xref: /freebsd/contrib/llvm-project/lld/ELF/Symbols.h (revision 7a6dacac)
1 //===- Symbols.h ------------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines various types of Symbols.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLD_ELF_SYMBOLS_H
14 #define LLD_ELF_SYMBOLS_H
15 
16 #include "Config.h"
17 #include "lld/Common/LLVM.h"
18 #include "lld/Common/Memory.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/Object/ELF.h"
21 #include "llvm/Support/Compiler.h"
22 #include <tuple>
23 
24 namespace lld {
25 namespace elf {
26 class Symbol;
27 }
28 // Returns a string representation for a symbol for diagnostics.
29 std::string toString(const elf::Symbol &);
30 
31 namespace elf {
32 class CommonSymbol;
33 class Defined;
34 class OutputSection;
35 class SectionBase;
36 class InputSectionBase;
37 class SharedSymbol;
38 class Symbol;
39 class Undefined;
40 class LazySymbol;
41 class InputFile;
42 
43 void printTraceSymbol(const Symbol &sym, StringRef name);
44 
45 enum {
46   NEEDS_GOT = 1 << 0,
47   NEEDS_PLT = 1 << 1,
48   HAS_DIRECT_RELOC = 1 << 2,
49   // True if this symbol needs a canonical PLT entry, or (during
50   // postScanRelocations) a copy relocation.
51   NEEDS_COPY = 1 << 3,
52   NEEDS_TLSDESC = 1 << 4,
53   NEEDS_TLSGD = 1 << 5,
54   NEEDS_TLSGD_TO_IE = 1 << 6,
55   NEEDS_GOT_DTPREL = 1 << 7,
56   NEEDS_TLSIE = 1 << 8,
57 };
58 
59 // Some index properties of a symbol are stored separately in this auxiliary
60 // struct to decrease sizeof(SymbolUnion) in the majority of cases.
61 struct SymbolAux {
62   uint32_t gotIdx = -1;
63   uint32_t pltIdx = -1;
64   uint32_t tlsDescIdx = -1;
65   uint32_t tlsGdIdx = -1;
66 };
67 
68 LLVM_LIBRARY_VISIBILITY extern SmallVector<SymbolAux, 0> symAux;
69 
70 // The base class for real symbol classes.
71 class Symbol {
72 public:
73   enum Kind {
74     PlaceholderKind,
75     DefinedKind,
76     CommonKind,
77     SharedKind,
78     UndefinedKind,
79     LazyKind,
80   };
81 
kind()82   Kind kind() const { return static_cast<Kind>(symbolKind); }
83 
84   // The file from which this symbol was created.
85   InputFile *file;
86 
87   // The default copy constructor is deleted due to atomic flags. Define one for
88   // places where no atomic is needed.
Symbol(const Symbol & o)89   Symbol(const Symbol &o) { memcpy(this, &o, sizeof(o)); }
90 
91 protected:
92   const char *nameData;
93   // 32-bit size saves space.
94   uint32_t nameSize;
95 
96 public:
97   // The next three fields have the same meaning as the ELF symbol attributes.
98   // type and binding are placed in this order to optimize generating st_info,
99   // which is defined as (binding << 4) + (type & 0xf), on a little-endian
100   // system.
101   uint8_t type : 4; // symbol type
102 
103   // Symbol binding. This is not overwritten by replace() to track
104   // changes during resolution. In particular:
105   //  - An undefined weak is still weak when it resolves to a shared library.
106   //  - An undefined weak will not extract archive members, but we have to
107   //    remember it is weak.
108   uint8_t binding : 4;
109 
110   uint8_t stOther; // st_other field value
111 
112   uint8_t symbolKind;
113 
114   // The partition whose dynamic symbol table contains this symbol's definition.
115   uint8_t partition;
116 
117   // True if this symbol is preemptible at load time.
118   uint8_t isPreemptible : 1;
119 
120   // True if the symbol was used for linking and thus need to be added to the
121   // output file's symbol table. This is true for all symbols except for
122   // unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that
123   // are unreferenced except by other bitcode objects.
124   uint8_t isUsedInRegularObj : 1;
125 
126   // True if an undefined or shared symbol is used from a live section.
