox_t);
116 
117 	/* Initialise the per-CPU bit fields. */
118 	for (u_int i = 0; i < ncpu; i++) {
119 		struct cpu_info *ci = cpu_lookup(i);
120 		memset(&ci->ci_ipipend, 0, sizeof(ci->ci_ipipend));
121 	}
122 
123 	/* Allocate per-CPU IPI mailboxes. */
124 	ipi_mboxes = kmem_zalloc(len, KM_SLEEP);
125 	KASSERT(ipi_mboxes != NULL);
126 }
127 
128 /*
129  * ipi_register: register an asynchronous IPI handler.
130  *
131  * => Returns IPI ID which is greater than zero; on failure - zero.
132  */
133 u_int
ipi_register(ipi_func_t func,void * arg)134 ipi_register(ipi_func_t func, void *arg)
135 {
136 	mutex_enter(&ipi_mngmt_lock);
137 	for (u_int i = 0; i < IPI_MAXREG; i++) {
138 		if (ipi_intrs[i].func == NULL) {
139 			/* Register the function. */
140 			ipi_intrs[i].func = func;
141 			ipi_intrs[i].arg = arg;
142 			mutex_exit(&ipi_mngmt_lock);
143 
144 			KASSERT(i != IPI_SYNCH_ID);
145 			return i;
146 		}
147 	}
148 	mutex_exit(&ipi_mngmt_lock);
149 	printf("WARNING: ipi_register: table full, increase IPI_MAXREG\n");
150 	return 0;
151 }
152 
153 /*
154  * ipi_unregister: release the IPI handler given the ID.
155  */
156 void
ipi_unregister(u_int ipi_id)157 ipi_unregister(u_int ipi_id)
158 {
159 	ipi_msg_t ipimsg = { .func = __FPTRCAST(ipi_func_t, nullop) };
160 
161 	KASSERT(ipi_id != IPI_SYNCH_ID);
162 	KASSERT(ipi_id < IPI_MAXREG);
163 
164 	/* Release the slot. */
165 	mutex_enter(&ipi_mngmt_lock);
166 	KASSERT(ipi_intrs[ipi_id].func != NULL);
167 	ipi_intrs[ipi_id].func = NULL;
168 
169 	/* Ensure that there are no IPIs in flight. */
170 	kpreempt_disable();
171 	ipi_broadcast(&ipimsg, false);
172 	ipi_wait(&ipimsg);
173 	kpreempt_enable();
174 	mutex_exit(&ipi_mngmt_lock);
175 }
176 
177 /*
178  * ipi_mark_pending: internal routine to mark an IPI pending on the
179  * specified CPU (which might be curcpu()).
180  */
181 static bool
ipi_mark_pending(u_int ipi_id,struct cpu_info * ci)182 ipi_mark_pending(u_int ipi_id, struct cpu_info *ci)
183 {
184 	const u_int i = ipi_id >> IPI_BITW_SHIFT;
185 	const uint32_t bitm = 1U << (ipi_id & IPI_BITW_MASK);
186 
187 	KASSERT(ipi_id < IPI_MAXREG);
188 	KASSERT(kpreempt_disabled());
189 
190 	/* Mark as pending and return true if not previously marked. */
191 	if ((atomic_load_acquire(&ci->ci_ipipend[i]) & bitm) == 0) {
192 		membar_release();
193 		atomic_or_32(&ci->ci_ipipend[i], bitm);
194 		return true;
195 	}
196 	return false;
197 }
198 
199 /*
200  * ipi_trigger: asynchronously send an IPI to the specified CPU.
201  */
202 void
ipi_trigger(u_int ipi_id,struct cpu_info * ci)203 ipi_trigger(u_int ipi_id, struct cpu_info *ci)
204 {
205 
206 	KASSERT(curcpu() != ci);
207 	if (ipi_mark_pending(ipi_id, ci)) {
208 		cpu_ipi(ci);
209 	}
210 }
211 
212 /*
213  * ipi_trigger_multi_internal: the guts of ipi_trigger_multi() and
214  * ipi_trigger_broadcast().
