1 /* $OpenBSD: in_pcb.c,v 1.305 2024/11/05 22:44:20 bluhm Exp $ */
2 /* $NetBSD: in_pcb.c,v 1.25 1996/02/13 23:41:53 christos Exp $ */
3
4 /*
5 * Copyright (c) 1982, 1986, 1991, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
33 *
34 * NRL grants permission for redistribution and use in source and binary
35 * forms, with or without modification, of the software and documentation
36 * created at NRL provided that the following conditions are met:
37 *
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgements:
45 * This product includes software developed by the University of
46 * California, Berkeley and its contributors.
47 * This product includes software developed at the Information
48 * Technology Division, US Naval Research Laboratory.
49 * 4. Neither the name of the NRL nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
54 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
56 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
57 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
58 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
59 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
60 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
61 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
62 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
63 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
64 *
65 * The views and conclusions contained in the software and documentation
66 * are those of the authors and should not be interpreted as representing
67 * official policies, either expressed or implied, of the US Naval
68 * Research Laboratory (NRL).
69 */
70
71 #include "pf.h"
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/mbuf.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/domain.h>
80 #include <sys/mount.h>
81 #include <sys/pool.h>
82 #include <sys/proc.h>
83
84 #include <net/if.h>
85 #include <net/if_var.h>
86 #include <net/pfvar.h>
87 #include <net/route.h>
88
89 #include <netinet/in.h>
90 #include <netinet/in_var.h>
91 #include <netinet/ip.h>
92 #include <netinet/ip_var.h>
93 #include <netinet6/ip6_var.h>
94 #include <netinet/in_pcb.h>
95 #ifdef IPSEC
96 #include <netinet/ip_esp.h>
97 #endif /* IPSEC */
98
99 #include "stoeplitz.h"
100 #if NSTOEPLITZ > 0
101 #include <net/toeplitz.h>
102 #endif
103
104 const struct in_addr zeroin_addr;
105 const union inpaddru zeroin46_addr;
106
107 /*
108 * These configure the range of local port addresses assigned to
109 * "unspecified" outgoing connections/packets/whatever.
110 */
111 int ipport_firstauto = IPPORT_RESERVED;
112 int ipport_lastauto = IPPORT_USERRESERVED;
113 int ipport_hifirstauto = IPPORT_HIFIRSTAUTO;
114 int ipport_hilastauto = IPPORT_HILASTAUTO;
115
116 struct baddynamicports baddynamicports;
117 struct baddynamicports rootonlyports;
118 struct pool inpcb_pool;
119
120 void in_pcbhash_insert(struct inpcb *);
121 struct inpcb *in_pcbhash_lookup(struct inpcbtable *, uint64_t, u_int,
122 const struct in_addr *, u_short, const struct in_addr *, u_short);
123 int in_pcbresize(struct inpcbtable *, int);
124
125 #define INPCBHASH_LOADFACTOR(_x) (((_x) * 3) / 4)
126
127 uint64_t in_pcbhash(struct inpcbtable *, u_int,
128 const struct in_addr *, u_short, const struct in_addr *, u_short);
129 uint64_t in_pcblhash(struct inpcbtable *, u_int, u_short);
130
131 struct inpcb *in_pcblookup_lock(struct inpcbtable *, struct in_addr, u_int,
132 struct in_addr, u_int, u_int, int);
133 int in_pcbaddrisavail_lock(const struct inpcb *, struct sockaddr_in *, int,
134 struct proc *, int);
135 int in_pcbpickport(u_int16_t *, const void *, int, const struct inpcb *,
136 struct proc *);
137
138 /*
139 * in_pcb is used for inet and inet6. in6_pcb only contains special
140 * IPv6 cases. So the internet initializer is used for both domains.
141 */
142 void
in_init(void)143 in_init(void)
144 {
145 pool_init(&inpcb_pool, sizeof(struct inpcb), 0,
146 IPL_SOFTNET, 0, "inpcb", NULL);
147 }
148
149 uint64_t
in_pcbhash(struct inpcbtable * table,u_int rdomain,const struct in_addr * faddr,u_short fport,const struct in_addr * laddr,u_short lport)150 in_pcbhash(struct inpcbtable *table, u_int rdomain,
151 const struct in_addr *faddr, u_short fport,
152 const struct in_addr *laddr, u_short lport)
153 {
154 SIPHASH_CTX ctx;
155 u_int32_t nrdom = htonl(rdomain);
156
157 SipHash24_Init(&ctx, &table->inpt_key);
158 SipHash24_Update(&ctx, &nrdom, sizeof(nrdom));
159 SipHash24_Update(&ctx, faddr, sizeof(*faddr));
160 SipHash24_Update(&ctx, &fport, sizeof(fport));
161 SipHash24_Update(&ctx, laddr, sizeof(*laddr));
162 SipHash24_Update(&ctx, &lport, sizeof(lport));
163 return SipHash24_End(&ctx);
164 }
165
166 uint64_t
in_pcblhash(struct inpcbtable * table,u_int rdomain,u_short lport)167 in_pcblhash(struct inpcbtable *table, u_int rdomain, u_short lport)
168 {
169 SIPHASH_CTX ctx;
170 u_int32_t nrdom = htonl(rdomain);
171
172 SipHash24_Init(&ctx, &table->inpt_lkey);
173 SipHash24_Update(&ctx, &nrdom, sizeof(nrdom));
174 SipHash24_Update(&ctx, &lport, sizeof(lport));
175 return SipHash24_End(&ctx);
176 }
177
178 void
in_pcbinit(struct inpcbtable * table,int hashsize)179 in_pcbinit(struct inpcbtable *table, int hashsize)
180 {
181 mtx_init(&table->inpt_mtx, IPL_SOFTNET);
182 rw_init(&table->inpt_notify, "inpnotify");
183 TAILQ_INIT(&table->inpt_queue);
184 table->inpt_hashtbl = hashinit(hashsize, M_PCB, M_WAITOK,
185 &table->inpt_mask);
186 table->inpt_lhashtbl = hashinit(hashsize, M_PCB, M_WAITOK,
187 &table->inpt_lmask);
188 table->inpt_count = 0;
189 table->inpt_size = hashsize;
190 arc4random_buf(&table->inpt_key, sizeof(table->inpt_key));
191 arc4random_buf(&table->inpt_lkey, sizeof(table->inpt_lkey));
192 }
193
194 /*
195 * Check if the specified port is invalid for dynamic allocation.