127   //
128   // NOTE: In Writer.cpp the field is used to mark local defined symbols
129   // which are referenced by relocations when -r or --emit-relocs is given.
130   uint8_t used : 1;
131 
132   // Used by a Defined symbol with protected or default visibility, to record
133   // whether it is required to be exported into .dynsym. This is set when any of
134   // the following conditions hold:
135   //
136   // - If there is an interposable symbol from a DSO. Note: We also do this for
137   //   STV_PROTECTED symbols which can't be interposed (to match BFD behavior).
138   // - If -shared or --export-dynamic is specified, any symbol in an object
139   //   file/bitcode sets this property, unless suppressed by LTO
140   //   canBeOmittedFromSymbolTable().
141   uint8_t exportDynamic : 1;
142 
143   // True if the symbol is in the --dynamic-list file. A Defined symbol with
144   // protected or default visibility with this property is required to be
145   // exported into .dynsym.
146   uint8_t inDynamicList : 1;
147 
148   // Used to track if there has been at least one undefined reference to the
149   // symbol. For Undefined and SharedSymbol, the binding may change to STB_WEAK
150   // if the first undefined reference from a non-shared object is weak.
151   uint8_t referenced : 1;
152 
153   // Used to track if this symbol will be referenced after wrapping is performed
154   // (i.e. this will be true for foo if __real_foo is referenced, and will be
155   // true for __wrap_foo if foo is referenced).
156   uint8_t referencedAfterWrap : 1;
157 
158   // True if this symbol is specified by --trace-symbol option.
159   uint8_t traced : 1;
160 
161   // True if the name contains '@'.
162   uint8_t hasVersionSuffix : 1;
163 
164   // Symbol visibility. This is the computed minimum visibility of all
165   // observed non-DSO symbols.
visibility()166   uint8_t visibility() const { return stOther & 3; }
setVisibility(uint8_t visibility)167   void setVisibility(uint8_t visibility) {
168     stOther = (stOther & ~3) | visibility;
169   }
170 
171   bool includeInDynsym() const;
172   uint8_t computeBinding() const;
isGlobal()173   bool isGlobal() const { return binding == llvm::ELF::STB_GLOBAL; }
isWeak()174   bool isWeak() const { return binding == llvm::ELF::STB_WEAK; }
175 
isUndefined()176   bool isUndefined() const { return symbolKind == UndefinedKind; }
isCommon()177   bool isCommon() const { return symbolKind == CommonKind; }
isDefined()178   bool isDefined() const { return symbolKind == DefinedKind; }
isShared()179   bool isShared() const { return symbolKind == SharedKind; }
isPlaceholder()180   bool isPlaceholder() const { return symbolKind == PlaceholderKind; }
181 
isLocal()182   bool isLocal() const { return binding == llvm::ELF::STB_LOCAL; }
183 
isLazy()184   bool isLazy() const { return symbolKind == LazyKind; }
185 
186   // True if this is an undefined weak symbol. This only works once
187   // all input files have been added.
isUndefWeak()188   bool isUndefWeak() const { return isWeak() && isUndefined(); }
189 
getName()190   StringRef getName() const { return {nameData, nameSize}; }
191 
setName(StringRef s)192   void setName(StringRef s) {
193     nameData = s.data();
194     nameSize = s.size();
195   }
196 
197   void parseSymbolVersion();
198 
199   // Get the NUL-terminated version suffix ("", "@...", or "@@...").
200   //
201   // For @@, the name has been truncated by insert(). For @, the name has been
202   // truncated by Symbol::parseSymbolVersion().