215  */
216 static void
ipi_trigger_multi_internal(u_int ipi_id,const kcpuset_t * target,bool skip_self)217 ipi_trigger_multi_internal(u_int ipi_id, const kcpuset_t *target,
218     bool skip_self)
219 {
220 	const cpuid_t selfid = cpu_index(curcpu());
221 	CPU_INFO_ITERATOR cii;
222 	struct cpu_info *ci;
223 
224 	KASSERT(kpreempt_disabled());
225 	KASSERT(target != NULL);
226 
227 	for (CPU_INFO_FOREACH(cii, ci)) {
228 		const cpuid_t cpuid = cpu_index(ci);
229 
230 		if (!kcpuset_isset(target, cpuid) || cpuid == selfid) {
231 			continue;
232 		}
233 		ipi_trigger(ipi_id, ci);
234 	}
235 	if (!skip_self && kcpuset_isset(target, selfid)) {
236 		ipi_mark_pending(ipi_id, curcpu());
237 		int s = splhigh();
238 		ipi_cpu_handler();
239 		splx(s);
240 	}
241 }
242 
243 /*
244  * ipi_trigger_multi: same as ipi_trigger() but sends to the multiple
245  * CPUs given the target CPU set.
246  */
247 void
ipi_trigger_multi(u_int ipi_id,const kcpuset_t * target)248 ipi_trigger_multi(u_int ipi_id, const kcpuset_t *target)
249 {
250 	ipi_trigger_multi_internal(ipi_id, target, false);
251 }
252 
253 /*
254  * ipi_trigger_broadcast: same as ipi_trigger_multi() to kcpuset_attached,
255  * optionally skipping the sending CPU.
256  */
257 void
ipi_trigger_broadcast(u_int ipi_id,bool skip_self)258 ipi_trigger_broadcast(u_int ipi_id, bool skip_self)
259 {
260 	ipi_trigger_multi_internal(ipi_id, kcpuset_attached, skip_self);
261 }
262 
263 /*
264  * put_msg: insert message into the mailbox.
265  *
266  * Caller is responsible for issuing membar_release first.
267  */
268 static inline void
put_msg(ipi_mbox_t * mbox,ipi_msg_t * msg)269 put_msg(ipi_mbox_t *mbox, ipi_msg_t *msg)
270 {
271 	int count = SPINLOCK_BACKOFF_MIN;
272 again:
273 	for (u_int i = 0; i < IPI_MSG_MAX; i++) {
274 		if (atomic_cas_ptr(&mbox->msg[i], NULL, msg) == NULL) {
275 			return;
276 		}
277 	}
278 
279 	/* All slots are full: we have to spin-wait. */
280 	ipi_mboxfull_ev.ev_count++;
281 	SPINLOCK_BACKOFF(count);
282 	goto again;
283 }
284 
285 /*
286  * ipi_cpu_handler: the IPI handler.
287  */
288 void
ipi_cpu_handler(void)289 ipi_cpu_handler(void)
290 {
291 	struct cpu_info * const ci = curcpu();
292 
293 	/*
294 	 * Handle asynchronous IPIs: inspect per-CPU bit field, extract
295 	 * IPI ID numbers and execute functions in those slots.
296 	 */
297 	for (u_int i = 0; i < IPI_BITWORDS; i++) {
298 		uint32_t pending, bit;
299 
300 		if (atomic_load_relaxed(&ci->ci_ipipend[i]) == 0) {
301 			continue;
302 		}
303 		pending = atomic_swap_32(&ci->ci_ipipend[i], 0);
304 		membar_acquire();
305 		while ((bit = ffs(pending)) != 0) {
306 			const u_int ipi_id = (i << IPI_BITW_SHIFT) | --bit;
307 			ipi_intr_t *ipi_hdl = &ipi_intrs[ipi_id];
308 
309 			pending &= ~(1U << bit);
310 			KASSERT(ipi_hdl->func != NULL);
311 			ipi_hdl->func(ipi_hdl->arg);
312 		}
313 	}
314 }
315 
316 /*
317  * ipi_msg_cpu_handler: handle synchronous IPIs - iterate mailbox,
318  * execute the passed functions and acknowledge the messages.