196 */
197 int
in_baddynamic(u_int16_t port,u_int16_t proto)198 in_baddynamic(u_int16_t port, u_int16_t proto)
199 {
200 switch (proto) {
201 case IPPROTO_TCP:
202 return (DP_ISSET(baddynamicports.tcp, port));
203 case IPPROTO_UDP:
204 #ifdef IPSEC
205 /* Cannot preset this as it is a sysctl */
206 if (port == udpencap_port)
207 return (1);
208 #endif
209 return (DP_ISSET(baddynamicports.udp, port));
210 default:
211 return (0);
212 }
213 }
214
215 int
in_rootonly(u_int16_t port,u_int16_t proto)216 in_rootonly(u_int16_t port, u_int16_t proto)
217 {
218 switch (proto) {
219 case IPPROTO_TCP:
220 return (port < IPPORT_RESERVED ||
221 DP_ISSET(rootonlyports.tcp, port));
222 case IPPROTO_UDP:
223 return (port < IPPORT_RESERVED ||
224 DP_ISSET(rootonlyports.udp, port));
225 default:
226 return (0);
227 }
228 }
229
230 int
in_pcballoc(struct socket * so,struct inpcbtable * table,int wait)231 in_pcballoc(struct socket *so, struct inpcbtable *table, int wait)
232 {
233 struct inpcb *inp;
234
235 inp = pool_get(&inpcb_pool, (wait == M_WAIT ? PR_WAITOK : PR_NOWAIT) |
236 PR_ZERO);
237 if (inp == NULL)
238 return (ENOBUFS);
239 inp->inp_table = table;
240 inp->inp_socket = so;
241 refcnt_init_trace(&inp->inp_refcnt, DT_REFCNT_IDX_INPCB);
242 inp->inp_seclevel.sl_auth = IPSEC_AUTH_LEVEL_DEFAULT;
243 inp->inp_seclevel.sl_esp_trans = IPSEC_ESP_TRANS_LEVEL_DEFAULT;
244 inp->inp_seclevel.sl_esp_network = IPSEC_ESP_NETWORK_LEVEL_DEFAULT;
245 inp->inp_seclevel.sl_ipcomp = IPSEC_IPCOMP_LEVEL_DEFAULT;
246 inp->inp_rtableid = curproc->p_p->ps_rtableid;
247 inp->inp_hops = -1;
248 #ifdef INET6
249 switch (so->so_proto->pr_domain->dom_family) {
250 case PF_INET6:
251 inp->inp_flags = INP_IPV6;
252 break;
253 case PF_INET:
254 /* inp->inp_flags is initialized to 0 */
255 break;
256 default:
257 unhandled_af(so->so_proto->pr_domain->dom_family);
258 }
259 inp->inp_cksum6 = -1;
260 #endif /* INET6 */
261
262 mtx_enter(&table->inpt_mtx);
263 if (table->inpt_count++ > INPCBHASH_LOADFACTOR(table->inpt_size))
264 (void)in_pcbresize(table, table->inpt_size * 2);
265 TAILQ_INSERT_HEAD(&table->inpt_queue, inp, inp_queue);
266 in_pcbhash_insert(inp);
267 mtx_leave(&table->inpt_mtx);
268
269 so->so_pcb = inp;
270
271 return (0);
272 }
273
274 int
in_pcbbind_locked(struct inpcb * inp,struct mbuf * nam,const void * laddr,struct proc * p)275 in_pcbbind_locked(struct inpcb *inp, struct mbuf *nam, const void *laddr,
276 struct proc *p)
277 {
278 struct socket *so = inp->inp_socket;
279 u_int16_t lport = 0;
280 int wild = 0;
281 int error;
282
283 if (inp->inp_lport)
284 return (EINVAL);
285
286 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0 &&
287 ((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0 ||
288 (so->so_options & SO_ACCEPTCONN) == 0))
289 wild = INPLOOKUP_WILDCARD;
290
291 #ifdef INET6
292 if (ISSET(inp->inp_flags, INP_IPV6)) {
293 if (!IN6_IS_ADDR_UNSPECIFIED(&inp->inp_laddr6))
294 return (EINVAL);
295 wild |= INPLOOKUP_IPV6;
296
297 if (nam) {
298 struct sockaddr_in6 *sin6;
299
300 if ((error = in6_nam2sin6(nam, &sin6)))
301 return (error);
302 if ((error = in6_pcbaddrisavail_lock(inp, sin6, wild,
303 p, IN_PCBLOCK_HOLD)))
304 return (error);
305 laddr = &sin6->sin6_addr;
306 lport = sin6->sin6_port;
307 }
308 } else
309 #endif
310 {
311 if (inp->inp_laddr.s_addr != INADDR_ANY)
312 return (EINVAL);
313
314 if (nam) {
315 struct sockaddr_in *sin;
316
317 if ((error = in_nam2sin(nam, &sin)))
318 return (error);
319 if ((error = in_pcbaddrisavail_lock(inp, sin, wild,
320 p, IN_PCBLOCK_HOLD)))
321 return (error);
322 laddr = &sin->sin_addr;
323 lport = sin->sin_port;
324 }
325 }
326
327 if (lport == 0) {
328 if ((error = in_pcbpickport(&lport, laddr, wild, inp, p)))
329 return (error);
330 } else {
331 if (in_rootonly(ntohs(lport), so->so_proto->pr_protocol) &&
332 suser(p) != 0)
333 return (EACCES);
334 }
335 if (nam) {
336 #ifdef INET6
337 if (ISSET(inp->inp_flags, INP_IPV6))
338 inp->inp_laddr6 = *(struct in6_addr *)laddr;
339 else
340 #endif
341 inp->inp_laddr = *(struct in_addr *)laddr;
342 }
343 inp->inp_lport = lport;
344 in_pcbrehash(inp);
345
346 return (0);
347 }
348
349 int
in_pcbbind(struct inpcb * inp,struct mbuf * nam,struct proc * p)350 in_pcbbind(struct inpcb *inp, struct mbuf *nam, struct proc *p)
351 {
352 struct inpcbtable *table = inp->inp_table;
353 int error;
354
355 /* keep lookup, modification, and rehash in sync */
356 mtx_enter(&table->inpt_mtx);
357 error = in_pcbbind_locked(inp, nam, &zeroin46_addr, p);
358 mtx_leave(&table->inpt_mtx);
359
360 return error;
361 }
362
363 int
in_pcbaddrisavail_lock(const struct inpcb * inp,struct sockaddr_in * sin,int wild,struct proc * p,int lock)364 in_pcbaddrisavail_lock(const struct inpcb *inp, struct sockaddr_in *sin,
365 int wild, struct proc *p, int lock)
366 {
367 struct socket *so = inp->inp_socket;
368 struct inpcbtable *table = inp->inp_table;
369 u_int16_t lport = sin->sin_port;
370 int reuseport = (so->so_options & SO_REUSEPORT);
371
372 if (IN_MULTICAST(sin->sin_addr.s_addr)) {
373 /*
374 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
375 * allow complete duplication of binding if
376 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
377 * and a multicast address is bound on both
378 * new and duplicated sockets.