getVersionSuffix()203   const char *getVersionSuffix() const { return nameData + nameSize; }
204 
getGotIdx()205   uint32_t getGotIdx() const { return symAux[auxIdx].gotIdx; }
getPltIdx()206   uint32_t getPltIdx() const { return symAux[auxIdx].pltIdx; }
getTlsDescIdx()207   uint32_t getTlsDescIdx() const { return symAux[auxIdx].tlsDescIdx; }
getTlsGdIdx()208   uint32_t getTlsGdIdx() const { return symAux[auxIdx].tlsGdIdx; }
209 
isInGot()210   bool isInGot() const { return getGotIdx() != uint32_t(-1); }
isInPlt()211   bool isInPlt() const { return getPltIdx() != uint32_t(-1); }
212 
213   uint64_t getVA(int64_t addend = 0) const;
214 
215   uint64_t getGotOffset() const;
216   uint64_t getGotVA() const;
217   uint64_t getGotPltOffset() const;
218   uint64_t getGotPltVA() const;
219   uint64_t getPltVA() const;
220   uint64_t getSize() const;
221   OutputSection *getOutputSection() const;
222 
223   // The following two functions are used for symbol resolution.
224   //
225   // You are expected to call mergeProperties for all symbols in input
226   // files so that attributes that are attached to names rather than
227   // indivisual symbol (such as visibility) are merged together.
228   //
229   // Every time you read a new symbol from an input, you are supposed
230   // to call resolve() with the new symbol. That function replaces
231   // "this" object as a result of name resolution if the new symbol is
232   // more appropriate to be included in the output.
233   //
234   // For example, if "this" is an undefined symbol and a new symbol is
235   // a defined symbol, "this" is replaced with the new symbol.
236   void mergeProperties(const Symbol &other);
237   void resolve(const Undefined &other);
238   void resolve(const CommonSymbol &other);
239   void resolve(const Defined &other);
240   void resolve(const LazySymbol &other);
241   void resolve(const SharedSymbol &other);
242 
243   // If this is a lazy symbol, extract an input file and add the symbol
244   // in the file to the symbol table. Calling this function on
245   // non-lazy object causes a runtime error.
246   void extract() const;
247 
248   void checkDuplicate(const Defined &other) const;
249 
250 private:
251   bool shouldReplace(const Defined &other) const;
252 
253 protected:
Symbol(Kind k,InputFile * file,StringRef name,uint8_t binding,uint8_t stOther,uint8_t type)254   Symbol(Kind k, InputFile *file, StringRef name, uint8_t binding,
255          uint8_t stOther, uint8_t type)
256       : file(file), nameData(name.data()), nameSize(name.size()), type(type),
257         binding(binding), stOther(stOther), symbolKind(k), exportDynamic(false),
258         archSpecificBit(false) {}
259 
overwrite(Symbol & sym,Kind k)260   void overwrite(Symbol &sym, Kind k) const {
261     if (sym.traced)
262       printTraceSymbol(*this, sym.getName());
263     sym.file = file;
264     sym.type = type;
265     sym.binding = binding;
266     sym.stOther = (stOther & ~3) | sym.visibility();
267     sym.symbolKind = k;
268   }
269 
270 public:
271   // True if this symbol is in the Iplt sub-section of the Plt and the Igot
272   // sub-section of the .got.plt or .got.
273   uint8_t isInIplt : 1;
274 
275   // True if this symbol needs a GOT entry and its GOT entry is actually in
276   // Igot. This will be true only for certain non-preemptible ifuncs.
277   uint8_t gotInIgot : 1;
278 
279   // True if defined relative to a section discarded by ICF.
280   uint8_t folded : 1;
281 
282   // Allow reuse of a bit between architecture-exclusive symbol flags.
283   // - needsTocRestore(): On PPC64, true if a call to this symbol needs to be
284   //   followed by a restore of the toc pointer.
285   // - isTagged(): On AArch64, true if the symbol needs special relocation and
286   //   metadata semantics because it's tagged, under the AArch64 MemtagABI.
287   uint8_t archSpecificBit : 1;
needsTocRestore()288   bool needsTocRestore() const { return archSpecificBit; }
isTagged()289   bool isTagged() const { return archSpecificBit; }
setNeedsTocRestore(bool v)290   void setNeedsTocRestore(bool v) { archSpecificBit = v; }
setIsTagged(bool v)291   void setIsTagged(bool v) {
292     archSpecificBit = v;
293   }
294 
295   // True if this symbol is defined by a symbol assignment or wrapped by --wrap.
296   //
297   // LTO shouldn't inline the symbol because it doesn't know the final content
298   // of the symbol.