319  */
320 static void
ipi_msg_cpu_handler(void * arg __unused)321 ipi_msg_cpu_handler(void *arg __unused)
322 {
323 	const struct cpu_info * const ci = curcpu();
324 	ipi_mbox_t *mbox = &ipi_mboxes[cpu_index(ci)];
325 
326 	for (u_int i = 0; i < IPI_MSG_MAX; i++) {
327 		ipi_msg_t *msg;
328 
329 		/* Get the message. */
330 		if ((msg = atomic_load_acquire(&mbox->msg[i])) == NULL) {
331 			continue;
332 		}
333 		atomic_store_relaxed(&mbox->msg[i], NULL);
334 
335 		/* Execute the handler. */
336 		KASSERT(msg->func);
337 		msg->func(msg->arg);
338 
339 		/* Ack the request. */
340 		membar_release();
341 		atomic_dec_uint(&msg->_pending);
342 	}
343 }
344 
345 /*
346  * ipi_unicast: send an IPI to a single CPU.
347  *
348  * => The CPU must be remote; must not be local.
349  * => The caller must ipi_wait() on the message for completion.
350  */
351 void
ipi_unicast(ipi_msg_t * msg,struct cpu_info * ci)352 ipi_unicast(ipi_msg_t *msg, struct cpu_info *ci)
353 {
354 	const cpuid_t id = cpu_index(ci);
355 
356 	KASSERT(msg->func != NULL);
357 	KASSERT(kpreempt_disabled());
358 	KASSERT(curcpu() != ci);
359 
360 	msg->_pending = 1;
361 	membar_release();
362 
363 	put_msg(&ipi_mboxes[id], msg);
364 	ipi_trigger(IPI_SYNCH_ID, ci);
365 }
366 
367 /*
368  * ipi_multicast: send an IPI to each CPU in the specified set.
369  *
370  * => The caller must ipi_wait() on the message for completion.
371  */
372 void
ipi_multicast(ipi_msg_t * msg,const kcpuset_t * target)373 ipi_multicast(ipi_msg_t *msg, const kcpuset_t *target)
374 {
375 	const struct cpu_info * const self = curcpu();
376 	CPU_INFO_ITERATOR cii;
377 	struct cpu_info *ci;
378 	u_int local;
379 
380 	KASSERT(msg->func != NULL);
381 	KASSERT(kpreempt_disabled());
382 
383 	local = !!kcpuset_isset(target, cpu_index(self));
384 	msg->_pending = kcpuset_countset(target) - local;
385 	membar_release();
386 
387 	for (CPU_INFO_FOREACH(cii, ci)) {
388 		cpuid_t id;
389 
390 		if (__predict_false(ci == self)) {
391 			continue;
392 		}
393 		id = cpu_index(ci);
394 		if (!kcpuset_isset(target, id)) {
395 			continue;
396 		}
397 		put_msg(&ipi_mboxes[id], msg);
398 		ipi_trigger(IPI_SYNCH_ID, ci);
399 	}
400 	if (local) {
401 		msg->func(msg->arg);
402 	}
403 }
404 
405 /*
406  * ipi_broadcast: send an IPI to all CPUs.
407  *
408  * => The caller must ipi_wait() on the message for completion.
409  */
410 void
ipi_broadcast(ipi_msg_t * msg,bool skip_self)411 ipi_broadcast(ipi_msg_t *msg, bool skip_self)
412 {
413 	const struct cpu_info * const self = curcpu();
414 	CPU_INFO_ITERATOR cii;
415 	struct cpu_info *ci;
416 
417 	KASSERT(msg->func != NULL);
418 	KASSERT(kpreempt_disabled());
419 
420 	msg->_pending = ncpu - 1;
421 	membar_release();
422 
423 	/* Broadcast IPIs for remote CPUs. */
424 	for (CPU_INFO_FOREACH(cii, ci)) {
425 		cpuid_t id;
426 
427 		if (__predict_false(ci == self)) {
428 			continue;
429 		}
430 		id = cpu_index(ci);
431 		put_msg(&ipi_mboxes[id], msg);
432 		ipi_trigger(IPI_SYNCH_ID, ci);
433 	}
434 
435 	if (!skip_self) {
436 		/* Finally, execute locally. */
437 		msg->func(msg->arg);
438 	}
439 }
440 
441 /*
442  * ipi_wait: spin-wait until the message is processed.
443  */
444 void
ipi_wait(ipi_msg_t * msg)445 ipi_wait(ipi_msg_t *msg)
446 {
447 	int count = SPINLOCK_BACKOFF_MIN;
448 
449 	while (atomic_load_acquire(&msg->_pending)) {
450 		KASSERT(atomic_load_relaxed(&msg->_pending) < ncpu);
451 		SPINLOCK_BACKOFF(count);
452 	}
453 }
454