379 */
380 if (so->so_options & (SO_REUSEADDR|SO_REUSEPORT))
381 reuseport = SO_REUSEADDR|SO_REUSEPORT;
382 } else if (sin->sin_addr.s_addr != INADDR_ANY) {
383 /*
384 * we must check that we are binding to an address we
385 * own except when:
386 * - SO_BINDANY is set or
387 * - we are binding a UDP socket to 255.255.255.255 or
388 * - we are binding a UDP socket to one of our broadcast
389 * addresses
390 */
391 if (!ISSET(so->so_options, SO_BINDANY) &&
392 !(so->so_type == SOCK_DGRAM &&
393 sin->sin_addr.s_addr == INADDR_BROADCAST) &&
394 !(so->so_type == SOCK_DGRAM &&
395 in_broadcast(sin->sin_addr, inp->inp_rtableid))) {
396 struct ifaddr *ia;
397
398 sin->sin_port = 0;
399 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
400 ia = ifa_ifwithaddr(sintosa(sin), inp->inp_rtableid);
401 sin->sin_port = lport;
402
403 if (ia == NULL)
404 return (EADDRNOTAVAIL);
405 }
406 }
407 if (lport) {
408 struct inpcb *t;
409 int error = 0;
410
411 if (so->so_euid && !IN_MULTICAST(sin->sin_addr.s_addr)) {
412 t = in_pcblookup_local_lock(table, &sin->sin_addr,
413 lport, INPLOOKUP_WILDCARD, inp->inp_rtableid, lock);
414 if (t && (so->so_euid != t->inp_socket->so_euid))
415 error = EADDRINUSE;
416 if (lock == IN_PCBLOCK_GRAB)
417 in_pcbunref(t);
418 if (error)
419 return (error);
420 }
421 t = in_pcblookup_local_lock(table, &sin->sin_addr, lport,
422 wild, inp->inp_rtableid, lock);
423 if (t && (reuseport & t->inp_socket->so_options) == 0)
424 error = EADDRINUSE;
425 if (lock == IN_PCBLOCK_GRAB)
426 in_pcbunref(t);
427 if (error)
428 return (error);
429 }
430
431 return (0);
432 }
433
434 int
in_pcbaddrisavail(const struct inpcb * inp,struct sockaddr_in * sin,int wild,struct proc * p)435 in_pcbaddrisavail(const struct inpcb *inp, struct sockaddr_in *sin,
436 int wild, struct proc *p)
437 {
438 return in_pcbaddrisavail_lock(inp, sin, wild, p, IN_PCBLOCK_GRAB);
439 }
440
441 int
in_pcbpickport(u_int16_t * lport,const void * laddr,int wild,const struct inpcb * inp,struct proc * p)442 in_pcbpickport(u_int16_t *lport, const void *laddr, int wild,
443 const struct inpcb *inp, struct proc *p)
444 {
445 struct socket *so = inp->inp_socket;
446 struct inpcbtable *table = inp->inp_table;
447 struct inpcb *t;
448 u_int16_t first, last, lower, higher, candidate, localport;
449 int count;
450
451 MUTEX_ASSERT_LOCKED(&table->inpt_mtx);
452
453 if (inp->inp_flags & INP_HIGHPORT) {
454 first = ipport_hifirstauto; /* sysctl */
455 last = ipport_hilastauto;
456 } else if (inp->inp_flags & INP_LOWPORT) {
457 if (suser(p))
458 return (EACCES);
459 first = IPPORT_RESERVED-1; /* 1023 */
460 last = 600; /* not IPPORT_RESERVED/2 */
461 } else {
462 first = ipport_firstauto; /* sysctl */
463 last = ipport_lastauto;
464 }
465 if (first < last) {
466 lower = first;
467 higher = last;
468 } else {
469 lower = last;
470 higher = first;
471 }
472
473 /*
474 * Simple check to ensure all ports are not used up causing
475 * a deadlock here.
476 */
477
478 count = higher - lower;
479 candidate = lower + arc4random_uniform(count);
480
481 do {
482 do {
483 if (count-- < 0) /* completely used? */
484 return (EADDRNOTAVAIL);
485 ++candidate;
486 if (candidate < lower || candidate > higher)
487 candidate = lower;
488 localport = htons(candidate);
489 } while (in_baddynamic(candidate, so->so_proto->pr_protocol));
490 t = in_pcblookup_local_lock(table, laddr, localport, wild,
491 inp->inp_rtableid, IN_PCBLOCK_HOLD);
492 } while (t != NULL);
493 *lport = localport;
494
495 return (0);
496 }
497
498 /*
499 * Connect from a socket to a specified address.
500 * Both address and port must be specified in argument sin.
501 * If don't have a local address for this socket yet,
502 * then pick one.
503 */
504 int
in_pcbconnect(struct inpcb * inp,struct mbuf * nam)505 in_pcbconnect(struct inpcb *inp, struct mbuf *nam)
506 {
507 struct inpcbtable *table = inp->inp_table;
508 struct in_addr ina;
509 struct sockaddr_in *sin;
510 struct inpcb *t;
511 int error;
512
513 #ifdef INET6
514 if (ISSET(inp->inp_flags, INP_IPV6))
515 return (in6_pcbconnect(inp, nam));
516 #endif
517
518 if ((error = in_nam2sin(nam, &sin)))
519 return (error);
520 if (sin->sin_port == 0)
521 return (EADDRNOTAVAIL);
522 error = in_pcbselsrc(&ina, sin, inp);
523 if (error)
524 return (error);
525
526 /* keep lookup, modification, and rehash in sync */
527 mtx_enter(&table->inpt_mtx);
528
529 t = in_pcblookup_lock(inp->inp_table, sin->sin_addr, sin->sin_port,
530 ina, inp->inp_lport, inp->inp_rtableid, IN_PCBLOCK_HOLD);
531 if (t != NULL) {
532 mtx_leave(&table->inpt_mtx);
533 return (EADDRINUSE);
534 }
535
536 KASSERT(inp->inp_laddr.s_addr == INADDR_ANY || inp->inp_lport);
537
538 if (inp->inp_laddr.s_addr == INADDR_ANY) {
539 if (inp->inp_lport == 0) {
540 error = in_pcbbind_locked(inp, NULL, &ina, curproc);
541 if (error) {
542 mtx_leave(&table->inpt_mtx);
543 return (error);
544 }
545 t = in_pcblookup_lock(inp->inp_table, sin->sin_addr,
546 sin->sin_port, ina, inp->inp_lport,
547 inp->inp_rtableid, IN_PCBLOCK_HOLD);
548 if (t != NULL) {
549 inp->inp_lport = 0;
550 mtx_leave(&table->inpt_mtx);
551 return (EADDRINUSE);
552 }
553 }
554 inp->inp_laddr = ina;
555 }
556 inp->inp_faddr = sin->sin_addr;
557 inp->inp_fport = sin->sin_port;
558 in_pcbrehash(inp);
559
560 mtx_leave(&table->inpt_mtx);
561
562 #if NSTOEPLITZ > 0
563 inp->inp_flowid = stoeplitz_ip4port(inp->inp_faddr.s_addr,
564 inp->inp_laddr.s_addr, inp->inp_fport, inp->inp_lport);
565 #endif
566 return (0);
567 }
568
569 void
in_pcbdisconnect(struct inpcb * inp)570 in_pcbdisconnect(struct inpcb *inp)
571 {
572 #if NPF > 0
573 pf_remove_divert_state(inp);
574 pf_inp_unlink(inp);
575 #endif
576 inp->inp_flowid = 0;
577 if (inp->inp_socket->so_state & SS_NOFDREF)
578 in_pcbdetach(inp);
579 }
580
581 void
in_pcbdetach(struct inpcb * inp)582 in_pcbdetach(struct inpcb *inp)
583 {
584 struct socket *so = inp->inp_socket;
585 struct inpcbtable *table = inp->inp_table;
586
587 so->so_pcb = NULL;
588 /*
589 * As long as the NET_LOCK() is the default lock for Internet
590 * sockets, do not release it to not introduce new sleeping
591 * points.