299   uint8_t scriptDefined : 1;
300 
301   // True if defined in a DSO. There may also be a definition in a relocatable
302   // object file.
303   uint8_t dsoDefined : 1;
304 
305   // True if defined in a DSO as protected visibility.
306   uint8_t dsoProtected : 1;
307 
308   // Temporary flags used to communicate which symbol entries need PLT and GOT
309   // entries during postScanRelocations();
310   std::atomic<uint16_t> flags;
311 
312   // A symAux index used to access GOT/PLT entry indexes. This is allocated in
313   // postScanRelocations().
314   uint32_t auxIdx;
315   uint32_t dynsymIndex;
316 
317   // If `file` is SharedFile (for SharedSymbol or copy-relocated Defined), this
318   // represents the Verdef index within the input DSO, which will be converted
319   // to a Verneed index in the output. Otherwise, this represents the Verdef
320   // index (VER_NDX_LOCAL, VER_NDX_GLOBAL, or a named version).
321   uint16_t versionId;
322   uint8_t versionScriptAssigned : 1;
323 
324   // True if targeted by a range extension thunk.
325   uint8_t thunkAccessed : 1;
326 
setFlags(uint16_t bits)327   void setFlags(uint16_t bits) {
328     flags.fetch_or(bits, std::memory_order_relaxed);
329   }
hasFlag(uint16_t bit)330   bool hasFlag(uint16_t bit) const {
331     assert(bit && (bit & (bit - 1)) == 0 && "bit must be a power of 2");
332     return flags.load(std::memory_order_relaxed) & bit;
333   }
334 
needsDynReloc()335   bool needsDynReloc() const {
336     return flags.load(std::memory_order_relaxed) &
337            (NEEDS_COPY | NEEDS_GOT | NEEDS_PLT | NEEDS_TLSDESC | NEEDS_TLSGD |
338             NEEDS_TLSGD_TO_IE | NEEDS_GOT_DTPREL | NEEDS_TLSIE);
339   }
allocateAux()340   void allocateAux() {
341     assert(auxIdx == 0);
342     auxIdx = symAux.size();
343     symAux.emplace_back();
344   }
345 
isSection()346   bool isSection() const { return type == llvm::ELF::STT_SECTION; }
isTls()347   bool isTls() const { return type == llvm::ELF::STT_TLS; }
isFunc()348   bool isFunc() const { return type == llvm::ELF::STT_FUNC; }
isGnuIFunc()349   bool isGnuIFunc() const { return type == llvm::ELF::STT_GNU_IFUNC; }
isObject()350   bool isObject() const { return type == llvm::ELF::STT_OBJECT; }
isFile()351   bool isFile() const { return type == llvm::ELF::STT_FILE; }
352 };
353 
354 // Represents a symbol that is defined in the current output file.
355 class Defined : public Symbol {
356 public:
Defined(InputFile * file,StringRef name,uint8_t binding,uint8_t stOther,uint8_t type,uint64_t value,uint64_t size,SectionBase * section)357   Defined(InputFile *file, StringRef name, uint8_t binding, uint8_t stOther,
358           uint8_t type, uint64_t value, uint64_t size, SectionBase *section)
359       : Symbol(DefinedKind, file, name, binding, stOther, type), value(value),
360         size(size), section(section) {
361     exportDynamic = config->exportDynamic;
362   }
363   void overwrite(Symbol &sym) const;
364 
classof(const Symbol * s)365   static bool classof(const Symbol *s) { return s->isDefined(); }
366 
367   uint64_t value;
368   uint64_t size;
369   SectionBase *section;
370 };
371 
372 // Represents a common symbol.
373 //
374 // On Unix, it is traditionally allowed to write variable definitions
375 // without initialization expressions (such as "int foo;") to header
376 // files. Such definition is called "tentative definition".
377 //
378 // Using tentative definition is usually considered a bad practice
379 // because you should write only declarations (such as "extern int
380 // foo;") to header files. Nevertheless, the linker and the compiler
381 // have to do something to support bad code by allowing duplicate
382 // definitions for this particular case.
383 //
384 // Common symbols represent variable definitions without initializations.