592 */
593 sofree(so, 1);
594 if (inp->inp_route.ro_rt) {
595 rtfree(inp->inp_route.ro_rt);
596 inp->inp_route.ro_rt = NULL;
597 }
598 #ifdef INET6
599 if (ISSET(inp->inp_flags, INP_IPV6)) {
600 ip6_freepcbopts(inp->inp_outputopts6);
601 ip6_freemoptions(inp->inp_moptions6);
602 } else
603 #endif
604 {
605 m_freem(inp->inp_options);
606 ip_freemoptions(inp->inp_moptions);
607 }
608 #if NPF > 0
609 pf_remove_divert_state(inp);
610 pf_inp_unlink(inp);
611 #endif
612 mtx_enter(&table->inpt_mtx);
613 LIST_REMOVE(inp, inp_lhash);
614 LIST_REMOVE(inp, inp_hash);
615 TAILQ_REMOVE(&table->inpt_queue, inp, inp_queue);
616 table->inpt_count--;
617 mtx_leave(&table->inpt_mtx);
618
619 in_pcbunref(inp);
620 }
621
622 struct inpcb *
in_pcbref(struct inpcb * inp)623 in_pcbref(struct inpcb *inp)
624 {
625 if (inp == NULL)
626 return NULL;
627 refcnt_take(&inp->inp_refcnt);
628 return inp;
629 }
630
631 void
in_pcbunref(struct inpcb * inp)632 in_pcbunref(struct inpcb *inp)
633 {
634 if (inp == NULL)
635 return;
636 if (refcnt_rele(&inp->inp_refcnt) == 0)
637 return;
638 KASSERT((LIST_NEXT(inp, inp_hash) == NULL) ||
639 (LIST_NEXT(inp, inp_hash) == _Q_INVALID));
640 KASSERT((LIST_NEXT(inp, inp_lhash) == NULL) ||
641 (LIST_NEXT(inp, inp_lhash) == _Q_INVALID));
642 KASSERT((TAILQ_NEXT(inp, inp_queue) == NULL) ||
643 (TAILQ_NEXT(inp, inp_queue) == _Q_INVALID));
644 pool_put(&inpcb_pool, inp);
645 }
646
647 struct inpcb *
in_pcb_iterator(struct inpcbtable * table,struct inpcb * inp,struct inpcb_iterator * iter)648 in_pcb_iterator(struct inpcbtable *table, struct inpcb *inp,
649 struct inpcb_iterator *iter)
650 {
651 struct inpcb *tmp;
652
653 MUTEX_ASSERT_LOCKED(&table->inpt_mtx);
654
655 if (inp)
656 tmp = TAILQ_NEXT((struct inpcb *)iter, inp_queue);
657 else
658 tmp = TAILQ_FIRST(&table->inpt_queue);
659
660 while (tmp && tmp->inp_table == NULL)
661 tmp = TAILQ_NEXT(tmp, inp_queue);
662
663 if (inp) {
664 TAILQ_REMOVE(&table->inpt_queue, (struct inpcb *)iter,
665 inp_queue);
666 in_pcbunref(inp);
667 }
668 if (tmp) {
669 TAILQ_INSERT_AFTER(&table->inpt_queue, tmp,
670 (struct inpcb *)iter, inp_queue);
671 in_pcbref(tmp);
672 }
673
674 return tmp;
675 }
676
677 void
in_pcb_iterator_abort(struct inpcbtable * table,struct inpcb * inp,struct inpcb_iterator * iter)678 in_pcb_iterator_abort(struct inpcbtable *table, struct inpcb *inp,
679 struct inpcb_iterator *iter)
680 {
681 MUTEX_ASSERT_LOCKED(&table->inpt_mtx);
682
683 if (inp) {
684 TAILQ_REMOVE(&table->inpt_queue, (struct inpcb *)iter,
685 inp_queue);
686 in_pcbunref(inp);
687 }
688 }
689
690 void
in_setsockaddr(struct inpcb * inp,struct mbuf * nam)691 in_setsockaddr(struct inpcb *inp, struct mbuf *nam)
692 {
693 struct sockaddr_in *sin;
694
695 #ifdef INET6
696 if (ISSET(inp->inp_flags, INP_IPV6)) {
697 in6_setsockaddr(inp, nam);
698 return;
699 }
700 #endif
701
702 nam->m_len = sizeof(*sin);
703 sin = mtod(nam, struct sockaddr_in *);
704 memset(sin, 0, sizeof(*sin));
705 sin->sin_family = AF_INET;
706 sin->sin_len = sizeof(*sin);
707 sin->sin_port = inp->inp_lport;
708 sin->sin_addr = inp->inp_laddr;
709 }
710
711 void
in_setpeeraddr(struct inpcb * inp,struct mbuf * nam)712 in_setpeeraddr(struct inpcb *inp, struct mbuf *nam)
713 {
714 struct sockaddr_in *sin;
715
716 #ifdef INET6
717 if (ISSET(inp->inp_flags, INP_IPV6)) {
718 in6_setpeeraddr(inp, nam);
719 return;
720 }
721 #endif
722
723 nam->m_len = sizeof(*sin);
724 sin = mtod(nam, struct sockaddr_in *);
725 memset(sin, 0, sizeof(*sin));
726 sin->sin_family = AF_INET;
727 sin->sin_len = sizeof(*sin);
728 sin->sin_port = inp->inp_fport;
729 sin->sin_addr = inp->inp_faddr;
730 }
731
732 int
in_sockaddr(struct socket * so,struct mbuf * nam)733 in_sockaddr(struct socket *so, struct mbuf *nam)
734 {
735 struct inpcb *inp;
736
737 inp = sotoinpcb(so);
738 in_setsockaddr(inp, nam);
739
740 return (0);
741 }
742
743 int
in_peeraddr(struct socket * so,struct mbuf * nam)744 in_peeraddr(struct socket *so, struct mbuf *nam)
745 {
746 struct inpcb *inp;
747
748 inp = sotoinpcb(so);
749 in_setpeeraddr(inp, nam);
750
751 return (0);
752 }
753
754 /*
755 * Pass some notification to all connections of a protocol
756 * associated with address dst. The "usual action" will be
757 * taken, depending on the ctlinput cmd. The caller must filter any
758 * cmds that are uninteresting (e.g., no error in the map).
759 * Call the protocol specific routine (if any) to report
760 * any errors for each matching socket.
761 */
762 void
in_pcbnotifyall(struct inpcbtable * table,const struct sockaddr_in * dst,u_int rtable,int errno,void (* notify)(struct inpcb *,int))763 in_pcbnotifyall(struct inpcbtable *table, const struct sockaddr_in *dst,
764 u_int rtable, int errno, void (*notify)(struct inpcb *, int))
765 {
766 SIMPLEQ_HEAD(, inpcb) inpcblist;
767 struct inpcb *inp;
768 u_int rdomain;
769
770 if (dst->sin_addr.s_addr == INADDR_ANY)
771 return;
772 if (notify == NULL)
773 return;
774
775 /*
776 * Use a temporary notify list protected by rwlock to run over
777 * selected PCB. This is necessary as the list of all PCB is
778 * protected by a mutex. Notify may call ip_output() eventually
779 * which may sleep as pf lock is a rwlock. Also the SRP
780 * implementation of the routing table might sleep.
781 * The same inp_notify list entry and inpt_notify rwlock are
782 * used for UDP multicast and raw IP delivery.
783 */
784 SIMPLEQ_INIT(&inpcblist);
785 rdomain = rtable_l2(rtable);
786 rw_enter_write(&table->inpt_notify);
787 mtx_enter(&table->inpt_mtx);
788 TAILQ_FOREACH(inp, &table->inpt_queue, inp_queue) {
789 if (in_pcb_is_iterator(inp))
790 continue;
791 KASSERT(!ISSET(inp->inp_flags, INP_IPV6));
792
793 if (inp->inp_faddr.s_addr != dst->sin_addr.s_addr ||
794 rtable_l2(inp->inp_rtableid) != rdomain) {
795 continue;
796 }
797 in_pcbref(inp);
798 SIMPLEQ_INSERT_TAIL(&inpcblist, inp, inp_notify);
799 }
800 mtx_leave(&table->inpt_mtx);
801
802 while ((inp = SIMPLEQ_FIRST(&inpcblist)) != NULL) {
803 SIMPLEQ_REMOVE_HEAD(&inpcblist, inp_notify);
804 (*notify)(inp, errno);
805 in_pcbunref(inp);
806 }
807 rw_exit_write(&table->inpt_notify);
808 }
809
810 /*
811 * Check for alternatives when higher level complains
812 * about service problems. For now, invalidate cached
813 * routing information. If the route was created dynamically
814 * (by a redirect), time to try a default gateway again.
815 */
816 void
in_losing(struct inpcb * inp)817 in_losing(struct inpcb *inp)
818 {
819 struct rtentry *rt = inp->inp_route.ro_rt;
820
821 if (rt) {
822 inp->inp_route.ro_rt = NULL;
823
824 if (rt->rt_flags & RTF_DYNAMIC) {
825 struct ifnet *ifp;
826
827 ifp = if_get(rt->rt_ifidx);
828 /*
829 * If the interface is gone, all its attached
830 * route entries have been removed from the table,
831 * so we're dealing with a stale cache and have
832 * nothing to do.
833 */
834 if (ifp != NULL)
835 rtdeletemsg(rt, ifp, inp->inp_rtableid);
836 if_put(ifp);
837 }
838 /*
839 * A new route can be allocated
840 * the next time output is attempted.
841 * rtfree() needs to be called in anycase because the inp
842 * is still holding a reference to rt.
843 */
844 rtfree(rt);
845 }
846 }
847
848 /*
849 * After a routing change, flush old routing
850 * and allocate a (hopefully) better one.
851 */
852 void
in_rtchange(struct inpcb * inp,int errno)853 in_rtchange(struct inpcb *inp, int errno)
854 {
855 if (inp->inp_route.ro_rt) {
856 rtfree(inp->inp_route.ro_rt);
857 inp->inp_route.ro_rt = NULL;
858 /*
859 * A new route can be allocated the next time
860 * output is attempted.