385 // The compiler creates common symbols when it sees variable definitions
386 // without initialization (you can suppress this behavior and let the
387 // compiler create a regular defined symbol by -fno-common).
388 //
389 // The linker allows common symbols to be replaced by regular defined
390 // symbols. If there are remaining common symbols after name resolution is
391 // complete, they are converted to regular defined symbols in a .bss
392 // section. (Therefore, the later passes don't see any CommonSymbols.)
393 class CommonSymbol : public Symbol {
394 public:
CommonSymbol(InputFile * file,StringRef name,uint8_t binding,uint8_t stOther,uint8_t type,uint64_t alignment,uint64_t size)395   CommonSymbol(InputFile *file, StringRef name, uint8_t binding,
396                uint8_t stOther, uint8_t type, uint64_t alignment, uint64_t size)
397       : Symbol(CommonKind, file, name, binding, stOther, type),
398         alignment(alignment), size(size) {
399     exportDynamic = config->exportDynamic;
400   }
overwrite(Symbol & sym)401   void overwrite(Symbol &sym) const {
402     Symbol::overwrite(sym, CommonKind);
403     auto &s = static_cast<CommonSymbol &>(sym);
404     s.alignment = alignment;
405     s.size = size;
406   }
407 
classof(const Symbol * s)408   static bool classof(const Symbol *s) { return s->isCommon(); }
409 
410   uint32_t alignment;
411   uint64_t size;
412 };
413 
414 class Undefined : public Symbol {
415 public:
416   Undefined(InputFile *file, StringRef name, uint8_t binding, uint8_t stOther,
417             uint8_t type, uint32_t discardedSecIdx = 0)
Symbol(UndefinedKind,file,name,binding,stOther,type)418       : Symbol(UndefinedKind, file, name, binding, stOther, type),
419         discardedSecIdx(discardedSecIdx) {}
overwrite(Symbol & sym)420   void overwrite(Symbol &sym) const {
421     Symbol::overwrite(sym, UndefinedKind);
422     auto &s = static_cast<Undefined &>(sym);
423     s.discardedSecIdx = discardedSecIdx;
424     s.nonPrevailing = nonPrevailing;
425   }
426 
classof(const Symbol * s)427   static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; }
428 
429   // The section index if in a discarded section, 0 otherwise.
430   uint32_t discardedSecIdx;
431   bool nonPrevailing = false;
432 };
433 
434 class SharedSymbol : public Symbol {
435 public:
classof(const Symbol * s)436   static bool classof(const Symbol *s) { return s->kind() == SharedKind; }
437 
SharedSymbol(InputFile & file,StringRef name,uint8_t binding,uint8_t stOther,uint8_t type,uint64_t value,uint64_t size,uint32_t alignment)438   SharedSymbol(InputFile &file, StringRef name, uint8_t binding,
439                uint8_t stOther, uint8_t type, uint64_t value, uint64_t size,
440                uint32_t alignment)
441       : Symbol(SharedKind, &file, name, binding, stOther, type), value(value),
442         size(size), alignment(alignment) {
443     exportDynamic = true;
444     dsoProtected = visibility() == llvm::ELF::STV_PROTECTED;
445     // GNU ifunc is a mechanism to allow user-supplied functions to
446     // resolve PLT slot values at load-time. This is contrary to the
447     // regular symbol resolution scheme in which symbols are resolved just
448     // by name. Using this hook, you can program how symbols are solved
449     // for you program. For example, you can make "memcpy" to be resolved
450     // to a SSE-enabled version of memcpy only when a machine running the
451     // program supports the SSE instruction set.
452     //
453     // Naturally, such symbols should always be called through their PLT
454     // slots. What GNU ifunc symbols point to are resolver functions, and
455     // calling them directly doesn't make sense (unless you are writing a
456     // loader).
457     //
458     // For DSO symbols, we always call them through PLT slots anyway.
459     // So there's no difference between GNU ifunc and regular function
460     // symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC.