861 */
862 }
863 }
864
865 struct inpcb *
in_pcblookup_local_lock(struct inpcbtable * table,const void * laddrp,u_int lport_arg,int flags,u_int rtable,int lock)866 in_pcblookup_local_lock(struct inpcbtable *table, const void *laddrp,
867 u_int lport_arg, int flags, u_int rtable, int lock)
868 {
869 struct inpcb *inp, *match = NULL;
870 int matchwild = 3, wildcard;
871 u_int16_t lport = lport_arg;
872 const struct in_addr laddr = *(const struct in_addr *)laddrp;
873 #ifdef INET6
874 const struct in6_addr *laddr6 = (const struct in6_addr *)laddrp;
875 #endif
876 struct inpcbhead *head;
877 uint64_t lhash;
878 u_int rdomain;
879
880 rdomain = rtable_l2(rtable);
881 lhash = in_pcblhash(table, rdomain, lport);
882
883 if (lock == IN_PCBLOCK_GRAB) {
884 mtx_enter(&table->inpt_mtx);
885 } else {
886 KASSERT(lock == IN_PCBLOCK_HOLD);
887 MUTEX_ASSERT_LOCKED(&table->inpt_mtx);
888 }
889 head = &table->inpt_lhashtbl[lhash & table->inpt_lmask];
890 LIST_FOREACH(inp, head, inp_lhash) {
891 if (rtable_l2(inp->inp_rtableid) != rdomain)
892 continue;
893 if (inp->inp_lport != lport)
894 continue;
895 wildcard = 0;
896 #ifdef INET6
897 if (ISSET(flags, INPLOOKUP_IPV6)) {
898 KASSERT(ISSET(inp->inp_flags, INP_IPV6));
899
900 if (!IN6_IS_ADDR_UNSPECIFIED(&inp->inp_faddr6))
901 wildcard++;
902
903 if (!IN6_ARE_ADDR_EQUAL(&inp->inp_laddr6, laddr6)) {
904 if (IN6_IS_ADDR_UNSPECIFIED(&inp->inp_laddr6) ||
905 IN6_IS_ADDR_UNSPECIFIED(laddr6))
906 wildcard++;
907 else
908 continue;
909 }
910
911 } else
912 #endif /* INET6 */
913 {
914 KASSERT(!ISSET(inp->inp_flags, INP_IPV6));
915
916 if (inp->inp_faddr.s_addr != INADDR_ANY)
917 wildcard++;
918
919 if (inp->inp_laddr.s_addr != laddr.s_addr) {
920 if (inp->inp_laddr.s_addr == INADDR_ANY ||
921 laddr.s_addr == INADDR_ANY)
922 wildcard++;
923 else
924 continue;
925 }
926
927 }
928 if ((!wildcard || (flags & INPLOOKUP_WILDCARD)) &&
929 wildcard < matchwild) {
930 match = inp;
931 if ((matchwild = wildcard) == 0)
932 break;
933 }
934 }
935 if (lock == IN_PCBLOCK_GRAB) {
936 in_pcbref(match);
937 mtx_leave(&table->inpt_mtx);
938 }
939
940 return (match);
941 }
942
943 struct rtentry *
in_pcbrtentry(struct inpcb * inp)944 in_pcbrtentry(struct inpcb *inp)
945 {
946 #ifdef INET6
947 if (ISSET(inp->inp_flags, INP_IPV6))
948 return in6_pcbrtentry(inp);
949 #endif
950
951 if (inp->inp_faddr.s_addr == INADDR_ANY)
952 return (NULL);
953 return (route_mpath(&inp->inp_route, &inp->inp_faddr, &inp->inp_laddr,
954 inp->inp_rtableid));
955 }
956
957 /*
958 * Return an IPv4 address, which is the most appropriate for a given
959 * destination.
960 * If necessary, this function lookups the routing table and returns
961 * an entry to the caller for later use.
962 */
963 int
in_pcbselsrc(struct in_addr * insrc,struct sockaddr_in * sin,struct inpcb * inp)964 in_pcbselsrc(struct in_addr *insrc, struct sockaddr_in *sin,
965 struct inpcb *inp)
966 {
967 struct ip_moptions *mopts = inp->inp_moptions;
968 struct rtentry *rt;
969 const struct in_addr *laddr = &inp->inp_laddr;
970 u_int rtableid = inp->inp_rtableid;
971 struct sockaddr *ip4_source = NULL;
972 struct in_ifaddr *ia = NULL;
973
974 /*
975 * If the socket(if any) is already bound, use that bound address
976 * unless it is INADDR_ANY or INADDR_BROADCAST.
977 */
978 if (laddr->s_addr != INADDR_ANY &&
979 laddr->s_addr != INADDR_BROADCAST) {
980 *insrc = *laddr;
981 return (0);
982 }
983
984 /*
985 * If the destination address is multicast or limited
986 * broadcast (255.255.255.255) and an outgoing interface has
987 * been set as a multicast option, use the address of that
988 * interface as our source address.
989 */
990 if ((IN_MULTICAST(sin->sin_addr.s_addr) ||
991 sin->sin_addr.s_addr == INADDR_BROADCAST) && mopts != NULL) {
992 struct ifnet *ifp;
993
994 ifp = if_get(mopts->imo_ifidx);
995 if (ifp != NULL) {
996 if (ifp->if_rdomain == rtable_l2(rtableid))
997 IFP_TO_IA(ifp, ia);
998 if (ia == NULL) {
999 if_put(ifp);
1000 return (EADDRNOTAVAIL);
1001 }
1002
1003 *insrc = ia->ia_addr.sin_addr;
1004 if_put(ifp);
1005 return (0);
1006 }
1007 }
1008
1009 /*
1010 * If route is known or can be allocated now,
1011 * our src addr is taken from the i/f, else punt.
1012 */
1013 rt = route_mpath(&inp->inp_route, &sin->sin_addr, NULL, rtableid);
1014
1015 /*
1016 * If we found a route, use the address
1017 * corresponding to the outgoing interface.
1018 */
1019 if (rt != NULL)
1020 ia = ifatoia(rt->rt_ifa);
1021
1022 /*
1023 * Use preferred source address if :
1024 * - destination is not onlink
1025 * - preferred source address is set
1026 * - output interface is UP
1027 */
1028 if (rt != NULL && !(rt->rt_flags & RTF_LLINFO) &&
1029 !(rt->rt_flags & RTF_HOST)) {
1030 ip4_source = rtable_getsource(rtableid, AF_INET);
1031 if (ip4_source != NULL) {
1032 struct ifaddr *ifa;
1033 if ((ifa = ifa_ifwithaddr(ip4_source, rtableid)) !=
1034 NULL && ISSET(ifa->ifa_ifp->if_flags, IFF_UP)) {
1035 *insrc = satosin(ip4_source)->sin_addr;
1036 return (0);
1037 }
1038 }
1039 }
1040
1041 if (ia == NULL)
1042 return (EADDRNOTAVAIL);
1043
1044 *insrc = ia->ia_addr.sin_addr;
1045 return (0);
1046 }
1047
1048 void
in_pcbrehash(struct inpcb * inp)1049 in_pcbrehash(struct inpcb *inp)
1050 {
1051 LIST_REMOVE(inp, inp_lhash);
1052 LIST_REMOVE(inp, inp_hash);
1053 in_pcbhash_insert(inp);
1054 }
1055
1056 void
in_pcbhash_insert(struct inpcb * inp)1057 in_pcbhash_insert(struct inpcb *inp)
1058 {
1059 struct inpcbtable *table = inp->inp_table;
1060 struct inpcbhead *head;
1061 uint64_t hash, lhash;
1062
1063 MUTEX_ASSERT_LOCKED(&table->inpt_mtx);
1064
1065 lhash = in_pcblhash(table, inp->inp_rtableid, inp->inp_lport);
1066 head = &table->inpt_lhashtbl[lhash & table->inpt_lmask];
1067 LIST_INSERT_HEAD(head, inp, inp_lhash);
1068 #ifdef INET6
1069 if (ISSET(inp->inp_flags, INP_IPV6))
1070 hash = in6_pcbhash(table, rtable_l2(inp->inp_rtableid),
1071 &inp->inp_faddr6, inp->inp_fport,
1072 &inp->inp_laddr6, inp->inp_lport);
1073 else
1074 #endif
1075 hash = in_pcbhash(table, rtable_l2(inp->inp_rtableid),
1076 &inp->inp_faddr, inp->inp_fport,
1077 &inp->inp_laddr, inp->inp_lport);
1078 head = &table->inpt_hashtbl[hash & table->inpt_mask];
1079 LIST_INSERT_HEAD(head, inp, inp_hash);
1080 }
1081
1082 struct inpcb *
in_pcbhash_lookup(struct inpcbtable * table,uint64_t hash,u_int rdomain,const struct in_addr * faddr,u_short fport,const struct in_addr * laddr,u_short lport)1083 in_pcbhash_lookup(struct inpcbtable *table, uint64_t hash, u_int rdomain,
1084 const struct in_addr *faddr, u_short fport,
1085 const struct in_addr *laddr, u_short lport)
1086 {
1087 struct inpcbhead *head;
1088 struct inpcb *inp;
1089
1090 MUTEX_ASSERT_LOCKED(&table->inpt_mtx);
1091
1092 head = &table->inpt_hashtbl[hash & table->inpt_mask];
1093 LIST_FOREACH(inp, head, inp_hash) {
1094 KASSERT(!ISSET(inp->inp_flags, INP_IPV6));
1095
1096 if (inp->inp_fport == fport && inp->inp_lport == lport &&
1097 inp->inp_faddr.s_addr == faddr->s_addr &&
1098 inp->inp_laddr.s_addr == laddr->s_addr &&
1099 rtable_l2(inp->inp_rtableid) == rdomain) {
1100 break;
1101 }
1102 }
1103 if (inp != NULL) {
1104 /*
1105 * Move this PCB to the head of hash chain so that
1106 * repeated accesses are quicker. This is analogous to
1107 * the historic single-entry PCB cache.
1108 */
1109 if (inp != LIST_FIRST(head)) {
1110 LIST_REMOVE(inp, inp_hash);
1111 LIST_INSERT_HEAD(head, inp, inp_hash);
1112 }
1113 }
1114 return (inp);
1115 }
1116
1117 int
in_pcbresize(struct inpcbtable * table,int hashsize)1118 in_pcbresize(struct inpcbtable *table, int hashsize)
1119 {
1120 u_long nmask, nlmask;
1121 int osize;
1122 void *nhashtbl, *nlhashtbl, *ohashtbl, *olhashtbl;
1123 struct inpcb *inp;
1124
1125 MUTEX_ASSERT_LOCKED(&table->inpt_mtx);
1126
1127 ohashtbl = table->inpt_hashtbl;
1128 olhashtbl = table->inpt_lhashtbl;
1129 osize = table->inpt_size;
1130
1131 nhashtbl = hashinit(hashsize, M_PCB, M_NOWAIT, &nmask);
1132 if (nhashtbl == NULL)
1133 return ENOBUFS;
1134 nlhashtbl = hashinit(hashsize, M_PCB, M_NOWAIT, &nlmask);
1135 if (nlhashtbl == NULL) {
1136 hashfree(nhashtbl, hashsize, M_PCB);
1137 return ENOBUFS;
1138 }
1139 table->inpt_hashtbl = nhashtbl;
1140 table->inpt_lhashtbl = nlhashtbl;
1141 table->inpt_mask = nmask;
1142 table->inpt_lmask = nlmask;
1143 table->inpt_size = hashsize;
1144
1145 TAILQ_FOREACH(inp, &table->inpt_queue, inp_queue) {
1146 if (in_pcb_is_iterator(inp))
1147 continue;
1148 LIST_REMOVE(inp, inp_lhash);
1149 LIST_REMOVE(inp, inp_hash);
1150 in_pcbhash_insert(inp);
1151 }
1152 hashfree(ohashtbl, osize, M_PCB);
1153 hashfree(olhashtbl, osize, M_PCB);
1154
1155 return (0);
1156 }
1157
1158 #ifdef DIAGNOSTIC
1159 int in_pcbnotifymiss = 0;
1160 #endif
1161
1162 /*
1163 * The in(6)_pcblookup functions are used to locate connected sockets
1164 * quickly:
1165 * faddr.fport <-> laddr.lport
1166 * No wildcard matching is done so that listening sockets are not found.
1167 * If the functions return NULL in(6)_pcblookup_listen can be used to
1168 * find a listening/bound socket that may accept the connection.
1169 * After those two lookups no other are necessary.
1170 */
1171 struct inpcb *
in_pcblookup_lock(struct inpcbtable * table,struct in_addr faddr,u_int fport,struct in_addr laddr,u_int lport,u_int rtable,int lock)1172 in_pcblookup_lock(struct inpcbtable *table, struct in_addr faddr,
1173 u_int fport, struct in_addr laddr, u_int lport, u_int rtable, int lock)
1174 {
1175 struct inpcb *inp;
1176 uint64_t hash;
1177 u_int rdomain;
1178
1179 rdomain = rtable_l2(rtable);
1180 hash = in_pcbhash(table, rdomain, &faddr, fport, &laddr, lport);
1181
1182 if (lock == IN_PCBLOCK_GRAB) {
1183 mtx_enter(&table->inpt_mtx);
1184 } else {
1185 KASSERT(lock == IN_PCBLOCK_HOLD);
1186 MUTEX_ASSERT_LOCKED(&table->inpt_mtx);
1187 }
1188 inp = in_pcbhash_lookup(table, hash, rdomain,
1189 &faddr, fport, &laddr, lport);
1190 if (lock == IN_PCBLOCK_GRAB) {
1191 in_pcbref(inp);
1192 mtx_leave(&table->inpt_mtx);
1193 }
1194
1195 #ifdef DIAGNOSTIC
1196 if (inp == NULL && in_pcbnotifymiss) {
1197 printf("%s: faddr=%08x fport=%d laddr=%08x lport=%d rdom=%u\n",
1198 __func__, ntohl(faddr.s_addr), ntohs(fport),
1199 ntohl(laddr.s_addr), ntohs(lport), rdomain);
1200 }
1201 #endif
1202 return (inp);
1203 }
1204
1205 struct inpcb *
in_pcblookup(struct inpcbtable * table,struct in_addr faddr,u_int fport,struct in_addr laddr,u_int lport,u_int rtable)1206 in_pcblookup(struct inpcbtable *table, struct in_addr faddr,
1207 u_int fport, struct in_addr laddr, u_int lport, u_int rtable)
1208 {
1209 return in_pcblookup_lock(table, faddr, fport, laddr, lport, rtable,
1210 IN_PCBLOCK_GRAB);
1211 }
1212
1213 /*
1214 * The in(6)_pcblookup_listen functions are used to locate listening
1215 * sockets quickly. This are sockets with unspecified foreign address
1216 * and port:
1217 * *.* <-> laddr.lport
1218 * *.* <-> *.lport
1219 */
1220 struct inpcb *
in_pcblookup_listen(struct inpcbtable * table,struct in_addr laddr,u_int lport_arg,struct mbuf * m,u_int rtable)1221 in_pcblookup_listen(struct inpcbtable *table, struct in_addr laddr,
1222 u_int lport_arg, struct mbuf *m, u_int rtable)
1223 {
1224 const struct in_addr *key1, *key2;
1225 struct inpcb *inp;
1226 uint64_t hash;
1227 u_int16_t lport = lport_arg;
1228 u_int rdomain;
1229
1230 key1 = &laddr;
1231 key2 = &zeroin_addr;
1232 #if NPF > 0
1233 if (m && m->m_pkthdr.pf.flags & PF_TAG_DIVERTED) {
1234 struct pf_divert *divert;
1235
1236 divert = pf_find_divert(m);
1237 KASSERT(divert != NULL);
1238 switch (divert->type) {
1239 case PF_DIVERT_TO:
1240 key1 = key2 = &divert->addr.v4;
1241 lport = divert->port;
1242 break;
1243 case PF_DIVERT_REPLY:
1244 return (NULL);
1245 default:
1246 panic("%s: unknown divert type %d, mbuf %p, divert %p",
1247 __func__, divert->type, m, divert);
1248 }
1249 } else if (m && m->m_pkthdr.pf.flags & PF_TAG_TRANSLATE_LOCALHOST) {
1250 /*
1251 * Redirected connections should not be treated the same
1252 * as connections directed to 127.0.0.0/8 since localhost
1253 * can only be accessed from the host itself.