461     if (this->type == llvm::ELF::STT_GNU_IFUNC)
462       this->type = llvm::ELF::STT_FUNC;
463   }
overwrite(Symbol & sym)464   void overwrite(Symbol &sym) const {
465     Symbol::overwrite(sym, SharedKind);
466     auto &s = static_cast<SharedSymbol &>(sym);
467     s.dsoProtected = dsoProtected;
468     s.value = value;
469     s.size = size;
470     s.alignment = alignment;
471   }
472 
473   uint64_t value; // st_value
474   uint64_t size;  // st_size
475   uint32_t alignment;
476 };
477 
478 // LazySymbol symbols represent symbols in object files between --start-lib and
479 // --end-lib options. LLD also handles traditional archives as if all the files
480 // in the archive are surrounded by --start-lib and --end-lib.
481 //
482 // A special complication is the handling of weak undefined symbols. They should
483 // not load a file, but we have to remember we have seen both the weak undefined
484 // and the lazy. We represent that with a lazy symbol with a weak binding. This
485 // means that code looking for undefined symbols normally also has to take lazy
486 // symbols into consideration.
487 class LazySymbol : public Symbol {
488 public:
LazySymbol(InputFile & file)489   LazySymbol(InputFile &file)
490       : Symbol(LazyKind, &file, {}, llvm::ELF::STB_GLOBAL,
491                llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE) {}
overwrite(Symbol & sym)492   void overwrite(Symbol &sym) const { Symbol::overwrite(sym, LazyKind); }
493 
classof(const Symbol * s)494   static bool classof(const Symbol *s) { return s->kind() == LazyKind; }
495 };
496 
497 // Some linker-generated symbols need to be created as
498 // Defined symbols.
499 struct ElfSym {
500   // __bss_start
501   static Defined *bss;
502 
503   // etext and _etext
504   static Defined *etext1;
505   static Defined *etext2;
506 
507   // edata and _edata
508   static Defined *edata1;
509   static Defined *edata2;
510 
511   // end and _end
512   static Defined *end1;
513   static Defined *end2;
514 
515   // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to
516   // be at some offset from the base of the .got section, usually 0 or
517   // the end of the .got.
518   static Defined *globalOffsetTable;
519 
520   // _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS.
521   static Defined *mipsGp;
522   static Defined *mipsGpDisp;
523   static Defined *mipsLocalGp;
524 
525   // __global_pointer$ for RISC-V.
526   static Defined *riscvGlobalPointer;
527 
528   // __rel{,a}_iplt_{start,end} symbols.
529   static Defined *relaIpltStart;
530   static Defined *relaIpltEnd;
531 
532   // _TLS_MODULE_BASE_ on targets that support TLSDESC.
533   static Defined *tlsModuleBase;
534 };
535 
536 // A buffer class that is large enough to hold any Symbol-derived
537 // object. We allocate memory using this class and instantiate a symbol
538 // using the placement new.
539 
540 // It is important to keep the size of SymbolUnion small for performance and
541 // memory usage reasons. 64 bytes is a soft limit based on the size of Defined
542 // on a 64-bit system. This is enforced by a static_assert in Symbols.cpp.
543 union SymbolUnion {
544   alignas(Defined) char a[sizeof(Defined)];
545   alignas(CommonSymbol) char b[sizeof(CommonSymbol)];
546   alignas(Undefined) char c[sizeof(Undefined)];
547   alignas(SharedSymbol) char d[sizeof(SharedSymbol)];
548   alignas(LazySymbol) char e[sizeof(LazySymbol)];
549 };
550 
makeDefined(T &&...args)551 template <typename... T> Defined *makeDefined(T &&...args) {
552   auto *sym = getSpecificAllocSingleton<SymbolUnion>().Allocate();
553   memset(sym, 0, sizeof(Symbol));
554   auto &s = *new (reinterpret_cast<Defined *>(sym)) Defined(std::forward<T>(args)...);
555   return &s;
556 }
557 
558 void reportDuplicate(const Symbol &sym, const InputFile *newFile,
559                      InputSectionBase *errSec, uint64_t errOffset);
560 void maybeWarnUnorderableSymbol(const Symbol *sym);
561 bool computeIsPreemptible(const Symbol &sym);
562 
563 } // namespace elf
564 } // namespace lld
565 
566 #endif
567