1254 * For example portmap(8) grants more permissions for
1255 * connections to the socket bound to 127.0.0.1 than
1256 * to the * socket.
1257 */
1258 key1 = &zeroin_addr;
1259 key2 = &laddr;
1260 }
1261 #endif
1262
1263 rdomain = rtable_l2(rtable);
1264 hash = in_pcbhash(table, rdomain, &zeroin_addr, 0, key1, lport);
1265
1266 mtx_enter(&table->inpt_mtx);
1267 inp = in_pcbhash_lookup(table, hash, rdomain,
1268 &zeroin_addr, 0, key1, lport);
1269 if (inp == NULL && key1->s_addr != key2->s_addr) {
1270 hash = in_pcbhash(table, rdomain,
1271 &zeroin_addr, 0, key2, lport);
1272 inp = in_pcbhash_lookup(table, hash, rdomain,
1273 &zeroin_addr, 0, key2, lport);
1274 }
1275 in_pcbref(inp);
1276 mtx_leave(&table->inpt_mtx);
1277
1278 #ifdef DIAGNOSTIC
1279 if (inp == NULL && in_pcbnotifymiss) {
1280 printf("%s: laddr=%08x lport=%d rdom=%u\n",
1281 __func__, ntohl(laddr.s_addr), ntohs(lport), rdomain);
1282 }
1283 #endif
1284 return (inp);
1285 }
1286
1287 int
in_pcbset_rtableid(struct inpcb * inp,u_int rtableid)1288 in_pcbset_rtableid(struct inpcb *inp, u_int rtableid)
1289 {
1290 struct inpcbtable *table = inp->inp_table;
1291
1292 /* table must exist */
1293 if (!rtable_exists(rtableid))
1294 return (EINVAL);
1295
1296 mtx_enter(&table->inpt_mtx);
1297 if (inp->inp_lport) {
1298 mtx_leave(&table->inpt_mtx);
1299 return (EBUSY);
1300 }
1301 inp->inp_rtableid = rtableid;
1302 in_pcbrehash(inp);
1303 mtx_leave(&table->inpt_mtx);
1304
1305 return (0);
1306 }
1307
1308 void
in_pcbset_laddr(struct inpcb * inp,const struct sockaddr * sa,u_int rtableid)1309 in_pcbset_laddr(struct inpcb *inp, const struct sockaddr *sa, u_int rtableid)
1310 {
1311 struct inpcbtable *table = inp->inp_table;
1312
1313 mtx_enter(&table->inpt_mtx);
1314 inp->inp_rtableid = rtableid;
1315 #ifdef INET6
1316 if (ISSET(inp->inp_flags, INP_IPV6)) {
1317 const struct sockaddr_in6 *sin6;
1318
1319 KASSERT(sa->sa_family == AF_INET6);
1320 sin6 = satosin6_const(sa);
1321 inp->inp_lport = sin6->sin6_port;
1322 inp->inp_laddr6 = sin6->sin6_addr;
1323 } else
1324 #endif
1325 {
1326 const struct sockaddr_in *sin;
1327
1328 KASSERT(sa->sa_family == AF_INET);
1329 sin = satosin_const(sa);
1330 inp->inp_lport = sin->sin_port;
1331 inp->inp_laddr = sin->sin_addr;
1332 }
1333 in_pcbrehash(inp);
1334 mtx_leave(&table->inpt_mtx);
1335 }
1336
1337 void
in_pcbunset_faddr(struct inpcb * inp)1338 in_pcbunset_faddr(struct inpcb *inp)
1339 {
1340 struct inpcbtable *table = inp->inp_table;
1341
1342 mtx_enter(&table->inpt_mtx);
1343 #ifdef INET6
1344 if (ISSET(inp->inp_flags, INP_IPV6))
1345 inp->inp_faddr6 = in6addr_any;
1346 else
1347 #endif
1348 inp->inp_faddr.s_addr = INADDR_ANY;
1349 inp->inp_fport = 0;
1350 in_pcbrehash(inp);
1351 mtx_leave(&table->inpt_mtx);
1352 }
1353
1354 void
in_pcbunset_laddr(struct inpcb * inp)1355 in_pcbunset_laddr(struct inpcb *inp)
1356 {
1357 struct inpcbtable *table = inp->inp_table;
1358
1359 mtx_enter(&table->inpt_mtx);
1360 #ifdef INET6
1361 if (ISSET(inp->inp_flags, INP_IPV6)) {
1362 inp->inp_faddr6 = in6addr_any;
1363 inp->inp_laddr6 = in6addr_any;
1364 } else
1365 #endif
1366 {
1367 inp->inp_faddr.s_addr = INADDR_ANY;
1368 inp->inp_laddr.s_addr = INADDR_ANY;
1369 }
1370 inp->inp_fport = 0;
1371 in_pcbrehash(inp);
1372 mtx_leave(&table->inpt_mtx);
1373 }
1374